1
|
Yamada D, Kojima Y, Hosoya A, Suzuki M, Watabe T, Inoue T, Tsugawa N, Asakawa T, Yonemoto Y, Onizawa M, Nemoto Y, Oshima S, Shimonaka M, Kuba K, Ishida J, Fukamizu A, Penninger JM, Watanabe M, Okamoto R, Nagaishi T. Apelin expression is downregulated in T cells in a murine model of chronic colitis. Biochem Biophys Res Commun 2023; 647:72-79. [PMID: 36731336 DOI: 10.1016/j.bbrc.2023.01.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Apelin (APL), an endogenous ligand for APJ, has been reported to be upregulated in a murine model of acute colitis induced by sodium dextran sulfate, as well as inflammatory bowel diseases (IBD) in humans. However, the mechanisms and functions of APL/APJ axis in the pathogenesis of IBD are unclear. We herein analyzed CD4+ T cells to determine the functions of APL in a murine model of chronic colitis induced in Rag deficient mice (Rag-/-). In colonic tissues of wild-type mice (WT), we found that APL was expressed especially in the lamina propria lymphocytes, where CD4+ T cells are dominant, rather than the epithelial cells. Unexpectedly, the APL expression was rather downregulated in the colonic tissue of the chronic colitis group compared to the control groups (Rag-/- before colitis induction and WT). The APL expression was downregulated when naïve T cells were differentiated into effecter T cells. A lack of APL resulted in decreased naïve T cells and increased effecter T cells in secondary lymphoid organs. A synthetic APL peptide, [Pyr1]-APL-13, increased IL-10 and decreased IFN-γ productions by effecter T cells. Administration of [Pyr1]-APL-13 improved survival rate in association with lessened colitis severity and decreased pro-inflammatory cytokine production. This is the first report showing immunological function of APL specifically on T cells, and these results indicate that APL/APJ axis may be a novel therapeutic target for IBD.
Collapse
Affiliation(s)
- Daiki Yamada
- Department of Gastroenterology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yudai Kojima
- Department of Gastroenterology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Department of Chemistry, Tokyo University of Science, Tokyo, Japan
| | - Akinori Hosoya
- Department of Gastroenterology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masahiro Suzuki
- Department of Gastroenterology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Taro Watabe
- Department of Gastroenterology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tadahiko Inoue
- Department of Gastroenterology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Department of Chemistry, Tokyo University of Science, Tokyo, Japan
| | - Naoya Tsugawa
- Department of Gastroenterology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takehito Asakawa
- Department of Gastroenterology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuki Yonemoto
- Department of Gastroenterology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Michio Onizawa
- Department of Advanced Therapeutics for GI Diseases, Graduate School of Medical Science, TMDU, Tokyo, Japan
| | - Yasuhiro Nemoto
- Department of Gastroenterology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shigeru Oshima
- Department of Gastroenterology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | | | - Keiji Kuba
- Department of Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Junji Ishida
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Bio Center, Vienna, Austria; Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | | | - Ryuichi Okamoto
- Department of Gastroenterology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takashi Nagaishi
- Department of Advanced Therapeutics for GI Diseases, Graduate School of Medical Science, TMDU, Tokyo, Japan.
| |
Collapse
|
2
|
Nagaishi T, Watabe T, Kotake K, Kumazawa T, Aida T, Tanaka K, Ono R, Ishino F, Usami T, Miura T, Hirakata S, Kawasaki H, Tsugawa N, Yamada D, Hirayama K, Yoshikawa S, Karasuyama H, Okamoto R, Watanabe M, Blumberg RS, Adachi T. Immunoglobulin A-specific deficiency induces spontaneous inflammation specifically in the ileum. Gut 2022; 71:487-496. [PMID: 33963042 PMCID: PMC8809603 DOI: 10.1136/gutjnl-2020-322873] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 04/02/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Although immunoglobulin A (IgA) is abundantly expressed in the gut and known to be an important component of mucosal barriers against luminal pathogens, its precise function remains unclear. Therefore, we tried to elucidate the effect of IgA on gut homeostasis maintenance and its mechanism. DESIGN We generated various IgA mutant mouse lines using the CRISPR/Cas9 genome editing system. Then, we evaluated the effect on the small intestinal homeostasis, pathology, intestinal microbiota, cytokine production, and immune cell activation using intravital imaging. RESULTS We obtained two lines, with one that contained a <50 base pair deletion in the cytoplasmic region of the IgA allele (IgA tail-mutant; IgAtm/tm) and the other that lacked the most constant region of the IgH α chain, which resulted in the deficiency of IgA production (IgA-/-). IgA-/- exhibited spontaneous inflammation in the ileum but not the other parts of the gastrointestinal tract. Associated with this, there were significantly increased lamina propria CD4+ T cells, elevated productions of IFN-γ and IL-17, increased ileal segmented filamentous bacteria and skewed intestinal microflora composition. Intravital imaging using Ca2+ biosensor showed that IgA-/- had elevated Ca2+ signalling in Peyer's patch B cells. On the other hand, IgAtm/tm seemed to be normal, suggesting that the IgA cytoplasmic tail is dispensable for the prevention of the intestinal disorder. CONCLUSION IgA plays an important role in the mucosal homeostasis associated with the regulation of intestinal microbiota and protection against mucosal inflammation especially in the ileum.
Collapse
Affiliation(s)
- Takashi Nagaishi
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan .,Department of Advanced Therapeutics for GI Diseases, Graduate School of Medical Science, TMDU, Bunkyo-ku, Tokyo, Japan
| | - Taro Watabe
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Kunihiko Kotake
- Department of Immunology, Medical Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan,Research and Development Department, Ichibiki Co., Ltd, Nagoya, Aichi, Japan
| | - Toshihiko Kumazawa
- Department of Immunology, Medical Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan,Research and Development Department, Ichibiki Co., Ltd, Nagoya, Aichi, Japan
| | - Tomomi Aida
- Department of Molecular Neuroscience, Medical Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan
| | - Kohichi Tanaka
- Department of Molecular Neuroscience, Medical Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan
| | - Ryuichi Ono
- Department of Epigenetics, Medical Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan,Current address: Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences (NIHS), Kawasaki, Kanagawa, Japan
| | - Fumitoshi Ishino
- Department of Epigenetics, Medical Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan
| | - Takako Usami
- Laboratory of Recombinant Animals, Medical Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan
| | - Takamasa Miura
- Biological Resource Center, National Institute of Technology and Evaluation (NITE), Shibuya-ku, Tokyo, Japan
| | - Satomi Hirakata
- Biological Resource Center, National Institute of Technology and Evaluation (NITE), Shibuya-ku, Tokyo, Japan
| | - Hiroko Kawasaki
- Biological Resource Center, National Institute of Technology and Evaluation (NITE), Shibuya-ku, Tokyo, Japan
| | - Naoya Tsugawa
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Daiki Yamada
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Kazuhiro Hirayama
- Laboratory of Veterinary Public Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Soichiro Yoshikawa
- Department of Immune Regulation, Graduate School of Medical Science, TMDU, Bunkyo-ku, Tokyo, Japan,Current address: Department of Cellular Physiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Hajime Karasuyama
- Department of Immune Regulation, Graduate School of Medical Science, TMDU, Bunkyo-ku, Tokyo, Japan,Advanced Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan,Advanced Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan
| | - Richard S Blumberg
- Gastroenterology Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Takahiro Adachi
- Department of Immunology, Medical Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan .,Current address: Department of Precision Health, Medical Research Institute, TMDU, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
3
|
A Novel Pathway of Flavonoids Protecting against Inflammatory Bowel Disease: Modulating Enteroendocrine System. Metabolites 2022; 12:metabo12010031. [PMID: 35050153 PMCID: PMC8777795 DOI: 10.3390/metabo12010031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a comprehensive term for chronic or relapsing inflammatory diseases occurring in the intestinal tract, generally including Crohn's disease (CD) and ulcerative colitis (UC). Presently, the pathogenesis of IBD is unknown, yet multiple factors have been reported to be related with the development of IBD. Flavonoids are phytochemicals with biological activity, which are ubiquitously distributed in edible plants, such as fruits and vegetables. Recent studies have demonstrated impressively that flavonoids have anti-IBD effects through multiple mechanisms. These include anti-inflammatory and antioxidant actions; the preservation of the epithelial barrier integrity, the intestinal immunomodulatory property, and the shaping microbiota composition and function. In addition, a few studies have shown the impact of flavonoids on enterohormones release; nonetheless, there is hardly any work showing the link between flavonoids, enterohormones release and IBD. So far, the interaction between flavonoids, enterohormones and IBD is elucidated for the first time in this review. Furthermore, the inference can be drawn that flavonoids may protect against IBD through modulating enterohormones, such as glucagon-like peptide 1 (GLP-1), GLP-2, dipeptidyl peptidase-4 inhibitors (DPP-4 inhibitors), ghrelin and cholecystokinin (CCK). In conclusion, this manuscript explores a possible mechanism of flavonoids protecting against IBD.
Collapse
|
4
|
Asakawa T, Onizawa M, Saito C, Hikichi R, Yamada D, Minamidate A, Mochimaru T, Asahara SI, Kido Y, Oshima S, Nagaishi T, Tsuchiya K, Ohira H, Okamoto R, Watanabe M. Oral administration of D-serine prevents the onset and progression of colitis in mice. J Gastroenterol 2021; 56:732-745. [PMID: 34148144 DOI: 10.1007/s00535-021-01792-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND L-amino acids are the predominant forms of organic molecules on the planet, but recent studies have revealed that various foods contain D-amino acids, the enantiomers of L-amino acids. Though diet plays important roles in both the development and progression of inflammatory bowel disease (IBD), to our best knowledge, there has been no report on any potential interactions between D-amino acids and IBD. In this report, we aim to assess the effects of D-serine in a murine model of IBD. MATERIALS AND METHODS To induce chronic colitis, naïve CD4 T cells (CD4+ CD62+ CD44low) from wild-type mice were adoptively transferred into Rag2-/- mice, after or before the mice were orally administered with D-serine. In vitro proliferation assays were performed to assess naïve CD4 T cell activation under the Th-skewing conditions in the presence of D-serine. RESULTS Mice treated with D-serine prior to the induction of colitis exhibited a reduction in T-cell infiltration into the lamina propria and colonic inflammation that were not seen in mice fed with water alone or L-serine. Moreover, D-serine suppressed the progression of chronic colitis when administered after the disease induction. Under in vitro conditions, D-serine suppressed the proliferation of activated CD4 T cells and limited their ability to differentiate to Th1 and Th17 cells. CONCLUSION Our results suggest that D-serine not only can prevent, but also has efficacious effects as a treatment for IBD.
Collapse
Affiliation(s)
- Takehito Asakawa
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - Michio Onizawa
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan. .,Department of Gastroenterology and Hepatology, Fukushima Medical University, Fukushima, 960-129, Japan.
| | - Chikako Saito
- Department of Gastroenterology and Hepatology, Fukushima Medical University, Fukushima, 960-129, Japan
| | - Rie Hikichi
- Department of Gastroenterology and Hepatology, Fukushima Medical University, Fukushima, 960-129, Japan
| | - Daiki Yamada
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - Ai Minamidate
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - Tomoaki Mochimaru
- Department of Gastroenterology and Hepatology, Fukushima Medical University, Fukushima, 960-129, Japan
| | - Shun-Ichiro Asahara
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Yoshiaki Kido
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan.,Division of Metabolism and Disease, Department of Biophysics, Kobe University Graduate School of Health Science, Kobe, 654-0142, Japan
| | - Shigeru Oshima
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - Takashi Nagaishi
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - Kiichiro Tsuchiya
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology and Hepatology, Fukushima Medical University, Fukushima, 960-129, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan.
| |
Collapse
|
5
|
Deep Analysis of the Peripheral Immune System in IBD Reveals New Insight in Disease Subtyping and Response to Monotherapy or Combination Therapy. Cell Mol Gastroenterol Hepatol 2021; 12:599-632. [PMID: 33813036 PMCID: PMC8263768 DOI: 10.1016/j.jcmgh.2021.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a complex disease with variable presentation, progression, and response to therapies. Current disease classification is based on subjective clinical phenotypes. The peripheral blood immunophenome can reflect local inflammation, and thus we measured 39 circulating immune cell types in a large cohort of IBD and control subjects and performed immunotype:phenotype associations. METHODS We performed fluorescence-activated cell sorting or CyTOF analysis on blood from 728 Crohn's disease, 464 ulcerative colitis, and 334 non-IBD patients, with available demographics, endoscopic and clinical examinations and medication use. RESULTS We observed few immune cell types commonly affected in IBD (lowered natural killer cells, B cells, and CD45RA- CD8 T cells). Generally, the immunophenome was distinct between ulcerative colitis and Crohn's disease. Within disease subtype, there were further distinctions, with specific immune cell types associating with disease duration, behavior, and location. Thiopurine monotherapy altered abundance of many cell types, often in the same direction as disease association, while anti-tumor necrosis factor (anti-TNF) monotherapy demonstrated an opposing pattern. Concomitant use of an anti-TNF and thiopurine was not synergistic, but rather was additive. For example, thiopurine monotherapy use alone or in combination with anti-TNF was associated with a dramatic reduction in major subclasses of B cells. CONCLUSIONS We present a peripheral map of immune cell changes in IBD related to disease entity and therapies as a resource for hypothesis generation. We propose the changes in B cell subsets could affect antibody formation and potentially explain the mechanism behind the superiority of combination therapy through the impact of thiopurines on pharmacokinetics of anti-TNFs.
Collapse
|
6
|
Kang YH, Biswas A, Field M, Snapper SB. STAT1 signaling shields T cells from NK cell-mediated cytotoxicity. Nat Commun 2019; 10:912. [PMID: 30796216 PMCID: PMC6385318 DOI: 10.1038/s41467-019-08743-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/14/2019] [Indexed: 12/19/2022] Open
Abstract
The JAK-STAT pathway critically regulates T-cell differentiation, and STAT1 is postulated to regulate several immune-mediated diseases by inducing proinflammatory subsets. Here we show that STAT1 enables CD4+ T-cell-mediated intestinal inflammation by protecting them from natural killer (NK) cell-mediated elimination. Stat1−/− T cells fail to expand and establish colitis in lymphopenic mice. This defect is not fully recapitulated by the combinatorial loss of type I and II IFN signaling. Mechanistically, Stat1−/− T cells have reduced expression of Nlrc5 and multiple MHC class I molecules that serve to protect cells from NK cell-mediated killing. Consequently, the depletion of NK cells significantly rescues the survival and spontaneous proliferation of Stat1−/− T cells, and restores their ability to induce colitis in adoptive transfer mouse models. Stat1−/− mice however have normal CD4+ T cell numbers as innate STAT1 signaling is required for their elimination. Overall, our findings reveal a critical perspective on JAK-STAT1 signaling that might apply to multiple inflammatory diseases. The JAK-STAT signaling pathway is important for cytokine responses and CD4 T-cell differentiation. Here the authors show that Stat1 also serves to protect CD4 T cells from natural killer cell-mediated killing, potentially by promoting the expression of Nlrc5 and MHC-I, to preserve the induction of experimental colitis via the adoptive transfer of CD4 T cells.
Collapse
Affiliation(s)
- Yu Hui Kang
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Amlan Biswas
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, 02115, USA.,Discovery Immunology, Abbvie, 200 Sidney Street, Cambridge, MA, 02139, USA
| | - Michael Field
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, 02115, USA. .,Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Oh J, Perry JSA, Pua H, Irgens-Möller N, Ishido S, Hsieh CS, Shin JS. MARCH1 protects the lipid raft and tetraspanin web from MHCII proteotoxicity in dendritic cells. J Cell Biol 2018; 217:1395-1410. [PMID: 29371232 PMCID: PMC5881489 DOI: 10.1083/jcb.201611141] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 10/25/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) produce major histocompatibility complex II (MHCII) in large amounts to function as professional antigen presenting cells. Paradoxically, DCs also ubiquitinate and degrade MHCII in a constitutive manner. Mice deficient in the MHCII-ubiquitinating enzyme membrane-anchored RING-CH1, or the ubiquitin-acceptor lysine of MHCII, exhibit a substantial reduction in the number of regulatory T (Treg) cells, but the underlying mechanism was unclear. Here we report that ubiquitin-dependent MHCII turnover is critical to maintain homeostasis of lipid rafts and the tetraspanin web in DCs. Lack of MHCII ubiquitination results in the accumulation of excessive quantities of MHCII in the plasma membrane, and the resulting disruption to lipid rafts and the tetraspanin web leads to significant impairment in the ability of DCs to engage and activate thymocytes for Treg cell differentiation. Thus, ubiquitin-dependent MHCII turnover represents a novel quality-control mechanism by which DCs maintain homeostasis of membrane domains that support DC's Treg cell-selecting function.
Collapse
Affiliation(s)
- Jaehak Oh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA.,Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
| | - Justin S A Perry
- Department of Pathology, University of California, San Francisco, San Francisco, CA
| | - Heather Pua
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA.,Department of Pathology, University of California, San Francisco, San Francisco, CA
| | - Nicole Irgens-Möller
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA.,Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine 1-1, Mukogawa-cho, Nishinomiya, Japan
| | - Chyi-Song Hsieh
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO
| | - Jeoung-Sook Shin
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA .,Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
8
|
Vezza T, Rodríguez-Nogales A, Algieri F, Utrilla MP, Rodriguez-Cabezas ME, Galvez J. Flavonoids in Inflammatory Bowel Disease: A Review. Nutrients 2016; 8:211. [PMID: 27070642 PMCID: PMC4848680 DOI: 10.3390/nu8040211] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/19/2016] [Accepted: 03/30/2016] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the intestine that compromises the patients’ life quality and requires sustained pharmacological and surgical treatments. Since their etiology is not completely understood, non-fully-efficient drugs have been developed and those that have shown effectiveness are not devoid of quite important adverse effects that impair their long-term use. In this regard, a growing body of evidence confirms the health benefits of flavonoids. Flavonoids are compounds with low molecular weight that are widely distributed throughout the vegetable kingdom, including in edible plants. They may be of great utility in conditions of acute or chronic intestinal inflammation through different mechanisms including protection against oxidative stress, and preservation of epithelial barrier function and immunomodulatory properties in the gut. In this review we have revised the main flavonoid classes that have been assessed in different experimental models of colitis as well as the proposed mechanisms that support their beneficial effects.
Collapse
Affiliation(s)
- Teresa Vezza
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Centre for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain.
| | - Alba Rodríguez-Nogales
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Centre for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain.
| | - Francesca Algieri
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Centre for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain.
| | - Maria Pilar Utrilla
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Centre for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain.
| | - Maria Elena Rodriguez-Cabezas
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Centre for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain.
| | - Julio Galvez
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Centre for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain.
| |
Collapse
|
9
|
Intestinal barrier loss as a critical pathogenic link between inflammatory bowel disease and graft-versus-host disease. Mucosal Immunol 2015; 8:720-30. [PMID: 25943273 DOI: 10.1038/mi.2015.40] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/08/2015] [Indexed: 02/04/2023]
Abstract
Compromised intestinal barrier function is a prominent feature of inflammatory bowel disease (IBD). However, links between intestinal barrier loss and disease extend much further, including documented associations with celiac disease, type I diabetes, rheumatoid arthritis, and multiple sclerosis. Intestinal barrier loss has also been proposed to have a critical role in the pathogenesis of graft-versus-host disease (GVHD), a serious, potentially fatal consequence of hematopoietic stem cell transplantation. Experimental evidence has begun to support this view, as barrier loss and its role in initiating and establishing a pathogenic inflammatory cycle in GVHD is emerging. Here we discuss similarities between IBD and GVHD, mechanisms of intestinal barrier loss in these diseases, and the crosstalk between barrier loss and the immune system, with a special focus on natural killer (NK) cells. Unanswered questions and future research directions on the topic are discussed along with implications for treatment.
Collapse
|
10
|
Yu FY, Huang SG, Zhang HY, Ye H, Chi HG, Zou Y, Lv RX, Zheng XB. Effects of baicalin in CD4 + CD29 + T cell subsets of ulcerative colitis patients. World J Gastroenterol 2014; 20:15299-309. [PMID: 25386078 PMCID: PMC4223263 DOI: 10.3748/wjg.v20.i41.15299] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/08/2014] [Accepted: 06/26/2014] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the role of baicalin in ulcerative colitis (UC) with regard to the CD4(+)CD29(+) T helper cell, its surface markers and serum inflammatory cytokines. METHODS Flow cytometry was used to detect the percentage of CD4(+)CD29(+) cells in patients with UC. Real time polymerase chain reaction was used to detect expression of GATA-3, forkhead box P3, T-box expressed in T cells (T-bet), and retinoic acid-related orphan nuclear hormone receptor C (RORC). Western blotting was used to analyze expression of nuclear factor-κB (NF-κB) p65, phosphorylation of NF-κB (p-NF-κB) p65, STAT4, p-STAT4, STAT6 and p-STAT6. The concentrations of interferon-γ (IFN-γ), interleukin (IL)-4, IL-5, IL-6, IL-10 and TGF-β in serum were determined by ELISA assay. RESULTS The percentages of CD4(+)CD29(+) T cells were lower in treatment with 40 and 20 μmol/L baicalin than in the treatment of no baicalin. Treatment with 40 or 20 μmol/L baicalin significantly upregulated expression of IL-4, TGF-β1 and IL-10, increased p-STAT6/STAT6 ratio, but downregulated expression of IFN-γ, IL-5, IL-6, RORC, Foxp3 and T-bet, and decreased ratios of T-bet/GATA-3, p-STAT4/STAT4 and p-NF-κB/NF-κB compared to the treatment of no baicalin. CONCLUSION The results indicate that baicalin regulates immune balance and relieves the ulcerative colitis-induced inflammation reaction by promoting proliferation of CD4(+)CD29(+) cells and modulating immunosuppressive pathways.
Collapse
|
11
|
Yu FY, Huang SG, Zhang HY, Ye H, Chi HG, Zou Y, Lv RX, Zheng XB. Baicalin modulates immuno-inflammatory response in patients with ulcerative colitis. Shijie Huaren Xiaohua Zazhi 2014; 22:3710-3717. [DOI: 10.11569/wcjd.v22.i24.3710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the mechanisms underlying the therapeutic effect of baicalin on ulcerative colitis (UC) in terms of its effect on CD4+CD29+ T helper cells, surface markers and serum inflammatory cytokines.
METHODS: Flow cytometry was used to detect the percentage of CD4+CD29+ cells in patients with UC. Real-time polymerase chain reaction (PCR) was used to detect the expression of GATA-3, forkhead box P3 (FOXP3), T-box expressed in T cells (T-bet), and retinoic acid-related orphan nuclear hormone receptor C (RORC). Western blot was used to analyze the expression of nuclear factor-kappa B (NF-κB) p65, p-NF-κB p65, STAT4, p-STAT4, STAT6, and p-STAT6. The concentrations of interferon γ (IFN-γ), interleukin (IL)-4, IL-5, IL-6, IL-10, and tumor growth factor-β (TGF-β) in serum were determined by ELISA assay.
RESULTS: The percentages of CD4+CD29+ T cells were significantly lower in cells treated with 40 and 20 μmol/L baicalin than in untreated cells. Treatment with 40 or 20 μmol/L baicalin significantly upregulated the expression of IL-4, TGF-β1 and IL-10, increased the p-STAT6/STAT6 ratio, but downregulated the expression of IFN-γ, IL-5, IL-6, RORC, FOXP3, and T-bet, and decreased the ratios of T-bet/GATA-3, p-STAT4/STAT4, and p-NF-κB/NF-κB compared to those in untreated cells.
CONCLUSION: Baicalin regulates immune balance and relieves UC induced inflammation response possibly by promoting the proliferation of CD4+CD29+ cells and modulating immunosuppressive pathways.
Collapse
|
12
|
Yang Y, Li D, Katirai F, Zhang B, Xu Y, Xiong P, Gong F, Zheng F. Basophil activation through ASGM1 stimulation triggers PAF release and anaphylaxis-like shock in mice. Eur J Immunol 2014; 44:2468-77. [DOI: 10.1002/eji.201344144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 03/20/2014] [Accepted: 04/23/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Yan Yang
- Department of Immunology; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Laboratory of Infection and Immunity; Wuhan Institute of Virology; Chinese Academy of Sciences; Wuhan China
| | - Daling Li
- Department of Immunology; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Department of Anesthesiology; Wuhan Central Hospital; Wuhan China
| | - Foad Katirai
- Department of Immunology; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Clinical Medical School; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Bin Zhang
- Department of Immunology; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Yong Xu
- Department of Immunology; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Ping Xiong
- Department of Immunology; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Feili Gong
- Department of Immunology; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Fang Zheng
- Department of Immunology; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| |
Collapse
|
13
|
Negative regulation of Hif1a expression and TH17 differentiation by the hypoxia-regulated microRNA miR-210. Nat Immunol 2014; 15:393-401. [PMID: 24608041 PMCID: PMC3996831 DOI: 10.1038/ni.2846] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 02/12/2014] [Indexed: 02/07/2023]
Abstract
MicroRNA-210 (miR-210) is a signature microRNA of hypoxia. We found robust increase (>100-fold) of miR-210 abundance in activated T cells, especially in the TH17 lineage. Hypoxia synergized with T cell receptor (TCR)–CD28 stimulation to accelerate and increase the magnitude of Mir210 expression. Mir210 was directly regulated by HIF-1α, a key regulator of TH17 polarization. Surprisingly, Hif1a was identified as a miR-210-target, suggesting negative-feedback by miR-210 to inhibit HIF-1α protein expression. Deletion of Mir210 promoted TH17 differentiation under conditions with limited oxygen. In experimental colitis, miR-210 reduced Hif1a transcript abundance, reduced the proportion of cells producing inflammatory cytokines and controlled disease severity. Our study identifies miR-210 as an important regulator of T cell differentiation in hypoxia, which can limit immunopathology.
Collapse
|
14
|
Suzuki M, Nagaishi T, Yamazaki M, Onizawa M, Watabe T, Sakamaki Y, Ichinose S, Totsuka M, Oshima S, Okamoto R, Shimonaka M, Yagita H, Nakamura T, Watanabe M. Myosin light chain kinase expression induced via tumor necrosis factor receptor 2 signaling in the epithelial cells regulates the development of colitis-associated carcinogenesis. PLoS One 2014; 9:e88369. [PMID: 24520376 PMCID: PMC3919773 DOI: 10.1371/journal.pone.0088369] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 01/11/2014] [Indexed: 11/19/2022] Open
Abstract
It has been suggested that prolonged inflammatory bowel diseases (IBD) may lead to colitis-associated carcinogenesis (CAC). We previously observed that the NF-κB activation in colonic epithelial cells is associated with increased tumor necrosis factor receptor 2 (TNFR2) expression in CAC development. However, the mechanism by which epithelial NF-κB activation leading to CAC is still unclear. Myosin light chain kinase (MLCK) has been reported to be responsible for the epithelial permeability associated with TNF signaling. Therefore we focused on the role of MLCK expression via TNFR2 signaling on CAC development. Pro-tumorigenic cytokines such as IL-1β, IL-6 and MIP-2 production as well as INF-γ and TNF production at the lamina propria were increased in the setting of colitis, and further in tumor tissues in associations with up-regulated TNFR2 and MLCK expressions in the epithelial cells of a CAC model. The up-regulated MLCK expression was observed in TNF-stimulated colonic epithelial cells in a dose-dependent fashion in association with up-regulation of TNFR2. Silencing TNFR2, but not TNFR1, resulted in restoration of epithelial tight junction (TJ) associated with decreased MLCK expression. Antibody-mediated blockade of TNF signaling also resulted in restoration of TJ in association with suppressed MLCK expression, and interestingly, similar results were observed with suppressing TNFR2 and MLCK expressions by inhibiting MLCK in the epithelial cells. Silencing of MLCK also resulted in suppressed TNFR2, but not TNFR1, expression, suggesting that the restored TJ leads to reduced TNFR2 signaling. Such suppression of MLCK as well as blockade of TNFR2 signaling resulted in restored TJ, decreased pro-tumorigenic cytokines and reduced CAC development. These results suggest that MLCK may be a potential target for the prevention of IBD-associated tumor development.
Collapse
Affiliation(s)
- Masahiro Suzuki
- Department of Gastroenterology, Graduate School of Medical Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takashi Nagaishi
- Department of Gastroenterology, Graduate School of Medical Science, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail: (TN); (MW)
| | - Motomi Yamazaki
- Department of Obstetrics and Gynecology, Nihon University School of Medicine, Tokyo, Japan
| | - Michio Onizawa
- Department of Gastroenterology, Graduate School of Medical Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Taro Watabe
- Department of Gastroenterology, Graduate School of Medical Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuriko Sakamaki
- Research Center for Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shizuko Ichinose
- Research Center for Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mamoru Totsuka
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Shigeru Oshima
- Department of Gastroenterology, Graduate School of Medical Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology, Graduate School of Medical Science, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tetsuya Nakamura
- Department of Gastroenterology, Graduate School of Medical Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology, Graduate School of Medical Science, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail: (TN); (MW)
| |
Collapse
|
15
|
Zeng X, Chen H, Gupta R, Paz-Altschul O, Bowcock AM, Liao W. Deletion of the activating NKG2C receptor and a functional polymorphism in its ligand HLA-E in psoriasis susceptibility. Exp Dermatol 2013; 22:679-81. [PMID: 24079744 PMCID: PMC3813441 DOI: 10.1111/exd.12233] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2013] [Indexed: 01/16/2023]
Abstract
Psoriasis is an inflammatory, immune-mediated disease of the skin. Several studies have suggested that natural killer (NK) cells and their receptors may be important for its pathogenesis. Here, we examined whether deletion of the activating natural killer receptor gene NKG2C, which has a frequency of 20% in the European population, was associated with psoriasis susceptibility. The NKG2C deletion and a functional polymorphism in its ligand HLA-E were genotyped in a Caucasian cohort of 611 psoriasis cases and 493 controls. We found that the NKG2C deletion was significantly increased in cases compared with controls [0.258 vs 0.200, P = 0.0012, OR = 1.43 (1.15-1.79)]. The low-expressing HLA-E*01:01 allele was associated with psoriasis (P = 0.0018), although this association was dependent on HLA-C. Our findings support a potential immunoregulatory role for NK cells in psoriasis and suggest the importance of future studies to investigate the contribution of NK cells and their regulatory receptors to the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Xue Zeng
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA; Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
16
|
Hall LJ, Murphy CT, Quinlan A, Hurley G, Shanahan F, Nally K, Melgar S. Natural killer cells protect mice from DSS-induced colitis by regulating neutrophil function via the NKG2A receptor. Mucosal Immunol 2013; 6:1016-26. [PMID: 23340823 DOI: 10.1038/mi.2012.140] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 12/14/2012] [Indexed: 02/04/2023]
Abstract
Natural killer (NK) cells are traditionally considered in the context of tumor surveillance and infection defense but their role in chronic inflammatory disorders such as inflammatory bowel disease is less clear. Here, we investigated the role of NK cells in dextran sodium sulfate (DSS)-induced colitis in mice. Depletion of NK cells impairs the survival of mice with colitis and is linked with dramatic increases in colonic damage, leukocyte infiltration, and pro-inflammatory profiles. Mice depleted of NK cells had increased numbers of neutrophils in colons and mesenteric lymph nodes, compared with control mice, in addition to acquiring a hyper-activation status. In vitro and in vivo studies demonstrate that NK cells downregulate pro-inflammatory functions of activated neutrophils, including reactive oxygen species and cytokine production, by direct cell-to-cell contact involving the NK cell-inhibitory receptor NKG2A. Our results indicate an immunoregulatory mechanism of action of NK cells attenuating DSS-induced colitis neutrophil-mediated inflammation and tissue injury via NKG2A-dependent mechanisms.
Collapse
Affiliation(s)
- L J Hall
- Alimentary Pharmabiotic Centre, University College Cork, National University of Ireland, Cork, Ireland.
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The aim of this study was to explore whether IL-7 participates in the pathogenesis of Graves' ophthalmopathy (GO). This was a prospective study. 20 GO patients (40 eyes) and 20 healthy volunteers (40 eyes) were recruited. The tear concentration of IL-7 was measured using ELISA assay. IL-7 expression in orbital tissues was evaluated by immunohistochemistry. Patients with inactive GO had the highest IL-7 concentrations in the tears, followed by healthy controls and patients with active GO per ELISA. Immunohistochemistry analysis showed that IL-7 expression in orbital tissues of the inactive GO samples was higher than that of the volunteers. Changes of IL-7 expression in different phases of GO suggested that IL-7 may play an important role in the pathogenesis of GO.
Collapse
Affiliation(s)
- KeBo Cai
- Department of Ophthalmology, Changzheng Hospital Affiliated the Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | | |
Collapse
|
18
|
Zingoni A, Ardolino M, Santoni A, Cerboni C. NKG2D and DNAM-1 activating receptors and their ligands in NK-T cell interactions: role in the NK cell-mediated negative regulation of T cell responses. Front Immunol 2013; 3:408. [PMID: 23316196 PMCID: PMC3540764 DOI: 10.3389/fimmu.2012.00408] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/17/2012] [Indexed: 11/13/2022] Open
Abstract
The negative regulation of adaptive immunity is relevant to maintain lymphocyte homeostasis. Several studies on natural killer (NK) cells have shown a previously unappreciated immunomodulatory role, as they can negatively regulate T cell-mediated immune responses by direct killing and by secretion of inhibitory cytokines. The molecular mechanisms of T cell suppression by NK cells, however, remained elusive. Only in the last few years has it become evident that, upon activation, human T cells express MICA-B, ULBP1-3, and PVR, ligands of the activating receptors NKG2D and DNAM-1, respectively. Their expression renders T cells targets of NK cell lysis, representing a new mechanism taking part to the negative regulation of T cell responses. Studies on the expression of NKG2D and DNAM-1 ligands on T cells have also contributed in understanding that the activation of ATM (ataxia-telangiectasia, mutated)/ATR (ATM/Rad3-related) kinases and the DNA damage response is a common pathway regulating the expression of activating ligands in different types of cells and under different conditions. The functional consequences of NKG2D and DNAM-1 ligand expression on activated T cells are discussed in the context of physiologic and pathologic processes such as infections, autoimmunity, and graft versus host disease.
Collapse
Affiliation(s)
- Alessandra Zingoni
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome Rome, Italy
| | | | | | | |
Collapse
|