1
|
Manchorova D, Alexandrova M, Terzieva A, Vangelov I, Djerov L, Hristova I, Mor G, Dimova T. Study on γδT-Cell Degranulation at Maternal-Fetal Interface via iKIR-HLA-C Axis. Cells 2025; 14:649. [PMID: 40358173 PMCID: PMC12071288 DOI: 10.3390/cells14090649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/23/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
Maternal-fetal tolerance mechanisms are crucial during human pregnancy to prevent the immune rejection of the embryo. A well-known mechanism blocking NK-cell cytotoxicity is the interaction of their inhibitory killer-cell immunoglobulin-like receptors (iKIR) with HLA-C molecules on the target cells. In this study, we aimed to investigate the expression of iKIRs (KIR2DL1 and KIR2DL2/3) on the matched decidual and peripheral γδT cells and the localization of HLA-C ligands throughout human pregnancy. The degranulation of γδT cells of pregnant and non-pregnant women in the presence of trophoblast cells was evaluated as well. Our results showed a higher proportion of iKIR-positive γδT cells at the maternal-fetal interface early in human pregnancy compared to the paired blood of pregnant women and full-term pregnancy decidua. In accordance, HLA-C was intensively expressed by the intermediate cytotrophoblasts and decidua-invading extravillous trophoblasts (EVTs) in early but not late pregnancy. Decidual γδT cells during early pregnancy showed higher spontaneous degranulation compared to their blood pairs, but neither decidual nor peripheral γδ T cells increased their degranulation in the presence of Sw71 EVT-like cells. The latter were unable to suppress the higher cytotoxicity of γδT cells, suggesting a complex regulatory landscape beyond NK-like activity inhibition.
Collapse
Affiliation(s)
- Diana Manchorova
- Institute of Biology and Immunology of Reproduction “Acad. Kiril Bratanov”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (D.M.); (M.A.); (A.T.); (I.V.)
| | - Marina Alexandrova
- Institute of Biology and Immunology of Reproduction “Acad. Kiril Bratanov”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (D.M.); (M.A.); (A.T.); (I.V.)
| | - Antonia Terzieva
- Institute of Biology and Immunology of Reproduction “Acad. Kiril Bratanov”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (D.M.); (M.A.); (A.T.); (I.V.)
| | - Ivaylo Vangelov
- Institute of Biology and Immunology of Reproduction “Acad. Kiril Bratanov”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (D.M.); (M.A.); (A.T.); (I.V.)
| | - Ljubomir Djerov
- University Obstetrics and Gynecology Hospital “Maichin Dom”, Medical University, 1431 Sofia, Bulgaria (I.H.)
| | - Iana Hristova
- University Obstetrics and Gynecology Hospital “Maichin Dom”, Medical University, 1431 Sofia, Bulgaria (I.H.)
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, MI 48201, USA;
| | - Tanya Dimova
- Institute of Biology and Immunology of Reproduction “Acad. Kiril Bratanov”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (D.M.); (M.A.); (A.T.); (I.V.)
| |
Collapse
|
2
|
Levenson D, Romero R, Miller D, Galaz J, Garcia-Flores V, Neshek B, Pique-Regi R, Gomez-Lopez N. The maternal-fetal interface at single-cell resolution: uncovering the cellular anatomy of the placenta and decidua. Am J Obstet Gynecol 2025; 232:S55-S79. [PMID: 40253083 DOI: 10.1016/j.ajog.2024.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 12/12/2024] [Accepted: 12/27/2024] [Indexed: 04/21/2025]
Abstract
The maternal-fetal interface represents a critical site of immunological interactions that can greatly influence pregnancy outcomes. The unique cellular composition and cell-cell interactions taking place within these tissues has spurred substantial research efforts focused on the maternal-fetal interface. With the recent advent of single-cell technologies, multiple investigators have applied such methods to gain an unprecedented level of insight into maternal-fetal communication. Here, we provide an overview of the dynamic cellular composition and cell-cell communications at the maternal-fetal interface as reported by single-cell investigations. By primarily focusing on data from pregnancies in the second and third trimesters, we aim to showcase how single-cell technologies have bolstered the foundational understanding of each cell's contribution to physiologic gestation. Indeed, single-cell technologies have enabled the examination of classical placental cells, such as the trophoblast, as well as uncovered new roles for structural cells now recognized as active participants in pregnancy and parturition, such as decidual and fetal stromal cells, which are reviewed herein. Furthermore, single-cell data investigating the ontogeny, function, differentiation, and interactions among immune cells present at the maternal-fetal interface, namely macrophages, T cells, dendritic cells, neutrophils, mast cells, innate lymphoid cells, natural killer cells, and B cells are discussed in this review. Moreover, a key output of single-cell investigations is the inference of cell-cell interactions, which has been leveraged to not only dissect the intercellular communications within specific tissues but also between compartments such as the decidua basalis and placental villi. Collectively, this review emphasizes the ways by which single-cell technologies have expanded the understanding of cell composition and cellular processes underlying pregnancy in mid-to-late gestation at the maternal-fetal interface, which can prompt their continued application to reveal new pathways and targets for the treatment of obstetrical disease.
Collapse
Affiliation(s)
- Dustyn Levenson
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO; Department of Physiology, Wayne State University School of Medicine, Detroit, MI
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI
| | - Derek Miller
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO
| | - Jose Galaz
- Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Valeria Garcia-Flores
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO
| | - Barbara Neshek
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI
| | - Nardhy Gomez-Lopez
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
3
|
Cuff AO, Von Woon E, Bainton T, Browne B, Kirkwood PM, Collins F, Gibson DA, Saunders PTK, Horne AW, Johnson MR, MacIntyre DA, Male V. Dynamic roles of ILC3 in endometrial repair and regeneration. DISCOVERY IMMUNOLOGY 2025; 4:kyaf004. [PMID: 40303843 PMCID: PMC12038238 DOI: 10.1093/discim/kyaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/21/2025] [Accepted: 03/24/2025] [Indexed: 05/02/2025]
Abstract
Background Innate lymphoid cells (ILCs) are prominent in the human uterine mucosa and play physiological roles in pregnancy. ILC3 are the second-most common ILC subset in the uterine mucosa, but their role remains unclear. Methods Here we define two subsets of lineage-negative CD56+ CD117+ CRTH2-uterine ILC3, distinguished by their expression of CD127. Results The CD127- subset is most numerous and active during menstruation and immediately after parturition, suggesting a role in the repair of the uterine mucosa (called endometrium outside of pregnancy); the CD127+ subset is most numerous and active immediately after menstruation, as the endometrium regenerates. In healthy endometrium, ILC3 are spatially associated with glandular epithelial and endothelial cells, which both express receptors for the ILC3-derived cytokines, IL-22 and IL-8. In the eutopic endometrium of people with endometriosis, ILC3 are located further from glandular epithelial and endothelial cells suggesting that these cells may be less exposed to ILC3 products, potentially with negative consequences for endometrial regeneration. Conclusion Our findings highlight the dynamic nature of ILC3 in the uterine mucosa and suggest their primary role is in repair and regeneration. An improved understanding of uterine ILC3 will inform future research on endometrial health and disease.
Collapse
Affiliation(s)
- Antonia O Cuff
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Ee Von Woon
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Thomas Bainton
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Brendan Browne
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Phoebe M Kirkwood
- Centre for Reproductive Health, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Frances Collins
- Centre for Reproductive Health, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Douglas A Gibson
- Centre for Reproductive Health, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Philippa T K Saunders
- Centre for Reproductive Health, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Andrew W Horne
- Centre for Reproductive Health, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Mark R Johnson
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - David A MacIntyre
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- March of Dimes Prematurity Research Centre, Imperial College London, London, UK
- Robinson Research Institute, University of Adelaide, North Adelaide, Australia
| | - Victoria Male
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
4
|
Meggyes M, Nagy DU, Mezosi L, Polgar B, Szereday L. CD8+ and CD8- NK Cells and Immune Checkpoint Networks in Peripheral Blood During Healthy Pregnancy. Int J Mol Sci 2025; 26:428. [PMID: 39796279 PMCID: PMC11720283 DOI: 10.3390/ijms26010428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Pregnancy involves significant immunological changes to support fetal development while protecting the mother from infections. A growing body of evidence supports the importance of immune checkpoint pathways, especially at the maternal-fetal interface, although limited information is available about the peripheral expression of these molecules by CD8+ and CD8- NK cell subsets during the trimesters of pregnancy. Understanding the dynamics of these immune cells and their checkpoint pathways is crucial for elucidating their roles in pregnancy maintenance and potential complications. This study aims to investigate the peripheral expression and functional characteristics of CD8+ and CD8- NK cell subsets throughout pregnancy, providing insights into their contributions to maternal and fetal health. A total of 34 healthy women were enrolled from the first, 30 from the second and 40 from the third trimester of pregnancy. At the same time, 35 healthy age-matched non-pregnant women formed the control group. From peripheral blood, mononuclear cells were separated and stored at -80 °C. CD8+ and CD8- NK cell subsets were analyzed from freshly thawed samples, and surface and intracellular staining was performed using flow cytometric analyses. The proportions of CD56+ NK cells in peripheral blood were similar across groups. While CD8- NKdim cells increased significantly in all trimesters compared to non-pregnant controls, CD8+ NKdim cells showed no significant changes. CD8- NKbright cells had higher frequencies throughout pregnancy, whereas CD8+ NKbright cells significantly increased only in the first and second trimesters. The expression levels of immune checkpoint molecules, such as PD-1 and PD-L1, and cytotoxic-activity-related molecules were stable, with notable perforin and granzyme B increases in CD8- NKbright cells throughout pregnancy. Our study shows that peripheral NK cell populations, especially CD8- subsets, are predominant during pregnancy. This shift suggests a crucial role for CD8- NK cells in balancing maternal immune tolerance and surveillance. The stable expression of immune checkpoint molecules indicates that other regulatory mechanisms may be at work. These findings enhance our understanding of peripheral immune dynamics in pregnancy and suggest that targeting CD8- NKbright cell functions could help manage pregnancy-related immune complications. This research elucidates the stable distribution and functional characteristics of peripheral NK cells during pregnancy, with CD8- subsets being more prevalent. The increased activity of CD8- NKbright cells suggests their critical role in maintaining immune surveillance. Our findings provide a basis for future studies to uncover the mechanisms regulating NK cell function in pregnancy, potentially leading to new treatments for immune-related pregnancy complications.
Collapse
Affiliation(s)
- Matyas Meggyes
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pecs, Hungary
| | - David U. Nagy
- Institute of Geobotany/Plant Ecology, Martin-Luther-University, Große Steinstraße 79/80, D-06108 Halle, Germany
| | - Livia Mezosi
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary
| | - Beata Polgar
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary
| | - Laszlo Szereday
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pecs, Hungary
| |
Collapse
|
5
|
Hu X, Shui Y, Shimizu S, Sakamoto S, Kasahara M, Okada S, Guo WZ, Fujino M, Li XK. Targeted immune cell therapy for hepatocellular carcinoma using expanded liver mononuclear cell-derived natural killer cells. Neoplasia 2024; 58:101061. [PMID: 39357263 PMCID: PMC11471252 DOI: 10.1016/j.neo.2024.101061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/07/2024] [Accepted: 09/21/2024] [Indexed: 10/04/2024]
Abstract
Natural killer (NK) cells are a promising cellular therapy for T cell-refractory cancers but are frequently deficient or dysfunctional in patients with hepatocellular carcinoma (HCC). In the present study, we explored a novel therapy for HCC using NK cells derived from donor liver graft perfusate. These liver-derived NK cells, named LMNC-NK cells, are more abundant in liver mononuclear cells (LMNCs) than in peripheral blood mononuclear cells (PBMCs) from the same donor. We developed a method to expand LMNC-NK cells by 33.8±54.4-fold, enhancing their cytotoxic properties and cytokine production, including granzyme B, CD107a, TNF-α, and IFN-γ. These cells also showed an increased expression of cytotoxicity receptors. An RNA-seq analysis revealed considerable differences in gene expression between LMNC-NK and PBMC-NK cells, with 453 genes upregulated and 449 downregulated in LMNC-NK cells. These genes are involved in the mitogen-activated protein kinase cascade and cell differentiation, explaining the increased activity of LMNC-NK cells. Quantitative reverse transcription polymerase chain reaction confirmed the significant upregulation of TLR6, KIT, MMP14, IRF8, TCF7, FCERIG, LEF1, NLRp3, and IL16 in LMNC-NK cells. LMNC-NK cells effectively eliminated HepG-2-Luc cells in vitro, and in an orthotopic murine model of HCC, they exhibited a potent anti-tumor effect, outperforming PBMC-NK cells. The expression of the activation marker CD69+ in LMNC-NK cells was also significantly higher among tumor-infiltrating lymphocytes compared to PBMC-NK cells. Our research suggests that the adoptive transfer of LMNC-NK cells could be a promising treatment for HCC, offering a novel and effective source of NK cells with superior cytotoxic functions.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/therapy
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Animals
- Mice
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Disease Models, Animal
- Cytotoxicity, Immunologic
- Cell- and Tissue-Based Therapy/methods
- Liver/immunology
- Liver/metabolism
- Liver/pathology
Collapse
Affiliation(s)
- Xin Hu
- Laboratory of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yifang Shui
- Laboratory of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Seiichi Shimizu
- Center for Organ Transplantation, National Center for Child Health and Development, Tokyo, Japan
| | - Seisuke Sakamoto
- Center for Organ Transplantation, National Center for Child Health and Development, Tokyo, Japan
| | - Mureo Kasahara
- Center for Organ Transplantation, National Center for Child Health and Development, Tokyo, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
| | - Masayuki Fujino
- Laboratory of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Xiao-Kang Li
- Laboratory of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
6
|
SUKER A, LI Y, ROBSON D, MARREN A. Australasian recurrent pregnancy loss clinical management guideline 2024, part II. Aust N Z J Obstet Gynaecol 2024; 64:445-458. [PMID: 38934293 PMCID: PMC11660019 DOI: 10.1111/ajo.13820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/03/2024] [Indexed: 06/28/2024]
Abstract
Part II of the Australasian guideline for the investigation and management of recurrent pregnancy loss (RPL) provides evidence-based guidance on the management of RPL provided. The implications of inherited and acquired thrombophilia with respect to RPL and suggestions for clinical management are provided. Autoimmune factors, including human leukocyte antigen, cytokines, antinuclear antibodies and coeliac antibodies, and guidance for management are discussed. Infective, inflammatory and endometrial causes of RPL are discussed in detail. Environmental and lifestyle factors, male factor and unexplained causes are outlined. Levels of evidence and grades of consensus are provided for all evidence-based statements.
Collapse
Affiliation(s)
- Adriana SUKER
- Department of Obstetrics and GynaecologyLiverpool HospitalSydneyNew South WalesAustralia
| | - Ying LI
- Department of Reproductive Endocrinology and InfertilityRoyal Prince Alfred HospitalSydneyNew South WalesAustralia
| | - Danielle ROBSON
- Department of Reproductive Endocrinology and InfertilityRoyal Prince Alfred HospitalSydneyNew South WalesAustralia
| | - Anthony MARREN
- Department of Reproductive Endocrinology and InfertilityRoyal Prince Alfred HospitalSydneyNew South WalesAustralia
| |
Collapse
|
7
|
Froehlich F, Landerholm K, Neeb J, Meß AK, Seiler DL, Tilburgs T, Karsten CM. Emerging role of C5aR2: novel insights into the regulation of uterine immune cells during pregnancy. Front Immunol 2024; 15:1411315. [PMID: 38979410 PMCID: PMC11229525 DOI: 10.3389/fimmu.2024.1411315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/27/2024] [Indexed: 07/10/2024] Open
Abstract
Pregnancy is a fascinating immunological phenomenon because it allows allogeneic fetal and placental tissues to survive inside the mother. As a component of innate immunity with high inflammatory potential, the complement system must be tightly regulated during pregnancy. Dysregulation of the complement system plays a role in pregnancy complications including pre-eclampsia and intrauterine growth restriction. Complement components are also used as biomarkers for pregnancy complications. However, the mechanisms of detrimental role of complement in pregnancy is poorly understood. C5a is the most potent anaphylatoxin and generates multiple immune reactions via two transmembrane receptors, C5aR1 and C5aR2. C5aR1 is pro-inflammatory, but the role of C5aR2 remains largely elusive. Interestingly, murine NK cells have been shown to express C5aR2 without the usual co-expression of C5aR1. Furthermore, C5aR2 appears to regulate IFN-γ production by NK cells in vitro. As IFN-γ produced by uterine NK cells is one of the major factors for the successful development of a vital pregnancy, we investigated the role anaphylatoxin C5a and its receptors in the establishment of pregnancy and the regulation of uterine NK cells by examinations of murine C5ar2-/- pregnancies and human placental samples. C5ar2-/- mice have significantly reduced numbers of implantation sites and a maternal C5aR2 deficiency results in increased IL-12, IL-18 and IFN-γ mRNA expression as well as reduced uNK cell infiltration at the maternal-fetal interface. Human decidual leukocytes have similar C5a receptor expression patterns showing clinical relevance. In conclusion, this study identifies C5aR2 as a key contributor to dNK infiltration and pregnancy success.
Collapse
Affiliation(s)
- Fenna Froehlich
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Luebeck, Germany
| | - Konstanze Landerholm
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Luebeck, Germany
| | - Johanna Neeb
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Luebeck, Germany
| | - Ann-Kathrin Meß
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Luebeck, Germany
| | - Daniel Leonard Seiler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Luebeck, Germany
| | - Tamara Tilburgs
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | | |
Collapse
|
8
|
Feyaerts D, Benner M, Comitini G, Shadmanfar W, van der Heijden OW, Joosten I, van der Molen RG. NK cell receptor profiling of endometrial and decidual NK cells reveals pregnancy-induced adaptations. Front Immunol 2024; 15:1353556. [PMID: 38571943 PMCID: PMC10987737 DOI: 10.3389/fimmu.2024.1353556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/22/2024] [Indexed: 04/05/2024] Open
Abstract
Natural killer (NK) cells, with a unique NK cell receptor phenotype, are abundantly present in the non-pregnant (endometrium) and pregnant (decidua) humanuterine mucosa. It is hypothesized that NK cells in the endometrium are precursors for decidual NK cells present during pregnancy. Microenvironmental changes can alter the phenotype of NK cells, but it is unclear whether decidual NK cell precursors in the endometrium alter their NK cell receptor repertoire under the influence of pregnancy. To examine whether decidual NK cell precursors reveal phenotypic modifications upon pregnancy, we immunophenotyped the NK cell receptor repertoire of both endometrial and early-pregnancy decidual NK cells using flow cytometry. We showed that NK cells in pre-pregnancy endometrium have a different phenotypic composition compared to NK cells in early-pregnancy decidua. The frequency of killer-immunoglobulin-like receptor (KIR expressing NK cells, especially KIR2DS1, KIR2DL2L3S2, and KIR2DL2S2 was significantly lower in decidua, while the frequency of NK cells expressing activating receptors NKG2D, NKp30, NKp46, and CD244 was significantly higher compared to endometrium. Furthermore, co-expression patterns showed a lower frequency of NK cells co-expressing KIR3DL1S1 and KIR2DL2L3S2 in decidua. Our results provide new insights into the adaptations in NK cell receptor repertoire composition that NK cells in the uterine mucosa undergo upon pregnancy.
Collapse
Affiliation(s)
- Dorien Feyaerts
- Department of Laboratory Medicine, Laboratory for Medical Immunology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marilen Benner
- Department of Laboratory Medicine, Laboratory for Medical Immunology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gaia Comitini
- Department of Laboratory Medicine, Laboratory for Medical Immunology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | | | - Irma Joosten
- Department of Laboratory Medicine, Laboratory for Medical Immunology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Renate G. van der Molen
- Department of Laboratory Medicine, Laboratory for Medical Immunology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
9
|
Mayall JR, Horvat JC, Mangan NE, Chevalier A, McCarthy H, Hampsey D, Donovan C, Brown AC, Matthews AY, de Weerd NA, de Geus ED, Starkey MR, Kim RY, Daly K, Goggins BJ, Keely S, Maltby S, Baldwin R, Foster PS, Boyle MJ, Tanwar PS, Huntington ND, Hertzog PJ, Hansbro PM. Interferon-epsilon is a novel regulator of NK cell responses in the uterus. EMBO Mol Med 2024; 16:267-293. [PMID: 38263527 PMCID: PMC10897320 DOI: 10.1038/s44321-023-00018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024] Open
Abstract
The uterus is a unique mucosal site where immune responses are balanced to be permissive of a fetus, yet protective against infections. Regulation of natural killer (NK) cell responses in the uterus during infection is critical, yet no studies have identified uterine-specific factors that control NK cell responses in this immune-privileged site. We show that the constitutive expression of IFNε in the uterus plays a crucial role in promoting the accumulation, activation, and IFNγ production of NK cells in uterine tissue during Chlamydia infection. Uterine epithelial IFNε primes NK cell responses indirectly by increasing IL-15 production by local immune cells and directly by promoting the accumulation of a pre-pro-like NK cell progenitor population and activation of NK cells in the uterus. These findings demonstrate the unique features of this uterine-specific type I IFN and the mechanisms that underpin its major role in orchestrating innate immune cell protection against uterine infection.
Collapse
Affiliation(s)
- Jemma R Mayall
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Jay C Horvat
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Niamh E Mangan
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Departments of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Anne Chevalier
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Huw McCarthy
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Daniel Hampsey
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Chantal Donovan
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2000, Australia
| | - Alexandra C Brown
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Antony Y Matthews
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Departments of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Nicole A de Weerd
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Departments of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Eveline D de Geus
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Departments of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Malcolm R Starkey
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
- Immunology and Pathology, Central Clinical School, Monash University, Clayton, VIC, 3168, Australia
| | - Richard Y Kim
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2000, Australia
| | - Katie Daly
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Bridie J Goggins
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Simon Keely
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Steven Maltby
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Rennay Baldwin
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Paul S Foster
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Michael J Boyle
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
- Immunology and Infectious Diseases Unit, John Hunter Hospital, Newcastle, NSW, 2305, Australia
| | - Pradeep S Tanwar
- Gynecology Oncology Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Nicholas D Huntington
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3168, Australia
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Departments of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Philip M Hansbro
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia.
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2000, Australia.
| |
Collapse
|
10
|
Yang Y, Zhang C, Jiang Y, He Y, Cai J, Liang L, Chen Z, Pan S, Hua C, Wu K, Wang L, Zhang Z. Harnessing cytokine-induced killer cells to accelerate diabetic wound healing: an approach to regulating post-traumatic inflammation. Regen Biomater 2024; 11:rbad116. [PMID: 38333727 PMCID: PMC10850840 DOI: 10.1093/rb/rbad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 02/10/2024] Open
Abstract
Impaired immunohomeostasis in diabetic wounds prolongs inflammation and cytokine dysfunction, thus, delaying or preventing wound-surface healing. Extensive clinical studies have been conducted on cytokine-induced killer (CIK) cells recently, as they can be easily proliferated using a straightforward, inexpensive protocol. Therefore, the function of CIK cells in regulating inflammatory environments has been drawing attention for clinical management. Throughout the current investigation, we discovered the regenerative capacity of these cells in the challenging environment of wounds that heal poorly due to diabetes. We demonstrated that the intravenous injection of CIK cells can re-establish a proregenerative inflammatory microenvironment, promote vascularization and, ultimately, accelerate skin healing in diabetic mice. The results indicated that CIK cell treatment affects macrophage polarization and restores the function of regenerative cells under hyperglycemic conditions. This novel cellular therapy offers a promising intervention for clinical applications through specific inflammatory regulation functions.
Collapse
Affiliation(s)
- Yixi Yang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510150, P. R. China
| | - Cheng Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510150, P. R. China
| | - Yuan Jiang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510150, P. R. China
| | - Yijun He
- Department of Osteoarthropathy and Sports Medicine, Panyu Central Hospital, Guangzhou 511400, P. R. China
| | - Jiawei Cai
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510150, P. R. China
| | - Lin Liang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510150, P. R. China
| | - Zhaohuan Chen
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510150, P. R. China
| | - Sicheng Pan
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510150, P. R. China
| | - Chu Hua
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510150, P. R. China
| | - Keke Wu
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510150, P. R. China
| | - Le Wang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510150, P. R. China
| | - Zhiyong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510150, P. R. China
| |
Collapse
|
11
|
Yu S, Lian R, Chen C, Chen X, Xu J, Zeng Y, Li Y. Impact of body mass index on peripheral and uterine immune status in the window of implantation in patients with recurrent reproductive failure. HUM FERTIL 2023; 26:1322-1333. [PMID: 36946060 DOI: 10.1080/14647273.2023.2189024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 08/11/2022] [Indexed: 03/23/2023]
Abstract
This study aimed to investigate whether maternal obesity affects the immune status of peripheral blood and endometrium in patients with recurrent reproductive failure classified according to their body mass index (BMI). A total of 228 repeated implantation failure (RIF) and 266 recurrent miscarriage (RM) patients were enrolled in the study and further subdivided into three groups according to their BMI: (i) normal weight (18.5≤ BMI <23); (ii) overweight (23≤ BMI <25); and (iii) obese (BMI ≥25). Peripheral blood and endometrium samples were collected in the mid-luteal phase before IVF treatment or natural pregnancy. Peripheral immunocytes were analyzed by flow cytometry, while uterine immune cells were subjected to immunohistochemistry. In RM patients, significantly increased peripheral helper T cells and decreased cytotoxic T cells, NK cells were observed in the obese group compared with the normal-weight group. Meanwhile, in the endometrium, the percentage of NK cell, macrophage cell, M2 macrophage cell, and Treg cell significantly reduced with increased BMI in RIF patients, and the percentage of NK cell and M2 macrophage cell significantly decreased with increased BMI in RM patients. In conclusion, obesity may cause endometrial immune disorder in recurrent reproductive failure women, but was only associated with the peripheral immune change in RM patients.
Collapse
Affiliation(s)
- ShuYi Yu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Guangdong, Shenzhen, P.R. China
- Shenzhen Jinxin Medical Technology Innovation Center, Co., Ltd., Shenzhen, P.R. China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Guangdong, P.R. China
| | - RuoChun Lian
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Guangdong, Shenzhen, P.R. China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Guangdong, P.R. China
| | - Cong Chen
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Guangdong, Shenzhen, P.R. China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Guangdong, P.R. China
| | - Xian Chen
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Guangdong, Shenzhen, P.R. China
- Shenzhen Jinxin Medical Technology Innovation Center, Co., Ltd., Shenzhen, P.R. China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Guangdong, P.R. China
| | - Jian Xu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Guangdong, Shenzhen, P.R. China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Guangdong, P.R. China
| | - Yong Zeng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Guangdong, Shenzhen, P.R. China
- Shenzhen Jinxin Medical Technology Innovation Center, Co., Ltd., Shenzhen, P.R. China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Guangdong, P.R. China
| | - YuYe Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Guangdong, Shenzhen, P.R. China
- Shenzhen Jinxin Medical Technology Innovation Center, Co., Ltd., Shenzhen, P.R. China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Guangdong, P.R. China
| |
Collapse
|
12
|
Parks SE, Geng T, Monsivais D. Endometrial TGFβ signaling fosters early pregnancy development by remodeling the fetomaternal interface. Am J Reprod Immunol 2023; 90:e13789. [PMID: 38009061 PMCID: PMC10683870 DOI: 10.1111/aji.13789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 11/28/2023] Open
Abstract
The endometrium is a unique and highly regenerative tissue with crucial roles during the reproductive lifespan of a woman. As the first site of contact between mother and embryo, the endometrium, and its critical processes of decidualization and immune cell recruitment, play a leading role in the establishment of pregnancy, embryonic development, and reproductive capacity. These integral processes are achieved by the concerted actions of steroid hormones and a myriad of growth factor signaling pathways. This review focuses on the roles of the transforming growth factor β (TGFβ) pathway in the endometrium during the earliest stages of pregnancy through the lens of immune cell regulation and function. We discuss how key ligands in the TGFβ family signal through downstream SMAD transcription factors and ultimately remodel the endometrium into a state suitable for embryo implantation and development. We also focus on the key roles of the TGFβ signaling pathway in recruiting uterine natural killer cells and their collective remodeling of the decidua and spiral arteries. By providing key details about immune cell populations and TGFβ signaling within the endometrium, it is our goal to shed light on the intricate remodeling that is required to achieve a successful pregnancy.
Collapse
Affiliation(s)
- Sydney E. Parks
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ting Geng
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diana Monsivais
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
13
|
Moffett A, Shreeve N. Local immune recognition of trophoblast in early human pregnancy: controversies and questions. Nat Rev Immunol 2023; 23:222-235. [PMID: 36192648 PMCID: PMC9527719 DOI: 10.1038/s41577-022-00777-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 02/02/2023]
Abstract
The role of the maternal immune system in reproductive success in humans remains controversial. Here we focus on the events that occur in the maternal decidua during the first few weeks of human pregnancy, because this is the site at which maternal leukocytes initially interact with and can recognize fetal trophoblast cells, potentially involving allorecognition by both T cells and natural killer (NK) cells. NK cells are the dominant leukocyte population in first-trimester decidua, and genetic studies point to a role of allorecognition by uterine NK cells in establishing a boundary between the mother and the fetus. By contrast, definitive evidence that allorecognition by decidual T cells occurs during the first trimester is lacking. Thus, our view is that during the crucial period when the placenta is established, damaging T cell-mediated adaptive immune responses towards placental trophoblast are minimized, whereas NK cell allorecognition contributes to successful implantation and healthy pregnancy.
Collapse
Affiliation(s)
- Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Norman Shreeve
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Zhou J, Tian Y, Qu Y, Williams M, Yuan Y, Karvas RM, Sheridan MA, Schulz LC, Ezashi T, Roberts MR, Schust DJ. The immune checkpoint molecule, VTCN1/B7-H4, guides differentiation and suppresses proinflammatory responses and MHC class I expression in an embryonic stem cell-derived model of human trophoblast. Front Endocrinol (Lausanne) 2023; 14:1069395. [PMID: 37008954 PMCID: PMC10062451 DOI: 10.3389/fendo.2023.1069395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/26/2023] [Indexed: 03/18/2023] Open
Abstract
The placenta acts as a protective barrier to pathogens and other harmful substances present in the maternal circulation throughout pregnancy. Disruption of placental development can lead to complications of pregnancy such as preeclampsia, intrauterine growth retardation and preterm birth. In previous work, we have shown that expression of the immune checkpoint regulator, B7-H4/VTCN1, is increased upon differentiation of human embryonic stem cells (hESC) to an in vitro model of primitive trophoblast (TB), that VTCN1/B7-H4 is expressed in first trimester but not term human placenta and that primitive trophoblast may be uniquely susceptible to certain pathogens. Here we report on the role of VTCN1 in trophoblast lineage development and anti-viral responses and the effects of changes in these processes on major histocompatibility complex (MHC) class I expression and peripheral NK cell phenotypes.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO, United States
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, United States
| | - Yuchen Tian
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Ying Qu
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO, United States
| | - Madyson Williams
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO, United States
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Ye Yuan
- Research Department, Colorado Center for Reproductive Medicine, Lone Tree, CO, United States
| | - Rowan M. Karvas
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Megan A. Sheridan
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO, United States
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Laura C. Schulz
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO, United States
| | - Toshihiko Ezashi
- Research Department, Colorado Center for Reproductive Medicine, Lone Tree, CO, United States
| | - Michael R. Roberts
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Danny J. Schust
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO, United States
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
15
|
Mace EM. Human natural killer cells: Form, function, and development. J Allergy Clin Immunol 2023; 151:371-385. [PMID: 36195172 PMCID: PMC9905317 DOI: 10.1016/j.jaci.2022.09.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 02/07/2023]
Abstract
Human natural killer (NK) cells are innate lymphoid cells that mediate important effector functions in the control of viral infection and malignancy. Their ability to distinguish "self" from "nonself" and lyse virally infected and tumorigenic cells through germline-encoded receptors makes them important players in maintaining human health and a powerful tool for immunotherapeutic applications and fighting disease. This review introduces our current understanding of NK cell biology, including key facets of NK cell differentiation and the acquisition and execution of NK cell effector function. Further, it addresses the clinical relevance of NK cells in both primary immunodeficiency and immunotherapy. It is intended to provide an up-to-date and comprehensive overview of this important and interesting innate immune effector cell subset.
Collapse
Affiliation(s)
- Emily M Mace
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York.
| |
Collapse
|
16
|
Rezayat F, Esmaeil N, Rezaei A. Potential Therapeutic Effects of Human Amniotic Epithelial Cells on Gynecological Disorders Leading to Infertility or Abortion. Stem Cell Rev Rep 2023; 19:368-381. [PMID: 36331801 DOI: 10.1007/s12015-022-10464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
Abstract
The induction of feto-maternal tolerance, fetal non-immunogenicity, and the regulation of mother's immune system are essential variables in a successful pregnancy. Fetal membranes have been used as a source of stem cells and biological components in recent decades. Human amniotic epithelial cells (hAEC) have stem/progenitor characteristics like those found in the amniotic membrane. Based on their immunomodulatory capabilities, recent studies have focused on the experimental and therapeutic applications of hAECs in allograft transplantation, autoimmune disorders, and gynecological problems such as recurrent spontaneous abortion (RSA), recurrent implantation failure (RIF), and premature ovarian failure (POF). This review discusses some of the immunomodulatory features and therapeutic potential of hAECs in preventing infertility, miscarriage, and implantation failure by controlling the maternal immune system.
Collapse
Affiliation(s)
- Fatemeh Rezayat
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Esmaeil
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. .,Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran. .,Department of Immunology, School of Medicine, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, 81744-176, Isfahan, Iran.
| | - Abbas Rezaei
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
17
|
Shi Y, Tan D, Hao B, Zhang X, Geng W, Wang Y, Sun J, Zhao Y. Efficacy of intravenous immunoglobulin in the treatment of recurrent spontaneous abortion: A systematic review and meta-analysis. Am J Reprod Immunol 2022; 88:e13615. [PMID: 36029201 PMCID: PMC9787751 DOI: 10.1111/aji.13615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/07/2022] [Accepted: 08/08/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE We aimed to evaluate the efficacy of IVIG in the treatment with patients with recurrent spontaneous abortion (RSA). METHODS PubMed, Embase, Web of science, Cochrane library were searched for randomized controlled (RCTs) about effect of IVIG on RSA from inception to August 20, 2021. Values of standardized mean differences (SMD) were determined for continuous outcomes. RESULTS A total of 15 articles involving 902 patients were included in meta-analysis. Compared with the control group, IVIG can increase the live birth rate of recurrent spontaneous abortion patients [OR = 3.06, 95%CI (1.23, 7.64, P = .02]. However, recurrent abortion was divided into primary and secondary abortion for subgroup analysis, and there was no statistical difference. Besides, IVIG can also increase the expression in peripheral blood CD3+[OR = .4, 95%CI(-2.47, 3.15, P = .81],CD4+[OR = 1.16, 95%CI(-4.60, 6.93, P = .69], and a decrease in the expression of CD8+[OR = -1.78, 95%CI(-5.30, 1.75, P = .32], but there is no statistical significance. CONCLUSIONS IVIG can significantly increase the live birth rate of recurrent spontaneous abortion. However, the evidence needs further verification and the curative effect is uncertain. It is necessary to further explore the pathogenesis of recurrent abortion and the mechanism of IVIG in the treatment of recurrent spontaneous abortion. Besides, more high-quality randomized controlled trials suitable for population, race, dosage and timing of IVIG in the treatment of recurrent abortion are needed to confirm its effectiveness, and effective systematic evaluation is also needed to evaluate its use benefit.
Collapse
Affiliation(s)
- Yimin Shi
- Shandong Provincial Maternal and Child Health Care HospitalJinan CityShandong ProvinceChina
| | - Dongmei Tan
- Shandong Provincial Maternal and Child Health Care HospitalJinan CityShandong ProvinceChina
| | - Baozhen Hao
- Shandong Provincial Maternal and Child Health Care HospitalJinan CityShandong ProvinceChina
| | - Xiurong Zhang
- Shandong Provincial Maternal and Child Health Care HospitalJinan CityShandong ProvinceChina
| | - Wei Geng
- Shandong Provincial Maternal and Child Health Care HospitalJinan CityShandong ProvinceChina
| | - Yayu Wang
- Shandong Provincial Maternal and Child Health Care HospitalJinan CityShandong ProvinceChina
| | - Jianyi Sun
- Shandong Provincial Maternal and Child Health Care HospitalJinan CityShandong ProvinceChina
| | - Yue Zhao
- Shandong Provincial Maternal and Child Health Care HospitalJinan CityShandong ProvinceChina
| |
Collapse
|
18
|
Papak I, Chruściel E, Dziubek K, Kurkowiak M, Urban-Wójciuk Z, Marjański T, Rzyman W, Marek-Trzonkowska N. What Inhibits Natural Killers’ Performance in Tumour. Int J Mol Sci 2022; 23:ijms23137030. [PMID: 35806034 PMCID: PMC9266640 DOI: 10.3390/ijms23137030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 12/21/2022] Open
Abstract
Natural killer cells are innate lymphocytes with the ability to lyse tumour cells depending on the balance of their activating and inhibiting receptors. Growing numbers of clinical trials show promising results of NK cell-based immunotherapies. Unlike T cells, NK cells can lyse tumour cells independent of antigen presentation, based simply on their activation and inhibition receptors. Various strategies to improve NK cell-based therapies are being developed, all with one goal: to shift the balance to activation. In this review, we discuss the current understanding of ways NK cells can lyse tumour cells and all the inhibitory signals stopping their cytotoxic potential.
Collapse
Affiliation(s)
- Ines Papak
- International Centre for Cancer Vaccine Science, University of Gdansk, Ul. Kładki 24, 80-822 Gdansk, Poland; (I.P.); (E.C.); (K.D.); (M.K.); (Z.U.-W.)
| | - Elżbieta Chruściel
- International Centre for Cancer Vaccine Science, University of Gdansk, Ul. Kładki 24, 80-822 Gdansk, Poland; (I.P.); (E.C.); (K.D.); (M.K.); (Z.U.-W.)
| | - Katarzyna Dziubek
- International Centre for Cancer Vaccine Science, University of Gdansk, Ul. Kładki 24, 80-822 Gdansk, Poland; (I.P.); (E.C.); (K.D.); (M.K.); (Z.U.-W.)
| | - Małgorzata Kurkowiak
- International Centre for Cancer Vaccine Science, University of Gdansk, Ul. Kładki 24, 80-822 Gdansk, Poland; (I.P.); (E.C.); (K.D.); (M.K.); (Z.U.-W.)
| | - Zuzanna Urban-Wójciuk
- International Centre for Cancer Vaccine Science, University of Gdansk, Ul. Kładki 24, 80-822 Gdansk, Poland; (I.P.); (E.C.); (K.D.); (M.K.); (Z.U.-W.)
| | - Tomasz Marjański
- Department of Thoracic Surgery, Medical University of Gdansk, 80-210 Gdansk, Poland; (T.M.); (W.R.)
| | - Witold Rzyman
- Department of Thoracic Surgery, Medical University of Gdansk, 80-210 Gdansk, Poland; (T.M.); (W.R.)
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science, University of Gdansk, Ul. Kładki 24, 80-822 Gdansk, Poland; (I.P.); (E.C.); (K.D.); (M.K.); (Z.U.-W.)
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland
- Correspondence:
| |
Collapse
|
19
|
Calvi M, Di Vito C, Frigo A, Trabanelli S, Jandus C, Mavilio D. Development of Human ILCs and Impact of Unconventional Cytotoxic Subsets in the Pathophysiology of Inflammatory Diseases and Cancer. Front Immunol 2022; 13:914266. [PMID: 35720280 PMCID: PMC9204637 DOI: 10.3389/fimmu.2022.914266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Innate lymphoid cells (ILCs) were firstly described by different independent laboratories in 2008 as tissue-resident innate lymphocytes mirroring the phenotype and function of T helper cells. ILCs have been subdivided into three distinct subgroups, ILC1, ILC2 and ILC3, according to their cytokine and transcriptional profiles. Subsequently, also Natural Killer (NK) cells, that are considered the innate counterpart of cytotoxic CD8 T cells, were attributed to ILC1 subfamily, while lymphoid tissue inducer (LTi) cells were attributed to ILC3 subgroup. Starting from their discovery, significant advances have been made in our understanding of ILC impact in the maintenance of tissue homeostasis, in the protection against pathogens and in tumor immune-surveillance. However, there is still much to learn about ILC ontogenesis especially in humans. In this regard, NK cell developmental intermediates which have been well studied and characterized prior to the discovery of helper ILCs, have been used to shape a model of ILC ontogenesis. Herein, we will provide an overview of the current knowledge about NK cells and helper ILC ontogenesis in humans. We will also focus on the newly disclosed circulating ILC subsets with killing properties, namely unconventional CD56dim NK cells and cytotoxic helper ILCs, by discussing their possible role in ILC ontogenesis and their contribution in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Michela Calvi
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Alessandro Frigo
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Sara Trabanelli
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Camilla Jandus
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Domenico Mavilio
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy.,Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
20
|
Xie M, Li Y, Meng YZ, Xu P, Yang YG, Dong S, He J, Hu Z. Uterine Natural Killer Cells: A Rising Star in Human Pregnancy Regulation. Front Immunol 2022; 13:918550. [PMID: 35720413 PMCID: PMC9198966 DOI: 10.3389/fimmu.2022.918550] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 12/28/2022] Open
Abstract
Uterine natural killer (uNK) cells are an immune subset located in the uterus. uNK cells have distinct tissue-specific characteristics compared to their counterparts in peripheral blood and lymphoid organs. Based on their location and the pregnancy status of the host, uNK cells are classified as endometrial NK (eNK) cells or decidua NK (dNK) cells. uNK cells are important in protecting the host from pathogen invasion and contribute to a series of physiological processes that affect successful pregnancy, including uterine spiral artery remodeling, fetal development, and immunity tolerance. Abnormal alterations in uNK cell numbers and/or impaired function may cause pregnancy complications, such as recurrent miscarriage, preeclampsia, or even infertility. In this review, we introduce recent advances in human uNK cell research under normal physiological or pathological conditions, and summarize their unique influences on the process of pregnancy complications or uterine diseases. Finally, we propose the potential clinical use of uNK cells as a novel cellular immunotherapeutic approach for reproductive disorders.
Collapse
Affiliation(s)
- Min Xie
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yan Li
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yi-Zi Meng
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Peng Xu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China.,International Center of Future Science, Jilin University, Changchun, China
| | - Shuai Dong
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Jin He
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Alexandrova M, Manchorova D, Dimova T. Immunity at maternal-fetal interface: KIR/HLA (Allo)recognition. Immunol Rev 2022; 308:55-76. [PMID: 35610960 DOI: 10.1111/imr.13087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022]
Abstract
Both KIR and HLA are the most variable gene families in the human genome. The recognition of the semi-allogeneic embryo-derived trophoblasts by maternal decidual NK (dNK) cells is essential for the establishment of the functional placenta. This recognition is based on the KIR-HLA interactions and trophoblast expresses a specific HLA profile that constitutes classical polymorphic HLA-C and non-classical oligomorphic HLA-E, HLA-F, and HLA-G molecules. This review highlights some features of the KIR/HLA-C (allo)recognition by decidual NK (dNK) cells as a main immune cell population specifically enriched at maternal-fetal interface during human early pregnancy. How KIR/HLA-C axis operates in pregnancy disorders and in the context of transplacental infections is discussed as well. We summarized old and new data on dNK-cell functional plasticity, their selective expression of KIR and fetal maternal/paternal HLA-C haplotypes present. Results showed that KIR-HLA-C combinations and the corresponding axis operate differently in each pregnancy, determined by the variability of both maternal KIR haplotypes and fetus' maternal/paternal HLA-C allotype combinations. Moreover, the maturation of NK cells strongly depends on if or not HLA allotypes for certain KIR are present. We suggest that the unique KIR/HLA combinations reached in each pregnancy (normal and pathological) should be studied according to well-defined guidelines and unified methodologies to have comparable results ease to interpret and use in clinics.
Collapse
Affiliation(s)
- Marina Alexandrova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Diana Manchorova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tanya Dimova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
22
|
Gershater M, Romero R, Arenas-Hernandez M, Galaz J, Motomura K, Tao L, Xu Y, Miller D, Pique-Regi R, Martinez G, Liu Y, Jung E, Para R, Gomez-Lopez N. IL-22 Plays a Dual Role in the Amniotic Cavity: Tissue Injury and Host Defense against Microbes in Preterm Labor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1595-1615. [PMID: 35304419 PMCID: PMC8976826 DOI: 10.4049/jimmunol.2100439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 01/18/2022] [Indexed: 12/11/2022]
Abstract
IL-22 is a multifaceted cytokine with both pro- and anti-inflammatory functions that is implicated in multiple pathologies. However, the role of IL-22 in maternal-fetal immunity in late gestation is poorly understood. In this study, we first showed that IL-22+ T cells coexpressing retinoic acid-related orphan receptor γt (ROR-γt) are enriched at the human maternal-fetal interface of women with preterm labor and birth, which was confirmed by in silico analysis of single-cell RNA sequencing data. T cell activation leading to preterm birth in mice was preceded by a surge in IL-22 in the maternal circulation and amniotic cavity; however, systemic administration of IL-22 in mice did not induce adverse perinatal outcomes. Next, using an ex vivo human system, we showed that IL-22 can cross from the choriodecidua to the intra-amniotic space, where its receptors (Il22ra1, Il10rb, and Il22ra2) are highly expressed by murine gestational and fetal tissues in late pregnancy. Importantly, amniotic fluid concentrations of IL-22 were elevated in women with sterile or microbial intra-amniotic inflammation, suggesting a dual role for this cytokine. The intra-amniotic administration of IL-22 alone shortened gestation and caused neonatal death in mice, with the latter outcome involving lung maturation and inflammation. IL-22 plays a role in host response by participating in the intra-amniotic inflammatory milieu preceding Ureaplasma parvum-induced preterm birth in mice, which was rescued by the deficiency of IL-22. Collectively, these data show that IL-22 alone is capable of causing fetal injury leading to neonatal death and can participate in host defense against microbial invasion of the amniotic cavity leading to preterm labor and birth.
Collapse
Affiliation(s)
- Meyer Gershater
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI
- Center for Molecular Obstetrics and Genetics, Wayne State University, Detroit, MI
- Detroit Medical Center, Detroit, MI; and
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Jose Galaz
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Kenichiro Motomura
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Li Tao
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Yi Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Derek Miller
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Roger Pique-Regi
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Center for Molecular Obstetrics and Genetics, Wayne State University, Detroit, MI
| | - Gregorio Martinez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Yesong Liu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Eunjung Jung
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Robert Para
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI;
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
23
|
Rawat P, Das A. Differential expression of disparate transcription factor regime holds the key for NK cell development and function modulation. Life Sci 2022; 297:120471. [DOI: 10.1016/j.lfs.2022.120471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
|
24
|
Zhao Y, Zhu Y, Chen X, Lin H, Qin N, Zhou Z, Liu H, Hao Y, Zhou C, Liu X, Jin L, Sheng J, Huang H. Circulating Innate Lymphoid Cells Exhibit Distinctive Distribution During Normal Pregnancy. Reprod Sci 2022; 29:1124-1135. [PMID: 34988918 PMCID: PMC8907087 DOI: 10.1007/s43032-021-00834-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022]
Abstract
Over the past decades, the investigation of innate lymphoid cells (ILCs) has revealed their significance in successful pregnancy. Sex hormones, such as estradiol and progesterone, show specific changes during pregnancy and modulate both adaptive and innate immune systems. ILC subset distribution in peripheral blood of pregnant women and its potential association with sex hormone levels have not been well revealed. Peripheral blood was obtained from healthy non-pregnant, early-pregnant, and late-pregnant women. Radioimmunoassay was performed to measure plasma estradiol and progesterone levels. The levels of type 1 ILCs (ILC1s), type 2 ILCs (ILC2s), type 3 ILCs (ILC3s), and total ILCs as well as estrogen and progesterone receptors of ILC2s in peripheral blood were analyzed using flow cytometry. The proportion of total ILCs and distribution of ILC subsets in peripheral blood changed dynamically during pregnancy. Compared to non-pregnant women, late-pregnant women displayed significantly higher proportion of circulating ILCs, among which ILC2s accounted for the majority in late-pregnant women while a smaller part in others, and ILC3s displayed the opposite. Plasma estradiol and progesterone levels elevated while pregnancy proceeded and the expression of their receptors in ILC2s increased consisted with the proportion of circulating ILC2s. Our work first observed the existence of progesterone receptors in human circulating ILC2s and revealed the distribution pattern of circulating ILC subsets and their interrelation with plasma sex hormone levels during pregnancy. Our results suggested that the estradiol and progesterone levels might partly influence the distribution of circulating ILC subsets and implied the interplay between circulating ILCs and pregnancy.
Collapse
Affiliation(s)
- Yiran Zhao
- The International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Yajie Zhu
- The International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Xi Chen
- The International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Hui Lin
- The International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Ningxin Qin
- The International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Zhiyang Zhou
- The International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Han Liu
- The International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Yanhui Hao
- The International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Chengliang Zhou
- The International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Xinmei Liu
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200010, China
| | - Li Jin
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200010, China
| | - Jianzhong Sheng
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Zhejiang, 310058, China
| | - Hefeng Huang
- The International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China.
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200010, China.
| |
Collapse
|
25
|
Salazar MD, Wang WJ, Skariah A, He Q, Field K, Nixon M, Reed R, Dambaeva S, Beaman K, Gilman-Sachs A, Kwak-Kim J. Post-hoc evaluation of peripheral blood natural killer cell cytotoxicity in predicting the risk of recurrent pregnancy losses and repeated implantation failures. J Reprod Immunol 2022; 150:103487. [DOI: 10.1016/j.jri.2022.103487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/04/2021] [Accepted: 01/16/2022] [Indexed: 12/24/2022]
|
26
|
Heidari Z, Moudi B, Sheibak N, Asemi-Rad A, Keikha N, Mahmoudzadeh-Sagheb H, Ghasemi M. Interleukin 22 Expression During the Implantation Window in the Endometrium of Women with Unexplained Recurrent Pregnancy Loss and Unexplained Infertility Compared to Healthy Parturient Individuals. J Interferon Cytokine Res 2021; 41:461-468. [PMID: 34935487 DOI: 10.1089/jir.2021.0160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We evaluated the expression of interleukin-22 (IL-22) in the endometrium of women with unexplained recurrent pregnancy loss (uRPL) and unexplained infertility (UI) compared to the women with normal pregnancies. Endometrial tissues were collected from 20 women with UI, 20 women with uRPL, and 24 healthy women as a control group. Immunohistochemical expression and gene expression of IL-22 were analyzed by immunohistochemistry (IHC) and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) methods. The controls showed lower IL-22 expression than the uRPL group (P > 0.05) using PCR. It was also found that patients with UI had lower levels of IL-22 expression compared to the uRPL group (P > 0.05). Although IL-22 expression in the endometrium of patients with UI was higher than the control group, this difference was not statistically significant (P < 0.05). IL-22 immunoreactivity was observed in the endometrial glands and stromal tissues using IHC. We found the lowest IL-22 expression in the control group and the highest in uRPL samples (P < 0.05). Our findings suggest that a significant increase in IL-22 expression in uRPL patients may affect fertility and pregnancy outcomes or even have a considerable impact on immune function deficits. Further studies on the critical function of IL-22 during pregnancy are suggested.
Collapse
Affiliation(s)
- Zahra Heidari
- Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Bita Moudi
- Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Nadia Sheibak
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Azam Asemi-Rad
- Department of Anatomical Sciences, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Narjes Keikha
- Moloud Infertility Center, Ali ibn Abi Taleb Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hamidreza Mahmoudzadeh-Sagheb
- Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Marzieh Ghasemi
- Moloud Infertility Center, Ali ibn Abi Taleb Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
- Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
27
|
Li WX, Xu XH, Jin LP. Regulation of the innate immune cells during pregnancy: An immune checkpoint perspective. J Cell Mol Med 2021; 25:10362-10375. [PMID: 34708495 PMCID: PMC8581333 DOI: 10.1111/jcmm.17022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/03/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
The foetus can be regarded as a half‐allograft implanted into the maternal body. In a successful pregnancy, the mother does not reject the foetus because of the immune tolerance mechanism at the maternal‐foetal interface. The innate immune cells are a large part of the decidual leukocytes contributing significantly to a successful pregnancy. Although the contributions have been recognized, their role in human pregnancy has not been completely elucidated. Additionally, the accumulated evidence demonstrates that the immune checkpoint molecules expressed on the immune cells are co‐inhibitory receptors regulating their activation and biological function. Therefore, it is critical to understand the immune microenvironment and explore the function of the innate immune cells during pregnancy. This review summarizes the classic immune checkpoints such as PD‐1, CTLA‐4 and some novel molecules recently identified, including TIM‐3, CD200, TIGIT and the Siglecs family on the decidual and peripheral innate immune cells during pregnancy. Furthermore, it emphasizes the role of the immune checkpoint molecules in pregnancy‐associated complications and reproductive immunotherapy.
Collapse
Affiliation(s)
- Wen-Xuan Li
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiang-Hong Xu
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Department of Biobank, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li-Ping Jin
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Department of Biobank, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
28
|
Jiang X, Liang L, Chen G, Liu C. Modulation of Immune Components on Stem Cell and Dormancy in Cancer. Cells 2021; 10:2826. [PMID: 34831048 PMCID: PMC8616319 DOI: 10.3390/cells10112826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) refer to a certain subpopulation within the tumor entity that is characterized by restricted cellular proliferation and multipotent differentiation potency. The existence of CSCs has been proven to contribute to the heterogeneity of malignancies, accounting for intensified tumorigenesis, treatment resistance, and metastatic spread. Dormancy was proposed as a reversible state of cancer cells that are temporarily arrested in the cell cycle, possessing several hallmarks that facilitate their survival within a devastating niche. This transient period is evoked to enter an actively proliferating state by multiple regulatory alterations, and one of the most significant and complex factors comes from local and systemic inflammatory reactions and immune components. Although CSCs and dormant cancer cells share several similarities, the clear relationship between these two concepts remains unclear. Thus, the detailed mechanism of immune cells interacting with CSCs and dormant cancer cells also warrants elucidation for prevention of cancer relapse and metastasis. In this review, we summarize recent findings and prospective studies on CSCs and cancer dormancy to conclude the relationship between these two concepts. Furthermore, we aim to outline the mechanism of immune components in interfering with CSCs and dormant cancer cells to provide a theoretical basis for the prevention of relapse and metastasis.
Collapse
Affiliation(s)
| | | | | | - Caigang Liu
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang 110004, China; (X.J.); (L.L.); (G.C.)
| |
Collapse
|
29
|
Sfakianoudis K, Rapani A, Grigoriadis S, Pantou A, Maziotis E, Kokkini G, Tsirligkani C, Bolaris S, Nikolettos K, Chronopoulou M, Pantos K, Simopoulou M. The Role of Uterine Natural Killer Cells on Recurrent Miscarriage and Recurrent Implantation Failure: From Pathophysiology to Treatment. Biomedicines 2021; 9:biomedicines9101425. [PMID: 34680540 PMCID: PMC8533591 DOI: 10.3390/biomedicines9101425] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 01/15/2023] Open
Abstract
Uterine natural killer (uNK) cells constitute a unique uterine leucocyte subpopulation facilitating implantation and maintaining pregnancy. Herein, we critically analyze current evidence regarding the role of uNK cells in the events entailed in recurrent implantation failure (RIF) and recurrent miscarriages (RM). Data suggest an association between RIF and RM with abnormally elevated uNK cells’ numbers, as well as with a defective biological activity leading to cytotoxicity. However, other studies do not concur on these associations. Robust data suggesting a definitive causative relationship between uNK cells and RIF and RM is missing. Considering the possibility of uNK cells involvement on RIF and RM pathophysiology, possible treatments including glucocorticoids, intralipids, and intravenous immunoglobulin administration have been proposed towards addressing uNK related RIF and RM. When considering clinical routine practice, this study indicated that solid evidence is required to report on efficiency and safety of these treatments as there are recommendations that clearly advise against their employment. In conclusion, defining a causative relationship between uNK and RIF–RM pathologies certainly merits investigation. Future studies should serve as a prerequisite prior to proposing the use of uNK as a biomarker or prior to targeting uNK cells for therapeutic purposes addressing RIF and RM.
Collapse
Affiliation(s)
- Konstantinos Sfakianoudis
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (A.P.); (M.C.); (K.P.)
| | - Anna Rapani
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias, 11527 Athens, Greece; (A.R.); (S.G.); (E.M.); (G.K.); (C.T.)
| | - Sokratis Grigoriadis
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias, 11527 Athens, Greece; (A.R.); (S.G.); (E.M.); (G.K.); (C.T.)
- Assisted Conception Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 76, Vasilisis Sofias Avenue, 11528 Athens, Greece
| | - Agni Pantou
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (A.P.); (M.C.); (K.P.)
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias, 11527 Athens, Greece; (A.R.); (S.G.); (E.M.); (G.K.); (C.T.)
| | - Evangelos Maziotis
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias, 11527 Athens, Greece; (A.R.); (S.G.); (E.M.); (G.K.); (C.T.)
- Assisted Conception Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 76, Vasilisis Sofias Avenue, 11528 Athens, Greece
| | - Georgia Kokkini
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias, 11527 Athens, Greece; (A.R.); (S.G.); (E.M.); (G.K.); (C.T.)
| | - Chrysanthi Tsirligkani
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias, 11527 Athens, Greece; (A.R.); (S.G.); (E.M.); (G.K.); (C.T.)
| | - Stamatis Bolaris
- Assisted Conception Unit, General-Maternity District Hospital "Elena Venizelou", Elenas Venizelou Avenue, 11521 Athens, Greece;
| | - Konstantinos Nikolettos
- Assisted Reproduction Unit of Thrace “Embryokosmogenesis”, Apalos, 68132 Alexandroupoli, Greece;
| | - Margarita Chronopoulou
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (A.P.); (M.C.); (K.P.)
| | - Konstantinos Pantos
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (A.P.); (M.C.); (K.P.)
| | - Mara Simopoulou
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias, 11527 Athens, Greece; (A.R.); (S.G.); (E.M.); (G.K.); (C.T.)
- Assisted Conception Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 76, Vasilisis Sofias Avenue, 11528 Athens, Greece
- Correspondence: ; Tel.: +30-21-0746-2592
| |
Collapse
|
30
|
Yang X, Meng T. Killer-cell immunoglobulin-like receptor/human leukocyte antigen-C combination and 'great obstetrical syndromes' (Review). Exp Ther Med 2021; 22:1178. [PMID: 34504623 PMCID: PMC8394021 DOI: 10.3892/etm.2021.10612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/13/2021] [Indexed: 12/22/2022] Open
Abstract
Recurrent pregnancy loss (RPL), pre-eclampsia (PE), fetal growth restriction (FGR), and preterm delivery are examples of 'great obstetrical syndromes' (GOS). Placental dysfunction is the most common pathogenesis of GOS. In human pregnancies, the effects of uterine natural killer cells involve angiogenesis, promoting the remodeling of uterine spiral artery, and improving the invasion of trophoblast cells. The uNK cells supply killer immunoglobulin-like receptors (KIRs), which come into contact with human leukocyte antigen-C (HLA-C) ligands expressed by extravillous trophoblast cells (EVTs). Numerous studies have investigated the association between GOS and KIR/HLA-C combination. However, the outcomes have not been conclusive. The present review aimed to reveal the association between GOS and KIR/HLA-C combination to screen out high-risk pregnancies, strengthen the treatment of pregnancy complications, and reduce the frequency of adverse maternal and fetal outcomes. It has been reported that a female with a KIR AA genotype and a neonate with a paternal HLA-C2 molecule is more prone to develop GOS and have a small fetus since less cytokines were secreted by uNK cells. Conversely, the combination of KIR BB haplotype (including the activating KIR2DS1) and HLA-C2 can induce the production of cytokines and increase trophoblast invasion, leading to the birth of a large fetus. KIR/HLA-C combinations may be applicable in selecting third-party gametes or surrogates. Detection of maternal KIR genes and HLA-C molecules from the couple could serve as useful markers for predicting and diagnosing GOS.
Collapse
Affiliation(s)
- Xiuhua Yang
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Tao Meng
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
31
|
Biology and pathology of the uterine microenvironment and its natural killer cells. Cell Mol Immunol 2021; 18:2101-2113. [PMID: 34426671 PMCID: PMC8429689 DOI: 10.1038/s41423-021-00739-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
Tissues are the new frontier of discoveries in immunology. Cells of the immune system are an integral part of tissue physiology and immunity. Determining how immune cells inhabit, housekeep, and defend gut, lung, brain, liver, uterus, and other organs helps revealing the intimate details of tissue physiology and may offer new therapeutic targets to treat pathologies. The uterine microenvironment modulates the development and function of innate lymphoid cells [ILC, largely represented by natural killer (NK) cells], macrophages, T cells, and dendritic cells. These immune cells, in turn, contribute to tissue homeostasis. Regulated by ovarian hormones, the human uterine mucosa (endometrium) undergoes ~400 monthly cycles of breakdown and regeneration from menarche to menopause, with its fibroblasts, glands, blood vessels, and immune cells remodeling the tissue into the transient decidua. Even more transformative changes occur upon blastocyst implantation. Before the placenta is formed, the endometrial glands feed the embryo by histiotrophic nutrition while the uterine spiral arteries are stripped of their endothelial layer and smooth muscle actin. This arterial remodeling is carried out by invading fetal trophoblast and maternal immune cells, chiefly uterine NK (uNK) cells, which also assist fetal growth. The transformed arteries no longer respond to maternal stimuli and meet the increasing demands of the growing fetus. This review focuses on how the everchanging uterine microenvironment affects uNK cells and how uNK cells regulate homeostasis of the decidua, placenta development, and fetal growth. Determining these pathways will help understand the causes of major pregnancy complications.
Collapse
|
32
|
Mikhailova V, Khokhlova E, Grebenkina P, Salloum Z, Nikolaenkov I, Markova K, Davidova A, Selkov S, Sokolov D. NK-92 cells change their phenotype and function when cocultured with IL-15, IL-18 and trophoblast cells. Immunobiology 2021; 226:152125. [PMID: 34365089 DOI: 10.1016/j.imbio.2021.152125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/02/2021] [Accepted: 07/20/2021] [Indexed: 02/03/2023]
Abstract
NK cell development is affected by their cellular microenvironment and cytokines, including IL-15 and IL-18. NK cells can differentiate in secondary lymphoid organs, liver and within the uterus in close contact with trophoblast cells. The aim was to evaluate changes in the NK cell phenotype and function in the presence of IL-15, IL-18 and JEG-3, a trophoblast cell line. When cocultured with JEG-3 cells, IL-15 caused an increase in the number of NKG2D+ NK-92 cells and the intensity of CD127 expression. IL-18 stimulates an increase in the amount of NKp44+ NK-92 cells and in the intensity of NKp44 expression by pNK in the presence of trophoblast cells. NK-92 cell cytotoxic activity against JEG-3 cells increased only in presence of IL-18. Data on changes in the cytotoxic activity of NK-92 cells against JEG-3 cells in the presence of IL-15 and IL-18 indicate the modulation of NK cell function both by the cytokine microenvironment and directly by target cells. IL-15 and IL-18 were present in conditioned media (CM) from 1st and 3rd trimester placentas. In the presence of 1st trimester CM and JEG-3 cells, NK-92 cells showed an increase in the intensity of NKG2D expression. In the presence of 3rd trimester CM and JEG-3 cells, a decrease in the expression of NKG2D by NK-92 cells was observed. Thus, culturing of NK-92 cells with JEG-3 trophoblast cells stimulated a pronounced change in the NK cell phenotype, bringing it closer to the decidual NK cell-like phenotype.
Collapse
Affiliation(s)
- Valentina Mikhailova
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| | - Evgeniia Khokhlova
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| | - Polina Grebenkina
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| | - Zeina Salloum
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| | - Igor Nikolaenkov
- Department of Obstetrics, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| | - Kseniya Markova
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| | - Alina Davidova
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| | - Sergey Selkov
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| | - Dmitriy Sokolov
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| |
Collapse
|
33
|
Odendaal J, Quenby S. Immunological Testing in Assisted Reproductive Technology. Semin Reprod Med 2021; 39:13-23. [PMID: 34161996 DOI: 10.1055/s-0041-1730908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Fetal implantation requires carefully orchestrated involvement of the maternal immune system. Aberrant function within implantation has been suggested as a cause of implantation failure. The emergence of immunological theories of miscarriage has led to immunological testing as an adjuvant treatment in assisted reproductive technology; however, it remains controversial, with mixed evidence both for immunological cause and the benefits of immunological testing. Literature on common methods of immunological testing within assisted reproductive technology is reviewed including those of peripheral and uterine natural killer cells, chronic endometritis, and T-helper cells cytokine ratio. There is little consensus in the evidence on immunological testing in the context of recurrent implantation failure. The field is limited by a lack of uniformity in approach to testing and heterogeneity of the pathophysiological cause. Nevertheless, the maternal immune system is heavily involved in implantation and the new era of personalized medicine ensures that a more defined approach to immunological testing will be achieved.
Collapse
Affiliation(s)
- Joshua Odendaal
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Siobhan Quenby
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| |
Collapse
|
34
|
Díaz-Hernández I, Alecsandru D, García-Velasco JA, Domínguez F. Uterine natural killer cells: from foe to friend in reproduction. Hum Reprod Update 2021; 27:720-746. [PMID: 33528013 DOI: 10.1093/humupd/dmaa062] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/15/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Recurrent miscarriage and pre-eclampsia are common reproductive disorders, but their causes are often unknown. Recent evidence has provided new insight into immune system influences in reproductive disorders. A subset of lymphocytes of the innate immune system known as uterine natural killer (uNK) cells are now recognized as fundamental to achieving embryo implantation and successful pregnancy, but were initially attributed a bad reputation. Indeed, immune therapies have been developed to treat the 'exaggerated' immune response from uNK cells. These treatments have been based on studies of peripheral blood natural killer (pbNK) cells. However, uNK cells and pbNK cells have different phenotypic and functional characteristics. The functions of uNK cells are closely related to their interactions with the extravillous trophoblast cells (EVTs) and spiral arteries, which underlie an essential role in regulating vascular function, controlling trophoblast invasion and promoting placental development. EVTs express MHC molecules of class I HLA-C/E/G/F, while uNK cells express, among other receptors, killer cell immunoglobulin-like receptors (KIRs) that bind to HLA-C or CD94/NKG2A inhibitory receptors, and then bind HLA-E. Associations of certain KIR/HLA-C combinations with recurrent miscarriage, pre-eclampsia, and foetal growth restriction and the interactions between uNK cells, trophoblasts and vascular cells have led to the hypothesis that uNK cells may play a role in embryo implantation. OBJECTIVE AND RATIONALE Our objective was to review the evolution of our understanding of uNK cells, their functions, and their increasingly relevant role in reproduction. SEARCH METHODS Relevant literature through June 2020 was retrieved using Google Scholar and PubMed. Search terms comprised uNK cells, human pregnancy, reproductive failure, maternal KIR and HLA-C, HLA-E/G/F in EVT cells, angiogenic cytokines, CD56+ NK cells, spiral artery, oestrogen and progesterone receptors, KIR haplotype and paternal HLA-C2. OUTCOMES This review provides key insights into the evolving conceptualization of uNK cells, from their not-so-promising beginnings to now, when they are considered allies in reproduction. We synthesized current knowledge about uNK cells, their involvement in reproduction and their main functions in placental vascular remodeling and trophoblast invasion. One of the issues that this review presents is the enormous complexity involved in studying the immune system in reproduction. The complexity in the immunology of the maternal-foetal interface lies in the great variety of participating molecules, the processes and interactions that occur at different levels (molecular, cellular, tissue, etc.) and the great diversity of genetic combinations that are translated into different types of responses. WIDER IMPLICATIONS Insights into uNK cells could offer an important breakthrough for ART outcomes, since each patient could be assessed based on the combination of HLA and its receptors in their uNK cells, evaluating the critical interactions at the materno-foetal interface. However, owing to the technical challenges in studying uNK cells in vivo, there is still much knowledge to gain, particularly regarding their exact origin and functions. New studies using novel molecular and genetic approaches can facilitate the identification of mechanisms by which uNK cells interact with other cells at the materno-foetal interface, perhaps translating this knowledge into clinical applicability.
Collapse
Affiliation(s)
| | - Diana Alecsandru
- Department of Immunology and Department of Reproductive Endocrinology and Infertility, Instituto Valenciano de Infertilidad-Madrid, Rey Juan Carlos University (IVI), Madrid 28023, Spain
| | - Juan Antonio García-Velasco
- Department of Immunology and Department of Reproductive Endocrinology and Infertility, Instituto Valenciano de Infertilidad-Madrid, Rey Juan Carlos University (IVI), Madrid 28023, Spain
| | | |
Collapse
|
35
|
Huhn O, Zhao X, Esposito L, Moffett A, Colucci F, Sharkey AM. How Do Uterine Natural Killer and Innate Lymphoid Cells Contribute to Successful Pregnancy? Front Immunol 2021; 12:607669. [PMID: 34234770 PMCID: PMC8256162 DOI: 10.3389/fimmu.2021.607669] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
Innate lymphoid cells (ILCs) are the most abundant immune cells in the uterine mucosa both before and during pregnancy. Circumstantial evidence suggests they play important roles in regulating placental development but exactly how they contribute to the successful outcome of pregnancy is still unclear. Uterine ILCs (uILCs) include subsets of tissue-resident natural killer (NK) cells and ILCs, and until recently the phenotype and functions of uILCs were poorly defined. Determining the specific roles of each subset is intrinsically challenging because of the rapidly changing nature of the tissue both during the menstrual cycle and pregnancy. Single-cell RNA sequencing (scRNAseq) and high dimensional flow and mass cytometry approaches have recently been used to analyse uILC populations in the uterus in both humans and mice. This detailed characterisation has significantly changed our understanding of the heterogeneity within the uILC compartment. It will also enable key clinical questions to be addressed including whether specific uILC subsets are altered in infertility, miscarriage and pregnancy disorders such as foetal growth restriction and pre-eclampsia. Here, we summarise recent advances in our understanding of the phenotypic and functional diversity of uILCs in non-pregnant endometrium and first trimester decidua, and review how these cells may contribute to successful placental development.
Collapse
Affiliation(s)
- Oisín Huhn
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge, Biomedical Research Centre, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
| | - Xiaohui Zhao
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
| | - Laura Esposito
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Ashley Moffett
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Francesco Colucci
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge, Biomedical Research Centre, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
| | - Andrew M. Sharkey
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
36
|
Li D, Zheng L, Zhao D, Xu Y, Wang Y. The Role of Immune Cells in Recurrent Spontaneous Abortion. Reprod Sci 2021; 28:3303-3315. [PMID: 34101149 PMCID: PMC8186021 DOI: 10.1007/s43032-021-00599-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
Recurrent spontaneous abortion affects approximately 1–2% of women of childbearing, and describes a condition in which women suffer from three or more continuous spontaneous miscarriages. However, the origin of recurrent spontaneous abortion (RSA) remains unknown, preventing effective treatment and placing stress upon patients. It has been acknowledged that successful pregnancy necessitates balanced immune responses. Therefore, immunological aberrancy may be considered a root cause of poor pregnancy outcomes. Considerable published studies have investigated the relationship between various immune cells and RSA. Here, we review current knowledge on this area, and discuss the five main categories of immune cells involved in RSA; these include innate lymphocytes (ILC), macrophages, decidual dendritic cells (DCs), and T cells. Furthermore, we sought to summarize the impact of the multiple interactions of various immune cells on the emergence of RSA. A good understanding of pregnancy-induced immunological alterations could reveal new therapeutic strategies for favorable pregnancy outcomes.
Collapse
Affiliation(s)
- Dan Li
- Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Lianwen Zheng
- Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| | | | - Ying Xu
- Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Yeling Wang
- Departments of Cardiovascular Medicine, First Hospital, Jilin University, Changchun, 130000, China.
| |
Collapse
|
37
|
Kumar V. Innate Lymphoid Cells and Adaptive Immune Cells Cross-Talk: A Secret Talk Revealed in Immune Homeostasis and Different Inflammatory Conditions. Int Rev Immunol 2021; 40:217-251. [PMID: 33733998 DOI: 10.1080/08830185.2021.1895145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The inflammatory immune response has evolved to protect the host from different pathogens, allergens, and endogenous death or damage-associated molecular patterns. Both innate and adaptive immune components are crucial in inducing an inflammatory immune response depending on the stimulus type and its duration of exposure or the activation of the primary innate immune response. As the source of inflammation is removed, the aggravated immune response comes to its homeostatic level. However, the failure of the inflammatory immune response to subside to its normal level generates chronic inflammatory conditions, including autoimmune diseases and cancer. Innate lymphoid cells (ILCs) are newly discovered innate immune cells, which are present in abundance at mucosal surfaces, including lungs, gastrointestinal tract, and reproductive tract. Also, they are present in peripheral blood circulation, skin, and lymph nodes. They play a crucial role in generating the pro-inflammatory immune response during diverse conditions. On the other hand, adaptive immune cells, including different types of T and B cells are major players in the pathogenesis of autoimmune diseases (type 1 diabetes mellitus, rheumatoid arthritis, psoriasis, and systemic lupus erythematosus, etc.) and cancers. Thus the article is designed to discuss the immunological role of different ILCs and their interaction with adaptive immune cells in maintaining the immune homeostasis, and during inflammatory autoimmune diseases along with other inflammatory conditions (excluding pathogen-induced inflammation), including cancer, graft-versus-host diseases, and human pregnancy.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, St Lucia, Brisbane, Queensland, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
38
|
Fonseca BM, Cunha SC, Gonçalves D, Mendes A, Braga J, Correia-da-Silva G, Teixeira NA. Decidual NK cell-derived conditioned medium from miscarriages affects endometrial stromal cell decidualisation: endocannabinoid anandamide and tumour necrosis factor-α crosstalk. Hum Reprod 2021; 35:265-274. [PMID: 31990346 DOI: 10.1093/humrep/dez260] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022] Open
Abstract
STUDY QUESTION What are the effects of endocannabinoid anandamide (AEA) in uterine natural killer (unK) cells from miscarriage decidua, regarding their cytokine profile and endometrial stromal cell (ESC) crosstalk? SUMMARY ANSWER uNK-conditioned media from miscarriage samples present high TNF-α levels which inhibit ESC decidualisation. WHAT IS KNOWN ALREADY AEA plasma levels are higher in women who have suffered a miscarriage. Moreover, AEA inhibits ESC proliferation and differentiation, although the levels and impact on the uNK cell cytokine profile at the feto-maternal interface remain elusive. STUDY DESIGN, SIZE, DURATION This laboratory-based study used human primary uNK cells which were isolated from first-trimester decidua (gestational age, 5-12 weeks) derived from 8 women with elective pregnancy termination and 18 women who suffered a miscarriage. PARTICIPANTS/MATERIALS, SETTING, METHODS The first-trimester placental tissues were assayed for AEA levels by UPLC-MS/MS and respective enzymatic profile by western blot. The uNK cells were isolated and maintained in culture. The expression of angiogenic markers in uNK cells was examined by quantitative PCR (qPCR). The uNK-conditioned medium was analysed for IFN-γ, TNF-α and IL-10 production by enzyme-linked immunosorbent assay, and the impact on ESC differentiation was assessed by measuring decidual markers Prl, Igfbp-1 and Fox01 mRNA expression using qPCR. MAIN RESULTS AND THE ROLE OF CHANCE AEA levels were higher in miscarriage decidua compared with decidua from elective terminations. The uNK cell-conditioned medium from the miscarriage samples exhibited high TNF-α levels and interfered with the decidualisation of ESCs. Exacerbated inflammation and elevated TNF-α levels at the feto-maternal interface may trigger AEA signalling pathways that, in turn, may impact decidualisation and the angiogenic ability of uNK cells. LARGE-SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Primary uNK cell responses are based on a simple in vitro model. Thus, in complex microenvironments, such as the feto-maternal interface, the mechanisms may not be exactly the same. Also, the inflammatory events of miscarriage that, in this study, have happened prior to processing of the samples may cause different responses to that observed. In addition, the magnitude of the inflammatory response, required to trigger the AEA pathways that impact decidualisation and the uNK angiogenic ability in vivo, is still unclear. WIDER IMPLICATIONS OF THE FINDINGS The endocannabinoid AEA is a modulator of reproductive competence. AEA not only may contribute to neuroendocrine homeostasis but also can take part in uterine changes occurring during early pregnancy. STUDY FUNDING/COMPETING INTEREST(S) The work was supported by UID/MULTI/04378/2019 with funding from Fundação para a Ciência e a Tecnologia (FCT)/MCTES through national funds and PORTUGAL 2020 Partnership Agreement, NORTE-01-0145-FEDER-000024. S.C. Cunha acknowledges FCT for the IF/01616/2015 contract. There are no conflicts of interest.
Collapse
Affiliation(s)
- B M Fonseca
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - S C Cunha
- LAQV, REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - D Gonçalves
- Departamento da Mulher e da Medicina Reprodutiva, Serviço de Obstetrícia, Centro Materno-Infantil do Norte, Centro Hospitalar do Porto, Porto, Portugal
| | - A Mendes
- Departamento da Mulher e da Medicina Reprodutiva, Serviço de Obstetrícia, Centro Materno-Infantil do Norte, Centro Hospitalar do Porto, Porto, Portugal
| | - J Braga
- Departamento da Mulher e da Medicina Reprodutiva, Serviço de Obstetrícia, Centro Materno-Infantil do Norte, Centro Hospitalar do Porto, Porto, Portugal
| | - G Correia-da-Silva
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - N A Teixeira
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
39
|
Mendes J, Areia AL, Rodrigues-Santos P, Santos-Rosa M, Mota-Pinto A. Innate Lymphoid Cells in Human Pregnancy. Front Immunol 2020; 11:551707. [PMID: 33329512 PMCID: PMC7734178 DOI: 10.3389/fimmu.2020.551707] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a new set of cells considered to be a part of the innate immune system. ILCs are classified into five subsets (according to their transcription factors and cytokine profile) as natural killer cells (NK cells), group 1 ILCs, group 2 ILCs, group 3 ILCs, and lymphoid tissue inducers (LTi). Functionally, these cells resemble the T helper population but lack the expression of recombinant genes, which is essential for the formation of T cell receptors. In this work, the authors address the distinction between peripheral and decidual NK cells, highlighting their diversity in ILC biology and its relevance to human pregnancy. ILCs are effector cells that are important in promoting immunity, inflammation, and tissue repair. Recent studies have directed their attention to ILC actions in pregnancy. Dysregulation or expansion of pro-inflammatory ILC populations as well as abnormal tolerogenic responses may directly interfere with pregnancy, ultimately resulting in pregnancy loss or adverse outcomes. In this review, we characterize these cells, considering recent findings and addressing knowledge gaps in perinatal medicine in the context of ILC biology. Moreover, we discuss the relevance of these cells not only to the process of immune tolerance, but also in disease.
Collapse
Affiliation(s)
- João Mendes
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, General Pathology Institute, University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Ana Luísa Areia
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, General Pathology Institute, University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Obstetrics Department, Coimbra University Hospital Center, Coimbra, Portugal
| | - Paulo Rodrigues-Santos
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine (FMUC), Institute of Immunology, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), Laboratory of Immunology and Oncology, University of Coimbra, Coimbra, Portugal
| | - Manuel Santos-Rosa
- Faculty of Medicine (FMUC), Institute of Immunology, University of Coimbra, Coimbra, Portugal
| | - Anabela Mota-Pinto
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, General Pathology Institute, University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
40
|
Sabihi M, Böttcher M, Pelczar P, Huber S. Microbiota-Dependent Effects of IL-22. Cells 2020; 9:E2205. [PMID: 33003458 PMCID: PMC7599675 DOI: 10.3390/cells9102205] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Cytokines are important contributors to immune responses against microbial and environmental threats and are of particular importance at epithelial barriers. These interfaces are continuously exposed to external factors and thus require immune components to both protect the host from pathogen invasion and to regulate overt inflammation. Recently, substantial efforts have been devoted to understanding how cytokines act on certain cells at barrier sites, and why the dysregulation of immune responses may lead to pathogenesis. In particular, the cytokine IL-22 is involved in preserving an intact epithelium, maintaining a balanced microbiota and a functioning defense system against external threats. However, a tight regulation of IL-22 is generally needed, since uncontrolled IL-22 production can lead to the progression of autoimmunity and cancer. Our aim in this review is to summarize novel findings on IL-22 and its interactions with specific microbial stimuli, and subsequently, to understand their contributions to the function of IL-22 and the clinical outcome. We particularly focus on understanding the detrimental effects of dysregulated control of IL-22 in certain disease contexts.
Collapse
Affiliation(s)
| | | | | | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (M.S.); (M.B.); (P.P.)
| |
Collapse
|
41
|
Abstract
Natural killer (NK) cells are cytotoxic lymphocytes of the innate immune system that are capable of killing virally infected and/or cancerous cells. Nearly 20 years ago, NK cell-mediated immunotherapy emerged as a safe and effective treatment approach for patients with advanced-stage leukaemia. Subsequently, the field of NK cell-based cancer therapy has grown exponentially and currently constitutes a major area of immunotherapy innovation. In general, the development of NK cell-directed therapies has two main focal points: optimizing the source of therapeutic NK cells for adoptive transfer and enhancing NK cell cytotoxicity and persistence in vivo. A wide variety of sources of therapeutic NK cells are currently being tested clinically, including haploidentical NK cells, umbilical cord blood NK cells, stem cell-derived NK cells, NK cell lines, adaptive NK cells, cytokine-induced memory-like NK cells and chimeric antigen receptor NK cells. A plethora of methods to augment the cytotoxicity and longevity of NK cells are also under clinical investigation, including cytokine-based agents, NK cell-engager molecules and immune-checkpoint inhibitors. In this Review, we highlight the variety of ways in which diverse NK cell products and their auxiliary therapeutics are being leveraged to target human cancers. We also identify future avenues for NK cell therapy research.
Collapse
|
42
|
Akoto C, Chan CYS, Tshivuila-Matala COO, Ravi K, Zhang W, Vatish M, Norris SA, Hemelaar J. Innate lymphoid cells are reduced in pregnant HIV positive women and are associated with preterm birth. Sci Rep 2020; 10:13265. [PMID: 32764636 PMCID: PMC7413261 DOI: 10.1038/s41598-020-69966-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/21/2020] [Indexed: 01/13/2023] Open
Abstract
Preterm birth is the leading cause of neonatal and child mortality worldwide. Globally, 1.4 million pregnant women are estimated to be living with HIV/AIDS, the majority of whom live in sub-Saharan Africa. Maternal HIV infection and antiretroviral treatment (ART) have been associated with increased rates of preterm birth, but the underlying mechanisms remain unknown. Acute HIV infection is associated with a rapid depletion of all three subsets of innate lymphoid cells (ILCs), ILC1s, ILC2s and ILC3s, which is not reversed by ART. ILCs have been found at the maternal-fetal interface and we therefore investigated the potential association between maternal HIV infection, peripheral ILC frequencies and preterm birth. In our study of pregnant South African women with accurately dated pregnancies, we show that maternal HIV infection is associated with reduced levels of all three ILC subsets. Preterm birth was also associated with lower levels of all three ILC subsets in early pregnancy. ILC frequencies were lowest in HIV positive women who experienced preterm birth. Moreover, ILC levels were reduced in pregnancies resulting in spontaneous onset of preterm labour and in extreme preterm birth (< 28 weeks gestation). Our findings suggest that reduced ILC frequencies may be a link between maternal HIV infection and preterm birth. In addition, ILC frequencies in early pregnancy may serve as predictive biomarkers for women who are at risk of delivering preterm.
Collapse
Affiliation(s)
- Charlene Akoto
- Nuffield Department of Women's & Reproductive Health, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Christina Y S Chan
- Nuffield Department of Women's & Reproductive Health, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Chrystelle O O Tshivuila-Matala
- Nuffield Department of Women's & Reproductive Health, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,South African Medical Research Council Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Krithi Ravi
- Nuffield Department of Women's & Reproductive Health, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Wei Zhang
- Nuffield Department of Women's & Reproductive Health, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Manu Vatish
- Nuffield Department of Women's & Reproductive Health, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Shane A Norris
- Nuffield Department of Women's & Reproductive Health, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,South African Medical Research Council Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Joris Hemelaar
- Nuffield Department of Women's & Reproductive Health, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK. .,South African Medical Research Council Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
43
|
Molecular characteristics and possible functions of innate lymphoid cells in the uterus and gut. Cytokine Growth Factor Rev 2020; 52:15-24. [DOI: 10.1016/j.cytogfr.2019.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/23/2022]
|
44
|
Distinctive phenotypes and functions of innate lymphoid cells in human decidua during early pregnancy. Nat Commun 2020; 11:381. [PMID: 31959757 PMCID: PMC6971012 DOI: 10.1038/s41467-019-14123-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/15/2019] [Indexed: 12/17/2022] Open
Abstract
During early pregnancy, decidual innate lymphoid cells (dILCs) interact with surrounding maternal cells and invading fetal extravillous trophoblasts (EVT). Here, using mass cytometry, we characterise five main dILC subsets: decidual NK cells (dNK)1–3, ILC3s and proliferating NK cells. Following stimulation, dNK2 and dNK3 produce more chemokines than dNK1 including XCL1 which can act on both maternal dendritic cells and fetal EVT. In contrast, dNK1 express receptors including Killer-cell Immunoglobulin-like Receptors (KIR), indicating they respond to HLA class I ligands on EVT. Decidual NK have distinctive organisation and content of granules compared with peripheral blood NK cells. Acquisition of KIR correlates with higher granzyme B levels and increased chemokine production in response to KIR activation, suggesting a link between increased granule content and dNK1 responsiveness. Our analysis shows that dILCs are unique and provide specialised functions dedicated to achieving placental development and successful reproduction. As an interface between maternal and fetal tissues, decidua hosts immune cells specialized in fostering a successful pregnancy. Here the authors carry out high-dimensional characterization of function, morphology and surface markers of human decidual innate lymphoid cells (ILCs), identifying subsets with features distinct from blood ILC.
Collapse
|
45
|
Agostinis C, Mangogna A, Bossi F, Ricci G, Kishore U, Bulla R. Uterine Immunity and Microbiota: A Shifting Paradigm. Front Immunol 2019; 10:2387. [PMID: 31681281 PMCID: PMC6811518 DOI: 10.3389/fimmu.2019.02387] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/23/2019] [Indexed: 12/16/2022] Open
Abstract
The female reproductive tract harbors distinct microbial communities, as in the vagina, cervical canal, uterus, and fallopian tubes. The nature of the vaginal microbiota is well-known; in contrast, the upper reproductive tract remains largely unexplored. Alteration in the uterine microbiota, which is dependent on the nutrients and hormones available to the uterus, is likely to play an important role in uterine-related diseases such as hysteromyoma, adenomyosis, and endometriosis. Uterine mucosa is an important tissue barrier whose main function is to offer protection against pathogens and other toxic factors, while maintaining a symbiotic relationship with commensal microbes. These characteristics are shared by all the mucosal tissues; however, the uterine mucosa is unique since it changes cyclically during the menstrual cycle as well as pregnancy. The immune system, besides its role in the defense process, plays crucial roles in reproduction as it ensures local immune tolerance to fetal/paternal antigens, trophoblast invasion, and vascular remodeling. The human endometrium contains a conspicuous number of immune cells, mainly Natural Killers (NK) cells, which are phenotypically distinct from peripheral cytotoxic NK, cells and macrophages. The endometrium also contains few lymphoid aggregates comprising B cell and CD8+ T cells. The number and the phenotype of these cells change during the menstrual cycle. It has become evident in recent years that the immune cell phenotype and function can be influenced by microbiota. Immune cells can sense the presence of microbes through their pattern recognition receptors, setting up host-microbe interaction. The microbiota exerts an appropriately controlled defense mechanism by competing for nutrients and mucosal space with pathogens. It has recently been considered that uterus is a non-sterile compartment since it seems to possess its own microbiota. There has been an increasing interest in characterizing the nature of microbial colonization within the uterus and its apparent impact on fertility and pregnancy. This review will examine the potential relationship between the uterine microbiota and the immune cells present in the local environment.
Collapse
Affiliation(s)
- Chiara Agostinis
- Institute for Maternal and Child Health, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Burlo Garofolo, Trieste, Italy
| | | | - Fleur Bossi
- Institute for Maternal and Child Health, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Burlo Garofolo, Trieste, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Burlo Garofolo, Trieste, Italy.,Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
46
|
Di Vito C, Mikulak J, Mavilio D. On the Way to Become a Natural Killer Cell. Front Immunol 2019; 10:1812. [PMID: 31428098 PMCID: PMC6688484 DOI: 10.3389/fimmu.2019.01812] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
Natural Killer (NK) cells are innate lymphocytes playing pivotal roles in host defense and immune-surveillance. The homeostatic modulation of germ-line encoded/non-rearranged activating and inhibitory NK cell receptors (NKRs) determines the capability of these innate lymphocytes to either spare "self" cells or to kill viral-infected, tumor-transformed and heterologous cell targets. However, despite being discovered more than 40 years ago, several aspects of NK cell biology remain unknown or are still being debated. In particular, our knowledge of human NK cell ontogenesis and differentiation is still in its infancy as the majority of our experimental evidence on this topic mainly comes from findings obtained in vitro or with animal models in vivo. Although both the generation and the maintenance of human NK cells are sustained by hematopoietic stem cells (HSCs), the precise site(s) of NK cell development are still poorly defined. Indeed, HSCs and hematopoietic precursors are localized in different anatomical compartments that also change their ontogenic commitments before and after birth as well as in aging. Currently, the main site of NK cell generation and maturation in adulthood is considered the bone marrow, where their interactions with stromal cells, cytokines, growth factors, and other soluble molecules support and drive maturation. Different sequential stages of NK cell development have been identified on the basis of the differential expression of specific markers and NKRs as well as on the acquisition of specific effector-functions. All these phenotypic and functional features are key in inducing and regulating homing, activation and tissue-residency of NK cells in different human anatomic sites, where different homeostatic mechanisms ensure a perfect balance between immune tolerance and immune-surveillance. The present review summarizes our current knowledge on human NK cell ontogenesis and on the related pathways orchestrating a proper maturation, functions, and distributions.
Collapse
Affiliation(s)
- Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| |
Collapse
|
47
|
Shokri MR, Bozorgmehr M, Ghanavatinejad A, Falak R, Aleahmad M, Kazemnejad S, Shokri F, Zarnani AH. Human menstrual blood-derived stromal/stem cells modulate functional features of natural killer cells. Sci Rep 2019; 9:10007. [PMID: 31292483 PMCID: PMC6620360 DOI: 10.1038/s41598-019-46316-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022] Open
Abstract
Although natural killer (NK) cells play a crucial role in the maintenance of a successful pregnancy, their cytotoxic activity should be tightly controlled. We hypothesized that endometrial mesenchymal stromal/stem cells (eMSCs) could potentially attenuate the functional features of NK cells. Herein, we assessed immunomodulatory effects of menstrual blood-derived stromal/stem cells (MenSCs), as a surrogate for eMSCs, on NK cells function. Our results showed that MenSCs induced proliferation of NK cells. However, IFN-γ/IL-1β pretreated MenSCs significantly inhibited NK cell proliferation. Of 41 growth factors tested, MenSCs produced lower levels of insulin-like growth factor binding proteins (IGFBPs) 1-4, VEGF-A, β-NGF, and M-CSF compared to bone marrow-derived mesenchymal stem cells (BMSCs). MenSCs displayed high activity of IDO upon IFN-γ treatment. The antiproliferative potential of IFN-γ/IL-1β-pretreated MenSCs was mediated through IL-6 and TGF-β. MenSCs impaired the cytotoxic activity of NK cells on K562 cells, consistent with the lower expression of perforin, granzymes A, and B. We also observed that in vitro decidualization of MenSCs in the presence of IFN-γ reduced the inhibitory effect of MenSCs on NK cell cytotoxicity against K562 target cells. Additionally, MenSCs were found to be prone to NK cell-mediated lysis in an MHC-independent manner. Our findings imply that dysregulation of NK cells in such pregnancy-related disorders as miscarriage may stem from dysfunctioning of eMSCs.
Collapse
Affiliation(s)
- Mohammad-Reza Shokri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Bozorgmehr
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Alireza Ghanavatinejad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Aleahmad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somaieh Kazemnejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Abstract
The presence of unusual natural killer cells in human endometrium has been recognized for 30 years, but despite considerable research effort, the
in vivo role of uterine natural killer (uNK) cells in both normal and pathological pregnancy remains uncertain. uNK cells may differentiate from precursors present in endometrium, but migration from peripheral blood in response to chemokine stimuli with
in situ modification to a uNK cell phenotype is also possible. uNK cells produce a wide range of secretory products with diverse effects on trophoblast and spiral arteries which may play an important role in implantation and early placentation. Interactions with other decidual cell populations are also becoming clear. Recent evidence has demonstrated subpopulations of uNK cells and the presence of other innate lymphoid cell populations in decidua which may refine future approaches to investigation of the role of uNK cells in human pregnancy.
Collapse
Affiliation(s)
- Judith N Bulmer
- Institute of Cellular Medicine, Newcastle University, William Leech Building, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Gendie E Lash
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, Guangdong, 510623, China
| |
Collapse
|
49
|
Jabrane-Ferrat N. Features of Human Decidual NK Cells in Healthy Pregnancy and During Viral Infection. Front Immunol 2019; 10:1397. [PMID: 31379803 PMCID: PMC6660262 DOI: 10.3389/fimmu.2019.01397] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/03/2019] [Indexed: 12/18/2022] Open
Abstract
The hallmark of human early pregnancy is the accumulation of a unique population of Natural Killer (dNK) cells at the main maternal-fetal interface, the decidua basalis. dNK cells play a crucial role in successful placentation probably by orchestrating the invasion of trophoblast cells deep into the decidua basalis and remodeling of the maternal spiral arteries. Recent advances in the field emphasize the importance of the local microenvironment in shaping both the phenotype and the effector functions of these innate lymphoid cells. Despite slow progress in the field, ex vivo studies revealed that dNK cells sense and destroy infected cells in order to protect the fetus from invading pathogens. In this review, we will discuss key features of dNK cells during healthy pregnancy as well as their functional adaptations in limiting pathogen dissemination to the growing conceptus. The challenge is to better understand the plasticity of dNK cells in the maternal-fetal interface. Such insights would enable greater understanding of the pathogenesis in congenital infections and pregnancy disorders.
Collapse
Affiliation(s)
- Nabila Jabrane-Ferrat
- CNRS UMR 5282, Center of Pathophysiology Toulouse Purpan, Toulouse, France.,INSERM UMR1043, Purpan University Hospital, Toulouse, France.,Toulouse III University, Toulouse, France
| |
Collapse
|
50
|
Langel SN, Paim FC, Alhamo MA, Buckley A, Van Geelen A, Lager KM, Vlasova AN, Saif LJ. Stage of Gestation at Porcine Epidemic Diarrhea Virus Infection of Pregnant Swine Impacts Maternal Immunity and Lactogenic Immune Protection of Neonatal Suckling Piglets. Front Immunol 2019; 10:727. [PMID: 31068924 PMCID: PMC6491507 DOI: 10.3389/fimmu.2019.00727] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/18/2019] [Indexed: 01/22/2023] Open
Abstract
During pregnancy, the maternal immune response changes dramatically over the course of gestation. This has implications for generation of lactogenic immunity and subsequent protection in suckling neonates against enteric viral infections. For example, porcine epidemic diarrhea virus (PEDV) is an alphacoronavirus that causes acute diarrhea in neonatal piglets. Due to the high virulence of PEDV and the naïve, immature immune system of neonatal suckling piglets, passive lactogenic immunity to PEDV induced during pregnancy, via the gut-mammary gland (MG)-secretory IgA (sIgA) axis, is critical for piglet protection. However, the anti-PEDV immune response during pregnancy and stage of gestation required to optimally stimulate the gut-MG-sIgA axis is undefined. We hypothesize that there is a gestational window in which non-lethal PEDV infection of pregnant gilts influences maximum lymphocyte mucosal trafficking to the MG, resulting in optimal passive lactogenic protection in suckling piglets. To understand how the stages of gestation affect maternal immune responses to PEDV, three groups of gilts were orally infected with PEDV in the first, second or third trimester. Control (mock) gilts were inoculated with medium in the third trimester. To determine if lactogenic immunity correlated with protection, all piglets were PEDV-challenged at 3–5 days postpartum. PEDV infection of gilts at different stages of gestation significantly affected multiple maternal systemic immune parameters prepartum, including cytokines, B cells, PEDV antibodies (Abs), and PEDV antibody secreting cells (ASCs). Pregnant second trimester gilts had significantly higher levels of circulating PEDV IgA and IgG Abs and ASCs and PEDV virus neutralizing (VN) Abs post PEDV infection. Coinciding with the significantly higher PEDV Ab responses in second trimester gilts, the survival rate of their PEDV-challenged piglets was 100%, compared with 87.2, 55.9, and 5.7% for first, third, and mock litters, respectively. Additionally, piglet survival positively correlated with PEDV IgA Abs and ASCs and VN Abs in milk and PEDV IgA and IgG Abs in piglet serum. Our findings have implications for gestational timing of oral attenuated PEDV maternal vaccines, whereby PEDV intestinal infection in the second trimester optimally stimulated the gut-MG-sIgA axis resulting in 100% lactogenic immune protection in suckling piglets.
Collapse
Affiliation(s)
- Stephanie N Langel
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, College of Veterinary Medicine, The Ohio State University, Wooster, OH, United States
| | - Francine C Paim
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, College of Veterinary Medicine, The Ohio State University, Wooster, OH, United States
| | - Moyasar A Alhamo
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, College of Veterinary Medicine, The Ohio State University, Wooster, OH, United States
| | - Alexandra Buckley
- National Animal Disease Center, Agricultural Research Service, USDA, Ames, IA, United States
| | - Albert Van Geelen
- National Animal Disease Center, Agricultural Research Service, USDA, Ames, IA, United States
| | - Kelly M Lager
- National Animal Disease Center, Agricultural Research Service, USDA, Ames, IA, United States
| | - Anastasia N Vlasova
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, College of Veterinary Medicine, The Ohio State University, Wooster, OH, United States
| | - Linda J Saif
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, College of Veterinary Medicine, The Ohio State University, Wooster, OH, United States
| |
Collapse
|