1
|
Drago P, Bookey N, Leung K, Henry M, Meleady P, Greene NDE, Parle‐McDermott A. DHFR2 RNA directly regulates dihydrofolate reductase and its expression level impacts folate one carbon metabolism. FASEB J 2025; 39:e70391. [PMID: 39957677 PMCID: PMC11831416 DOI: 10.1096/fj.202401039rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/08/2025] [Accepted: 02/03/2025] [Indexed: 02/18/2025]
Abstract
Dihydrofolate reductase activity is required in One Carbon Metabolism to ensure that the biologically active form of folate, tetrahydrofolate, is replenished and available as an enzyme cofactor for numerous cellular reactions, including purine and pyrimidine synthesis. Most cellular enzyme activity was thought to arise from the product of the DHFR gene on chromosome 5, with its paralogue DHFR2 (formerly known as DHFRL1; [chromosome 3]), believed to be responsible for mitochondrial dihydrofolate activity based on recombinant versions of the enzyme. In this paper, we confirm our earlier findings that dihydrofolate reductase activity in mitochondria is derived from the DHFR gene rather than DHFR2 and that endogenous DHFR2 protein is not detectable in most cells and tissues. Using HepG2 cell lines with modulated expression of either DHFR or DHFR2, we observed an impact of DHFR2 RNA on One Carbon Metabolism mediated through an influence on DHFR expression and activity. Knockout of DHFR2 results in a drop in dihydrofolate reductase activity, lowered 10-formyltetrahydrofolate abundance, downregulation of DHFR mRNA, and diminished DHFR protein abundance. We also observed downregulation of Serine Hydroxymethyltransferase and Thymidylate Synthase, two One Carbon Metabolism enzymes that work with DHFR to support de novo thymidylate synthesis. The expression of recombinant DHFR2 resulted in restoration of DHFR mRNA and protein levels while a DHFR knockdown cell line showed upregulation of DHFR2 RNA. We propose that the DHFR2 gene encodes an RNA molecule that regulates cellular dihydrofolate reductase activity through its impact on DHFR mRNA and protein.
Collapse
Affiliation(s)
- Paola Drago
- School of BiotechnologyDublin City UniversityDublin 9Ireland
- DCU Life Sciences InstituteDublin City UniversityDublin 9Ireland
| | - Niamh Bookey
- School of BiotechnologyDublin City UniversityDublin 9Ireland
- DCU Life Sciences InstituteDublin City UniversityDublin 9Ireland
| | - Kit‐Yi Leung
- Developmental Biology and Cancer DepartmentUCL Great Ormond Street Institute of Child Health, University College LondonLondonUK
| | - Michael Henry
- DCU Life Sciences InstituteDublin City UniversityDublin 9Ireland
| | - Paula Meleady
- School of BiotechnologyDublin City UniversityDublin 9Ireland
- DCU Life Sciences InstituteDublin City UniversityDublin 9Ireland
| | - Nicholas D. E. Greene
- Developmental Biology and Cancer DepartmentUCL Great Ormond Street Institute of Child Health, University College LondonLondonUK
| | - Anne Parle‐McDermott
- School of BiotechnologyDublin City UniversityDublin 9Ireland
- DCU Life Sciences InstituteDublin City UniversityDublin 9Ireland
| |
Collapse
|
2
|
Crouse MS, Cushman RA, Redifer CA, Neville BW, Dahlen CR, Caton JS, Diniz WJS, Ward AK. International Symposium on Ruminant Physiology: One-carbon metabolism in beef cattle throughout the production cycle. J Dairy Sci 2024:S0022-0302(24)01390-0. [PMID: 39701525 DOI: 10.3168/jds.2024-25784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024]
Abstract
One-carbon metabolism (OCM) is a series of connected pathways involving the methionine-folate cycles, transsulfuration, polyamine synthesis, nucleotide synthesis, free-radical scavenging, and energy metabolism. These pathways functionally depend upon amino acids (methionine, glycine, and serine), vitamins (folate, B2, B6, and B12), and minerals (sulfur, cobalt, and zinc). Growing bodies of research indicate that in beef cattle, physiological stage, nutritional plane, diet, species (Bos taurus vs. indicus), rumen protected vs. not, individual vs. combination supplementation and method of delivery all affect the efficacy of one-carbon metabolite supplementation. Infusion studies showed that supplementing methionine to growing steers improved N retention and altered hepatic activity of methionine synthase; however, only supplementing methionine without folate decreased folate concentrations in circulation. When heifers were supplemented with methionine, choline, folate, and B12 for the first 63 d of gestation, metabolomic analysis revealed increasing OCM analytes to the heifer, but a buffering effect to the fetus with minimal changes seen in hepatic metabolite abundance. Methionine supplementation to heifers during the periconceptual period increased circulating methionine but shifted fetal hepatic metabolism toward the transsulfuration pathway. Periconceptual methionine supplementation to cows increased gain and total-tract digestibility in calves post-weaning. In vitro supplementation of choline to beef cattle embryos results in calves of increased birth and weaning weight. Overall, these data demonstrate that OCM is altered in those cattle receiving one-carbon metabolites, and that a metabolic programming response is elicited in offspring receiving supplements in vitro or during early gestation. Research should be considered to maximize efficiency of beef cattle production at all stages by identifying limiting metabolites or enzymes to maximize efficiency of OCM in beef cattle, as well as to understand the concerted effects of multiple one-carbon metabolites to balance the stoichiometry of the pathway.
Collapse
Affiliation(s)
- Matthew S Crouse
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA..
| | - Robert A Cushman
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA
| | - Colby A Redifer
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA
| | - Bryan W Neville
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA
| | | | - Joel S Caton
- North Dakota State University, Fargo, ND 58102, USA
| | | | | |
Collapse
|
3
|
Qiu Y, Xie E, Xu H, Cheng H, Li G. One-carbon metabolism shapes T cell immunity in cancer. Trends Endocrinol Metab 2024; 35:967-980. [PMID: 38925992 DOI: 10.1016/j.tem.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
One-carbon metabolism (1CM), comprising folate metabolism and methionine metabolism, serves as an important mechanism for cellular energy provision and the production of vital signaling molecules, including single-carbon moieties. Its regulation is instrumental in sustaining the proliferation of cancer cells and facilitating metastasis; in addition, recent research has shed light on its impact on the efficacy of T cell-mediated immunotherapy. In this review, we consolidate current insights into how 1CM affects T cell activation, differentiation, and functionality. Furthermore, we delve into the strategies for modulating 1CM in both T cells and tumor cells to enhance the efficacy of adoptively transferred T cells, overcome metabolic challenges in the tumor microenvironment (TME), and maximize the benefits of T cell-mediated immunotherapy.
Collapse
Affiliation(s)
- Yajing Qiu
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Ermei Xie
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Haipeng Xu
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fujian, 350011, China
| | - Hongcheng Cheng
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China.
| | - Guideng Li
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
4
|
Flickinger KM, Wilson KM, Rossiter NJ, Hunger AL, Vishwasrao PV, Lee TD, Mellado Fritz CA, Richards RM, Hall MD, Cantor JR. Conditional lethality profiling reveals anticancer mechanisms of action and drug-nutrient interactions. SCIENCE ADVANCES 2024; 10:eadq3591. [PMID: 39365851 PMCID: PMC11451515 DOI: 10.1126/sciadv.adq3591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/29/2024] [Indexed: 10/06/2024]
Abstract
Chemical screens across hundreds of cell lines have shown that the drug sensitivities of human cancers can vary by genotype or lineage. However, most drug discovery studies have relied on culture media that poorly reflect metabolite levels in human blood. Here, we perform drug screens in traditional and Human Plasma-Like Medium (HPLM). Sets of compounds that show conditional anticancer activity span different phases of global development and include non-oncology drugs. Comparisons of the synthetic and serum-derived components that comprise typical media trace sets of conditional phenotypes to nucleotide synthesis substrates. We also characterize a unique dual mechanism for brivudine, a compound approved for antiviral use. Brivudine selectively impairs cell growth in low folate conditions by targeting two enzymes involved in one-carbon metabolism. Cataloged gene essentiality data further suggest that conditional phenotypes for other compounds are linked to off-target effects. Our findings establish general strategies for identifying drug-nutrient interactions and mechanisms of action by exploiting conditional lethality in cancer cells.
Collapse
Affiliation(s)
- Kyle M. Flickinger
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Kelli M. Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Nicholas J. Rossiter
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrea L. Hunger
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Paresh V. Vishwasrao
- Division of Hematology, Oncology, and Bone Marrow Transplant, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Tobie D. Lee
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Carlos A. Mellado Fritz
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Rebecca M. Richards
- Division of Hematology, Oncology, and Bone Marrow Transplant, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Matthew D. Hall
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Jason R. Cantor
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, WI 53792, USA
| |
Collapse
|
5
|
Li J, Wang Y, Wu Z, Zhong M, Feng G, Liu Z, Zeng Y, Wei Z, Mueller S, He S, Ouyang G, Yuan G. Identification of diagnostic markers and molecular clusters of cuproptosis-related genes in alcohol-related liver disease based on machine learning and experimental validation. Heliyon 2024; 10:e37612. [PMID: 39315155 PMCID: PMC11417179 DOI: 10.1016/j.heliyon.2024.e37612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND AND AIMS Alcohol-related liver disease (ALD) is a worldwide burden. Cuproptosis has been shown to play a key role in the development of several diseases. However, the role and mechanisms of cuproptosis in ALD remain unclear. METHODS The RNA-sequencing data of ALD liver samples were downloaded from the Gene Expression Omnibus (GEO) database. Bioinformatical analyses were performed using the R data package. We then identified key genes through multiple machine learning methods. Immunoinfiltration analyses were used to identify different immune cells in ALD patients and controls. The expression levels of key genes were further verified. RESULTS We identified three key cuproptosis-related genes (CRGs) (DPYD, SLC31A1, and DBT) through an in-depth analysis of two GEO datasets, including 28 ALD samples and eight control samples. The area under the curve (AUC) value of these three genes combined in determining ALD was 1.0. In the external datasets, the three key genes had AUC values as high as 1.0 and 0.917, respectively. Nomogram, decision curve, and calibration curve analyses also confirmed these genes' ability to predict the diagnosis. These three key genes were found to be involved in multiple pathways associated with ALD progression. We confirmed the mRNA expression of these three key genes in mouse ALD liver samples. Regarding immune cell infiltration, the numbers of B cells, CD8 (+) T cells, NK cells, T-helper cells, and Th1 cells were significantly lower in ALD patient samples than in control liver samples. Single sample gene set enrichment analysis (ssGSEA) was then used to estimate the immune microenvironment of different CRG clusters and CRG-related gene clusters. In addition, we calculated CRG scores through principal component analysis (PCA) and selected Sankey plots to represent the correlation between CRG clusters, gene clusters, and CRG scores. Finally, the three key genes were confirmed in mouse ALD liver samples and liver cells treated with ethanol. CONCLUSIONS We first established a prognostic model for ALD based on 3 CRGs and robust prediction efficacy was confirmed. Our investigation contributes to a comprehensive understanding of the role of cuproptosis in ALD, presenting promising avenues for the exploration of therapeutic strategies.
Collapse
Affiliation(s)
- Jiangfa Li
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Yong Wang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Zhan Wu
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Mingbei Zhong
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Gangping Feng
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Zhipeng Liu
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Yonglian Zeng
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Zaiwa Wei
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Sebastian Mueller
- Center for Alcohol Research, University Hospital Heidelberg, Heidelberg, Germany
| | - Songqing He
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Guoqing Ouyang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| |
Collapse
|
6
|
Spizzichino S, Di Fonzo F, Marabelli C, Tramonti A, Chaves-Sanjuan A, Parroni A, Boumis G, Liberati FR, Paone A, Montemiglio LC, Ardini M, Jakobi AJ, Bharadwaj A, Swuec P, Tartaglia GG, Paiardini A, Contestabile R, Mai A, Rotili D, Fiorentino F, Macone A, Giorgi A, Tria G, Rinaldo S, Bolognesi M, Giardina G, Cutruzzolà F. Structure-based mechanism of riboregulation of the metabolic enzyme SHMT1. Mol Cell 2024; 84:2682-2697.e6. [PMID: 38996576 DOI: 10.1016/j.molcel.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 01/26/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024]
Abstract
RNA can directly control protein activity in a process called riboregulation; only a few mechanisms of riboregulation have been described in detail, none of which have been characterized on structural grounds. Here, we present a comprehensive structural, functional, and phylogenetic analysis of riboregulation of cytosolic serine hydroxymethyltransferase (SHMT1), the enzyme interconverting serine and glycine in one-carbon metabolism. We have determined the cryoelectron microscopy (cryo-EM) structure of human SHMT1 in its free- and RNA-bound states, and we show that the RNA modulator competes with polyglutamylated folates and acts as an allosteric switch, selectively altering the enzyme's reactivity vs. serine. In addition, we identify the tetrameric assembly and a flap structural motif as key structural elements necessary for binding of RNA to eukaryotic SHMT1. The results presented here suggest that riboregulation may have played a role in evolution of eukaryotic SHMT1 and in compartmentalization of one-carbon metabolism. Our findings provide insights for RNA-based therapeutic strategies targeting this cancer-linked metabolic pathway.
Collapse
Affiliation(s)
- Sharon Spizzichino
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Federica Di Fonzo
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Chiara Marabelli
- Department of Molecular Medicine, University of Pavia, Via Forlanini 3, 27100 Pavia, Italy
| | - Angela Tramonti
- Institute of Molecular Biology and Pathology, National Research Council, P.le A. Moro 5, 00185 Rome, Italy
| | - Antonio Chaves-Sanjuan
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy; Fondazione Romeo e Enrica Invernizzi and NOLIMITS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Alessia Parroni
- Institute of Molecular Biology and Pathology, National Research Council, P.le A. Moro 5, 00185 Rome, Italy
| | - Giovanna Boumis
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Romana Liberati
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Alessio Paone
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; Department of Biochemical Sciences, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, P.le A. Moro 5, 00185 Rome, Italy
| | - Linda Celeste Montemiglio
- Institute of Molecular Biology and Pathology, National Research Council, P.le A. Moro 5, 00185 Rome, Italy
| | - Matteo Ardini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Arjen J Jakobi
- Department of Bionanoscience, Kavli Institute of Nanoscience Deft, Delft University of Technology, Van der Maasweg, 92629 HZ Delft, the Netherlands
| | - Alok Bharadwaj
- Department of Bionanoscience, Kavli Institute of Nanoscience Deft, Delft University of Technology, Van der Maasweg, 92629 HZ Delft, the Netherlands
| | - Paolo Swuec
- CryoElectron Microscopy Facility, Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Gian Gaetano Tartaglia
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen, 83, 16152 Genova, Italy; Department of Biology "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Roberto Contestabile
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Alberto Macone
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Alessandra Giorgi
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Giancarlo Tria
- CNR Institute of Crystallography - URT Caserta c/o Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Martino Bolognesi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy; Fondazione Romeo e Enrica Invernizzi and NOLIMITS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Giorgio Giardina
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy.
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; Department of Biochemical Sciences, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
7
|
Sfakianoudis K, Zikopoulos A, Grigoriadis S, Seretis N, Maziotis E, Anifandis G, Xystra P, Kostoulas C, Giougli U, Pantos K, Simopoulou M, Georgiou I. The Role of One-Carbon Metabolism and Methyl Donors in Medically Assisted Reproduction: A Narrative Review of the Literature. Int J Mol Sci 2024; 25:4977. [PMID: 38732193 PMCID: PMC11084717 DOI: 10.3390/ijms25094977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
One-carbon (1-C) metabolic deficiency impairs homeostasis, driving disease development, including infertility. It is of importance to summarize the current evidence regarding the clinical utility of 1-C metabolism-related biomolecules and methyl donors, namely, folate, betaine, choline, vitamin B12, homocysteine (Hcy), and zinc, as potential biomarkers, dietary supplements, and culture media supplements in the context of medically assisted reproduction (MAR). A narrative review of the literature was conducted in the PubMed/Medline database. Diet, ageing, and the endocrine milieu of individuals affect both 1-C metabolism and fertility status. In vitro fertilization (IVF) techniques, and culture conditions in particular, have a direct impact on 1-C metabolic activity in gametes and embryos. Critical analysis indicated that zinc supplementation in cryopreservation media may be a promising approach to reducing oxidative damage, while female serum homocysteine levels may be employed as a possible biomarker for predicting IVF outcomes. Nonetheless, the level of evidence is low, and future studies are needed to verify these data. One-carbon metabolism-related processes, including redox defense and epigenetic regulation, may be compromised in IVF-derived embryos. The study of 1-C metabolism may lead the way towards improving MAR efficiency and safety and ensuring the lifelong health of MAR infants.
Collapse
Affiliation(s)
- Konstantinos Sfakianoudis
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (K.P.)
| | - Athanasios Zikopoulos
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
- Obstetrics and Gynecology, Royal Cornwall Hospital, Treliske, Truro TR1 3LJ, UK
| | - Sokratis Grigoriadis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Nikolaos Seretis
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Evangelos Maziotis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - George Anifandis
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41222 Larisa, Greece;
| | - Paraskevi Xystra
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Charilaos Kostoulas
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Urania Giougli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Konstantinos Pantos
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (K.P.)
| | - Mara Simopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| |
Collapse
|
8
|
Hou X, Lu Z, Yu T, Zhang Y, Yao Q, Zhang C, Niu Y, Liang Q. Two maize homologs of mammalian proton-coupled folate transporter, ZmMFS_1-62 and ZmMFS_1-73, are essential to salt and drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108623. [PMID: 38626656 DOI: 10.1016/j.plaphy.2024.108623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/18/2024]
Abstract
Folates are essential to the maintenance of normal life activities in almost all organisms. Proton-coupled folate transporter (PCFT), belonging to the major facilitator superfamily, is one of the three major folate transporter types widely studied in mammals. However, information about plant PCFTs is limited. Here, a genome-wide identification of maize PCFTs was performed, and two PCFTs, ZmMFS_1-62 and ZmMFS_1-73, were functionally investigated. Both proteins contained the typical 12 transmembrane helixes with N- and C-termini located in the cytoplasm, and were localized in the plasma membrane. Molecular docking analysis indicated their binding activity with folates via hydrogen bonding. Interference with ZmMFS_1-62 and ZmMFS_1-73 in maize seedlings through virus-induced gene silencing disrupted folate homeostasis, mainly in the roots, and reduced tolerance to drought and salt stresses. Moreover, a molecular chaperone protein, ZmHSP20, was found to interact with ZmMFS_1-62 and ZmMFS_1-73, and interference with ZmHSP20 in maize seedlings also led to folate disruption and increased sensitivity to drought and salt stresses. Overall, this is the first report of functional identification of maize PCFTs, which play essential roles in salt and drought stress tolerance, thereby linking folate metabolism with abiotic stress responses in maize.
Collapse
Affiliation(s)
- Xiaowan Hou
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China; Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| | - Zhiwei Lu
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.
| | - Taifei Yu
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, the "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China.
| | - Yuanyuan Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.
| | - Quansheng Yao
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572000, China.
| | - Yiding Niu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| | - Qiuju Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572000, China.
| |
Collapse
|
9
|
Liepina L, Smith DEC, Huidekoper H, Zeidler S, Wamelink M, de Wit M, Wilke M, Ruijter G, Bierau J, Blom HJ. 5,10-methenyltetrahydrofolate synthetase deficiency: An extreme rare defect of folate metabolism in two Dutch siblings. JIMD Rep 2024; 65:49-55. [PMID: 38444578 PMCID: PMC10910211 DOI: 10.1002/jmd2.12409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 03/07/2024] Open
Abstract
Two siblings, presenting with a neurometabolic phenotype, were identified with 5, 10-methenyltetrahydrofolate synthetase (MTHFS) deficiency. Whole genome sequencing in both patients demonstrated an homozygous MTHFS variant NM_006441.3(MTHFS):c.434G > A, p.Arg145Gin, which has been described before. At baseline, both patients showed moderate hyperhomocysteinemia, decreased 5-methyltetrahydrofolate (5MTHF), and increased 5-formyltetrahydrofolate (5-FTHF) in whole blood. In CSF, 5MTHF levels were in the low-normal range and 5-FTHF was strongly increased. In our novel enzyme assay, MTHFS activity was deficient in cultured fibroblasts in both sisters. Oral treatment was initiated with escalating dose of 5-methyltetrahydrofolate (5MTHF) up to 12 mg and hydroxycobalamin 5 mg daily. Plasma homocysteine normalized and 5MTHF became elevated in the blood of both patients. The elevated 5FTHF levels increased further on treatment in blood and CSF. This regimen resulted in some clinical improvement of patient 1. In patient 2, the clinical benefits of 5MTHF supplementation were less obvious. It seems plausible that the alleviation of the deficient 5MTHF levels and normalization of homocysteine in blood are of some clinical benefit. On the other hand, the very high levels of 5FTHF may well be detrimental and may prompt us to decrease the dose of 5MTHF. In addition, we hypothesize that the crippled MTHFS enzyme may destabilize the purinosome, which is presumably not ameliorated by 5MTHF.
Collapse
Affiliation(s)
- Lelde Liepina
- Department of Clinical Genetics, Center for Lysosomal and Metabolic DiseasesErasmus University Medical CenterRotterdamThe Netherlands
- Department of NeurologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Desiree E. C. Smith
- Metabolic Laboratory, Department of Clinical Chemistry, Amsterdam NeuroscienceVU University Medical CenterAmsterdamThe Netherlands
| | - Hidde Huidekoper
- Department of Pediatrics, Center for Lysosomal and Metabolic DiseasesErasmus University Medical CenterRotterdamThe Netherlands
| | - Shimriet Zeidler
- Department of Clinical Genetics, Center for Lysosomal and Metabolic DiseasesErasmus University Medical CenterRotterdamThe Netherlands
| | - Mirjam Wamelink
- Metabolic Laboratory, Department of Clinical Chemistry, Amsterdam NeuroscienceVU University Medical CenterAmsterdamThe Netherlands
| | - Marie‐Claire de Wit
- Department of Child NeurologySophia Children's Hospital, Erasmus University Medical CenterRotterdamThe Netherlands
| | - Martina Wilke
- Department of Clinical Genetics, Center for Lysosomal and Metabolic DiseasesErasmus University Medical CenterRotterdamThe Netherlands
| | - George Ruijter
- Department of Clinical Genetics, Center for Lysosomal and Metabolic DiseasesErasmus University Medical CenterRotterdamThe Netherlands
| | - Jörgen Bierau
- Department of Clinical Genetics, Center for Lysosomal and Metabolic DiseasesErasmus University Medical CenterRotterdamThe Netherlands
| | - Henk J. Blom
- Department of Clinical Genetics, Center for Lysosomal and Metabolic DiseasesErasmus University Medical CenterRotterdamThe Netherlands
| |
Collapse
|
10
|
Petrova B, Maynard AG, Wang P, Kanarek N. Regulatory mechanisms of one-carbon metabolism enzymes. J Biol Chem 2023; 299:105457. [PMID: 37949226 PMCID: PMC10758965 DOI: 10.1016/j.jbc.2023.105457] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
One-carbon metabolism is a central metabolic pathway critical for the biosynthesis of several amino acids, methyl group donors, and nucleotides. The pathway mostly relies on the transfer of a carbon unit from the amino acid serine, through the cofactor folate (in its several forms), and to the ultimate carbon acceptors that include nucleotides and methyl groups used for methylation of proteins, RNA, and DNA. Nucleotides are required for DNA replication, DNA repair, gene expression, and protein translation, through ribosomal RNA. Therefore, the one-carbon metabolism pathway is essential for cell growth and function in all cells, but is specifically important for rapidly proliferating cells. The regulation of one-carbon metabolism is a critical aspect of the normal and pathological function of the pathway, such as in cancer, where hijacking these regulatory mechanisms feeds an increased need for nucleotides. One-carbon metabolism is regulated at several levels: via gene expression, posttranslational modification, subcellular compartmentalization, allosteric inhibition, and feedback regulation. In this review, we aim to inform the readers of relevant one-carbon metabolism regulation mechanisms and to bring forward the need to further study this aspect of one-carbon metabolism. The review aims to integrate two major aspects of cancer metabolism-signaling downstream of nutrient sensing and one-carbon metabolism, because while each of these is critical for the proliferation of cancerous cells, their integration is critical for comprehensive understating of cellular metabolism in transformed cells and can lead to clinically relevant insights.
Collapse
Affiliation(s)
- Boryana Petrova
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Adam G Maynard
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | - Peng Wang
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Naama Kanarek
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.
| |
Collapse
|
11
|
Kubo Y, Shoji K, Tajima A, Horiguchi S, Fukuoka H, Nishikawa M, Kagawa Y, Kawabata T. Serum 5-Methyltetrahydrofolate Status Is Associated with One-Carbon Metabolism-Related Metabolite Concentrations and Enzyme Activity Indicators in Young Women. Int J Mol Sci 2023; 24:10993. [PMID: 37446171 DOI: 10.3390/ijms241310993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Maintaining optimal one-carbon metabolism (OCM) is essential for health and pregnancy. In this cross-sectional study, folate status was assessed based on 5-methyltetrahydrofolate (5-MTHF) levels, and the association between 5-MTHF and OCM-related metabolites was investigated in 227 female Japanese university students aged 18-25 years. The participants were divided into high and low 5-MTHF groups based on their folate status. Serum samples of the participants were collected while they were fasting, and 18 OCM-related metabolites were measured using stable-isotope dilution liquid chromatography-electrospray tandem mass spectrometry. The association between serum 5-MTHF and OCM-related metabolite concentrations was assessed using Spearman's rank correlation coefficient. Serum 5-MTHF concentrations were negatively correlated with total homocysteine (tHcy) concentrations and positively correlated with S-adenosylmethionine (SAM) and total cysteine (tCys) concentrations. Serum 5-MTHF concentrations demonstrated a stronger negative correlation with tHcy/tCys than with tHcy alone. The negative correlation between betaine and tHcy concentrations was stronger in the low 5-MTHF group than in the high 5-MTHF group. The 5-MTHF status could be linked to Hcy flux into the transsulfuration pathway via SAM. Therefore, the tHcy/tCys ratio may be a more sensitive indicator of the 5-MTHF status than tHcy alone. Furthermore, a low 5-MTHF status can enhance Hcy metabolism via betaine.
Collapse
Affiliation(s)
- Yoshinori Kubo
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Japan
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Kumiko Shoji
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Japan
| | - Akiko Tajima
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Japan
| | - Sayaka Horiguchi
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Japan
| | - Hideoki Fukuoka
- Department of Perinatal Mesenchymal Stem Cell Research, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Masazumi Nishikawa
- Department of Food Management, School of Food, Agricultural and Environmental Sciences, Miyagi University, 2-2-1 Hatadate, Taihaku-ku, Sendai 982-0215, Japan
| | - Yasuo Kagawa
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Japan
| | - Terue Kawabata
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Japan
| |
Collapse
|
12
|
Gao Y, Zheng B, Xu S, Zhao Z, Liu W, Wang T, Yuan M, Sun X, Tan Y, Xu Q, Wu X. Mitochondrial folate metabolism-mediated α-linolenic acid exhaustion masks liver fibrosis resolution. J Biol Chem 2023:104909. [PMID: 37307917 PMCID: PMC10344950 DOI: 10.1016/j.jbc.2023.104909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/02/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023] Open
Abstract
Sustainable TGF-β1 signaling drives organ fibrogenesis. However, the cellular adaptation to maintain TGF-β1 signaling remains unclear. In this study, we revealed that dietary folate restriction promoted the resolution of liver fibrosis in mice with nonalcoholic steatohepatitis (NASH). In activated hepatic stellate cells (HSCs), folate shifted toward mitochondrial metabolism to sustain TGF-β1 signaling. Mechanistically, nontargeted metabolomics screening identified that α-linolenic acid (ALA) is exhausted by mitochondrial folate metabolism in activated HSCs. Knocking down serine hydroxymethyltransferase 2 (SHMT2) increases the bioconversion of ALA to docosahexaenoic acid (DHA) which inhibits TGF-β1 signaling. Finally, blocking mitochondrial folate metabolism promoted liver fibrosis resolution in NASH mice. In conclusion, mitochondrial folate metabolism/ALA exhaustion/TGF-βR1 reproduction is a feedforward signaling to sustain profibrotic TGF-β1 signaling and targeting mitochondrial folate metabolism is a promising strategy to enforce liver fibrosis resolution.
Collapse
Affiliation(s)
- Yanjie Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Bingfeng Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shuaiqi Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhibo Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wanyue Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Tingyu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Manman Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xueqing Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Xingxin Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
13
|
Flickinger KM, Wilson KM, Rossiter NJ, Hunger AL, Lee TD, Hall MD, Cantor JR. Conditional lethality profiling reveals anticancer mechanisms of action and drug-nutrient interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.04.543621. [PMID: 37333068 PMCID: PMC10274668 DOI: 10.1101/2023.06.04.543621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Chemical screening studies have identified drug sensitivities across hundreds of cancer cell lines but most putative therapeutics fail to translate. Discovery and development of drug candidates in models that more accurately reflect nutrient availability in human biofluids may help in addressing this major challenge. Here we performed high-throughput screens in conventional versus Human Plasma-Like Medium (HPLM). Sets of conditional anticancer compounds span phases of clinical development and include non-oncology drugs. Among these, we characterize a unique dual-mechanism of action for brivudine, an agent otherwise approved for antiviral treatment. Using an integrative approach, we find that brivudine affects two independent targets in folate metabolism. We also traced conditional phenotypes for several drugs to the availability of nucleotide salvage pathway substrates and verified others for compounds that seemingly elicit off-target anticancer effects. Our findings establish generalizable strategies for exploiting conditional lethality in HPLM to reveal therapeutic candidates and mechanisms of action.
Collapse
|
14
|
Pilesi E, Angioli C, Graziani C, Parroni A, Contestabile R, Tramonti A, Vernì F. A gene-nutrient interaction between vitamin B6 and serine hydroxymethyltransferase (SHMT) affects genome integrity in Drosophila. J Cell Physiol 2023. [PMID: 37183313 DOI: 10.1002/jcp.31033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 05/16/2023]
Abstract
Pyridoxal 5'-phosphate (PLP), the catalytically active form of vitamin B6, participates as a cofactor to one carbon (1C) pathway that produces precursors for DNA metabolism. The concerted action of PLP-dependent serine hydroxymethyltransferase (SHMT) and thymidylate synthase (TS) leads to the biosynthesis of thymidylate (dTMP), which plays an essential function in DNA synthesis and repair. PLP deficiency causes chromosome aberrations (CABs) in Drosophila and human cells, rising the hypothesis that an altered 1C metabolism may be involved. To test this hypothesis, we used Drosophila as a model system and found, firstly, that in PLP deficient larvae SHMT activity is reduced by 40%. Second, we found that RNAi-induced SHMT depletion causes chromosome damage rescued by PLP supplementation and strongly exacerbated by PLP depletion. RNAi-induced TS depletion causes severe chromosome damage, but this is only slightly enhanced by PLP depletion. dTMP supplementation rescues CABs in both PLP-deficient and PLP-proficient SHMTRNAi . Altogether these data suggest that a reduction of SHMT activity caused by PLP deficiency contributes to chromosome damage by reducing dTMP biosynthesis. In addition, our work brings to light a gene-nutrient interaction between SHMT decreased activity and PLP deficiency impacting on genome stability that may be translated to humans.
Collapse
Affiliation(s)
- Eleonora Pilesi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Chiara Angioli
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Claudio Graziani
- Department of Biochemical Sciences "A. Rossi Fanelli", Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Alessia Parroni
- Department of Biochemical Sciences "A. Rossi Fanelli", Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
- Institute of Molecular Biology and Pathology, National Research Council (IBPM-CNR), Rome, Italy
| | - Roberto Contestabile
- Department of Biochemical Sciences "A. Rossi Fanelli", Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Angela Tramonti
- Department of Biochemical Sciences "A. Rossi Fanelli", Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
- Institute of Molecular Biology and Pathology, National Research Council (IBPM-CNR), Rome, Italy
| | - Fiammetta Vernì
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
15
|
Fontana F, Longhi G, Tarracchini C, Mancabelli L, Lugli GA, Alessandri G, Turroni F, Milani C, Ventura M. The human gut microbiome of athletes: metagenomic and metabolic insights. MICROBIOME 2023; 11:27. [PMID: 36782241 PMCID: PMC9926762 DOI: 10.1186/s40168-023-01470-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/18/2023] [Indexed: 05/14/2023]
Abstract
BACKGROUND The correlation between the physical performance of athletes and their gut microbiota has become of growing interest in the past years, since new evidences have emerged regarding the importance of the gut microbiota as a main driver of the health status of athletes. In addition, it has been postulated that the metabolic activity of the microbial population harbored by the large intestine of athletes might influence their physical performances. Here, we analyzed 418 publicly available shotgun metagenomics datasets obtained from fecal samples of healthy athletes and healthy sedentary adults. RESULTS This study evidenced how agonistic physical activity and related lifestyle can be associated with the modulation of the gut microbiota composition, inducing modifications of the taxonomic profiles with an enhancement of gut microbes able to produce short-fatty acid (SCFAs). In addition, our analyses revealed a correlation between specific bacterial species and high impact biological synthases (HIBSs) responsible for the generation of a range of microbially driven compounds such vitamin B12, amino acidic derivatives, and other molecules linked to cardiovascular and age-related health-risk reduction. CONCLUSIONS Notably, our findings show how subsist an association between competitive athletes, and modulation of the gut microbiota, and how this modulation is reflected in the potential production of microbial metabolites that can lead to beneficial effects on human physical performance and health conditions. Video Abstract.
Collapse
Affiliation(s)
- Federico Fontana
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parco Area Delle Scienze 11a, 43124, Parma, Italy
- GenProbio Srl, Parma, Italy
| | - Giulia Longhi
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parco Area Delle Scienze 11a, 43124, Parma, Italy
- GenProbio Srl, Parma, Italy
| | - Chiara Tarracchini
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parco Area Delle Scienze 11a, 43124, Parma, Italy
| | - Leonardo Mancabelli
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parco Area Delle Scienze 11a, 43124, Parma, Italy
| | - Gabriele Andrea Lugli
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parco Area Delle Scienze 11a, 43124, Parma, Italy
| | - Giulia Alessandri
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parco Area Delle Scienze 11a, 43124, Parma, Italy
| | - Francesca Turroni
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parco Area Delle Scienze 11a, 43124, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Christian Milani
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parco Area Delle Scienze 11a, 43124, Parma, Italy.
- Microbiome Research Hub, University of Parma, Parma, Italy.
| | - Marco Ventura
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parco Area Delle Scienze 11a, 43124, Parma, Italy.
- Microbiome Research Hub, University of Parma, Parma, Italy.
| |
Collapse
|
16
|
Di Martino V, Verhoeven DW, Verhoeven F, Aubin F, Avouac J, Vuitton L, Lioté F, Thévenot T, Wendling D. Busting the myth of methotrexate chronic hepatotoxicity. Nat Rev Rheumatol 2023; 19:96-110. [PMID: 36564450 DOI: 10.1038/s41584-022-00883-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Methotrexate is a key component of the treatment of inflammatory rheumatic diseases and the mainstay of therapy in rheumatoid arthritis. Hepatotoxicity has long been a concern for prescribers envisaging long-term treatment with methotrexate for their patients. However, the putative liver toxicity of methotrexate should be evaluated in the context of advances in our knowledge of the pathogenesis and natural history of liver disease, especially non-alcoholic fatty liver disease (NAFLD). Notably, patients with NAFLD are at increased risk for methotrexate hepatotoxicity, and methotrexate can worsen the course of NAFLD. Understanding the mechanisms of acute hepatotoxicity can facilitate the interpretation of elevated concentrations of liver enzymes in this context. Liver fibrosis and the mechanisms of fibrogenesis also need to be considered in relation to chronic exposure to methotrexate. A number of non-invasive tests for liver fibrosis are available for use in patients with rheumatic disease, in addition to liver biopsy, which can be appropriate for particular individuals. On the basis of the available evidence, practical suggestions for pretreatment screening and long-term monitoring of methotrexate therapy can be made for patients who have (or are at risk for) chronic liver disease.
Collapse
Affiliation(s)
- Vincent Di Martino
- Department of Hepatology, CHRU de Besançon, Besançon, France.
- EA 4266 EPILAB, UFR Santé, University of Franche-Comté, Besançon, France.
- INSERM UMR RIGHT 1098, Besançon, France.
| | - Delphine Weil Verhoeven
- Department of Hepatology, CHRU de Besançon, Besançon, France
- EA 4266 EPILAB, UFR Santé, University of Franche-Comté, Besançon, France
- INSERM UMR RIGHT 1098, Besançon, France
| | - Frank Verhoeven
- Department of Rheumatology, CHRU de Besançon, Besançon, France
- EA 4267 PEPITE, UFR Santé, University of Franche-Comté, Besançon, France
| | - François Aubin
- INSERM UMR RIGHT 1098, Besançon, France
- Department of Dermatology, CHRU de Besançon, Besançon, France
| | - Jérome Avouac
- Department of Rheumatology, AP-HP Hôpital Cochin, Paris, France
- Cochin Institute, INSERM U1016 UMR 8104, Paris, France
| | - Lucine Vuitton
- EA 4267 PEPITE, UFR Santé, University of Franche-Comté, Besançon, France
- Department of Gastroenterology, CHRU de Besançon, Besançon, France
| | - Frédéric Lioté
- Department of Rheumatology, DMU Locomotion, AP-HP Nord & Inserm UMR 1132, Bioscar (Centre Viggo Petersen), Hôpital Lariboisière, Paris, France
- Université de Paris, UFR de Médecine, Paris, France
| | - Thierry Thévenot
- Department of Hepatology, CHRU de Besançon, Besançon, France
- EA 4266 EPILAB, UFR Santé, University of Franche-Comté, Besançon, France
- INSERM UMR RIGHT 1098, Besançon, France
| | - Daniel Wendling
- EA 4266 EPILAB, UFR Santé, University of Franche-Comté, Besançon, France
- Department of Rheumatology, CHRU de Besançon, Besançon, France
| |
Collapse
|
17
|
Fan G, Song L, Liu Q, Wu M, Bi J, Xu L, Xiong C, Cao Z, Xu S, Wang Y. Association of maternal folic acid supplementation during pregnancy with newborn telomere length. Reprod Toxicol 2022; 114:52-56. [DOI: 10.1016/j.reprotox.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
18
|
Doan MT, Neinast MD, Varner EL, Bedi KC, Bartee D, Jiang H, Trefely S, Xu P, Singh JP, Jang C, Rame JE, Brady DC, Meier JL, Marguiles KB, Arany Z, Snyder NW. Direct anabolic metabolism of three carbon propionate to a six carbon metabolite occurs in vivo across tissues and species. J Lipid Res 2022; 63:100224. [PMID: 35568254 PMCID: PMC9189226 DOI: 10.1016/j.jlr.2022.100224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/20/2022] [Accepted: 05/07/2022] [Indexed: 12/12/2022] Open
Abstract
Anabolic metabolism of carbon in mammals is mediated via the one- and two-carbon carriers S-adenosyl methionine and acetyl-coenzyme A. In contrast, anabolic metabolism of three-carbon units via propionate has not been shown to extensively occur. Mammals are primarily thought to oxidize the three-carbon short chain fatty acid propionate by shunting propionyl-CoA to succinyl-CoA for entry into the TCA cycle. Here, we found that this may not be absolute as, in mammals, one nonoxidative fate of propionyl-CoA is to condense to two three-carbon units into a six-carbon trans-2-methyl-2-pentenoyl-CoA (2M2PE-CoA). We confirmed this reaction pathway using purified protein extracts provided limited substrates and verified the product via LC-MS using a synthetic standard. In whole-body in vivo stable isotope tracing following infusion of 13C-labeled valine at steady state, 2M2PE-CoA was found to form via propionyl-CoA in multiple murine tissues, including heart, kidney, and to a lesser degree, in brown adipose tissue, liver, and tibialis anterior muscle. Using ex vivo isotope tracing, we found that 2M2PE-CoA also formed in human myocardial tissue incubated with propionate to a limited extent. While the complete enzymology of this pathway remains to be elucidated, these results confirm the in vivo existence of at least one anabolic three- to six-carbon reaction conserved in humans and mice that utilizes propionate.
Collapse
Affiliation(s)
- Mary T Doan
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Michael D Neinast
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erika L Varner
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Kenneth C Bedi
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Bartee
- Chemical Biology Laboratory, National Cancer Institute, Frederick MD, USA
| | - Helen Jiang
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Sophie Trefely
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peining Xu
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jay P Singh
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Cholsoon Jang
- Lewis Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - J Eduardo Rame
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Donita C Brady
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jordan L Meier
- Chemical Biology Laboratory, National Cancer Institute, Frederick MD, USA
| | - Kenneth B Marguiles
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zoltan Arany
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nathaniel W Snyder
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Nema J, Joshi N, Sundrani D, Joshi S. Influence of maternal one carbon metabolites on placental programming and long term health. Placenta 2022; 125:20-28. [DOI: 10.1016/j.placenta.2022.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/12/2022] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
|
20
|
OUP accepted manuscript. Nutr Rev 2022; 80:2178-2197. [DOI: 10.1093/nutrit/nuac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Spizzichino S, Boi D, Boumis G, Lucchi R, Liberati FR, Capelli D, Montanari R, Pochetti G, Piacentini R, Parisi G, Paone A, Rinaldo S, Contestabile R, Tramonti A, Paiardini A, Giardina G, Cutruzzolà F. Cytosolic localization and in vitro assembly of human de novo thymidylate synthesis complex. FEBS J 2021; 289:1625-1649. [PMID: 34694685 PMCID: PMC9299187 DOI: 10.1111/febs.16248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/21/2021] [Indexed: 11/27/2022]
Abstract
De novo thymidylate synthesis is a crucial pathway for normal and cancer cells. Deoxythymidine monophosphate (dTMP) is synthesized by the combined action of three enzymes: serine hydroxymethyltransferase (SHMT1), dihydrofolate reductase (DHFR) and thymidylate synthase (TYMS), with the latter two being targets of widely used chemotherapeutics such as antifolates and 5‐fluorouracil. These proteins translocate to the nucleus after SUMOylation and are suggested to assemble in this compartment into the thymidylate synthesis complex. We report the intracellular dynamics of the complex in cancer cells by an in situ proximity ligation assay, showing that it is also detected in the cytoplasm. This result indicates that the role of the thymidylate synthesis complex assembly may go beyond dTMP synthesis. We have successfully assembled the dTMP synthesis complex in vitro, employing tetrameric SHMT1 and a bifunctional chimeric enzyme comprising human thymidylate synthase and dihydrofolate reductase. We show that the SHMT1 tetrameric state is required for efficient complex assembly, indicating that this aggregation state is evolutionarily selected in eukaryotes to optimize protein–protein interactions. Lastly, our results regarding the activity of the complete thymidylate cycle in vitro may provide a useful tool with respect to developing drugs targeting the entire complex instead of the individual components.
Collapse
Affiliation(s)
- Sharon Spizzichino
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Dalila Boi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Giovanna Boumis
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Roberta Lucchi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Davide Capelli
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Roberta Montanari
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Giorgio Pochetti
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Roberta Piacentini
- Center for Life Nano & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Giacomo Parisi
- Center for Life Nano & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Alessio Paone
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Angela Tramonti
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.,Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy
| | | | - Giorgio Giardina
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.,Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
22
|
Pannia E, Hammoud R, Kubant R, Sa JY, Simonian R, Wasek B, Ashcraft P, Bottiglieri T, Pausova Z, Anderson GH. High Intakes of [6S]-5-Methyltetrahydrofolic Acid Compared with Folic Acid during Pregnancy Programs Central and Peripheral Mechanisms Favouring Increased Food Intake and Body Weight of Mature Female Offspring. Nutrients 2021; 13:1477. [PMID: 33925570 PMCID: PMC8146511 DOI: 10.3390/nu13051477] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Supplementation with [6S]-5-methyltetrahydrofolic acid (MTHF) is recommended as an alternative to folic acid (FA) in prenatal supplements. This study compared equimolar gestational FA and MTHF diets on energy regulation of female offspring. Wistar rats were fed an AIN-93G diet with recommended (2 mg/kg diet) or 5-fold (5X) intakes of MTHF or FA. At weaning, female offspring were fed a 45% fat diet until 19 weeks. The 5X-MTHF offspring had higher body weight (>15%), food intake (8%), light-cycle energy expenditure, and lower activity compared to 5X-FA offspring (p < 0.05). Both the 5X offspring had higher plasma levels of the anorectic hormone leptin at birth (60%) and at 19 weeks (40%), and lower liver weight and total liver lipids compared to the 1X offspring (p < 0.05). Hypothalamic mRNA expression of leptin receptor (ObRb) was lower, and of suppressor of cytokine signaling-3 (Socs3) was higher in the 5X-MTHF offspring (p < 0.05), suggesting central leptin dysregulation. In contrast, the 5X-FA offspring had higher expression of genes encoding for dopamine and GABA- neurotransmitter receptors (p < 0.01), consistent with their phenotype and reduced food intake. When fed folate diets at the requirement level, no differences were found due to form in the offspring. We conclude that MTHF compared to FA consumed at high levels in the gestational diets program central and peripheral mechanisms to favour increased weight gain in the offspring. These pre-clinical findings caution against high gestational intakes of folates of either form and encourage clinical trials examining their long-term health effects when consumed during pregnancy.
Collapse
Affiliation(s)
- Emanuela Pannia
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (E.P.); (R.H.); (R.K.); (J.Y.S.); (R.S.); (Z.P.)
| | - Rola Hammoud
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (E.P.); (R.H.); (R.K.); (J.Y.S.); (R.S.); (Z.P.)
| | - Ruslan Kubant
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (E.P.); (R.H.); (R.K.); (J.Y.S.); (R.S.); (Z.P.)
| | - Jong Yup Sa
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (E.P.); (R.H.); (R.K.); (J.Y.S.); (R.S.); (Z.P.)
| | - Rebecca Simonian
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (E.P.); (R.H.); (R.K.); (J.Y.S.); (R.S.); (Z.P.)
| | - Brandi Wasek
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Health, Dallas, TX 75226, USA; (B.W.); (P.A.); (T.B.)
| | - Paula Ashcraft
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Health, Dallas, TX 75226, USA; (B.W.); (P.A.); (T.B.)
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Health, Dallas, TX 75226, USA; (B.W.); (P.A.); (T.B.)
| | - Zdenka Pausova
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (E.P.); (R.H.); (R.K.); (J.Y.S.); (R.S.); (Z.P.)
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - G. Harvey Anderson
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (E.P.); (R.H.); (R.K.); (J.Y.S.); (R.S.); (Z.P.)
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
23
|
Diaz G S, LeBlanc DP, Gagné R, Behan NA, Wong A, Marchetti F, MacFarlane AJ. Folate Intake Alters Mutation Frequency and Profiles in a Tissue- and Dose-Specific Manner in MutaMouse Male Mice. J Nutr 2021; 151:800-809. [PMID: 33693772 DOI: 10.1093/jn/nxaa402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/09/2020] [Accepted: 11/20/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND While cancer is common, its incidence varies widely by tissue. These differences are attributable to variable risk factors, such as environmental exposure, genetic inheritance, and lifetime number of stem cell divisions in a tissue. Folate deficiency is generally associated with increased risk for colorectal cancer (CRC) and acute lymphocytic leukemia (ALL). Conversely, high folic acid (FA) intake has also been associated with higher CRC risk. OBJECTIVE Our objective was to compare the effect of folate intake on mutant frequency (MF) and types of mutations in the colon and bone marrow of mice. METHODS Five-week-old MutaMouse male mice were fed a deficient (0 mg FA/kg), control (2 mg FA/kg), or supplemented (8 mg FA/kg) diet for 20 wk. Tissue MF was assessed using the lacZ mutant assay and comparisons made by 2-factor ANOVA. LacZ mutant plaques were sequenced using next-generation sequencing, and diet-specific mutation profiles within each tissue were compared by Fisher's exact test. RESULTS In the colon, the MF was 1.5-fold and 1.3-fold higher in mice fed the supplemented diet compared with mice fed the control (P = 0.001) and deficient (P = 0.008) diets, respectively. This contrasted with the bone marrow MF in the same mice where the MF was 1.7-fold and 1.6-fold higher in mice fed the deficient diet compared with mice fed the control (P = 0.02) and supplemented (P = 0.03) diets, respectively. Mutation profiles and signatures (mutation context) were tissue-specific. CONCLUSIONS Our data indicate that dietary folate intake affects mutagenesis in a tissue- and dose-specific manner in mice. Mutation profiles were generally tissue- but not dose-specific, suggesting that altered cellular folate status appears to interact with endogenous mutagenic mechanisms in each tissue to create a permissive context in which specific mutation types accumulate. These data illuminate potential mechanisms underpinning differences in observed associations between folate intake/status and cancer.
Collapse
Affiliation(s)
- Stephanie Diaz G
- Nutrition Research Division, Health Canada, Ottawa, Canada.,Department of Biology, Carleton University, Ottawa, Canada
| | | | - Remi Gagné
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | - Alex Wong
- Department of Biology, Carleton University, Ottawa, Canada
| | - Francesco Marchetti
- Department of Biology, Carleton University, Ottawa, Canada.,Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Amanda J MacFarlane
- Nutrition Research Division, Health Canada, Ottawa, Canada.,Department of Biology, Carleton University, Ottawa, Canada
| |
Collapse
|
24
|
Sijilmassi O, Del Río Sevilla A, Maldonado Bautista E, Barrio Asensio MDC. Gestational folic acid deficiency alters embryonic eye development: Possible role of basement membrane proteins in eye malformations. Nutrition 2021; 90:111250. [PMID: 33962364 DOI: 10.1016/j.nut.2021.111250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Folic acid (FA) is crucial before and during early pregnancy. FA deficiency can occur because dietary FA intake is low in mothers at the time of conception. Likewise, various ocular pathologies are related to the alteration of extracellular matrices. The present study aimed to investigate the association between maternal FA deficiency and congenital eye defects. We also investigated whether maternal diet deficient in FA alters the expression of collagen IV and laminin-1 as a possible mechanism responsible for the appearance of ocular malformations. Both proteins are the main components of the basal lamina, and form an interlaced network that creates a relevant scaffold basement membrane. Basal laminae are involved in tissues maintenance and implicated in regulating many cellular processes. METHODS A total of 57 mouse embryos were classified into the following groups: Control group, (mothers were fed a standard rodent diet), and D2 and D8 groups (mothers were fed FA-deficient [FAD] diet for 2 or 8 wk, respectively). Female mice from group D2 were fed a FAD diet (0 mg/kg diet + 1% succinyl sulfathiazole used to block the synthesis of FA) for 2 wk from the day after mating until day 14.5 of gestation (E14.5). On the other hand, female mice from group D8 were fed a FAD diet for 8 wk (6 wk before conception and during the first 2 wk of pregnancy). For the data analysis, we first estimated the incidence of malformations in each group. Then, the statistical analysis was performed using IBM SPSS Statistics, version 25.0. Expression patterns of collagen IV and laminin-1 were examined with the immunohistochemical technique. RESULTS Our results showed that mice born to FA-deficient mothers had several congenital eye abnormalities. Embryos from dams fed a short-term FAD diet were found to have many significant abnormalities in both anterior and posterior segments, as well as choroidal vessel abnormalities. However, embryos from dams fed a long-term FAD diet had a significantly higher incidence of eye defects. Finally, maternal FA deficiency increased the expression of both collagen IV and laminin-1. Likewise, changes in the spatial localization and organization of collagen IV were observed. CONCLUSIONS A maternal FAD diet for a short-term period causes eye developmental defects and induces overexpression of both collagen IV and laminin-1. The malformations observed are probably related to alterations in the expression of basement membrane proteins.
Collapse
Affiliation(s)
- Ouafa Sijilmassi
- Universidad Complutense de Madrid, Faculty of Optics and Optometry, Anatomy and Embryology Department, Madrid, Spain.
| | - Aurora Del Río Sevilla
- Universidad Complutense de Madrid, Faculty of Optics and Optometry, Anatomy and Embryology Department, Madrid, Spain; Universidad Complutense de Madrid, Faculty of Medicine, Anatomy and Embryology Department, Madrid, Spain
| | - Estela Maldonado Bautista
- Universidad Complutense de Madrid, Faculty of Medicine, Anatomy and Embryology Department, Madrid, Spain
| | - María Del Carmen Barrio Asensio
- Universidad Complutense de Madrid, Faculty of Optics and Optometry, Anatomy and Embryology Department, Madrid, Spain; Universidad Complutense de Madrid, Faculty of Medicine, Anatomy and Embryology Department, Madrid, Spain
| |
Collapse
|
25
|
Folylpoly-ɣ-glutamate synthetase association to the cytoskeleton: Implications to folate metabolon compartmentalization. J Proteomics 2021; 239:104169. [PMID: 33676037 DOI: 10.1016/j.jprot.2021.104169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 11/23/2022]
Abstract
Folates are essential for nucleotide biosynthesis, amino acid metabolism and cellular proliferation. Following carrier-mediated uptake, folates are polyglutamylated by folylpoly-ɣ-glutamate synthetase (FPGS), resulting in their intracellular retention. FPGS appears as a long isoform, directed to mitochondria via a leader sequence, and a short isoform reported as a soluble cytosolic protein (cFPGS). However, since folates are labile and folate metabolism is compartmentalized, we herein hypothesized that cFPGS is associated with the cytoskeleton, to couple folate uptake and polyglutamylation and channel folate polyglutamates to metabolon compartments. We show that cFPGS is a cytoskeleton-microtubule associated protein: Western blot analysis revealed that endogenous cFPGS is associated with the insoluble cellular fraction, i.e., cytoskeleton and membranes, but not with the cytosol. Mass spectrometry analysis identified the putative cFPGS interactome primarily consisting of microtubule subunits and cytoskeletal motor proteins. Consistently, immunofluorescence microscopy with cytosol-depleted cells demonstrated the association of cFPGS with the cytoskeleton and unconventional myosin-1c. Furthermore, since anti-microtubule, anti-actin cytoskeleton, and coatomer dissociation-inducing agents yielded perinuclear pausing of cFPGS, we propose an actin- and microtubule-dependent transport of cFPGS between the ER-Golgi and the plasma membrane. These novel findings support the coupling of folate transport with polyglutamylation and folate channeling to intracellular metabolon compartments. SIGNIFICANCE: FPGS, an essential enzyme catalyzing intracellular folate polyglutamylation and efficient retention, was described as a soluble cytosolic enzyme in the past 40 years. However, based on the lability of folates and the compartmentalization of folate metabolism and nucleotide biosynthesis, we herein hypothesized that cytoplasmic FPGS is associated with the cytoskeleton, to couple folate transport and polyglutamylation as well as channel folate polyglutamates to biosynthetic metabolon compartments. Indeed, using complementary techniques including Mass-spectrometry proteomics and fluorescence microscopy, we show that cytoplasmic FPGS is associated with the cytoskeleton and unconventional myosin-1c. This novel cytoskeletal localization of cytoplasmic FPGS supports the dynamic channeling of polyglutamylated folates to metabolon compartments to avoid oxidation and intracellular dilution of folates, while enhancing folate-dependent de novo biosynthesis of nucleotides and DNA/protein methylation.
Collapse
|
26
|
Bagherieh M, Kheirollahi A, Zamani-Garmsiri F, Emamgholipour S, Meshkani R. Folic acid ameliorates palmitate-induced inflammation through decreasing homocysteine and inhibiting NF-κB pathway in HepG2 cells. Arch Physiol Biochem 2021:1-8. [PMID: 33596128 DOI: 10.1080/13813455.2021.1878539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Prevention of inflammation is one of the possible remedy procedure for steatohepatitis during NAFLD. In this study, we researched the folic acid (FA) potency to attenuate the inflammation of palmitate-treated HepG2 cells and the related signalling pathways. METHODS The molecular mechanisms related to FA anti-inflammatory effect in palmitate and Hcy-treated HepG2 cell line were assessed. RESULTS The results indicated that while palmitate enhances the expression and secretion of TNF-α, IL-6, and IL-1β, and also intracellular ROS level, FA at concentrations of 25, 50, and 75 µg/mL significantly reversed these effects in HepG2 cells. In addition, FA could ameliorate inflammation and decrease ROS production induced by Hcy. Furthermore, FA pre-treatment suppress palmitate -induced (NF-κB) p65 level in palmitate or Hcy stimulated cells. CONCLUSIONS Overall, these results suggest that FA reduces inflammation in HepG2 cells through decreasing ROS and Hcy concentration level resulting in inhibiting the NF-κB pathway.
Collapse
Affiliation(s)
- Molood Bagherieh
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Asma Kheirollahi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fahimeh Zamani-Garmsiri
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Kurniawan H, Kobayashi T, Brenner D. The emerging role of one-carbon metabolism in T cells. Curr Opin Biotechnol 2021; 68:193-201. [PMID: 33422815 DOI: 10.1016/j.copbio.2020.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
One-carbon metabolism (1CM) supports multiple biological functions, providing 1C units for nucleotide synthesis, epigenetic maintenance, and redox regulation. Although much has been deciphered about the relationship between disruption of 1CM and various diseases, our understanding of 1CM's involvement in the regulation of the immune system is only now evolving. In this review, we summarize key checkpoints of 1CM pathways that govern cellular activities. We also report on recent findings regarding the role of 1CM in T cells and discuss several promising avenues requiring future investigation.
Collapse
Affiliation(s)
- Henry Kurniawan
- Experimental & Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for System Biomedicine (LCSB), University of Luxembourg, Belval, Luxembourg
| | - Takumi Kobayashi
- Experimental & Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for System Biomedicine (LCSB), University of Luxembourg, Belval, Luxembourg
| | - Dirk Brenner
- Experimental & Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for System Biomedicine (LCSB), University of Luxembourg, Belval, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
28
|
Maruvada P, Stover PJ, Mason JB, Bailey RL, Davis CD, Field MS, Finnell RH, Garza C, Green R, Gueant JL, Jacques PF, Klurfeld DM, Lamers Y, MacFarlane AJ, Miller JW, Molloy AM, O'Connor DL, Pfeiffer CM, Potischman NA, Rodricks JV, Rosenberg IH, Ross SA, Shane B, Selhub J, Stabler SP, Trasler J, Yamini S, Zappalà G. Knowledge gaps in understanding the metabolic and clinical effects of excess folates/folic acid: a summary, and perspectives, from an NIH workshop. Am J Clin Nutr 2020; 112:1390-1403. [PMID: 33022704 PMCID: PMC7657327 DOI: 10.1093/ajcn/nqaa259] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
Folate, an essential nutrient found naturally in foods in a reduced form, is present in dietary supplements and fortified foods in an oxidized synthetic form (folic acid). There is widespread agreement that maintaining adequate folate status is critical to prevent diseases due to folate inadequacy (e.g., anemia, birth defects, and cancer). However, there are concerns of potential adverse effects of excess folic acid intake and/or elevated folate status, with the original concern focused on exacerbation of clinical effects of vitamin B-12 deficiency and its role in neurocognitive health. More recently, animal and observational studies have suggested potential adverse effects on cancer risk, birth outcomes, and other diseases. Observations indicating adverse effects from excess folic acid intake, elevated folate status, and unmetabolized folic acid (UMFA) remain inconclusive; the data do not provide the evidence needed to affect public health recommendations. Moreover, strong biological and mechanistic premises connecting elevated folic acid intake, UMFA, and/or high folate status to adverse health outcomes are lacking. However, the body of evidence on potential adverse health outcomes indicates the need for comprehensive research to clarify these issues and bridge knowledge gaps. Three key research questions encompass the additional research needed to establish whether high folic acid or total folate intake contributes to disease risk. 1) Does UMFA affect biological pathways leading to adverse health effects? 2) Does elevated folate status resulting from any form of folate intake affect vitamin B-12 function and its roles in sustaining health? 3) Does elevated folate intake, regardless of form, affect biological pathways leading to adverse health effects other than those linked to vitamin B-12 function? This article summarizes the proceedings of an August 2019 NIH expert workshop focused on addressing these research areas.
Collapse
Affiliation(s)
- Padma Maruvada
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Patrick J Stover
- Texas A&M University College of Agriculture and Life Sciences, Texas A&M University AgriLife, College Station, TX, USA
| | - Joel B Mason
- Jean Mayer USDA Human Nutrition Research Center on Aging, Friedman School of Nutrition Science and Policy, and School of Medicine, Tufts University, Boston, MA, USA
| | - Regan L Bailey
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Cindy D Davis
- Office of Dietary Supplements, NIH, Bethesda, MD, USA
| | - Martha S Field
- Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, NY, USA
| | - Richard H Finnell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Cutberto Garza
- Professor Emeritus, Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, NY, USA
| | - Ralph Green
- Department of Pathology and Laboratory Medicine, University of California, Davis Medical Center, Sacramento, CA, USA
| | - Jean-Louis Gueant
- University of Lorraine and University Regional Hospital Centre of Nancy, Nancy, France
| | - Paul F Jacques
- Tufts University Friedman School of Nutritional Science and Policy and the Jean Mayer USDA Human Nutrition Research Center, Boston, MA, USA
| | - David M Klurfeld
- Department of Nutrition, Food Safety, and Quality, USDA Agricultural Research Service, Beltsville, MD, USA
| | - Yvonne Lamers
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Joshua W Miller
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Anne M Molloy
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Deborah L O'Connor
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | - Irwin H Rosenberg
- Jean Mayer USDA Human Nutrition Research Center on Aging, Friedman School of Nutrition Science and Policy, and School of Medicine, Tufts University, Boston, MA, USA
| | | | - Barry Shane
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Jacob Selhub
- Tufts University Friedman School of Nutritional Science and Policy and the Jean Mayer USDA Human Nutrition Research Center, Boston, MA, USA
| | - Sally P Stabler
- Department of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Sedigheh Yamini
- Office of Nutrition and Food Labeling, Center for Food Safety and Applied Nutrition, US FDA, College Park, MD, USA
| | - Giovanna Zappalà
- Division of Geriatrics and Clinical Gerontology, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
29
|
Environmental UVR Levels and Skin Pigmentation Gene Variants Associated with Folate and Homocysteine Levels in an Elderly Cohort. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17051545. [PMID: 32121219 PMCID: PMC7084217 DOI: 10.3390/ijerph17051545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022]
Abstract
Ultraviolet radiation (UVR) is a ubiquitous exposure which may contribute to decreased folate levels. Skin pigmentation mediates the biological effect of UVR exposure, but its relationship to folate levels is unexamined. Interactions may exist between UVR and pigmentation genes in determining folate status, which may, in turn, impact homocysteine levels, a potential risk factor for multiple chronic diseases. Therefore, independent and interactive influences of environmental UVR and genetic variants related to skin pigmentation (MC1R-rs1805007, IRF4-rs12203592 and HERC2-rs12913832) on folate (red blood cell (RBC) and serum) and homocysteine levels were examined in an elderly Australian cohort (n = 599). Genotypes were assessed by RT/RFLP-PCR, and UVR exposures were assessed as the accumulated erythemal dose rate accumulated over 4 months (4M-EDR). Multivariate analysis found significant negative associations between 4M-EDR and RBC folate (p < 0.001, β = −0.19), serum folate (p = 0.045, β = −0.08) and homocysteine levels (p < 0.001, β = −0.28). Significant associations between MC1R-rs1805007 and serum folate levels (p = 0.020), and IRF4-rs12203592 and homocysteine levels (p = 0.026) occurred but did not remain significant following corrections with confounders. No interactions between 4M-EDR and pigmentation variants in predicting folate/homocysteine levels were found. UVR levels and skin pigmentation-related variants are potential determinants of folate and homocysteine status, although, associations are mixed and complex, with further studies warranted.
Collapse
|
30
|
Lakkakula BV, Sengupta S, Agrawal J, Singh S, Mendhey P, Jangde P, Sharma A, Pande PA, Krishan P, Shukla P, Momin S, Nagaraju GP, Pattnaik S. Maternal and infant MTHFR gene polymorphisms and non-syndromic oral cleft susceptibility: An updated meta-analysis. Process Biochem 2020; 89:81-88. [DOI: 10.1016/j.procbio.2019.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Jones P, Lucock M, Scarlett CJ, Veysey M, Beckett EL. Folate and Inflammation – links between folate and features of inflammatory conditions. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2019. [DOI: 10.1016/j.jnim.2019.100104] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
32
|
Guiducci G, Paone A, Tramonti A, Giardina G, Rinaldo S, Bouzidi A, Magnifico MC, Marani M, Menendez JA, Fatica A, Macone A, Armaos A, Tartaglia GG, Contestabile R, Paiardini A, Cutruzzolà F. The moonlighting RNA-binding activity of cytosolic serine hydroxymethyltransferase contributes to control compartmentalization of serine metabolism. Nucleic Acids Res 2019; 47:4240-4254. [PMID: 30809670 PMCID: PMC6486632 DOI: 10.1093/nar/gkz129] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/01/2019] [Accepted: 02/15/2019] [Indexed: 12/30/2022] Open
Abstract
Enzymes of intermediary metabolism are often reported to have moonlighting functions as RNA-binding proteins and have regulatory roles beyond their primary activities. Human serine hydroxymethyltransferase (SHMT) is essential for the one-carbon metabolism, which sustains growth and proliferation in normal and tumour cells. Here, we characterize the RNA-binding function of cytosolic SHMT (SHMT1) in vitro and using cancer cell models. We show that SHMT1 controls the expression of its mitochondrial counterpart (SHMT2) by binding to the 5'untranslated region of the SHMT2 transcript (UTR2). Importantly, binding to RNA is modulated by metabolites in vitro and the formation of the SHMT1-UTR2 complex inhibits the serine cleavage activity of the SHMT1, without affecting the reverse reaction. Transfection of UTR2 in cancer cells controls SHMT1 activity and reduces cell viability. We propose a novel mechanism of SHMT regulation, which interconnects RNA and metabolites levels to control the cross-talk between cytosolic and mitochondrial compartments of serine metabolism.
Collapse
Affiliation(s)
- Giulia Guiducci
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Alessio Paone
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Angela Tramonti
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy.,Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy
| | - Giorgio Giardina
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Amani Bouzidi
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Maria C Magnifico
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Marina Marani
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, 17007 Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
| | - Alessandro Fatica
- Department of Biology and Biotechnology 'C. Darwin', Sapienza University of Rome, 00185 Rome, Italy
| | - Alberto Macone
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Alexandros Armaos
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Gian G Tartaglia
- Department of Biology and Biotechnology 'C. Darwin', Sapienza University of Rome, 00185 Rome, Italy.,Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Department of Experimental and Health Sciences, 08003 Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Department of Life and Medical Sciences, 23 Passeig Lluıs Companys, 08010 Barcelona, Spain
| | - Roberto Contestabile
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
33
|
Mitochondrial One-Carbon Pathway Supports Cytosolic Folate Integrity in Cancer Cells. Cell 2019; 175:1546-1560.e17. [PMID: 30500537 DOI: 10.1016/j.cell.2018.09.041] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/25/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023]
Abstract
Mammalian folate metabolism is comprised of cytosolic and mitochondrial pathways with nearly identical core reactions, yet the functional advantages of such an organization are not well understood. Using genome-editing and biochemical approaches, we find that ablating folate metabolism in the mitochondria of mammalian cell lines results in folate degradation in the cytosol. Mechanistically, we show that QDPR, an enzyme in tetrahydrobiopterin metabolism, moonlights to repair oxidative damage to tetrahydrofolate (THF). This repair capacity is overwhelmed when cytosolic THF hyperaccumulates in the absence of mitochondrially produced formate, leading to THF degradation. Unexpectedly, we also find that the classic antifolate methotrexate, by inhibiting its well-known target DHFR, causes even more extensive folate degradation in nearly all tested cancer cell lines. These findings shed light on design features of folate metabolism, provide a biochemical basis for clinically observed folate deficiency in QDPR-deficient patients, and reveal a hitherto unknown and unexplored cellular effect of methotrexate.
Collapse
|
34
|
The 5-formyltetrahydrofolate futile cycle reduces pathway stochasticity in an extended hybrid-stochastic model of folate-mediated one-carbon metabolism. Sci Rep 2019; 9:4322. [PMID: 30867454 PMCID: PMC6416297 DOI: 10.1038/s41598-019-40230-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/11/2019] [Indexed: 11/17/2022] Open
Abstract
In folate-mediated one-carbon metabolism (FOCM), 5-formyltetrahydrofolate (5fTHF), a one-carbon substituted tetrahydrofolate (THF) vitamer, acts as an intracellular storage form of folate and as an inhibitor of the folate-dependent enzymes phosphoribosylaminoimidazolecarboxamide formyltransferase (AICARFT) and serine hydroxymethyltransferase (SHMT). Cellular levels of 5fTHF are regulated by a futile cycle comprising the enzymes SHMT and 5,10-methenyltetrahydrofolate synthetase (MTHFS). MTHFS is an essential gene in mice; however, the roles of both 5fTHF and MTHFS in mammalian FOCM remain to be fully elucidated. We present an extension of our previously published hybrid-stochastic model of FOCM by including the 5fTHF futile-cycle to explore its effect on the FOCM network. Model simulations indicate that MTHFS plays an essential role in preventing 5fTHF accumulation, which consequently averts inhibition of all other reactions in the metabolic network. Moreover, in silico experiments show that 10-formylTHF inhibition of MTHFS is critical for regulating purine synthesis. Model simulations also provide evidence that 5-methylTHF (and not 5fTHF) is the predominant physiological binder/inhibitor of SHMT. Finally, the model simulations indicate that the 5fTHF futile cycle dampens the stochastic noise in FOCM that results from both folate deficiency and a common variant in the methylenetetrahydrofolate reductase (MTHFR) gene.
Collapse
|
35
|
Clare CE, Brassington AH, Kwong WY, Sinclair KD. One-Carbon Metabolism: Linking Nutritional Biochemistry to Epigenetic Programming of Long-Term Development. Annu Rev Anim Biosci 2019; 7:263-287. [DOI: 10.1146/annurev-animal-020518-115206] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
One-carbon (1C) metabolism comprises a series of interlinking metabolic pathways that include the methionine and folate cycles that are central to cellular function, providing 1C units (methyl groups) for the synthesis of DNA, polyamines, amino acids, creatine, and phospholipids. S-adenosylmethionine is a potent aminopropyl and methyl donor within these cycles and serves as the principal substrate for methylation of DNA, associated proteins, and RNA. We propose that 1C metabolism functions as a key biochemical conduit between parental environment and epigenetic regulation of early development and that interindividual and ethnic variability in epigenetic-gene regulation arises because of genetic variants within 1C genes, associated epigenetic regulators, and differentially methylated target DNA sequences. We present evidence to support these propositions, drawing upon studies undertaken in humans and animals. We conclude that future studies should assess the epigenetic effects of cumulative (multigenerational) dietary imbalances contemporaneously in both parents, as this better represents the human experience.
Collapse
Affiliation(s)
- Constance E. Clare
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom
| | - Amey H. Brassington
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom
| | - Wing Yee Kwong
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom
| | - Kevin D. Sinclair
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom
| |
Collapse
|
36
|
Xia MF, Bian H, Zhu XP, Yan HM, Chang XX, Zhang LS, Lin HD, Hu XQ, Gao X. Serum folic acid levels are associated with the presence and severity of liver steatosis in Chinese adults. Clin Nutr 2018; 37:1752-1758. [PMID: 28705466 DOI: 10.1016/j.clnu.2017.06.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/18/2017] [Accepted: 06/21/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD) is a common and strong risk factor for cardiovascular disease and hepatocellular carcinoma. The rapid acceleration of the increase in NAFLD prevalence has exceeded the trends observed for obesity, and has been driven by multiple factors. The aim of this study was to investigate the correlation between the serum levels of folic acid, the endogenous source of methyl groups for DNA methylation, and NAFLD in Chinese adults. METHODS The correlations between the serum folic acid levels and NAFLD were investigated in two independent cohorts of 70 subjects who underwent a liver biopsy and 130 subjects with varying liver fat contents, as measured using proton magnetic resonance spectroscopy (1H-MRS). Independent correlations between serum folic acid levels and liver steatosis grades were detected using a multivariate ordinal regression analysis. The diagnostic performances of serum folic acid levels alone and in combination with existing NAFLD prediction scores were compared with those of traditional NAFLD prediction parameters using receiver operating characteristic (ROC) curve analyses. RESULTS Serum folic acid concentrations were inversely correlated with liver histological steatosis grades (ρ = -0.371, P < 0.001) and the 1H-MRS-measured liver fat content (r = -0.199, P = 0.038). According to the multivariate ordinal regression analysis, serum folic acid levels were inversely correlated with liver steatosis grades (OR 0.739 [0.594-0.918], P = 0.006) independent of age, gender, BMI, components of metabolic syndrome and the serum TC, LDL-c and HOMA-IR levels. The AUROC of serum folic acid for the diagnosis of NAFLD was 0.75 (0.65-0.83), and the addition of serum folic acid to NAFLD prediction scores significantly improved the diagnostic prediction of NAFLD (AUROC = 0.88 [0.81-0.94]). CONCLUSION Low serum folic acid levels were identified as an independent risk factor for NAFLD in the Chinese population. The addition of the serum folic acid levels to the current existing NAFLD prediction scores significantly improved the prediction of NAFLD.
Collapse
Affiliation(s)
- Ming-Feng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Hua Bian
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Xiao-Peng Zhu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Hong-Mei Yan
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Xin-Xia Chang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Lin-Shan Zhang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Huan-Dong Lin
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Xi-Qi Hu
- Department of Pathology, Medical College, Fudan University, Shanghai, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China.
| |
Collapse
|
37
|
Sid V, Siow YL, Shang Y, Woo CW, O K. High-fat diet consumption reduces hepatic folate transporter expression via nuclear respiratory factor-1. J Mol Med (Berl) 2018; 96:1203-1213. [PMID: 30178194 DOI: 10.1007/s00109-018-1688-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 08/03/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022]
Abstract
Folate is an essential micronutrient for biological function. The liver, a primary organ for folate metabolism and storage, plays an important role in folate homeostasis. Proton-coupled folate transporter (PCFT) and reduced folate carrier (RFC) are the major folate transporters responsible for folate uptake at basolateral membrane of hepatocytes. Low serum folate levels are frequently associated with obesity. We investigated the mechanism that regulated folate status in a mouse model with diet-induced obesity. Mice (C57BL/6J) were fed a high-fat diet (60% kcal fat) for 8 weeks. Mice displayed increased hepatic lipid accumulation and decreased folate levels in the liver and serum compared to mice fed a normal chow diet (10% kcal fat). High-fat diet-fed mice had low expression of PCFT and RFC and decreased nuclear respiratory factor-1 (NRF-1)/DNA-binding activity. Treatment with NRF-1 siRNA or palmitic acid reduced folate transporter expression in hepatocytes. Inhibition of NRF-1 mediated folate transporter expression significantly reduced intracellular folate levels. These results suggest that chronic consumption of high-fat diets impairs folate transporter expression via NRF-1-dependent mechanism, leading to reduced hepatic folate storage. Understanding the regulation of folate homeostasis in obesity may have an important implication in current guideline of folate intake. KEY MESSAGES: Serum and liver folate levels are decreased in diet-induced obese mice. Chronic high-fat diet consumption impairs expression of hepatic PCFT and RFC. NRF-1 regulates hepatic folate transporters expression and folate levels.
Collapse
Affiliation(s)
- Victoria Sid
- St. Boniface Hospital Research Centre, Winnipeg, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Yaw L Siow
- St. Boniface Hospital Research Centre, Winnipeg, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
- Agriculture and Agri-Food Canada, Winnipeg, Canada
| | - Yue Shang
- St. Boniface Hospital Research Centre, Winnipeg, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, Canada
| | - Connie W Woo
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, SAR, China.
| | - Karmin O
- St. Boniface Hospital Research Centre, Winnipeg, Canada.
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada.
- Department of Animal Science, University of Manitoba, Winnipeg, Canada.
- Laboratory of Integrative Biology, CCARM, St. Boniface Hospital Research Centre, 351 Tache Avenue, Winnipeg, Manitoba, R2H 2A6, Canada.
| |
Collapse
|
38
|
Kim H, Park YJ. Links between Serine Biosynthesis Pathway and Epigenetics in Cancer Metabolism. Clin Nutr Res 2018; 7:153-160. [PMID: 30079313 PMCID: PMC6073169 DOI: 10.7762/cnr.2018.7.3.153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022] Open
Abstract
Cancer metabolism is considered as one of major cancer hallmarks. It is important to understand cancer-specific metabolic changes and its impact on cancer biology to identify therapeutic potentials. Among cancer-specific metabolic changes, a role of serine metabolism has been discovered in various cancer types. Upregulation of serine synthesis pathway (SSP) supports cell proliferation and metastasis. The change of serine metabolism is, in part, mediated by epigenetic modifiers, such as Euchromatic histone-lysine N-methyltransferase 2 and Lysine Demethylase 4C. On the other hand, SSP also influences epigenetic landscape such as methylation status of nucleic acids and histone proteins via affecting S-adenosyl methionine production. In the review, we highlight recent evidences on interactions between SSP and epigenetic regulation in cancer. It may provide an insight on roles and regulation of SSP in cancer metabolism and the potential of serine metabolism for cancer therapy.
Collapse
Affiliation(s)
- HaEun Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Yoon Jung Park
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
39
|
Stover PJ, James WPT, Krook A, Garza C. Emerging concepts on the role of epigenetics in the relationships between nutrition and health. J Intern Med 2018; 284:37-49. [PMID: 29706028 DOI: 10.1111/joim.12768] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Understanding the physiological and metabolic underpinnings that confer individual differences in responses to diet and diet-related chronic disease is essential to advance the field of nutrition. This includes elucidating the differences in gene expression that are mediated through programming of the genome through epigenetic chromatin modifications. Epigenetic landscapes are influenced by age, genetics, toxins and other environmental factors, including dietary exposures and nutritional status. Epigenetic modifications influence transcription and genome stability are established during development with life-long consequences. They can be inherited from one generation to the next. The covalent modifications of chromatin, which include methylation and acetylation, on DNA nucleotide bases, histone proteins and RNA are derived from intermediates of one-carbon metabolism and central metabolism. They influence key physiological processes throughout life, and together with inherited DNA primary sequence, contribute to responsiveness to environmental stresses, diet and risk for age-related chronic disease. Revealing diet-epigenetic relationships has the potential to transform nutrition science by increasing our fundamental understanding of: (i) the role of nutrients in biological systems, (ii) the resilience of living organisms in responding to environmental perturbations, and (iii) the development of dietary patterns that programme physiology for life-long health. Epigenetics may also enable the classification of individuals with chronic disease for specific dietary management and/or for efficacious diet-pharmaceutical combination therapies. These new emerging concepts at the interface of nutrition and epigenetics were discussed, and future research needs identified by leading experts at the 26th Marabou Symposium entitled 'Nutrition, Epigenetics, Genetics: Impact on Health and Disease'. For a compilation of the general discussion at the marabou symposium, click here http://www.marabousymposium.org/.
Collapse
Affiliation(s)
- P J Stover
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - W P T James
- Department of Population Health, Nutrition Group, London School of Hygiene and Tropical Medicine, London, UK
| | - A Krook
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - C Garza
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
40
|
Schittmayer M, Birner-Gruenberger R, Zamboni N. Quantification of Cellular Folate Species by LC-MS after Stabilization by Derivatization. Anal Chem 2018; 90:7349-7356. [PMID: 29792680 PMCID: PMC6011177 DOI: 10.1021/acs.analchem.8b00650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Folate
cofactors play a key role in one-carbon metabolism. Analysis
of individual folate species is hampered by the low chemical stability
and high interconvertibility of folates, which can lead to severe
experimental bias. Here, we present a complete workflow that employs
simultaneous extraction and stabilization of folates by derivatization.
We perform reductive methylation employing stable isotope labeled
reagents to retain information on the position and redox state of
one-carbon units as well as the redox state of the pteridine ring.
The derivatives are analyzed by a targeted LC(HILIC)-MS/MS method
without the need for deconjugation, thereby also preserving the glutamation
state of folates. The presented method does not only improve analyte
coverage and sensitivity as compared to other published methods, it
also greatly simplifies sample handling and storage. Finally, we report
differences in the response of bacterial and mammalian systems to
pharmacological inhibition of dihydrofolate reductase.
Collapse
Affiliation(s)
- Matthias Schittmayer
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry , Medical University of Graz , Stiftingtalstrasse 2 , 8010 Graz , Austria.,Institute of Molecular Systems Biology , ETH Zürich , 8093 Zürich , Switzerland.,Omics Center Graz , BioTechMed-Graz , 8010 Graz , Austria
| | - Ruth Birner-Gruenberger
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry , Medical University of Graz , Stiftingtalstrasse 2 , 8010 Graz , Austria.,Omics Center Graz , BioTechMed-Graz , 8010 Graz , Austria
| | - Nicola Zamboni
- Institute of Molecular Systems Biology , ETH Zürich , 8093 Zürich , Switzerland
| |
Collapse
|
41
|
Kasture VV, Sundrani DP, Joshi SR. Maternal one carbon metabolism through increased oxidative stress and disturbed angiogenesis can influence placental apoptosis in preeclampsia. Life Sci 2018; 206:61-69. [PMID: 29772225 DOI: 10.1016/j.lfs.2018.05.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/24/2018] [Accepted: 05/12/2018] [Indexed: 01/17/2023]
Abstract
Adequate maternal nutrition is critical for a healthy pregnancy outcome and poor maternal nutrition is known to be associated with pregnancy complications like preeclampsia. We have earlier demonstrated that there is an imbalance in the levels of micronutrients (folate and vitamin B12) along with low levels of long chain polyunsaturated fatty acids (LCPUFA) and high homocysteine levels in women with preeclampsia. Homocysteine is known to be involved in the formation of free radicals leading to increased oxidative stress. Higher oxidative stress has been shown to be associated with increased apoptotic markers in the placenta. Preeclampsia is of placental origin and is associated with increased oxidative stress, disturbed angiogenesis and placental apoptosis. The process of angiogenesis is important for placental and fetal development and various angiogenic growth factors inhibit apoptosis by inactivation of proapoptotic proteins through a series of cellular signalling pathways. We propose that an altered one carbon cycle resulting in increased oxidative stress and impaired angiogenesis will contribute to increased placental apoptosis leading to preeclampsia. Understanding the association of one carbon cycle components and the possible mechanisms through which they regulate apoptosis will provide clues for reducing risk of pregnancy complications.
Collapse
Affiliation(s)
- Vaishali V Kasture
- Department of Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Deepali P Sundrani
- Department of Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Sadhana R Joshi
- Department of Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India.
| |
Collapse
|
42
|
Field MS, Lan X, Stover DM, Stover PJ. Dietary Uridine Decreases Tumorigenesis in the ApcMin/+ Model of Intestinal Cancer. Curr Dev Nutr 2018; 2:nzy013. [PMID: 29955725 PMCID: PMC5998365 DOI: 10.1093/cdn/nzy013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/13/2018] [Accepted: 02/27/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Dietary deoxyuridine and uridine have been shown to have opposing effects on neural tube defect (NTD) incidence in the serine hydroxymethyltransferase 1 (Shmt1+/- ) mouse model of folate-responsive NTDs, which are mediated by changes in de novo thymidylate biosynthesis. Alterations in folate-mediated one-carbon metabolism that protect against NTDs increased cancer risk in some studies. OBJECTIVE This study examined the effects of the dietary pyrimidine nucleosides uridine, thymidine, or deoxyuridine on intestinal tumorigenesis in the ApcMin/+ mouse model [a mouse model lacking one copy of the adenomatosis polypsis coli (APC) gene] of spontaneous intestinal tumor formation. This study also evaluated the effects of uridine and deoxyuridine in culture medium on antifolate efficacy in Caco-2 and HeLa cell lines. METHODS ApcMin/+ male mice (n = 10-14/group) were fed folate-deficient diets containing uridine, thymidine, or deoxyuridine from weaning until 17 wk of age. Total intestinal tumors were analyzed and biomarkers of folate status and metabolism were measured, including plasma folate concentrations, colon uracil content, and SHMT1 concentrations. RESULTS ApcMin/+ mice fed dietary uridine showed a 50% reduction in total intestinal tumors, but neither dietary deoxyuridine nor thymidine affected tumorigenesis. Dietary nucleoside supplementation also increased plasma folate concentrations in ApcMin/+ mice, as has been observed in the Shmt1+/- mouse model. Neither uridine nor deoxyuridine in culture media affected antifolate efficacy in either HeLa or Caco-2 cell lines. CONCLUSIONS Dietary uridine, which is teratogenic in mice, decreases intestinal tumor formation in the ApcMin/+ mouse model. Dietary uridine mimics the effect of the common methylene tetrahydrofolate reductase (MTHFR) C677T variant in protecting against colorectal cancer, while contributing to the risk of NTDs.
Collapse
Affiliation(s)
- Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | - Xu Lan
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | - Denise M Stover
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | - Patrick J Stover
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY
| |
Collapse
|
43
|
Enzymes of the one-carbon folate metabolism as anticancer targets predicted by survival rate analysis. Sci Rep 2018; 8:303. [PMID: 29321536 PMCID: PMC5762868 DOI: 10.1038/s41598-017-18456-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/12/2017] [Indexed: 01/15/2023] Open
Abstract
The significance of mitochondrial metabolism in cancer cells has recently been gaining attention. Among other findings, One-carbon folate metabolism has been reported to be closely associated with cellular characteristics in cancer. To study molecular targets for efficient cancer therapy, we investigated the association between the expressions of genes that code enzymes involved in one-carbon metabolism and survival rate of patients with adenocarcinomas of the colorectum and lung. Patients with high expression of genes that control the metabolic cycle of tetrahydrofolate (THF) in mitochondria, SHMT2, MTHFD2, and ALDH1L2, have a shorter overall survival rate compared with patients with low expression of these genes. Our results revealed that these genes could be novel and more promising anticancer targets than dihydrofolate reductase (DHFR), the current target of drug therapy linked with folate metabolism, suggesting the rationale of drug discovery in cancer medicine.
Collapse
|
44
|
One-carbon metabolism and nucleotide biosynthesis as attractive targets for anticancer therapy. Oncotarget 2017; 8:23955-23977. [PMID: 28177894 PMCID: PMC5410357 DOI: 10.18632/oncotarget.15053] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/02/2016] [Indexed: 12/29/2022] Open
Abstract
Cancer-related metabolism has recently emerged as one of the “hallmarks of cancer”. It has several important features, including altered metabolism of glucose and glutamine. Importantly, altered cancer metabolism connects different biochemical pathways into the one fine-tuned metabolic network, which stimulates high proliferation rates and plasticity to malignant cells. Among the keystones of cancer metabolism are one-carbon metabolism and nucleotide biosynthesis, which provide building blocks to anabolic reactions. Accordingly, the importance of these metabolic pathways for anticancer therapy has well been documented by more than fifty years of clinical use of specific metabolic inhibitors – methotrexate and nucleotides analogs. In this review we discuss one-carbon metabolism and nucleotide biosynthesis as common and specific features of many, if not all, tumors. The key enzymes involved in these pathways also represent promising anti-cancer therapeutic targets. We review different aspects of these metabolic pathways including their biochemistry, compartmentalization and expression of the key enzymes and their regulation at different levels. We also discuss the effects of known inhibitors of these pathways as well as the recent data on other enzymes of the same pathways as perspective pharmacological targets.
Collapse
|
45
|
Abstract
Protein modification with the small ubiquitin-related modifier (SUMO) can affect protein function, enzyme activity, protein-protein interactions, protein stability, protein targeting and cellular localization. SUMO influences the function and regulation of metabolic enzymes within pathways, and in some cases targets entire metabolic pathways by affecting the activity of transcription factors or by facilitating the translocation of entire metabolic pathways to subcellular compartments. SUMO modification is also a key component of nutrient- and metabolic-sensing mechanisms that regulate cellular metabolism. In addition to its established roles in maintaining metabolic homeostasis, there is increasing evidence that SUMO is a key factor in facilitating cellular stress responses through the regulation and/or adaptation of the most fundamental metabolic processes, including energy and nucleotide metabolism. This review focuses on the role of SUMO in cellular metabolism and metabolic disease.
Collapse
|
46
|
Abstract
Neural tube defects (NTDs) are the most severe congenital malformations of the central nervous system. The etiology is complex, with both genetic and environmental factors having important contributions. Researchers have known for the past two decades that maternal periconceptional use of the B vitamin folic acid can prevent many NTDs. Though this finding is arguably one of the most important recent discoveries in birth defect research, the mechanism by which folic acid exerts this benefit remains unknown. Research to date has focused on the hypothesis that an underlying genetic susceptibility interacts with folate-sensitive metabolic processes at the time of neural tube closure. Little progress has been made searching for risk-causative variants in candidate genes; therefore, more complex genetic and epigenetic methodologies are now being considered. This article reviews the research to date that has been targeted on this important gene-nutrient locus.
Collapse
Affiliation(s)
- Anne M Molloy
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, The University of Dublin, 2 Ireland;
| | - Faith Pangilinan
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland 20892; ,
| | - Lawrence C Brody
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland 20892; ,
| |
Collapse
|
47
|
Jo YK, Park MH, Choi H, Lee H, Park JM, Sim JJ, Chang C, Jeong KY, Kim HM. Enhancement of the Antitumor Effect of Methotrexate on Colorectal Cancer Cells via Lactate Calcium Salt Targeting Methionine Metabolism. Nutr Cancer 2017; 69:663-673. [PMID: 28353361 DOI: 10.1080/01635581.2017.1299879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Methionine (Met) is involved in one-carbon de novo nucleotide synthesis and is an essential amino acid for cell survival. The impact of lactate calcium salt (CaLa) on the Met metabolism was investigated to evaluate the enhanced antitumor effect of methotrexate (MTX) on colorectal cancer (CRC) cells. Met dependency relating to homocysteine (Hcy) and betaine was investigated in human CRC cells (HCT-116 and HT-29) using a viability assay and liquid chromatography-mass spectrometry. Expression of betaine transporter-1 (BGT-1) following treatment with MTX alone or with CaLa was determined by Western blot. Enhanced antitumor effect due to malfunction of Met synthesis was confirmed. CRC cell viability decreased in Met-restricted medium, but was maintained after Hcy and betaine treatment while overcoming Met restriction. BGT-1 expression was downregulated following the treatment of dose-increased CaLa, whereas there was no effect on BGT-1 expression after MTX treatment. CaLa in combination with MTX induced reduced Met synthesis when CRC cell viability was reduced. The results indicated that CaLa-mediated BGT-1 downregulation inhibits Met synthesis by disrupting betaine homeostasis. CaLa raised the antitumor effect of MTX via secondary role in the inhibition of the de novo nucleotide synthesis. Combination therapy of MTX and CaLa could maximize the effectiveness of CRC treatment.
Collapse
Affiliation(s)
- Young-Kwon Jo
- a Gachon Institute of Pharmaceutical Science , Gachon University , Incheon , Republic of Korea
| | - Min Hee Park
- a Gachon Institute of Pharmaceutical Science , Gachon University , Incheon , Republic of Korea
| | - Hyunju Choi
- a Gachon Institute of Pharmaceutical Science , Gachon University , Incheon , Republic of Korea
| | - HooKeun Lee
- a Gachon Institute of Pharmaceutical Science , Gachon University , Incheon , Republic of Korea
| | - Jong-Moon Park
- a Gachon Institute of Pharmaceutical Science , Gachon University , Incheon , Republic of Korea
| | - Jae Jun Sim
- a Gachon Institute of Pharmaceutical Science , Gachon University , Incheon , Republic of Korea
| | - Chonghwan Chang
- b Oncometplus Pharmaceuticals Co. R&D Division , Incheon , Republic of Korea
| | - Keun-Yeong Jeong
- b Oncometplus Pharmaceuticals Co. R&D Division , Incheon , Republic of Korea
| | - Hwan Mook Kim
- a Gachon Institute of Pharmaceutical Science , Gachon University , Incheon , Republic of Korea
| |
Collapse
|
48
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a spectrum of chronic liver conditions that are characterized by steatosis, inflammation, fibrosis, and liver injury. The global prevalence of NAFLD is rapidly increasing in proportion to the rising incidence of obesity and type 2 diabetes. Because NAFLD is a multifaceted disorder with many underlying metabolic abnormalities, currently, there is no pharmacological agent that is therapeutically approved for the treatment of this disease. Folate is a water-soluble B vitamin that plays an essential role in one-carbon transfer reactions involved in nucleic acid biosynthesis, methylation reactions, and sulfur-containing amino acid metabolism. The liver is the primary organ responsible for storage and metabolism of folates. Low serum folate levels have been observed in patients with obesity and diabetes. It has been reported that a low level of endogenous folates in rodents perturbs folate-dependent one-carbon metabolism, and may be associated with development of metabolic diseases such as NAFLD. This review highlights the biological role of folate in the progression of NAFLD and its associated metabolic complications including obesity and type 2 diabetes. Understanding the role of folate in metabolic disease may position this vitamin as a potential therapeutic for NAFLD.
Collapse
Affiliation(s)
- Victoria Sid
- a St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.,b Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Yaw L Siow
- a St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.,b Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.,c Agriculture and Agri-Food Canada, Winnipeg, MB R3C 1B2, Canada
| | - Karmin O
- a St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.,b Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.,d Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
49
|
Misselbeck K, Marchetti L, Field MS, Scotti M, Priami C, Stover PJ. A hybrid stochastic model of folate-mediated one-carbon metabolism: Effect of the common C677T MTHFR variant on de novo thymidylate biosynthesis. Sci Rep 2017; 7:797. [PMID: 28400561 PMCID: PMC5429759 DOI: 10.1038/s41598-017-00854-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/13/2017] [Indexed: 11/19/2022] Open
Abstract
Folate-mediated one-carbon metabolism (FOCM) is an interconnected network of metabolic pathways, including those required for the de novo synthesis of dTMP and purine nucleotides and for remethylation of homocysteine to methionine. Mouse models of folate-responsive neural tube defects (NTDs) indicate that impaired de novo thymidylate (dTMP) synthesis through changes in SHMT expression is causative in folate-responsive NTDs. We have created a hybrid computational model comprised of ordinary differential equations and stochastic simulation. We investigated whether the de novo dTMP synthesis pathway was sensitive to perturbations in FOCM that are known to be associated with human NTDs. This computational model shows that de novo dTMP synthesis is highly sensitive to the common MTHFR C677T polymorphism and that the effect of the polymorphism on FOCM is greater in folate deficiency. Computational simulations indicate that the MTHFR C677T polymorphism and folate deficiency interact to increase the stochastic behavior of the FOCM network, with the greatest instability observed for reactions catalyzed by serine hydroxymethyltransferase (SHMT). Furthermore, we show that de novo dTMP synthesis does not occur in the cytosol at rates sufficient for DNA replication, supporting empirical data indicating that impaired nuclear de novo dTMP synthesis results in uracil misincorporation into DNA.
Collapse
Affiliation(s)
- Karla Misselbeck
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Piazza Manifattura, 1, 38068, Rovereto (TN), Italy
- Department of Mathematics, University of Trento, Trento, Italy
| | - Luca Marchetti
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Piazza Manifattura, 1, 38068, Rovereto (TN), Italy
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, 14853, USA
| | - Marco Scotti
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Corrado Priami
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Piazza Manifattura, 1, 38068, Rovereto (TN), Italy.
- Department of Mathematics, University of Trento, Trento, Italy.
| | - Patrick J Stover
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, 14853, USA.
| |
Collapse
|
50
|
Genome-Wide Screen Reveals sec21 Mutants of Saccharomyces cerevisiae Are Methotrexate-Resistant. G3-GENES GENOMES GENETICS 2017; 7:1251-1257. [PMID: 28235825 PMCID: PMC5386873 DOI: 10.1534/g3.116.038117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Drug resistance is a consequence of how most modern medicines work. Drugs exert pressure on cells that causes death or the evolution of resistance. Indeed, highly specific drugs are rendered ineffective by a single DNA mutation. In this study, we apply the drug methotrexate, which is widely used in cancer and rheumatoid arthritis, and perform evolution experiments on Baker's yeast to ask the different ways in which cells become drug resistant. Because of the conserved nature of biological pathways between yeast and man, our results can inform how the same mechanism may operate to render human cells resistant to treatment. Exposure of cells to small molecules and drug therapies imposes a strong selective pressure. As a result, cells rapidly acquire mutations in order to survive. These include resistant variants of the drug target as well as those that modulate drug transport and detoxification. To systematically explore how cells acquire drug resistance in an unbiased manner, rapid cost-effective approaches are required. Methotrexate, as one of the first rationally designed anticancer drugs, has served as a prototypic example of such acquired resistance. Known methotrexate resistance mechanisms include mutations that increase expression of the dihydrofolate reductase (DHFR) target as well as those that maintain function yet reduce the drug's binding affinity. Recent evidence suggests that target-independent, epistatic mutations can also result in resistance to methotrexate. Currently, however, the relative contribution of such unlinked resistance mutations is not well understood. To address this issue, we took advantage of Saccharomyces cerevisiae as a model eukaryotic system that combined with whole-genome sequencing and a rapid screening methodology, allowed the identification of causative mutations that modulate resistance to methotrexate. We found a recurrent missense mutation in SEC21 (orthologous to human COPG1), which we confirmed in 10 de novo methotrexate-resistant strains. This sec21 allele (S96L) behaves as a recessive, gain-of-function allele, conferring methotrexate resistance that is abrogated by the presence of a wild-type copy of SEC21 These observations indicate that the Sec21p/COPI transport complex has previously uncharacterized roles in modulating methotrexate stress.
Collapse
|