1
|
Wang Y, Huang H, Weng H, Jia C, Liao B, Long Y, Yu F, Nie Y. Talin mechanotransduction in disease. Int J Biochem Cell Biol 2024; 166:106490. [PMID: 37914021 DOI: 10.1016/j.biocel.2023.106490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
Talin protein (Talin 1/2) is a mechanosensitive cytoskeleton protein. The unique structure of the Talin plays a vital role in transmitting mechanical forces. Talin proteins connect the extracellular matrix to the cytoskeleton by linking to integrins and actin, thereby mediating the conversion of mechanical signals into biochemical signals and influencing disease progression as potential diagnostic indicators, therapeutic targets, and prognostic indicators of various diseases. Most studies in recent years have confirmed that mechanical forces also have a crucial role in the development of disease, and Talin has been found to play a role in several diseases. Still, more studies need to be done on how Talin is involved in mechanical signaling in disease. This review focuses on the mechanical signaling of Talin in disease, aiming to summarize the mechanisms by which Talin plays a role in disease and to provide references for further studies.
Collapse
Affiliation(s)
- Yingzi Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China
| | - Haozhong Huang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China
| | - Huimin Weng
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China
| | - Chunsen Jia
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, China; Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou, China
| | - Yang Long
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China; Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Fengxu Yu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, China; Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou, China
| | - Yongmei Nie
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, China; Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou, China.
| |
Collapse
|
2
|
Latour YL, McNamara KM, Allaman MM, Barry DP, Smith TM, Asim M, Williams KJ, Hawkins CV, Jacobse J, Goettel JA, Delgado AG, Piazuelo MB, Washington MK, Gobert AP, Wilson KT. Myeloid deletion of talin-1 reduces mucosal macrophages and protects mice from colonic inflammation. Sci Rep 2023; 13:22368. [PMID: 38102166 PMCID: PMC10724268 DOI: 10.1038/s41598-023-49614-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023] Open
Abstract
The intestinal immune response is crucial in maintaining a healthy gut, but the enhanced migration of macrophages in response to pathogens is a major contributor to disease pathogenesis. Integrins are ubiquitously expressed cellular receptors that are highly involved in immune cell adhesion to endothelial cells while in the circulation and help facilitate extravasation into tissues. Here we show that specific deletion of the Tln1 gene encoding the protein talin-1, an integrin-activating scaffold protein, from cells of the myeloid lineage using the Lyz2-cre driver mouse reduces epithelial damage, attenuates colitis, downregulates the expression of macrophage markers, decreases the number of differentiated colonic mucosal macrophages, and diminishes the presence of CD68-positive cells in the colonic mucosa of mice infected with the enteric pathogen Citrobacter rodentium. Bone marrow-derived macrophages lacking expression of Tln1 did not exhibit a cell-autonomous phenotype; there was no impaired proinflammatory gene expression, nitric oxide production, phagocytic ability, or surface expression of CD11b, CD86, or major histocompatibility complex II in response to C. rodentium. Thus, we demonstrate that talin-1 plays a role in the manifestation of infectious colitis by increasing mucosal macrophages, with an effect that is independent of macrophage activation.
Collapse
Affiliation(s)
- Yvonne L Latour
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 2215B Garland Ave., 1030C MRB IV, Nashville, TN, 37232-0252, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kara M McNamara
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Margaret M Allaman
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel P Barry
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thaddeus M Smith
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kamery J Williams
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Caroline V Hawkins
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Justin Jacobse
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 2215B Garland Ave., 1030C MRB IV, Nashville, TN, 37232-0252, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeremy A Goettel
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 2215B Garland Ave., 1030C MRB IV, Nashville, TN, 37232-0252, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alberto G Delgado
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 2215B Garland Ave., 1030C MRB IV, Nashville, TN, 37232-0252, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alain P Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Keith T Wilson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 2215B Garland Ave., 1030C MRB IV, Nashville, TN, 37232-0252, USA.
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA.
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
3
|
Tang X, Lynn GE, Cui Y, Cerny J, Arora G, Tomayko MM, Craft J, Fikrig E. Bulk and single-nucleus RNA sequencing highlight immune pathways induced in individuals during an Ixodes scapularis tick bite. Infect Immun 2023; 91:e0028223. [PMID: 37846980 PMCID: PMC10652856 DOI: 10.1128/iai.00282-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/14/2023] [Indexed: 10/18/2023] Open
Abstract
Ticks are hematophagous arthropods that use a complex mixture of salivary proteins to evade host defenses while taking a blood meal. Little is known about the immunological and physiological consequences of tick feeding on humans. Here, we performed the first bulk and single-nucleus RNA sequencing (snRNA-seq) of skin and blood of four persons presenting with naturally acquired, attached Ixodes scapularis ticks. Pathways and individual genes associated with innate and adaptive immunity were identified based on bulk RNA sequencing, including interleukin-17 signaling and platelet activation pathways at the site of tick attachment or in peripheral blood. snRNA-seq further revealed that the Hippo signaling, cell adhesion, and axon guidance pathways were involved in the response to an I. scapularis bite in humans. Features of the host response in these individuals also overlapped with that of laboratory guinea pigs exposed to I. scapularis and which acquired resistance to ticks. These findings offer novel insights for the development of new biomarkers for I. scapularis exposure and anti-tick vaccines for human use.
Collapse
Affiliation(s)
- Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Geoffrey E. Lynn
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yingjun Cui
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jiri Cerny
- Czech University of Life Sciences Prague, Praha-Suchdol, Czechia
| | - Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mary M. Tomayko
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Joseph Craft
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Sapoznikov A, Kozlovski S, Levi N, Feigelson SW, Regev O, Davidzohn N, Ben-Dor S, Haffner-Krausz R, Feldmesser E, Wigoda N, Petrovich-Kopitman E, Biton M, Alon R. Dendritic cell ICAM-1 strengthens synapses with CD8 T cells but is not required for their early differentiation. Cell Rep 2023; 42:112864. [PMID: 37494182 DOI: 10.1016/j.celrep.2023.112864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/13/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023] Open
Abstract
Lymphocyte priming in lymph nodes (LNs) was postulated to depend on the formation of stable T cell receptor (TCR)-specific immune synapses (ISs) with antigen (Ag)-presenting dendritic cells (DCs). The high-affinity LFA-1 ligand ICAM-1 was implicated in different ISs studied in vitro. We dissect the in vivo roles of endogenous DC ICAM-1 in Ag-stimulated T cell proliferation and differentiation and find that under type 1 polarizing conditions in vaccinated or vaccinia virus-infected skin-draining LNs, Ag-presenting DCs engage in ICAM-1-dependent stable conjugates with a subset of Ag-specific CD8 blasts. Nevertheless, in the absence of these conjugates, CD8 lymphocyte proliferation and differentiation into functional cytotoxic T cells (CTLs) and skin homing effector lymphocytes takes place normally. Our results suggest that although CD8 T cell blasts engage in tight ICAM-1-dependent DC-T ISs, firm ISs are dispensable for TCR-triggered proliferation and differentiation into productive effector lymphocytes.
Collapse
Affiliation(s)
- Anita Sapoznikov
- Deptartment of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Stav Kozlovski
- Deptartment of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Nehora Levi
- Deptartment of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sara W Feigelson
- Deptartment of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ofer Regev
- Deptartment of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Natalia Davidzohn
- Deptartment of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | | | - Ester Feldmesser
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Wigoda
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | | | - Moshe Biton
- Deptartment of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Ronen Alon
- Deptartment of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
5
|
Morgan J, Lindsay AE. Modulation of antigen discrimination by duration of immune contacts in a kinetic proofreading model of T cell activation with extreme statistics. PLoS Comput Biol 2023; 19:e1011216. [PMID: 37647345 PMCID: PMC10497171 DOI: 10.1371/journal.pcbi.1011216] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/12/2023] [Accepted: 08/05/2023] [Indexed: 09/01/2023] Open
Abstract
T cells form transient cell-to-cell contacts with antigen presenting cells (APCs) to facilitate surface interrogation by membrane bound T cell receptors (TCRs). Upon recognition of molecular signatures (antigen) of pathogen, T cells may initiate an adaptive immune response. The duration of the T cell/APC contact is observed to vary widely, yet it is unclear what constructive role, if any, such variations might play in immune signaling. Modeling efforts describing antigen discrimination often focus on steady-state approximations and do not account for the transient nature of cellular contacts. Within the framework of a kinetic proofreading (KP) mechanism, we develop a stochastic First Receptor Activation Model (FRAM) describing the likelihood that a productive immune signal is produced before the expiry of the contact. Through the use of extreme statistics, we characterize the probability that the first TCR triggering is induced by a rare agonist antigen and not by that of an abundant self-antigen. We show that defining positive immune outcomes as resilience to extreme statistics and sensitivity to rare events mitigates classic tradeoffs associated with KP. By choosing a sufficient number of KP steps, our model is able to yield single agonist sensitivity whilst remaining non-reactive to large populations of self antigen, even when self and agonist antigen are similar in dissociation rate to the TCR but differ largely in expression. Additionally, our model achieves high levels of accuracy even when agonist positive APCs encounters are rare. Finally, we discuss potential biological costs associated with high classification accuracy, particularly in challenging T cell environments.
Collapse
Affiliation(s)
- Jonathan Morgan
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, South Bend, Indiana, United States of America
- Biophysics Graduate Program, University of Notre Dame, South Bend, Indiana, United States of America
| | - Alan E. Lindsay
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, South Bend, Indiana, United States of America
| |
Collapse
|
6
|
Horitani S, Ueda Y, Kamioka Y, Kondo N, Ikeda Y, Naganuma M, Kinashi T. The critical role of Rap1-GAPs Rasa3 and Sipa1 in T cells for pulmonary transit and egress from the lymph nodes. Front Immunol 2023; 14:1234747. [PMID: 37545505 PMCID: PMC10399222 DOI: 10.3389/fimmu.2023.1234747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
Rap1-GTPase activates integrins and plays an indispensable role in lymphocyte trafficking, but the importance of Rap1 inactivation in this process remains unknown. Here we identified the Rap1-inactivating proteins Rasa3 and Sipa1 as critical regulators of lymphocyte trafficking. The loss of Rasa3 and Sipa1 in T cells induced spontaneous Rap1 activation and adhesion. As a consequence, T cells deficient in Rasa3 and Sipa1 were trapped in the lung due to firm attachment to capillary beds, while administration of LFA1 antibodies or loss of talin1 or Rap1 rescued lung sequestration. Unexpectedly, mutant T cells exhibited normal extravasation into lymph nodes, fast interstitial migration, even greater chemotactic responses to chemokines and sphingosine-1-phosphate, and entrance into lymphatic sinuses but severely delayed exit: mutant T cells retained high motility in lymphatic sinuses and frequently returned to the lymph node parenchyma, resulting in defective egress. These results reveal the critical trafficking processes that require Rap1 inactivation.
Collapse
Affiliation(s)
- Shunsuke Horitani
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
- Division of Gastroenterology and Hepatology, the Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Yoshihiro Ueda
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Yuji Kamioka
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Naoyuki Kondo
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Yoshiki Ikeda
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Makoto Naganuma
- Division of Gastroenterology and Hepatology, the Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Tatsuo Kinashi
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
7
|
Clark IC, Mudvari P, Thaploo S, Smith S, Abu-Laban M, Hamouda M, Theberge M, Shah S, Ko SH, Pérez L, Bunis DG, Lee JS, Kilam D, Zakaria S, Choi S, Darko S, Henry AR, Wheeler MA, Hoh R, Butrus S, Deeks SG, Quintana FJ, Douek DC, Abate AR, Boritz EA. HIV silencing and cell survival signatures in infected T cell reservoirs. Nature 2023; 614:318-325. [PMID: 36599978 PMCID: PMC9908556 DOI: 10.1038/s41586-022-05556-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/11/2022] [Indexed: 01/06/2023]
Abstract
Rare CD4 T cells that contain HIV under antiretroviral therapy represent an important barrier to HIV cure1-3, but the infeasibility of isolating and characterizing these cells in their natural state has led to uncertainty about whether they possess distinctive attributes that HIV cure-directed therapies might exploit. Here we address this challenge using a microfluidic technology that isolates the transcriptomes of HIV-infected cells based solely on the detection of HIV DNA. HIV-DNA+ memory CD4 T cells in the blood from people receiving antiretroviral therapy showed inhibition of six transcriptomic pathways, including death receptor signalling, necroptosis signalling and antiproliferative Gα12/13 signalling. Moreover, two groups of genes identified by network co-expression analysis were significantly associated with HIV-DNA+ cells. These genes (n = 145) accounted for just 0.81% of the measured transcriptome and included negative regulators of HIV transcription that were higher in HIV-DNA+ cells, positive regulators of HIV transcription that were lower in HIV-DNA+ cells, and other genes involved in RNA processing, negative regulation of mRNA translation, and regulation of cell state and fate. These findings reveal that HIV-infected memory CD4 T cells under antiretroviral therapy are a distinctive population with host gene expression patterns that favour HIV silencing, cell survival and cell proliferation, with important implications for the development of HIV cure strategies.
Collapse
Affiliation(s)
- Iain C Clark
- Department of Bioengineering and Therapeutic Sciences, School of Pharmacy, University of California, San Francisco, San Francisco, CA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Bioengineering, California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, CA, USA
| | - Prakriti Mudvari
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shravan Thaploo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Samuel Smith
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mohammad Abu-Laban
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mehdi Hamouda
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Marc Theberge
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sakshi Shah
- Department of Bioengineering, California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, CA, USA
| | - Sung Hee Ko
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Liliana Pérez
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel G Bunis
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - James S Lee
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Divya Kilam
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Saami Zakaria
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sally Choi
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Samuel Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amy R Henry
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Salwan Butrus
- Department of Chemical and Biomolecular Engineering, California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, CA, USA
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, School of Pharmacy, University of California, San Francisco, San Francisco, CA, USA.
| | - Eli A Boritz
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Taylor RS, Ruiz Daniels R, Dobie R, Naseer S, Clark TC, Henderson NC, Boudinot P, Martin SA, Macqueen DJ. Single cell transcriptomics of Atlantic salmon ( Salmo salar L.) liver reveals cellular heterogeneity and immunological responses to challenge by Aeromonas salmonicida. Front Immunol 2022; 13:984799. [PMID: 36091005 PMCID: PMC9450062 DOI: 10.3389/fimmu.2022.984799] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
The liver is a multitasking organ with essential functions for vertebrate health spanning metabolism and immunity. In contrast to mammals, our understanding of liver cellular heterogeneity and its role in regulating immunological status remains poorly defined in fishes. Addressing this knowledge gap, we generated a transcriptomic atlas of 47,432 nuclei isolated from the liver of Atlantic salmon (Salmo salar L.) contrasting control fish with those challenged with a pathogenic strain of Aeromonas salmonicida, a problematic bacterial pathogen in global aquaculture. We identified the major liver cell types and their sub-populations, revealing poor conservation of many hepatic cell marker genes utilized in mammals, while identifying novel heterogeneity within the hepatocyte, lymphoid, and myeloid lineages. This included polyploid hepatocytes, multiple T cell populations including γδ T cells, and candidate populations of monocytes/macrophages and dendritic cells. A dominant hepatocyte population radically remodeled its transcriptome following infection to activate the acute phase response and other defense functions, while repressing routine functions such as metabolism. These defense-specialized hepatocytes showed strong activation of genes controlling protein synthesis and secretion, presumably to support the release of acute phase proteins into circulation. The infection response further involved up-regulation of numerous genes in an immune-cell specific manner, reflecting functions in pathogen recognition and killing, antigen presentation, phagocytosis, regulation of inflammation, B cell differentiation and T cell activation. Overall, this study greatly enhances our understanding of the multifaceted role played by liver immune and non-immune cells in host defense and metabolic remodeling following infection and provides many novel cell-specific marker genes to empower future studies of this organ in fishes.
Collapse
Affiliation(s)
- Richard S. Taylor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Ross Dobie
- Centre for Inflammation Research, The Queen’s Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Shahmir Naseer
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Thomas C. Clark
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Neil C. Henderson
- Centre for Inflammation Research, The Queen’s Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Samuel A.M. Martin
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Daniel J. Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
9
|
LFA1 Activation: Insights from a Single-Molecule Approach. Cells 2022; 11:cells11111751. [PMID: 35681446 PMCID: PMC9179313 DOI: 10.3390/cells11111751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Integrin LFA1 is a cell adhesion receptor expressed exclusively in leukocytes, and plays crucial roles in lymphocyte trafficking, antigen recognition, and effector functions. Since the discovery that the adhesiveness of LFA1 can be dynamically changed upon stimulation, one challenge has been understanding how integrins are regulated by inside-out signaling coupled with macromolecular conformational changes, as well as ligand bindings that transduce signals from the extracellular domain to the cytoplasm in outside-in signaling. The small GTPase Rap1 and integrin adaptor proteins talin1 and kindlin-3 have been recognized as critical molecules for integrin activation. However, their cooperative regulation of integrin adhesiveness in lymphocytes requires further research. Recent advances in single-molecule imaging techniques have revealed dynamic molecular processes in real-time and provided insight into integrin activation in cellular environments. This review summarizes integrin regulation and discusses new findings regarding the bidirectionality of LFA1 activation and signaling processes in lymphocytes.
Collapse
|
10
|
The interface between biochemical signaling and cell mechanics shapes T lymphocyte migration and activation. Eur J Cell Biol 2022; 101:151236. [DOI: 10.1016/j.ejcb.2022.151236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 11/18/2022] Open
|
11
|
Lagarrigue F, Tan B, Du Q, Fan Z, Lopez-Ramirez MA, Gingras AR, Wang H, Qi W, Sun H. Direct Binding of Rap1 to Talin1 and to MRL Proteins Promotes Integrin Activation in CD4 + T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1378-1388. [PMID: 35197328 PMCID: PMC9644409 DOI: 10.4049/jimmunol.2100843] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/27/2021] [Indexed: 12/26/2022]
Abstract
Agonist-induced Rap1 GTP loading results in integrin activation involved in T cell trafficking and functions. MRL proteins Rap1-interacting adapter molecule (RIAM) and lamellipodin (LPD) are Rap1 effectors that can recruit talin1 to integrins, resulting in integrin activation. Recent work also implicates direct Rap1-talin1 interaction in integrin activation. Here, we analyze in mice the connections between Rap1 and talin1 that support integrin activation in conventional CD4+ T (Tconv) and CD25HiFoxp3+CD4+ regulatory T (Treg) cells. Talin1(R35E, R118E) mutation that disrupts both Rap1 binding sites results in a partial defect in αLβ2, α4β1, and α4β7 integrin activation in both Tconv and Treg cells with resulting defects in T cell homing. Talin1(R35E,R118E) Tconv manifested reduced capacity to induce colitis in an adoptive transfer mouse model. Loss of RIAM exacerbates the defects in Treg cell function caused by the talin1(R35E,R118E) mutation, and deleting both MRL proteins in combination with talin1(R35E,R118E) phenocopy the complete lack of integrin activation observed in Rap1a/b-null Treg cells. In sum, these data reveal the functionally significant connections between Rap1 and talin1 that enable αLβ2, α4β1, and α4β7 integrin activation in CD4+ T cells.
Collapse
Affiliation(s)
- Frederic Lagarrigue
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Boyang Tan
- Department of Medicine, University of California, San Diego, La Jolla, CA; and
| | - Qinyi Du
- Department of Medicine, University of California, San Diego, La Jolla, CA; and
| | - Zhichao Fan
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, Farmington, CT
| | | | - Alexandre R Gingras
- Department of Medicine, University of California, San Diego, La Jolla, CA; and
| | - Hsin Wang
- Department of Medicine, University of California, San Diego, La Jolla, CA; and
| | - Weiwei Qi
- Department of Medicine, University of California, San Diego, La Jolla, CA; and
| | - Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, CA; and
| |
Collapse
|
12
|
Sari-Ak D, Torres-Gomez A, Yazicioglu YF, Christofides A, Patsoukis N, Lafuente EM, Boussiotis VA. Structural, biochemical, and functional properties of the Rap1-Interacting Adaptor Molecule (RIAM). Biomed J 2021; 45:289-298. [PMID: 34601137 PMCID: PMC9250098 DOI: 10.1016/j.bj.2021.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Leukocytes, the leading players of immune system, are involved in innate and adaptive immune responses. Leukocyte adhesion to endothelial cells during transmigration or to antigen presenting cells during T cell activation, requires integrin activation through a process termed inside-out integrin signaling. In hematopoietic cells, Rap1 and its downstream effector RIAM (Rap1-interacting adaptor molecule) form a cornerstone for inside-out integrin activation. The Rap1/RIAM pathway is involved in signal integration for activation, actin remodeling and cytoskeletal reorganization in T cells, as well as in myeloid cell differentiation and function. RIAM is instrumental for phagocytosis, a process requiring particle recognition, cytoskeletal remodeling and membrane protrusion for engulfment and digestion. In the present review, we discuss the structural and molecular properties of RIAM and the recent discoveries regarding the functional role of the Rap1/RIAM module in hematopoietic cells.
Collapse
Affiliation(s)
- Duygu Sari-Ak
- Department of Medical Biology, School of Medicine, University of Health Sciences, Istanbul, Turkey, 34668
| | - Alvaro Torres-Gomez
- School of Medicine, Unit of Immunology, Complutense University of Madrid, 28040, Madrid, Spain
| | - Yavuz-Furkan Yazicioglu
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK
| | - Anthos Christofides
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA, 02215; Department of Medicine, Harvard Medical School, Boston, MA, 02215; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215
| | - Nikolaos Patsoukis
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA, 02215; Department of Medicine, Harvard Medical School, Boston, MA, 02215; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215
| | - Esther M Lafuente
- School of Medicine, Unit of Immunology, Complutense University of Madrid, 28040, Madrid, Spain
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA, 02215; Department of Medicine, Harvard Medical School, Boston, MA, 02215; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215.
| |
Collapse
|
13
|
Leithner A, Altenburger LM, Hauschild R, Assen FP, Rottner K, Stradal TEB, Diz-Muñoz A, Stein JV, Sixt M. Dendritic cell actin dynamics control contact duration and priming efficiency at the immunological synapse. J Cell Biol 2021; 220:211749. [PMID: 33533935 PMCID: PMC7863705 DOI: 10.1083/jcb.202006081] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 11/25/2020] [Accepted: 01/12/2021] [Indexed: 01/22/2023] Open
Abstract
Dendritic cells (DCs) are crucial for the priming of naive T cells and the initiation of adaptive immunity. Priming is initiated at a heterologous cell–cell contact, the immunological synapse (IS). While it is established that F-actin dynamics regulates signaling at the T cell side of the contact, little is known about the cytoskeletal contribution on the DC side. Here, we show that the DC actin cytoskeleton is decisive for the formation of a multifocal synaptic structure, which correlates with T cell priming efficiency. DC actin at the IS appears in transient foci that are dynamized by the WAVE regulatory complex (WRC). The absence of the WRC in DCs leads to stabilized contacts with T cells, caused by an increase in ICAM1-integrin–mediated cell–cell adhesion. This results in lower numbers of activated and proliferating T cells, demonstrating an important role for DC actin in the regulation of immune synapse functionality.
Collapse
Affiliation(s)
- Alexander Leithner
- Institute of Science and Technology Austria, Klosterneuburg, Austria.,Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Lukas M Altenburger
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Robert Hauschild
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Frank P Assen
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Klemens Rottner
- Zoological Institute, Technical University Braunschweig, Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Units, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Michael Sixt
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
14
|
Eidell KP, Lovy A, Sylvain NR, Scangarello FA, Muendlein HI, Ophir MJ, Nguyen K, Seminario MC, Bunnell SC. LFA-1 and kindlin-3 enable the collaborative transport of SLP-76 microclusters by myosin and dynein motors. J Cell Sci 2021; 134:270974. [PMID: 34279667 DOI: 10.1242/jcs.258602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/13/2021] [Indexed: 01/10/2023] Open
Abstract
Integrin engagement within the immune synapse enhances T cell activation, but our understanding of this process is incomplete. In response to T cell receptor (TCR) ligation, SLP-76 (LCP2), ADAP (FYB1) and SKAP55 (SKAP1) are recruited into microclusters and activate integrins via the effectors talin-1 and kindlin-3 (FERMT3). We postulated that integrins influence the centripetal transport and signaling of SLP-76 microclusters via these linkages. We show that contractile myosin filaments surround and are co-transported with SLP-76 microclusters, and that TCR ligand density governs the centripetal movement of both structures. Centripetal transport requires formin activity, actomyosin contraction, microtubule integrity and dynein motor function. Although immobilized VLA-4 (α4β1 integrin) and LFA-1 (αLβ2 integrin) ligands arrest the centripetal movement of SLP-76 microclusters and myosin filaments, VLA-4 acts distally, while LFA-1 acts in the lamellum. Integrin β2, kindlin-3 and zyxin are required for complete centripetal transport, while integrin β1 and talin-1 are not. CD69 upregulation is similarly dependent on integrin β2, kindlin-3 and zyxin, but not talin-1. These findings highlight the integration of cytoskeletal systems within the immune synapse and reveal extracellular ligand-independent roles for LFA-1 and kindlin-3. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Keith P Eidell
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Alenka Lovy
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nicholas R Sylvain
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Frank A Scangarello
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Hayley I Muendlein
- Graduate Program in Genetics, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Michael J Ophir
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Ken Nguyen
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | | | - Stephen C Bunnell
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
15
|
Dadwal N, Mix C, Reinhold A, Witte A, Freund C, Schraven B, Kliche S. The Multiple Roles of the Cytosolic Adapter Proteins ADAP, SKAP1 and SKAP2 for TCR/CD3 -Mediated Signaling Events. Front Immunol 2021; 12:703534. [PMID: 34295339 PMCID: PMC8290198 DOI: 10.3389/fimmu.2021.703534] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
T cells are the key players of the adaptive immune response. They coordinate the activation of other immune cells and kill malignant and virus-infected cells. For full activation T cells require at least two signals. Signal 1 is induced after recognition of MHC/peptide complexes presented on antigen presenting cells (APCs) by the clonotypic TCR (T-cell receptor)/CD3 complex whereas Signal 2 is mediated via the co-stimulatory receptor CD28, which binds to CD80/CD86 molecules that are present on APCs. These signaling events control the activation, proliferation and differentiation of T cells. In addition, triggering of the TCR/CD3 complex induces the activation of the integrin LFA-1 (leukocyte function associated antigen 1) leading to increased ligand binding (affinity regulation) and LFA-1 clustering (avidity regulation). This process is termed "inside-out signaling". Subsequently, ligand bound LFA-1 transmits a signal into the T cells ("outside-in signaling") which enhances T-cell interaction with APCs (adhesion), T-cell activation and T-cell proliferation. After triggering of signal transducing receptors, adapter proteins organize the proper processing of membrane proximal and intracellular signals as well as the activation of downstream effector molecules. Adapter proteins are molecules that lack enzymatic or transcriptional activity and are composed of protein-protein and protein-lipid interacting domains/motifs. They organize and assemble macromolecular complexes (signalosomes) in space and time. Here, we review recent findings regarding three cytosolic adapter proteins, ADAP (Adhesion and Degranulation-promoting Adapter Protein), SKAP1 and SKAP2 (Src Kinase Associated Protein 1 and 2) with respect to their role in TCR/CD3-mediated activation, proliferation and integrin regulation.
Collapse
Affiliation(s)
- Nirdosh Dadwal
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Charlie Mix
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty of the Otto-von-Guericke University, Magdeburg, Germany
| | - Annegret Reinhold
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty of the Otto-von-Guericke University, Magdeburg, Germany
| | - Amelie Witte
- Coordination Center of Clinical Trials, University Medicine Greifswald, Greifswald, Germany
| | - Christian Freund
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty of the Otto-von-Guericke University, Magdeburg, Germany
| | - Stefanie Kliche
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty of the Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
16
|
Kondo N, Ueda Y, Kinashi T. Kindlin-3 disrupts an intersubunit association in the integrin LFA1 to trigger positive feedback activation by Rap1 and talin1. Sci Signal 2021; 14:14/686/eabf2184. [PMID: 34103420 DOI: 10.1126/scisignal.abf2184] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Integrin activation by the intracellular adaptor proteins talin1 and kindlin-3 is essential for lymphocyte adhesion. These adaptors cooperatively control integrin activation through bidirectional (inside-out and outside-in) activation signals. Using single-molecule measurements, we revealed the distinct dynamics of talin1 and kindlin-3 interactions with the integrin LFA1 (αLβ2) and their functions in LFA1 activation and LFA1-mediated adhesion. The kinetics of talin1 binding to the tail of the β2 subunit corresponded to those of LFA1 binding to its ligand ICAM1. ICAM1 binding induced transient interactions between the membrane-proximal cytoplasmic region of the β2 subunit with an N-terminal domain of kindlin-3, leading to disruption of the association between the integrin subunits (the α/β clasp) and unbending of the ectodomains of the α/β heterodimer. These conformational changes promoted high-affinity talin1 binding to the β2 tail that required the talin rod domain and the actomyosin cytoskeleton. Inside-out signaling induced by the GTPase Rap1 did not markedly stabilize the binding of talin1 and kindlin-3 to LFA1. In contrast, ligand-induced outside-in signaling, the stabilization of open LFA1 conformers, or shear force substantially altered the dynamics of talin1 and kindlin-3 association with LFA1 and enhanced both Rap1 and LFA1 activation. In migrating lymphocytes, asymmetrical distribution of talin1 and kindlin-3 correlated with the maturation of LFA1 from a low-affinity conformation at the leading edge to a high-affinity conformation in the adherent mid-body. Our results suggest that kindlin-3 spatiotemporally mediates a positive feedback circuit of LFA1 activation to control dynamic adhesion and migration of lymphocytes.
Collapse
Affiliation(s)
- Naoyuki Kondo
- Department of Molecule Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan
| | - Yoshihiro Ueda
- Department of Molecule Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan
| | - Tatsuo Kinashi
- Department of Molecule Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan.
| |
Collapse
|
17
|
Nikolopoulou PA, Koufaki MA, Kostourou V. The Adhesome Network: Key Components Shaping the Tumour Stroma. Cancers (Basel) 2021; 13:525. [PMID: 33573141 PMCID: PMC7866493 DOI: 10.3390/cancers13030525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Beyond the conventional perception of solid tumours as mere masses of cancer cells, advanced cancer research focuses on the complex contributions of tumour-associated host cells that are known as "tumour microenvironment" (TME). It has been long appreciated that the tumour stroma, composed mainly of blood vessels, cancer-associated fibroblasts and immune cells, together with the extracellular matrix (ECM), define the tumour architecture and influence cancer cell properties. Besides soluble cues, that mediate the crosstalk between tumour and stroma cells, cell adhesion to ECM arises as a crucial determinant in cancer progression. In this review, we discuss how adhesome, the intracellular protein network formed at cell adhesions, regulate the TME and control malignancy. The role of adhesome extends beyond the physical attachment of cells to ECM and the regulation of cytoskeletal remodelling and acts as a signalling and mechanosensing hub, orchestrating cellular responses that shape the tumour milieu.
Collapse
Affiliation(s)
| | | | - Vassiliki Kostourou
- Biomedical Sciences Research Centre “Alexander Fleming”, Institute of Bioinnovation, 34 Fleming Str., 16672 Vari-Athens, Greece; (P.A.N.); (M.A.K.)
| |
Collapse
|
18
|
Park EJ, Myint PK, Ito A, Appiah MG, Darkwah S, Kawamoto E, Shimaoka M. Integrin-Ligand Interactions in Inflammation, Cancer, and Metabolic Disease: Insights Into the Multifaceted Roles of an Emerging Ligand Irisin. Front Cell Dev Biol 2020; 8:588066. [PMID: 33195249 PMCID: PMC7649757 DOI: 10.3389/fcell.2020.588066] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/05/2020] [Indexed: 01/10/2023] Open
Abstract
Integrins are transmembrane proteins that mediate cellular adhesion and migration to neighboring cells or the extracellular matrix, which is essential for cells to undertake diverse physiological and pathological pathways. For integrin activation and ligand binding, bidirectional signaling across the cell membrane is needed. Integrins aberrantly activated under pathologic conditions facilitate cellular infiltration into tissues, thereby causing inflammatory or tumorigenic progressions. Thus, integrins have emerged to the forefront as promising targets for developing therapeutics to treat autoimmune and cancer diseases. In contrast, it remains a fact that integrin-ligand interactions are beneficial for improving the health status of different tissues. Among these ligands, irisin, a myokine produced mainly by skeletal muscles in an exercise-dependent manner, has been shown to bind to integrin αVβ5, alleviating symptoms under unfavorable conditions. These findings may provide insights into some of the underlying mechanisms by which exercise improves quality of life. This review will discuss the current understanding of integrin-ligand interactions in both health and disease. Likewise, we not only explain how diverse ligands play different roles in mediating cellular functions under both conditions via their interactions with integrins, but also specifically highlight the potential roles of the emerging ligand irisin in inflammation, cancer, and metabolic disease.
Collapse
Affiliation(s)
- Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Phyoe Kyawe Myint
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Atsushi Ito
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Thoracic and Cardiovascular Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Michael G Appiah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Samuel Darkwah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
19
|
Lim TJF, Bunjamin M, Ruedl C, Su IH. Talin1 controls dendritic cell activation by regulating TLR complex assembly and signaling. J Exp Med 2020; 217:e20191810. [PMID: 32438408 PMCID: PMC7398162 DOI: 10.1084/jem.20191810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/24/2020] [Accepted: 03/27/2020] [Indexed: 12/29/2022] Open
Abstract
Talin critically controls integrin-dependent cell migration, but its regulatory role in skin dendritic cells (DCs) during inflammatory responses has not been investigated. Here, we show that talin1 regulates not only integrin-dependent Langerhans cell (LC) migration, but also MyD88-dependent Toll-like receptor (TLR)-stimulated DC activation. Talin1-deficient LCs failed to exit the epidermis, resulting in reduced LC migration to skin-draining lymph nodes (sdLNs) and defective skin tolerance induction, while talin1-deficient dermal DCs unexpectedly accumulated in the dermis despite their actomyosin-dependent migratory capabilities. Furthermore, talin1-deficient DCs exhibited compromised chemotaxis, NFκB activation, and proinflammatory cytokine production. Mechanistically, talin1 was required for the formation of preassembled TLR complexes in DCs at steady state via direct interaction with MyD88 and PIP5K. Local production of PIP2 by PIP5K then recruited TIRAP to the preassembled complexes, which were required for TLR signalosome assembly during DC activation. Thus, talin1 regulates MyD88-dependent TLR signaling pathways in DCs through a novel mechanism with implications for antimicrobial and inflammatory immune responses.
Collapse
Affiliation(s)
- Thomas Jun Feng Lim
- Laboratory of Molecular Immunology & Cell Signalling, School of Biological Sciences, College of Science, Nanyang Technological University, Singapore, Republic of Singapore
| | - Maegan Bunjamin
- Laboratory of Molecular Immunology & Cell Signalling, School of Biological Sciences, College of Science, Nanyang Technological University, Singapore, Republic of Singapore
| | - Christiane Ruedl
- Laboratory of Immunology, School of Biological Sciences, College of Science, Nanyang Technological University, Singapore, Republic of Singapore
| | - I-hsin Su
- Laboratory of Molecular Immunology & Cell Signalling, School of Biological Sciences, College of Science, Nanyang Technological University, Singapore, Republic of Singapore
| |
Collapse
|
20
|
Haghayegh Jahromi N, Marchetti L, Moalli F, Duc D, Basso C, Tardent H, Kaba E, Deutsch U, Pot C, Sallusto F, Stein JV, Engelhardt B. Intercellular Adhesion Molecule-1 (ICAM-1) and ICAM-2 Differentially Contribute to Peripheral Activation and CNS Entry of Autoaggressive Th1 and Th17 Cells in Experimental Autoimmune Encephalomyelitis. Front Immunol 2020; 10:3056. [PMID: 31993059 PMCID: PMC6970977 DOI: 10.3389/fimmu.2019.03056] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022] Open
Abstract
In experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), myelin-specific T cells are activated in the periphery and differentiate in T helper (Th) 1 and Th17 effector cells, which cross the blood-brain barrier (BBB) to reach the central nervous system (CNS), where they induce neuroinflammation. Here, we explored the role of intercellular adhesion molecule-1 (ICAM-1) and ICAM-2 in the activation of naïve myelin-specific T cells and in the subsequent migration of differentiated encephalitogenic Th1 and Th17 cells across the BBB in vitro and in vivo. While on antigen-presenting cells ICAM-1, but not ICAM-2 was required for the activation of naïve CD4+ T cells, endothelial ICAM-1 and ICAM-2 mediated both Th1 and Th17 cell migration across the BBB. ICAM-1/-2-deficient mice developed ameliorated typical and atypical EAE transferred by encephalitogenic Th1 and Th17 cells, respectively. Our study underscores important yet cell-specific contributions for ICAM-1 and ICAM-2 in EAE pathogenesis.
Collapse
Affiliation(s)
| | - Luca Marchetti
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Federica Moalli
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Donovan Duc
- Laboratories of Neuroimmunology, Division of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, Epalinges, Switzerland
| | - Camilla Basso
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Heidi Tardent
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Elisa Kaba
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Urban Deutsch
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Division of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, Epalinges, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Jens V Stein
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | |
Collapse
|
21
|
Kozlovski S, Atrakchi O, Feigelson SW, Shulman Z, Alon R. Stable contacts of naïve CD4 T cells with migratory dendritic cells are ICAM-1-dependent but dispensable for proliferation in vivo. Cell Adh Migr 2019; 13:315-321. [PMID: 31328672 PMCID: PMC6682365 DOI: 10.1080/19336918.2019.1644857] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 12/02/2022] Open
Abstract
It is unclear if naïve T cells require dendritic cell ICAMs to proliferate inside lymph nodes. To check if and when CD4 lymphocytes use ICAMs on migratory DCs, wild-type and ICAM-1 and 2 double knock out bone marrow-derived DCs pulsed with saturating levels of an OT-II transgene-specific ovalbumin-derived peptide were co-transferred into skin-draining lymph nodes. Intravital imaging of OT-II lymphocytes entering these lymph nodes revealed that ICAM-1 and -2 deficient migratory DCs formed fewer stable conjugates with OT-II lymphocytes but promoted normal T cell proliferation. DC ICAMs were also not required for unstable TCR-dependent lymphocyte arrests on antigen presenting migratory DCs. Thus, rare antigen-stimulated ICAM-stabilized T-DC conjugates are dispensable for CD4 lymphocyte proliferation inside lymph nodes.
Collapse
Affiliation(s)
- Stav Kozlovski
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ofir Atrakchi
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Sara W Feigelson
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Shulman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ronen Alon
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
22
|
John CM, Khaddaj Mallat R, Mishra RC, George G, Singh V, Turnbull JD, Umeshappa CS, Kendrick DJ, Kim T, Fauzi FM, Visser F, Fedak PWM, Wulff H, Braun AP. SKA-31, an activator of Ca 2+-activated K + channels, improves cardiovascular function in aging. Pharmacol Res 2019; 151:104539. [PMID: 31707036 DOI: 10.1016/j.phrs.2019.104539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/22/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022]
Abstract
Aging represents an independent risk factor for the development of cardiovascular disease, and is associated with complex structural and functional alterations in the vasculature, such as endothelial dysfunction. Small- and intermediate-conductance, Ca2+-activated K+ channels (KCa2.3 and KCa3.1, respectively) are prominently expressed in the vascular endothelium, and pharmacological activators of these channels induce robust vasodilation upon acute exposure in isolated arteries and intact animals. However, the effects of prolonged in vivo administration of such compounds are unknown. In our study, we hypothesized that such treatment would ameliorate aging-related cardiovascular deficits. Aged (∼18 months) male Sprague Dawley rats were treated daily with either vehicle or the KCa channel activator SKA-31 (10 mg/kg, intraperitoneal injection; n = 6/group) for 8 weeks, followed by echocardiography, arterial pressure myography, immune cell and plasma cytokine characterization, and tissue histology. Our results show that SKA-31 administration improved endothelium-dependent vasodilation, reduced agonist-induced vascular contractility, and prevented the aging-associated declines in cardiac ejection fraction, stroke volume and fractional shortening, and further improved the expression of endothelial KCa channels and associated cell signalling components to levels similar to those observed in young male rats (∼5 months at end of study). SKA-31 administration did not promote pro-inflammatory changes in either T cell populations or plasma cytokines/chemokines, and we observed no overt tissue histopathology in heart, kidney, aorta, brain, liver and spleen. SKA-31 treatment in young rats had little to no effect on vascular reactivity, select protein expression, tissue histology, plasma cytokines/chemokines or immune cell properties. Collectively, these data demonstrate that administration of the KCa channel activator SKA-31 improved aging-related cardiovascular function, without adversely affecting the immune system or promoting tissue toxicity.
Collapse
Affiliation(s)
- Cini Mathew John
- Dept. of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Rayan Khaddaj Mallat
- Dept. of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Ramesh C Mishra
- Dept. of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Grace George
- Dept. of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Vikrant Singh
- Dept. of Pharmacology, University of California, Davis, USA
| | - Jeannine D Turnbull
- Dept. of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Channakeshava S Umeshappa
- Dept. of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Canada
| | - Dylan J Kendrick
- Dept. of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Taeyeob Kim
- Dept. of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Fazlin M Fauzi
- Dept. of Pharmacology and Chemistry, Universiti Teknologi MARA, Malaysia
| | - Frank Visser
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Paul W M Fedak
- Dept. of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Heike Wulff
- Dept. of Pharmacology, University of California, Davis, USA
| | - Andrew P Braun
- Dept. of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada.
| |
Collapse
|
23
|
Harjunpää H, Llort Asens M, Guenther C, Fagerholm SC. Cell Adhesion Molecules and Their Roles and Regulation in the Immune and Tumor Microenvironment. Front Immunol 2019; 10:1078. [PMID: 31231358 PMCID: PMC6558418 DOI: 10.3389/fimmu.2019.01078] [Citation(s) in RCA: 478] [Impact Index Per Article: 79.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/29/2019] [Indexed: 12/14/2022] Open
Abstract
The immune system and cancer have a complex relationship with the immune system playing a dual role in tumor development. The effector cells of the immune system can recognize and kill malignant cells while immune system-mediated inflammation can also promote tumor growth and regulatory cells suppress the anti-tumor responses. In the center of all anti-tumor responses is the ability of the immune cells to migrate to the tumor site and to interact with each other and with the malignant cells. Cell adhesion molecules including receptors of the immunoglobulin superfamily and integrins are of crucial importance in mediating these processes. Particularly integrins play a vital role in regulating all aspects of immune cell function including immune cell trafficking into tissues, effector cell activation and proliferation and the formation of the immunological synapse between immune cells or between immune cell and the target cell both during homeostasis and during inflammation and cancer. In this review we discuss the molecular mechanisms regulating integrin function and the role of integrins and other cell adhesion molecules in immune responses and in the tumor microenvironment. We also describe how malignant cells can utilize cell adhesion molecules to promote tumor growth and metastases and how these molecules could be targeted in cancer immunotherapy.
Collapse
Affiliation(s)
- Heidi Harjunpää
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Marc Llort Asens
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Carla Guenther
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Susanna C Fagerholm
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
24
|
Fagerholm SC, Guenther C, Llort Asens M, Savinko T, Uotila LM. Beta2-Integrins and Interacting Proteins in Leukocyte Trafficking, Immune Suppression, and Immunodeficiency Disease. Front Immunol 2019; 10:254. [PMID: 30837997 PMCID: PMC6389632 DOI: 10.3389/fimmu.2019.00254] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/29/2019] [Indexed: 12/21/2022] Open
Abstract
Beta2-integrins are complex leukocyte-specific adhesion molecules that are essential for leukocyte (e.g., neutrophil, lymphocyte) trafficking, as well as for other immunological processes such as neutrophil phagocytosis and ROS production, and T cell activation. Intriguingly, however, they have also been found to negatively regulate cytokine responses, maturation, and migratory responses in myeloid cells such as macrophages and dendritic cells, revealing new, and unexpected roles of these molecules in immunity. Because of their essential role in leukocyte function, a lack of expression or function of beta2-integrins causes rare immunodeficiency syndromes, Leukocyte adhesion deficiency type I, and type III (LAD-I and LAD-III). LAD-I is caused by reduced or lost expression of beta2-integrins, whilst in LAD-III, beta2-integrins are expressed but dysfunctional because a major integrin cytoplasmic regulator, kindlin-3, is mutated. Interestingly, some LAD-related phenotypes such as periodontitis have recently been shown to be due to an uncontrolled inflammatory response rather than to an uncontrolled infection, as was previously thought. This review will focus on the recent advances concerning the regulation and functions of beta2-integrins in leukocyte trafficking, immune suppression, and immune deficiency disease.
Collapse
Affiliation(s)
- Susanna C Fagerholm
- Molecular and Integrative Biosciences Research Program, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Carla Guenther
- Molecular and Integrative Biosciences Research Program, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Marc Llort Asens
- Molecular and Integrative Biosciences Research Program, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Liisa M Uotila
- Research Services, University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Ben-Shmuel A, Joseph N, Sabag B, Barda-Saad M. Lymphocyte mechanotransduction: The regulatory role of cytoskeletal dynamics in signaling cascades and effector functions. J Leukoc Biol 2019; 105:1261-1273. [DOI: 10.1002/jlb.mr0718-267r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Aviad Ben-Shmuel
- Laboratory of Molecular and Applied Immunology; Bar-Ilan University; The Mina and Everard Goodman Faculty of Life Sciences; Ramat-Gan Israel
| | - Noah Joseph
- Laboratory of Molecular and Applied Immunology; Bar-Ilan University; The Mina and Everard Goodman Faculty of Life Sciences; Ramat-Gan Israel
| | - Batel Sabag
- Laboratory of Molecular and Applied Immunology; Bar-Ilan University; The Mina and Everard Goodman Faculty of Life Sciences; Ramat-Gan Israel
| | - Mira Barda-Saad
- Laboratory of Molecular and Applied Immunology; Bar-Ilan University; The Mina and Everard Goodman Faculty of Life Sciences; Ramat-Gan Israel
| |
Collapse
|
26
|
Waldt N, Seifert A, Demiray YE, Devroe E, Turk BE, Reichardt P, Mix C, Reinhold A, Freund C, Müller AJ, Schraven B, Stork O, Kliche S. Filamin A Phosphorylation at Serine 2152 by the Serine/Threonine Kinase Ndr2 Controls TCR-Induced LFA-1 Activation in T Cells. Front Immunol 2018; 9:2852. [PMID: 30568657 PMCID: PMC6290345 DOI: 10.3389/fimmu.2018.02852] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/19/2018] [Indexed: 01/10/2023] Open
Abstract
The integrin LFA-1 (CD11a/CD18) plays a critical role in the interaction of T cells with antigen presenting cells (APCs) to promote lymphocyte differentiation and proliferation. This integrin can be present either in a closed or in an open active conformation and its activation upon T-cell receptor (TCR) stimulation is a critical step to allow interaction with APCs. In this study we demonstrate that the serine/threonine kinase Ndr2 is critically involved in the initiation of TCR-mediated LFA-1 activation (open conformation) in T cells. Ndr2 itself becomes activated upon TCR stimulation and phosphorylates the intracellular integrin binding partner Filamin A (FLNa) at serine 2152. This phosphorylation promotes the dissociation of FLNa from LFA-1, allowing for a subsequent association of Talin and Kindlin-3 which both stabilize the open conformation of LFA-1. Our data suggest that Ndr2 activation is a crucial step to initiate TCR-mediated LFA-1 activation in T cells.
Collapse
Affiliation(s)
- Natalie Waldt
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany
| | - Anke Seifert
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany
| | - Yunus Emre Demiray
- Institute of Biology, Department of Genetics and Molecular Neurobiology, Otto-von-Guericke University, Magdeburg, Germany
| | - Eric Devroe
- MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, United States
| | - Peter Reichardt
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany
| | - Charlie Mix
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany
| | - Annegret Reinhold
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany
| | - Christian Freund
- Protein Biochemistry Group, Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Andreas J Müller
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany.,Intravital Microscopy of Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany.,Department of Immune Control Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Oliver Stork
- Institute of Biology, Department of Genetics and Molecular Neurobiology, Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Stefanie Kliche
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
27
|
Rossy J, Laufer JM, Legler DF. Role of Mechanotransduction and Tension in T Cell Function. Front Immunol 2018; 9:2638. [PMID: 30519239 PMCID: PMC6251326 DOI: 10.3389/fimmu.2018.02638] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/26/2018] [Indexed: 12/23/2022] Open
Abstract
T cell migration from blood to, and within lymphoid organs and tissue, as well as, T cell activation rely on complex biochemical signaling events. But T cell migration and activation also take place in distinct mechanical environments and lead to drastic morphological changes and reorganization of the acto-myosin cytoskeleton. In this review we discuss how adhesion proteins and the T cell receptor act as mechanosensors to translate these mechanical contexts into signaling events. We further discuss how cell tension could bring a significant contribution to the regulation of T cell signaling and function.
Collapse
Affiliation(s)
- Jérémie Rossy
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Julia M Laufer
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland.,Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
28
|
Martín-Cófreces NB, Vicente-Manzanares M, Sánchez-Madrid F. Adhesive Interactions Delineate the Topography of the Immune Synapse. Front Cell Dev Biol 2018; 6:149. [PMID: 30425987 PMCID: PMC6218456 DOI: 10.3389/fcell.2018.00149] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/11/2018] [Indexed: 01/04/2023] Open
Abstract
T cells form adhesive contacts with antigen-presenting cells (APCs) as part of the normal surveillance process that occurs in lymph nodes and other tissues. Most of these adhesive interactions are formed by integrins that interact with ligands expressed on the surface of the APC. The interactive strength of integrins depends on their degree of membrane proximity as well as intracellular signals that dictate the conformation of the integrin. Integrins appear in different conformations that endow them with different affinities for their ligand(s). Integrin conformation and thus adhesive strength between the T cell and the APC is tuned by intracellular signals that are turned on by ligation of the T cell receptor (TCR) and chemokine receptors. During the different stages of the process, integrins, the TCR and chemokine receptors may be interconnected by the actin cytoskeleton underneath the plasma membrane, forming a chemical and physical network that facilitates the spatiotemporal dynamics, positioning, and function of these receptors and supports cell-cell adhesion during T cell activation, allowing it to perform its effector function.
Collapse
Affiliation(s)
- Noa Beatriz Martín-Cófreces
- Servicio de Inmunología, Instituto de Investigación Sanitaria Princesa (IP), Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Miguel Vicente-Manzanares
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer, CIC-IBMCC (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Instituto de Investigación Sanitaria Princesa (IP), Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
29
|
Moretti FA, Klapproth S, Ruppert R, Margraf A, Weber J, Pick R, Scheiermann C, Sperandio M, Fässler R, Moser M. Differential requirement of kindlin-3 for T cell progenitor homing to the non-vascularized and vascularized thymus. eLife 2018; 7:35816. [PMID: 30187863 PMCID: PMC6126919 DOI: 10.7554/elife.35816] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/23/2018] [Indexed: 01/13/2023] Open
Abstract
The role of integrin-mediated adhesion during T cell progenitor homing to and differentiation within the thymus is ill-defined, mainly due to functional overlap. To circumvent compensation, we disrupted the hematopoietic integrin regulator kindlin-3 in mice and found a progressive thymus atrophy that is primarily caused by an impaired homing capacity of T cell progenitors to the vascularized thymus. Notably, the low shear flow conditions in the vascular system at midgestation allow kindlin-3-deficient fetal liver-derived T cell progenitors to extravasate via pharyngeal vessels and colonize the avascular thymus primordium. Once in the thymus, kindlin-3 promotes intrathymic T cell proliferation by facilitating the integrin-dependent crosstalk with thymic antigen presenting cells, while intrathymic T cell migration, maturation into single positive CD4 and CD8 T cells and release into the circulation proceed without kindlin-3. Thus, kindlin-3 is dispensable for integrin-mediated T cell progenitor adhesion and signalling at low and indispensable at high shear forces.
Collapse
Affiliation(s)
| | - Sarah Klapproth
- Department Molecular Medicine, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Raphael Ruppert
- Department Molecular Medicine, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Andreas Margraf
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Ludwig-Maximilians-Universität, Martinsried, Germany
| | - Jasmin Weber
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Ludwig-Maximilians-Universität, Martinsried, Germany
| | - Robert Pick
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Ludwig-Maximilians-Universität, Martinsried, Germany
| | - Christoph Scheiermann
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Ludwig-Maximilians-Universität, Martinsried, Germany
| | - Markus Sperandio
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Ludwig-Maximilians-Universität, Martinsried, Germany
| | - Reinhard Fässler
- Department Molecular Medicine, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Markus Moser
- Department Molecular Medicine, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
30
|
Klann JE, Kim SH, Remedios KA, He Z, Metz PJ, Lopez J, Tysl T, Olvera JG, Ablack JN, Cantor JM, Boland BS, Yeo G, Zheng Y, Lu LF, Bui JD, Ginsberg MH, Petrich BG, Chang JT. Integrin Activation Controls Regulatory T Cell-Mediated Peripheral Tolerance. THE JOURNAL OF IMMUNOLOGY 2018; 200:4012-4023. [PMID: 29703862 DOI: 10.4049/jimmunol.1800112] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/09/2018] [Indexed: 12/22/2022]
Abstract
Maintenance of the regulatory T (Treg) cell pool is essential for peripheral tolerance and prevention of autoimmunity. Integrins, heterodimeric transmembrane proteins consisting of α and β subunits that mediate cell-to-cell and cell-to-extracellular matrix interactions, play an important role in facilitating Treg cell contact-mediated suppression. In this article, we show that integrin activation plays an essential, previously unappreciated role in maintaining murine Treg cell function. Treg cell-specific loss of talin, a β integrin-binding protein, or expression of talin(L325R), a mutant that selectively abrogates integrin activation, resulted in lethal systemic autoimmunity. This dysfunction could be attributed, in part, to a global dysregulation of the Treg cell transcriptome. Activation of integrin α4β1 led to increased suppressive capacity of the Treg cell pool, suggesting that modulating integrin activation on Treg cells may be a useful therapeutic strategy for autoimmune and inflammatory disorders. Taken together, these results reveal a critical role for integrin-mediated signals in controlling peripheral tolerance by virtue of maintaining Treg cell function.
Collapse
Affiliation(s)
- Jane E Klann
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Stephanie H Kim
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Kelly A Remedios
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Zhaoren He
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Patrick J Metz
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Justine Lopez
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Tiffani Tysl
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Jocelyn G Olvera
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Jailal N Ablack
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Joseph M Cantor
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Brigid S Boland
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Gene Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093.,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Ye Zheng
- Nomis Foundation Laboratories for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Li-Fan Lu
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Jack D Bui
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093; and
| | - Mark H Ginsberg
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Brian G Petrich
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
| | - John T Chang
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093;
| |
Collapse
|
31
|
Savinko T, Guenther C, Uotila LM, Llort Asens M, Yao S, Tojkander S, Fagerholm SC. Filamin A Is Required for Optimal T Cell Integrin-Mediated Force Transmission, Flow Adhesion, and T Cell Trafficking. THE JOURNAL OF IMMUNOLOGY 2018; 200:3109-3116. [PMID: 29581355 DOI: 10.4049/jimmunol.1700913] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 03/04/2018] [Indexed: 12/12/2022]
Abstract
T cells traffic from the bloodstream into tissues to perform their functions in the immune system and are therefore subjected to a range of different mechanical forces. Integrins are essential for T cell trafficking into the tissues, as they mediate firm adhesion between the T cell and the endothelium under shear flow conditions. In addition, integrins are important for the formation of the contact between the T cell and the APC required for T cell activation. The actin-binding protein filamin A (FlnA) provides an important link between the integrin and the actin cytoskeleton. FlnA has been reported to function as an integrin inhibitor by competing with talin. However, its role in regulating integrin-dependent immune functions in vivo is currently poorly understood. In this study, we have investigated the role of FlnA in T cells, using T cell-specific FlnA knockout mice. We report that FlnA is required for the formation of strong integrin-ligand bonds under shear flow and for the generation of integrin-mediated T cell traction forces on ligand-coated hydrogels. Consequently, absence of FlnA leads to a reduction in T cell adhesion to integrin ligands under conditions of shear flow, as well as reduced T cell trafficking into lymph nodes and sites of skin inflammation. In addition, FlnA is not needed for T cell activation in vivo, which occurs in shear-free conditions in lymphoid organs. Our results therefore reveal a role of FlnA in integrin force transmission and T cell trafficking in vivo.
Collapse
Affiliation(s)
- Terhi Savinko
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland.,Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland; and
| | - Carla Guenther
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland.,Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland; and
| | - Liisa M Uotila
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland.,Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland; and
| | - Marc Llort Asens
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland.,Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland; and
| | - Sean Yao
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00790 Helsinki, Finland
| | - Sari Tojkander
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00790 Helsinki, Finland
| | - Susanna C Fagerholm
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; .,Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland; and
| |
Collapse
|
32
|
Jankowska KI, Williamson EK, Roy NH, Blumenthal D, Chandra V, Baumgart T, Burkhardt JK. Integrins Modulate T Cell Receptor Signaling by Constraining Actin Flow at the Immunological Synapse. Front Immunol 2018; 9:25. [PMID: 29403502 PMCID: PMC5778112 DOI: 10.3389/fimmu.2018.00025] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/04/2018] [Indexed: 11/25/2022] Open
Abstract
Full T cell activation requires coordination of signals from multiple receptor–ligand pairs that interact in parallel at a specialized cell–cell contact site termed the immunological synapse (IS). Signaling at the IS is intimately associated with actin dynamics; T cell receptor (TCR) engagement induces centripetal flow of the T cell actin network, which in turn enhances the function of ligand-bound integrins by promoting conformational change. Here, we have investigated the effects of integrin engagement on actin flow, and on associated signaling events downstream of the TCR. We show that integrin engagement significantly decelerates centripetal flow of the actin network. In primary CD4+ T cells, engagement of either LFA-1 or VLA-4 by their respective ligands ICAM-1 and VCAM-1 slows actin flow. Slowing is greatest when T cells interact with low mobility integrin ligands, supporting a predominately drag-based mechanism. Using integrin ligands presented on patterned surfaces, we demonstrate that the effects of localized integrin engagement are distributed across the actin network, and that focal adhesion proteins, such as talin, vinculin, and paxillin, are recruited to sites of integrin engagement. Further analysis shows that talin and vinculin are interdependent upon one another for recruitment, and that ongoing actin flow is required. Suppression of vinculin or talin partially relieves integrin-dependent slowing of actin flow, indicating that these proteins serve as molecular clutches that couple engaged integrins to the dynamic actin network. Finally, we found that integrin-dependent slowing of actin flow is associated with reduction in tyrosine phosphorylation downstream of the TCR, and that this modulation of TCR signaling depends on expression of talin and vinculin. More generally, we found that integrin-dependent effects on actin retrograde flow were strongly correlated with effects on TCR signaling. Taken together, these studies support a model in which ligand-bound integrins engage the actin cytoskeletal network via talin and vinculin, and tune TCR signaling events by modulating actin dynamics at the IS.
Collapse
Affiliation(s)
- Katarzyna I Jankowska
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Edward K Williamson
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Nathan H Roy
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel Blumenthal
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Vidhi Chandra
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Tobias Baumgart
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
33
|
Feigelson SW, Solomon A, Biram A, Hatzav M, Lichtenstein M, Regev O, Kozlovski S, Varol D, Curato C, Leshkowitz D, Jung S, Shulman Z, Alon R. ICAMs Are Not Obligatory for Functional Immune Synapses between Naive CD4 T Cells and Lymph Node DCs. Cell Rep 2018; 22:849-859. [DOI: 10.1016/j.celrep.2017.12.103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/12/2017] [Accepted: 12/27/2017] [Indexed: 12/31/2022] Open
|
34
|
Klann JE, Remedios KA, Kim SH, Metz PJ, Lopez J, Mack LA, Zheng Y, Ginsberg MH, Petrich BG, Chang JT. Talin Plays a Critical Role in the Maintenance of the Regulatory T Cell Pool. THE JOURNAL OF IMMUNOLOGY 2017; 198:4639-4651. [PMID: 28515282 DOI: 10.4049/jimmunol.1601165] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 04/14/2017] [Indexed: 12/22/2022]
Abstract
Talin, a cytoskeletal protein essential in mediating integrin activation, has been previously shown to be involved in the regulation of T cell proliferation and function. In this study, we describe a role for talin in maintaining the homeostasis and survival of the regulatory T (Treg) cell pool. T cell-specific deletion of talin in Tln1fl/flCd4Cre mice resulted in spontaneous lymphocyte activation, primarily due to numerical and functional deficiencies of Treg cells in the periphery. Peripheral talin-deficient Treg cells were unable to maintain high expression of IL-2Rα, resulting in impaired IL-2 signaling and ultimately leading to increased apoptosis through downregulation of prosurvival proteins Bcl-2 and Mcl-1. The requirement for talin in maintaining high IL-2Rα expression by Treg cells was due, in part, to integrin LFA-1-mediated interactions between Treg cells and dendritic cells. Collectively, our data suggest a critical role for talin in Treg cell-mediated maintenance of immune homeostasis.
Collapse
Affiliation(s)
- Jane E Klann
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Kelly A Remedios
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Stephanie H Kim
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Patrick J Metz
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Justine Lopez
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Lauren A Mack
- Nomis Foundation Laboratories for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037; and
| | - Ye Zheng
- Nomis Foundation Laboratories for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037; and
| | - Mark H Ginsberg
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Brian G Petrich
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA 30322
| | - John T Chang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093;
| |
Collapse
|
35
|
Lagarrigue F, Gertler FB, Ginsberg MH, Cantor JM. Cutting Edge: Loss of T Cell RIAM Precludes Conjugate Formation with APC and Prevents Immune-Mediated Diabetes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:3410-3415. [PMID: 28348273 PMCID: PMC5954999 DOI: 10.4049/jimmunol.1601743] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/02/2017] [Indexed: 01/22/2023]
Abstract
Rap1-interacting adaptor molecule (RIAM) is a Rap1 effector that mediates the recruitment of talin to integrins, thereby supporting their activation. In this study, we investigated the role of RIAM in an adoptive transfer model for type I diabetes and report that RIAM expression in T cells is necessary for diabetes development. Loss of RIAM did not prevent lymphocyte recruitment to draining lymph nodes 24 h after transfer, but it was required for Ag-driven proliferation and cytotoxic killing. RIAM is recruited to immune synapses along with talin and LFA-1, and loss of RIAM profoundly suppresses Ag-dependent conjugate formation in primary naive and effector T cells. These data identify the requirement of RIAM for formation of immunological synapses and in resulting T cell functions in autoimmunity. Moreover, because RIAM-null mice are healthy, fertile, and display no bleeding abnormalities, our results identify RIAM and its regulators as potential targets for therapies of T cell-mediated autoimmunity.
Collapse
Affiliation(s)
- Frederic Lagarrigue
- Department of Medicine, University of California San Diego, La Jolla, CA 92093; and
| | - Frank B Gertler
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Mark H Ginsberg
- Department of Medicine, University of California San Diego, La Jolla, CA 92093; and
| | - Joseph M Cantor
- Department of Medicine, University of California San Diego, La Jolla, CA 92093; and
| |
Collapse
|
36
|
NDR1-Dependent Regulation of Kindlin-3 Controls High-Affinity LFA-1 Binding and Immune Synapse Organization. Mol Cell Biol 2017; 37:MCB.00424-16. [PMID: 28137909 PMCID: PMC5376635 DOI: 10.1128/mcb.00424-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/24/2017] [Indexed: 12/23/2022] Open
Abstract
Antigen-specific adhesion between T cells and antigen-presenting cells (APC) during the formation of the immunological synapse (IS) is mediated by LFA-1 and ICAM-1. Here, LFA-1–ICAM-1 interactions were measured at the single-molecule level on supported lipid bilayers. High-affinity binding was detected at low frequencies in the inner peripheral supramolecular activation cluster (SMAC) zone that contained high levels of activated Rap1 and kindlin-3. Rap1 was essential for T cell attachment, whereas deficiencies of ste20-like kinases, Mst1/Mst2, diminished high-affinity binding and abrogated central SMAC (cSMAC) formation with mislocalized kindlin-3 and vesicle transport regulators involved in T cell receptor recycling/releasing machineries, resulting in impaired T cell-APC interactions. We found that NDR1 kinase, activated by the Rap1 signaling cascade through RAPL and Mst1/Mst2, associated with and recruited kindlin-3 to the IS, which was required for high-affinity LFA-1/ICAM-1 binding and cSMAC formation. Our findings reveal crucial roles for Rap1 signaling via NDR1 for recruitment of kindlin-3 and IS organization.
Collapse
|
37
|
Kilcollins AM, Li J, Hsiao CHC, Wiemer AJ. HMBPP Analog Prodrugs Bypass Energy-Dependent Uptake To Promote Efficient BTN3A1-Mediated Malignant Cell Lysis by Vγ9Vδ2 T Lymphocyte Effectors. THE JOURNAL OF IMMUNOLOGY 2016; 197:419-28. [PMID: 27271567 DOI: 10.4049/jimmunol.1501833] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 05/04/2016] [Indexed: 01/05/2023]
Abstract
Vγ9Vδ2 effector T cells lyse cells in response to phosphorus-containing small molecules, providing primates a unique route to remove infected or malignant cells. Yet, the triggering mechanisms remain ill defined. We examined lysis mediated by human Vγ9Vδ2 effector T cells in response to the naturally occurring (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) or a synthetic cell-permeable prodrug, bis (pivaloyloxymethyl) (E)-4-hydroxy-3-methyl-but-2-enyl phosphonate. CD27(+)/CD45RA(-) Th1-like effector cells killed K562 target cells through a mechanism that could be enhanced by either compound or TCR Ab and blocked by Src inhibition or butyrophilin 3 isoform A1 (BTN3A1) disruption. Pretreatment at 4 °: C decreased HMBPP-induced lysis but did not reduce lysis induced by bis (pivaloyloxymethyl) (E)-4-hydroxy-3-methyl-but-2-enyl phosphonate. Together, our results show that internalization of HMBPP into target cells is required for BTN3A1-dependent lysis by Vγ9Vδ2 effector T cells. The enhanced activity of the prodrug analog is due to its ability to bypass the pathways required for entry of HMBPP. These findings support an inside-out model of T cell triggering driven by small-molecule induction of BTN3A1.
Collapse
Affiliation(s)
- Ashley M Kilcollins
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269
| | - Jin Li
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269; and
| | | | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269; and Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
38
|
Lim D, Lu Y, Rudd CE. Non-cleavable talin rescues defect in the T-cell conjugation of T-cells deficient in the immune adaptor SKAP1. Immunol Lett 2016; 172:40-6. [PMID: 26905930 PMCID: PMC4860717 DOI: 10.1016/j.imlet.2016.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 11/09/2022]
Abstract
Skap1−/− T-cells show impaired talin and RIAM localization at the anti-CD3 beads. Talin cleavage is altered in Skap1−/− T-cells. Cleavage resistant talin (L432G) restored normal conjugation of Skap1−/− T-cells. Immune cell adaptor SKAP1 interfaces with regulation of talin and RIAM in T-cells.
While the cytoskeletal protein talin binds to the β-chain of LFA-1, the immune cell adaptor SKAP1 (SKAP-55) binds to the α-chain of the same integrin via RapL. Whereas calpain protease cleavage of talin is important for LFA-1 activation, it has been unclear whether SKAP1 can alter the function of talin or its associated adaptor RIAM in T-cells. In this paper, we report that Skap1−/− T-cells showed a reduction in the translocation of talin and RIAM to the contact interface of T-cells with antigenic beads or dendritic cells (DCs) presenting OVA peptide to OT-1 T-cells. In addition, Skap1−/− T-cells show an altered pattern of talin cleavage, while the expression of a cleavage resistant form of talin (L432G) restored the impaired adhesion of OT1 transgenic Skap1−/− T-cells with DCs. SKAP1 therefore can affect the function of talin in T-cells needed for optimal T-cell/DC conjugation.
Collapse
Affiliation(s)
- Daina Lim
- Cell Signalling Section, Division of Immunology, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK; Cambridge Institute of Medical Research, Hills Road, CB2 OXY Cambridge, UK
| | - Yuning Lu
- Cell Signalling Section, Division of Immunology, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK; Cambridge Institute of Medical Research, Hills Road, CB2 OXY Cambridge, UK
| | - Christopher E Rudd
- Cell Signalling Section, Division of Immunology, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK; Cambridge Institute of Medical Research, Hills Road, CB2 OXY Cambridge, UK.
| |
Collapse
|
39
|
Linel P, Wu S, Deng N, Wu H. Dynamic transcriptional signatures and network responses for clinical symptoms in influenza-infected human subjects using systems biology approaches. J Pharmacokinet Pharmacodyn 2015; 41:509-21. [PMID: 25015847 DOI: 10.1007/s10928-014-9365-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/14/2014] [Indexed: 01/10/2023]
Abstract
Recent studies demonstrate that human blood transcriptional signatures may be used to support diagnosis and clinical decisions for acute respiratory viral infections such as influenza. In this article, we propose to use a newly developed systems biology approach for time course gene expression data to identify significant dynamically response genes and dynamic gene network responses to viral infection. We illustrate the methodological pipeline by reanalyzing the time course gene expression data from a study with healthy human subjects challenged by live influenza virus. We observed clear differences in the number of significant dynamic response genes (DRGs) between the symptomatic and asymptomatic subjects and also identified DRG signatures for symptomatic subjects with influenza infection. The 505 common DRGs shared by the symptomatic subjects have high consistency with the signature genes for predicting viral infection identified in previous works. The temporal response patterns and network response features were carefully analyzed and investigated.
Collapse
|
40
|
Loss of the Rap1 effector RIAM results in leukocyte adhesion deficiency due to impaired β2 integrin function in mice. Blood 2015; 126:2704-12. [PMID: 26337492 DOI: 10.1182/blood-2015-05-647453] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 08/24/2015] [Indexed: 01/13/2023] Open
Abstract
Talin is an integrin adaptor, which controls integrin activity in all hematopoietic cells. How intracellular signals promote talin binding to the integrin tail leading to integrin activation is still poorly understood, especially in leukocytes. In vitro studies identified an integrin activation complex whose formation is initiated by the interaction of active, guanosine triphosphate (GTP)-bound Ras-related protein 1 (Rap1) with the adapter protein Rap1-GTP-interacting adapter molecule (RIAM) followed by the recruitment of talin to the plasma membrane. Unexpectedly, loss-of-function studies in mice have shown that the talin-activating role of RIAM is neither required for development nor for integrin activation in platelets. In this study, we show that leukocyte integrin activation critically depends on RIAM both in vitro and in vivo. RIAM deficiency results in a loss of β2 integrin activation in multiple leukocyte populations, impaired leukocyte adhesion to inflamed vessels, and accumulation in the circulation. Surprisingly, however, the major leukocyte β1 integrin family member, α4β1, was only partially affected by RIAM deficiency in leukocytes. Thus, although talin is an essential, shared regulator of all integrin classes expressed by leukocytes, we report that β2 and α4 integrins use different RIAM-dependent and -independent pathways to undergo activation by talin.
Collapse
|
41
|
Kallikourdis M, Viola A, Benvenuti F. Human Immunodeficiencies Related to Defective APC/T Cell Interaction. Front Immunol 2015; 6:433. [PMID: 26379669 PMCID: PMC4551858 DOI: 10.3389/fimmu.2015.00433] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 08/09/2015] [Indexed: 11/13/2022] Open
Abstract
The primary event for initiating adaptive immune responses is the encounter between T lymphocytes and antigen presenting cells (APCs) in the T cell area of secondary lymphoid organs and the formation of highly organized intercellular junctions referred to as immune synapses (IS). In vivo live-cell imaging of APC-T cell interactions combined to functional studies unveiled that T cell fate is dictated, in large part, by the stability of the initial contact. Immune cell interaction is equally important during delivery of T cell help to B cells and for the killing of target cells by cytotoxic T cells and NK cells. The critical role of contact dynamics and synapse stability on the immune response is well illustrated by human immune deficiencies in which disease pathogenesis is linked to altered adhesion or defective cross-talk between the synaptic partners. The Wiskott-Aldrich syndrome (WAS) is a severe primary immunodeficiency caused by mutations in the Wiskott-Aldrich syndrome protein (WASp), a scaffold that promotes actin polymerization and links TCR stimulation to T cell activation. Absence or mutations in WASp affects intercellular APC-T cell communications by interfering with multiple mechanisms on both sides of the IS. The warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is caused by mutations in CXCR4, a chemokine receptor that in mutant form leads to impairment of APC-T cell interactions. Present evidences suggest that other recently characterized primary immune deficiencies caused by mutation in genes linked to actin cytoskeletal reorganization, such as WIP and DOCK8, may also depend on altered synapse stability. Here, we will discuss in details the mechanisms of disturbed APC-T cell interactions in WAS and WHIM. Moreover, we will summarize the evidence pointing to a compromised conjugate formation in WIP, DOCK8, and X-linked lymphoproliferative syndrome.
Collapse
Affiliation(s)
- Marinos Kallikourdis
- Humanitas University , Rozzano , Italy ; Adaptive Immunity Laboratory, Humanitas Clinical and Research Center , Rozzano , Italy
| | | | - Federica Benvenuti
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology , Trieste , Italy
| |
Collapse
|
42
|
Morrison VL, Uotila LM, Llort Asens M, Savinko T, Fagerholm SC. Optimal T Cell Activation and B Cell Antibody Responses In Vivo Require the Interaction between Leukocyte Function-Associated Antigen-1 and Kindlin-3. THE JOURNAL OF IMMUNOLOGY 2015; 195:105-15. [PMID: 25987740 DOI: 10.4049/jimmunol.1402741] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/21/2015] [Indexed: 12/29/2022]
Abstract
Kindlin-3 is an important integrin regulator that is mutated in the rare genetic disorder, leukocyte adhesion deficiency type III, a disorder characterized by defective neutrophil trafficking and platelet function, leading to recurrent bacterial infections and bleeding. Kindlin-3 is also known to regulate T cell adhesion in vitro and trafficking in vivo, but whether the integrin/kindlin interaction regulates T or B cell activation in vivo is unclear. In this study, we used TTT/AAA β2-integrin knock-in (KI) mice and TCR-transgenic (OT-II) KI mice, in which the integrin/kindlin connection is disrupted, to investigate the role of the integrin/kindlin interaction in T cell activation. We show that basal T cell activation status in these animals in vivo is normal, but they display reduced T cell activation by wild-type Ag-loaded dendritic cells in vitro. In addition, T cell activation in vivo is reduced. We also show that basal Ab levels are normal in TTT/AAA β2-integrin KI mice, but B cell numbers in lymph nodes and IgG and IgM production after immunization are reduced. In conclusion, we show that the integrin/kindlin interaction is required for trafficking of immune cells, as well as for T cell activation and B cell Ab responses in vivo. These results imply that the immunodeficiency found in leukocyte adhesion deficiency type III patients, in addition to being caused by defects in neutrophil function, may be due, in part, to defects in lymphocyte trafficking and activation.
Collapse
Affiliation(s)
| | - Liisa M Uotila
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Marc Llort Asens
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Terhi Savinko
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Susanna Carola Fagerholm
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland; Medical Research Institute, University of Dundee, Dundee DD1 9SY, United Kingdom; and Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
43
|
Verma NK, Kelleher D. Adaptor regulation of LFA-1 signaling in T lymphocyte migration: Potential druggable targets for immunotherapies? Eur J Immunol 2014; 44:3484-99. [PMID: 25251823 DOI: 10.1002/eji.201344428] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 09/16/2014] [Accepted: 09/22/2014] [Indexed: 01/24/2023]
Abstract
The integrin lymphocyte function associated antigen-1 (LFA-1) plays a key role in leukocyte trafficking and in adaptive immune responses through interactions with adhesive ligands, such as ICAM-1. Specific blockade of these interactions has validated LFA-1 as a therapeutic target in many chronic inflammatory diseases, however LFA-1 antagonists have not been clinically successful due to the development of a general immunosuppression, causing fatal side effects. Growing evidence has now established that LFA-1 mediates an array of intracellular signaling pathways by triggering a number of downstream molecules. In this context, a class of multimodular domain-containing proteins capable of recruiting two or more effector molecules, collectively known as "adaptor proteins," has emerged as important mediators in LFA-1 signal transduction. Here, we provide an overview of the adaptor proteins involved in the intracellular signaling cascades by which LFA-1 regulates T-cell motility and immune responses. The complexity of the LFA-1-associated signaling delineated in this review suggests that it may be an important and challenging focus for future research, enabling the identification of "tunable" targets for the development of immunotherapies.
Collapse
Affiliation(s)
- Navin K Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Singapore Eye Research Institute, Singapore, Singapore
| | | |
Collapse
|
44
|
Molecular mechanisms and functional implications of polarized actin remodeling at the T cell immunological synapse. Cell Mol Life Sci 2014; 72:537-556. [PMID: 25355055 DOI: 10.1007/s00018-014-1760-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 09/22/2014] [Accepted: 10/13/2014] [Indexed: 02/05/2023]
Abstract
Transient,specialized cell-cell interactions play a central role in leukocyte function by enabling specific intercellular communication in the context of a highly dynamic systems level response. The dramatic structural changes required for the formation of these contacts are driven by rapid and precise cytoskeletal remodeling events. In recent years, the immunological synapse that forms between a T lymphocyte and its antigen-presenting target cell has emerged as an important model system for understanding immune cell interactions. In this review, we discuss how regulators of the cortical actin cytoskeleton control synaptic architecture and in this way specify T cell function.
Collapse
|
45
|
Loss of beta2-integrin-mediated cytoskeletal linkage reprogrammes dendritic cells to a mature migratory phenotype. Nat Commun 2014; 5:5359. [PMID: 25348463 PMCID: PMC4258606 DOI: 10.1038/ncomms6359] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/23/2014] [Indexed: 01/03/2023] Open
Abstract
The actin cytoskeleton has been reported to restrict signaling in resting immune cells. Beta2-integrins, which mediate adhesion and cytoskeletal organization, are emerging as negative regulators of myeloid cell-mediated immune responses, but the molecular mechanisms involved are poorly understood. Here, we show that loss of the interaction between beta2-integrins and kindlin-3 abolishes the actin-linkage of integrins and the GM-CSF receptor in dendritic cells. This leads to increased GM-CSF receptor/Syk signaling, and to the induction of a transcriptional program characteristic of mature, migratory dendritic cells, accumulation of migratory dendritic cells in lymphoid organs, and increased Th1 immune responses in vivo. We observe increased GM-CSF responses and increased survival in neutrophils where the interaction between integrin and the cytoskeleton is disrupted. Thus, ligand-reinforced beta2-integrin tail interactions restrict cytokine receptor signaling, survival, maturation and migration in myeloid cells and thereby contribute to immune homeostasis in vivo.
Collapse
|
46
|
Lagrue K, Carisey A, Oszmiana A, Kennedy PR, Williamson DJ, Cartwright A, Barthen C, Davis DM. The central role of the cytoskeleton in mechanisms and functions of the NK cell immune synapse. Immunol Rev 2014; 256:203-21. [PMID: 24117823 DOI: 10.1111/imr.12107] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Natural killer (NK) cells discriminate between healthy and unhealthy target cells through a balance of activating and inhibitory signals at direct intercellular contacts called immune synapses. Rearrangements in the cellular cytoskeleton have long been known to be critical in assembly of immune synapses. Here, through bringing together the vast literature on this subject, the number of different ways in which the cytoskeleton is important becomes evident. The dynamics of filamentous actin are critical in (i) creating the nanometer-scale organization of NK cell receptors, (ii) establishing cellular polarity, (iii) coordinating immune receptor and integrin-mediated signaling, and (iv) directing secretion of lytic granules and cytokines. The microtubule network also is important in the delivery of lytic granules and vesicles containing cytokines to the immune synapse. Together, these data establish that the cytoskeleton acts as a central regulator of this complex and dynamic process - and an enormous amount of NK cell biology is controlled through the cytoskeleton.
Collapse
Affiliation(s)
- Kathryn Lagrue
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK; Division of Cell and Molecular Biology, Imperial College, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Jenkins MR, Stinchcombe JC, Au-Yeung BB, Asano Y, Ritter AT, Weiss A, Griffiths GM. Distinct structural and catalytic roles for Zap70 in formation of the immunological synapse in CTL. eLife 2014; 3:e01310. [PMID: 24596147 PMCID: PMC3936284 DOI: 10.7554/elife.01310] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 01/22/2014] [Indexed: 11/13/2022] Open
Abstract
T cell receptor (TCR) activation leads to a dramatic reorganisation of both membranes and receptors as the immunological synapse forms. Using a genetic model to rapidly inhibit Zap70 catalytic activity we examined synapse formation between cytotoxic T lymphocytes and their targets. In the absence of Zap70 catalytic activity Vav-1 activation occurs and synapse formation is arrested at a stage with actin and integrin rich interdigitations forming the interface between the two cells. The membranes at the synapse are unable to flatten to provide extended contact, and Lck does not cluster to form the central supramolecular activation cluster (cSMAC). Centrosome polarisation is initiated but aborts before reaching the synapse and the granules do not polarise. Our findings reveal distinct roles for Zap70 as a structural protein regulating integrin-mediated control of actin vs its catalytic activity that regulates TCR-mediated control of actin and membrane remodelling during formation of the immunological synapse. DOI: http://dx.doi.org/10.7554/eLife.01310.001.
Collapse
Affiliation(s)
- Misty R Jenkins
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Jane C Stinchcombe
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Byron B Au-Yeung
- Department of Medicine, University of California, San Francisco, San Francisco, United States
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
- Howard Hughes Medical Institue, University of California, San Francisco, San Francisco, United States
| | - Yukako Asano
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Alex T Ritter
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Cell Biology and Metabolism Branch, National Institutes of Health, Bethesda, United States
| | - Arthur Weiss
- Department of Medicine, University of California, San Francisco, San Francisco, United States
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
- Howard Hughes Medical Institue, University of California, San Francisco, San Francisco, United States
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
48
|
Fagerholm SC, Lek HS, Morrison VL. Kindlin-3 in the immune system. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2014; 3:37-42. [PMID: 24660120 PMCID: PMC3960760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/12/2013] [Indexed: 06/03/2023]
Abstract
Kindlin-3 is a member of the kindlin family of focal adhesion proteins which bind to integrin beta-chain cytoplasmic domains to regulate integrin function. In contrast to kindlin-1 and kindlin-2 proteins, kindlin-3 is expressed mainly in the hematopoietic system. Mutations in kindlin-3 result in the rare genetic disorder, leukocyte adhesion deficiency type III (LAD-III), which is characterized by bleeding and recurrent infections due to deficient beta1, beta2 and beta3 integrin activation in platelets and leukocytes. Here, we review the role of kindlin-3 in integrin activation and in different immune cell functions.
Collapse
Affiliation(s)
- Susanna C Fagerholm
- Institute of Biotechnology, University of HelsinkiFinland
- Medical Research Institute, Ninewells Hospital and Medical School, University of DundeeUK
| | - Hwee San Lek
- Medical Research Institute, Ninewells Hospital and Medical School, University of DundeeUK
| | - Vicky L Morrison
- Medical Research Institute, Ninewells Hospital and Medical School, University of DundeeUK
| |
Collapse
|
49
|
Moreno-Layseca P, Streuli CH. Signalling pathways linking integrins with cell cycle progression. Matrix Biol 2014; 34:144-53. [DOI: 10.1016/j.matbio.2013.10.011] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 12/30/2022]
|
50
|
Niggli V. Insights into the mechanism for dictating polarity in migrating T-cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 312:201-70. [PMID: 25262243 DOI: 10.1016/b978-0-12-800178-3.00007-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review is focused on mechanisms of chemokine-induced polarization of T-lymphocytes. Polarization involves, starting from spherical cells, formation of a morphologically and functionally different rear (uropod) and front (leading edge). This polarization is required for efficient random and directed T-cell migration. The addressed topics concern the specific location of cell organelles and of receptors, signaling molecules, and cytoskeletal proteins in chemokine-stimulated polarized T-cells. In chemokine-stimulated, polarized T-cells, specific proteins, signaling molecules and organelles show enrichment either in the rear, the midzone, or the front; different from the random location in spherical resting cells. Possible mechanisms involved in this asymmetric location will be discussed. A major topic is also the functional role of proteins and cell organelles in T-cell polarization and migration. Specifically, the roles of adhesion and chemokine receptors, cytoskeletal proteins, signaling molecules, scaffolding proteins, and membrane microdomains in these processes will be discussed. The polarity which is established during contact formation of T-cells with antigen-presenting cells is not discussed in detail.
Collapse
Affiliation(s)
- Verena Niggli
- Institute of Pathology, University of Bern, Bern, Switzerland.
| |
Collapse
|