1
|
Zhang DD. Thirty years of NRF2: advances and therapeutic challenges. Nat Rev Drug Discov 2025:10.1038/s41573-025-01145-0. [PMID: 40038406 DOI: 10.1038/s41573-025-01145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2025] [Indexed: 03/06/2025]
Abstract
Over the last 30 years, NRF2 has evolved from being recognized as a transcription factor primarily involved in redox balance and detoxification to a well-appreciated master regulator of cellular proteostasis, metabolism and iron homeostasis. NRF2 plays a pivotal role in diverse pathologies, including cancer, and metabolic, inflammatory and neurodegenerative disorders. It exhibits a Janus-faced duality, safeguarding cellular integrity in normal cells against environmental insults to prevent disease onset, whereas in certain cancers, constitutively elevated NRF2 levels provide a tumour survival advantage, promoting progression, therapy resistance and metastasis. Advances in understanding the mechanistic regulation of NRF2 and its roles in human pathology have propelled the investigation of NRF2-targeted therapeutic strategies. This Review dissects the mechanistic intricacies of NRF2 signalling, its cross-talk with biological processes and its far-reaching implications for health and disease, highlighting key discoveries that have shaped innovative therapeutic approaches targeting NRF2.
Collapse
Affiliation(s)
- Donna D Zhang
- Department of Molecular Medicine, Center for Inflammation Science and Systems Medicine, UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA.
- University of Florida Health Cancer Center, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
2
|
Zhou Y, Yan X, Wu Y, Qi Y, Yu T, Pan F, He L, Guo Z, Hu Z. Bacteria escape macrophage-mediated phagocytosis via targeting apurinic/apyrimidinic endonuclease 1 in sepsis. Int J Biol Macromol 2025; 305:141278. [PMID: 39984093 DOI: 10.1016/j.ijbiomac.2025.141278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
Sepsis is a serious disease resulting from an imbalanced host response to bacterial infection, in which macrophages play a crucial role. However, the connection between bacterial infection and macrophage phagocytosis remains largely unknown. Here, we provide evidence supporting the role of apurinic/apyrimidinic endonuclease 1 (APE1) in regulating bacterial infection and macrophage immune function during sepsis. We confirmed down-regulation of APE1 expression in macrophages from both in vitro and in vivo septic models. APE1 deficiency significantly increases the mortality rate of septic mice. Experiments using fluorescent latex beads and Escherichia coli uptake demonstrated that reduced APE1 levels inhibit macrophage phagocytosis. Specifically, APE1 deficiency activates GSK3β, leading to the ubiquitination and subsequent proteasomal degradation of NRF2, thereby reducing the expression of phagocytic receptors. Additionally, APE1 participates in the process through its redox function. In conclusion, APE1 is a critical protein involved in the evasion of macrophage phagocytosis by bacteria. Our study suggests that targeting the APE1/NRF2 axis could serve as a promising therapeutic strategy for sepsis and bacterial infections.
Collapse
Affiliation(s)
- Yu Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Xinyu Yan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Ya Wu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Yannan Qi
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Tingting Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China.
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China.
| |
Collapse
|
3
|
Sweet MJ, Ramnath D, Singhal A, Kapetanovic R. Inducible antibacterial responses in macrophages. Nat Rev Immunol 2025; 25:92-107. [PMID: 39294278 DOI: 10.1038/s41577-024-01080-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 09/20/2024]
Abstract
Macrophages destroy bacteria and other microorganisms through phagocytosis-coupled antimicrobial responses, such as the generation of reactive oxygen species and the delivery of hydrolytic enzymes from lysosomes to the phagosome. However, many intracellular bacteria subvert these responses, escaping to other cellular compartments to survive and/or replicate. Such bacterial subversion strategies are countered by a range of additional direct antibacterial responses that are switched on by pattern-recognition receptors and/or host-derived cytokines and other factors, often through inducible gene expression and/or metabolic reprogramming. Our understanding of these inducible antibacterial defence strategies in macrophages is rapidly evolving. In this Review, we provide an overview of the broad repertoire of antibacterial responses that can be engaged in macrophages, including LC3-associated phagocytosis, metabolic reprogramming and antimicrobial metabolites, lipid droplets, guanylate-binding proteins, antimicrobial peptides, metal ion toxicity, nutrient depletion, autophagy and nitric oxide production. We also highlight key inducers, signalling pathways and transcription factors involved in driving these different antibacterial responses. Finally, we discuss how a detailed understanding of the molecular mechanisms of antibacterial responses in macrophages might be exploited for developing host-directed therapies to combat antibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- Matthew J Sweet
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| | - Divya Ramnath
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Amit Singhal
- Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ronan Kapetanovic
- INRAE, Université de Tours, Infectiologie et Santé Publique (ISP), Nouzilly, France
| |
Collapse
|
4
|
Moreno-Chamba B, Salazar-Bermeo J, Narváez-Asensio M, Navarro-Simarro P, Saura D, Neacsu M, Martí N, Valero M, Martínez-Madrid MC. Polyphenolic extracts from Diospyros kaki and Vitis vinifera by-products stimulate cytoprotective effects in bacteria-cell host interactions by mediation of transcription factor Nrf2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:156020. [PMID: 39243749 DOI: 10.1016/j.phymed.2024.156020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/10/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND The intestinal and skin epithelium play a strong role against bacterial stimuli which leads to inflammation and oxidative stress when overwhelmed. Polyphenols from fruit-rich diets and by-products show promise against bacterial deleterious effects; however, their antibacterial and health-promoting effects remain understudied. PURPOSE This study aimed to assess the impact of polyphenolic extracts of grape (GrPE), persimmon (PePE) and pomegranate (PoPE) by-products on bacterial pathogen-host interactions, focusing beyond growth inhibition to explore their effects on bacterial adhesion, invasion, and modulation of host responses. METHODS The microdilution method, as well as the tetrazolium based MTT cell proliferation and cytotoxicity assay with crystal violet staining were used to identify extracts sub-inhibitory concentrations that interfere with bacterial adhesion, invasion or lipopolysaccharides (LPS) effect on cell hosts without compromising host viability. The cytoprotective effects of extracts were assessed in a knock-down model of nuclear factor erythroid 2-related factor 2 (Nrf2). RESULTS All extracts demonstrated significant reductions in pathogen adhesion to Caco-2 and HaCaT cells while preserving cellular integrity. Notably, PePE exhibited specific efficacy against Salmonella enterica adhesion, attributed mostly to its gallic acid content, whereas PoPE reduced S. enterica invasion in Caco-2 cells. The extracts supported the prevalence of non-pathogenic and commensal strains of intestinal and skin surfaces, selectively reducing pathogenic adhesion. The extracts mitigated the oxidative stress, enhanced the barrier function, and modulated the pro-inflammatory cytokines in LPS-challenged cells. GrPE, rich in anthocyanins, and PePE were found to mediate their protective effects through Nrf2 activation, while PoPE exerted multifaceted actions independent of Nrf2. CONCLUSION Our results highlight the therapeutic potential of GrPE, PePE, and PoPE in shaping bacterial-host interactions, endorsing their utility as novel nutraceuticals for both oral and topical applications to prevent potential bacterial infections through innovative mechanisms.
Collapse
Affiliation(s)
- Bryan Moreno-Chamba
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE). Universidad Miguel Hernández de Elche, 03202 Alicante, Spain; Instituto Universitario de Ingeniería de Alimentos-FoodUPV, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Julio Salazar-Bermeo
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE). Universidad Miguel Hernández de Elche, 03202 Alicante, Spain; Instituto Universitario de Ingeniería de Alimentos-FoodUPV, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Marta Narváez-Asensio
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE). Universidad Miguel Hernández de Elche, 03202 Alicante, Spain
| | - Pablo Navarro-Simarro
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE). Universidad Miguel Hernández de Elche, 03202 Alicante, Spain
| | - Domingo Saura
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE). Universidad Miguel Hernández de Elche, 03202 Alicante, Spain
| | - Madalina Neacsu
- Rowett Institute, University of Aberdeen, Forestherhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Nuria Martí
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE). Universidad Miguel Hernández de Elche, 03202 Alicante, Spain
| | - Manuel Valero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE). Universidad Miguel Hernández de Elche, 03202 Alicante, Spain.
| | - María Concepción Martínez-Madrid
- Departamento de Agroquímica y Medio Ambiente, Escuela Politécnica Superior de Orihuela, Universidad Miguel Hernández de Elche, 03312 Alicante, Spain
| |
Collapse
|
5
|
Stroh L, Nurjadi D, Uhle F, Bruckner T, Kalenka A, Weigand MA, Fiedler-Kalenka MO. Pulmonary Events in ICU patients with hyperoxia: is it possible to relate arterial partial pressure of oxygen to coded diseases? A retrospective analysis. Med Intensiva 2024; 48:575-583. [PMID: 38782671 DOI: 10.1016/j.medine.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Oxygen has been used liberally in ICUs for a long time to prevent hypoxia in ICU- patients. Current evidence suggests that paO2 >300 mmHg should be avoided, it remains uncertain whether an "optimal level" exists. We investigated how "mild" hyperoxia influences diseases and in-hospital mortality. DESIGN This is a retrospective study. SETTING 112 mechanically ventilated ICU-patients were enrolled. PATIENTS OR PARTICIPANTS 112 ventilated patients were included and categorized into two groups based on the median paO2 values measured in initial 24 h of mechanical ventilation: normoxia group (paO2 ≤ 100 mmHg, n = 43) and hyperoxia group patients (paO2 > 100 mmHg, n = 69). INTERVENTIONS No interventions were performed. MAIN VARIABLES OF INTEREST The primary outcome was the incidence of pulmonary events, the secondary outcomes included the incidence of other new organ dysfunctions and in-hospital mortality. RESULTS The baseline characteristics, such as age, body mass index, lactate levels, and severity of disease scores, were similar in both groups. There were no statistically significant differences in the incidence of pulmonary events, infections, and new organ dysfunctions between the groups. 27 out of 69 patients (39.1%) in the "mild" hyperoxia group and 12 out of 43 patients (27.9%) in the normoxia group died during their ICU or hospital stay (p = 0.54). The mean APACHE Score was 29.4 (SD 7.9) in the normoxia group and 30.0 (SD 6.7) in the hyperoxia group (p = 0.62). CONCLUSIONS We found no differences in pulmonary events, other coded diseases, and in-hospital mortality between both groups. It remains still unclear what the "best oxygen regime" is for intensive care patients.
Collapse
Affiliation(s)
- Lubov Stroh
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Dennis Nurjadi
- Department of Infectious Diseases and Microbiology, Schleswig-Holstein University Hospital, 23538 Lübeck, Germany
| | - Florian Uhle
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Thomas Bruckner
- Institute of Medical Biometry and Informatics (IMBI), University of Heidelberg, Heidelberg, Germany
| | | | | | | |
Collapse
|
6
|
Hajdú G, Szathmári C, Sőti C. Modeling Host-Pathogen Interactions in C. elegans: Lessons Learned from Pseudomonas aeruginosa Infection. Int J Mol Sci 2024; 25:7034. [PMID: 39000143 PMCID: PMC11241598 DOI: 10.3390/ijms25137034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Infections, such as that by the multiresistant opportunistic bacterial pathogen Pseudomonas aeruginosa, may pose a serious health risk, especially on vulnerable patient populations. The nematode Caenorhabditis elegans provides a simple organismal model to investigate both pathogenic mechanisms and the emerging role of innate immunity in host protection. Here, we review the virulence and infection strategies of P. aeruginosa and host defenses of C. elegans. We summarize the recognition mechanisms of patterns of pathogenesis, including novel pathogen-associated molecular patterns and surveillance immunity of translation, mitochondria, and lysosome-related organelles. We also review the regulation of antimicrobial and behavioral defenses by the worm's neuroendocrine system. We focus on how discoveries in this rich field align with well-characterized evolutionary conserved protective pathways, as well as on potential crossovers to human pathogenesis and innate immune responses.
Collapse
Affiliation(s)
- Gábor Hajdú
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Csenge Szathmári
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Csaba Sőti
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
7
|
Wu XY, Wang FY, Chen HX, Dong HL, Zhao ZQ, Si LF. Chronic heat stress induces lung injury in broiler chickens by disrupting the pulmonary blood-air barrier and activating TLRs/NF-κB signaling pathway. Poult Sci 2023; 102:103066. [PMID: 37769490 PMCID: PMC10539940 DOI: 10.1016/j.psj.2023.103066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 10/02/2023] Open
Abstract
As an important respiratory organ, the lung is susceptible to damage during heat stress due to the accelerated breathing frequency caused by an increase in environmental temperature. This can affect the growth performance of animals and endanger their health. This study aimed to explore the mechanism of lung tissue damage caused by heat stress. Broilers were randomly divided into a control group (Control) and a heat stress group (HS). The HS group was exposed to 35°C heat stress for 12 h per d from 21-days old, and samples were taken from selected broilers at 28, 35, and 42-days old. The results showed a significant increase in lactate dehydrogenase (LDH) activity in the serum and myeloperoxidase (MPO) activity in the lungs of broiler chickens across all 3 age groups after heat stress (P < 0.01), while the total antioxidant capacity (T-AOC) was significantly enhanced at 35-days old (P < 0.01). Heat stress also led to significant increases in various proinflammatory factors in serum and expression levels of HSP60 and HSP70 in lung tissue. Histopathological results showed congestion and bleeding in lung blood vessels, shedding of pulmonary epithelial cells, and a large amount of inflammatory infiltration in the lungs after heat stress. The mRNA expression of TLRs/NF-κB-related genes showed an upward trend (P < 0.05) after heat stress, while the mRNA expression of MLCK, a gene related to pulmonary blood-air barrier, significantly increased after heat stress, and the expression levels of MLC, ZO-1, and occludin decreased in contrast. This change was also confirmed by Western blotting, indicating that the pulmonary blood-air barrier is damaged after heat stress. Heat stress can cause damage to the lung tissue of broiler chickens by disrupting the integrity of the blood-air barrier and increasing permeability. This effect is further augmented by the activation of TLRs/NF-κB signaling pathways leading to an intensified inflammatory response. As heat stress duration progresses, broiler chickens develop thermotolerance, which gradually mitigates the damaging effects induced by heat stress.
Collapse
Affiliation(s)
- Xing-Yue Wu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, PR China
| | - Fei-Yao Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, PR China
| | - Hao-Xiang Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, PR China
| | - Hui-Li Dong
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, PR China
| | - Zhan-Qin Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, PR China
| | - Li-Fang Si
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, PR China.
| |
Collapse
|
8
|
Oxidative Stress, Environmental Pollution, and Lifestyle as Determinants of Asthma in Children. BIOLOGY 2023; 12:biology12010133. [PMID: 36671825 PMCID: PMC9856068 DOI: 10.3390/biology12010133] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Exposure to cigarette smoke, allergens, viruses, and other environmental contaminants, as well as a detrimental lifestyle, are the main factors supporting elevated levels of airway oxidative stress. Elevated oxidative stress results from an imbalance in reactive oxygen species (ROS) production and efficiency in antioxidant defense systems. Uncontrolled increased oxidative stress amplifies inflammatory processes and tissue damage and alters innate and adaptive immunity, thus compromising airway homeostasis. Oxidative stress events reduce responsiveness to corticosteroids. These events can increase risk of asthma into adolescence and prompt evolution of asthma toward its most severe forms. Development of new therapies aimed to restore oxidant/antioxidant balance and active interventions aimed to improve physical activity and quality/quantity of food are all necessary strategies to prevent asthma onset and avoid in asthmatics evolution toward severe forms of the disease.
Collapse
|
9
|
Okusha Y, Lang BJ, Murshid A, Borges TJ, Holton KM, Clark-Matott J, Doshi S, Ikezu T, Calderwood SK. Extracellular Hsp90α stimulates a unique innate gene profile in microglial cells with simultaneous activation of Nrf2 and protection from oxidative stress. Cell Stress Chaperones 2022; 27:461-478. [PMID: 35689138 PMCID: PMC9485360 DOI: 10.1007/s12192-022-01279-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/01/2022] [Accepted: 05/15/2022] [Indexed: 11/03/2022] Open
Abstract
Delivery of exogenous heat shock protein 90α (Hsp90α) and/or its induced expression in neural tissues has been suggested as a potential strategy to combat neurodegenerative disease. However, within a neurodegenerative context, a pro-inflammatory response to extracellular Hsp90α (eHsp90α) could undermine strategies to use it for therapeutic intervention. The aim of this study was to investigate the biological effects of eHsp90α on microglial cells, the primary mediators of inflammatory responses in the brain. Transcriptomic profiling by RNA-seq of primary microglia and the cultured EOC2 microglial cell line treated with eHsp90α showed the chaperone to stimulate activation of innate immune responses in microglia that were characterized by an increase in NF-kB-regulated genes. Further characterization showed this response to be substantially lower in amplitude than the effects of other inflammatory stimuli such as fibrillar amyloid-β (fAβ) or lipopolysaccharide (LPS). Additionally, the toxicity of conditioned media obtained from microglia treated with fAβ was attenuated by addition of eHsp90α. Using a co-culture system of microglia and hippocampal neuronal cell line HT22 cells separated by a chamber insert, the neurotoxicity of medium conditioned by microglia treated with fAβ was reduced when eHsp90α was also added. Mechanistically, eHsp90α was shown to activate Nrf2, a response which attenuated fAβ-induced nitric oxide production. The data thus suggested that eHsp90α protects against fAβ-induced oxidative stress. We also report eHsp90α to induce expression of macrophage receptor with collagenous structure (Marco), which would permit receptor-mediated endocytosis of fAβ.
Collapse
Affiliation(s)
- Yuka Okusha
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
- JSPS Overseas Research Fellowship, Tokyo, 102-0083, Japan.
| | - Benjamin J Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ayesha Murshid
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Thiago J Borges
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Kristina M Holton
- Research Computing, Harvard Medical School, Boston, MA, 02215, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Joanne Clark-Matott
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Sachin Doshi
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Tsuneya Ikezu
- Department of Neuroscience, Molecular NeuroTherapeutics Laboratory, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
10
|
Pang Z, Xu Y, Zhu Q. Early Growth Response 1 Suppresses Macrophage Phagocytosis by Inhibiting NRF2 Activation Through Upregulation of Autophagy During Pseudomonas aeruginosa Infection. Front Cell Infect Microbiol 2022; 11:773665. [PMID: 35096638 PMCID: PMC8790152 DOI: 10.3389/fcimb.2021.773665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes life-threatening infections in cystic fibrosis patients and immunocompromised individuals. A tightly regulated immune response possessed by healthy individuals can effectively control P. aeruginosa infections, whereas the patients with dysregulated immune response are susceptible to this bacterial pathogen. Early growth response 1 (Egr-1) is a zinc-finger transcription factor involved in regulation of various cellular functions, including immune responses. We previously identified that Egr-1 was deleterious to host in a mouse model of acute P. aeruginosa pneumonia by promoting systemic inflammation and impairing bacterial clearance in lung, which associated with reduced phagocytosis and bactericidal ability of leucocytes, including macrophages and neutrophils. However, the molecular mechanisms underlying the Egr-1-suppressed phagocytosis of P. aeruginosa are incompletely understood. Herein, we investigated whether the Egr-1-regulated autophagy play a role in macrophage phagocytosis during P. aeruginosa infection by overexpression or knockdown of Egr-1. We found that overexpression of Egr-1 inhibited the phagocytic activity of macrophages, and the autophagy activator rapamycin and inhibitor chloroquine could reverse the effects of Egr-1 knockdown and Egr-1 overexpression on phagocytosis of P. aeruginosa, respectively. Furthermore, the Egr-1-overexpressing macrophages displayed upregulated expression of autophagy-related proteins LC3A, LC3B and Atg5, and decreased levels of p62 in macrophages. Further studies revealed that the macrophages with Egr-1 knockdown displayed enhanced activation of transcription factor NRF2 and expression of scavenger receptors MACRO and MSR1. Altogether, these findings suggest that Egr-1 suppresses the phagocytosis of P. aeruginosa by macrophages through upregulation of autophagy and inhibition of NRF2 signaling.
Collapse
Affiliation(s)
- Zheng Pang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Xu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingjun Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.,Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
11
|
Nrf2 Is Required for Optimal Alveolar-Macrophage-Mediated Apoptotic Neutrophil Clearance after Oxidant Injury. Antioxidants (Basel) 2022; 11:antiox11020212. [PMID: 35204093 PMCID: PMC8868099 DOI: 10.3390/antiox11020212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/20/2022] Open
Abstract
Recognition and clearance of apoptotic cells by phagocytes (also known as efferocytosis), primarily mediated by macrophages, are essential to terminate lung inflammatory responses and promote tissue repair after injury. The Nrf2 transcription factor is crucial for cytoprotection and host defense. Previously, we showed sustained neutrophilic lung inflammation in Nrf2-deficient (Nrf2−/−) mice after hyperoxia-induced lung injury in vivo, but the mechanisms underlying this abnormal phenotype remain unclear. To examine whether Nrf2 regulates apoptotic neutrophil clearance, we used the alveolar macrophages (AMФs) and bone-marrow-derived macrophages (BMDMФs) of wild-type (WT) and Nrf2−/− mice. We found that the efferocytic ability of AMФ was impaired in hyperoxia-exposed mice’s lungs, but the effect was more pronounced in Nrf2−/− mice. Importantly, AMФ-mediated efferocytosis remained impaired in Nrf2−/− mice recovering from injury but was restored to the basal state in the wild-type counterparts. Hyperoxia affected apoptotic neutrophil binding, not internalization, in both WT and Nrf2−/− BMDMФs, but the effect was more significant in the latter cells. Augmenting Nrf2 activity restored hyperoxia attenuated efferocytosis in WT, but not in Nrf2−/− macrophages. However, the loss of Nrf2 in neutrophils affected their uptake by WT macrophages. Collectively, these results demonstrate that Nrf2 is required for optimal macrophage-mediated efferocytosis and that activating Nrf2 may provide a physiological way to accelerate apoptotic cell clearance after oxidant injury.
Collapse
|
12
|
Escherichia coli and Staphylococcus aureus Differentially Regulate Nrf2 Pathway in Bovine Mammary Epithelial Cells: Relation to Distinct Innate Immune Response. Cells 2021; 10:cells10123426. [PMID: 34943933 PMCID: PMC8700232 DOI: 10.3390/cells10123426] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/15/2022] Open
Abstract
Escherichia coli and Staphylococcus aureus are major mastitis causing pathogens in dairy cattle but elicit distinct immune and an inflammatory response in the udder. However, the host determinants responsible for this difference remains largely unknown. Our initial studies focused on the global transcriptomic response of primary bovine mammary epithelial cells (pbMECs) to heat-killed E. coli and S. aureus. RNA-sequencing transcriptome analysis demonstrates a significant difference in expression profiles induced by E. coli compared with S. aureus. A major differential response was the activation of innate immune response by E. coli, but not by S. aureus. Interestingly, E. coli stimulation increased transcript abundance of several genes downstream of Nrf2 (nuclear factor erythroid 2-related factor 2) that were enriched in gene sets with a focus on metabolism and immune system. However, none of these genes was dysregulated by S. aureus. Western blot analysis confirms that S. aureus impairs Nrf2 activation as compared to E. coli. Using Nrf2-knockdown cells we demonstrate that Nrf2 is necessary for bpMECs to mount an effective innate defensive response. In support of this notion, nuclear Nrf2 overexpression augmented S. aureus-stimulated inflammatory response. We also show that, unlike E. coli, S. aureus disrupts the non-canonical p62/SQSTM1-Keap1 pathway responsible for Nrf2 activation through inhibiting p62/SQSTM1 phosphorylation at S349. Collectively, our findings provide important insights into the contribution of the Nrf2 pathway to the pathogen-species specific immune response in bovine mammary epithelial cells and raise a possibility that impairment of Nrf2 activation contributes to, at least in part, the weak inflammatory response in S. aureus mastitis.
Collapse
|
13
|
Freeborn RA, Rockwell CE. The role of Nrf2 in autoimmunity and infectious disease: Therapeutic possibilities. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 91:61-110. [PMID: 34099113 DOI: 10.1016/bs.apha.2020.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Nrf2 is a cytoprotective transcription factor which is involved in ameliorating oxidative stress and toxic insults. Recently, an immunomodulatory role for Nrf2 has gained appreciation as it has been shown to protect cells and hosts alike in a variety of immune and inflammatory disorders. However, Nrf2 utilizes numerous distinct pathways to elicit its immunomodulatory effects. In this review, we summarize the literature discussing the roles of Nrf2 in autoimmunity and infectious diseases with a goal of understanding the potential to therapeutically target Nrf2.
Collapse
Affiliation(s)
- Robert A Freeborn
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Cheryl E Rockwell
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States; Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
14
|
Tuoheti A, Gu X, Cheng X, Zhang H. Silencing Nrf2 attenuates chronic suppurative otitis media by inhibiting pro-inflammatory cytokine secretion through up-regulating TLR4. Innate Immun 2021; 27:70-80. [PMID: 32579053 PMCID: PMC7780353 DOI: 10.1177/1753425920933661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 01/27/2023] Open
Abstract
Compromised TLR-mediated chronic inflammation contributes to bacterial infection-caused chronic suppurative otitis media, but the mechanisms are unclear. The present study examined the expression status of nuclear erythroid 2-related factor 2 (Nrf2) and TLRs in human middle-ear mucosae tissues collected from patients with chronic suppurative otitis media, chronic otitis media and non-otitis media, and found that Nrf2 was high-expressed, whereas TLR4, instead of other TLRs, was low expressed in chronic suppurative otitis media compared to chronic otitis media and non-chronic otitis media groups. Consistently, inflammatory cytokines were significantly up-regulated in the chronic suppurative otitis media group, instead of the chronic otitis media and non-chronic otitis media groups. Next, LPS-induced acute otitis media and chronic suppurative otitis media models in mice were established, and high levels of inflammatory cytokines were sustained in the mucosae tissues of chronic suppurative otitis media mice compared to the non-otitis media and acute otitis media groups. Interestingly, continuous low-dose LPS stimulation promoted Nrf2 expression, but decreased TLR4 levels in chronic suppurative otitis media mice mucosae. In addition, knock-down of Nrf2 increased TLR4 expression levels in chronic suppurative otitis media mice, and both Nrf2 ablation and TLR4 overexpression inhibited the pro-inflammatory cytokine expression in chronic suppurative otitis media. Finally, we found that both Nrf2 overexpression and TLR4 deficiency promoted chronic inflammation in LPS-induced acute otitis media mice models. Taken together, knock-down of Nrf2 reversed chronic inflammation to attenuate chronic suppurative otitis media by up-regulating TLR4.
Collapse
Affiliation(s)
- Abulajiang Tuoheti
- Department of Otorhinolarygology, The First Affiliated Hospital of Xinjiang Medical University, China
| | - Xingzhi Gu
- Department of Otorhinolaryngology Head and Neck Surgery, Sanya Central Hospital (Third People’s Hospital of Hainan Province), China
| | - Xiuqin Cheng
- Department of Otorhinolarygology, People's Hospital of Xinjiang Uygur Autonomous Region, China
| | - Hua Zhang
- Department of Otorhinolarygology, The First Affiliated Hospital of Xinjiang Medical University, China
| |
Collapse
|
15
|
An Overview of Nrf2 Signaling Pathway and Its Role in Inflammation. Molecules 2020; 25:molecules25225474. [PMID: 33238435 PMCID: PMC7700122 DOI: 10.3390/molecules25225474] [Citation(s) in RCA: 747] [Impact Index Per Article: 149.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
Inflammation is a key driver in many pathological conditions such as allergy, cancer, Alzheimer’s disease, and many others, and the current state of available drugs prompted researchers to explore new therapeutic targets. In this context, accumulating evidence indicates that the transcription factor Nrf2 plays a pivotal role controlling the expression of antioxidant genes that ultimately exert anti-inflammatory functions. Nrf2 and its principal negative regulator, the E3 ligase adaptor Kelch-like ECH- associated protein 1 (Keap1), play a central role in the maintenance of intracellular redox homeostasis and regulation of inflammation. Interestingly, Nrf2 is proved to contribute to the regulation of the heme oxygenase-1 (HO-1) axis, which is a potent anti-inflammatory target. Recent studies showed a connection between the Nrf2/antioxidant response element (ARE) system and the expression of inflammatory mediators, NF-κB pathway and macrophage metabolism. This suggests a new strategy for designing chemical agents as modulators of Nrf2 dependent pathways to target the immune response. Therefore, the present review will examine the relationship between Nrf2 signaling and the inflammation as well as possible approaches for the therapeutic modulation of this pathway.
Collapse
|
16
|
Solano-Urrusquieta A, Morales-González JA, Castro-Narro GE, Cerda-Reyes E, Flores-Rangel PD, Fierros-Oceguera R. NRF-2 and nonalcoholic fatty liver disease. Ann Hepatol 2020; 19:458-465. [PMID: 31959521 DOI: 10.1016/j.aohep.2019.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
Currently, chronic liver diseases have conditioned morbidity and mortality, many of these with a metabolic, toxicologic, immunologic, viral, or other etiology. Thus, a transcription factor that has been of huge importance for biomedical research is NRF-2. The latter is considered a principal component of the antioxidant mechanism, and it has been acknowledged that it impairs the function of NRF-2 in many liver diseases and that it forms an essential part of the pathologic changes that occur in the liver to contain inflammation and damage. Within the investigations and experiments carried out, there are isolated drugs, many of them related to plants and natural extracts that possess antioxidant properties through the NRF-2 signaling pathway, or even involving the stimulation of the transcription target proteins of NRF-2. Notwithstanding all of these experimental findings, to date there is not sufficient clinical evidence to justify the use of NRF-2 in medical practice.
Collapse
Affiliation(s)
| | - José A Morales-González
- Laboratory of Conservation Medicine, Higher School of Medicine, Instituto Politécnico Nacional, Mexico
| | | | - Eira Cerda-Reyes
- Gastroenterology Section of the Central Military Hospital, Mexico City, Mexico
| | | | | |
Collapse
|
17
|
Mycoplasma hyopneumoniae J elicits an antioxidant response and decreases the expression of ciliary genes in infected swine epithelial cells. Sci Rep 2020; 10:13707. [PMID: 32792522 PMCID: PMC7426424 DOI: 10.1038/s41598-020-70040-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022] Open
Abstract
Mycoplasma hyopneumoniae is the most costly pathogen for swine production. Although several studies have focused on the host-bacterium association, little is known about the changes in gene expression of swine cells upon infection. To improve our understanding of this interaction, we infected swine epithelial NPTr cells with M. hyopneumoniae strain J to identify differentially expressed mRNAs and miRNAs. The levels of 1,268 genes and 170 miRNAs were significantly modified post-infection. Up-regulated mRNAs were enriched in genes related to redox homeostasis and antioxidant defense, known to be regulated by the transcription factor NRF2 in related species. Down-regulated mRNAs were enriched in genes associated with cytoskeleton and ciliary functions. Bioinformatic analyses suggested a correlation between changes in miRNA and mRNA levels, since we detected down-regulation of miRNAs predicted to target antioxidant genes and up-regulation of miRNAs targeting ciliary and cytoskeleton genes. Interestingly, most down-regulated miRNAs were detected in exosome-like vesicles suggesting that M. hyopneumoniae infection induced a modification of the composition of NPTr-released vesicles. Taken together, our data indicate that M. hyopneumoniae elicits an antioxidant response induced by NRF2 in infected cells. In addition, we propose that ciliostasis caused by this pathogen is partially explained by the down-regulation of ciliary genes.
Collapse
|
18
|
Characterization of pulmonary immune responses to hyperoxia by high-dimensional mass cytometry analyses. Sci Rep 2020; 10:4677. [PMID: 32170168 PMCID: PMC7070092 DOI: 10.1038/s41598-020-61489-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/25/2020] [Indexed: 11/25/2022] Open
Abstract
Prolonged exposure to hyperoxia has deleterious effects on the lung, provoking both inflammation and alveolar injury. The elements of hyperoxic injury, which result in high rates of lethality in experimental models, are thought to include multicellular immune responses. To characterize these alterations in immune cell populations, we performed time-of-flight mass cytometry (CyTOF) analysis of CD45-expressing immune cells in whole lung parenchyma and the bronchoalveolar space of mice, exposed to 48 hours of hyperoxia together with normoxic controls. At the tested time point, hyperoxia exposure resulted in decreased abundance of immunoregulatory populations (regulatory B cells, myeloid regulatory cells) in lung parenchyma and markedly decreased proliferation rates of myeloid regulatory cells, monocytes and alveolar macrophages. Additionally, hyperoxia caused a shift in the phenotype of alveolar macrophages, increasing proportion of cells with elevated CD68, CD44, CD11c, PD-L1, and CD205 expression levels. These changes occurred in the absence of histologically evident alveolar damage and abundance of neutrophils in the parenchyma or alveolar space did not change at these time points. Collectively, these findings demonstrate that pulmonary response to hyperoxia involves marked changes in specific subsets of myeloid and lymphoid populations. These findings have important implications for therapeutic targeting in acute lung injury.
Collapse
|
19
|
Abudukelimu A, Barberis M, Redegeld F, Sahin N, Sharma RP, Westerhoff HV. Complex Stability and an Irrevertible Transition Reverted by Peptide and Fibroblasts in a Dynamic Model of Innate Immunity. Front Immunol 2020; 10:3091. [PMID: 32117197 PMCID: PMC7033641 DOI: 10.3389/fimmu.2019.03091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
We here apply a control analysis and various types of stability analysis to an in silico model of innate immunity that addresses the management of inflammation by a therapeutic peptide. Motivation is the observation, both in silico and in experiments, that this therapy is not robust. Our modeling results demonstrate how (1) the biological phenomena of acute and chronic modes of inflammation may reflect an inherently complex bistability with an irrevertible flip between the two modes, (2) the chronic mode of the model has stable, sometimes unique, steady states, while its acute-mode steady states are stable but not unique, (3) as witnessed by TNF levels, acute inflammation is controlled by multiple processes, whereas its chronic-mode inflammation is only controlled by TNF synthesis and washout, (4) only when the antigen load is close to the acute mode's flipping point, many processes impact very strongly on cells and cytokines, (5) there is no antigen exposure level below which reduction of the antigen load alone initiates a flip back to the acute mode, and (6) adding healthy fibroblasts makes the transition from acute to chronic inflammation revertible, although (7) there is a window of antigen load where such a therapy cannot be effective. This suggests that triple therapies may be essential to overcome chronic inflammation. These may comprise (1) anti-immunoglobulin light chain peptides, (2) a temporarily reduced antigen load, and (3a) fibroblast repopulation or (3b) stem cell strategies.
Collapse
Affiliation(s)
- Abulikemu Abudukelimu
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.,Molecular Cell Physiology, VU University Amsterdam, Amsterdam, Netherlands
| | - Matteo Barberis
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.,Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford, United Kingdom
| | - Frank Redegeld
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Nilgun Sahin
- Molecular Cell Physiology, VU University Amsterdam, Amsterdam, Netherlands
| | - Raju P Sharma
- Molecular Cell Physiology, VU University Amsterdam, Amsterdam, Netherlands
| | - Hans V Westerhoff
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.,Molecular Cell Physiology, VU University Amsterdam, Amsterdam, Netherlands.,School for Chemical Engineering and Analytical Science, University of Manchester, Manchester, United Kingdom.,Systems Biology Amsterdam, VU University Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
20
|
Vivarini ADC, Lopes UG. The Potential Role of Nrf2 Signaling in Leishmania Infection Outcomes. Front Cell Infect Microbiol 2020; 9:453. [PMID: 31998662 PMCID: PMC6966304 DOI: 10.3389/fcimb.2019.00453] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/13/2019] [Indexed: 01/06/2023] Open
Abstract
Nrf2 [nuclear factor erythroid 2-related factor 2 (Nrf2)] regulates the expression of a plethora of genes involved in the response to oxidative stress due to inflammation, aging, and tissue damage, among other pathological conditions. Deregulation of this cytoprotective system may also interfere with innate and adaptive immune responses. Oxidative burst, one of the main microbicidal mechanisms, could be impaired during initial phagocytosis of parasites, which could lead to the successful establishment of infection and promote susceptibility to diseases. A wide diversity of infections, mainly those caused by intracellular pathogens such as viruses, bacteria, and protozoan parasites, modulate the activation of Nrf2 by interfering with post-translational modifications, interactions between different protein complexes and the immune response. Nrf2 may be induced by pathogens via distinct pathways such as those involving the engagement of Toll-like receptors, the activation of PI3K/Akt, and endoplasmic reticulum stress. Recent studies have revealed the importance of Nrf2 on leishmaniasis. This mini-review discusses relevant findings that reveal the connection between Leishmania-induced modifications of the host pathways and their relevance to the modulation of the Nrf2-dependent antioxidative response to the infection.
Collapse
Affiliation(s)
- Aislan de Carvalho Vivarini
- Laboratory of Molecular Parasitology, Center of Health Science, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ulisses Gazos Lopes
- Laboratory of Molecular Parasitology, Center of Health Science, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Thioredoxin Reductase-1 Inhibition Augments Endogenous Glutathione-Dependent Antioxidant Responses in Experimental Bronchopulmonary Dysplasia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7945983. [PMID: 30805084 PMCID: PMC6360549 DOI: 10.1155/2019/7945983] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 11/25/2018] [Indexed: 12/28/2022]
Abstract
Background Aurothioglucose- (ATG-) mediated inhibition of thioredoxin reductase-1 (TXNRD1) improves alveolarization in experimental murine bronchopulmonary dysplasia (BPD). Glutathione (GSH) mediates susceptibility to neonatal and adult oxidative lung injury. We have previously shown that ATG attenuates hyperoxic lung injury and enhances glutathione- (GSH-) dependent antioxidant defenses in adult mice. Hypothesis The present studies evaluated the effects of TXNRD1 inhibition on GSH-dependent antioxidant defenses in newborn mice in vivo and lung epithelia in vitro. Methods Newborn mice received intraperitoneal ATG or saline prior to room air or 85% hyperoxia exposure. Glutamate-cysteine ligase (GCL) catalytic (Gclc) and modifier (Gclm) mRNA levels, total GSH levels, total GSH peroxidase (GPx) activity, and Gpx2 expression were determined in lung homogenates. In vitro, murine transformed club cells (mtCCs) were treated with the TXNRD1 inhibitor auranofin (AFN) or vehicle in the presence or absence of the GCL inhibitor buthionine sulfoximine (BSO). Results In vivo, ATG enhanced hyperoxia-induced increases in Gclc mRNA levels, total GSH contents, and GPx activity. In vitro, AFN increased Gclm mRNA levels, intracellular and extracellular GSH levels, and GPx activity. BSO prevented AFN-induced increases in GSH levels. Conclusions Our data are consistent with a model in which TXNRD1 inhibition augments hyperoxia-induced GSH-dependent antioxidant responses in neonatal mice. Discrepancies between in vivo and in vitro results highlight the need for methodologies that permit accurate assessments of the GSH system at the single-cell level.
Collapse
|
22
|
Crosstalk of toll-like receptors signaling and Nrf2 pathway for regulation of inflammation. Biomed Pharmacother 2018; 108:1866-1878. [PMID: 30372892 DOI: 10.1016/j.biopha.2018.10.019] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/09/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022] Open
Abstract
Inflammation as a second line of defense of innate immunity plays a crucial role in eliminating invading pathogens (bacteria, viruses, fungi as well as other parasites). The inflammatory response may also activate adaptive immune system involving lymphocytes to mount either antibody dependent or cell-mediated immune responses to clear pathogenic insult. However, if continued, the inflammatory processes may become uncontrolled culminating in cellular injury and tissue destruction, thereby manifesting itself in chronic form. The chronic inflammation has been associated with numerous human pathological conditions like allergies and autoimmune diseases, atherosclerosis, arthritis, Alzheimer's disease, cancer, obesity, type 2 diabetes, schizophrenia, neuro-degenerative diseases and numerous others. The dysregulated inflammatory process is associated with overproduction of free radicals leading to oxidative stress and activation of different cell signaling pathways. The regulation of inflammation by TLR signaling as well as Nrf2 pathways separately is widely documented. Since both these major signaling pathways modulate inflammation, they may crosstalk to bring about coordinated inflammatory responses. The linkage between TLR signaling and Nrf2-Keap1 pathway may serve as a bridge between immune regulation and oxidative stress responses through regulation of inflammation. Also, inflammation is reportedly responsible for the plethora of diseased conditions; a study of its regulation by targeting the TLR-Nrf2 cross-talks may also be beneficial for the development of therapeutic therapies or prophylactic treatments. Hence, present review focuses on the crosstalk between TLR signaling and Nrf2 pathway with respect to their role in modulation of inflammation in normal as well as pathologic conditions.
Collapse
|
23
|
Hanmer KL, Mavri-Damelin D. Peroxidasin is a novel target of the redox-sensitive transcription factor Nrf2. Gene 2018; 674:104-114. [PMID: 29953917 DOI: 10.1016/j.gene.2018.06.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 06/22/2018] [Accepted: 06/24/2018] [Indexed: 12/30/2022]
Abstract
Peroxidasin (PXDN) facilitates peroxidative reactions via utilisation of hydrogen peroxide (H2O2) and has been shown to crosslink collagen IV through sulfilimine bond formation in the presence of hypohalous acids. Aberrant PXDN expression has been associated with kidney fibrosis, cancer, congenital eye defects and various cardiovascular disorders. Since PXDN expression is modified by H2O2, we hypothesized that a major antioxidant response transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), may regulate PXDN expression. PXDN expression in response to H2O2 and the Nrf2-specific inducers, tert-butylhydroquinone (tBHQ) and sulforaphane (SFN), was determined by western blotting and immunofluorescence microscopy, in HeLa and HEK293 cells. Chromatin immunoprecipitation and luciferase reporter assays were used to investigate the regulation of PXDN by Nrf2. We observed elevated Nrf2 nuclear translocation and increased PXDN protein expression in response to H2O2, tBHQ and SFN, in both cell lines. We found that Nrf2 binds to and increases luciferase reporter gene expression from the PXDN promoter via a putative Nrf2-binding site. In summary, we show that PXDN is a novel target of the redox sensitive transcription factor Nrf2. This finding further highlights the role of PXDN in redox-related processes and compliments the currently understood pathophysiological functions of PXDN.
Collapse
Affiliation(s)
- Kerry L Hanmer
- The School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Private Bag X3, WITS 2050, South Africa
| | - Demetra Mavri-Damelin
- The School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Private Bag X3, WITS 2050, South Africa.
| |
Collapse
|
24
|
Seelige R, Saddawi-Konefka R, Adams NM, Picarda G, Sun JC, Benedict CA, Bui JD. Interleukin-17D and Nrf2 mediate initial innate immune cell recruitment and restrict MCMV infection. Sci Rep 2018; 8:13670. [PMID: 30209334 PMCID: PMC6135835 DOI: 10.1038/s41598-018-32011-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/31/2018] [Indexed: 12/26/2022] Open
Abstract
Innate immune cells quickly infiltrate the site of pathogen entry and not only stave off infection but also initiate antigen presentation and promote adaptive immunity. The recruitment of innate leukocytes has been well studied in the context of extracellular bacterial and fungal infection but less during viral infections. We have recently shown that the understudied cytokine Interleukin (IL)-17D can mediate neutrophil, natural killer (NK) cell and monocyte infiltration in sterile inflammation and cancer. Herein, we show that early immune cell accumulation at the peritoneal site of infection by mouse cytomegalovirus (MCMV) is mediated by IL-17D. Mice deficient in IL-17D or the transcription factor Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), an inducer of IL-17D, featured an early decreased number of innate immune cells at the point of viral entry and were more susceptible to MCMV infection. Interestingly, we were able to artificially induce innate leukocyte infiltration by applying the Nrf2 activator tert-butylhydroquinone (tBHQ), which rendered mice less susceptible to MCMV infection. Our results implicate the Nrf2/IL-17D axis as a sensor of viral infection and suggest therapeutic benefit in boosting this pathway to promote innate antiviral responses.
Collapse
Affiliation(s)
- Ruth Seelige
- Department of Pathology, University of California, San Diego, CA, 92093, USA
| | | | - Nicholas M Adams
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Gaëlle Picarda
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Chris A Benedict
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
- Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Jack D Bui
- Department of Pathology, University of California, San Diego, CA, 92093, USA.
| |
Collapse
|
25
|
The role of Nrf2 in NLRP3 inflammasome activation. Cell Mol Immunol 2017; 14:1011-1012. [PMID: 29129911 DOI: 10.1038/cmi.2017.114] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 09/10/2017] [Indexed: 11/08/2022] Open
|
26
|
Liu K, Wang X, Sha K, Zhang F, Xiong F, Wang X, Chen J, Li J, Churilov LP, Chen S, Wang Y, Huang N. Nuclear protein HMGN2 attenuates pyocyanin-induced oxidative stress via Nrf2 signaling and inhibits Pseudomonas aeruginosa internalization in A549 cells. Free Radic Biol Med 2017; 108:404-417. [PMID: 28408162 DOI: 10.1016/j.freeradbiomed.2017.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/17/2017] [Accepted: 04/07/2017] [Indexed: 12/21/2022]
Abstract
Pyocyanin (PCN, 1-hydroxy-5-methyl-phenazine) is one of the most essential virulence factors of Pseudomonas aeruginosa (PA) to cause various cytotoxic effects in long-term lung infectious diseases, however the early effect of this bacterial toxin during PA infection and subsequent autonomous immune response in host cells have not been fully understood yet. Our results display that early onset of PCN stimulates Pseudomonas aeruginosa PAO1 adhesion and invasion in A549 cells via ROS production. Non-histone nuclear protein HMGN2 is found to be involved in the regulation of PCN-induced oxidative stress by promoting intracellular ROS clearance. Mechanistically, HMGN2 facilitates nuclear translocation of transcription factor Nrf2 upon PCN stimulation and in turn elevates antioxidant gene expression. We also found that actin cytoskeleton dynamics is targeted by ROS, which is to be exploited by PAO1 for host cell internalization. HMGN2 regulates actin skeleton rearrangement in both PCN-dependent and independent manners and specifically attenuates PCN-mediated PAO1 infection via ROS elimination. These results uncover a novel link between nuclear protein HMGN2 and Nrf2-mediated cellular redox circumstance and suggest roles of HMGN2 in autonomous immune response to PA infection.
Collapse
Affiliation(s)
- Keyun Liu
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China; Department of Physiology, School of Medicine, Hubei University for Nationalities, Enshi 445000, China
| | - Xinyuan Wang
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Kaihui Sha
- School of Nursing, Binzhou Medical University, Binzhou 256600, China
| | - Fumei Zhang
- Experimental Center, Northwest University for Nationalities, Lanzhou 730030, China
| | - Feng Xiong
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaoying Wang
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Junli Chen
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jingyu Li
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Leonid P Churilov
- Department of Pathology, Faculty of Medicine, Saint Petersburg State University, Saint Petersburg 199034, Russia; Saint Petersburg State Research Institute of Phthisiopulmonology, Saint Petersburg 191036, Russia
| | - Shanze Chen
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yi Wang
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Ning Huang
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
27
|
Roussel L, Rousseau S. Exposure of airway epithelial cells to Pseudomonas aeruginosa biofilm-derived quorum sensing molecules decrease the activity of the anti-oxidant response element bound by NRF2. Biochem Biophys Res Commun 2017; 483:829-833. [DOI: 10.1016/j.bbrc.2017.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022]
|
28
|
Chen X, Yan L, Guo Z, Chen Z, Chen Y, Li M, Huang C, Zhang X, Chen L. Adipose-derived mesenchymal stem cells promote the survival of fat grafts via crosstalk between the Nrf2 and TLR4 pathways. Cell Death Dis 2016; 7:e2369. [PMID: 27607584 PMCID: PMC5059864 DOI: 10.1038/cddis.2016.261] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/12/2016] [Accepted: 07/25/2016] [Indexed: 12/13/2022]
Abstract
Autologous fat grafting is an effective reconstructive surgery technique; however, its success is limited by inconsistent graft retention and an environment characterized by high oxidative stress and inflammation. Adipose-derived stem cells (ADSCs) increase the survival of fat grafts, although the underlying mechanisms remain unclear. Here, TLR4−/− and Nrf2−/− mice were used to explore the effects of oxidative stress and inflammation on the viability and function of ADSCs in vitro and in vivo. Enrichment of fat grafts with ADSCs inhibited inflammatory cytokine production, enhanced growth factor levels, increased fat graft survival, downregulated NADPH oxidase (NOX)1 and 4 expression, increased vascularization and reduced ROS production in a manner dependent on toll-like receptor (TLR)-4 and nuclear factor erythroid 2-related factor 2 (Nrf2) expression. Immunohistochemical analysis showed that exposure to hypoxia enhanced ADSC growth and promoted the differentiation of ADSCs into vascular endothelial cells. Hypoxia-induced inflammatory cytokine, growth factor and NOX1/4 upregulation, as well as increased ROS production and apoptosis in ADSCs were dependent on TLR4 and Nrf2, which also modulated the effect of ADSCs on promoting endothelial progenitor cell migration and angiogenesis. Western blot analyses showed that the effects of hypoxia on ADSCs were regulated by crosstalk between Nrf2 antioxidant responses and NF-κB- and TLR4-mediated inflammatory responses. Taken together, our results indicate that ADSCs can increase the survival of fat transplants through the modulation of inflammatory and oxidative responses via Nrf2 and TLR4, suggesting potential strategies to improve the use of ADSCs for cell therapy.
Collapse
Affiliation(s)
- Xiaosong Chen
- Department of Plastic Surgery, The Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, Fujian 350001, China.,Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou, Fujian 350000, China
| | - Liu Yan
- Department of Plastic Surgery, The Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, Fujian 350001, China.,Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou, Fujian 350000, China
| | - Zhihui Guo
- Department of Plastic Surgery, The Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, Fujian 350001, China
| | - Zhaohong Chen
- Department of Burns Surgery, The Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, Fujian 350001, China
| | - Ying Chen
- Department of Plastic Surgery, The Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, Fujian 350001, China.,Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou, Fujian 350000, China
| | - Ming Li
- Department of Plastic Surgery, The Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, Fujian 350001, China
| | - Chushan Huang
- Department of Plastic Surgery, The Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, Fujian 350001, China
| | - Xiaoping Zhang
- Institution of Interventional and Vascular surgery, Tongji Univerity, No 301 Middle Yan Chang Road, Shanghai 200072, China
| | - Liangwan Chen
- Department of Cardiac Surgery, The Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, Fujian 350001, China
| |
Collapse
|
29
|
Gomez JC, Dang H, Martin JR, Doerschuk CM. Nrf2 Modulates Host Defense during Streptococcus pneumoniae Pneumonia in Mice. THE JOURNAL OF IMMUNOLOGY 2016; 197:2864-79. [PMID: 27566827 DOI: 10.4049/jimmunol.1600043] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/28/2016] [Indexed: 12/20/2022]
Abstract
Nrf2 regulates the transcriptional response to oxidative stress. These studies tested the role of Nrf2 during Streptococcus pneumoniae pneumonia and identified Nrf2-dependent genes and pathways in lung tissue and in recruited neutrophils. Nrf2 null and wild type (WT) mice were studied at 6 and 24 h after instillation of S. pneumoniae or PBS. At 6 h, fewer neutrophils were recruited and the number of bacteria remaining in the lungs tended to be less (p = 0.06) in the Nrf2 null compared with WT mice. In uninfected lungs, 53 genes were already differentially expressed in Nrf2 null compared with WT mouse lungs, and gene sets involved in phagocytosis, Fc receptor function, complement, and Ig regulation are enhanced in PBS-treated Nrf2 null gene profiles compared with those of WT mice. These results suggest that initial host defense is enhanced in Nrf2 null mice, resulting in less recruitment of neutrophils. At 24 h, neutrophil recruitment was greater. The percentages of early apoptotic and late apoptotic/necrotic neutrophils were similar. At increasing inoculum numbers, mortality rates strikingly increased from 15 to 31 and 100% in Nrf2 null mice, whereas all WT mice survived, and Nrf2 null mice had a defect in clearance, particularly at the intermediate dose. The mortality was due to enhanced lung injury and greater systemic response. Gene profiling identified differentially regulated genes and pathways in neutrophils and lung tissue, including those involved in redox stress response, metabolism, inflammation, immunoregulatory pathways, and tissue repair, providing insight into the mechanisms for the greater tissue damage and increased neutrophil accumulation.
Collapse
Affiliation(s)
- John C Gomez
- Center for Airways Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Jessica R Martin
- Center for Airways Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Claire M Doerschuk
- Center for Airways Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
30
|
Stolt C, Schmidt IHE, Sayfart Y, Steinmetz I, Bast A. Heme Oxygenase-1 and Carbon Monoxide PromoteBurkholderia pseudomalleiInfection. THE JOURNAL OF IMMUNOLOGY 2016; 197:834-46. [DOI: 10.4049/jimmunol.1403104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/26/2016] [Indexed: 12/25/2022]
|
31
|
Rojo de la Vega M, Dodson M, Gross C, Mansour HM, Lantz RC, Chapman E, Wang T, Black SM, Garcia JGN, Zhang DD. Role of Nrf2 and Autophagy in Acute Lung Injury. ACTA ACUST UNITED AC 2016; 2:91-101. [PMID: 27313980 DOI: 10.1007/s40495-016-0053-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the clinical manifestations of severe lung damage and respiratory failure. Characterized by severe inflammation and compromised lung function, ALI/ARDS result in very high mortality of affected individuals. Currently, there are no effective treatments for ALI/ARDS, and ironically, therapies intended to aid patients (specifically mechanical ventilation, MV) may aggravate the symptoms. Key events contributing to the development of ALI/ARDS are: increased oxidative and proteotoxic stresses, unresolved inflammation, and compromised alveolar-capillary barrier function. Since the airways and lung tissues are constantly exposed to gaseous oxygen and airborne toxicants, the bronchial and alveolar epithelial cells are under higher oxidative stress than other tissues. Cellular protection against oxidative stress and xenobiotics is mainly conferred by Nrf2, a transcription factor that promotes the expression of genes that regulate oxidative stress, xenobiotic metabolism and excretion, inflammation, apoptosis, autophagy, and cellular bioenergetics. Numerous studies have demonstrated the importance of Nrf2 activation in the protection against ALI/ARDS, as pharmacological activation of Nrf2 prevents the occurrence or mitigates the severity of ALI/ARDS. Another promising new therapeutic strategy in the prevention and treatment of ALI/ARDS is the activation of autophagy, a bulk protein and organelle degradation pathway. In this review, we will discuss the strategy of concerted activation of Nrf2 and autophagy as a preventive and therapeutic intervention to ameliorate ALI/ARDS.
Collapse
Affiliation(s)
| | - Matthew Dodson
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Christine Gross
- Department of Medicine, Division of Translational and Regenerative Medicine, University of Arizona, Tucson, AZ, USA
| | - Heidi M Mansour
- Skaggs Pharmaceutical Sciences Center, University of Arizona, Tucson, AZ, USA
| | - R Clark Lantz
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Eli Chapman
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA; Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Ting Wang
- Arizona Respiratory Center and Department of Medicine, University of Arizona, Tucson, AZ
| | - Stephen M Black
- Department of Medicine, Division of Translational and Regenerative Medicine, University of Arizona, Tucson, AZ, USA
| | - Joe G N Garcia
- Arizona Respiratory Center and Department of Medicine, University of Arizona, Tucson, AZ
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA; Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
32
|
Wang X, Hai C. Redox modulation of adipocyte differentiation: hypothesis of "Redox Chain" and novel insights into intervention of adipogenesis and obesity. Free Radic Biol Med 2015; 89:99-125. [PMID: 26187871 DOI: 10.1016/j.freeradbiomed.2015.07.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/19/2015] [Accepted: 07/08/2015] [Indexed: 02/08/2023]
Abstract
In view of the global prevalence of obesity and obesity-associated disorders, it is important to clearly understand how adipose tissue forms. Accumulating data from various laboratories implicate that redox status is closely associated with energy metabolism. Thus, biochemical regulation of the redox system may be an attractive alternative for the treatment of obesity-related disorders. In this work, we will review the current data detailing the role of the redox system in adipocyte differentiation, as well as identifying areas for further research. The redox system affects adipogenic differentiation in an extensive way. We propose that there is a complex and interactive "redox chain," consisting of a "ROS-generating enzyme chain," "combined antioxidant chain," and "transcription factor chain," which contributes to fine-tune the regulation of ROS level and subsequent biological consequences. The roles of the redox system in adipocyte differentiation are paradoxical. The redox system exerts a "tridimensional" mechanism in the regulation of adipocyte differentiation, including transcriptional, epigenetic, and posttranslational modulations. We suggest that redoxomic techniques should be extensively applied to understand the biological effects of redox alterations in a more integrated way. A stable and standardized "redox index" is urgently needed for the evaluation of the general redox status. Therefore, more effort should be made to establish and maintain a general redox balance rather than to conduct simple prooxidant or antioxidant interventions, which have comprehensive implications.
Collapse
Affiliation(s)
- Xin Wang
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| | - Chunxu Hai
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
33
|
Hyperbaric hyperoxia alters innate immune functional properties during NASA Extreme Environment Mission Operation (NEEMO). Brain Behav Immun 2015; 50:52-57. [PMID: 26116982 DOI: 10.1016/j.bbi.2015.06.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Spaceflight is associated with immune dysregulation which is considered as risk factor for the performance of exploration-class missions. Among the consequences of confinement and other environmental factors of living in hostile environments, the role of different oxygen concentrations is of importance as either low (e.g. as considered for lunar or Martian habitats) or high (e.g. during extravehicular activities) can trigger immune dysfunction. The aim of this study was to investigate the impact of increased oxygen availability--generated through hyperbaricity--on innate immune functions in the course of a 14 days NEEMO mission. METHODS 6 male subjects were included into a 14 days undersea deployment at the Aquarius station (Key Largo, FL, USA). The underwater habitat is located at an operating depth of 47 ft. The 2.5 times higher atmospheric pressure in the habitat leads to hyperoxia. The collection of biological samples occurred 6 days before (L-6), at day 7 (MD7) and 11/13 (MD11/13) during the mission, and 90 days thereafter (R). Blood analyses included differential blood cell count, ex vivo innate immune activation status and inhibitory competences of granulocytes. RESULTS The absolute leukocyte count showed an increase during deployment as well as the granulocyte and monocyte count. Lymphocyte count was decreased on MD7. The assessments of native adhesion molecules on granulocytes (CD11b, CD62L) indicated a highly significant cellular activation (L-6 vs. MD7/MD13) during mission. In contrast, granulocytes were more sensitive towards anti-inflammatory stimuli (adenosine) on MD13. CONCLUSION Living in the NEEMO habitat for 14 days induced significant immune alterations as seen by an activation of adhesion molecules and vice versa higher sensitivity towards inhibition. This investigation under hyperbaric hyperoxia is important especially for Astronauts' immune competence during extravehicular activities when exposed to similar conditions.
Collapse
|
34
|
Association of Nrf2 with airway pathogenesis: lessons learned from genetic mouse models. Arch Toxicol 2015; 89:1931-57. [PMID: 26194645 DOI: 10.1007/s00204-015-1557-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/17/2015] [Indexed: 01/11/2023]
Abstract
Nrf2 is a key transcription factor for antioxidant response element (ARE)-bearing genes involved in diverse host defense functions including redox balance, cell cycle, immunity, mitochondrial biogenesis, energy metabolism, and carcinogenesis. Nrf2 in the airways is particularly essential as the respiratory system continuously interfaces with environmental stress. Since Nrf2 was determined to be a susceptibility gene for a model of acute lung injury, its protective capacity in the airways has been demonstrated in experimental models of human disorders using Nrf2 mutant mice which were susceptible to supplemental respiratory therapy (e.g., hyperoxia, mechanical ventilation), cigarette smoke, allergens, virus, environmental pollutants, and fibrotic agents compared to wild-type littermates. Recent studies also determined that Nrf2 is indispensable in developmental lung injury. While association studies with genetic NRF2 polymorphisms supported a protective role for murine Nrf2 in oxidative airway diseases, somatic NRF2 mutations enhanced NRF2-ARE responses, and were favorable for lung carcinogenesis and chemoresistance. Bioinformatic tools have elucidated direct Nrf2 targets as well as Nrf2-interacting networks. Moreover, potent Nrf2-ARE agonists protected oxidant-induced lung phenotypes in model systems, suggesting a therapeutic or preventive intervention. Further investigations on Nrf2 should yield greater understanding of its contribution to normal and pathophysiological function in the airways.
Collapse
|
35
|
Gomez JC, Yamada M, Martin JR, Dang H, Brickey WJ, Bergmeier W, Dinauer MC, Doerschuk CM. Mechanisms of interferon-γ production by neutrophils and its function during Streptococcus pneumoniae pneumonia. Am J Respir Cell Mol Biol 2015; 52:349-64. [PMID: 25100610 DOI: 10.1165/rcmb.2013-0316oc] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bacterial pneumonia is a common public health problem associated with significant mortality, morbidity, and cost. Neutrophils are usually the earliest leukocytes to respond to bacteria in the lungs. Neutrophils rapidly sequester in the pulmonary microvasculature and migrate into the lung parenchyma and alveolar spaces, where they perform numerous effector functions for host defense. Previous studies showed that migrated neutrophils produce IFN-γ early during pneumonia induced by Streptococcus pneumoniae and that early production of IFN-γ regulates bacterial clearance. IFN-γ production by neutrophils requires Rac2, Hck/Lyn/Fgr Src family tyrosine kinases, and NADPH oxidase. Our current studies examined the mechanisms that regulate IFN-γ production by lung neutrophils during acute S. pneumoniae pneumonia in mice and its function. We demonstrate that IFN-γ production by neutrophils is a tightly regulated process that does not require IL-12. The adaptor molecule MyD88 is critical for IFN-γ production by neutrophils. The guanine nucleotide exchange factor CalDAG-GEFI modulates IFN-γ production. The CD11/CD18 complex, CD44, Toll-like receptors 2 and 4, TRIF, and Nrf2 are not required for IFN-γ production by neutrophils. The recently described neutrophil-dendritic cell hybrid cell, identified by its expression of Ly6G and CD11c, is present at low numbers in pneumonic lungs and is not a source of IFN-γ. IFN-γ produced by neutrophils early during acute S. pneumoniae pneumonia induces transcription of target genes in the lungs, which are critical for host defense. These studies underline the complexity of the neutrophil responses during pneumonia in the acute inflammatory response and in subsequent resolution or initiation of immune responses.
Collapse
Affiliation(s)
- John C Gomez
- 1 Center for Airways Disease, Department of Medicine
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Nuclear factor erythroid 2-related factor 2 regulates toll-like receptor 4 innate responses in mouse liver ischemia-reperfusion injury through Akt-forkhead box protein O1 signaling network. Transplantation 2015; 98:721-8. [PMID: 25171655 DOI: 10.1097/tp.0000000000000316] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulator of the antioxidant host defense, maintains the cellular redox homeostasis. METHODS This study was designed to investigate the role and molecular mechanisms by which Nrf2 regulates toll-like receptor (TLR)4-driven inflammation response in a mouse model of hepatic warm ischemia (90 min) and reperfusion (6 hr) injury (IRI). RESULTS Activation of Nrf2 after preconditioning of wild-type mouse recipients with cobalt protoporphyrin ameliorated liver IRI, evidenced by improved hepatocellular function (serum alanine aminotransferase levels), and preserved tissue architecture (histology Suzuki's score). In marked contrast, ablation of Nrf2 signaling exacerbated IR-induced liver inflammation and damage in Nrf2 knockout hosts irrespective of adjunctive cobalt protoporphyrin treatment. The Nrf2 activation reduced macrophage and neutrophil trafficking, proinflammatory cytokine programs, and hepatocellular necrosis or apoptosis while increasing antiapoptotic functions in IR-stressed livers. At the molecular level, Nrf2 activation augmented heme oxygenase-1 expression and Stat3 phosphorylation and promoted PI3K-Akt while suppressing forkhead box O (Foxo)1 signaling. In contrast, Nrf2 deficiency diminished PI3K-Akt and enhanced Foxo1 expression in the ischemic livers. In parallel in vitro studies, Nrf2 knockdown in lipopolysaccharide-stimulated bone marrow-stimulated bone marrow-derived macrophages (BMMs) decreased heme oxygenase-1 and PI3K-Akt yet increased Foxo1 transcription, leading to enhanced expression of TLR4 proinflammatory mediators. Moreover, pretreatment of bone marrow-derived macrophages with PI3K inhibitor (LY294002) activated Foxo1 signaling, which in turn enhanced TLR4-driven innate responses in vitro. CONCLUSION Activation of Nrf2 promoted PI3K-Akt, and inhibited Foxo1 activity in IR-triggered local inflammation response. By identifying a novel integrated Nrf2-Akt-Foxo1 signaling network in PI3K-dependent regulation of TLR4-driven innate immune activation, this study provides the rationale for refined therapeutic approaches to manage liver inflammation and IRI in transplant recipients.
Collapse
|
37
|
Cho HY, Jedlicka AE, Gladwell W, Marzec J, McCaw ZR, Bienstock RJ, Kleeberger SR. Association of Nrf2 polymorphism haplotypes with acute lung injury phenotypes in inbred strains of mice. Antioxid Redox Signal 2015; 22:325-38. [PMID: 25268541 PMCID: PMC4298158 DOI: 10.1089/ars.2014.5942] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AIMS Nrf2 is a master transcription factor for antioxidant response element (ARE)-mediated cytoprotective gene induction. A protective role for pulmonary Nrf2 was determined in model oxidative disorders, including hyperoxia-induced acute lung injury (ALI). To obtain additional insights into the function and genetic regulation of Nrf2, we assessed functional single nucleotide polymorphisms (SNPs) of Nrf2 in inbred mouse strains and tested whether sequence variation is associated with hyperoxia susceptibility. RESULTS Nrf2 SNPs were compiled from publicly available databases and by re-sequencing DNA from inbred strains. Hierarchical clustering of Nrf2 SNPs categorized the strains into three major haplotypes. Hyperoxia susceptibility was greater in haplotypes 2 and 3 strains than in haplotype 1 strains. A promoter SNP -103 T/C adding an Sp1 binding site in haplotype 2 diminished promoter activation basally and under hyperoxia. Haplotype 3 mice bearing nonsynonymous coding SNPs located in (1862 A/T, His543Gln) and adjacent to (1417 T/C, Thr395Ile) the Neh1 domain showed suppressed nuclear transactivation of pulmonary Nrf2 relative to other strains, and overexpression of haplotype 3 Nrf2 showed lower ARE responsiveness than overexpression of haplotype 1 Nrf2 in airway cells. Importantly, we found a significant correlation of Nrf2 haplotypes and hyperoxic lung injury phenotypes. INNOVATION AND CONCLUSION The results indicate significant influence of Nrf2 polymorphisms and haplotypes on gene function and hyperoxia susceptibility. Our findings further support Nrf2 as a genetic determinant in ALI pathogenesis and provide useful tools for investigators who use mouse strains classified by Nrf2 haplotypes to elucidate the role for Nrf2 in oxidative disorders.
Collapse
Affiliation(s)
- Hye-Youn Cho
- 1 Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park, North Carolina
| | | | | | | | | | | | | |
Collapse
|
38
|
Lim R, Barker G, Lappas M. The transcription factor Nrf2 is decreased after spontaneous term labour in human fetal membranes where it exerts anti-inflammatory properties. Placenta 2015; 36:7-17. [DOI: 10.1016/j.placenta.2014.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 10/31/2014] [Accepted: 11/04/2014] [Indexed: 01/01/2023]
|
39
|
Li C, Pan Z, Xu T, Zhang C, Wu Q, Niu Y. Puerarin induces the upregulation of glutathione levels and nuclear translocation of Nrf2 through PI3K/Akt/GSK-3β signaling events in PC12 cells exposed to lead. Neurotoxicol Teratol 2014; 46:1-9. [PMID: 25195717 DOI: 10.1016/j.ntt.2014.08.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 07/14/2014] [Accepted: 08/29/2014] [Indexed: 01/16/2023]
Abstract
Oxidative stress is thought to be involved in lead-induced toxicity, especially affecting the brain. We reported previously that puerarin possesses antioxidative properties in the nervous system. Therefore, the aim of the present study was to test the hypothesis that puerarin inhibits lead acetate-induced oxidative stress in PC12 cells by interrupting phosphatidylinositol-3 kinase (PI3K)/Akt signaling through increasing glutathione (GSH) synthesis. Our results showed that puerarin attenuates oxidative stress in a concentration-dependent manner in PC12 cells exposed to lead acetate demonstrated by scavenging reactive oxygen species (ROS) and reducing lipid peroxidation (LPO). Treatment with puerarin significantly up-regulates glutamate cysteine ligase catalytic subunit (GCLc) expression both at its mRNA and protein levels, but not glutamate cysteine ligase modifier (GCLm) subunit, accompanying the elevation of cellular glutathione level. The increased nuclear accumulation of nuclear factor erythroid 2-related factor 2 (Nrf2) was not because of increased transcription of Nrf2 as Nrf2 transcript levels did not change after puerarin treatment. The effects of puerarin could be partially blocked by pharmacologic inhibition of PI3K and the glycogen synthase kinase 3β (GSK-3β) pathways with LY294002 and LiCl, respectively. On the other hand, puerarin treatment promoted Akt and GSK-3β phosphorylation in PC12 cells exposed to lead acetate. Moreover, puerarin failed to modulate the phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), p-c-Jun N-terminal kinases (JNK), and p-p38 mitogen-activated protein kinase (MAPK) demonstrating some specificity for its action on the PI3K/GSK-3β pathway. These findings suggest that puerarin as a phytoestrogen might be an attractive agent for prevention and treatment of chronic diseases related to lead neurotoxicity.
Collapse
Affiliation(s)
- Chengchong Li
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Zhi Pan
- Center for New Medicine Research, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Tianjiao Xu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Chun Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan 750004, China
| | - Qi Wu
- Medical Technology Department, Qiqihar Medical University, Qiqihar 161006, China
| | - Yingcai Niu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China.
| |
Collapse
|
40
|
Zhao C, Gillette DD, Li X, Zhang Z, Wen H. Nuclear factor E2-related factor-2 (Nrf2) is required for NLRP3 and AIM2 inflammasome activation. J Biol Chem 2014; 289:17020-9. [PMID: 24798340 DOI: 10.1074/jbc.m114.563114] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite the number of extensive studies on the immune function and signaling of inflammasomes in various diseases, the activating mechanism of inflammasome, especially the NLRP3 inflammasome, is not fully understood. Nuclear factor E2-related Factor-2 (Nrf2), a key transcription factor that regulates cellular redox homeostasis, has been reported to play both protective and pathogenic roles depending on the disease conditions through undefined mechanism. This study reveals an essential role of Nrf2 in inflammasome activation. LPS stimulation increased Nrf2 protein levels in a Myd88-dependent manner. When compared with wild-type controls, Nrf2-deficient (Nrf2(-/-)) macrophages showed decreased maturation and secretion of caspase-1 and IL-1β and reduced apoptosis-associated speck-like protein containing CARD (ASC) speck formation in response to various NLRP3 and AIM2 inflammasome stimuli. In contrast, NLRC4 inflammasome activation was not controlled by Nrf2. Biochemical analysis revealed that Nrf2 appeared in the ASC-enriched cytosolic compartment after NLRP3 inflammasome activation. Furthermore, mitochondrial reactive oxygen species-induced NLRP3 activation also required Nrf2. Nrf2(-/-) mice showed a dramatic decrease in immune cell recruitment and IL-1β generation in alum-induced peritonitis, which is a typical IL-1 signaling-dependent inflammation animal model. This work discovered a critical proinflammatory effect of Nrf2 by mediating inflammasome activation.
Collapse
Affiliation(s)
- Changcheng Zhao
- From the Lineberger Comprehensive Cancer Center, Department of Surgery, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Devyn D Gillette
- From the Lineberger Comprehensive Cancer Center, Department of Surgery, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Xinghui Li
- From the Lineberger Comprehensive Cancer Center, Department of Surgery, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Zhibin Zhang
- From the Lineberger Comprehensive Cancer Center, Department of Surgery, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Haitao Wen
- From the Lineberger Comprehensive Cancer Center, Department of Surgery, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
41
|
Abstract
Reactive oxygen species (ROS) are deadly weapons used by phagocytes and other cell types, such as lung epithelial cells, against pathogens. ROS can kill pathogens directly by causing oxidative damage to biocompounds or indirectly by stimulating pathogen elimination by various nonoxidative mechanisms, including pattern recognition receptors signaling, autophagy, neutrophil extracellular trap formation, and T-lymphocyte responses. Thus, one should expect that the inhibition of ROS production promote infection. Increasing evidences support that in certain particular infections, antioxidants decrease and prooxidants increase pathogen burden. In this study, we review the classic infections that are controlled by ROS and the cases in which ROS appear as promoters of infection, challenging the paradigm. We discuss the possible mechanisms by which ROS could promote particular infections. These mechanisms are still not completely clear but include the metabolic effects of ROS on pathogen physiology, ROS-induced damage to the immune system, and ROS-induced activation of immune defense mechanisms that are subsequently hijacked by particular pathogens to act against more effective microbicidal mechanisms of the immune system. The effective use of antioxidants as therapeutic agents against certain infections is a realistic possibility that is beginning to be applied against viruses.
Collapse
Affiliation(s)
- Claudia N Paiva
- Departamento de Imunologia, Instituto de Microbiologia , CCS Bloco D, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | |
Collapse
|
42
|
Lv P, Xue P, Dong J, Peng H, Clewell R, Wang A, Wang Y, Peng S, Qu W, Zhang Q, Andersen ME, Pi J. Keap1 silencing boosts lipopolysaccharide-induced transcription of interleukin 6 via activation of nuclear factor κB in macrophages. Toxicol Appl Pharmacol 2013; 272:697-702. [DOI: 10.1016/j.taap.2013.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 07/03/2013] [Accepted: 07/19/2013] [Indexed: 01/07/2023]
|
43
|
The NRF2 activation and antioxidative response are not impaired overall during hyperoxia-induced lung epithelial cell death. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:798401. [PMID: 23738042 PMCID: PMC3655638 DOI: 10.1155/2013/798401] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/25/2013] [Indexed: 01/11/2023]
Abstract
Lung epithelial and endothelial cell death caused by pro-oxidant insults is a cardinal feature of acute lung injury/acute respiratory distress syndrome (ALI/ARDS) patients. The NF-E2-related factor 2 (NRF2) activation in response to oxidant exposure is crucial to the induction of several antioxidative and cytoprotective enzymes that mitigate cellular stress. Since prolonged exposure to hyperoxia causes cell death, we hypothesized that chronic hyperoxia impairs NRF2 activation, resulting in cell death. To test this hypothesis, we exposed nonmalignant small airway epithelial cells (AECs) to acute (1–12 h) and chronic (36–48 h) hyperoxia and evaluated cell death, NRF2 nuclear accumulation and target gene expression, and NRF2 recruitment to the endogenous HMOX1 and NQO1 promoters. As expected, hyperoxia gradually induced death in AECs, noticeably and significantly by 36 h; ~60% of cells were dead by 48 h. However, we unexpectedly found increased expression levels of NRF2-regulated antioxidative genes and nuclear NRF2 in AECs exposed to chronic hyperoxia as compared to acute hyperoxia. Chromatin Immunoprecipitation (ChIP) assays revealed an increased recruitment of NRF2 to the endogenous HMOX1 and NQO1 promoters in AECs exposed to acute or chronic hyperoxia. Thus, our findings demonstrate that NRF2 activation and antioxidant gene expression are functional during hyperoxia-induced lung epithelial cell death and that chronic hyperoxia does not impair NRF2 signaling overall.
Collapse
|
44
|
A quantitative proteomic profile of the Nrf2-mediated antioxidant response of macrophages to oxidized LDL determined by multiplexed selected reaction monitoring. PLoS One 2012; 7:e50016. [PMID: 23166812 PMCID: PMC3500347 DOI: 10.1371/journal.pone.0050016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/16/2012] [Indexed: 02/02/2023] Open
Abstract
The loading of macrophages with oxidized low density lipoprotein (LDL) is a key part of the initiation and progression of atherosclerosis. Oxidized LDL contains a wide ranging set of toxic species, yet the molecular events that allow macrophages to withstand loading with these toxic species are not completely characterized. The transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a master regulator of the cellular stress response. However, the specific parts of the Nrf2-dependent stress response are diverse, with both tissue- and treatment-dependent components. The goal of these experiments was to develop and use a quantitative proteomic approach to characterize the Nrf2-dependent response in macrophages to oxidized LDL. Cultured mouse macrophages, the J774 macrophage-like cell line, were treated with a combination of oxidized LDL, the Nrf2-stabilizing reagent tert- butylhydroquinone (tBHQ), and/or Nrf2 siRNA. Protein expression was determined using a quantitative proteomics assay based on selected reaction monitoring. The assay was multiplexed to monitor a set of 28 antioxidant and stress response proteins, 6 housekeeping proteins, and 1 non-endogenous standard protein. The results have two components. The first component is the validation of the multiplexed, quantitative proteomics assay. The assay is shown to be fundamentally quantitative, precise, and accurate. The second component is the characterization of the Nrf2-mediated stress response. Treatment with tBHQ and/or Nrf2 siRNA gave statistically significant changes in the expression of a subset of 11 proteins. Treatment with oxidized LDL gave statistically significant increases in the expression of 7 of those 11 proteins plus one additional protein. All of the oxLDL-mediated increases were attenuated by Nrf2 siRNA. These results reveal a specific, multifaceted response of the foam cells to the incoming toxic oxidized LDL.
Collapse
|
45
|
Takaya K, Suzuki T, Motohashi H, Onodera K, Satomi S, Kensler TW, Yamamoto M. Validation of the multiple sensor mechanism of the Keap1-Nrf2 system. Free Radic Biol Med 2012; 53:817-27. [PMID: 22732183 PMCID: PMC3539416 DOI: 10.1016/j.freeradbiomed.2012.06.023] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 06/15/2012] [Accepted: 06/16/2012] [Indexed: 01/06/2023]
Abstract
The Keap1-Nrf2 system plays a critical role in cellular defense against electrophiles and reactive oxygen species. Keap1 possesses a number of cysteine residues, some of which are highly reactive and serves as sensors for these insults. Indeed, point mutation of Cys151 abrogates the response to certain electrophiles. However, this mutation does not affect the other set of electrophiles, suggesting that multiple sensor systems reside within the cysteine residues of Keap1. The precise contribution of each reactive cysteine to the sensor function of Keap1 remains to be clarified. To elucidate the contribution of Cys151 in vivo, in this study we adopted transgenic complementation rescue assays. Embryonic fibroblasts and primary peritoneal macrophages were prepared from mice expressing the Keap1-C151S mutant. These cells were challenged with various Nrf2 inducers. We found that some of the inducers triggered only marginal responses in Keap1-C151S-expressing cells, while others evoked responses in a comparable magnitude to those observed in the wild-type cells. We found that tert-butyl hydroquinone, diethylmaleate, sulforaphane, and dimethylfumarate were Cys151 preferable, whereas 15-deoxy-Δ(12,14)-prostaglandin J(2) (15d-PG-J(2)), 2-cyano-3,12 dioxooleana-1,9 diene-28-imidazolide (CDDO-Im), ebselen, nitro-oleic acid, and cadmium chloride were Cys151 independent. Experiments with embryonic fibroblasts and primary macrophages yielded consistent results. Experiments testing protective effects against the cytotoxicity of 1-chloro-2,4-dinitrobenzene of sulforaphane and 15d-PG-J(2) in Keap1-C151S-expressing macrophages revealed that the former inducer was effective, while the latter was not. These results thus indicate that there exists distinct utilization of Keap1 cysteine residues by different chemicals that trigger the response of the Keap1-Nrf2 system, and further substantiate the notion that there are multiple sensing mechanisms within Keap1 cysteine residues.
Collapse
Affiliation(s)
- Kai Takaya
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
- Department of Organ Transplantation, Reconstruction and Endoscopic Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Takafumi Suzuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Hozumi Motohashi
- Center for Radioisotope Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Ko Onodera
- Department of Organ Transplantation, Reconstruction and Endoscopic Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Susumu Satomi
- Department of Organ Transplantation, Reconstruction and Endoscopic Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Thomas W Kensler
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
- To whom correspondence should be sent: Masayuki Yamamoto, Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan TEL 81-22-717-8084, FAX 81-22-717-8090,
| |
Collapse
|
46
|
Paiva CN, Feijó DF, Dutra FF, Carneiro VC, Freitas GB, Alves LS, Mesquita J, Fortes GB, Figueiredo RT, Souza HSP, Fantappié MR, Lannes-Vieira J, Bozza MT. Oxidative stress fuels Trypanosoma cruzi infection in mice. J Clin Invest 2012; 122:2531-2542. [PMID: 22728935 PMCID: PMC3386808 DOI: 10.1172/jci58525] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 04/18/2012] [Indexed: 12/13/2022] Open
Abstract
Oxidative damage contributes to microbe elimination during macrophage respiratory burst. Nuclear factor, erythroid-derived 2, like 2 (NRF2) orchestrates antioxidant defenses, including the expression of heme-oxygenase-1 (HO-1). Unexpectedly, the activation of NRF2 and HO-1 reduces infection by a number of pathogens, although the mechanism responsible for this effect is largely unknown. We studied Trypanosoma cruzi infection in mice in which NRF2/HO-1 was induced with cobalt protoporphyrin (CoPP). CoPP reduced parasitemia and tissue parasitism, while an inhibitor of HO-1 activity increased T. cruzi parasitemia in blood. CoPP-induced effects did not depend on the adaptive immunity, nor were parasites directly targeted. We also found that CoPP reduced macrophage parasitism, which depended on NRF2 expression but not on classical mechanisms such as apoptosis of infected cells, induction of type I IFN, or NO. We found that exogenous expression of NRF2 or HO-1 also reduced macrophage parasitism. Several antioxidants, including NRF2 activators, reduced macrophage parasite burden, while pro-oxidants promoted it. Reducing the intracellular labile iron pool decreased parasitism, and antioxidants increased the expression of ferritin and ferroportin in infected macrophages. Ferrous sulfate reversed the CoPP-induced decrease in macrophage parasite burden and, given in vivo, reversed their protective effects. Our results indicate that oxidative stress contributes to parasite persistence in host tissues and open a new avenue for the development of anti-T. cruzi drugs.
Collapse
Affiliation(s)
- Claudia N Paiva
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia Professor Paulo de Góes (IMPPG), Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Entezari M, Weiss DJ, Sitapara R, Whittaker L, Wargo MJ, Li J, Wang H, Yang H, Sharma L, Phan BD, Javdan M, Chavan SS, Miller EJ, Tracey KJ, Mantell LL. Inhibition of high-mobility group box 1 protein (HMGB1) enhances bacterial clearance and protects against Pseudomonas Aeruginosa pneumonia in cystic fibrosis. Mol Med 2012; 18:477-85. [PMID: 22314397 DOI: 10.2119/molmed.2012.00024] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 01/31/2012] [Indexed: 01/08/2023] Open
Abstract
Pulmonary infection with Pseudomonas aeruginosa and neutrophilic lung inflammation significantly contribute to morbidity and mortality in cystic fibrosis (CF). High-mobility group box 1 protein (HMGB1), a ubiquitous DNA binding protein that promotes inflammatory tissue injury, is significantly elevated in CF sputum. However, its mechanistic and potential therapeutic implications in CF were previously unknown. We found that HMGB1 levels were significantly elevated in bronchoalveolar lavage fluids (BALs) of CF patients and cystic fibrosis transmembrane conductance regulator (CFTR )(-/-) mice. Neutralizing anti-HMGB1 monoclonal antibody (mAb) conferred significant protection against P. aeruginosa-induced neutrophil recruitment, lung injury and bacterial infection in both CFTR(-/-) and wild-type mice. Alveolar macrophages isolated from mice treated with anti-HMGB1 mAb had improved phagocytic activity, which was suppressed by direct exposure to HMGB1. In addition, BAL from CF patients significantly impaired macrophage phagocytotic function, and this impairment was attenuated by HMGB1-neutralizing antibodies. The HMGB1-mediated suppression of bacterial phagocytosis was attenuated in macrophages lacking toll-like receptor (TLR)-4, suggesting a critical role for TLR4 in signaling HMGB1-mediated macrophage dysfunction. These studies demonstrate that the elevated levels of HMGB1 in CF airways are critical for neutrophil recruitment and persistent presence of P. aeruginosa in the lung. Thus, HMGB1 may provide a therapeutic target for reducing bacterial infection and lung inflammation in CF.
Collapse
Affiliation(s)
- Maria Entezari
- Cardiopulmonary Toxicology, Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Allied Health Professions, Queens, New York 11439, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Meher AK, Sharma PR, Lira VA, Yamamoto M, Kensler TW, Yan Z, Leitinger N. Nrf2 deficiency in myeloid cells is not sufficient to protect mice from high-fat diet-induced adipose tissue inflammation and insulin resistance. Free Radic Biol Med 2012; 52:1708-15. [PMID: 22370093 PMCID: PMC3383807 DOI: 10.1016/j.freeradbiomed.2012.02.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/23/2012] [Accepted: 02/15/2012] [Indexed: 12/28/2022]
Abstract
Activation of the transcription factor NF-E2-related factor 2 (Nrf2) by oxidative stress induces the expression of a variety of antioxidant and anti-inflammatory genes. Yet, genetic ablation of Nrf2 was shown to protect mice from high-fat diet (HFD)-induced obesity and insulin resistance. The mechanisms that underlie this seemingly paradoxical finding remain largely unexplored. Here we examined whether Nrf2 deficiency in myeloid cells contributes to protection against HFD-induced metabolic changes by decreasing adipose tissue inflammation. In vitro, induction of IL-1β by inflammatory stimuli was significantly reduced in Nrf2-deficient macrophages. Whereas inflammatory gene expression in the stromal vascular fraction was reduced in both global and chimeric Nrf2 KO mice, only global Nrf2-deficient, and not bone marrow-transplanted Nrf2 chimeric, mice were protected against HFD-induced adipose tissue inflammation. Whereas global Nrf2 deficiency resulted in significantly decreased expression of inflammatory genes and PPARγ2, there was no difference when Nrf2 was absent only from myeloid cells. In vitro coculture with adipocytes demonstrated that macrophage Nrf2 regulated inflammatory gene expression in macrophages; however, it was not required to induce inflammatory gene expression in adipocytes. Finally, in contrast to global Nrf2 knockout, Nrf2 deficiency in myeloid cells did not protect against HFD-induced insulin resistance. Together, our data demonstrate a dominant role for nonmyeloid Nrf2 in controlling HFD-induced adipose tissue inflammation and the development of insulin resistance.
Collapse
Affiliation(s)
- Akshaya K. Meher
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Poonam R. Sharma
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Vitor A. Lira
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Thomas W. Kensler
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhen Yan
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Corresponding author: Norbert Leitinger, PhD, Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA; Telephone: 4342436363; Fax: 4349823878; .
| |
Collapse
|
49
|
Bergstraesser C, Hoeger S, Song H, Ermantraut L, Hottenrot M, Czymai T, Schmidt M, Goebeler M, Ponelies N, Stich C, Loesel R, Molema G, Seelen M, van Son W, Yard BA, Rafat N. Inhibition of VCAM-1 expression in endothelial cells by CORM-3: the role of the ubiquitin-proteasome system, p38, and mitochondrial respiration. Free Radic Biol Med 2012; 52:794-802. [PMID: 22210380 DOI: 10.1016/j.freeradbiomed.2011.11.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 01/27/2023]
Abstract
Carbon monoxide (CO) abrogates TNF-α-mediated inflammatory responses in endothelial cells, yet the underlying mechanism thereof is still elusive. We have previously shown that the anti-inflammatory effect of CO-releasing molecule-3 (CORM-3) is not completely mediated via deactivation of the NF-κB pathway. In this study, we sought to explore other potential mechanisms by which CORM-3 downregulates VCAM-1 expression on TNF-α-stimulated HUVECs. By genome-wide gene expression profiling and pathway analysis we studied the relevance of particular pathways for the anti-inflammatory effect of CORM-3. In CORM-3-stimulated HUVECs significant changes in expression were found for genes implicated in the proteasome and porphyrin pathways. Although proteasome activities were increased by CORM-3, proteasome inhibitors did not abolish the effect of CORM-3. Likewise, heme oxygenase-1 inhibitors did not abrogate the ability of CORM-3 to downregulate VCAM-1 expression. Interestingly, CORM-3 inhibited MAPK p38, and the p38 inhibitor SB203580 downregulated VCAM-1 expression. However, downregulation of VCAM-1 by CORM-3 occurred only at concentrations that partly inhibit ATP production and sodium azide and oligomycin paralleled the effect of CORM-3 in this regard. Our results indicate that CORM-3-induced downregulation of VCAM-1 is mediated via p38 inhibition and mitochondrial respiration, whereas the ubiquitin-proteasome system seems not to be involved.
Collapse
Affiliation(s)
- Claudia Bergstraesser
- Fifth Medical Department, University Hospital Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ungvári I, Hadadi E, Virág V, Nagy A, Kiss A, Kalmár A, Zsigmond G, Semsei AF, Falus A, Szalai C. Relationship between air pollution, NFE2L2 gene polymorphisms and childhood asthma in a Hungarian population. J Community Genet 2011; 3:25-33. [PMID: 22207565 DOI: 10.1007/s12687-011-0075-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 12/16/2011] [Indexed: 01/09/2023] Open
Abstract
Air pollution and subsequent increased oxidative stress have long been recognized as contributing factors for asthma phenotypes. Individual susceptibility to oxidative stress is determined by genetic variations of the antioxidant defence system. In this study, we analysed the association between environmental nitrogen dioxide (NO(2)) exposure and single nucleotide polymorphisms (SNP) in NFE2L2 and KEAP1 genes and their common impact on asthma risk. We genotyped 12 SNPs in a case-control study of 307 patients diagnosed with asthma and 344 controls. NO(2) concentration was collected from the period preceding the development of asthma symptoms. Multiple logistic regression was applied to evaluate the effects of the studied genetic variations on asthma outcomes in interaction with NO(2) exposure. Our data showed that genotypes of rs2588882 and rs6721961 in the regulatory regions of the NFE2L2 gene were inversely associated with infection-induced asthma (odds ratio (OR) = 0.290, p = 0.0015, and OR = 0.437, p = 0.007, respectively). Furthermore, case-only analyses revealed significant differences for these SNPs between asthma patients that lived in modestly or highly polluted environment (OR = 0.43 (0.23-0.82), p = 0.01, and OR = 0.51, p = 0.02, respectively, in a dominant model). In conclusion, our results throw some new light upon the impact of NFE2L2 polymorphisms on infection-induced asthma risk and their effect in gene-environment interactions.
Collapse
Affiliation(s)
- Ildikó Ungvári
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|