1
|
Hosseinzadeh R, Hosseini SM, Momeni M, Maghari A, Fathi-Ashtiani A, Ghadimi P, Heiat M, Barmayoon P, Mohamadianamiri M, Bahardoust M, Badri T, Karbasi A. Coronavirus Disease 2019 (COVID-19) Infection-Related Stigma, Depression, Anxiety, and Stress in Iranian Healthcare Workers. Int J Prev Med 2022; 13:88. [PMID: 35958369 PMCID: PMC9362743 DOI: 10.4103/ijpvm.ijpvm_12_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 09/28/2021] [Indexed: 11/15/2022] Open
Abstract
Background Psychological conditions aggravate during outbreaks. Here, we have discussed the existing COVID-19 depression, anxiety, and stress and the resulting stigma and its different aspects in Iranian health care workers and their 1st-degree relatives. Methods In this cross-sectional study, information of our study groups (237 participants including health care workers and their nuclear family members) was collected via two online stigma and depression, anxiety, and stress scale (DASS) questionnaires. Results The DASS questionnaire's mean depression, anxiety, and stress scores were 13.59 ± 5.76, 11.07 ± 4.38, and 15.05 ± 5.86, respectively, in our study population. Marriage status was effective on depression and stress scores. Married participants were having less depression (P = 0.008) but more stressful (P = 0.029) than single ones. Education was found to be effective on anxiety and stress scores. Those with an associate, master, Ph.D., and higher college degrees were significantly less anxious and stressed than those with a diploma or bachelor's degrees (P = 0.032 and 0.016, respectively, for anxiety and stress). Participants with a history of psychiatric conditions showed significantly higher depression, anxiety, and stress rates than those without a past psychiatric condition (P = 0.001). Healthcare workers and their nuclear family members suffer from severe stigma (mean stigma scores were 33.57 and 33.17, respectively). Conclusions Healthcare workers and their nuclear family members in Iran suffer from severe COVID-19 related stigma. We also showed that depression, anxiety, and stress are common among Iranian Healthcare workers and their nuclear family members during this pandemic. This study showed that people with preexisting psychiatric conditions need extra mental care during the pandemic.
Collapse
Affiliation(s)
- Ramin Hosseinzadeh
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Morteza Hosseini
- Medicine, Quran and Hadith Research center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mina Momeni
- Resident of Gynecology, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Maghari
- Atherosclerosis Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Fathi-Ashtiani
- Behavioral sciences Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Parmid Ghadimi
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Pooyan Barmayoon
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdiss Mohamadianamiri
- Department of Obstetrics & Gynecology, Iran University of Medical Sciences, Akbarabadi Teaching Hospital & National Association of Iranian Obstetricians & Gynecologists (NAIGO), Tehran, Iran
| | - Mansour Bahardoust
- Department of Epidemiology, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Dr. Mansour Bahardoust, Department of Epidemiology, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran. E-mail:
| | - Taleb Badri
- Behavioral sciences Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ashraf Karbasi
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran,Address for correspondence: Dr. Ashraf karbasi, Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran. E-mail:
| |
Collapse
|
2
|
Fred SM, Kuivanen S, Ugurlu H, Casarotto PC, Levanov L, Saksela K, Vapalahti O, Castrén E. Antidepressant and Antipsychotic Drugs Reduce Viral Infection by SARS-CoV-2 and Fluoxetine Shows Antiviral Activity Against the Novel Variants in vitro. Front Pharmacol 2022; 12:755600. [PMID: 35126106 PMCID: PMC8809408 DOI: 10.3389/fphar.2021.755600] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/09/2021] [Indexed: 12/29/2022] Open
Abstract
Repurposing of currently available drugs is a valuable strategy to tackle the consequences of COVID-19. Recently, several studies have investigated the effect of psychoactive drugs on SARS-CoV-2 in cell culture models as well as in clinical practice. Our aim was to expand these studies and test some of these compounds against newly emerged variants. Several antidepressants and antipsychotic drugs with different primary mechanisms of action were tested in ACE2/TMPRSS2-expressing human embryonic kidney cells against the infection by SARS-CoV-2 spike protein-dependent pseudoviruses. Some of these compounds were also tested in human lung epithelial cell line, Calu-1, against the first wave (B.1) lineage of SARS-CoV-2 and the variants of concern, B.1.1.7, B.1.351, and B.1.617.2. Several clinically used antidepressants, including fluoxetine, citalopram, reboxetine, imipramine, as well as antipsychotic compounds chlorpromazine, flupenthixol, and pimozide inhibited the infection by pseudotyped viruses with minimal effects on cell viability. The antiviral action of several of these drugs was verified in Calu-1 cells against the B.1 lineage of SARS-CoV-2. By contrast, the anticonvulsant carbamazepine, and novel antidepressants ketamine, known as anesthetic at high doses, and its derivatives as well as MAO and phosphodiesterase inhibitors phenelzine and rolipram, respectively, showed no activity in the pseudovirus model. Furthermore, fluoxetine remained effective against pseudoviruses with common receptor binding domain mutations, N501Y, K417N, and E484K, as well as B.1.1.7 (alpha), B.1.351 (beta), and B.1.617.2 (delta) variants of SARS-CoV-2. Our study confirms previous data and extends information on the repurposing of these drugs to counteract SARS-CoV-2 infection including different variants of concern, however, extensive clinical studies must be performed to confirm our in vitro findings.
Collapse
Affiliation(s)
- Senem Merve Fred
- Neuroscience Center–HiLIFE, University of Helsinki, Helsinki, Finland
| | - Suvi Kuivanen
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Hasan Ugurlu
- Department of Virology, University of Helsinki, Helsinki, Finland
| | | | - Lev Levanov
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Kalle Saksela
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- HUS Diagnostic Center, HUSLAB, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eero Castrén
- Neuroscience Center–HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Cryptocurrency as Epidemiologically Safe Means of Transactions: Diminishing Risk of SARS-CoV-2 Spread. MATHEMATICS 2021. [DOI: 10.3390/math9243263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In comparison with other respiratory viruses, the current COVID-19 pandemic’s rapid seizing the world can be attributed to indirect (contact) way of transmission of SARS-CoV-2 virus in addition to the regular airborne way. A significant part of indirect transmission is made through cash bank notes. SARS-CoV-2 remains on cash paper money for period around four times larger than influenza A virus and is absorbed by cash notes two and a half times more effectively than influenza A (our model). During the pandemic, cryptocurrencies have gained attractiveness as an “epidemiologically safe” means of transactions. On the basis of the authors’ gallop polls performed online with social networks users in 44 countries in 2020–2021 (the total number of clear responses after the set repair 32,115), around 14.7% of surveyed participants engaged in cryptocurrency-based transactions during the pandemic. This may be one of the reasons of significant rise of cryptocurrencies rates since mid-March 2020 till the end of 2021. The paper discusses the reasons for cryptocurrency attractiveness during the COVID-19 pandemic. Among them, there are fear of SARS-CoV-2 spread via cash contacts and the ability of the general population to mine cryptocurrencies. The article also provides a breakdown of the polled audience profile to determine the nationalities that have maximal level of trust to saving and transacting money as cryptocurrencies.
Collapse
|
4
|
Zhugunissov K, Zakarya K, Khairullin B, Orynbayev M, Abduraimov Y, Kassenov M, Sultankulova K, Kerimbayev A, Nurabayev S, Myrzakhmetova B, Nakhanov A, Nurpeisova A, Chervyakova O, Assanzhanova N, Burashev Y, Mambetaliyev M, Azanbekova M, Kopeyev S, Kozhabergenov N, Issabek A, Tuyskanova M, Kutumbetov L. Development of the Inactivated QazCovid-in Vaccine: Protective Efficacy of the Vaccine in Syrian Hamsters. Front Microbiol 2021; 12:720437. [PMID: 34646246 PMCID: PMC8503606 DOI: 10.3389/fmicb.2021.720437] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
In March 2020, the first cases of the human coronavirus disease COVID-19 were registered in Kazakhstan. We isolated the SARS-CoV-2 virus from clinical materials from some of these patients. Subsequently, a whole virion inactivated candidate vaccine, QazCovid-in, was developed based on this virus. To develop the vaccine, a virus grown in Vero cell culture was used, which was inactivated with formaldehyde, purified, concentrated, sterilized by filtration, and then adsorbed on aluminum hydroxide gel particles. The formula virus and adjuvant in buffer saline solution were used as the vaccine. The safety and protective effectiveness of the developed vaccine were studied in Syrian hamsters. The results of the studies showed the absolute safety of the candidate vaccine in the Syrian hamsters. When studying the protective effectiveness, the developed vaccine with an immunizing dose of 5 μg/dose specific antigen protected animals from a wild homologous virus at a dose of 104.5 TCID50/mL. The candidate vaccine induced the formation of virus-neutralizing antibodies in vaccinated hamsters at titers of 3.3 ± 1.45 log2 to 7.25 ± 0.78 log2, and these antibodies were retained for 6 months (observation period) for the indicated titers. No viral replication was detected in vaccinated hamsters, protected against the development of acute pneumonia, and ensured 100% survival of the animals. Further, no replicative virus was isolated from the lungs of vaccinated animals. However, a virulent virus was isolated from the lungs of unvaccinated animals at relatively high titers, reaching 4.5 ± 0.7 log TCID50/mL. After challenge infection, 100% of unvaccinated hamsters showed clinical symptoms (stress state, passivity, tousled coat, decreased body temperature, and body weight, and the development of acute pneumonia), with 25 ± 5% dying. These findings pave the way for testing the candidate vaccine in clinical human trials.
Collapse
Affiliation(s)
| | - Kunsulu Zakarya
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Berik Khairullin
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Mukhit Orynbayev
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Yergali Abduraimov
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Markhabat Kassenov
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | | | - Aslan Kerimbayev
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Sergazy Nurabayev
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | | | - Aziz Nakhanov
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Ainur Nurpeisova
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Olga Chervyakova
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | | | - Yerbol Burashev
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | | | - Moldir Azanbekova
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Syrym Kopeyev
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | | | - Aisha Issabek
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Moldir Tuyskanova
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Lespek Kutumbetov
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| |
Collapse
|
5
|
Ligotti ME, Pojero F, Accardi G, Aiello A, Caruso C, Duro G, Candore G. Immunopathology and Immunosenescence, the Immunological Key Words of Severe COVID-19. Is There a Role for Stem Cell Transplantation? Front Cell Dev Biol 2021; 9:725606. [PMID: 34595175 PMCID: PMC8477205 DOI: 10.3389/fcell.2021.725606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/06/2021] [Indexed: 01/08/2023] Open
Abstract
The outcomes of Coronavirus disease-2019 (COVID-19) vary depending on the age, health status and sex of an individual, ranging from asymptomatic to lethal. From an immunologic viewpoint, the final severe lung damage observed in COVID-19 should be caused by cytokine storm, driven mainly by interleukin-6 and other pro-inflammatory cytokines. However, which immunopathogenic status precedes this "cytokine storm" and why the male older population is more severely affected, are currently unanswered questions. The aging of the immune system, i.e., immunosenescence, closely associated with a low-grade inflammatory status called "inflammageing," should play a key role. The remodeling of both innate and adaptive immune response observed with aging can partly explain the age gradient in severity and mortality of COVID-19. This review discusses how aging impacts the immune response to the virus, focusing on possible strategies to rejuvenate the immune system with stem cell-based therapies. Indeed, due to immunomodulatory and anti-inflammatory properties, multipotent mesenchymal stem cells (MSCs) are a worth-considering option against COVID-19 adverse outcomes.
Collapse
Affiliation(s)
- Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Palermo, Italy
| | - Fanny Pojero
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
- International Society on Aging and Disease, Fort Worth, TX, United States
| | - Giovanni Duro
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Palermo, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
6
|
Sajjad H, Majeed M, Imtiaz S, Siddiqah M, Sajjad A, Din M, Ali M. Origin, Pathogenesis, Diagnosis and Treatment Options for SARS-CoV-2: A Review. Biologia (Bratisl) 2021; 76:2655-2673. [PMID: 34092799 PMCID: PMC8170627 DOI: 10.1007/s11756-021-00792-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 05/17/2021] [Indexed: 01/08/2023]
Abstract
Emerging viral infections are among the greatest challenges in the public health sector in the twenty-first century. Among these, most of the viruses jump from other species of animals to humans called zoonotic viruses. The Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), by crossing species-barrier, has infected the human population for the third time in the current century and has caused the coronavirus disease-2019 (COVID-19) . Mutation and adaptation for years have greatly influenced the co-evolution and existence of coronaviruses and their possible hosts including humans. The appearance of SARS-CoV-2 in China thrust coronaviruses into the limelight and shocked the world. Presently, no coronavirus vaccines are clinically available to combat the virus's devastating effects. To counter the emergence of the COVID-19 pandemic, it is therefore important to understand the complex nature of coronaviruses and their clinical attributes. SARS and MERS outbreaks had ultimately led to socio-economic deprivation in the previous decades. In addressing the recent disastrous situation, the COVID-19 pandemic still needs some lessons from prior experience. In this review, we have highlighted the chronological order of coronavirus strains, their genomic features, the mechanism of action of SARS-CoV-2, and its disastrous repercussions on the world. We have also suggested some therapeutic options that could be effective against the COVID-19.
Collapse
Affiliation(s)
- Humna Sajjad
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Mohsin Majeed
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Saiqa Imtiaz
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Mariyam Siddiqah
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Anila Sajjad
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Misbahud Din
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| |
Collapse
|
7
|
Das A, Pandita D, Jain GK, Agarwal P, Grewal AS, Khar RK, Lather V. Role of phytoconstituents in the management of COVID-19. Chem Biol Interact 2021; 341:109449. [PMID: 33798507 PMCID: PMC8008820 DOI: 10.1016/j.cbi.2021.109449] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/07/2021] [Accepted: 03/21/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND COVID-19, a severe global pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has emerged as one of the most threatening transmissible disease. As a great threat to global public health, the development of treatment options has become vital, and a rush to find a cure has mobilized researchers globally from all areas. SCOPE AND APPROACH This review focuses on deciphering the potential of different secondary metabolites from medicinal plants as therapeutic options either as inhibitors of therapeutic targets of SARS-CoV-2 or as blockers of viral particles entry through host cell receptors. The use of medicinal plants containing specific phytomoieties could be seen in providing a safer and long-term solution for the population with lesser side effects. Key Findings and Conclusions: Considering the high cost and time-consuming drug discovery process, therapeutic repositioning of existing drugs was explored as treatment option in COVID-19, however several molecules have been retracted as therapeutics either due to no positive outcomes or the severe side effects. These effects call for exploring the alternate treatment options which are therapeutically effective as well as safe. Keeping this in mind, phytopharmaceuticals derived from medicinal plants could be explored as important resources in the development of COVID-19 treatment, as their role in the past for treatment of viral diseases like HIV, MERS-CoV, and influenza has been well reported. Considering this fact, different phytoconstituents such as flavonoids, alkaloids, tannins and glycosides etc. Possessing antiviral properties against coronaviruses and possessing potential against SARS-CoV-2 have been reviewed in the present work.
Collapse
Affiliation(s)
- Amiya Das
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Deepti Pandita
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India.
| | - Gaurav Kumar Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India
| | - Pallavi Agarwal
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | | | - Roop K Khar
- BS Anangpuria Institute of Pharmacy, Faridabad, Haryana, India
| | - Viney Lather
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India.
| |
Collapse
|
8
|
Xiang WL, Cheng JJ, Wu LP, Chen BY, Li WX, Qiu DY, Zhang W, Ge FH, Chen D, Wang Z. Clinical characteristics and plasma antibody titer of patients with COVID-19 in Zhejiang, China. J Zhejiang Univ Sci B 2021; 21:955-960. [PMID: 33843161 PMCID: PMC7759456 DOI: 10.1631/jzus.b2000593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which first affected humans in China on December 31, 2019 (Shi et al., 2020). Coronaviruses generally cause mild, self-limiting upper respiratory tract infections in humans, such as the common cold, pneumonia, and gastroenteritis (To et al., 2013; Berry et al., 2015; Chan et al., 2015). According to the Report of the World Health Organization (WHO)-China Joint Mission on COVID-19 (WHO, 2020), the case fatality rate of COVID-19 increases with age, while the rate among males is higher than that among females (4.7% and 2.8%, respectively). Since an effective vaccine and specific anti-viral drugs are still under development, passive immunization using the convalescent plasma (CP) of recovered COVID-19 donors may offer a suitable therapeutic strategy for severely ill patients in the meantime. So far, several studies have shown therapeutic efficacy of CP transfusion in treating COVID-19 cases. A pilot study first reported that transfusion of CP with neutralizing antibody titers above 1:640 was well tolerated and could potentially improve clinical outcomes through neutralizing viremia in severe COVID-19 cases (Chen et al., 2020). Immunoglobulin G (IgG) and IgM are the most abundant and important antibodies in protecting the human body from viral attack (Arabi et al., 2015; Marano et al., 2016). Our study aimed to understand the aspects of plasma antibody titer levels in convalescent patients, as well as assessing the clinical characteristics of normal, severely ill, and critically ill patients, and thus provide a basis for guiding CP therapy. We also hoped to find indicators which could serve as a reference in predicting the progression of the disease.
Collapse
Affiliation(s)
- Wei-Ling Xiang
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Department of Blood Transfusion, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Jing-Jing Cheng
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Department of Blood Transfusion, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Lian-Peng Wu
- Department of Laboratory Medicine, Wenzhou Central Hospital and Sixth People's Hospital of Wenzhou, Wenzhou 325000, China
| | - Bing-Yu Chen
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Department of Blood Transfusion, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Wen-Xin Li
- Research on the Application of Big Data-driven Integrated Blood Collection and Supply Auxiliary Diagnosis and Treatment System, Dongyang People's Hospital, Dongyang 322100, China
| | - Dan-Ying Qiu
- Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Wei Zhang
- Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Fei-Hang Ge
- Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Dong Chen
- Department of Laboratory Medicine, Wenzhou Central Hospital and Sixth People's Hospital of Wenzhou, Wenzhou 325000, China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Zhen Wang
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Department of Blood Transfusion, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| |
Collapse
|
9
|
Olbei M, Hautefort I, Modos D, Treveil A, Poletti M, Gul L, Shannon-Lowe CD, Korcsmaros T. SARS-CoV-2 Causes a Different Cytokine Response Compared to Other Cytokine Storm-Causing Respiratory Viruses in Severely Ill Patients. Front Immunol 2021; 12:629193. [PMID: 33732251 PMCID: PMC7956943 DOI: 10.3389/fimmu.2021.629193] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/29/2021] [Indexed: 12/21/2022] Open
Abstract
Hyper-induction of pro-inflammatory cytokines, also known as a cytokine storm or cytokine release syndrome (CRS), is one of the key aspects of the currently ongoing SARS-CoV-2 pandemic. This process occurs when a large number of innate and adaptive immune cells activate and start producing pro-inflammatory cytokines, establishing an exacerbated feedback loop of inflammation. It is one of the factors contributing to the mortality observed with coronavirus 2019 (COVID-19) for a subgroup of patients. CRS is not unique to the SARS-CoV-2 infection; it was prevalent in most of the major human coronavirus and influenza A subtype outbreaks of the past two decades (H5N1, SARS-CoV, MERS-CoV, and H7N9). With a comprehensive literature search, we collected changing the cytokine levels from patients upon infection with the viral pathogens mentioned above. We analyzed published patient data to highlight the conserved and unique cytokine responses caused by these viruses. Our curation indicates that the cytokine response induced by SARS-CoV-2 is different compared to other CRS-causing respiratory viruses, as SARS-CoV-2 does not always induce specific cytokines like other coronaviruses or influenza do, such as IL-2, IL-10, IL-4, or IL-5. Comparing the collated cytokine responses caused by the analyzed viruses highlights a SARS-CoV-2-specific dysregulation of the type-I interferon (IFN) response and its downstream cytokine signatures. The map of responses gathered in this study could help specialists identify interventions that alleviate CRS in different diseases and evaluate whether they could be used in the COVID-19 cases.
Collapse
Affiliation(s)
- Marton Olbei
- Earlham Institute, Norwich, United Kingdom
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | | | - Dezso Modos
- Earlham Institute, Norwich, United Kingdom
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Agatha Treveil
- Earlham Institute, Norwich, United Kingdom
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Martina Poletti
- Earlham Institute, Norwich, United Kingdom
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Lejla Gul
- Earlham Institute, Norwich, United Kingdom
| | - Claire D. Shannon-Lowe
- Institute of Immunology and Immunotherapy, The University of Birmingham, Birmingham, United Kingdom
| | - Tamas Korcsmaros
- Earlham Institute, Norwich, United Kingdom
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| |
Collapse
|
10
|
Sharma A, Ahmad Farouk I, Lal SK. COVID-19: A Review on the Novel Coronavirus Disease Evolution, Transmission, Detection, Control and Prevention. Viruses 2021. [PMID: 33572857 DOI: 10.3390/v13020202]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Three major outbreaks of the coronavirus, a zoonotic virus known to cause respiratory disease, have been reported since 2002, including SARS-CoV, MERS-CoV and the most recent 2019-nCoV, or more recently known as SARS-CoV-2. Bats are known to be the primary animal reservoir for coronaviruses. However, in the past few decades, the virus has been able to mutate and adapt to infect humans, resulting in an animal-to-human species barrier jump. The emergence of a novel coronavirus poses a serious global public health threat and possibly carries the potential of causing a major pandemic outbreak in the naïve human population. The recent outbreak of COVID-19, the disease caused by SARS-CoV-2, in Wuhan, Hubei Province, China has infected over 36.5 million individuals and claimed over one million lives worldwide, as of 8 October 2020. The novel virus is rapidly spreading across China and has been transmitted to 213 other countries/territories across the globe. Researchers have reported that the virus is constantly evolving and spreading through asymptomatic carriers, further suggesting a high global health threat. To this end, current up-to-date information on the coronavirus evolution and SARS-CoV-2 modes of transmission, detection techniques and current control and prevention strategies are summarized in this review.
Collapse
Affiliation(s)
- Anshika Sharma
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor DE, Malaysia
| | - Isra Ahmad Farouk
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor DE, Malaysia
| | - Sunil Kumar Lal
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor DE, Malaysia
- Tropical Medicine & Biology Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway 47500, Selangor DE, Malaysia
| |
Collapse
|
11
|
Sharma A, Ahmad Farouk I, Lal SK. COVID-19: A Review on the Novel Coronavirus Disease Evolution, Transmission, Detection, Control and Prevention. Viruses 2021; 13:202. [PMID: 33572857 PMCID: PMC7911532 DOI: 10.3390/v13020202] [Citation(s) in RCA: 321] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/10/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Three major outbreaks of the coronavirus, a zoonotic virus known to cause respiratory disease, have been reported since 2002, including SARS-CoV, MERS-CoV and the most recent 2019-nCoV, or more recently known as SARS-CoV-2. Bats are known to be the primary animal reservoir for coronaviruses. However, in the past few decades, the virus has been able to mutate and adapt to infect humans, resulting in an animal-to-human species barrier jump. The emergence of a novel coronavirus poses a serious global public health threat and possibly carries the potential of causing a major pandemic outbreak in the naïve human population. The recent outbreak of COVID-19, the disease caused by SARS-CoV-2, in Wuhan, Hubei Province, China has infected over 36.5 million individuals and claimed over one million lives worldwide, as of 8 October 2020. The novel virus is rapidly spreading across China and has been transmitted to 213 other countries/territories across the globe. Researchers have reported that the virus is constantly evolving and spreading through asymptomatic carriers, further suggesting a high global health threat. To this end, current up-to-date information on the coronavirus evolution and SARS-CoV-2 modes of transmission, detection techniques and current control and prevention strategies are summarized in this review.
Collapse
Affiliation(s)
- Anshika Sharma
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor DE, Malaysia; (A.S.); (I.A.F.)
| | - Isra Ahmad Farouk
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor DE, Malaysia; (A.S.); (I.A.F.)
| | - Sunil Kumar Lal
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor DE, Malaysia; (A.S.); (I.A.F.)
- Tropical Medicine & Biology Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway 47500, Selangor DE, Malaysia
| |
Collapse
|
12
|
Identification and characterization of a silent mutation in RNA binding domain of N protein coding gene from SARS-CoV-2. BMC Res Notes 2021; 14:10. [PMID: 33407800 PMCID: PMC7787625 DOI: 10.1186/s13104-020-05439-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Objective This study describes the occurrence of a silent mutation in the RNA binding domain of nucleocapsid phosphoprotein (N protein) coding gene from SARS-CoV-2 that may consequence to a missense mutation by onset of another single nucleotide mutation. Results In the DNA sequence isolated from severe acute respiratory syndrome (SARS-CoV-2) in Iran, a coding sequence for the RNA binding domain of N protein was detected. The comparison of Chinese and Iranian DNA sequences displayed that a thymine (T) was mutated to cytosine (C), so “TTG” from China was changed to “CTG” in Iran. Both DNA sequences from Iran and China have been encoded for leucine. In addition, the second T in “CTG” in the DNA or uracil (U) in “CUG” in the RNA sequences from Iran can be mutated to another C by a missense mutation resulting from thymine DNA glycosylase (TDG) of human and base excision repair mechanism to produce “CCG” encoding for proline, which consequently may increase the affinity of the RNA binding domain of N protein to viral RNA and improve the transcription rate, pathogenicity, evasion from human immunity system, spreading in the human body, and risk of human-to-human transmission rate of SARS-CoV-2.
Collapse
|
13
|
Van Vo G, Bagyinszky E, Park YS, Hulme J, An SSA. SARS-CoV-2 (COVID-19): Beginning to Understand a New Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1321:3-19. [PMID: 33656709 DOI: 10.1007/978-3-030-59261-5_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Within the last two decades, several members of the Coronaviridae family demonstrated epidemic potential. In late 2019, an unnamed genetic relative, later named SARS-CoV-2 (COVID-19), erupted in the highly populous neighborhoods of Wuhan, China. Unchecked, COVID-19 spread rapidly among interconnected communities and related households before containment measures could be enacted. At present, the mortality rate of COVID-19 infection worldwide is 6.6%. In order to mitigate the number of infections, restrictions or recommendations on the number of people that can gather in a given area have been employed by governments worldwide. For governments to confidently lift these restrictions as well as counter a potential secondary wave of infections, alternative medications and diagnostic strategies against COVID-19 are urgently required. This review has focused on these issues.
Collapse
Affiliation(s)
- Giau Van Vo
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam-si, Gyeonggi-do, South Korea
- Department of Bionanotechnology, Gachon University, Seongnam-si, Gyeonggi-do, South Korea
- School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Eva Bagyinszky
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam-si, Gyeonggi-do, South Korea
- Department of Bionanotechnology, Gachon University, Seongnam-si, Gyeonggi-do, South Korea
| | - Yoon Soo Park
- Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si, Gyeonggi-do, South Korea
| | - John Hulme
- Department of Bionanotechnology, Gachon University, Seongnam-si, Gyeonggi-do, South Korea.
| | - Seong Soo A An
- Department of Bionanotechnology, Gachon University, Seongnam-si, Gyeonggi-do, South Korea.
| |
Collapse
|
14
|
Tripathi PK, Upadhyay S, Singh M, Raghavendhar S, Bhardwaj M, Sharma P, Patel AK. Screening and evaluation of approved drugs as inhibitors of main protease of SARS-CoV-2. Int J Biol Macromol 2020; 164:2622-2631. [PMID: 32853604 PMCID: PMC7444494 DOI: 10.1016/j.ijbiomac.2020.08.166] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has emerged as a global catastrophe. The virus requires main protease for processing the viral polyproteins PP1A and PP1AB translated from the viral RNA. In search of a quick, safe and successful therapeutic agent; we screened various clinically approved drugs for the in-vitro inhibitory effect on 3CLPro which may be able to halt virus replication. The methods used includes protease activity assay, fluorescence quenching, surface plasmon resonance (SPR), Thermofluor® Assay, Size exclusion chromatography and in-silico docking studies. We found that Teicoplanin as most effective drug with IC50 ~ 1.5 μM. Additionally, through fluorescence quenching Stern-Volmer quenching constant (KSV) for Teicoplanin was estimated as 2.5 × 105 L·mol-1, which suggests a relatively high affinity between Teicoplanin and 3CLPro protease. The SPR shows good interaction between Teicoplanin and 3CLPro with KD ~ 1.6 μM. Our results provide critical insights into the mechanism of action of Teicoplanin as a potential therapeutic against COVID-19. We found that Teicoplanin is about 10-20 fold more potent in inhibiting protease activity than other drugs in use, such as lopinavir, hydroxychloroquine, chloroquine, azithromycin, atazanavir etc. Therefore, Teicoplanin emerged as the best inhibitor among all drug molecules we screened against 3CLPro of SARS-CoV-2.
Collapse
Affiliation(s)
- Praveen Kumar Tripathi
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India
| | - Saurabh Upadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India
| | - Manju Singh
- Morarji Desai National Institute of Yoga, New Delhi 110 001, India
| | - Siva Raghavendhar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India
| | - Mohit Bhardwaj
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Ashok Kumar Patel
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India.
| |
Collapse
|
15
|
Krishnamoorthy S, Swain B, Verma RS, Gunthe SS. SARS-CoV, MERS-CoV, and 2019-nCoV viruses: an overview of origin, evolution, and genetic variations. Virusdisease 2020; 31:411-423. [PMID: 33102628 PMCID: PMC7567416 DOI: 10.1007/s13337-020-00632-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses are single stranded RNA viruses usually present in bats (reservoir hosts), and are generally lethal, highly transmissible, and pathogenic viruses causing sever morbidity and mortality rates in human. Several animals including civets, camels, etc. have been identified as intermediate hosts enabling effective recombination of these viruses to emerge as new virulent and pathogenic strains. Among the seven known human coronaviruses SARS-CoV, MERS-CoV, and SARS-CoV-2 (2019-nCoV) have evolved as severe pathogenic forms infecting the human respiratory tract. About 8096 cases and 774 deaths were reported worldwide with the SARS-CoV infection during year 2002; 2229 cases and 791 deaths were reported for the MERS-CoV that emerged during 2012. Recently ~ 33,849,737 cases and 1,012,742 deaths (data as on 30 Sep 2020) were reported from the recent evolver SARS-CoV-2 infection. Studies on epidemiology and pathogenicity have shown that the viral spread was potentially caused by the contact route especially through the droplets, aerosols, and contaminated fomites. Genomic studies have confirmed the role of the viral spike protein in virulence and pathogenicity. They target the respiratory tract of the human causing severe progressive pneumonia affecting other organs like central nervous system in case of SARS-CoV, severe renal failure in MERS-CoV, and multi-organ failure in SARS-CoV-2. Herein, with respect to current awareness and role of coronaviruses in global public health, we review the various factors involving the origin, evolution, and transmission including the genetic variations observed, epidemiology, and pathogenicity of the three potential coronaviruses variants SARS-CoV, MERS-CoV, and 2019-nCoV.
Collapse
Affiliation(s)
- Sarayu Krishnamoorthy
- EWRE Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600 036 India
| | - Basudev Swain
- EWRE Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600 036 India
| | - R. S. Verma
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600 036 India
| | - Sachin S. Gunthe
- EWRE Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600 036 India
| |
Collapse
|
16
|
Pietrobon AJ, Teixeira FME, Sato MN. I mmunosenescence and Inflammaging: Risk Factors of Severe COVID-19 in Older People. Front Immunol 2020; 11:579220. [PMID: 33193377 PMCID: PMC7656138 DOI: 10.3389/fimmu.2020.579220] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/29/2020] [Indexed: 01/08/2023] Open
Abstract
Old individuals are more susceptible to various infections due to immunological changes that occur during the aging process. These changes named collectively as "immunosenescence" include decreases in both the innate and adaptive immune responses in addition to the exacerbated production of inflammatory cytokines. This scenario of immunological dysfunction and its relationship with disease development in older people has been widely studied, especially in infections that can be fatal, such as influenza and, more recently, COVID-19. In the current scenario of SARS-CoV-2 infection, many mechanisms of disease pathogenesis in old individuals have been proposed. To better understand the dynamics of COVID-19 in this group, aspects related to immunological senescence must be well elucidated. In this article, we discuss the main mechanisms involved in immunosenescence and their possible correlations with the susceptibility of individuals of advanced age to SARS-CoV-2 infection and the more severe conditions of the disease.
Collapse
Affiliation(s)
- Anna Julia Pietrobon
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Franciane Mouradian Emidio Teixeira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Notomi Sato
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
17
|
Poudel U, Subedi D, Pantha S, Dhakal S. Animal coronaviruses and coronavirus disease 2019: Lesson for One Health approach. Open Vet J 2020; 10:239-251. [PMID: 33282694 PMCID: PMC7703617 DOI: 10.4314/ovj.v10i3.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/06/2020] [Indexed: 02/02/2023] Open
Abstract
Coronaviruses are a group of enveloped, single-stranded, positive-sense RNA viruses that are broadly classified into alpha, beta, gamma, and delta coronavirus genera based on the viral genome. Coronavirus was not thought to be a significant problem in humans until the outbreak of severe acute respiratory syndrome in 2002, but infections in animals, including pigs, cats, dogs, and poultry, have been problematic for a long time. The outbreak of coronavirus disease 2019 in December 2019 in Wuhan, China, drew special attention towards this virus once again. The intermediate host of this novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is yet to be determined, but it has a very close genomic relationship with the bat coronavirus (Bat-CoV), RaTG13 strain, and the pangolin coronaviruses. As veterinary medicine has a long-term experience dealing with coronaviruses, this could be helpful in better understanding and detecting the origin of SARS-CoV-2 and drive human medicine towards the development of vaccines and antiviral drugs through the collaborative and transdisciplinary approaches of One Health.
Collapse
Affiliation(s)
- Uddab Poudel
- Institute of Agriculture and Animal Science (IAAS), Paklihawa Campus, Tribhuvan University, Siddharthanagar, Nepal
| | - Deepak Subedi
- Institute of Agriculture and Animal Science (IAAS), Paklihawa Campus, Tribhuvan University, Siddharthanagar, Nepal
| | - Saurav Pantha
- Institute of Agriculture and Animal Science (IAAS), Paklihawa Campus, Tribhuvan University, Siddharthanagar, Nepal
| | - Santosh Dhakal
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Shakeel S, Ahmed Hassali MA, Abbas Naqvi A. Health and Economic Impact of COVID-19: Mapping the Consequences of a Pandemic in Malaysia. Malays J Med Sci 2020; 27:159-164. [PMID: 32788851 PMCID: PMC7409569 DOI: 10.21315/mjms2020.27.2.16] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/25/2020] [Indexed: 11/10/2022] Open
Abstract
The World Health Organization (WHO) has termed the novel coronavirus infection a pandemic based on number of confirmed cases in more than 195 countries and with risk of further spread. The infection has had drastic impact on global trade and stock markets. The Malaysian authorities realised the need to ensure availability of health resources and facilities in the country so that the healthcare professionals could treat serious cases on priority basis. Steps have been taken to ensure that health facilities are not overwhelmed with cases and do not become the source of virus spread to other healthcare staff and patients.
Collapse
Affiliation(s)
- Sadia Shakeel
- Discipline of Social and Administrative Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia.,Faculty of Pharmaceutical Sciences, Dow University of Health Sciences, Karachi-Sind, Pakistan
| | - Mohammad Azmi Ahmed Hassali
- Discipline of Social and Administrative Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Atta Abbas Naqvi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
19
|
Chitranshi N, Gupta VK, Rajput R, Godinez A, Pushpitha K, Shen T, Mirzaei M, You Y, Basavarajappa D, Gupta V, Graham SL. Evolving geographic diversity in SARS-CoV2 and in silico analysis of replicating enzyme 3CL pro targeting repurposed drug candidates. J Transl Med 2020; 18:278. [PMID: 32646487 PMCID: PMC7344048 DOI: 10.1186/s12967-020-02448-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Severe acute respiratory syndrome (SARS) has been initiating pandemics since the beginning of the century. In December 2019, the world was hit again by a devastating SARS episode that has so far infected almost four million individuals worldwide, with over 200,000 fatalities having already occurred by mid-April 2020, and the infection rate continues to grow exponentially. SARS coronavirus 2 (SARS-CoV-2) is a single stranded RNA pathogen which is characterised by a high mutation rate. It is vital to explore the mutagenic capability of the viral genome that enables SARS-CoV-2 to rapidly jump from one host immunity to another and adapt to the genetic pool of local populations. METHODS For this study, we analysed 2301 complete viral sequences reported from SARS-CoV-2 infected patients. SARS-CoV-2 host genomes were collected from The Global Initiative on Sharing All Influenza Data (GISAID) database containing 9 genomes from pangolin-CoV origin and 3 genomes from bat-CoV origin, Wuhan SARS-CoV2 reference genome was collected from GeneBank database. The Multiple sequence alignment tool, Clustal Omega was used for genomic sequence alignment. The viral replicating enzyme, 3-chymotrypsin-like cysteine protease (3CLpro) that plays a key role in its pathogenicity was used to assess its affinity with pharmacological inhibitors and repurposed drugs such as anti-viral flavones, biflavanoids, anti-malarial drugs and vitamin supplements. RESULTS Our results demonstrate that bat-CoV shares > 96% similar identity, while pangolin-CoV shares 85.98% identity with Wuhan SARS-CoV-2 genome. This in-depth analysis has identified 12 novel recurrent mutations in South American and African viral genomes out of which 3 were unique in South America, 4 unique in Africa and 5 were present in-patient isolates from both populations. Using state of the art in silico approaches, this study further investigates the interaction of repurposed drugs with the SARS-CoV-2 3CLpro enzyme, which regulates viral replication machinery. CONCLUSIONS Overall, this study provides insights into the evolving mutations, with implications to understand viral pathogenicity and possible new strategies for repurposing compounds to combat the nCovid-19 pandemic.
Collapse
Affiliation(s)
- Nitin Chitranshi
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia.
| | - Vivek K Gupta
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia.
| | - Rashi Rajput
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Angela Godinez
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Kanishka Pushpitha
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Ting Shen
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Mehdi Mirzaei
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Yuyi You
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Stuart L Graham
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
- Save Sight Institute, Sydney University, Sydney, NSW, 2000, Australia
| |
Collapse
|
20
|
Gupta A, Kumar S, Kumar R, Choudhary AK, Kumari K, Singh P, Kumar V. COVID-19: Emergence of Infectious Diseases, Nanotechnology Aspects, Challenges, and Future Perspectives. ChemistrySelect 2020; 5:7521-7533. [PMID: 32835089 PMCID: PMC7361534 DOI: 10.1002/slct.202001709] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/22/2020] [Indexed: 01/08/2023]
Abstract
Wuhan, a city of China, is the epicenter for the pandemic outbreak of coronavirus disease-2019 (COVID-19). It has become a severe public health challenge to the world and established a public health emergency of international worry. This infectious disease has pulled down the economy of almost all top developed nations. The coronaviruses (CoVs) known for various epidemics caused time to time. Infectious diseases such as severe acute respiratory syndrome (SARS) and middle east respiratory syndrome (MERS), followed by COVID-19, are all coronaviruses led outbreaks that scourged the history of mankind. CoVs evolved themselves to more infectious, transmissible, and more pandemic with time. To prevent the spread of the SARS-CoV-2, many countries have ordered the complete lockdown to combat the outbreak. This paper briefly discussed the historical background of CoVs and the evolution of human coronaviruses (HCoVs), the case studies and the development of their antiviral medications. The viral infection encountered with present-day challenges and futuristic approaches with the help of nanotechnology to minimize the spread of infectious viruses. The antiviral drugs and their clinical advances, along with herbal medicines for viral inhibition and immunity boosters, are described. Elaboration of tables related to CoVs for the compilation of the literature has been adopted for the better understanding.
Collapse
Affiliation(s)
- Akanksha Gupta
- Department of ChemistrySri Venkateswara CollegeUniversity of DelhiIndia.
| | - Sanjay Kumar
- Department of ChemistryDeshbandhu CollegeUniversity of DelhiIndia.
| | - Ravinder Kumar
- Department of Chemistry, Gurukula Kangri VishwavidyalayaHaridwarIndia.
| | | | - Kamlesh Kumari
- Department of ZoologyDeen Dayal Upadhyaya CollegeDelhiIndia.
| | - Prashant Singh
- Department of ChemistryAtma Ram Sanatan Dharma CollegeDelhi UniversityNew DelhiIndia.
| | - Vinod Kumar
- Department of ChemistryKirori Mal CollegeUniversity of DelhiIndia
- Special Centre for Nano SciencesJawaharlal Nehru UniversityDelhiIndia
| |
Collapse
|
21
|
Mirzaei R, Karampoor S, Sholeh M, Moradi P, Ranjbar R, Ghasemi F. A contemporary review on pathogenesis and immunity of COVID-19 infection. Mol Biol Rep 2020; 47:5365-5376. [PMID: 32601923 PMCID: PMC7323602 DOI: 10.1007/s11033-020-05621-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/22/2020] [Indexed: 02/09/2023]
Abstract
Emerging of the COVID-19 pandemic has raised interests in the field of biology and pathogenesis of coronaviruses; including interactions between host immune reactions specific, and viral factors. Deep knowledge about the interaction between coronaviruses and the host factors could be useful to provide a better support for the disease sufferers and be advantageous for managing and treatment of the lung infection caused by the virus. At this study, we reviewed the updated information on the pathogenesis of the COVID-19 and the immune responses toward it, with a special focus on structure, genetics, and viral accessory proteins, viral replication, viral receptors, the human immune reactions, cytopathic effects, and host-related factors.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sajad Karampoor
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sholeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pouya Moradi
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
22
|
Roussel Y, Giraud-Gatineau A, Jimeno MT, Rolain JM, Zandotti C, Colson P, Raoult D. SARS-CoV-2: fear versus data. Int J Antimicrob Agents 2020; 55:105947. [PMID: 32201354 PMCID: PMC7102597 DOI: 10.1016/j.ijantimicag.2020.105947] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/14/2020] [Indexed: 12/31/2022]
Abstract
SARS-CoV-2, the novel coronavirus from China, is spreading around the world, causing a huge reaction despite its current low incidence outside China and the Far East. Four common coronaviruses are in current circulation and cause millions of cases worldwide. This article compares the incidence and mortality rates of these four common coronaviruses with those of SARS-CoV-2 in Organisation for Economic Co-operation and Development countries. It is concluded that the problem of SARS-CoV-2 is probably being overestimated, as 2.6 million people die of respiratory infections each year compared with less than 4000 deaths for SARS-CoV-2 at the time of writing.
Collapse
Affiliation(s)
- Yanis Roussel
- Institut Hospitalo-universitaire Méditerranée Infection, Marseille, France; Aix Marseille Université, Institut de Recherche pour le Développement, Assistance Publique-Hôpitaux de Marseille, Microbes Evolution Phylogénie et Infections, Marseille, France
| | - Audrey Giraud-Gatineau
- Institut Hospitalo-universitaire Méditerranée Infection, Marseille, France; Aix Marseille Université, Institut de Recherche pour le Développement, Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, Vecteurs - Infections Tropicales et Méditerranéennes, Marseille, France; Centre d'Epidémiologie et de Santé Publique des Armées, Marseille, France; Assistance Publique - Hôpitaux de Marseille, Marseille, France
| | | | - Jean-Marc Rolain
- Institut Hospitalo-universitaire Méditerranée Infection, Marseille, France; Aix Marseille Université, Institut de Recherche pour le Développement, Assistance Publique-Hôpitaux de Marseille, Microbes Evolution Phylogénie et Infections, Marseille, France
| | - Christine Zandotti
- Institut Hospitalo-universitaire Méditerranée Infection, Marseille, France; Aix Marseille Université, Institut de Recherche pour le Développement, Assistance Publique-Hôpitaux de Marseille, Microbes Evolution Phylogénie et Infections, Marseille, France
| | - Philippe Colson
- Institut Hospitalo-universitaire Méditerranée Infection, Marseille, France; Aix Marseille Université, Institut de Recherche pour le Développement, Assistance Publique-Hôpitaux de Marseille, Microbes Evolution Phylogénie et Infections, Marseille, France
| | - Didier Raoult
- Institut Hospitalo-universitaire Méditerranée Infection, Marseille, France; Aix Marseille Université, Institut de Recherche pour le Développement, Assistance Publique-Hôpitaux de Marseille, Microbes Evolution Phylogénie et Infections, Marseille, France.
| |
Collapse
|
23
|
Raj K, Rohit, Ghosh A, Singh S. Coronavirus as silent killer: recent advancement to pathogenesis, therapeutic strategy and future perspectives. Virusdisease 2020; 31:137-145. [PMID: 32313824 PMCID: PMC7167492 DOI: 10.1007/s13337-020-00580-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022] Open
Abstract
The present outbreak associated with corona virus [CoVs] in China which is believed to be one of the massive eruptions towards mankind in 2019–2020. In the present scenario CoVs has been transmitted to the European and American regions through the travellers from wide spread countries like China and Japan. The viral disease is spreading through the contact in any form by the infected persons or patients and creating huge risk of mortality. CoVs are a single positive-sense RNA virus; mutation rates are higher than DNA viruses and indicate a more effective survival adaption mechanism. Human CoVs can cause common cold and influenza-like illness and a variety of severe acute respiratory disease such as pneumonia. Early in infection, CoVs infects epithelial cells, macrophages, T-cells, dendritic cells and also can affect the development and implantation of pro-inflammatory cytokines and chemokines. It mainly produces the melanoma differentiation associated with protein-5, retinoic acid inducible gene-1 and endosomal toll-like receptor 3. How CoVs affects the function of the immune system is still unclear due to lack of this knowledge. No Food and Drug Administration approved treatment is available till date. In this review, we are tried to explore the epidemiology, pathogenesis and current treatment of CoVs infection. The promising therapeutics molecules against CoVs and future prospective have been also discussed which will be helpful for researchers to find out the new molecules for the treatment of CoVs disease.
Collapse
Affiliation(s)
- Khadga Raj
- 1Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001 India
| | - Rohit
- 2Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab 142001 India
| | - Anirban Ghosh
- 1Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001 India
| | - Shamsher Singh
- 3Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001 India
| |
Collapse
|
24
|
Ye ZW, Yuan S, Yuen KS, Fung SY, Chan CP, Jin DY. Zoonotic origins of human coronaviruses. Int J Biol Sci 2020; 16:1686-1697. [PMID: 32226286 PMCID: PMC7098031 DOI: 10.7150/ijbs.45472] [Citation(s) in RCA: 528] [Impact Index Per Article: 105.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
Mutation and adaptation have driven the co-evolution of coronaviruses (CoVs) and their hosts, including human beings, for thousands of years. Before 2003, two human CoVs (HCoVs) were known to cause mild illness, such as common cold. The outbreaks of severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS) have flipped the coin to reveal how devastating and life-threatening an HCoV infection could be. The emergence of SARS-CoV-2 in central China at the end of 2019 has thrusted CoVs into the spotlight again and surprised us with its high transmissibility but reduced pathogenicity compared to its sister SARS-CoV. HCoV infection is a zoonosis and understanding the zoonotic origins of HCoVs would serve us well. Most HCoVs originated from bats where they are non-pathogenic. The intermediate reservoir hosts of some HCoVs are also known. Identifying the animal hosts has direct implications in the prevention of human diseases. Investigating CoV-host interactions in animals might also derive important insight on CoV pathogenesis in humans. In this review, we present an overview of the existing knowledge about the seven HCoVs, with a focus on the history of their discovery as well as their zoonotic origins and interspecies transmission. Importantly, we compare and contrast the different HCoVs from a perspective of virus evolution and genome recombination. The current CoV disease 2019 (COVID-19) epidemic is discussed in this context. In addition, the requirements for successful host switches and the implications of virus evolution on disease severity are also highlighted.
Collapse
Affiliation(s)
- Zi-Wei Ye
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Shuofeng Yuan
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kit-San Yuen
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Sin-Yee Fung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
25
|
Dong N, Yang X, Ye L, Chen K, Chan EWC, Chen S. Genomic and protein structure modelling analysis depicts the origin and pathogenicity of 2019-nCoV, a new coronavirus which caused a pneumonia outbreak in Wuhan, China. F1000Res 2020. [DOI: 10.12688/f1000research.22357.2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: A pandemic outbreak caused by a novel coronavirus, 2019-nCoV, has originated from Wuhan, China and spread to many countries around the world. The outbreak has led to around 45 thousand cases and over one thousand death so far. Methods: Phylogenetic analysis and sequence alignment were used to align the whole genome sequence of 2019-nCoV with other over 200 sequences of coronaviruses to predict the origin of this novel virus. In addition, protein modeling and analysis were performed to access the potential binding of the spike protein of 2019-nCoV with human cell receptor, angiotensin-converting enzyme 2 (ACE2). Results: Detailed genomic and structure-based analysis of a new coronavirus, namely 2019-nCoV, showed that the new virus is a new type of bat coronavirus and is genetically fairly distant from the human SARS coronavirus. Structure analysis of the spike (S) protein of this new virus showed that its S protein only binds much weaker to the ACE2 receptor on human cells whereas the human SARS coronavirus exhibits strongly affinity to the ACE receptor. Conclusions: These findings suggest that the new virus should theoretically not be able to cause very serious human infection when compared to human SARS virus. However, the lower pathogenicity of this new virus may lead to longer incubation time and better adaption to human, which may favor its efficient transmission in human. These data are important to guide design of infection control policy and inform the public on the nature of threat imposed by 2019-nCov. Most importantly, using the analysis platform that we have developed, we should be able to predict whether the new mutations could lead to the increase of infectivity of the mutated virus in a very short time.
Collapse
|
26
|
Raoult D, Zumla A, Locatelli F, Ippolito G, Kroemer G. Coronavirus infections: Epidemiological, clinical and immunological features and hypotheses. Cell Stress 2020; 4:66-75. [PMID: 32292881 PMCID: PMC7064018 DOI: 10.15698/cst2020.04.216] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Coronaviruses (CoVs) are a large family of enveloped, positive-strand RNA viruses. Four human CoVs (HCoVs), the non-severe acute respiratory syndrome (SARS)-like HCoVs (namely HCoV 229E, NL63, OC43, and HKU1), are globally endemic and account for a substantial fraction of upper respiratory tract infections. Non-SARS-like CoV can occasionally produce severe diseases in frail subjects but do not cause any major (fatal) epidemics. In contrast, SARS like CoVs (namely SARS-CoV and Middle-East respiratory syndrome coronavirus, MERS-CoV) can cause intense short-lived fatal outbreaks. The current epidemic caused by the highly contagious SARS-CoV-2 and its rapid spread globally is of major concern. There is scanty knowledge on the actual pandemic potential of this new SARS-like virus. It might be speculated that SARS-CoV-2 epidemic is grossly underdiagnosed and that the infection is silently spreading across the globe with two consequences: (i) clusters of severe infections among frail subjects could haphazardly occur linked to unrecognized index cases; (ii) the current epidemic could naturally fall into a low-level endemic phase when a significant number of subjects will have developed immunity. Understanding the role of paucisymptomatic subjects and stratifying patients according to the risk of developing severe clinical presentations is pivotal for implementing reasonable measures to contain the infection and to reduce its mortality. Whilst the future evolution of this epidemic remains unpredictable, classic public health strategies must follow rational patterns. The emergence of yet another global epidemic underscores the permanent challenges that infectious diseases pose and underscores the need for global cooperation and preparedness, even during inter-epidemic periods.
Collapse
Affiliation(s)
- Didier Raoult
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), MEPHI, 27 boulevard Jean Moulin, 13005 Marseille, France; IHU Méditerranée Infection, Marseille, France
| | - Alimuddin Zumla
- Division of Infection and Immunity, Center for Clinical Microbiology, University College London, London, UK.,The National Institute of Health Research Biomedical Research Centre at UCL Hospitals, London, UK
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Giuseppe Ippolito
- National Institute for Infectious Diseases, Lazzaro Spallanzani, IRCCS, Rome, Italy
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
27
|
Absalan A, Doroud D, Salehi-Vaziri M, Kaghazian H, Ahmadi N, Zali F, Pouriavali's MH, Mousavi-Nasab SD. Computation screening and molecular docking of FDA approved viral protease inhibitors as a potential drug against COVID-19. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2020; 13:355-360. [PMID: 33244378 PMCID: PMC7682959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/29/2020] [Indexed: 11/08/2022]
Abstract
AIM This study demonstrated potent inhibitors against COVID-19 using the molecular docking approach of FDA approved viral antiprotease drugs. BACKGROUND COVID-19 has now spread throughout world. There is a serious need to find potential therapeutic agents. The 3C-like protease (Mpro/6LU7) is an attractive molecular target for rational anti-CoV drugs. METHODS The tertiary structure of COVID-19 Mpro was obtained from a protein data bank repository, and molecular docking screening was performed by Molegro Virtual Docker, ver. 6, with a grid resolution of 0.30 Å. Docking scores (DOS) are representative of calculated ligand-receptor (protein) interaction energy; therefore, more negative scores mean better binding tendency. Another docking study was then applied on each of the selected drugs with the best ligands separately and using a more accurate RMSD algorithm. RESULTS The docking of COVID-19 major protease (6LU7) with 17 selected drugs resulted in four FDA approved viral antiprotease drugs (Temoporfin, Simeprevir, Cobicistat, Ritonavir) showing the best docking scores. Among these 4 compounds, Temoporfin exhibited the best DOS (-202.88) and the best screened ligand with COVID-19 Mpro, followed by Simeprevir (-201.66), Cobicistat (-187.75), and Ritonavir (-186.66). As the best screened ligand, Temoporfin could target the Mpro with 20 different conformations, while Simeprevir, Cobicistat, and Ritonavir make 14, 10, and 10 potential conformations at the binding site, respectively. CONCLUSION The findings showed that the four selected FDA approved drugs can be potent inhibitors against COVID-19; among them, Temoporfin may be more potent for the treatment of the disease. Based on the findings, it is recommended that in-vitro and in-vivo evaluations be conducted to determine the effectiveness of these drugs against COVID-19.
Collapse
Affiliation(s)
- Abdorrahim Absalan
- Department of Medical Laboratory Sciences, Khomein University of Medical Sciences, Markazi Province, Iran
| | - Delaram Doroud
- Department of Research and Development, Production and Research Complex, Pasteur Institute, Tehran, Iran
- Viral vaccine research center, Pasteur institute of Iran
| | | | - Hooman Kaghazian
- Department of Research and Development, Production and Research Complex, Pasteur Institute, Tehran, Iran
- Viral vaccine research center, Pasteur institute of Iran
| | - Nayebali Ahmadi
- Proteomics Research Center, Department of Medical Lab Technology, Faculty of Paramedical Sciences,Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Zali
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Science, Tehran, Iran
| | | | - Seyed Dawood Mousavi-Nasab
- Department of Research and Development, Production and Research Complex, Pasteur Institute, Tehran, Iran
- Viral vaccine research center, Pasteur institute of Iran
| |
Collapse
|
28
|
Dervas E, Hepojoki J, Laimbacher A, Romero-Palomo F, Jelinek C, Keller S, Smura T, Hepojoki S, Kipar A, Hetzel U. Nidovirus-Associated Proliferative Pneumonia in the Green Tree Python (Morelia viridis). J Virol 2017; 91:e00718-17. [PMID: 28794044 PMCID: PMC5640870 DOI: 10.1128/jvi.00718-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/24/2017] [Indexed: 12/20/2022] Open
Abstract
In 2014 we observed a noticeable increase in the number of sudden deaths among green tree pythons (Morelia viridis). Pathological examination revealed the accumulation of mucoid material within the airways and lungs in association with enlargement of the entire lung. We performed a full necropsy and histological examination on 12 affected green tree pythons from 7 different breeders to characterize the pathogenesis of this mucinous pneumonia. By histology we could show a marked hyperplasia of the airway epithelium and of faveolar type II pneumocytes. Since routine microbiological tests failed to identify a causative agent, we studied lung tissue samples from a few diseased snakes by next-generation sequencing (NGS). From the NGS data we could assemble a piece of RNA genome whose sequence was <85% identical to that of nidoviruses previously identified in ball pythons and Indian pythons. We then employed reverse transcription-PCR to demonstrate the presence of the novel nidovirus in all diseased snakes. To attempt virus isolation, we established primary cultures of Morelia viridis liver and brain cells, which we inoculated with homogenates of lung tissue from infected individuals. Ultrastructural examination of concentrated cell culture supernatants showed the presence of nidovirus particles, and subsequent NGS analysis yielded the full genome of the novel virus Morelia viridis nidovirus (MVNV). We then generated an antibody against MVNV nucleoprotein, which we used alongside RNA in situ hybridization to demonstrate viral antigen and RNA in the affected lungs. This suggests that in natural infection MVNV damages the respiratory tract epithelium, which then results in epithelial hyperplasia, most likely as an exaggerated regenerative attempt in association with increased epithelial turnover.IMPORTANCE Novel nidoviruses associated with severe respiratory disease were fairly recently identified in ball pythons and Indian pythons. Herein we report on the isolation and identification of a further nidovirus from green tree pythons (Morelia viridis) with fatal pneumonia. We thoroughly characterized the pathological changes in the infected individuals and show that nidovirus infection is associated with marked epithelial proliferation in the respiratory tract. We speculate that this and the associated excess mucus production can lead to the animals' death by inhibiting normal gas exchange in the lungs. The virus was predominantly detected in the respiratory tract, which renders transmission via the respiratory route likely. Nidoviruses cause sudden outbreaks with high rates of mortality in breeding collections, and most affected snakes die without prior clinical signs. These findings, together with those of other groups, indicate that nidoviruses are a likely cause of severe pneumonia in pythons.
Collapse
Affiliation(s)
- Eva Dervas
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Jussi Hepojoki
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- University of Helsinki, Medicum, Department of Virology, Helsinki, Finland
| | - Andrea Laimbacher
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Fernando Romero-Palomo
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Christine Jelinek
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Saskia Keller
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Teemu Smura
- University of Helsinki, Medicum, Department of Virology, Helsinki, Finland
| | - Satu Hepojoki
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Anja Kipar
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Udo Hetzel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Liu WJ, Zhao M, Liu K, Xu K, Wong G, Tan W, Gao GF. T-cell immunity of SARS-CoV: Implications for vaccine development against MERS-CoV. Antiviral Res 2016; 137:82-92. [PMID: 27840203 PMCID: PMC7113894 DOI: 10.1016/j.antiviral.2016.11.006] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/03/2016] [Accepted: 11/08/2016] [Indexed: 12/14/2022]
Abstract
Over 12 years have elapsed since severe acute respiratory syndrome (SARS) triggered the first global alert for coronavirus infections. Virus transmission in humans was quickly halted by public health measures and human infections of SARS coronavirus (SARS-CoV) have not been observed since. However, other coronaviruses still pose a continuous threat to human health, as exemplified by the recent emergence of Middle East respiratory syndrome (MERS) in humans. The work on SARS-CoV widens our knowledge on the epidemiology, pathophysiology and immunology of coronaviruses and may shed light on MERS coronavirus (MERS-CoV). It has been confirmed that T-cell immunity plays an important role in recovery from SARS-CoV infection. Herein, we summarize T-cell immunological studies of SARS-CoV and discuss the potential cross-reactivity of the SARS-CoV-specific immunity against MERS-CoV, which may provide useful recommendations for the development of broad-spectrum vaccines against coronavirus infections. T-cell epitopes identified throughout the SARS-CoV proteome may act as candidates for vaccine development. Both SARS-CoV and MERS-CoV-recovered donors have had long-lasting memory T-cell immunity. The structures of HLA/SARS-CoV-epitopes illuminate the molecular bases of cellular immunogenicity. Potential cross-T-cell immune reactivities of SARS-CoV and MERS-CoV benefit vaccine development.
Collapse
Affiliation(s)
- William J Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 100052, China; College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, 518112, China.
| | - Min Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kefang Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 100052, China; College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Kun Xu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gary Wong
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, 518112, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Wenjie Tan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 100052, China; College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - George F Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 100052, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, 518112, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
30
|
Al-Hazmi A. Challenges presented by MERS corona virus, and SARS corona virus to global health. Saudi J Biol Sci 2016; 23:507-11. [PMID: 27298584 PMCID: PMC4890194 DOI: 10.1016/j.sjbs.2016.02.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/13/2016] [Accepted: 02/13/2016] [Indexed: 11/16/2022] Open
Abstract
Numerous viral infections have arisen and affected global healthcare facilities. Millions of people are at severe risk of acquiring several evolving viral infections through several factors. In the present article we have described about risk factors, chance of infection, and prevention methods of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and severe acute respiratory syndrome (SARS-CoV), human coronaviruses (CoVs) frequently cause a normal cold which is mild and self-restricting. Zoonotic transmission of CoVs such as the newly discovered MERS-CoV and SARS-CoV, may be associated with severe lower respiratory tract infection. The present review provides the recent clinical and pathological information on MERS and SARS. The task is to transform these discoveries about MERS and SARS pathogenesis and to develop intervention methods that will eventually allow the effective control of these recently arising severe viral infections. Global health sector has learnt many lessons through the recent outbreak of MERS and SARS, but the need for identifying new antiviral treatment was not learned. In the present article we have reviewed the literature on the several facets like transmission, precautions and effectiveness of treatments used in patients with MERS-CoV and SARS infections.
Collapse
Affiliation(s)
- Ali Al-Hazmi
- Department of Family & Community Medicine, King Saud University, Saudi Arabia
| |
Collapse
|
31
|
Muthumani K, Falzarano D, Reuschel EL, Tingey C, Flingai S, Villarreal DO, Wise M, Patel A, Izmirly A, Aljuaid A, Seliga AM, Soule G, Morrow M, Kraynyak KA, Khan AS, Scott DP, Feldmann F, LaCasse R, Meade-White K, Okumura A, Ugen KE, Sardesai NY, Kim JJ, Kobinger G, Feldmann H, Weiner DB. A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates. Sci Transl Med 2016; 7:301ra132. [PMID: 26290414 DOI: 10.1126/scitranslmed.aac7462] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
First identified in 2012, Middle East respiratory syndrome (MERS) is caused by an emerging human coronavirus, which is distinct from the severe acute respiratory syndrome coronavirus (SARS-CoV), and represents a novel member of the lineage C betacoronoviruses. Since its identification, MERS coronavirus (MERS-CoV) has been linked to more than 1372 infections manifesting with severe morbidity and, often, mortality (about 495 deaths) in the Arabian Peninsula, Europe, and, most recently, the United States. Human-to-human transmission has been documented, with nosocomial transmission appearing to be an important route of infection. The recent increase in cases of MERS in the Middle East coupled with the lack of approved antiviral therapies or vaccines to treat or prevent this infection are causes for concern. We report on the development of a synthetic DNA vaccine against MERS-CoV. An optimized DNA vaccine encoding the MERS spike protein induced potent cellular immunity and antigen-specific neutralizing antibodies in mice, macaques, and camels. Vaccinated rhesus macaques seroconverted rapidly and exhibited high levels of virus-neutralizing activity. Upon MERS viral challenge, all of the monkeys in the control-vaccinated group developed characteristic disease, including pneumonia. Vaccinated macaques were protected and failed to demonstrate any clinical or radiographic signs of pneumonia. These studies demonstrate that a consensus MERS spike protein synthetic DNA vaccine can induce protective responses against viral challenge, indicating that this strategy may have value as a possible vaccine modality against this emerging pathogen.
Collapse
Affiliation(s)
- Karuppiah Muthumani
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Darryl Falzarano
- Laboratory of Virology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
| | - Emma L Reuschel
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Colleen Tingey
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Seleeke Flingai
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Daniel O Villarreal
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Megan Wise
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Ami Patel
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Abdullah Izmirly
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Abdulelah Aljuaid
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Alecia M Seliga
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Geoff Soule
- Special Pathogens Program, University of Manitoba and Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada
| | - Matthew Morrow
- Inovio Pharmaceuticals Inc., Plymouth Meeting, PA 19462, USA
| | | | - Amir S Khan
- Inovio Pharmaceuticals Inc., Plymouth Meeting, PA 19462, USA
| | - Dana P Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA
| | - Rachel LaCasse
- Rocky Mountain Veterinary Branch, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA
| | - Kimberly Meade-White
- Rocky Mountain Veterinary Branch, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA
| | - Atsushi Okumura
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Kenneth E Ugen
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | | | - J Joseph Kim
- Inovio Pharmaceuticals Inc., Plymouth Meeting, PA 19462, USA
| | - Gary Kobinger
- Special Pathogens Program, University of Manitoba and Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
| | - David B Weiner
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA.
| |
Collapse
|
32
|
Chan JFW, Choi GKY, Yip CCY, Cheng VCC, Yuen KY. Zika fever and congenital Zika syndrome: An unexpected emerging arboviral disease. J Infect 2016; 72:507-24. [PMID: 26940504 PMCID: PMC7112603 DOI: 10.1016/j.jinf.2016.02.011] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 02/18/2016] [Accepted: 02/20/2016] [Indexed: 02/09/2023]
Abstract
Unlike its mosquito-borne relatives, such as dengue, West Nile, and Japanese encephalitis viruses, which can cause severe human diseases, Zika virus (ZIKV) has emerged from obscurity by its association with a suspected "congenital Zika syndrome", while causing asymptomatic or mild exanthematous febrile infections which are dengue- or rubella-like in infected individuals. Despite having been discovered in Uganda for almost 60 years, <20 human cases were reported before 2007. The massive epidemics in the Pacific islands associated with the ZIKV Asian lineage in 2007 and 2013 were followed by explosive outbreaks in Latin America in 2015. Although increased mosquito breeding associated with the El Niño effect superimposed on global warming is suspected, genetic changes in its RNA virus genome may have led to better adaptation to mosquitoes, other animal reservoirs, and human. We reviewed the epidemiology, clinical manifestation, virology, pathogenesis, laboratory diagnosis, management, and prevention of this emerging infection. Laboratory diagnosis can be confounded by cross-reactivity with other circulating flaviviruses. Besides mosquito bite and transplacental transmission, the risk of other potential routes of transmission by transfusion, transplantation, sexual activity, breastfeeding, respiratory droplet, and animal bite is discussed. Epidemic control requires adequate clearance of mosquito breeding grounds, personal protection against mosquito bite, and hopefully a safe and effective vaccine.
Collapse
Affiliation(s)
- Jasper F W Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Garnet K Y Choi
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Cyril C Y Yip
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Vincent C C Cheng
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
33
|
Sharmin R, Islam ABMMK. Conserved antigenic sites between MERS-CoV and Bat-coronavirus are revealed through sequence analysis. SOURCE CODE FOR BIOLOGY AND MEDICINE 2016; 11:3. [PMID: 26962326 PMCID: PMC4784407 DOI: 10.1186/s13029-016-0049-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 02/26/2016] [Indexed: 11/23/2022]
Abstract
Background MERS-CoV is a newly emerged human coronavirus reported closely related with HKU4 and HKU5 Bat coronaviruses. Bat and MERS corona-viruses are structurally related. Therefore, it is of interest to estimate the degree of conserved antigenic sites among them. It is of importance to elucidate the shared antigenic-sites and extent of conservation between them to understand the evolutionary dynamics of MERS-CoV. Results Multiple sequence alignment of the spike (S), membrane (M), enveloped (E) and nucleocapsid (N) proteins was employed to identify the sequence conservation among MERS and Bat (HKU4, HKU5) coronaviruses. We used various in silico tools to predict the conserved antigenic sites. We found that MERS-CoV shared 30 % of its S protein antigenic sites with HKU4 and 70 % with HKU5 bat-CoV. Whereas 100 % of its E, M and N protein’s antigenic sites are found to be conserved with those in HKU4 and HKU5. Conclusion This sharing suggests that in case of pathogenicity MERS-CoV is more closely related to HKU5 bat-CoV than HKU4 bat-CoV. The conserved epitopes indicates their evolutionary relationship and ancestry of pathogenicity. Electronic supplementary material The online version of this article (doi:10.1186/s13029-016-0049-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Refat Sharmin
- Research and Development Department, Incepta Vaccine Ltd., Zirabo, Savar, Dhaka 1341 Bangladesh
| | - Abul B M M K Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Science Complex Building, Dhaka, 1000 Bangladesh
| |
Collapse
|
34
|
Zhou J, Chu H, Chan JFW, Yuen KY. Middle East respiratory syndrome coronavirus infection: virus-host cell interactions and implications on pathogenesis. Virol J 2015; 12:218. [PMID: 26690369 PMCID: PMC4687146 DOI: 10.1186/s12985-015-0446-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/01/2015] [Indexed: 12/27/2022] Open
Abstract
Middle-East Respiratory Syndrome coronavirus (MERS-CoV) was identified to cause severe respiratory infection in humans since 2012. The continuing MERS epidemic with a case-fatality of more than 30 % poses a major threat to public health worldwide. Currently, the pathogenesis of human MERS-CoV infection remains poorly understood. We reviewed experimental findings from human primary cells and ex vivo human lung tissues, as well as those from animal studies, so as to understand the pathogenesis and high case-fatality of MERS. Human respiratory epithelial cells are highly susceptible to MERS-CoV and can support productive viral replication. However, the induction of antiviral cytokines and proinflammatory cytokines/chemokines are substantially dampened in the infected epithelial cells, due to the antagonistic mechanisms evolved by the virus. MERS-CoV can readily infect and robustly replicate in human macrophages and dendritic cells, triggering the aberrant production of proinflammatory cytokines/chemokines. MERS-CoV can also effectively infect human primary T cells and induce massive apoptosis in these cells. Although data from clinical, in vitro and ex vivo studies suggested the potential for virus dissemination, extrapulmonary involvement in MERS patients has not been ascertained due to the lack of autopsy study. In MERS-CoV permissive animal models, although viral RNA can be detected from multiple organs of the affected animals, the brain of human DPP4-transgenic mouse was the only extrapulmonary organ from which the infectious virus can be recovered. More research findings on the pathogenesis of MERS and the tissue tropisms of MERS-CoV may help to improve the treatment and infection control of MERS.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, China. .,Department of Microbiology, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong Special Administrative Region, China. .,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, China. .,Department of Microbiology, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong Special Administrative Region, China. .,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, China. .,Department of Microbiology, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong Special Administrative Region, China. .,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, China. .,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, China. .,Department of Microbiology, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong Special Administrative Region, China. .,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, China. .,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
35
|
Crystal Structure of Feline Infectious Peritonitis Virus Main Protease in Complex with Synergetic Dual Inhibitors. J Virol 2015; 90:1910-7. [PMID: 26656689 DOI: 10.1128/jvi.02685-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/24/2015] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Coronaviruses (CoVs) can cause highly prevalent diseases in humans and animals. Feline infectious peritonitis virus (FIPV) belongs to the genus Alphacoronavirus, resulting in a lethal systemic granulomatous disease called feline infectious peritonitis (FIP), which is one of the most important fatal infectious diseases of cats worldwide. No specific vaccines or drugs have been approved to treat FIP. CoV main proteases (M(pro)s) play a pivotal role in viral transcription and replication, making them an ideal target for drug development. Here, we report the crystal structure of FIPV M(pro) in complex with dual inhibitors, a zinc ion and a Michael acceptor. The complex structure elaborates a unique mechanism of two distinct inhibitors synergizing to inactivate the protease, providing a structural basis to design novel antivirals and suggesting the potential to take advantage of zinc as an adjunct therapy against CoV-associated diseases. IMPORTANCE Coronaviruses (CoVs) have the largest genome size among all RNA viruses. CoV infection causes various diseases in humans and animals, including severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). No approved specific drugs or vaccinations are available to treat their infections. Here, we report a novel dual inhibition mechanism targeting CoV main protease (M(pro)) from feline infectious peritonitis virus (FIPV), which leads to lethal systemic granulomatous disease in cats. M(pro), conserved across all CoV genomes, is essential for viral replication and transcription. We demonstrated that zinc ion and a Michael acceptor-based peptidomimetic inhibitor synergistically inactivate FIPV M(pro). We also solved the structure of FIPV M(pro) complexed with two inhibitors, delineating the structural view of a dual inhibition mechanism. Our study provides new insight into the pharmaceutical strategy against CoV M(pro) through using zinc as an adjuvant therapy to enhance the efficacy of an irreversible peptidomimetic inhibitor.
Collapse
|
36
|
Functional variants regulating LGALS1 (Galectin 1) expression affect human susceptibility to influenza A(H7N9). Sci Rep 2015; 5:8517. [PMID: 25687228 PMCID: PMC4649671 DOI: 10.1038/srep08517] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/21/2015] [Indexed: 01/01/2023] Open
Abstract
The fatality of avian influenza A(H7N9) infection in humans was over 30%. To identify human genetic susceptibility to A(H7N9) infection, we performed a genome-wide association study (GWAS) involving 102 A(H7N9) patients and 106 heavily-exposed healthy poultry workers, a sample size critically restricted by the small number of human A(H7N9) cases. To tackle the stringent significance cutoff of GWAS, we utilized an artificial imputation program SnipSnip to improve the association signals. In single-SNP analysis, one of the top SNPs was rs13057866 of LGALS1. The artificial imputation (AI) identified three non-genotyped causal variants, which can be represented by three anchor/partner SNP pairs rs13057866/rs9622682 (AI P = 1.81 × 10−7), rs4820294/rs2899292 (2.13 × 10−7) and rs62236673/rs2899292 (4.25 × 10−7) respectively. Haplotype analysis of rs4820294 and rs2899292 could simulate the signal of a causal variant. The rs4820294/rs2899292 haplotype GG, in association with protection from A(H7N9) infection (OR = 0.26, P = 5.92 × 10−7) correlated to significantly higher levels of LGALS1 mRNA (P = 0.050) and protein expression (P = 0.025) in lymphoblast cell lines. Additionally, rs4820294 was mapped as an eQTL in human primary monocytes and lung tissues. In conclusion, functional variants of LGALS1 causing the expression variations are contributable to the differential susceptibility to influenza A(H7N9).
Collapse
|
37
|
Detection of coronavirus genomes in Moluccan naked-backed fruit bats in Indonesia. Arch Virol 2015; 160:1113-8. [PMID: 25643817 PMCID: PMC7086880 DOI: 10.1007/s00705-015-2342-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/15/2015] [Indexed: 01/02/2023]
Abstract
Bats have been shown to serve as natural reservoirs for numerous emerging viruses including severe acute respiratory syndrome coronavirus (SARS-CoV). In the present study, we report the discovery of bat CoV genes in Indonesian Moluccan naked-backed fruit bats (Dobsonia moluccensis). A partial RNA-dependent RNA polymerase gene sequence was detected in feces and tissues samples from the fruit bats, and the region between the RdRp and helicase genes could also be amplified from fecal samples. Phylogenetic analysis suggested that these bat CoVs are related to members of the genus Betacoronavirus.
Collapse
|
38
|
Abstract
The last few decades have been marked by a rapid expansion in the world?s population, along with an increasingly dynamic mobility of individuals. This accelerated global inter-connectedness enabled microorganisms to reach virtually any location worldwide more rapidly and efficiently than ever before, reshaping the global dynamics of pathogens. As a result, a local infectious disease outbreak anywhere in the world may almost instantaneously assume global dimensions, and should therefore be considered a global priority. The history of several infectious diseases illustrates that in addition to prophylactic and therapeutic medical interventions, the interplay of social, economic, and political factors makes a fundamental contribution to the outcome of infectious disease outbreaks. Furthermore, this multi- and cross-disciplinary interconnectedness is a key determinant of the outcome of efforts to eradicate vaccine-preventable infectious diseases. A combined framework that incorporates teachings provided by previous outbreaks, and integrates medical and biomedical interventions with contributions made by social, economic, and political factors, emerges as vital requirement of successful global public health initiatives.
Collapse
Affiliation(s)
- R A Stein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
39
|
Chen X, Tan Y, Wang F, Wang J, Zhao Q, Li S, Fu S, Chen C, Yang H. Expression, crystallization and preliminary crystallographic study of the functional mutant (N60K) of nonstructural protein 9 from Human coronavirus HKU1. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2014; 70:1620-3. [PMID: 25484211 PMCID: PMC4259225 DOI: 10.1107/s2053230x14023085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/20/2014] [Indexed: 12/02/2022]
Abstract
This article describes the preliminary crystallographic data of a functional mutant (N60K) of nonstructural protein 9 from Human coronavirus HKU1. Human coronavirus HKU1 (HCoV-HKU1), which mainly causes acute self-limited respiratory-tract infections, belongs to group A of the Betacoronavirus genus. Coronavirus genomes encode 16 nonstructural proteins (nsp1–16), which assemble into a large replication–transcription complex mediating virus propagation. Nonstructural protein 9, which binds to the single-stranded DNA/RNA, has been shown to be indispensible for viral replication. Interestingly, a functional mutant (N60K) of nsp9 was identified to compensate for a 6 nt insertion mutation of the 3′-untranslated region (UTR), which is critical for viral RNA synthesis. It has been proposed that the N60K mutation may cause certain conformational changes of nsp9 to rescue the defective insertion mutant. To further investigate the underlying structural mechanism, the N60K mutant of nsp9 from HCoV-HKU1 was successfully crystallized in this study. The crystals diffracted to 2.6 Å resolution and belonged to space group P212121, with unit-cell parameters a = 31.9, b = 85.0, c = 95.0 Å. Two molecules were identified per asymmetric unit.
Collapse
Affiliation(s)
- Xia Chen
- School of Life Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yusheng Tan
- School of Life Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Fenghua Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jinshan Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Qi Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shuang Li
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, People's Republic of China
| | - Sheng Fu
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, People's Republic of China
| | - Cheng Chen
- School of Life Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Haitao Yang
- School of Life Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
40
|
To KKW, Chan JFW, Tsang AKL, Cheng VCC, Yuen KY. Ebola virus disease: a highly fatal infectious disease reemerging in West Africa. Microbes Infect 2014; 17:84-97. [PMID: 25456100 PMCID: PMC7110538 DOI: 10.1016/j.micinf.2014.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 11/24/2014] [Indexed: 12/15/2022]
Abstract
Ebolavirus can cause a highly fatal and panic-generating human disease which may jump from bats to other mammals and human. High viral loads in body fluids allow efficient transmission by contact. Lack of effective antivirals, vaccines and public health infrastructures in parts of Africa make it difficult to health workers to contain the outbreak.
Collapse
Affiliation(s)
- Kelvin K W To
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Jasper F W Chan
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Alan K L Tsang
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Vincent C C Cheng
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; Department of Microbiology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
41
|
Abdel-Moneim AS. Middle East respiratory syndrome coronavirus (MERS-CoV): evidence and speculations. Arch Virol 2014; 159:1575-84. [PMID: 24515532 PMCID: PMC7086939 DOI: 10.1007/s00705-014-1995-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 01/16/2014] [Indexed: 12/11/2022]
Abstract
In 2012, a novel human coronavirus emerged and was tentatively named "Middle East respiratory syndrome coronavirus" (MERS-CoV). The high mortality rate of MERS-CoV focused attention on the ecology of the virus. It has been found that MERS-CoV belongs to the group C lineage of the genus Betacoronavirus. Coronavirus surveillance studies in different populations of bats have suggested that they are probable reservoirs for this novel virus, and phylogenetic analysis of both the spike (S1) and RNA-dependent RNA polymerase proteins of MERS-CoV have revealed that it is related to bat viruses. Recently, the MERS-CoV and its neutralizing antibodies were detected in dromedary camels. Despite the limited number of reported cases of person-to-person transmission, the rapid evolution of the virus poses a continuous threat to humans worldwide. This paper reviews the current state of knowledge regarding the virology, clinical spectrum, evolution, diagnosis and treatment of MERS-CoV infections.
Collapse
Affiliation(s)
- Ahmed S Abdel-Moneim
- Microbiology Department, Virology Division, College of Medicine, Taif University, Al-Taif, 21944, Saudi Arabia,
| |
Collapse
|
42
|
Sharmin R, Islam ABMMK. A highly conserved WDYPKCDRA epitope in the RNA directed RNA polymerase of human coronaviruses can be used as epitope-based universal vaccine design. BMC Bioinformatics 2014; 15:161. [PMID: 24884408 PMCID: PMC4041900 DOI: 10.1186/1471-2105-15-161] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/19/2014] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Coronaviruses are the diverse group of RNA virus. From 1960, six strains of human coronaviruses have emerged that includes SARS-CoV and the recent infection by deadly MERS-CoV which is now going to cause another outbreak. Prevention of these viruses is urgent and a universal vaccine for all strain could be a promising solution in this circumstance. In this study we aimed to design an epitope based vaccine against all strain of human coronavirus. RESULTS Multiple sequence alignment (MSA) approach was employed among spike (S), membrane (M), enveloped (E) and nucleocapsid (N) protein and replicase polyprotein 1ab to identify which one is highly conserve in all coronaviruses strains. Next, we use various in silico tools to predict consensus immunogenic and conserved peptide. We found that conserved region is present only in the RNA directed RNA polymerase protein. In this protein we identified one epitope WDYPKCDRA is highly immunogenic and 100% conserved among all available human coronavirus strains. CONCLUSIONS Here we suggest in vivo study of our identified novel peptide antigen in RNA directed RNA polymerase protein for universal vaccine--which may be the way to prevent all human coronavirus disease.
Collapse
Affiliation(s)
- Refat Sharmin
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Science Complex Building, Dhaka 1000, Bangladesh
| | | |
Collapse
|
43
|
Dhama K, Pawaiya R, Chakrabort S, Tiwari R, Saminathan M, Verma A. Coronavirus Infection in Equines: A Review. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/ajava.2014.164.176] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Chang C. Unmet needs in respiratory diseases : "You can't know where you are going until you know where you have been"--Anonymous. Clin Rev Allergy Immunol 2013; 45:303-13. [PMID: 24293395 PMCID: PMC7090922 DOI: 10.1007/s12016-013-8399-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The care of patients with respiratory diseases has improved vastly in the past 50 years. In spite of that, there are still massive challenges that have not been resolved. Although the incidence of tuberculosis has decreased in the developed world, it is still a significant public health problem in the rest of the world. There are still over 2 million deaths annually from tuberculosis, with most of these occurring in the developing world. Even with the development of new pharmaceuticals to treat tuberculosis, there is no indication that the disease will be eradicated. Respiratory syncytial virus, severe acute respiratory syndrome, and pertussis are other respiratory infectious diseases with special problems of their own, from vaccine development to vaccine coverage. Asthma, one of the most common chronic diseases in children, still accounts for significant mortality and morbidity, as well as high health care costs worldwide. Even in developed countries such as the USA, there are over 4,000 deaths per year. Severe asthma presents a special problem, but the question is whether there can be one treatment pathway for all patients with severe asthma. Severe asthma is a heterogeneous disease with many phenotypes and endotypes. The gene for cystic fibrosis was discovered over 24 years ago. The promise of gene therapy as a cure for the disease has fizzled out, and while new antimicrobials and other pharmaceuticals promise improved longevity and better quality of life, the average life span of a patient with cystic fibrosis is still at about 35 years. What are the prospects for gene therapy in the twenty-first century? Autoimmune diseases of the lung pose a different set of challenges, including the development of biomarkers to diagnose and monitor the disease and biological modulators to treat the disease.
Collapse
Affiliation(s)
- Christopher Chang
- Division of Allergy and Immunology, Thomas Jefferson University, 1600 Rockland Road, Wilmington, DE, 19803, USA,
| |
Collapse
|