1
|
Qiao K, Zhou X, Wu H, Zhang L, Liang L, Zhang Y. Research on the release and absorption regularities of free amino acids and peptides in vitro digestion of yeast protein. Food Chem 2025; 482:144176. [PMID: 40187327 DOI: 10.1016/j.foodchem.2025.144176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/04/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
Based on INFOGEST digestion model and Dynamic Human Stomach-Intestine in vitro (DHSI-IV), the content of free amino acids (FAAs) and peptides in yeast protein (YP) digestion products were analyzed, as well as the molecular weight distribution of digestive products. The transport and absorption of FAAs and peptides from YP static digestive products were studied by Caco-2 cells monolayer model. The highest content of branched-chain amino acids (BCAAs) and essential amino acids (EAAs) were highlighted during YP digestion. The digestibility of YP (97.66 %) was close to that of whey protein isolate (WPI), slightly higher than pea protein (PP), but significantly higher than soy protein isolate (SPI) (p < 0.05). More FAAs of YP were released in static digestion (755.40 mg/g) than in dynamic digestion (28.34 mg/g). Accordingly, more peptides of YP were released in dynamic digestion (433.76 mg/g) than in static digestion (44.44 mg/g). The intestinal phase released more FAAs and peptides than the gastric phase both static and dynamic digestion for these four proteins. Molecular weight distribution proportion of digestion products with <150 Da of the four proteins exceeded 50 %. After the absorption and transport, the absorption rate of FAAs for YP (92.75 %) was slightly lower than that of WPI. Large molecular weight peptides (>1000 Da) were not easily absorbed, and the highest distribution ratio of molecular weight with <150 Da (mainly FAAs) was detected. These proved that YP is the protein with a good quality, such as high digestive and absorption properties, which could be used as a beneficial supplement and partial replacement of animal and plant protein sources.
Collapse
Affiliation(s)
- Kaina Qiao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China.
| | - Xuewei Zhou
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Huimin Wu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China; Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lili Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Li Liang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
2
|
Robinson AV, Vancuren SJ, Marcone M, Allen-Vercoe E. Characterization of diet-linked amino acid pool influence on Fusobacterium spp. growth and metabolism. mSphere 2025; 10:e0078924. [PMID: 39945521 PMCID: PMC11934328 DOI: 10.1128/msphere.00789-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/14/2025] [Indexed: 03/26/2025] Open
Abstract
The genus Fusobacterium contains multiple proteolytic opportunistic pathogens that have been increasingly linked to colorectal cancer (CRC). "Oncomicrobes" such as these fusobacterial species within the gut microbiota may contribute to CRC onset and/or progression. Protein-rich diets may both directly increase CRC risk and enrich for proteolytic oncomicrobes, including Fusobacterium spp. Individual food substrates vary in amino acid content, and released amino acid content that is not absorbed in the small intestine may influence the growth of colonic proteolytic fermenters. Fusobacteria such as Fusobacterium spp. are known to preferentially metabolize certain amino acids. As such, some foods may better support the growth of these species within the colonic environment than others. To explore this, in this study, we created free amino acid pools (FAAPs) to represent proportions of amino acids in major proteins of three common dietary protein sources (soy, beef, and bovine milk). Growth curves were generated for 39 Fusobacterium spp. strains cultured in a dilute medium supplemented with each of the three FAAPs. Thereafter, amino acid use by 31 of the 39 Fusobacterium spp. strains in each FAAP treatment was assessed. FAAP supplementation increased growth metrics of all Fusobacterium spp. strains tested; however, the strains varied greatly in terms of the FAAP(s) generating the greatest increase in growth. Furthermore, the amino acid utilization strategy was highly variable between strains of Fusobacterium spp. Neither growth metrics nor amino acid utilization could be explained by species classification of Fusobacterium spp. strains. This report expands upon the previous knowledge of fusobacterial amino acid metabolism and indicates that proteolytic oncomicrobial activity should be assessed in the context of available protein sources.IMPORTANCEFusobacterium spp. including F. animalis, F. nucleatum, F. vincentii, and F. polymorphum are common oral commensals with emerging importance in diseases across multiple body sites, including CRC. CRC lesions associated with fusobacteria tend to result in poorer prognosis and increased disease recurrence. While Fusobacterium spp. are thought to colonize after tumorigenesis, little is known about the factors that facilitate this colonization. Protein-rich diets yielding readily metabolized free amino acids within the colon may promote the growth of proteolytic fermenters such as fusobacteria. Here, we show that variable concentrations of free amino acids within pools that represent different dietary protein sources differentially influence fusobacterial growth, including CRC-relevant strains of Fusobacterium spp. This work highlights the high degree of variation in fusobacterial amino acid utilization patterns and suggests differing proportions of dietary amino acids that reach the colon could influence fusobacterial growth.
Collapse
Affiliation(s)
- Avery V. Robinson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Sarah J. Vancuren
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Massimo Marcone
- Department of Food Science, University of Guelph, Guelph, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| |
Collapse
|
3
|
Shivakumar N, Morrison DJ, Hegde SG, Kurpad AV, Kelly P. Is there dietary macronutrient malabsorption in children with environmental enteropathy? Eur J Clin Nutr 2025; 79:181-194. [PMID: 39379550 PMCID: PMC11893463 DOI: 10.1038/s41430-024-01510-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 08/28/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024]
Abstract
Assessing the digestive and absorptive capacity of the gastro-intestinal tract (GIT) using minimally- or non-invasive methods, particularly in children, has been difficult owing to the complex physiology and variability in functional measurements. However, measuring GIT function is increasingly important with the emerging relevance of childhood environmental enteropathy (EE) as a mediating factor in linear growth faltering, severe acute malnutrition, poor oral vaccine uptake and impaired cognition. In EE, sub-optimal nutrient digestion and absorption (malabsorption) forms the critical link to the conditions mentioned above. The present narrative review discusses probable mechanisms that can cause malabsorption of macronutrients, along with mechanistic and experimental evidence, in children (if not, in adults) with EE. The strengths and limitations of the human experimental studies are examined in relation to a battery of existing and potential tests that are used to measure malabsorption. From the available studies conducted in children, lactose and fat malabsorption are more likely to occur in EE. Breath tests (non-invasive) measuring carbohydrate (13C-starch/sucrose/lactose), fat (13C-mixed triglyceride) and dipeptide (benzoyl-L-tyrosyl-L-1-13C-alanine) malabsorption with modifications to the existing protocols seem suitable for use in children with EE. Future research should focus on understanding the degree of macronutrient malabsorption using these tests, in different settings, and link them to functional outcomes (such as growth, muscle strength, cognition).
Collapse
Affiliation(s)
- Nirupama Shivakumar
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences (A Unit of CBCI Society for Medical Education), Bangalore, India
- Center for Doctoral Studies, Manipal Academy of Higher Education, Manipal, India
| | - Douglas J Morrison
- Scottish Universities Environmental Research Centre (SUERC), University of Glasgow, Glasgow, UK
| | - Shalini G Hegde
- Department of Pediatric Surgery, St. John's Medical College Hospital, St. John's National Academy of Health Sciences, Bangalore, India
| | - Anura V Kurpad
- Department of Physiology, St. John's Medical College, St. John's National Academy of Health Sciences, Bangalore, India
| | - Paul Kelly
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
- Tropical Gastroenterology and Nutrition Group, University of Zambia School of Medicine, Lusaka, Zambia.
| |
Collapse
|
4
|
Robinson SR, Greenway FL, Deth RC, Fayet-Moore F. Effects of Different Cow-Milk Beta-Caseins on the Gut-Brain Axis: A Narrative Review of Preclinical, Animal, and Human Studies. Nutr Rev 2025; 83:e1259-e1269. [PMID: 39024213 PMCID: PMC11819488 DOI: 10.1093/nutrit/nuae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
The gut and brain communicate through bidirectional neural, endocrine, and immune signals to coordinate central nervous system activity with gastrointestinal function. Dysregulated inflammation can promote immune cell activation and increase entero-endocrine signaling and intestinal permeability; hence, a functional gut-brain axis is necessary for a healthy digestive system. The consumption of milk products can lead to gut discomfort via effects on gastrointestinal tract function and the inflammatory state, which, in turn, affect the brain. A1 β-casein and A2 β-casein are major components of bovine-milk protein, and their digestion may result in different physiological effects following the consumption of milk products. Peptides derived from A1 β-casein, such as β-casomorphins, may increase gut dysfunction and inflammation, thereby modulating the availability of bioactive metabolites in the bloodstream and contribute to changes in cognitive function. This narrative review examines the functional interrelationships between the consumption of cow-milk-derived β-caseins and their effect on the brain, immune system, and the gut, which together comprise the gut-brain axis.
Collapse
Affiliation(s)
- Stephen R Robinson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, 3083 Victoria, Australia
| | - Frank L Greenway
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States
| | - Richard C Deth
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| | - Flavia Fayet-Moore
- Department of Science, FOODiQ, New South Wales, Sydney, Australia
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, 2258 New South Wales, Australia
| |
Collapse
|
5
|
Guo M, Zhao L, Cao L, Li X, Zhang J, Dong Y, Wu Y, Gu S. Weizmannia coagulans BC99: A Novel Adjunct to Protein Supplementation for Enhancing Exercise Endurance and Reducing Fatigue. Foods 2025; 14:801. [PMID: 40077505 PMCID: PMC11898494 DOI: 10.3390/foods14050801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/06/2025] [Accepted: 01/21/2025] [Indexed: 03/14/2025] Open
Abstract
Adequate protein consumption is essential for optimal physical fitness and enhancing athletic performance. This study explored the impact of Weizmannia coagulans BC99 on protein-supplemented male fatigued mice, examining aspects such as protein digestion, exercise endurance, fatigue-related biochemistry, oxidative stress, and gut microbiota alterations. Results indicate that the synergistic effect of probiotics and protein significantly boosts the activity of protein-digesting enzymes, enhances protein absorption, and reduces serum levels of urea nitrogen, lactate, lactate dehydrogenase, creatine kinase, malondialdehyde, and the inflammatory cytokines interleukin-1β and interleukin-6 in skeletal muscle. Additionally, serum catalase, glutathione, superoxide dismutase levels, interleukin-4 in skeletal muscle, and glycogen stores in muscle and liver were notably increased. The study also found elevated mRNA expression levels of Nrf2 and HO-1 in skeletal muscle. Furthermore, an increase in short-chain fatty acids was observed in the probiotic treatment group, and 16S rDNA sequencing revealed that Weizmannia coagulans BC99 enhanced gut microbiota diversity and augmented beneficial bacterial populations including Roseburia, Mucispirillum, Rikenella, and Kineothrix. Collectively, these findings suggest that combining BC99 with protein supplementation can effectively improve gut flora, thereby enhancing exercise capacity and exerting potent anti-fatigue effects. Our research provides a new possibility for alleviating exercise-induced fatigue.
Collapse
Affiliation(s)
- Minghan Guo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (M.G.); (L.Z.); (L.C.); (X.L.); (J.Z.)
| | - Lina Zhao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (M.G.); (L.Z.); (L.C.); (X.L.); (J.Z.)
| | - Li Cao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (M.G.); (L.Z.); (L.C.); (X.L.); (J.Z.)
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang 471023, China
| | - Xuan Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (M.G.); (L.Z.); (L.C.); (X.L.); (J.Z.)
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang 471023, China
| | - Jie Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (M.G.); (L.Z.); (L.C.); (X.L.); (J.Z.)
| | - Yao Dong
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (M.G.); (L.Z.); (L.C.); (X.L.); (J.Z.)
- Henan Engineering Research Center of Food Microbiology, Luoyang 471000, China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (M.G.); (L.Z.); (L.C.); (X.L.); (J.Z.)
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang 471023, China
- Henan Engineering Research Center of Food Microbiology, Luoyang 471000, China
| |
Collapse
|
6
|
Kashyap S, Kurpad AV. Mammalian colonic contribution of amino acids to whole-body homeostasis. Curr Opin Clin Nutr Metab Care 2025; 28:39-43. [PMID: 39485324 DOI: 10.1097/mco.0000000000001082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
PURPOSE OF REVIEW The colon is an effective bioreactor with auxotrophic microbiota that can serve by hydrolyzing dietary and endogenous protein, as well as by synthesizing essential amino acids through nitrogen salvage. Due to assumed negligible amino acid absorption, this colonic contribution was thought to be minimal, but this may not be true. RECENT FINDINGS Several studies that examined the colonic environment in health and disease, show the presence of proteases in the colonic lumen, which are of both host and microbial origin, along with indirect evidence of amino acid transporters in the colonic epithelium. There are also amino acid biosynthetic pathways in the microflora, and the contribution of colonic amino acid to host amino acid nutrition has been shown in wild animals. Yet, current direct and quantitative evidence on amino acid absorption in human colon is minimal. SUMMARY Although amino acid absorption in colon is not very well established, current studies show that substantial amounts of amino acid could possibly be contributed to the host by the colon. There is a need for assessing this contribution quantitatively using direct isotopic methods under different nutritional conditions, dietary intakes, and clinical conditions.
Collapse
Affiliation(s)
- Sindhu Kashyap
- Centre for Doctoral Studies, Manipal Academy of Higher Education, Manipal
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences (A Unit of CBCI Society for Medical Education)
| | - Anura V Kurpad
- Department of Physiology, St. John's Medical College, St. John's National Academy of Health Sciences, Bengaluru, India
| |
Collapse
|
7
|
Starck CS, Wolfe RR, Moughan PJ. Toward a Dynamic Model of Indispensable Amino Acid Requirements of the Adult Human: A Factorial Estimate of Oxidative Amino Acid Losses. J Nutr 2025; 155:338-352. [PMID: 39491677 DOI: 10.1016/j.tjnut.2024.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/08/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Consensus regarding the required intake of indispensable amino acids (IDAAs) and protein [representing total amino acids (AAs)] in the adult is lacking. Oxidation is a major, although not exclusive, source of IDAA loss in humans body and a primary factor determining requirements; a quantitative understanding of oxidative IDAA losses is required. OBJECTIVES This study aimed to develop a factorial diurnal model of total oxidative IDAA and protein losses in the adult human. METHODS A factorial diurnal model of oxidative losses of protein and each IDAA at maintenance was developed by estimating the magnitude and variability of sources of oxidative loss from existing literature: inevitable catabolism (constitutive oxidation of each absorbed dietary AA), and protein turnover in the postprandial and postabsorptive states. Total oxidative losses were calculated by summing individual losses, validated against published independent nitrogen balance data and compared with current IDAA requirements. RESULTS The factorial model predicted minimum oxidative total AA losses of 390 ± 60 mg/kg BW/d, 59% of the estimated average requirement for protein. Inevitable AA oxidation and oxidation associated with postabsorptive protein turnover were the major sources of the oxidative loss for protein, at 40% and 44%, respectively. Summed oxidative IDAA losses ranged from 64% (isoleucine) to 91% (tryptophan) of current requirements. Total oxidative losses predicted by the model were significant predictors of actual experimental oxidative losses obtained by nitrogen balance (R2 = 0.66; P = 0.049). CONCLUSIONS The use of a factorial model for estimation of minimum IDAA and protein oxidative losses in the adult human provides an essential starting point for an updated understanding of protein and IDAA requirements. Further iterations of the model will estimate total protein and IDAA requirements, and account for variations in dietary protein quantity and quality, as well as different populations and physiologic states. Additional data, especially for inevitable oxidation in humans, and particularly with respect to individual IDAAs, are needed.
Collapse
Affiliation(s)
- Carlene S Starck
- Riddet Institute, Massey University, Palmerston North, New Zealand.
| | - Robert R Wolfe
- Reynolds Institute on Aging and Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Paul J Moughan
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
8
|
Soh BXP, Smith NW, von Hurst PR, McNabb WC. Achieving High Protein Quality Is a Challenge in Vegan Diets: A Narrative Review. Nutr Rev 2024:nuae176. [PMID: 39661760 DOI: 10.1093/nutrit/nuae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
The transition toward plant-based (PB) diets has gained attention as a plausible step toward achieving sustainable and healthy dietary goals. However, the complete elimination of all animal-sourced foods from the diet (ie, a vegan diet) may have nutritional ramifications that warrant close examination. Two such concerns are the adequacy and bioavailability of amino acids (AAs) from plant-sourced foods and the consequences for older vegan populations who have elevated AA requirements. This narrative review describes the challenges of achieving high protein quality from vegan diets. Data were synthesized from peer-reviewed research articles and reviews. Plant-sourced proteins provide poorer distribution of indispensable AAs (IAAs) and have poorer digestibility, partly due to their inherent structural components within the food matrix. The review addresses complexities of combinations of varied plant protein sources and why the inclusion of novel PB alternatives adds uncertainty to the achievement of adequate protein adequacy. Meal distribution patterns of protein and the ensuing physiological impacts deserve further research and are outlined in this review. Particular attention is given to describing the challenges of achieving sufficient protein and IAA intakes by aging populations who choose to follow a vegan diet. This review contributes to the emerging discussions of nutritional risks associated with vegan diets and adds perspective to the current dietary shifts toward PB diets.
Collapse
Affiliation(s)
- Bi Xue Patricia Soh
- Sustainable Nutrition Initiative, Riddet Institute, Massey University, Palmerston North, 4410, New Zealand
| | - Nick W Smith
- Sustainable Nutrition Initiative, Riddet Institute, Massey University, Palmerston North, 4410, New Zealand
| | - Pamela R von Hurst
- School of Sport Exercise and Nutrition, College of Health, Massey University, Auckland, 0632, New Zealand
| | - Warren C McNabb
- Sustainable Nutrition Initiative, Riddet Institute, Massey University, Palmerston North, 4410, New Zealand
| |
Collapse
|
9
|
Hinssen F, Mensink M, Huppertz T, van der Wielen N. Impact of aging on the digestive system related to protein digestion in vivo. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 39601792 DOI: 10.1080/10408398.2024.2433598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
For the current aging population, protein is an important macronutrient to counteract the development of sarcopenia. Protein digestion is influenced by the capacity of the digestive system. The current evidence is reviewed about the impact of aging on the human digestive system and related to protein digestion in vivo. Aging changes the digestive organs which impacts protein digestion. Dentition decreases and mastication changes, potentially affecting particle size reduction. Stomach gastric acidity is unchanged, gastric emptying is delayed, while total transit time remains unchanged. Production of enzymes by the pancreas is decreased, but any changes in the small intestine remain unresolved. Animal studies showed decreased fecal protein digestion in older compared to young animals. Human studies showed decreased postprandial peripheral plasma appearance of ingested amino acids and increased splanchnic extraction. The findings suggest that the deteriorating digestive system with aging results in decreased protein digestion. Interpretation of the results should be taken with caution because of interindividual differences in the aging process, and because studies on protein digestion in aging humans are scarce. More information is needed on healthy aging and its relation to the digestive tract and protein digestion, several methods including in vitro experiments are valuable in this perspective.
Collapse
Affiliation(s)
- Fenna Hinssen
- Department of Human Nutrition and Health, Nutritional Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Marco Mensink
- Department of Human Nutrition and Health, Nutritional Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Thom Huppertz
- FrieslandCampina, Amersfoort, The Netherlands
- Food Quality and Design Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Nikkie van der Wielen
- Department of Human Nutrition and Health, Nutritional Biology, Wageningen University and Research, Wageningen, The Netherlands
- Department of Animal Nutrition, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
10
|
Cheng Y, Ren Y, Zhang W, Lu J, Xie F, Fang YD, Fan X, He W, Wang W. Regionalization of intestinal microbiota and metabolites in the small intestine of the Bactrian camel. Front Immunol 2024; 15:1464664. [PMID: 39660142 PMCID: PMC11628504 DOI: 10.3389/fimmu.2024.1464664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Peyer's patches (PPs) are crucial antigen-inductive sites of intestinal mucosal immunity. Prior research indicated that, in contrast to other ruminants, PPs in the small intestine of Bactrian camels are found in the duodenum, jejunum, and ileum and display polymorphism. Using this information, we analyzed the microbial and metabolic characteristics in various segments of the Bactrian camel's small intestine to further elucidate how the immune system varies across different regions. Methods In this study, the microbiota and metabolite of 36 intestinal mucosal samples, including duodenal (D-PPs), jejunal (J-PPs), and ileal PPs (I-PPs), were profiled for six Bactrian camels using 16S rRNA gene sequencing and liquid chromatography with tandem mass spectrometry (LC-MS/MS). To confirm meaningful associations, we conducted connection analyses on the significantly different objects identified in each group's results. ELISA was used to analyze the levels of IgA, IgG, and IgM in the same tissues. Results The microbiota and metabolite profiles of J-PPs and I-PPs were found to be similar, whereas those of D-PPs were more distinct. In J-PPs and I-PPs, the dominant bacterial genera included Clostridium, Turicibacter, and Shigella. In contrast, D-PPs had a significant increase in the abundance of Prevotella, Fibrobacter, and Succinobacter. Regarding the metabolomics, D-PPs exhibited high levels of polypeptides, acetylcholine, and histamine. On the other hand, J-PPs and I-PPs were characterized by an enrichment of free amino acids, such as L-arginine, L-glutamic acid, and L-serine. These metabolic differences mainly involve amino acid production and metabolic processes. Furthermore, the distribution of intestinal immunoglobulins highlighted the specificity of D-PPs. Our results indicated that proinflammatory microbes and metabolites were significantly enriched in D-PPs. In contrast, J-PPs and I-PPs contained substances that more effectively enhance immune responses, as evidenced by the differential distribution of IgA, IgG, and IgM. Discussion The intestinal microenvironment of Bactrian camels displays distinct regional disparities, which we propose are associated with variations in immunological function throughout different segments of the small intestine. This study highlights the specific traits of the intestinal microbiota and metabolites in Bactrian camels, offering a valuable reference for understanding the relationship between regional intestinal immunity and the general health and disease of the host.
Collapse
Affiliation(s)
- Yujiao Cheng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yan Ren
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - Wangdong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jia Lu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Fei Xie
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Ying-Dong Fang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiping Fan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wanhong He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wenhui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
11
|
Wolfe RR, Church DD, Ferrando AA, Moughan PJ. Consideration of the role of protein quality in determining dietary protein recommendations. Front Nutr 2024; 11:1389664. [PMID: 39606577 PMCID: PMC11598328 DOI: 10.3389/fnut.2024.1389664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
The quality of a dietary protein refers to its ability to provide the EAAs necessary to meet dietary requirements. There are 9 dietary amino acids that cannot be metabolically produced in the body and therefore must be consumed as part of the diet to avoid adverse metabolic consequences. These essential amino acids (EAAs) serve a variety of roles in the body. The amount and profile of the dietary EAAs relative to the individual EAA requirements and the digestibility of the dietary protein are the key factors that determine its quality. Currently the Digestible Indispensable Amino Acid Score (DIAAS) is the best available approach to quantifying protein quality. The most prominent metabolic role of dietary EAAs is to stimulate protein synthesis by serving as signals to activate molecular mechanisms responsible for the initiation of protein synthesis and, most importantly, to provide the necessary precursors for the synthesis of complete proteins. Current dietary recommendations generally do not consider protein quality. Accounting for protein quality in dietary patterns can be accomplished while staying within established ranges for dietary protein consumption. Poor protein quality can be compensated for to some extent by eating more low-quality protein, but to be effective ("complementary") the limiting EAA must differ between the low-quality protein and the base diet to which it is being supplemented. Adding a high-quality protein to a dietary pattern based on low-quality protein is more effective in meeting EAA goals than increasing the amount of low-quality protein, even if the low-quality proteins are complementary. Further, reliance entirely on low-quality protein food sources, particularly in circumstances that may benefit from a level of dietary EAAs greater than minimal requirements, is likely to include excessive caloric consumption. While protein consumption in high-income nations is generally perceived to be adequate or even excessive, assessment of dietary patterns indicates that a significant percentage of individuals may fall short of meeting optimal levels of EAA consumption, especially in circumstances such as aging in which the optimal EAA consumption is greater than basal values for healthy young individuals. The case is made that protein quality is an important consideration in meeting EAA requirements.
Collapse
Affiliation(s)
- Robert R. Wolfe
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - David D. Church
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Arny A. Ferrando
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Paul J. Moughan
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
12
|
Lee MC, Chiu CH, Liao YC, Cheng YC, Lee CC, Ho CS, Hsu YJ, Chang HY, Lin JS, Huang CC. Gut microbiota modulation and amino acid absorption by Lactiplantibacillus plantarum TWK10 in pea protein ingestion: TWK10 boosts hut microbiota, amino acid uptake. Curr Res Food Sci 2024; 9:100917. [PMID: 39628601 PMCID: PMC11613169 DOI: 10.1016/j.crfs.2024.100917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/23/2024] [Accepted: 11/06/2024] [Indexed: 12/06/2024] Open
Abstract
For vegetarians or vegan athletes, improving the utilization of plant-based protein and the absorption of amino acids is crucial. This study explored the impact of combining pea protein with Lactiplantibacillus plantarum TWK10 and resistance training on amino acid absorption and exercise performance. Sixteen male and sixteen female participants were randomly assigned to either a control group (20 g of pea protein without TWK10) or a TWK10 group (20 g of pea protein combined with 1 × 1010 colony-forming units of TWK10). After 28 days of supplementation combined with resistance exercise training three times per week. All subjects underwent body composition and muscle strength performance, plasma and fecal samples were collected for microbiota analysis and blood amino acid concentrations. The TWK10 group showed a significant increase in muscle thickness and improvements were observed in 1 repetition maximum bench press, explosive, anaerobic power output compared to before the intervention, and were significantly higher than those in the control group (p < 0.05). TWK10 supplementation significantly increased the area under the curve and maximum concentration of branched-chain amino acids, essential amino acids, and total amino acids (p < 0.05). Furthermore, TWK10 supplementation effectively increased the richness of gut bacterial families. Our study demonstrated that the TWK10 significant increase in the abundance of specific bacterial families in the gut, resulting in increased pea protein amino acid absorption. Moreover, increasing muscle mass and significantly improving muscle thickness, muscle strength, power, and anaerobic capacity.
Collapse
Affiliation(s)
- Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City, 333325, Taiwan
- Center for General Education, Taipei Medical University, Taipei, Taiwan
| | - Chun-Hui Chiu
- Graduate Institute of Health Industry and Technology, Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333324, Taiwan
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, 20401, Taiwan
| | - Yi-Chu Liao
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung, 82151, Taiwan
| | - Yi-Chen Cheng
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung, 82151, Taiwan
| | - Chia-Chia Lee
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung, 82151, Taiwan
| | - Chin-Shan Ho
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City, 333325, Taiwan
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City, 333325, Taiwan
| | - Hsiao-Yun Chang
- Department of Athletic Training and Health, National Taiwan Sports University, Taoyuan, 333325, Taiwan
| | - Jin-Seng Lin
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung, 82151, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City, 333325, Taiwan
| |
Collapse
|
13
|
Kasper C. Animal board invited review: Heritability of nitrogen use efficiency in fattening pigs: Current state and possible directions. Animal 2024; 18:101225. [PMID: 39013333 DOI: 10.1016/j.animal.2024.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Pork, an important component of human nutrition worldwide, contributes considerably to anthropogenic nitrogen and greenhouse gas emissions. Reducing the environmental impact of pig production is therefore essential. This can be achieved through system-level strategies, such as optimising resource use, improving manure management and recycling leftovers from human food production, and at the individual animal level by maintaining pig health and fine-tuning dietary protein levels to individual requirements. Breeding, coupled with nutritional strategies, offers a lasting solution to improve nitrogen use efficiency (NUE) - the ratio of nitrogen retained in the body to nitrogen ingested. With a heritability as high as 0.54, incorporating NUE into breeding programmes appears promising. Nitrogen use efficiency involves multiple tissues and metabolic processes, and is influenced by the environment and individual animal characteristics, including its genetic background. Heritable genetic variation in NUE may therefore occur in many different processes, including the central nervous regulation of feed intake, the endocrine system, the gastrointestinal tract where digestion and absorption take place, and the composition of the gut microbiome. An animal's postabsorptive protein metabolism might also harbour important genetic variation, especially in the maintenance requirements of tissues and organs. Precise phenotyping, although challenging and costly, is essential for successful breeding. Various measurement techniques, such as imaging techniques and mechanistic models, are being explored for their potential in genetic analysis. Despite the difficulties in phenotyping, some studies have estimated the heritability and genetic correlations of NUE. These studies suggest that direct selection for NUE is more effective than indirect methods through feed efficiency. The complexity of NUE indicates a polygenic trait architecture, which has been confirmed by genome-wide association studies that have been unable to identify significant quantitative trait loci. Building sufficiently large reference populations to train genomic prediction models is an important next step. However, this will require the development of truly high-throughput phenotyping methods. In conclusion, breeding pigs with higher NUE is both feasible and necessary but will require increased efforts in high-throughput phenotyping and improved genome annotation.
Collapse
Affiliation(s)
- C Kasper
- Animal GenoPhenomics, Agroscope, Posieux, Switzerland.
| |
Collapse
|
14
|
Hodgkinson SM. Protein and amino acid digestibility: definitions and conventional oro-ileal determination in humans. Front Nutr 2024; 11:1407604. [PMID: 38966417 PMCID: PMC11222961 DOI: 10.3389/fnut.2024.1407604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/12/2024] [Indexed: 07/06/2024] Open
Abstract
When assessing protein quality, a correction needs to be made to take into consideration the availability of the amino acids. This correction is based on the digestibility of the amino acids. It is recommended to use ileal (end of small intestine) digestibility as opposed to faecal digestibility. A correction needs to be made for endogenous (gut sourced as opposed to diet sourced) amino acids to give true digestibility as opposed to apparent digestibility. Also, this correction should be made by correcting the amino acid composition for individual amino acid digestibilities as opposed to correcting all amino acids for nitrogen digestibility. Determination of true ileal amino acid digestibility requires the collection of ileal digesta. In the human there are two methods that can be used; naso-ileal intubation and using the ileostomy model. Both are discussed in detail and it is concluded that both are appropriate methods to collect ileal digesta.
Collapse
|
15
|
Stiernborg M, Prast-Nielsen S, Melas PA, Skott M, Millischer V, Boulund F, Forsell Y, Lavebratt C. Differences in the gut microbiome of young adults with schizophrenia spectrum disorder: using machine learning to distinguish cases from controls. Brain Behav Immun 2024; 117:298-309. [PMID: 38280535 DOI: 10.1016/j.bbi.2024.01.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/27/2023] [Accepted: 01/22/2024] [Indexed: 01/29/2024] Open
Abstract
While an association between the gut microbiome and schizophrenia spectrum disorders (SSD) has been suggested, the existing evidence is still inconclusive. To this end, we analyzed bacteria and bacterial genes in feces from 52 young adult SSD patients and 52 controls using fecal shotgun metagenomic sequencing. Compared to controls, young SSD patients were found to have significantly lower α-diversity and different β-diversity both regarding bacterial species (i.e., taxonomic diversity) and bacterial genes (i.e., functional diversity). Furthermore, the α-diversity measures 'Pielou's evenness' and 'Shannon' were significantly higher for both bacterial species, bacterial genes encoding enzymes and gut brain modules in young SSD patients on antipsychotic treatment (young SSD not on antipsychotics=9 patients, young SSD on antipsychotics=43 patients). We also applied machine learning classifiers to distinguish between young SSD patients and healthy controls based on their gut microbiome. Results showed that taxonomic and functional data classified young SSD individuals with an accuracy of ≥ 70% and with an area under the receiver operating characteristic curve (AUROC) of ≥ 0.75. Differential abundance analysis on the most important features in the classifier models revealed that most of the species with higher abundance in young SSD patients had their natural habitat in the oral cavity. In addition, many of the modules with higher abundance in young SSD patients were amino acid biosynthesis modules. Moreover, the abundances of gut-brain modules of butyrate synthesis and acetate degradation were lower in the SSD patients compared to controls. Collectively, our findings continue to support the presence of gut microbiome alterations in SSD and provide support for the use of machine learning algorithms to distinguish patients from controls based on gut microbiome profiles.
Collapse
Affiliation(s)
- Miranda Stiernborg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Stefanie Prast-Nielsen
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Philippe A Melas
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden
| | - Maria Skott
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden
| | - Vincent Millischer
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Fredrik Boulund
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Yvonne Forsell
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden.
| |
Collapse
|
16
|
Okamoto E, Matsuda S, Yoshino Y, Morikawa Y, Suenami K, Tabuchi Y, Matsunaga T, Hayashi H, Ikari A. Increase in Paracellular Leakage of Amino Acids Mediated by Aging-Induced Reduction of Claudin-4 Expression. J Nutr 2023; 153:3360-3372. [PMID: 37806357 DOI: 10.1016/j.tjnut.2023.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND Claudins (CLDNs), major components of tight junctions, control paracellular permeabilities of mineral ions and wastes. The absorption of nutrients including glucose and amino acids (AAs) is regulated by intestinal epithelial cells. However, the role of CLDNs is not fully understood. OBJECTIVES The purpose of this study was to clarify the effect of AA deprivation on the expression of AA transporters and CLDNs, as well as the role of CLDNs in the regulation of paracellular AA fluxes. METHODS The messenger RNA and protein expression of various CLDNs were examined by real-time quantitative polymerase chain reaction and Western blot analyses, respectively. The AA selectivity of CLDNs was estimated using liquid chromatography-tandem mass spectrometry (LC-MS) analysis. RESULTS The expression levels of some AA transporters, CLDN4, and CLDN15 were increased by AA deprivation in normal mouse colon-derived MCE301 cells. The expression of AA transporters and CLDN15 in the mouse colon was positively correlated with aging but the expression of CLDN4 was not. The AA deprivation-induced elevation of CLDN4 expression was inhibited by MHY1485, a mammalian target of rapamycin (mTOR) activator. Furthermore, CLDN4 expression was increased by rapamycin, an mTOR inhibitor. mTOR may be involved in the transcriptional activation of CLDN4. The fluxes of AAs from the basal to apical compartments were decreased and increased by CLDN4 overexpression and silencing, respectively. LC-MS analysis showed that the fluxes of all AAs, especially Lys, His, and Arg, were enhanced by CLDN4 silencing. CONCLUSIONS CLDN4 is suggested to form a paracellular barrier to AAs, especially alkaline AAs, which is attenuated with aging.
Collapse
Affiliation(s)
- Ema Okamoto
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan
| | - Shunsuke Matsuda
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan
| | - Yoshifumi Morikawa
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, Japan
| | - Koichi Suenami
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, Japan
| | - Yoshiaki Tabuchi
- Life Science Research Center, University of Toyama, Toyama, Japan
| | | | | | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
17
|
Beckmüller E, Kluess J, Hüther L, Kersten S, Kölln M, Wilke V, Visscher C, Dänicke S, Grümpel-Schlüter A. Effects of dietary-reduced nitrogen (N) and phosphorus (P) on N and P balance, retention and nutrient digestibility of contemporary fattening pigs fed ad libitum. Arch Anim Nutr 2023; 77:468-486. [PMID: 38086826 DOI: 10.1080/1745039x.2023.2288721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/21/2023] [Indexed: 01/26/2024]
Abstract
The reduction of nitrogen (N) and phosphorus (P) in fattening pigs' diets is one possible approach to lower N and P excretion in livestock farming relative to N and P intake. Due to the implementation of the European Nitrates Directive and the consecutive amendments to the German fertiliser legislation since 2017, N- and P-reduced diets for fattening pigs are becoming more and more important and are increasingly used in practice. To investigate the effects of such diets on N and P balance and retention as well as on nutrient digestibility of contemporary fattening pigs, a balance experiment was performed with eight barrows (average live weight = 61.5 ± 2.1 kg) which were surgically fitted with a simple T-cannula at the terminal ileum. The pigs received a control diet meeting nutrient requirements (CON) and an N- and P-reduced diet (NPred) ad libitum (n = 4/diet) in a 3-phased feeding regimen (3 weeks/phase). In the last week of each phase, faeces and urine were collected quantitatively for 5 days followed by a 2 × 12 hours collection of ileal digesta. Daily feed intake, live weight gain and feed-to-gain ratio did not differ between CON and NPred. NPred-fed pigs consumed 10.5% (p = 0.006) and excreted 28.3% (p = 0.028) less N than CON-fed pigs. Phosphorus excretion was lowered by 15.1% in NPred-fed pigs (p = 0.012). N and P retention did not differ between CON and NPred, but were elevated in comparison to other studies. N and P efficiency, expressed as nutrient retention divided by nutrient intake, was higher in NPred - than CON-fed pigs (N: 68 vs 60%, P: 54.2 vs 49.3%). Apparent post-ileal digestibility coefficient (DCpost-ileal) and apparent total tract digestibility coefficient (DCtotal) of crude protein were higher in NPred - than CON-fed pigs (p < 0.013), but apparent precaecal digestibility coefficient (DCpc) of crude protein was unaffected by diet. DCpc, DCpost-ileal and DCtotal of P were similar for CON- and NPred-fed pigs. NPred-fed pigs showed an elevated DCpc and DCtotal of organic matter, N-free-extractives and starch compared to CON-fed pigs. DCpc of calcium was also higher in NPred-fed pigs. In conclusion, the results suggest that N- and P-reduced feeding of fattening pigs remains an effective strategy to lower the N and P release into the environment. Furthermore, results indicate that N- and P-reduced feeding leads to a higher N and P efficiency in contemporary fattening pigs.
Collapse
Affiliation(s)
- Elisabeth Beckmüller
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Braunschweig, Germany
| | - Jeannette Kluess
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Braunschweig, Germany
| | - Liane Hüther
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Braunschweig, Germany
| | - Susanne Kersten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Braunschweig, Germany
| | - Mareike Kölln
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Braunschweig, Germany
| | - Volker Wilke
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover - Foundation, Hannover, Germany
| | - Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover - Foundation, Hannover, Germany
| | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Braunschweig, Germany
| | | |
Collapse
|
18
|
Starke S, Harris DMM, Zimmermann J, Schuchardt S, Oumari M, Frank D, Bang C, Rosenstiel P, Schreiber S, Frey N, Franke A, Aden K, Waschina S. Amino acid auxotrophies in human gut bacteria are linked to higher microbiome diversity and long-term stability. THE ISME JOURNAL 2023; 17:2370-2380. [PMID: 37891427 PMCID: PMC10689445 DOI: 10.1038/s41396-023-01537-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Amino acid auxotrophies are prevalent among bacteria. They can govern ecological dynamics in microbial communities and indicate metabolic cross-feeding interactions among coexisting genotypes. Despite the ecological importance of auxotrophies, their distribution and impact on the diversity and function of the human gut microbiome remain poorly understood. This study performed the first systematic analysis of the distribution of amino acid auxotrophies in the human gut microbiome using a combined metabolomic, metagenomic, and metabolic modeling approach. Results showed that amino acid auxotrophies are ubiquitous in the colon microbiome, with tryptophan auxotrophy being the most common. Auxotrophy frequencies were higher for those amino acids that are also essential to the human host. Moreover, a higher overall abundance of auxotrophies was associated with greater microbiome diversity and stability, and the distribution of auxotrophs was found to be related to the human host's metabolome, including trimethylamine oxide, small aromatic acids, and secondary bile acids. Thus, our results suggest that amino acid auxotrophies are important factors contributing to microbiome ecology and host-microbiome metabolic interactions.
Collapse
Affiliation(s)
- Svenja Starke
- Institute of Human Nutrition and Food Science, Nutriinformatics, Kiel University, Kiel, Germany
| | - Danielle M M Harris
- Institute of Human Nutrition and Food Science, Nutriinformatics, Kiel University, Kiel, Germany
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Johannes Zimmermann
- Zoological Institute, Research Group Evolutionary Ecology and Genetics, Kiel University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Sven Schuchardt
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany
| | - Mhmd Oumari
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Derk Frank
- Department of Internal Medicine III, University Medical Center Schleswig-Holstein, Kiel, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Hamburg, Kiel, Lübeck, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Norbert Frey
- Department of Internal Medicine III, University Medical Center Schleswig-Holstein, Kiel, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Hamburg, Kiel, Lübeck, Germany
- Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany.
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany.
| | - Silvio Waschina
- Institute of Human Nutrition and Food Science, Nutriinformatics, Kiel University, Kiel, Germany.
| |
Collapse
|
19
|
Abstract
The rates of dietary protein digestion and absorption can be significantly increased or decreased by food processing treatments such as heating, gelling and enzymatic hydrolysis, with subsequent metabolic impacts, e.g. on muscle synthesis and glucose homeostasis.This review examines in vivo evidence that industrial and domestic food processing modify the kinetics of amino acid release and absorption following a protein-rich meal. It focuses on studies that used compositionally-matched test meals processed in different ways.Food processing at extremely high temperature at alkaline pH and/or in the presence of reducing sugars can modify amino acid sidechains, leading to loss of bioavailability. Some protein-rich food ingredients are deliberately aggregated, gelled or hydrolysed during manufacture. Hydrolysis accelerates protein digestion/absorption and increases splanchnic utilisation. Aggregation and gelation may slow or accelerate proteolysis in the gut, depending on the aggregate/gel microstructure.Milk, beef and eggs are heat processed prior to consumption to eliminate pathogens and improve palatability. The temperature and time of heating affect protein digestion and absorption rates, and effects are sometimes non-linear. In light of a dietary transition away from animal proteins, more research is needed on how food processing affects digestion and absorption of non-animal proteins.Food processing modifies the microstructure of protein-rich foods, and thereby alters protein digestion and absorption kinetics in the stomach and small intestine. Exploiting this principle to optimise metabolic outcomes requires more human clinical trials in which amino acid absorption rates are measured and food microstructure is explicitly considered, measured and manipulated.
Collapse
Affiliation(s)
- Simon M Loveday
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore138673, Singapore
- Riddet Institute Centre of Research Excellence, Massey University, Private Bag 11 222, Palmerston North4442, New Zealand
| |
Collapse
|
20
|
Lammers-Jannink KCM, Pellikaan WF, de Vries S, Stigter ECA, Gerrits WJJ. Standardisation of the C:N ratio in ileal digesta changes relationships among fermentation end-products during in vitro hindgut fermentation in pigs. Animal 2023; 17:101026. [PMID: 38035658 DOI: 10.1016/j.animal.2023.101026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Undigested proteins that become available for the microbiota in the hindgut can be used as building blocks for bacterial cells, or can enter various catabolic pathways. Degradation via protein fermentation pathways is least preferred, as several fermentation end-products released can be toxic for the host. Directing microbial protein metabolism towards protein synthesis or degradative pathways that result in less toxic end-products, for example through nutritional interventions, is an interesting strategy for improving health. We studied variation in protein fermentation patterns, resulting from variation in substrate composition. Ileal digesta, obtained from cannulated pigs fed different protein sources, were subjected to fermentation in vitro under different conditions; (1) ileal digesta were fermented as-is, (2) ileal digesta were fermented after standardisation to a constant high C:N ratio, by addition of high fermentable carbohydrates and (3) ileal digesta samples were incubated under limiting N concentrations. Gas production was monitored as an indirect measure of microbial activity, and fermentation end-products at different points in time were analysed by gas chromatography and high resolution mass spectrometry. Using principal component analysis, we identified patterns in protein fermentation end-products and related them to the composition of ileal digesta. Protein-associated fermentation end-product concentrations of e.g. isovaleric-, isobutyric-, phenylacetic acid and p-cresol were negatively affected by the available amount of high fermentable carbohydrates combined with a high C:N ratio. The aforementioned fermentation end-products positively correlated with NH3 concentrations and negatively with short-chain fatty acid (SCFA) concentrations. Standardisation to a constant high C:N ratio changed their relationship; isovaleric-, isobutyric-, phenylacetic acid and p-cresol lost their correlation with NH3 concentrations, became positively correlated with SCFA concentrations, and now showed a positive correlation with available amounts of high fermentable carbohydrates. Our observations demonstrate an important role of the C:N ratio in the relationship between fermentation end-products. At constant C:N, protein fermentation end-products correlate with end-products of carbohydrate fermentation and NH3, often considered as a proxy for protein fermentation, loses its predictive power.
Collapse
Affiliation(s)
- K C M Lammers-Jannink
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 338, 6700 AH Wageningen, The Netherlands.
| | - W F Pellikaan
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | - S de Vries
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | - E C A Stigter
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, The Netherlands
| | - W J J Gerrits
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| |
Collapse
|
21
|
Marttinen M, Anjum M, Saarinen MT, Ahonen I, Lehtinen MJ, Nurminen P, Laitila A. Enhancing Bioaccessibility of Plant Protein Using Probiotics: An In Vitro Study. Nutrients 2023; 15:3905. [PMID: 37764689 PMCID: PMC10535511 DOI: 10.3390/nu15183905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
As plant-based diets become more popular, there is an interest in developing innovations to improve the bioaccessibility of plant protein. In this study, seven probiotic strains (Bifidobacterium animalis subsp. lactis B420, B. lactis Bl-04, Lactobacillus acidophilus NCFM, Lacticaseibacillus rhamnosus HN001, Lacticaseibacillus paracasei subsp. paracasei Lpc-37, Lactiplantibacillus plantarum Lp-115, and Lactococcus lactis subsp. lactis Ll-23) were evaluated for their capacity to hydrolyze soy and pea protein ingredients in an in vitro digestion model of the upper gastrointestinal tract (UGIT). Compared to the control digestion of protein without a probiotic, all the studied strains were able to increase the digestion of soy or pea protein, as evidenced by an increase in free α-amino nitrogen (FAN) and/or free amino acid concentration. The increase in FAN varied between 13 and 33% depending on the protein substrate and probiotic strain. The survival of probiotic bacteria after exposure to digestive fluids was strain-dependent and may have affected the strain's capacity to function and aid in protein digestion in the gastrointestinal environment. Overall, our results from the standardized in vitro digestion model provide an approach to explore probiotics for improved plant protein digestion and bioaccessibility of amino acids; however, human clinical research is needed to evaluate the efficacy of probiotics on amino acid absorption and bioavailability in vivo.
Collapse
Affiliation(s)
- Maija Marttinen
- IFF Health and Biosciences, Danisco Sweeteners Oy, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - Mehreen Anjum
- IFF Health and Biosciences, Danisco Sweeteners Oy, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - Markku T. Saarinen
- IFF Health and Biosciences, Danisco Sweeteners Oy, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | | | - Markus J. Lehtinen
- IFF Health and Biosciences, Danisco Sweeteners Oy, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - Päivi Nurminen
- IFF Health and Biosciences, Danisco Sweeteners Oy, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - Arja Laitila
- IFF Health and Biosciences, Danisco Sweeteners Oy, Sokeritehtaantie 20, 02460 Kantvik, Finland
| |
Collapse
|
22
|
Jackson PPJ, Wijeyesekera A, Rastall RA. Oligofructose alone and in combination with 2'fucosyllactose induces physiologically relevant changes in γ-aminobutyric acid and organic acid production compared to sole 2'fucosyllactose supplementation: an in vitro study. FEMS Microbiol Ecol 2023; 99:fiad100. [PMID: 37653466 PMCID: PMC10481994 DOI: 10.1093/femsec/fiad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023] Open
Abstract
We explored the potential for the prebiotic oligofructose and prebiotic candidate 2'fucosyllactose, alone and in combination (50:50 blend) to induce physiologically relevant increases in neurotransmitter (γ-aminobutyric acid, serotonin, tryptophan, and dopamine) and organic acid (acetate, propionate, butyrate, lactate, and succinate) production as well as microbiome changes using anaerobic pH-controlled in vitro batch culture fermentations over 48 h. Changes in organic acid and neurotransmitter production were assessed by gas chromatography and liquid chromatography and, bacterial enumeration using fluorescence in situ hybridization, respectively. Both oligofructose and oligofructose/2'fucosyllactose combination fermentations induced physiologically relevant concentrations of γ-aminobutyric acid, acetate, propionate, butyrate, and succinate at completion (all P ≤ .05). A high degree of heterogeneity was seen amongst donors in both neurotransmitter and organic acid production in sole 2'FL fermentations suggesting a large responder/nonresponder status exists. Large increases in Bifidobacterium, Lactobacillus, and Bacteroides numbers were detected in oligofructose fermentation, smallest increases being detected in 2'fucosyllactose fermentation. Bacterial numbers in the combined oligofructose/2'fucosyllactose fermentation were closer to that of sole oligofructose. Our results indicate that oligofructose and oligofructose/2'fucosyllactose in combination have the potential to induce physiologically relevant increases in γ-aminobutyric and organic acid production along with offsetting the heterogenicity seen in response to sole 2'fucosyllactose supplementation.
Collapse
Affiliation(s)
- Peter Philip James Jackson
- Department of Food and Nutritional Sciences, University of Reading, Harry Nursten Building, Pepper Lane, Whiteknights, Reading RG6 6DZ, United Kingdom
| | - Anisha Wijeyesekera
- Department of Food and Nutritional Sciences, University of Reading, Harry Nursten Building, Pepper Lane, Whiteknights, Reading RG6 6DZ, United Kingdom
| | - Robert Adrian Rastall
- Department of Food and Nutritional Sciences, University of Reading, Harry Nursten Building, Pepper Lane, Whiteknights, Reading RG6 6DZ, United Kingdom
| |
Collapse
|
23
|
Abstract
Amino acids derived from protein digestion are important nutrients for the growth and maintenance of organisms. Approximately half of the 20 proteinogenic amino acids can be synthesized by mammalian organisms, while the other half are essential and must be acquired from the nutrition. Absorption of amino acids is mediated by a set of amino acid transporters together with transport of di- and tripeptides. They provide amino acids for systemic needs and for enterocyte metabolism. Absorption is largely complete at the end of the small intestine. The large intestine mediates the uptake of amino acids derived from bacterial metabolism and endogenous sources. Lack of amino acid transporters and peptide transporter delays the absorption of amino acids and changes sensing and usage of amino acids by the intestine. This can affect metabolic health through amino acid restriction, sensing of amino acids, and production of antimicrobial peptides.
Collapse
Affiliation(s)
- Stefan Bröer
- Research School of Biology, Australian National University, Canberra, Australia;
| |
Collapse
|
24
|
Kusumah J, Castañeda-Reyes ED, Bringe NA, Gonzalez de Mejia E. Soybean ( Glycine max) INFOGEST Colonic Digests Attenuated Inflammatory Responses Based on Protein Profiles of Different Varieties. Int J Mol Sci 2023; 24:12396. [PMID: 37569771 PMCID: PMC10418973 DOI: 10.3390/ijms241512396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Soybean compounds have been established to modulate inflammation, but less is known about how whole soybean compositions work together after digestion. The objective was to evaluate and compare the anti-inflammatory responses of different soybean varieties under simulated gastrointestinal digestion, with additional consideration of the glycinin:β-conglycinin ratio (GBR). Soybean colonic digests (SCD) inhibited cyclooxygenase (COX)-2 (25-82%), 5-lipoxidase (LOX) (18-35%), and inducible nitric oxide (iNOS) (8-61%). Varieties 88, GN3, and 93 were the most effective inhibitors. SCD (1 mg/mL) of varieties 81 and GN1 significantly (p < 0.05) reduced nitrite production by 44 and 47%, respectively, compared to lipopolysaccharide (LPS)-stimulated macrophages. SCD effectively reduced pro-inflammatory cytokine interleukin (IL)-6 (50 and 80% for 96 and GN1, respectively). Western blot results showed a decrease in the expression of iNOS, p65, and p50. The GBR was in the range of 0.05-1.57. Higher ratio correlated with higher production of IL-1β (r = 0.44) and tumor necrosis factor-alpha (TNF-α, r = 0.56). Inflammatory microarray results showed a significant decrease in expression of markers granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-6 in cells treated with GN1 SCD compared to LPS. The results suggested that SCD exerted its anti-inflammatory potential through nuclear factor kappa B (NF-κΒ) pathway inhibition by decreasing the levels of NF-κB-dependent cytokines and subunits, and inhibition of pro-inflammatory enzyme activity.
Collapse
Affiliation(s)
- Jennifer Kusumah
- 228 Edward R Madigan Lab, Department Food Science, and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (J.K.); (E.D.C.-R.)
| | - Erick Damian Castañeda-Reyes
- 228 Edward R Madigan Lab, Department Food Science, and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (J.K.); (E.D.C.-R.)
| | | | - Elvira Gonzalez de Mejia
- 228 Edward R Madigan Lab, Department Food Science, and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (J.K.); (E.D.C.-R.)
| |
Collapse
|
25
|
Malla N, Nørgaard JV, Roos N. Protein quality of edible insects in the view of current assessment methods. Anim Front 2023; 13:50-63. [PMID: 37583798 PMCID: PMC10425142 DOI: 10.1093/af/vfad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Affiliation(s)
- Navodita Malla
- Department of Nutrition Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Jan V Nørgaard
- Department of Animal and Veterinary Sciences, Aarhus University, Rolighedsvej, Denmark
| | - Nanna Roos
- Department of Nutrition Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
26
|
Shaw C, Hess M, Weimer BC. Microbial-Derived Tryptophan Metabolites and Their Role in Neurological Disease: Anthranilic Acid and Anthranilic Acid Derivatives. Microorganisms 2023; 11:1825. [PMID: 37512997 PMCID: PMC10384668 DOI: 10.3390/microorganisms11071825] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The gut microbiome provides the host access to otherwise indigestible nutrients, which are often further metabolized by the microbiome into bioactive components. The gut microbiome can also shift the balance of host-produced compounds, which may alter host health. One precursor to bioactive metabolites is the essential aromatic amino acid tryptophan. Tryptophan is mostly shunted into the kynurenine pathway but is also the primary metabolite for serotonin production and the bacterial indole pathway. Balance between tryptophan-derived bioactive metabolites is crucial for neurological homeostasis and metabolic imbalance can trigger or exacerbate neurological diseases. Alzheimer's, depression, and schizophrenia have been linked to diverging levels of tryptophan-derived anthranilic, kynurenic, and quinolinic acid. Anthranilic acid from collective microbiome metabolism plays a complex but important role in systemic host health. Although anthranilic acid and its metabolic products are of great importance for host-microbe interaction in neurological health, literature examining the mechanistic relationships between microbial production, host regulation, and neurological diseases is scarce and at times conflicting. This narrative review provides an overview of the current understanding of anthranilic acid's role in neurological health and disease, with particular focus on the contribution of the gut microbiome, the gut-brain axis, and the involvement of the three major tryptophan pathways.
Collapse
Affiliation(s)
- Claire Shaw
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, University of California Davis, Davis, CA 95616, USA
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA 95616, USA
| | - Matthias Hess
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA 95616, USA
| | - Bart C Weimer
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
27
|
He F, Jin X, Wang C, Hu J, Su S, Zhao L, Geng T, Zhao Y, Pan L, Bao N, Sun H. Lactobacillus rhamnosus GG ATCC53103 and Lactobacillus plantarum JL01 improved nitrogen metabolism in weaned piglets by regulating the intestinal flora structure and portal vein metabolites. Front Microbiol 2023; 14:1200594. [PMID: 37455717 PMCID: PMC10338925 DOI: 10.3389/fmicb.2023.1200594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
At present, most studies have shown that probiotics have a positive regulatory effect on the nutritional metabolism of the body, but the mechanism is still unclear. Here, 48 piglets were divided into four groups. The control group was not fed probiotics, the Lac group was fed L. Rhamnosus GG ATCC53103, the Rha group was fed L. Plantarum JL01, and the mix group was fed two types of probiotics. Nitrogen metabolism and mRNA levels of mTOR and S6K in skeletal muscle were observed in each group. Then, metagenome and non-targeted metabonomics were used to observe the changes of intestinal microorganisms and plasma metabolites in portal channels after probiotics feeding. Finally, we combined the results of omics analysis to reveal the mechanism of probiotics on nitrogen metabolism in weaned piglets. The results showed that L. Rhmnosus GG ATCC53103 and L. Plantarum JL01 increased nitrogen apparent digestibility, nitrogen deposition rate, and nitrogen utilization rate of weaned piglets (P < 0.05); the relative expression of mTOR and SK6 mRNA in skeletal muscle increased significantly (P < 0.05). When L. rhamnosus GG ATCC53103 and L. plantarum JL01 were combined, we found that Clostridium and Prevotella significantly increased in the jejunum (P < 0.05). The relative abundance of Lactobacillus, Ruminococcus, Streptococcus, and Prevotella in the ileum increased significantly (P < 0.05). Compared with the control group, L-Tryptophan, 3-Phosphonyloxypyruvate, cis-Aconitate, and Carbamoyl phosphate were significantly increased in the mixed group portal vein. The result of the combinatorial analysis showed that the significantly increased microorganisms could encode the enzyme genes for the synthesis of L-Tryptophan, 3-Phosphonooxypyruvate, cis-Aconitate, and Carbamoyl phosphate. In summary, our results demonstrated that L. Rhamnosus GG ATCC53103 and L. Plantarum JL01 could stimulate the expression of skeletal muscle protein synthesis genes of weaned piglets by modulating the structure of the gut microbiota and its metabolites, thereby improving nitrogen metabolism in weaned piglets.
Collapse
Affiliation(s)
- Feng He
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Xueying Jin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Chunfeng Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Jingtao Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Shuai Su
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Lei Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Tingting Geng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Yuan Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Li Pan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Nan Bao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Hui Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| |
Collapse
|
28
|
Blachier F. Amino Acid-Derived Bacterial Metabolites in the Colorectal Luminal Fluid: Effects on Microbial Communication, Metabolism, Physiology, and Growth. Microorganisms 2023; 11:1317. [PMID: 37317289 DOI: 10.3390/microorganisms11051317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Undigested dietary and endogenous proteins, as well as unabsorbed amino acids, can move from the terminal part of the ileum into the large intestine, where they meet a dense microbial population. Exfoliated cells and mucus released from the large intestine epithelium also supply nitrogenous material to this microbial population. The bacteria in the large intestine luminal fluid release amino acids from the available proteins, and amino acids are then used for bacterial protein synthesis, energy production, and in other various catabolic pathways. The resulting metabolic intermediaries and end products can then accumulate in the colorectal fluid, and their concentrations appear to depend on different parameters, including microbiota composition and metabolic activity, substrate availability, and the capacity of absorptive colonocytes to absorb these metabolites. The aim of the present review is to present how amino acid-derived bacterial metabolites can affect microbial communication between both commensal and pathogenic microorganisms, as well as their metabolism, physiology, and growth.
Collapse
Affiliation(s)
- François Blachier
- Université Paris-Saclay, AgroParisTech, INRAe, UMR PNCA, 91120 Palaiseau, France
| |
Collapse
|
29
|
Okamoto E, Matsuda S, Yoshino Y, Morikawa Y, Suenami K, Tabuchi Y, Matsunaga T, Ikari A. Regulation of Paracellular Fluxes of Amino Acids by Claudin-8 in Normal Mouse Intestinal MCE301 Cells. Nutrients 2023; 15:nu15061346. [PMID: 36986076 PMCID: PMC10055863 DOI: 10.3390/nu15061346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
The ingested proteins are catabolized to di/tri-peptides and amino acids (AAs), which are absorbed through various transporters in the small intestinal and colonic epithelial cells. Tight junctions (TJs) are formed between neighboring cells and restrict paracellular fluxes to mineral ions and aqueous molecules. However, it is unknown whether the TJs are implicated in the control of paracellular fluxes to AAs. The paracellular permeability is controlled by claudins (CLDNs), which comprise a family of over 20 members. Here, we found that CLDN8 expression is decreased by AAs deprivation in normal mouse colon-derived MCE301 cells. The reporter activity of CLDN8 was not significantly changed by AAs deprivation, whereas the stability of CLDN8 protein was decreased. MicroRNA analysis showed that AAs deprivation increases the expression of miR-153-5p which targets CLDN8. The AAs deprivation-induced decline of CLDN8 expression was reversed by a miR-153-5p inhibitor. The CLDN8 silencing enhanced the paracellular fluxes to AAs, especially middle molecular size AAs. The expression levels of colonic CLDN8 and miR-153-5p in aged mice were lower and higher than those in young mice, respectively. We suggest that AAs deprivation downregulates CLDN8-dependent barrier function, mediated by the elevation of miR-153-5p expression in the colon, in order to enhance the AAs absorption.
Collapse
Affiliation(s)
- Ema Okamoto
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Shunsuke Matsuda
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Yoshifumi Morikawa
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501, Japan
| | - Koichi Suenami
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501, Japan
| | - Yoshiaki Tabuchi
- Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu 502-8585, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
- Correspondence: ; Tel.: +81-58-230-8124
| |
Collapse
|
30
|
van der Wielen N, de Vries S, Gerrits WJ, Lammers-Jannink K, Moughan PJ, Mensink M, Hendriks W. Presence of Unabsorbed Free Amino Acids at the End of the Small Intestine Indicates the Potential for an Increase in Amino Acid Uptake in Humans and Pigs. J Nutr 2023; 153:673-682. [PMID: 36809852 DOI: 10.1016/j.tjnut.2023.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Unabsorbed free amino acids (AAs) at the end of the small intestine result in a potential preventable nutritional loss. OBJECTIVES This study aimed to quantify free AAs in terminal ileal digesta of both humans and pigs to investigate its relevance for the nutritional value of food proteins. METHODS Two studies with three diets were performed: a human study-ileal digesta from eight adult ileostomates were collected over 9 h after ingestion of a single meal unsupplemented or supplemented with 30 g zein or whey; pig study-12 cannulated pigs were fed for 7 d with a diet containing whey or zein or no-protein diet, and ileal digesta were collected on the last 2 d. Digesta were analyzed for total and 13 free AAs. True ileal digestibility (TID) of AAs was compared with and without free AAs. RESULTS All terminal ileal digesta samples contained free AAs. The TID of AAs in whey was 97% ± 2.4% (mean ± SD) in human ileostomates and 97% ± 1.9% in growing pigs. If the analyzed free AAs would have been absorbed, TID of whey would increase by 0.4%-units in humans and 0.1%-units in pigs. The TID of AAs in zein was 70% ± 16.4% in humans and 77% ± 20.6% in pigs and would increase by 2.3%-units and 3.5%-units, respectively, if the analyzed free AAs would have been fully absorbed. The largest difference was observed for threonine from zein: if free threonine was absorbed, the TID would increase by 6.6%-units in both species (P < 0.05). CONCLUSIONS Free AAs are present at the end of the small intestine and can potentially have a nutritionally relevant effect for poorly digestible protein sources, whereas the effect is negligible for highly digestible protein sources. This result provides insight into the room for improvement of a protein's nutritional value if all free AAs are to be absorbed. J Nutr 2023;xx:xx-xx. This trial was registered at clinicaltrials.gov as NCT04207372.
Collapse
Affiliation(s)
- Nikkie van der Wielen
- Animal Nutrition Group, Wageningen University and Research, Wageningen, the Netherlands; Division of Human Nutrition, Wageningen University and Research, Wageningen, the Netherlands.
| | - Sonja de Vries
- Animal Nutrition Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Walter J Gerrits
- Animal Nutrition Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Kim Lammers-Jannink
- Animal Nutrition Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Paul J Moughan
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Marco Mensink
- Division of Human Nutrition, Wageningen University and Research, Wageningen, the Netherlands
| | - Wouter Hendriks
- Animal Nutrition Group, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
31
|
Si K, Gong T, Ding S, Liu H, Shi S, Tu J, Zhu L, Song L, Song L, Zhang X. Binding mechanism and bioavailability of a novel phosvitin phosphopeptide (Glu-Asp-Asp-pSer-pSer) calcium complex. Food Chem 2023; 404:134567. [DOI: 10.1016/j.foodchem.2022.134567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/20/2022] [Accepted: 10/08/2022] [Indexed: 11/22/2022]
|
32
|
Sousa R, Recio I, Heimo D, Dubois S, Moughan PJ, Hodgkinson SM, Portmann R, Egger L. In vitro digestibility of dietary proteins and in vitro DIAAS analytical workflow based on the INFOGEST static protocol and its validation with in vivo data. Food Chem 2023; 404:134720. [DOI: 10.1016/j.foodchem.2022.134720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/04/2022]
|
33
|
Lee SY, Kang JH, Lee DY, Jeong JW, Kim JH, Moon SS, Hur SJ. Methods for improving meat protein digestibility in older adults. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:32-56. [PMID: 37093926 PMCID: PMC10119465 DOI: 10.5187/jast.2023.e6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
This review explores the factors that improve meat protein digestibility and applies the findings to the development of home meal replacements with improved protein digestion rates in older adults. Various methods improve the digestion rate of proteins, such as heat, ultrasound, high pressure, or pulse electric field. In addition, probiotics aid in protein digestion by improving the function of digestive organs and secreting enzymes. Plant-derived proteases, such as papain, bromelain, ficin, actinidin, or zingibain, can also improve the protein digestion rate; however, the digestion rate is dependent on the plant enzyme used and protein characteristics. Sous vide processing improves the rate and extent of protein digestibility, but the protein digestion rate decreases with increasing temperature and heating time. Ultrasound, high pressure, or pulsed electric field treatments degrade the protein structure and increase the proteolytic enzyme contact area to improve the protein digestion rate.
Collapse
Affiliation(s)
- Seung Yun Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ji Hyeop Kang
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Da Young Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jae Won Jeong
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jae Hyeon Kim
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Sung Sil Moon
- Sunjin Technology & Research
Institute, Icheon 17332, Korea
| | - Sun Jin Hur
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
34
|
Daniel H. Gut physiology meets microbiome science. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2022; 4:e1. [PMID: 39295899 PMCID: PMC11406389 DOI: 10.1017/gmb.2022.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 09/21/2024]
Abstract
Research on the gut microbiome has gained high popularity and almost every disease has meanwhile been linked to alterations in microbiome composition. Typically assessed via stool samples, the microbiome displays a huge diversity with a multitude of environmental parameters already identified as contributing to its character. Despite impressive scientific progress, normal microbiome diversity remains largely unexplained and it is tempting to speculate some of the yet unexplained variance is hidden in normal gut physiology. Although a few genome/phenome-wide associations studies have recently highlighted physiological parameters such as stool frequency, known as contributing to microbiome diversity, there is a large knowledge base from decades of basic research on gut functions that can be explored for possible links to stool features and microbiome characteristics. And, when extrapolating findings from faecal samples to the biology in the intestinal lumen or the mucosal microenvironment, gut anatomy and physiology features need to be considered. Similarly, differences in anatomy and physiology between rodents and humans need attention when discussing findings in animals in relation to human physiology and nutrition.
Collapse
Affiliation(s)
- Hannelore Daniel
- ex. School of Life Sciences, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany
| |
Collapse
|
35
|
Li Z, Shi J, Lei Y, Wu J, Zhang R, Zhang X, Jia L, Wang Y, Ma Y, He P, Ma Y, Cheng Q, Zhang Z, Zhang K, Lei Z. Castration alters the cecal microbiota and inhibits growth in Holstein cattle. J Anim Sci 2022; 100:skac367. [PMID: 36326798 PMCID: PMC9733532 DOI: 10.1093/jas/skac367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/03/2022] [Indexed: 11/05/2022] Open
Abstract
To determine the effects of castration on growth performance, serum hormone levels, cecal microbiota composition, and metabolites in cattle. A total of 18 Holstein bulls and steers were divided into bull and steer groups and randomly assigned to 3 pens (3 cattle per pen, and each cattle were separated by a fence) to determine the average daily gain (ADG), daily dry matter intake (DMI), and feed efficiency (G/F). After the finishing trial, six cattle per group were randomly slaughtered. Serum was collected to measure the hormone concentration, and the cecal content was collected to measure the pH, short-chain fatty acids, and digestive enzyme activities. Metagenome sequencing and untargeted metabolomics were used to investigate the microbiota composition, functional profiles, and differential metabolites of the cecal contents. We found that castration significantly decreased ADG, DMI, and G/F in cattle (P < 0.05). The serum testosterone, thyroxine, growth hormone (P < 0.05), and triiodothyronine (P < 0.01) concentrations significantly decreased in the steer group when compared to those of the bull group. The activities of cellulase, xylanase, pectinase, and β-glucosidase (P < 0.05) significantly decreased in the steer group, whereas the activities of lipase and α-amylase significantly increased. Moreover, castration significantly decreased the relative abundance of Ruminococcaceae_bacterium, Treponema_porcinum, Oscillibacter_sp. (P < 0.05), and Alistipes_senegalensis (P < 0.01), whereas the relative abundance of Phocaeicola_plebeius (P < 0.05) was significantly increased. Also, the relative abundance of Phocaeicola_plebeius was negatively correlated with testosterone levels, and the function of the cecal microbiota was enriched in the GH29 and GH97 families in the steer group. Metabolomic analysis indicated that castration increased the levels of L-valine, L-phenylalanine, L-aspartic acid, L-isoleucine, L-lysine, methionine, L-glutamic acid, and L-leucine, while decreasing the levels of α-ketoglutaric acid through the 2-oxocarboxylic acid metabolism pathway. In addition, α-ketoglutaric acid was negatively correlated with Oscillibacter_sp. (P < 0.01). Overall, castration can inhibit cattle growth by altering the composition of the cecal microbiota. Therefore, this study provides a theoretical and practical basis for improving the growth performance of steers.
Collapse
Affiliation(s)
- Zemin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jinping Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yu Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jianping Wu
- Institute of Rural Development, Northwest Normal University, Lanzhou, China
| | - Rui Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiao Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Li Jia
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ying Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yue Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Pengjia He
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yannan Ma
- Institute of Rural Development, Northwest Normal University, Lanzhou, China
| | - Qiang Cheng
- Jingchuan Xukang Food Co., Ltd, Pingliang, China
| | - Zhao Zhang
- Gansu Huarui Agriculture Co., Ltd, Zhangye, China
| | - Ke Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhaomin Lei
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
36
|
Pedroni L, Perugino F, Galaverna G, Dall’Asta C, Dellafiora L. An In Silico Framework to Mine Bioactive Peptides from Annotated Proteomes: A Case Study on Pancreatic Alpha Amylase Inhibitory Peptides from Algae and Cyanobacteria. Nutrients 2022; 14:nu14214680. [PMID: 36364940 PMCID: PMC9658718 DOI: 10.3390/nu14214680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Bioactive peptides may exert beneficial activities in living organisms such as the regulation of glucose metabolism through the inhibition of alpha amylases. Algae and cyanobacteria are gaining a growing interest for their health-promoting properties, and possible effects on glucose metabolism have been described, although the underlying mechanisms need clarification. This study proposes a computer-driven workflow for a proteome-wide mining of alpha amylase inhibitory peptides from the proteome of Chlorella vulgaris, Auxenochlorella protothecoides and Aphanizomenon flos-aquae. Overall, this work presents an innovative and versatile approach to support the identification of bioactive peptides in annotated proteomes. The study: (i) highlighted the presence of alpha amylase inhibitory peptides within the proteomes under investigation (including ELS, which is among the most potent inhibitory tripeptides identified so far); (ii) mechanistically investigated the possible mechanisms of action; and (iii) prioritized further dedicated investigation on the proteome of C. vulgaris and A. flos-aquae, and on CSSL and PGG sequences.
Collapse
|
37
|
Lammi C, Boschin G, Bartolomei M, Arnoldi A, Galaverna G, Dellafiora L. Mechanistic Insights into Angiotensin I-Converting Enzyme Inhibitory Tripeptides to Decipher the Chemical Basis of Their Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11572-11578. [PMID: 36074807 PMCID: PMC9501895 DOI: 10.1021/acs.jafc.2c04755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Food proteins are an important source of bioactive peptides, and the angiotensin I-converting enzyme (ACE) inhibitors are worthy of attention for their possible beneficial effects in subjects with mild hypertension. However, the chemical basis underpinning their activity is not well-understood, hampering the discovery of novel inhibitory sequences from the plethora of peptides encrypted in food proteins. This work combined computational and in vitro investigations to describe precisely the chemical basis of potent inhibitory tripeptides. A substantial set of previously uncharacterized tripeptides have been investigated in silico and in vitro, and LCP was described for the first time as a potent ACE inhibitory peptide with IC50 values of 8.25 and 6.95 μM in cell-free and cell-based assays, respectively. The outcomes presented could serve to better understand the chemical basis of already characterized potent inhibitory tripeptides or as a blueprint to design novel and potent inhibitory peptides and peptide-like molecules.
Collapse
Affiliation(s)
- Carmen Lammi
- Department
of Pharmaceutical Sciences, University of
Milan, Via Mangiagalli 25, Milan 20133, Italy
| | - Giovanna Boschin
- Department
of Pharmaceutical Sciences, University of
Milan, Via Mangiagalli 25, Milan 20133, Italy
| | - Martina Bartolomei
- Department
of Pharmaceutical Sciences, University of
Milan, Via Mangiagalli 25, Milan 20133, Italy
| | - Anna Arnoldi
- Department
of Pharmaceutical Sciences, University of
Milan, Via Mangiagalli 25, Milan 20133, Italy
| | - Gianni Galaverna
- Department
of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| | - Luca Dellafiora
- Department
of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| |
Collapse
|
38
|
Tarracchini C, Fontana F, Mancabelli L, Lugli GA, Alessandri G, Turroni F, Ventura M, Milani C. Gut microbe metabolism of small molecules supports human development across the early stages of life. Front Microbiol 2022; 13:1006721. [PMID: 36177457 PMCID: PMC9512645 DOI: 10.3389/fmicb.2022.1006721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
From birth to adulthood, the human gut-associated microbial communities experience profound changes in their structure. However, while the taxonomical composition has been extensively explored, temporal shifts in the microbial metabolic functionalities related to the metabolism of bioactive small molecules are still largely unexplored. Here, we collected a total of 6,617 publicly available human fecal shotgun metagenomes and 42 metatranscriptomes from infants and adults to explore the dynamic changes of the microbial-derived small molecule metabolisms according to the age-related development of the human gut microbiome. Moreover, by selecting metagenomic data from 250 breastfed and 217 formula-fed infants, we also investigated how feeding types can shape the metabolic functionality of the incipient gut microbiome. From the small molecule metabolism perspective, our findings suggested that the human gut microbial communities are genetically equipped and prepared to metabolically evolve toward the adult state as early as 1 month after birth, although at the age of 4 years, it still appeared functionally underdeveloped compared to adults. Furthermore, in respect of formula-fed newborns, breastfed infants showed enrichment in microbial metabolic functions related to specific amino acids present at low concentrations in human milk, highlighting that the infant gut microbiome has specifically evolved to synthesize bioactive molecules that can complement the human breast milk composition contributing to complete nutritional supply of infant.
Collapse
Affiliation(s)
- Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- GenProbio Srl, Parma, Italy
| | - Leonardo Mancabelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
- *Correspondence: Marco Ventura,
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
- Christian Milani,
| |
Collapse
|
39
|
Quinn MA, Pritchard AE, Visker JR, McPeek AC, Raghuvanshi R, Martin H C, Wellette-Hunsucker AG, Leszczynski EC, McCabe LR, Pfeiffer KA, Quinn RA, Ferguson DP. Longitudinal effects of growth restriction on the murine gut microbiome and metabolome. Am J Physiol Endocrinol Metab 2022; 323:E159-E170. [PMID: 35658543 PMCID: PMC9423779 DOI: 10.1152/ajpendo.00446.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Undernutrition-induced growth restriction in the early stages of life increases the risk of chronic disease in adulthood. Although metabolic impairments have been observed, few studies have characterized the gut microbiome and gut-liver metabolome profiles of growth-restricted animals during early-to-mid-life development. To induce growth restriction, mouse offspring were either born to gestational undernutrition (GUN) or suckled from postnatal undernutrition (PUN) dams fed a protein-restricted diet (8% protein) or control diet (CON; 20% protein) until weaning at postnatal age of 21 days (PN21). At PN21, all mice were fed the CON diet until adulthood (PN80). Livers were collected at PN21 and PN80, and fecal samples were collected weekly starting at PN21 (postweaning week 1) until PN80 (postweaning week 5) for gut microbiome and metabolome analyses. PUN mice exhibited the most alterations in gut microbiome and gut and liver metabolome compared with CON mice. These mice had altered fecal microbial β-diversity (P = 0.001) and exhibited higher proportions of Bifidobacteriales [linear mixed model (LMM) P = 7.1 × 10-6), Clostridiales (P = 1.459 × 10-5), Erysipelotrichales (P = 0.0003), and lower Bacteroidales (P = 4.1 × 10-5)]. PUN liver and fecal metabolome had a reduced total bile acid pool (P < 0.01), as well as lower abundance of riboflavin (P = 0.003), amino acids [i.e., methionine (P = 0.0018), phenylalanine (P = 0.0015), and tyrosine (P = 0.0041)], and higher excreted total peptides (LMM P = 0.0064) compared with CON. Overall, protein restriction during lactation permanently alters the gut microbiome into adulthood. Although the liver bile acids, amino acids, and acyl-carnitines recovered, the fecal peptides and microbiome remained permanently altered into adulthood, indicating that inadequate protein intake in a specific time frame in early life can have an irreversible impact on the microbiome and fecal metabolome.NEW & NOTEWORTHY Undernutrition-induced early-life growth restriction not only leads to increased disease risk but also permanently alters the gut microbiome and gut-liver metabolome during specific windows of early-life development.
Collapse
Affiliation(s)
- Melissa A Quinn
- Department of Kinesiology, Michigan State University, East Lansing, Michigan
| | - Abby E Pritchard
- Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Joseph R Visker
- Department of Kinesiology, Michigan State University, East Lansing, Michigan
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, Utah
| | - Ashley C McPeek
- Department of Kinesiology, Michigan State University, East Lansing, Michigan
| | - Ruma Raghuvanshi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing Michigan
| | - Christian Martin H
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing Michigan
| | - Austin G Wellette-Hunsucker
- Department of Kinesiology, Michigan State University, East Lansing, Michigan
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Eric C Leszczynski
- Department of Kinesiology, Michigan State University, East Lansing, Michigan
| | - Laura R McCabe
- Department of Physiology, Michigan State University, East Lansing Michigan
| | - Karin A Pfeiffer
- Department of Kinesiology, Michigan State University, East Lansing, Michigan
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing Michigan
| | - David P Ferguson
- Department of Kinesiology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
40
|
Xu Y, Tang S, Jian C, Liu Y, Li K, Zhu K, Zhang W, Wang W, Wang Z, Yang J. Polyamines and ethylene interact in mediating the effect of nitrogen rates on synthesis of amino acids in rice grains. Food Energy Secur 2022. [DOI: 10.1002/fes3.408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Yunji Xu
- Joint International Research Laboratory of Agriculture and Agri‐product Safety of the Ministry of Education of China Yangzhou University Yangzhou China
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou China
| | - Shupeng Tang
- Joint International Research Laboratory of Agriculture and Agri‐product Safety of the Ministry of Education of China Yangzhou University Yangzhou China
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou China
| | - Chaoqun Jian
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou China
| | - Yang Liu
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou China
| | - Ke Li
- Huaiyin Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province Huaian China
| | - Kuanyu Zhu
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou China
| | - Weiyang Zhang
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou China
| | - Weilu Wang
- Joint International Research Laboratory of Agriculture and Agri‐product Safety of the Ministry of Education of China Yangzhou University Yangzhou China
| | - Zhiqin Wang
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou China
| | - Jianchang Yang
- Joint International Research Laboratory of Agriculture and Agri‐product Safety of the Ministry of Education of China Yangzhou University Yangzhou China
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou China
| |
Collapse
|
41
|
Dietary Inclusion of Dried Chicory Root Affects Cecal Mucosa Proteome of Nursery Pigs. Animals (Basel) 2022; 12:ani12131710. [PMID: 35804609 PMCID: PMC9264899 DOI: 10.3390/ani12131710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary A well-balanced diet seems to play a key role in disease prevention and health promotion in young animals. Therefore, many attempts have been made to supplement feeds with novel nutritional components, with potential prebiotic capacity. It seems that chicory root fulfils those criteria as it contains high amounts of inulin-type fructans. Hence, the aim of the study was to determine the effect of dietary supplementation with 4% dried chicory root on the cecal mucosa proteome of piglets. It is shown that this feed additive may affect cellular metabolism in the cecal epithelium and may be beneficial for gut health. Abstract Prebiotics are known to have many beneficial effects on intestinal health by modulating the gut microbiota composition, thereby affecting epithelial cell proliferation and metabolism. This study had two aims: (1) to identify the protein constituents in the cecal mucosa of 50-day-old healthy (PIC × Penarlan P76) barrows, and (2) to assess the effects of 4% inclusion of dried chicory root in a cereal-based diet on the cecal mucosa proteome changes. Pigs (eight per group) were randomly allotted to the groups and were fed a control diet from the tenth day of life (C) or a diet supplemented with 4% of died chicory root (CR), for 40 days. At the age of 50 days, animals were sacrificed and cecal tissue samples were collected. It was found that feeding a CR diet significantly decreased the expression of 16 cecal mucosa proteins. Among them, fifteen proteins were down-regulated, while only one (KRT20) was shown to be up-regulated when compared to the C group. Dietary supplementation with CR caused down-expression of metabolism-associated proteins including enzymes involved in the process of glycolysis (G6PD, TPI1, ALDH9A1, CKMT1 and AKR1A1) as well as those engaged in transcriptional and translational activity (PRPF19, EEF1G) and several structural proteins (ACTR3, KRT77, CAP1 and actin). From our findings, it is possible to conclude that dietary chicory root at 4% had beneficial effects on the gut health of pigs as indicated by a changed abundance of certain cecal proteins such as KRT20, SERPINB1, HSP27, ANAXA2 and ANAXA4.
Collapse
|
42
|
Biological Potential, Gastrointestinal Digestion, Absorption, and Bioavailability of Algae-Derived Compounds with Neuroprotective Activity: A Comprehensive Review. Mar Drugs 2022; 20:md20060362. [PMID: 35736165 PMCID: PMC9227170 DOI: 10.3390/md20060362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Currently, there is no known cure for neurodegenerative disease. However, the available therapies aim to manage some of the symptoms of the disease. Human neurodegenerative diseases are a heterogeneous group of illnesses characterized by progressive loss of neuronal cells and nervous system dysfunction related to several mechanisms such as protein aggregation, neuroinflammation, oxidative stress, and neurotransmission dysfunction. Neuroprotective compounds are essential in the prevention and management of neurodegenerative diseases. This review will focus on the neurodegeneration mechanisms and the compounds (proteins, polyunsaturated fatty acids (PUFAs), polysaccharides, carotenoids, phycobiliproteins, phenolic compounds, among others) present in seaweeds that have shown in vivo and in vitro neuroprotective activity. Additionally, it will cover the recent findings on the neuroprotective effects of bioactive compounds from macroalgae, with a focus on their biological potential and possible mechanism of action, including microbiota modulation. Furthermore, gastrointestinal digestion, absorption, and bioavailability will be discussed. Moreover, the clinical trials using seaweed-based drugs or extracts to treat neurodegenerative disorders will be presented, showing the real potential and limitations that a specific metabolite or extract may have as a new therapeutic agent considering the recent approval of a seaweed-based drug to treat Alzheimer’s disease.
Collapse
|
43
|
Wang Q, Zhan S, Han F, Liu Y, Wu H, Huang Z. The Possible Mechanism of Physiological Adaptation to the Low-Se Diet and Its Health Risk in the Traditional Endemic Areas of Keshan Diseases. Biol Trace Elem Res 2022; 200:2069-2083. [PMID: 34365573 PMCID: PMC8349466 DOI: 10.1007/s12011-021-02851-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/23/2021] [Indexed: 11/25/2022]
Abstract
Selenium is an essential trace element for humans and animals. As with oxygen and sulfur, etc., it belongs to the sixth main group of the periodic table of elements. Therefore, the corresponding amino acids, such as selenocysteine (Sec), serine (Ser), and cysteine (Cys), have similar spatial structure, physical, and chemical properties. In this review, we focus on the neglected but key role of serine in a possible mechanism of the physiological adaptation to Se-deficiency in human beings with an adequate intake of dietary protein: the insertion of Cys in place of Sec during the translation of selenoproteins dependent on the Sec insertion sequence element in the 3'UTR of mRNA at the UGA codon through a novel serine-dependent pathway for the de novo synthesis of the Cys-tRNA[Ser]Sec, similar to Sec-tRNA[Ser]Sec. We also discuss the important roles of serine in the metabolism of selenium directly or indirectly via GSH, and the maintenance of selenium homostasis regulated through the methylation modification of Sec-tRNA[Ser]Sec at the position 34U by SAM. Finally, we propose a hypothesis to explain why Keshan disease has gradually disappeared in China and predict the potential health risk of the human body in the physiological adaptation state of low selenium based on the results of animal experiments.
Collapse
Affiliation(s)
- Qin Wang
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Shuo Zhan
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Feng Han
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Yiqun Liu
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Hongying Wu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd, Wuhan, 430022, Hubei Province, China.
| | - Zhenwu Huang
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China.
- The Key Laboratory of Micronutrients Nutrition, National Health Commission of The People's Republic of China, Beijing, China.
| |
Collapse
|
44
|
Production of Indole and Indole-Related Compounds by the Intestinal Microbiota and Consequences for the Host: The Good, the Bad, and the Ugly. Microorganisms 2022; 10:microorganisms10050930. [PMID: 35630374 PMCID: PMC9145683 DOI: 10.3390/microorganisms10050930] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
The intestinal microbiota metabolic activity towards the available substrates generates myriad bacterial metabolites that may accumulate in the luminal fluid. Among them, indole and indole-related compounds are produced by specific bacterial species from tryptophan. Although indole-related compounds are, first, involved in intestinal microbial community communication, these molecules are also active on the intestinal mucosa, exerting generally beneficial effects in different experimental situations. After absorption, indole is partly metabolized in the liver into the co-metabolite indoxyl sulfate. Although some anti-inflammatory actions of indole on liver cells have been shown, indoxyl sulfate is a well-known uremic toxin that aggravates chronic kidney disease, through deleterious effects on kidney cells. Indoxyl sulfate is also known to provoke endothelial dysfunction. Regarding the central nervous system, emerging research indicates that indole at excessive concentrations displays a negative impact on emotional behavior. The indole-derived co-metabolite isatin appears, in pre-clinical studies, to accumulate in the brain, modulating brain function either positively or negatively, depending on the doses used. Oxindole, a bacterial metabolite that enters the brain, has shown deleterious effects on the central nervous system in experimental studies. Lastly, recent studies performed with indoxyl sulfate report either beneficial or deleterious effects depending once again on the dose used, with missing information on the physiological concentrations that are reaching the central nervous system. Any intervention aiming at modulating indole and indole-related compound concentrations in the biological fluids should crucially take into account the dual effects of these compounds according to the host tissues considered.
Collapse
|
45
|
Kroupina K, Bémeur C, Rose CF. Amino acids, ammonia, and hepatic encephalopathy. Anal Biochem 2022; 649:114696. [PMID: 35500655 DOI: 10.1016/j.ab.2022.114696] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/30/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022]
|
46
|
LaBouyer M, Holtrop G, Horgan G, Gratz SW, Belenguer A, Smith N, Walker AW, Duncan SH, Johnstone AM, Louis P, Flint HJ, Scott KP. Higher total faecal short-chain fatty acid concentrations correlate with increasing proportions of butyrate and decreasing proportions of branched-chain fatty acids across multiple human studies. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2022; 3:e2. [PMID: 39295782 PMCID: PMC11406374 DOI: 10.1017/gmb.2022.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/25/2022] [Accepted: 03/18/2022] [Indexed: 09/21/2024]
Abstract
Metabolites produced by microbial fermentation in the human intestine, especially short-chain fatty acids (SCFAs), are known to play important roles in colonic and systemic health. Our aim here was to advance our understanding of how and why their concentrations and proportions vary between individuals. We have analysed faecal concentrations of microbial fermentation acids from 10 human volunteer studies, involving 163 subjects, conducted at the Rowett Institute, Aberdeen, UK over a 7-year period. In baseline samples, the % butyrate was significantly higher, whilst % iso-butyrate and % iso-valerate were significantly lower, with increasing total SCFA concentration. The decreasing proportions of iso-butyrate and iso-valerate, derived from amino acid fermentation, suggest that fibre intake was mainly responsible for increased SCFA concentrations. We propose that the increase in % butyrate among faecal SCFA is largely driven by a decrease in colonic pH resulting from higher SCFA concentrations. Consistent with this, both total SCFA and % butyrate increased significantly with decreasing pH across five studies for which faecal pH measurements were available. Colonic pH influences butyrate production through altering the stoichiometry of butyrate formation by butyrate-producing species, resulting in increased acetate uptake and butyrate formation, and facilitating increased relative abundance of butyrate-producing species (notably Roseburia and Eubacterium rectale).
Collapse
Affiliation(s)
- Maria LaBouyer
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | - Grietje Holtrop
- Biomathematics and Statistics Scotland (BioSS), Aberdeen, Scotland, UK
| | - Graham Horgan
- Biomathematics and Statistics Scotland (BioSS), Aberdeen, Scotland, UK
| | - Silvia W Gratz
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | - Alvaro Belenguer
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture of Torre de la Sal, (IATS - CSIC), Castellon, Spain
| | - Nicola Smith
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | - Alan W Walker
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | - Sylvia H Duncan
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | - Alexandra M Johnstone
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | - Petra Louis
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | - Harry J Flint
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | - Karen P Scott
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Colorectal cancer (CRC) is the third most common cancer and the second most common cause of cancer-related deaths. Of the various established risk factors for this aggressive condition, diet is a notable modifiable risk factor. This review aims to summarize the mounting evidence to suggest the role of diet, the microbiota and their cross-talk in modulating an individual's risk of developing CRC. RECENT FINDINGS Specifically, the metabolism of bile acids and its symbiosis with the microbiota has gained weight given its basis on a high meat, high fat, and low fibre diet that is present in populations with the highest risk of CRC. Bacteria modify bile acids that escape enterohepatic circulation to increase the diversity of the human bile acid pool. The production of microbial bile acids contributes to this as well. Epidemiological studies have shown that changing the diet results in different levels and composition of bile acids, which has in turn modified the risk of CRC at a population level. Evidence to identify underlying mechanisms have tied into the microbiota-led digestions of various foods into fatty acids that feedback into bile acid physiology as well as modulation of endogenous receptors for bile acids. SUMMARY There is adequate evidence to support the role of microbiota in in the metabolism of bile acids, and how this relates to colorectal cancer. Further work is necessary to identify specific bacteriome involved and their underlying mechanistic pathways.
Collapse
|
48
|
Adhikari S, Schop M, de Boer IJM, Huppertz T. Protein Quality in Perspective: A Review of Protein Quality Metrics and Their Applications. Nutrients 2022; 14:947. [PMID: 35267922 PMCID: PMC8912699 DOI: 10.3390/nu14050947] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
For design of healthy and sustainable diets and food systems, it is important to consider not only the quantity but also the quality of nutrients. This is particularly important for proteins, given the large variability in amino acid composition and digestibility between dietary proteins. This article reviews measurements and metrics in relation to protein quality, but also their application. Protein quality methods based on concentrations and digestibility of individual amino acids are preferred, because they do not only allow ranking of proteins, but also assessment of complementarity of protein sources, although this should be considered only at a meal level and not a diet level. Measurements based on ileal digestibility are preferred over those on faecal digestibility to overcome the risk of overestimation of protein quality. Integration of protein quality on a dietary level should also be done based on measurements on an individual amino acid basis. Effects of processing, which is applied to all foods, should be considered as it can also affect protein quality through effects on digestibility and amino acid modification. Overall, protein quality data are crucial for integration into healthy and sustainable diets, but care is needed in data selection, interpretation and integration.
Collapse
Affiliation(s)
- Shiksha Adhikari
- Food Quality & Design Group, Wageningen University & Research, 6708 WG Wageningen, The Netherlands;
| | - Marijke Schop
- Animal Production Systems Group, Wageningen University & Research, 6708 WD Wageningen, The Netherlands; (M.S.); (I.J.M.d.B.)
| | - Imke J. M. de Boer
- Animal Production Systems Group, Wageningen University & Research, 6708 WD Wageningen, The Netherlands; (M.S.); (I.J.M.d.B.)
| | - Thom Huppertz
- Food Quality & Design Group, Wageningen University & Research, 6708 WG Wageningen, The Netherlands;
- Friesland Campina, Research and Development, 3818 LE Amersfoort, The Netherlands
| |
Collapse
|
49
|
Alderweireldt E, Grootaert C, De Wever O, Van Camp J. A two-front nutritional environment fuels colorectal cancer: perspectives for dietary intervention. Trends Endocrinol Metab 2022; 33:105-119. [PMID: 34887164 DOI: 10.1016/j.tem.2021.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) develops and progresses in a nutritional environment comprising a continuously changing luminal cocktail of external dietary and microbial factors on the apical side, and a dynamic host-related pool of systemic factors on the serosal side. In this review, we highlight how this two-front environment influences the bioenergetic status of colonocytes throughout CRC development from (cancer) stem cells to cancer cells in nutrient-rich and nutrient-poor conditions, and eventually to metastatic cells, which, upon entry to the circulation and during metastatic seeding, are forced to metabolically adapt. Furthermore, given the influence of diet on the two-front nutritional environment, we discuss dietary strategies that target the specific metabolic preferences of these cells, with a possible impact on colon cancer cell bioenergetics and CRC outcome.
Collapse
Affiliation(s)
- Elien Alderweireldt
- Laboratory of Food Chemistry and Human Nutrition, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Charlotte Grootaert
- Laboratory of Food Chemistry and Human Nutrition, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| | - John Van Camp
- Laboratory of Food Chemistry and Human Nutrition, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| |
Collapse
|
50
|
Rodrigues DB, Marques MC, Hacke A, Loubet Filho PS, Cazarin CBB, Mariutti LRB. Trust your gut: Bioavailability and bioaccessibility of dietary compounds. Curr Res Food Sci 2022; 5:228-233. [PMID: 35106487 PMCID: PMC8787780 DOI: 10.1016/j.crfs.2022.01.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/26/2022] Open
|