1
|
Abdelrahman F, Makky S, Teba HE, Agwa MM, Abd ElAziz MM, Awad R, Hassan YY, Abdelsattar AS, Connerton IF, El-Shibiny A. Potential of vB_Pa_ZCPS1 phage embedded in situ gelling formulations as an ocular delivery system to attenuate Pseudomonas aeruginosa keratitis in a rabbit model. J Control Release 2025; 380:52-70. [PMID: 39892651 DOI: 10.1016/j.jconrel.2025.01.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Pseudomonas aeruginosa keratitis (or pink eye) is a challenging ocular infection that causes serious complications due to the deficiency of effective antibiotic treatment. Thus, in this study we isolated and characterized a specific bacteriophage, phage vB_Pa_ZCPS1, to be used to formulate an in situ- gel loaded bacteriophage for an in vivo rabbit infection treatment model. Phage vB_Pa_ZCPS1 is a double-stranded DNA bacterial virus, of 46,135 bp encoding 75 open reading frames (ORFs) with no antibiotic resistance genes detected. Moreover, it has a podoviral morphotype from the Caudoviricetes class with a 62.4 nm capsid and a short inflexible tail of around 18.8 nm, as indicated by the transmission electron microscope (TEM). Phage vB_Pa_ZCPS1 presented good stability to the UV exposure and a wide range of pH values from 3.0 to 11.0. In addition, the phage-bacteria dynamics study showed that phage vB_Pa_ZCPS1 was effective against P. aeruginosa, especially at low multiplicities of infections (MOIs), including 0.001, 0.01, and 0.1. Respectively, it was loaded to the characterized in situ gel composed of 14 % Pluronic F-127 and 1.5 % HPMC K4M polymer. The in situ-gel has a gelling time of 30 s ± 1, and a temperature of 33 °C ± 1, where the viscosity of the gel increases 10-fold. For the in vivo trial, the infected group treated with phage presented improved clinical outcomes, where the histopathological analysis revealed normal corneal thickness and intact corneal stratified squamous epithelium. Thus, the in situ-gel loaded phage vB_Pa_ZCPS1 could be a potential candidate approach to treat P. aeruginosa keratitis.
Collapse
Affiliation(s)
- Fatma Abdelrahman
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Salsabil Makky
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Hoda E Teba
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Misr University for Science and Technology, 6th of October City, Egypt
| | - Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Marwa M Abd ElAziz
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Ramy Awad
- Department of Ophthalmology, Faculty of Medicine, Delta University for Science and Technology, Dakahlia, Egypt; Department of Ophthalmology, Alexandria General Ophthalmology Hospital, Alexandria, Egypt
| | - Yara Y Hassan
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Ian F Connerton
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, UK
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt; Faculty of Environmental Agricultural Sciences, Arish University, Arish 45511, Egypt.
| |
Collapse
|
2
|
Reuven AD, Katzenell S, Mwaura BW, Bliska JB. ExoS effector in Pseudomonas aeruginosa Hyperactive Type III secretion system mutant promotes enhanced Plasma Membrane Rupture in Neutrophils. PLoS Pathog 2025; 21:e1013021. [PMID: 40173191 PMCID: PMC11984736 DOI: 10.1371/journal.ppat.1013021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 04/10/2025] [Accepted: 03/05/2025] [Indexed: 04/04/2025] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen responsible for airway infections in immunocompromised individuals, including those with cystic fibrosis (CF). P. aeruginosa has a type III secretion system (T3SS) that translocates effectors into host cells. ExoS is a T3SS effector with ADP ribosyltransferase (ADPRT) activity. ExoS ADPRT activity promotes P. aeruginosa virulence by inhibiting phagocytosis and limiting oxidative burst in neutrophils. The P. aeruginosa T3SS also translocates flagellin, which can activate the NLRC4 inflammasome, resulting in: 1) gasdermin-D pores, release of IL-1β and pyroptosis; and 2) histone 3 citrullination (CitH3), nuclear DNA decondensation and expansion into the neutrophil cytosol with incomplete NET extrusion. However, studies with P. aeruginosa PAO1 indicate that ExoS ADPRT activity inhibits the NLRC4 inflammasome in neutrophils. Here, we identified an ExoS+ CF clinical isolate of P. aeruginosa with a hyperactive T3SS. Variants of the hyperactive T3SS mutant or PAO1 were used to infect neutrophils from C57BL/6 mice that were wildtype or engineered to have a CF genotype or defects in inflammasome assembly. Responses to NLRC4 inflammasome assembly or ExoS ADPRT activity were assayed and found to be similar for C57BL/6 or CF neutrophils. ExoS ADPRT activity in the hyperactive T3SS mutant regulated inflammasome, nuclear DNA decondensation and incomplete NET extrusion responses, like PAO1, but promoted enhanced CitH3 and plasma membrane rupture (PMR). Glycine supplementation inhibited PMR by the hyperactive T3SS mutant, suggesting ninjurin-1 is required for this process. These results identify enhanced neutrophil PMR as a pathogenic activity of ExoS ADPRT in hypervirulent P. aeruginosa.
Collapse
Affiliation(s)
- Arianna D. Reuven
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, United States of America
| | - Sarah Katzenell
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, United States of America
| | - Bethany W. Mwaura
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, United States of America
| | - James B. Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, United States of America
| |
Collapse
|
3
|
Reuven AD, Mwaura BW, Bliska JB. ExoS Effector in Pseudomonas aeruginosa Hyperactive Type III Secretion System Mutant Promotes Enhanced Plasma Membrane Rupture in Neutrophils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577040. [PMID: 38328038 PMCID: PMC10849719 DOI: 10.1101/2024.01.24.577040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen responsible for a large percentage of airway infections that cause morbidity and mortality in immunocompromised patients, especially those with cystic fibrosis (CF). One important P. aeruginosa virulence factor is a type III secretion system (T3SS) that translocates effectors into host cells. ExoS is a T3SS effector with ADP ribosyltransferase (ADPRT) activity. The ADPRT activity of ExoS promotes P. aeruginosa virulence by inhibiting phagocytosis and limiting the oxidative burst in neutrophils. The P. aeruginosa T3SS also translocates flagellin, which can activate the NLRC4 inflammasome, resulting in: 1) gasdermin-D (GSDMD) pores, release of IL-1β and pyroptosis; and 2) histone 3 citrullination (CitH3) and decondensation and expansion of nuclear DNA into the cytosol. However, recent studies with the P. aeruginosa laboratory strain PAO1 indicate that ExoS ADPRT activity inhibits activation of the NLRC4 inflammasome in neutrophils. Here, an ExoS+ CF clinical isolate of P. aeruginosa with a hyperactive T3SS was identified. Variants of the hyperactive T3SS mutant or PAO1 were used to infect neutrophils from C57BL/6 mice or mice engineered to have a CF genotype or a defect in inflammasome assembly. Responses to NLRC4 inflammasome assembly or ExoS ADPRT activity were assayed, results of which were found to be similar for C57BL/6 or CF neutrophils. The hyperactive T3SS mutant had enhanced resistance to neutrophil killing, like previously identified hypervirulent P. aeruginosa isolates. ExoS ADPRT activity in the hyperactive T3SS mutant regulated inflammasome and nuclear DNA decondensation responses like PAO1 but promoted enhanced CitH3 and plasma membrane rupture (PMR). Glycine supplementation inhibited PMR caused by the hyperactive T3SS mutant, suggesting ninjurin-1 is required for this process. These results identify enhanced neutrophil PMR as a pathogenic activity of ExoS ADPRT in a hypervirulent P. aeruginosa isolate.
Collapse
Affiliation(s)
- Arianna D. Reuven
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Bethany W. Mwaura
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - James B. Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| |
Collapse
|
4
|
Simonis A, Kreer C, Albus A, Rox K, Yuan B, Holzmann D, Wilms JA, Zuber S, Kottege L, Winter S, Meyer M, Schmitt K, Gruell H, Theobald SJ, Hellmann AM, Meyer C, Ercanoglu MS, Cramer N, Munder A, Hallek M, Fätkenheuer G, Koch M, Seifert H, Rietschel E, Marlovits TC, van Koningsbruggen-Rietschel S, Klein F, Rybniker J. Discovery of highly neutralizing human antibodies targeting Pseudomonas aeruginosa. Cell 2023; 186:5098-5113.e19. [PMID: 37918395 DOI: 10.1016/j.cell.2023.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/17/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023]
Abstract
Drug-resistant Pseudomonas aeruginosa (PA) poses an emerging threat to human health with urgent need for alternative therapeutic approaches. Here, we deciphered the B cell and antibody response to the virulence-associated type III secretion system (T3SS) in a cohort of patients chronically infected with PA. Single-cell analytics revealed a diverse B cell receptor repertoire directed against the T3SS needle-tip protein PcrV, enabling the production of monoclonal antibodies (mAbs) abrogating T3SS-mediated cytotoxicity. Mechanistic studies involving cryoelectron microscopy identified a surface-exposed C-terminal PcrV epitope as the target of highly neutralizing mAbs with broad activity against drug-resistant PA isolates. These anti-PcrV mAbs were as effective as treatment with conventional antibiotics in vivo. Our study reveals that chronically infected patients represent a source of neutralizing antibodies, which can be exploited as therapeutics against PA.
Collapse
Affiliation(s)
- Alexander Simonis
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50937 Cologne, Germany.
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Alexandra Albus
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Katharina Rox
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Biao Yuan
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf (UKE), 22607 Hamburg, Germany; Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany; Deutsches Elektronen-Synchrotron Zentrum (DESY), 22607 Hamburg, Germany
| | - Dmitriy Holzmann
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Joana A Wilms
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Sylvia Zuber
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Lisa Kottege
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Sandra Winter
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Meike Meyer
- CF Centre, Pediatric Pulmonology and Allergology, University Children's Hospital Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Centre for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Kristin Schmitt
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Henning Gruell
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Sebastian J Theobald
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Anna-Maria Hellmann
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Department of Experimental Pediatric Oncology, University Children's Hospital Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Christina Meyer
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Meryem Seda Ercanoglu
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Nina Cramer
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
| | - Antje Munder
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research, 30625 Hannover, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Gerd Fätkenheuer
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50937 Cologne, Germany
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Harald Seifert
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50937 Cologne, Germany; Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany
| | - Ernst Rietschel
- CF Centre, Pediatric Pulmonology and Allergology, University Children's Hospital Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Centre for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Thomas C Marlovits
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf (UKE), 22607 Hamburg, Germany; Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany; Deutsches Elektronen-Synchrotron Zentrum (DESY), 22607 Hamburg, Germany
| | - Silke van Koningsbruggen-Rietschel
- CF Centre, Pediatric Pulmonology and Allergology, University Children's Hospital Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Centre for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Florian Klein
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50937 Cologne, Germany; Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Jan Rybniker
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50937 Cologne, Germany.
| |
Collapse
|
5
|
Kroken AR, Klein KA, Mitchell PS, Nieto V, Jedel EJ, Evans DJ, Fleiszig SMJ. Intracellular replication of Pseudomonas aeruginosa in epithelial cells requires suppression of the caspase-4 inflammasome. mSphere 2023; 8:e0035123. [PMID: 37589460 PMCID: PMC10597407 DOI: 10.1128/msphere.00351-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 08/18/2023] Open
Abstract
Pathogenesis of Pseudomonas aeruginosa infections can include bacterial survival inside epithelial cells. Previously, we showed that this involves multiple roles played by the type three secretion system (T3SS), and specifically the effector ExoS. This includes ExoS-dependent inhibition of a lytic host cell response that subsequently enables intracellular replication. Here, we studied the underlying cell death response to intracellular P. aeruginosa, comparing wild-type to T3SS mutants varying in capacity to induce cell death and that localize to different intracellular compartments. Results showed that corneal epithelial cell death induced by intracellular P. aeruginosa lacking the T3SS, which remains in vacuoles, correlated with the activation of nuclear factor-κB as measured by p65 relocalization and tumor necrosis factor alpha transcription and secretion. Deletion of caspase-4 through CRISPR-Cas9 mutagenesis delayed cell death caused by these intracellular T3SS mutants. Caspase-4 deletion also countered more rapid cell death caused by T3SS effector-null mutants still expressing the T3SS apparatus that traffic to the host cell cytoplasm, and in doing so rescued intracellular replication normally dependent on ExoS. While HeLa cells lacked a lytic death response to T3SS mutants, it was found to be enabled by interferon gamma treatment. Together, these results show that epithelial cells can activate the noncanonical inflammasome pathway to limit proliferation of intracellular P. aeruginosa, not fully dependent on bacterially driven vacuole escape. Since ExoS inhibits the lytic response, the data implicate targeting of caspase-4, an intracellular pattern recognition receptor, as another contributor to the role of ExoS in the intracellular lifestyle of P. aeruginosa. IMPORTANCE Pseudomonas aeruginosa can exhibit an intracellular lifestyle within epithelial cells in vivo and in vitro. The type three secretion system (T3SS) effector ExoS contributes via multiple mechanisms, including extending the life of invaded host cells. Here, we aimed to understand the underlying cell death inhibited by ExoS when P. aeruginosa is intracellular. Results showed that intracellular P. aeruginosa lacking T3SS effectors could elicit rapid cell lysis via the noncanonical inflammasome pathway. Caspase-4 contributed to cell lysis even when the intracellular bacteria lacked the entire T33S and were consequently unable to escape vacuoles, representing a naturally occurring subpopulation during wild-type infection. Together, the data show the caspase-4 inflammasome as an epithelial cell defense against intracellular P. aeruginosa, and implicate its targeting as another mechanism by which ExoS preserves the host cell replicative niche.
Collapse
Affiliation(s)
- Abby R. Kroken
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, California, USA
| | - Keith A. Klein
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Patrick S. Mitchell
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Vincent Nieto
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, California, USA
| | - Eric J. Jedel
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, California, USA
| | - David J. Evans
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, California, USA
- College of Pharmacy, Touro University California, Vallejo, California, USA
| | - Suzanne M. J. Fleiszig
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, California, USA
- Graduate Groups in Vision Sciences, Microbiology, and Infectious Diseases & Immunity, University of California, Berkeley, California, USA
| |
Collapse
|
6
|
Minns MS, Liboro K, Lima TS, Abbondante S, Miller BA, Marshall ME, Tran Chau J, Roistacher A, Rietsch A, Dubyak GR, Pearlman E. NLRP3 selectively drives IL-1β secretion by Pseudomonas aeruginosa infected neutrophils and regulates corneal disease severity. Nat Commun 2023; 14:5832. [PMID: 37730693 PMCID: PMC10511713 DOI: 10.1038/s41467-023-41391-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/01/2023] [Indexed: 09/22/2023] Open
Abstract
Macrophages infected with Gram-negative bacteria expressing Type III secretion system (T3SS) activate the NLRC4 inflammasome, resulting in Gasdermin D (GSDMD)-dependent, but GSDME independent IL-1β secretion and pyroptosis. Here we examine inflammasome signaling in neutrophils infected with Pseudomonas aeruginosa strain PAO1 that expresses the T3SS effectors ExoS and ExoT. IL-1β secretion by neutrophils requires the T3SS needle and translocon proteins and GSDMD. In macrophages, PAO1 and mutants lacking ExoS and ExoT (ΔexoST) require NLRC4 for IL-1β secretion. While IL-1β release from ΔexoST infected neutrophils is also NLRC4-dependent, infection with PAO1 is instead NLRP3-dependent and driven by the ADP ribosyl transferase activity of ExoS. Genetic and pharmacologic approaches using MCC950 reveal that NLRP3 is also essential for bacterial killing and disease severity in a murine model of P. aeruginosa corneal infection (keratitis). Overall, these findings reveal a function for ExoS ADPRT in regulating inflammasome subtype usage in neutrophils versus macrophages and an unexpected role for NLRP3 in P. aeruginosa keratitis.
Collapse
Affiliation(s)
- Martin S Minns
- Departments of Ophthalmology and Physiology & Biophysics, University of California, Irvine, CA, USA
- Odyssey Therapeutics, Boston, MA, USA
| | - Karl Liboro
- Departments of Ophthalmology and Physiology & Biophysics, University of California, Irvine, CA, USA
| | - Tatiane S Lima
- Departments of Ophthalmology and Physiology & Biophysics, University of California, Irvine, CA, USA
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, USA
| | - Serena Abbondante
- Departments of Ophthalmology and Physiology & Biophysics, University of California, Irvine, CA, USA
| | - Brandon A Miller
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Michaela E Marshall
- Departments of Ophthalmology and Physiology & Biophysics, University of California, Irvine, CA, USA
| | - Jolynn Tran Chau
- Departments of Ophthalmology and Physiology & Biophysics, University of California, Irvine, CA, USA
| | - Alicia Roistacher
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Arne Rietsch
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - George R Dubyak
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Eric Pearlman
- Departments of Ophthalmology and Physiology & Biophysics, University of California, Irvine, CA, USA.
| |
Collapse
|
7
|
Shah S, Wozniak RAF. Staphylococcus aureus and P seudomonas aeruginosa infectious keratitis: key bacterial mechanisms that mediate pathogenesis and emerging therapeutics. Front Cell Infect Microbiol 2023; 13:1250257. [PMID: 37671149 PMCID: PMC10475732 DOI: 10.3389/fcimb.2023.1250257] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/04/2023] [Indexed: 09/07/2023] Open
Abstract
Bacterial keratitis (bacterial infection of the cornea) is a major cause of vision loss worldwide. Given the rapid and aggressive nature of the disease, immediate broad-spectrum antibiotics are essential to adequately treat this disease. However, rising antibiotic resistance continues to accelerate, rendering many commonly used therapeutics increasingly ineffective. As such, there is a significant effort to understand the basic pathogenesis of common causative organisms implicated in keratitis in part, to fuel the development of novel therapies to treat this blinding disease. This review explores two common causes of bacterial keratitis, Staphylococcus aureus and Pseudomonas aeruginosa, with regards to the bacterial mediators of virulence as well as novel therapies on the horizon.
Collapse
Affiliation(s)
| | - Rachel A. F. Wozniak
- Department of Ophthalmology, The University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| |
Collapse
|
8
|
Kroken AR, Klein KA, Mitchell PS, Nieto V, Jedel EJ, Evans DJ, Fleiszig SMJ. Intracellular replication of Pseudomonas aeruginosa in epithelial cells requires suppression of the caspase-4 inflammasome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528260. [PMID: 36824932 PMCID: PMC9948977 DOI: 10.1101/2023.02.13.528260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Pathogenesis of Pseudomonas aeruginosa infections can include bacterial survival inside epithelial cells. Previously, we showed this involves multiple roles played by the type three-secretion system (T3SS), and specifically the effector ExoS. This includes ExoS-dependent inhibition of a lytic host cell response that subsequently enables intracellular replication. Here, we studied the underlying cell death response to intracellular P. aeruginosa, comparing wild-type to T3SS mutants varying in capacity to induce cell death and that localize to different intracellular compartments. Results showed that corneal epithelial cell death induced by intracellular P. aeruginosa lacking the T3SS, which remains in vacuoles, correlated with activation of NF-κB as measured by p65 relocalization and TNFα transcription and secretion. Deletion of caspase-4 through CRISPR-Cas9 mutagenesis delayed cell death caused by these intracellular T3SS mutants. Caspase-4 deletion also countered more rapid cell death caused by T3SS effector-null mutants still expressing the TSSS apparatus that traffic to the host cell cytoplasm, and in doing so rescued intracellular replication normally dependent on ExoS. While HeLa cells lacked a lytic death response to T3SS mutants, it was found to be enabled by interferon gamma treatment. Together, these results show that epithelial cells can activate the noncanonical inflammasome pathway to limit proliferation of intracellular P. aeruginosa, not fully dependent on bacterially-driven vacuole escape. Since ExoS inhibits the lytic response, the data implicate targeting of caspase-4, an intracellular pattern recognition receptor, as another contributor to the role of ExoS in the intracellular lifestyle of P. aeruginosa.
Collapse
Affiliation(s)
- Abby R Kroken
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL USA
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
| | - Keith A Klein
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL USA
| | | | - Vincent Nieto
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
| | - Eric J Jedel
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
| | - David J Evans
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
- College of Pharmacy, Touro University California, Vallejo, CA USA
| | - Suzanne M J Fleiszig
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
- Graduate Groups in Vision Sciences, Microbiology, and Infectious Diseases & Immunity, University of California, Berkeley, CA USA
| |
Collapse
|
9
|
Hazlett LD, Xu S, Somayajulu M, McClellan SA. Host-microbe interactions in cornea. Ocul Surf 2023; 28:413-423. [PMID: 34619389 PMCID: PMC8977393 DOI: 10.1016/j.jtos.2021.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 11/23/2022]
Abstract
Corneal infections result through interaction between microbes and host innate immune receptors. Damage to the cornea occurs as a result of microbial virulence factors and is often exacerbated by lack of a controlled host immune response; the latter contributing to bystander damage to corneal structure. Understanding mechanisms involved in host microbial interactions is critical to development of novel therapeutic targets, ultimate control of microbial pathogenesis, and restoration of tissue homeostasis. Studies on these interactions continue to provide exciting findings directly related to this ultimate goal.
Collapse
Affiliation(s)
- Linda D Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Mallika Somayajulu
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Sharon A McClellan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
10
|
Harris V, Pifer R, Shannon P, Crary M. Comparative Evaluation of Pseudomonas aeruginosa Adhesion to a Poly-(2-Methacryloyloxyethyl Phosphorylcholine)-Modified Silicone Hydrogel Contact Lens. Vision (Basel) 2023; 7:vision7010027. [PMID: 36977307 PMCID: PMC10056565 DOI: 10.3390/vision7010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Pseudomonas aeruginosa is the most common causative agent associated with microbial keratitis. During contact lens wear, pathogens may be introduced into the ocular environment, which might cause adverse events. Lehfilcon A is a recently developed contact lens with a water gradient surface composed of polymeric 2-methacryloyloxyethyl phosphorylcholine (MPC). MPC is re-ported to impart anti-biofouling properties onto modified substrates. Therefore, in this in vitro experimental study, we tested the capability of lehfilcon A to resist adhesion by P. aeruginosa. Quantitative bacterial adhesion assays using five strains of P. aeruginosa were conducted to compare the adherence properties of lehfilcon A to five currently marketed silicone hydrogel (SiHy) contact lenses (comfilcon A, fanfilcon A, senofilcon A, senofilcon C, and samfilcon A). Compared to lehfilcon A, we observed 26.7 ± 8.8 times (p = 0.0028) more P. aeruginosa binding to comfilcon A, 30.0 ± 10.8 times (p = 0.0038) more binding to fanfilcon A, 18.2 ± 6.2 times (p = 0.0034) more binding to senofilcon A, 13.6 ± 3.9 times (p = 0.0019) more binding to senofilcon C, and 29.5 ± 11.8 times (p = 0.0057) more binding to samfilcon A. These results demonstrate that, for various strains of P. aeruginosa, lehfilcon A reduces bacterial adhesion compared to other contact lens materials.
Collapse
Affiliation(s)
| | - Reed Pifer
- Alcon Research, LLC, Fort Worth, TX 76134, USA
| | | | | |
Collapse
|
11
|
Genetic and Environmental Investigation of a Novel Phenylamino Acetamide Inhibitor of the Pseudomonas aeruginosa Type III Secretion System. Appl Environ Microbiol 2023; 89:e0175222. [PMID: 36519869 PMCID: PMC9888221 DOI: 10.1128/aem.01752-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Traditional antibiotics target essential cellular components or metabolic pathways conserved in both pathogenic and nonpathogenic bacteria. Unfortunately, long-term antibiotic use often leads to antibiotic resistance and disruption of the overall microbiota. In this work, we identified a phenylamino acetamide compound, named 187R, that strongly inhibited the expression of the type III secretion system (T3SS) encoding genes and the secretion of the T3SS effector proteins in Pseudomonas aeruginosa. T3SS is an important virulence factor, as T3SS-deficient strains of P. aeruginosa are greatly attenuated in virulence. We further showed that 187R had no effect on bacterial growth, implying a reduced selective pressure for the development of resistance. 187R-mediated repression of T3SS was dependent on ExsA, the master regulator of T3SS in P. aeruginosa. The impact of 187R on the host-associated microbial community was also tested using the Arabidopsis thaliana phyllosphere as a model. Both culture-independent (Illumina sequencing) and culture-dependent (Biolog) methods showed that the application of 187R had little impact on the composition and function of microbial community compared to the antibiotic streptomycin. Together, these results suggested that compounds that target virulence factors could serve as an alternative strategy for disease management caused by bacterial pathogens. IMPORTANCE New antimicrobial therapies are urgently needed, since antibiotic resistance in human pathogens has become one of the world's most urgent public health problems. Antivirulence therapy has been considered a promising alternative for the management of infectious diseases, as antivirulence compounds target only the virulence factors instead of the growth of bacteria, and they are therefore unlikely to affect commensal microorganisms. However, the impacts of antivirulence compounds on the host microbiota are not well understood. We report a potent synthetic inhibitor of the P. aeruginosa T3SS, 187R, and its effect on the host microbiota of Arabidopsis. Both culture-independent (Illumina sequencing) and culture-dependent (Biolog) methods showed that the impacts of the antivirulence compound on the composition and function of host microbiota were limited. These results suggest that antivirulence compounds can be a potential alternative method to antibiotics.
Collapse
|
12
|
Jouault A, Saliba AM, Touqui L. Modulation of the immune response by the Pseudomonas aeruginosa type-III secretion system. Front Cell Infect Microbiol 2022; 12:1064010. [PMID: 36519135 PMCID: PMC9742435 DOI: 10.3389/fcimb.2022.1064010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can cause critical cellular damage and subvert the immune response to promote its survival. Among the numerous virulence factors of P. aeruginosa, the type III secretion system (T3SS) is involved in host cell pathogenicity. Using a needle-like structure, T3SS detects eukaryotic cells and injects toxins directly into their cytosol, thus highlighting its ability to interfere with the host immune response. In this mini-review, we discuss how the T3SS and bacterial effectors secreted by this pathway not only activate the immune response but can also manipulate it to promote the establishment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Albane Jouault
- Mucoviscidose: Phénotypique et Phénogénomique, Centre de Recherche Saint-Antoine, Sorbonne Universités, UPMC Univ Paris 06, INSERM, Paris, France,Département Santé Globale, Mucoviscidose et Bronchopathie Chroniques, Institut Pasteur, Paris, France,*Correspondence: Albane Jouault,
| | - Alessandra Mattos Saliba
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Lhousseine Touqui
- Mucoviscidose: Phénotypique et Phénogénomique, Centre de Recherche Saint-Antoine, Sorbonne Universités, UPMC Univ Paris 06, INSERM, Paris, France,Département Santé Globale, Mucoviscidose et Bronchopathie Chroniques, Institut Pasteur, Paris, France
| |
Collapse
|
13
|
Yam JKH, Aung TT, Chua SL, Cheng Y, Kohli GS, Zhou J, Constancias F, Liu Y, Cai Z, Salido MMS, Drautz-Moses DI, Rice SA, Schuster SC, Boo ZZ, Wu B, Kjelleberg S, Tolker-Nielsen T, Lakshminarayanan R, Beuerman RW, Yang L, Givskov M. Elevated c-di-GMP Levels and Expression of the Type III Secretion System Promote Corneal Infection by Pseudomonas aeruginosa. Infect Immun 2022; 90:e0006122. [PMID: 35913171 PMCID: PMC9387266 DOI: 10.1128/iai.00061-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/07/2022] [Indexed: 01/18/2023] Open
Abstract
Pseudomonas aeruginosa is generally believed to establish biofilm-associated infections under the regulation of the secondary messenger c-di-GMP. To evaluate P. aeruginosa biofilm physiology during ocular infections, comparative transcriptomic analysis was performed on wild-type P. aeruginosa PAO1, a ΔwspF mutant strain (high c-di-GMP levels), and a plac-yhjH-containing strain (low c-di-GMP levels) from mouse corneal infection, as well as in vitro biofilm and planktonic cultures. The c-di-GMP content in P. aeruginosa during corneal infection was monitored using a fluorescent c-di-GMP reporter strain. Biofilm-related genes were induced in in vivo PAO1 compared to in vitro planktonic bacteria. Several diguanylate cyclases and phosphodiesterases were commonly regulated in in vivo PAO1 and in vitro biofilm compared to in vitro planktonic bacteria. Several exopolysaccharide genes and motility genes were induced and downregulated, respectively, in in vivo PAO1 and the in vivo ΔwspF mutant compared to the in vivo plac-yhjH-containing strain. Elevation of c-di-GMP levels in P. aeruginosa began as early as 2 h postinfection. The ΔwspF mutant was less susceptible to host clearance than the plac-yhjH-containing strain and could suppress host immune responses. The type III secretion system (T3SS) was induced in in vivo PAO1 compared to in vitro biofilm bacteria. A ΔwspF mutant with a defective T3SS was more susceptible to host clearance than a ΔwspF mutant with a functional T3SS. Our study suggests that elevated intracellular c-di-GMP levels and T3SS activity in P. aeruginosa are necessary for establishment of infection and modulation of host immune responses in mouse cornea.
Collapse
Affiliation(s)
- Joey Kuok Hoong Yam
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
| | - Thet Tun Aung
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Song Lin Chua
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Yingying Cheng
- Forensics Genomics International (FGI), BGI-Shenzhen, Shenzhen, China
| | - Gurjeet Singh Kohli
- Alfred Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | | | - Yang Liu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Zhao Cai
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - May Margarette Santillan Salido
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
| | - Daniela I. Drautz-Moses
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
| | - Scott A. Rice
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- CSIRO, Agriculture and Food, Microbiomes for One Systems Health, Canberra, Australia
| | - Stephan Christoph Schuster
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Zhao Zhi Boo
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Bin Wu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Rajamani Lakshminarayanan
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, Singapore, Singapore
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
- Academic Clinical Program in Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Roger W. Beuerman
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, Singapore, Singapore
- SRP Neuroscience and Behavioural Disorders and Emerging Infectious Diseases, Duke-NUS, Singapore, Singapore
- Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Michael Givskov
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
A Model of Intracellular Persistence of Pseudomonas aeruginosa in Airway Epithelial Cells. Cell Microbiol 2022. [DOI: 10.1155/2022/5431666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pseudomonas aeruginosa (P.a.) is a major human pathogen capable of causing chronic infections in hosts with weakened barrier functions and host defenses, most notably airway infections commonly observed in individuals with the genetic disorder cystic fibrosis (CF). While mainly described as an extracellular pathogen, previous in vitro studies have described the molecular events leading to P.a. internalization in diverse epithelial cell types. However, the long-term fate of intracellular P.a. remains largely unknown. Here, we developed a model allowing for a better understanding of long-term (up to 120 h) intracellular bacterial survival in the airway epithelial cell line BEAS-2B. Using a tobramycin protection assay, we characterized the internalization, long-term intracellular survival, and cytotoxicity of the lab strain PAO1, as well as clinical CF isolates, and conducted analyses at the single-cell level using confocal microscopy and flow cytometry techniques. We observed that infection at low multiplicity of infection allows for intracellular survival up to 120 h post-infection without causing significant host cytotoxicity. Finally, infection with clinical isolates revealed significant strain-to-strain heterogeneity in intracellular survival, including a high persistence phenotype associated with bacterial replication within host cells. Future studies using this model will further elucidate the host and bacterial mechanisms that promote P. aeruginosa intracellular persistence in airway epithelial cells, a potentially unrecognized bacterial reservoir during chronic infections.
Collapse
|
15
|
Pang Z, Gu MD, Tang T. Pseudomonas aeruginosa in Cancer Therapy: Current Knowledge, Challenges and Future Perspectives. Front Oncol 2022; 12:891187. [PMID: 35574361 PMCID: PMC9095937 DOI: 10.3389/fonc.2022.891187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
Drug resistance, undesirable toxicity and lack of selectivity are the major challenges of conventional cancer therapies, which cause poor clinical outcomes and high mortality in many cancer patients. Development of alternative cancer therapeutics are highly required for the patients who are resistant to the conventional cancer therapies, including radiotherapy and chemotherapy. The success of a new cancer therapy depends on its high specificity to cancer cells and low toxicity to normal cells. Utilization of bacteria has emerged as a promising strategy for cancer treatment. Attenuated or genetically modified bacteria were used to inhibit tumor growth, modulate host immunity, or deliver anti-tumor agents. The bacteria-derived immunotoxins were capable of destructing tumors with high specificity. These bacteria-based strategies for cancer treatment have shown potent anti-tumor effects both in vivo and in vitro, and some of them have proceeded to clinical trials. Pseudomonas aeruginosa, a Gram-negative bacterial pathogen, is one of the common bacteria used in development of bacteria-based cancer therapy, particularly known for the Pseudomonas exotoxin A-based immunotoxins, which have shown remarkable anti-tumor efficacy and specificity. This review concisely summarizes the current knowledge regarding the utilization of P. aeruginosa in cancer treatment, and discusses the challenges and future perspectives of the P. aeruginosa-based therapeutic strategies.
Collapse
Affiliation(s)
- Zheng Pang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meng-Di Gu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tong Tang
- School of Art & Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
16
|
Zhao H, Clevenger AL, Coburn PS, Callegan MC, Rybenkov V. Condensins are essential for Pseudomonas aeruginosa corneal virulence through their control of lifestyle and virulence programs. Mol Microbiol 2022; 117:937-957. [PMID: 35072315 PMCID: PMC9512581 DOI: 10.1111/mmi.14883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/01/2022]
Abstract
Pseudomonas aeruginosa is a significant opportunistic pathogen responsible for numerous human infections. Its high pathogenicity resides in a diverse array of virulence factors and an ability to adapt to hostile environments. We report that these factors are tied to the activity of condensins, SMC and MksBEF, which primarily function in structural chromosome maintenance. This study revealed that both proteins are required for P. aeruginosa virulence during corneal infection. The reduction in virulence was traced to broad changes in gene expression. Transcriptional signatures of smc and mksB mutants were largely dissimilar and non-additive, with the double mutant displaying a distinct gene expression profile. Affected regulons included those responsible for lifestyle control, primary metabolism, surface adhesion and biofilm growth, iron and sulfur assimilation, and numerous virulence factors, including type 3 and type 6 secretion systems. The in vitro phenotypes of condensin mutants mirrored their transcriptional profiles and included impaired production and secretion of multiple virulence factors, growth deficiencies under nutrient limiting conditions, and altered c-di-GMP signaling. Notably, c-di-GMP mediated some but not all transcriptional responses of the mutants. Thus, condensins are integrated into the control of multiple genetic programs related to epigenetic and virulent behavior of P. aeruginosa.
Collapse
Affiliation(s)
- Hang Zhao
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - April L. Clevenger
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Phillip S. Coburn
- Department of Ophthalmology, the University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., PA-418, Oklahoma City, OK73104, USA
| | - Michelle C. Callegan
- Department of Ophthalmology, the University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., PA-418, Oklahoma City, OK73104, USA
| | - Valentin Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| |
Collapse
|
17
|
Kroken AR, Gajenthra Kumar N, Yahr TL, Smith BE, Nieto V, Horneman H, Evans DJ, Fleiszig SMJ. Exotoxin S secreted by internalized Pseudomonas aeruginosa delays lytic host cell death. PLoS Pathog 2022; 18:e1010306. [PMID: 35130333 PMCID: PMC8853526 DOI: 10.1371/journal.ppat.1010306] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/17/2022] [Accepted: 01/25/2022] [Indexed: 12/22/2022] Open
Abstract
The Pseudomonas aeruginosa toxin ExoS, secreted by the type III secretion system (T3SS), supports intracellular persistence via its ADP-ribosyltransferase (ADPr) activity. For epithelial cells, this involves inhibiting vacuole acidification, promoting vacuolar escape, countering autophagy, and niche construction in the cytoplasm and within plasma membrane blebs. Paradoxically, ExoS and other P. aeruginosa T3SS effectors can also have antiphagocytic and cytotoxic activities. Here, we sought to reconcile these apparently contradictory activities of ExoS by studying the relationships between intracellular persistence and host epithelial cell death. Methods involved quantitative imaging and the use of antibiotics that vary in host cell membrane permeability to selectively kill intracellular and extracellular populations after invasion. Results showed that intracellular P. aeruginosa mutants lacking T3SS effector toxins could kill (permeabilize) cells when extracellular bacteria were eliminated. Surprisingly, wild-type strain PAO1 (encoding ExoS, ExoT and ExoY) caused cell death more slowly, the time extended from 5.2 to 9.5 h for corneal epithelial cells and from 10.2 to 13.0 h for HeLa cells. Use of specific mutants/complementation and controls for initial invasion showed that ExoS ADPr activity delayed cell death. Triggering T3SS expression only after bacteria invaded cells using rhamnose-induction in T3SS mutants rescued the ExoS-dependent intracellular phenotype, showing that injected effectors from extracellular bacteria were not required. The ADPr activity of ExoS was further found to support internalization by countering the antiphagocytic activity of both the ExoS and ExoT RhoGAP domains. Together, these results show two additional roles for ExoS ADPr activity in supporting the intracellular lifestyle of P. aeruginosa; suppression of host cell death to preserve a replicative niche and inhibition of T3SS effector antiphagocytic activities to allow invasion. These findings add to the growing body of evidence that ExoS-encoding (invasive) P. aeruginosa strains can be facultative intracellular pathogens, and that intracellularly secreted T3SS effectors contribute to pathogenesis. While the ADPr domain of the T3SS effector ExoS plays multiple roles in the intracellular lifestyle of P. aeruginosa, ExoS can also be cytotoxic and/or antiphagocytic. Here, we show that when P. aeruginosa enters the cytosol of epithelial cells, cell death is triggered independently of T3SS effector toxins, but ExoS ADPr activity delays this to enable continued intracellular survival and replication. Using rhamnose induction to express the T3SS only after invasion restored this ExoS-dependent phenotype, showing that intracellularly secreted effectors can enable intracellular pathogenesis. ExoS ADPr activity also countered antiphagocytic activity of ExoS and ExoT RhoGAP domains. These results show two additional roles for ExoS ADPr activity in promoting internalization of P. aeruginosa and protecting the intracellular niche, continuing to challenge the notions that P. aeruginosa is exclusively an extracellular pathogen, that it needs to inject T3SS effectors across plasma membranes, and that ExoS is necessarily cytotoxic to host cells.
Collapse
Affiliation(s)
- Abby R. Kroken
- School of Optometry, University of California, Berkeley, Berkeley, California, United States of America
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Naren Gajenthra Kumar
- School of Optometry, University of California, Berkeley, Berkeley, California, United States of America
| | - Timothy L. Yahr
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Benjamin E. Smith
- Vision Science Program, University of California, Berkeley, Berkeley, California, United States of America
| | - Vincent Nieto
- School of Optometry, University of California, Berkeley, Berkeley, California, United States of America
| | - Hart Horneman
- School of Optometry, University of California, Berkeley, Berkeley, California, United States of America
| | - David J. Evans
- School of Optometry, University of California, Berkeley, Berkeley, California, United States of America
- College of Pharmacy, Touro University California, Vallejo, California, United States of America
| | - Suzanne M. J. Fleiszig
- School of Optometry, University of California, Berkeley, Berkeley, California, United States of America
- Vision Science Program, University of California, Berkeley, Berkeley, California, United States of America
- Graduate Groups in Microbiology, and Infectious Diseases & Immunity, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
18
|
Singh RB, Das S, Chodosh J, Sharma N, Zegans ME, Kowalski RP, Jhanji V. Paradox of complex diversity: Challenges in the diagnosis and management of bacterial keratitis. Prog Retin Eye Res 2021; 88:101028. [PMID: 34813978 DOI: 10.1016/j.preteyeres.2021.101028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022]
Abstract
Bacterial keratitis continues to be one of the leading causes of corneal blindness in the developed as well as the developing world, despite swift progress since the dawn of the "anti-biotic era". Although, we are expeditiously developing our understanding about the different causative organisms and associated pathology leading to keratitis, extensive gaps in knowledge continue to dampen the efforts for early and accurate diagnosis, and management in these patients, resulting in poor clinical outcomes. The ability of the causative bacteria to subdue the therapeutic challenge stems from their large genome encoding complex regulatory networks, variety of unique virulence factors, and rapid secretion of tissue damaging proteases and toxins. In this review article, we have provided an overview of the established classical diagnostic techniques and therapeutics for keratitis caused by various bacteria. We have extensively reported our recent in-roads through novel tools for accurate diagnosis of mono- and poly-bacterial corneal infections. Furthermore, we outlined the recent progress by our group and others in understanding the sub-cellular genomic changes that lead to antibiotic resistance in these organisms. Finally, we discussed in detail, the novel therapies and drug delivery systems in development for the efficacious management of bacterial keratitis.
Collapse
Affiliation(s)
- Rohan Bir Singh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Leiden University Medical Center, 2333, ZA Leiden, the Netherlands
| | - Sujata Das
- Cornea and Anterior Segment Services, LV Prasad Eye Institute, Bhubaneshwar, India
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Namrata Sharma
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Michael E Zegans
- Department of Ophthalmology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Regis P Kowalski
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; The Charles T Campbell Ophthalmic Microbiology Laboratory, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; The Charles T Campbell Ophthalmic Microbiology Laboratory, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Silistre H, Raoux-Barbot D, Mancinelli F, Sangouard F, Dupin A, Belyy A, Deruelle V, Renault L, Ladant D, Touqui L, Mechold U. Prevalence of ExoY Activity in Pseudomonas aeruginosa Reference Panel Strains and Impact on Cytotoxicity in Epithelial Cells. Front Microbiol 2021; 12:666097. [PMID: 34675890 PMCID: PMC8524455 DOI: 10.3389/fmicb.2021.666097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
ExoY is among the effectors that are injected by the type III secretion system (T3SS) of Pseudomonas aeruginosa into host cells. Inside eukaryotic cells, ExoY interacts with F-actin, which stimulates its potent nucleotidyl cyclase activity to produce cyclic nucleotide monophosphates (cNMPs). ExoY has broad substrate specificity with GTP as a preferential substrate in vitro. How ExoY contributes to the virulence of P. aeruginosa remains largely unknown. Here, we examined the prevalence of active ExoY among strains from the international P. aeruginosa reference panel, a collection of strains that includes environmental and clinical isolates, commonly used laboratory strains, and sequential clonal isolates from cystic fibrosis (CF) patients and thus represents the large diversity of this bacterial species. The ability to secrete active ExoY was determined by measuring the F-actin stimulated guanylate cyclase (GC) activity in bacterial culture supernatants. We found an overall ExoY activity prevalence of about 60% among the 40 examined strains with no significant difference between CF and non-CF isolates. In parallel, we used cellular infection models of human lung epithelial cells to compare the cytotoxic effects of isogenic reference strains expressing active ExoY or lacking the exoY gene. We found that P. aeruginosa strains lacking ExoY were in fact more cytotoxic to the epithelial cells than those secreting active ExoY. This suggests that under certain conditions, ExoY might partly alleviate the cytotoxic effects of other virulence factors of P. aeruginosa.
Collapse
Affiliation(s)
- Hazel Silistre
- Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Dorothée Raoux-Barbot
- Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Federica Mancinelli
- Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Flora Sangouard
- Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Alice Dupin
- Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Alexander Belyy
- Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Vincent Deruelle
- Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Louis Renault
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Daniel Ladant
- Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Lhousseine Touqui
- Mucoviscidose: Physiopathologie et Phénogénomique, Centre de Recherche Saint-Antoine (CRSA), INSERM UMR S 938, Sorbonne Université, Paris, France.,Mucoviscidose et Bronchopathies Chroniques, Département Santé Globale, Institute Pasteur, Paris, France
| | - Undine Mechold
- Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, Paris, France
| |
Collapse
|
20
|
Ung L, Chodosh J. Foundational concepts in the biology of bacterial keratitis. Exp Eye Res 2021; 209:108647. [PMID: 34097906 PMCID: PMC8595513 DOI: 10.1016/j.exer.2021.108647] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/28/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Bacterial infections of the cornea, or bacterial keratitis (BK), are notorious for causing rapidly fulminant disease and permanent vision loss, even among treated patients. In the last sixty years, dramatic upward trajectories in the frequency of BK have been observed internationally, driven in large part by the commercialization of hydrogel contact lenses in the late 1960s. Despite this worsening burden of disease, current evidence-based therapies for BK - including broad-spectrum topical antibiotics and, if indicated, topical corticosteroids - fail to salvage vision in a substantial proportion of affected patients. Amid growing concerns of rapidly diminishing antibiotic utility, there has been renewed interest in urgently needed novel treatments that may improve clinical outcomes on an individual and public health level. Bridging the translational gap in the care of BK requires the identification of new therapeutic targets and rational treatment design, but neither of these aims can be achieved without understanding the complex biological processes that determine how bacterial corneal infections arise, progress, and resolve. In this chapter, we synthesize the current wealth of human and animal experimental data that now inform our understanding of basic BK pathophysiology, in context with modern concepts in ocular immunology and microbiology. By identifying the key molecular determinants of clinical disease, we explore how novel treatments can be developed and translated into routine patient care.
Collapse
Affiliation(s)
- Lawson Ung
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Rocha LS, Silva BPD, Correia TML, Silva RPD, Meireles DDA, Pereira R, Netto LES, Meotti FC, Queiroz RF. Peroxiredoxin AhpC1 protects Pseudomonas aeruginosa against the inflammatory oxidative burst and confers virulence. Redox Biol 2021; 46:102075. [PMID: 34315109 PMCID: PMC8327333 DOI: 10.1016/j.redox.2021.102075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterium in patients with cystic fibrosis and hospital acquired infections. It presents a plethora of virulence factors and antioxidant enzymes that help to subvert the immune system. In this study, we identified the 2-Cys peroxiredoxin, alkyl-hydroperoxide reductase C1 (AhpC1), as a relevant scavenger of oxidants generated during inflammatory oxidative burst and a mechanism of P. aeruginosa (PA14) escaping from killing. Deletion of AhpC1 led to a higher sensitivity to hypochlorous acid (HOCl, IC50 3.2 ± 0.3 versus 19.1 ± 0.2 μM), hydrogen peroxide (IC50 91.2 ± 0.3 versus 496.5 ± 6.4 μM) and the organic peroxide urate hydroperoxide. ΔahpC1 strain was more sensitive to the killing by isolated neutrophils and less virulent in a mice model of infection. All mice intranasally instilled with ΔahpC1 survived as long as they were monitored (15 days), whereas 100% wild-type and ΔahpC1 complemented with ahpC1 gene (ΔahpC1 attB:ahpC1) died within 3 days. A significantly lower number of colonies was detected in the lung and spleen of ΔahpC1-infected mice. Total leucocytes, neutrophils, myeloperoxidase activity, pro-inflammatory cytokines, nitrite production and lipid peroxidation were much lower in lungs or bronchoalveolar liquid of mice infected with ΔahpC1. Purified AhpC neutralized the inflammatory organic peroxide, urate hydroperoxide, at a rate constant of 2.3 ± 0.1 × 106 M-1s-1, and only the ΔahpC1 strain was sensitive to this oxidant. Incubation of neutrophils with uric acid, the urate hydroperoxide precursor, impaired neutrophil killing of wild-type but improved the killing of ΔahpC1. Hyperuricemic mice presented higher levels of serum cytokines and succumbed much faster to PA14 infection when compared to normouricemic mice. In summary, ΔahpC1 PA14 presented a lower virulence, which was attributed to a poorer ability to neutralize the oxidants generated by inflammatory oxidative burst, leading to a more efficient killing by the host. The enzyme is particularly relevant in detoxifying the newly reported inflammatory organic peroxide, urate hydroperoxide.
Collapse
Affiliation(s)
- Leonardo Silva Rocha
- Programa Multicêntrico de Pós-graduação em Bioquímica e Biologia Molecular, Universidade Estadual do Sudoeste da Bahia, Brazil
| | | | - Thiago M L Correia
- Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas, Instituto Multidisciplinar de Saúde, Universidade Federal da Bahia, Brazil
| | | | - Diogo de Abreu Meireles
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Rafael Pereira
- Programa Multicêntrico de Pós-graduação em Bioquímica e Biologia Molecular, Universidade Estadual do Sudoeste da Bahia, Brazil; Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas, Instituto Multidisciplinar de Saúde, Universidade Federal da Bahia, Brazil; Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Brazil
| | - Luis Eduardo Soares Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Flavia Carla Meotti
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil.
| | - Raphael Ferreira Queiroz
- Programa Multicêntrico de Pós-graduação em Bioquímica e Biologia Molecular, Universidade Estadual do Sudoeste da Bahia, Brazil; Departamento de Ciências Naturais, Universidade Estadual do Sudoeste da Bahia, Brazil.
| |
Collapse
|
22
|
Morin CD, Déziel E, Gauthier J, Levesque RC, Lau GW. An Organ System-Based Synopsis of Pseudomonas aeruginosa Virulence. Virulence 2021; 12:1469-1507. [PMID: 34180343 PMCID: PMC8237970 DOI: 10.1080/21505594.2021.1926408] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Driven in part by its metabolic versatility, high intrinsic antibiotic resistance, and a large repertoire of virulence factors, Pseudomonas aeruginosa is expertly adapted to thrive in a wide variety of environments, and in the process, making it a notorious opportunistic pathogen. Apart from the extensively studied chronic infection in the lungs of people with cystic fibrosis (CF), P. aeruginosa also causes multiple serious infections encompassing essentially all organs of the human body, among others, lung infection in patients with chronic obstructive pulmonary disease, primary ciliary dyskinesia and ventilator-associated pneumonia; bacteremia and sepsis; soft tissue infection in burns, open wounds and postsurgery patients; urinary tract infection; diabetic foot ulcers; chronic suppurative otitis media and otitis externa; and keratitis associated with extended contact lens use. Although well characterized in the context of CF, pathogenic processes mediated by various P. aeruginosa virulence factors in other organ systems remain poorly understood. In this review, we use an organ system-based approach to provide a synopsis of disease mechanisms exerted by P. aeruginosa virulence determinants that contribute to its success as a versatile pathogen.
Collapse
Affiliation(s)
- Charles D Morin
- Centre Armand-Frappier Santé Biotechnologie, Institut National De La Recherche Scientifique (INRS), Laval, Quebec, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National De La Recherche Scientifique (INRS), Laval, Quebec, Canada
| | - Jeff Gauthier
- Département De Microbiologie-infectiologie Et Immunologie, Institut De Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Roger C Levesque
- Département De Microbiologie-infectiologie Et Immunologie, Institut De Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, US
| |
Collapse
|
23
|
Sharma P, Elofsson M, Roy S. Attenuation of Pseudomonas aeruginosa infection by INP0341, a salicylidene acylhydrazide, in a murine model of keratitis. Virulence 2021; 11:795-804. [PMID: 32507000 PMCID: PMC7567437 DOI: 10.1080/21505594.2020.1776979] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
PSEUDOMONAS AERUGINOSA is an opportunistic pathogen and a major cause of corneal infections worldwide. The bacterium secretes several toxins through its type III secretion system (T3SS) to subvert host immune responses. In addition, it is armed with intrinsic as well as acquired antibiotic resistance mechanisms that make treatment a significant challenge and new therapeutic interventions are needed. Type III secretion inhibitors have been studied as an alternative or in accompaniment to traditional antibiotics to inhibit virulence of bacteria. In this study, INP0341, a T3SS inhibitor, inhibited cytotoxicity by P. aeruginosa toward human corneal epithelial cells (HCEC) at 100 μM without affecting bacterial growth in the liquid media. An increased expression of antimicrobial peptides and reactive oxygen species generation was also observed in cells exposed to P. aeruginosa in the presence of INP0341. Furthermore, INP0341 efficiently attenuated corneal infection by P. aeruginosa in an experimental model of murine keratitis as evident from corneal opacity, clinical score and bacterial load. Thus, INP0341 appears to be a promising candidate to treat corneal infection caused by P. aeruginosa and can be further considered as an alternative therapeutic intervention.
Collapse
Affiliation(s)
- Prerana Sharma
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute , Hyderabad, India.,Department of Animal Biology, University of Hyderabad , Hyderabad, India
| | | | - Sanhita Roy
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute , Hyderabad, India
| |
Collapse
|
24
|
Rao L, De La Rosa I, Xu Y, Sha Y, Bhattacharya A, Holtzman MJ, Gilbert BE, Eissa NT. Pseudomonas aeruginosa survives in epithelia by ExoS-mediated inhibition of autophagy and mTOR. EMBO Rep 2021; 22:e50613. [PMID: 33345425 PMCID: PMC7857434 DOI: 10.15252/embr.202050613] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
One major factor that contributes to the virulence of Pseudomonas aeruginosa is its ability to reside and replicate unchallenged inside airway epithelial cells. The mechanism by which P. aeruginosa escapes destruction by intracellular host defense mechanisms, such as autophagy, is not known. Here, we show that the type III secretion system effector protein ExoS facilitates P. aeruginosa survival in airway epithelial cells by inhibiting autophagy in host cells. Autophagy inhibition is independent of mTOR activity, as the latter is also inhibited by ExoS, albeit by a different mechanism. Deficiency of the critical autophagy gene Atg7 in airway epithelial cells, both in vitro and in mouse models, greatly enhances the survival of ExoS-deficient P. aeruginosa but does not affect the survival of ExoS-containing bacteria. The inhibitory effect of ExoS on autophagy and mTOR depends on the activity of its ADP-ribosyltransferase domain. Inhibition of mTOR is caused by ExoS-mediated ADP ribosylation of RAS, whereas autophagy inhibition is due to the suppression of autophagic Vps34 kinase activity.
Collapse
Affiliation(s)
- Lang Rao
- Department of MedicineBaylor College of MedicineHoustonTXUSA
- Veterans Administration Long Beach Health Care System and University of California at IrvineIrvineCAUSA
- Southern California Institute for Research and EducationLong BeachCAUSA
| | | | - Yi Xu
- Department of MedicineBaylor College of MedicineHoustonTXUSA
| | - Youbao Sha
- Department of MedicineBaylor College of MedicineHoustonTXUSA
| | | | - Michael J Holtzman
- Department of Internal MedicineWashington University School of MedicineSt. LouisMOUSA
| | - Brian E Gilbert
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTXUSA
| | - N Tony Eissa
- Department of MedicineBaylor College of MedicineHoustonTXUSA
- Veterans Administration Long Beach Health Care System and University of California at IrvineIrvineCAUSA
| |
Collapse
|
25
|
Armentrout EI, Kundracik EC, Rietsch A. Cell-type-specific hypertranslocation of effectors by the Pseudomonas aeruginosa type III secretion system. Mol Microbiol 2020; 115:305-319. [PMID: 33012037 DOI: 10.1111/mmi.14617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/22/2020] [Indexed: 12/23/2022]
Abstract
Many Gram-negative pathogens use a type III secretion system (T3SS) to promote disease by injecting effector proteins into host cells. Common to many T3SSs is that injection of effector proteins is feedback inhibited. The mechanism of feedback inhibition and its role in pathogenesis are unclear. In the case of P. aeruginosa, the effector protein ExoS is central to limiting effector injection. ExoS is bifunctional, with an amino-terminal RhoGAP and a carboxy-terminal ADP-ribosyltransferase domain. We demonstrate that both domains are required to fully feedback inhibit effector injection. The RhoGAP-, but not the ADP-ribosyltransferase domain of the related effector protein ExoT also participates. Feedback inhibition does not involve translocator insertion nor pore-formation. Instead, feedback inhibition is due, in part, to a loss of the activating trigger for effector injection, and likely also decreased translocon stability. Surprisingly, feedback inhibition is abrogated in phagocytic cells. The lack of feedback inhibition in these cells requires phagocytic uptake of the bacteria, but cannot be explained through acidification of the phagosome or calcium limitation. Given that phagocytes are crucial for controlling P. aeruginosa infections, our data suggest that feedback inhibition allows P. aeruginosa to direct its effector arsenal against the cell types most damaging to its survival.
Collapse
Affiliation(s)
- Erin I Armentrout
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Emma C Kundracik
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Arne Rietsch
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
26
|
Multifunctional Monoclonal Antibody Targeting Pseudomonas aeruginosa Keratitis in Mice. Vaccines (Basel) 2020; 8:vaccines8040638. [PMID: 33147726 PMCID: PMC7712430 DOI: 10.3390/vaccines8040638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 01/13/2023] Open
Abstract
A worrisome trend in the study and treatment of infectious disease noted in recent years is the increase in multidrug resistant strains of bacteria concurrent with a scarcity of new antimicrobial agents to counteract this rise. This is particularly true amongst bacteria within the Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species (ESKAPE) designation. P. aeruginosa is one of the most common causes of bacterial keratitis. Therefore, it is of vital importance to characterize new antimicrobial agents with anti-Pseudomonal activity for use with the ocular surface. MEDI3902 is a multifunctional antibody that targets the P. aeruginosa persistence factor Psl exopolysaccharide, and the type 3 secretion protein PcrV. We initially assessed this antibody for ocular surface toxicity. The antimicrobial activity of the antibody was then tested by treating mice with established P. aeruginosa keratitis with both topical and intravenous treatment modalities. MEDI3902, was shown to be non-toxic to the ocular surface of mice when given topically. It was also effective compared to the control antibody at preventing P. aeruginosa keratitis with a one-time treatment at the time of infection. Both topical and intravenous administration of MEDI3902 has been proved significant in treating established keratitis infections as well, speeding the resolution of infection significantly more than that of the control IgG. We report the first use of a topical immunotherapeutic multifunctional agent targeting Psl and type 3 secretion on the ocular surface as an antimicrobial agent. While MEDI3902 has been shown to prevent Pseudomonas biofilm formation in keratitis models when given prophylactically intravitally, we show that MEDI3902 has the capability to also treat an active infection when given intravenously to mice with Pseudomonas keratitis. Our data indicate antibodies are well tolerated and nontoxic on the ocular surface. They reduce infection in mice treated concurrently at inoculation and reduced the signs of cornea pathology in mice with established infection. Taken together, these data indicate treatment with monoclonal antibodies directed against Psl and PcrV may be clinically effective in the treatment of P. aeruginosa keratitis and suggest that the design of further antibodies to be an additional tool in the treatment of bacterial keratitis.
Collapse
|
27
|
Bouillot S, Pont S, Gallet B, Moriscot C, Deruelle V, Attrée I, Huber P. Inflammasome activation by Pseudomonas aeruginosa's ExlA pore-forming toxin is detrimental for the host. Cell Microbiol 2020; 22:e13251. [PMID: 32779854 DOI: 10.1111/cmi.13251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
During acute Pseudomonas aeruginosa infection, the inflammatory response is essential for bacterial clearance. Neutrophil recruitment can be initiated following the assembly of an inflammasome within sentinel macrophages, leading to activation of caspase-1, which in turn triggers macrophage pyroptosis and IL-1β/IL-18 maturation. Inflammasome formation can be induced by a number of bacterial determinants, including Type III secretion systems (T3SSs) or pore-forming toxins, or, alternatively, by lipopolysaccharide (LPS) via caspase-11 activation. Surprisingly, previous studies indicated that a T3SS-induced inflammasome increased pathogenicity in mouse models of P. aeruginosa infection. Here, we investigated the immune reaction of mice infected with a T3SS-negative P. aeruginosa strain (IHMA879472). Virulence of this strain relies on ExlA, a secreted pore-forming toxin. IHMA879472 promoted massive neutrophil infiltration in infected lungs, owing to efficient priming of toll-like receptors, and thus enhanced the expression of inflammatory proteins including pro-IL-1β and TNF-α. However, mature-IL-1β and IL-18 were undetectable in wild-type mice, suggesting that ExlA failed to effectively activate caspase-1. Nevertheless, caspase-1/11 deficiency improved survival following infection with IHMA879472, as previously described for T3SS+ bacteria. We conclude that the detrimental effect associated with the ExlA-induced inflammasome is probably not due to hyperinflammation, rather it stems from another inflammasome-dependent process.
Collapse
Affiliation(s)
- Stéphanie Bouillot
- Unité de Biologie Cellulaire et Infection, CEA, INSERM, CNRS, Université Grenoble-Alpes, Grenoble, France
| | - Stéphane Pont
- Unité de Biologie Cellulaire et Infection, CEA, INSERM, CNRS, Université Grenoble-Alpes, Grenoble, France
| | - Benoit Gallet
- Institut de Biologie Structurale, CEA, CNRS, Université Grenoble-Alpes, Grenoble, France
| | - Christine Moriscot
- Institut de Biologie Structurale, CEA, CNRS, Université Grenoble-Alpes, Grenoble, France
| | - Vincent Deruelle
- Unité de Biologie Cellulaire et Infection, CEA, INSERM, CNRS, Université Grenoble-Alpes, Grenoble, France
| | - Ina Attrée
- Unité de Biologie Cellulaire et Infection, CEA, INSERM, CNRS, Université Grenoble-Alpes, Grenoble, France
| | - Philippe Huber
- Unité de Biologie Cellulaire et Infection, CEA, INSERM, CNRS, Université Grenoble-Alpes, Grenoble, France
| |
Collapse
|
28
|
von Ambüren J, Schreiber F, Fischer J, Winter S, van Gumpel E, Simonis A, Rybniker J. Comprehensive Host Cell-Based Screening Assays for Identification of Anti-Virulence Drugs Targeting Pseudomonas aeruginosa and Salmonella Typhimurium. Microorganisms 2020; 8:microorganisms8081096. [PMID: 32707871 PMCID: PMC7463580 DOI: 10.3390/microorganisms8081096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022] Open
Abstract
The prevalence of bacterial pathogens being resistant to antibiotic treatment is increasing worldwide, leading to a severe global health challenge. Simultaneously, the development and approval of new antibiotics stagnated in the past decades, leading to an urgent need for novel approaches to avoid the spread of untreatable bacterial infections in the future. We developed a highly comprehensive screening platform based on quantification of pathogen driven host-cell death to detect new anti-virulence drugs targeting Pseudomonas aeruginosa (Pa) and Salmonella enterica serovar Typhimurium (ST), both known for their emerging antibiotic resistance. By screening over 10,000 small molecules we could identify several substances showing promising effects on Pa and ST pathogenicity in our in vitro infection model. Importantly, we could detect compounds potently inhibiting bacteria induced killing of host cells and one novel comipound with impact on the function of the type 3 secretion system (T3SS) of ST. Thus, we provide proof of concept data of rapid and feasible medium- to high-throughput drug screening assays targeting virulence mechanisms of two major Gram-negative pathogens.
Collapse
Affiliation(s)
- Julia von Ambüren
- Department I of Internal Medicine, University of Cologne, 50937 Cologne, Germany; (J.v.A.); (F.S.); (J.F.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; (S.W.); (E.v.G.)
| | - Fynn Schreiber
- Department I of Internal Medicine, University of Cologne, 50937 Cologne, Germany; (J.v.A.); (F.S.); (J.F.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; (S.W.); (E.v.G.)
| | - Julia Fischer
- Department I of Internal Medicine, University of Cologne, 50937 Cologne, Germany; (J.v.A.); (F.S.); (J.F.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; (S.W.); (E.v.G.)
| | - Sandra Winter
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; (S.W.); (E.v.G.)
| | - Edeltraud van Gumpel
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; (S.W.); (E.v.G.)
| | - Alexander Simonis
- Department I of Internal Medicine, University of Cologne, 50937 Cologne, Germany; (J.v.A.); (F.S.); (J.F.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; (S.W.); (E.v.G.)
- Correspondence: (A.S.); (J.R.)
| | - Jan Rybniker
- Department I of Internal Medicine, University of Cologne, 50937 Cologne, Germany; (J.v.A.); (F.S.); (J.F.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; (S.W.); (E.v.G.)
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50937 Cologne, Germany
- Correspondence: (A.S.); (J.R.)
| |
Collapse
|
29
|
Pan X, Fan Z, Chen L, Liu C, Bai F, Wei Y, Tian Z, Dong Y, Shi J, Chen H, Jin Y, Cheng Z, Jin S, Lin J, Wu W. PvrA is a novel regulator that contributes to Pseudomonas aeruginosa pathogenesis by controlling bacterial utilization of long chain fatty acids. Nucleic Acids Res 2020; 48:5967-5985. [PMID: 32406921 PMCID: PMC7293031 DOI: 10.1093/nar/gkaa377] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
During infection of a host, Pseudomonas aeruginosa orchestrates global gene expression to adapt to the host environment and counter the immune attacks. P. aeruginosa harbours hundreds of regulatory genes that play essential roles in controlling gene expression. However, their contributions to the bacterial pathogenesis remain largely unknown. In this study, we analysed the transcriptomic profile of P. aeruginosa cells isolated from lungs of infected mice and examined the roles of upregulated regulatory genes in bacterial virulence. Mutation of a novel regulatory gene pvrA (PA2957) attenuated the bacterial virulence in an acute pneumonia model. Chromatin immunoprecipitation (ChIP)-Seq and genetic analyses revealed that PvrA directly regulates genes involved in phosphatidylcholine utilization and fatty acid catabolism. Mutation of the pvrA resulted in defective bacterial growth when phosphatidylcholine or palmitic acid was used as the sole carbon source. We further demonstrated that palmitoyl coenzyme A is a ligand for the PvrA, enhancing the binding affinity of PvrA to its target promoters. An arginine residue at position 136 was found to be essential for PvrA to bind palmitoyl coenzyme A. Overall, our results revealed a novel regulatory pathway that controls genes involved in phosphatidylcholine and fatty acid utilization and contributes to the bacterial virulence.
Collapse
Affiliation(s)
- Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zheng Fan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lei Chen
- Department of Plant Biology and Ecology, College of Life Science Nankai University, Tianjin 300071 China
| | - Chang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yu Wei
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Zhenyang Tian
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuanyuan Dong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jing Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hao Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shouguang Jin
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
30
|
Dave A, Samarth A, Karolia R, Sharma S, Karunakaran E, Partridge L, MacNeil S, Monk PN, Garg P, Roy S. Characterization of Ocular Clinical Isolates of Pseudomonas aeruginosa from Non-Contact Lens Related Keratitis Patients from South India. Microorganisms 2020; 8:microorganisms8020260. [PMID: 32075262 PMCID: PMC7074794 DOI: 10.3390/microorganisms8020260] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 12/25/2022] Open
Abstract
P. aeruginosa is the most common Gram-negative organism causing bacterial keratitis. Pseudomonas utilizes various virulence mechanisms to adhere and colonize in the host tissue. In the present study, we examined virulence factors associated with thirty-four clinical P. aeruginosa isolates collected from keratitis patients seeking care at L V Prasad Eye Institute, Hyderabad. The virulence-associated genes in all the isolates were genotyped and characteristics such as antibiotic susceptibility, biofilm formation, swarming motility, pyoverdine production and cell cytotoxicity were analyzed. All the isolates showed the presence of genes related to biofilm formation, alkaline proteases and elastases; however, there was a difference in the presence of genes related to the type III secretion system (T3SS). A higher prevalence of exoU+ genotype was noted in the drug-resistant isolates. All the isolates were capable of forming biofilms and more than 70% of the isolates showed good swarming motility. Pyoverdine production was not associated with the T3SS genotype. In the cytotoxicity assay, the presence of exoS,exoU or both resulted in higher cytotoxicity compared to the absence of both the genes. Overall, our results suggest that the T3SS profile is a good indicator of P. aeruginosa virulence characteristics and the isolates lacking the effector genes may have evolved alternate mechanisms of colonization in the host.
Collapse
Affiliation(s)
- Alpana Dave
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India; (A.D.); (A.S.); (P.G.)
| | - Apurwa Samarth
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India; (A.D.); (A.S.); (P.G.)
| | - Roshni Karolia
- Jhaveri Microbiology Centre, LV Prasad Eye Institute, Hyderabad 500034, India; (R.K.); (S.S.)
| | - Savitri Sharma
- Jhaveri Microbiology Centre, LV Prasad Eye Institute, Hyderabad 500034, India; (R.K.); (S.S.)
| | - Esther Karunakaran
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S102TG, UK;
| | - Lynda Partridge
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S102TG, UK;
| | - Sheila MacNeil
- Department of Material Science and Engineering, University of Sheffield, Sheffield S102TG, UK;
| | - Peter N. Monk
- Department of Infection Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S102RX, UK;
| | - Prashant Garg
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India; (A.D.); (A.S.); (P.G.)
| | - Sanhita Roy
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India; (A.D.); (A.S.); (P.G.)
- Correspondence: ; Tel.: +91-40-30612529; Fax: +91-40-30612535
| |
Collapse
|
31
|
Weaver AJ, Brandenburg KS, Smith BW, Leung KP. Comparative Analysis of the Host Response in a Rat Model of Deep-Partial and Full-Thickness Burn Wounds With Pseudomonas aeruginosa Infection. Front Cell Infect Microbiol 2020; 9:466. [PMID: 31998665 PMCID: PMC6967395 DOI: 10.3389/fcimb.2019.00466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Burn wound injury affects soldiers and civilians alike, often resulting in a dynamic, but un-orchestrated, host response that can lead to infection, scarring, and potentially death. To mitigate these factors, it is important to have a clinically relevant model of burn wound infection that can be utilized for advancing burn wound treatments. Our previous reports have demonstrated the ability of Pseudomonas aeruginosa to generate a biofilm infection within a modified Walker-Mason rat burn model of deep-partial (DPT) and full-thickness (FT) burn wounds (10% total body surface area) in male Sprague-Dawley rats (350–450 g). Here, we further define this model with respect to the host response when challenged with P. aeruginosa infection between the two burn types. Following burn injury and immediate surface exposure to P. aeruginosa, inflammation at the local and systemic levels were monitored for an 11 days period. Compared to burn-only groups, infection with P. aeruginosa further promoted local inflammation in both DPT and FT burn wounds, which was evident by enhanced cellular influx (including neutrophils and monocytes), increased levels of several pro-inflammatory cytokines (IL-1β, IL-6, GRO/KC, andMIP-1α), and reduced IL-10. Systemically, only minor changes were seen in circulating white blood cells and cytokines; however, increases in high mobility group box-1 (HMGB-1) and hyaluronan, as well as decreases in fibronectin were noted particularly in FT burns. Compared to the burn-only group, P. aeruginosa infection resulted in sustained and/or higher levels of HMGB-1 and hyaluronan. Combined with our previous work that defined the burn depth and development of P. aeruginosa biofilms within the wound, this study further establishes this model by defining the host response to the burn and biofilm-infection. Furthermore, this characterization shows several similarities to what is clinically seen and establishes this model for future use in the development and testing of novel therapeutics for burn wound treatment at home and on the battlefield.
Collapse
Affiliation(s)
- Alan J Weaver
- Department of Dental and Craniofacial Trauma Research, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX, United States
| | - Kenneth S Brandenburg
- Department of Dental and Craniofacial Trauma Research, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX, United States
| | - Brian W Smith
- Research Support Division, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX, United States
| | - Kai P Leung
- Department of Dental and Craniofacial Trauma Research, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX, United States
| |
Collapse
|
32
|
Fleiszig SMJ, Kroken AR, Nieto V, Grosser MR, Wan SJ, Metruccio MME, Evans DJ. Contact lens-related corneal infection: Intrinsic resistance and its compromise. Prog Retin Eye Res 2019; 76:100804. [PMID: 31756497 DOI: 10.1016/j.preteyeres.2019.100804] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022]
Abstract
Contact lenses represent a widely utilized form of vision correction with more than 140 million wearers worldwide. Although generally well-tolerated, contact lenses can cause corneal infection (microbial keratitis), with an approximate annualized incidence ranging from ~2 to ~20 cases per 10,000 wearers, and sometimes resulting in permanent vision loss. Research suggests that the pathogenesis of contact lens-associated microbial keratitis is complex and multifactorial, likely requiring multiple conspiring factors that compromise the intrinsic resistance of a healthy cornea to infection. Here, we outline our perspective of the mechanisms by which contact lens wear sometimes renders the cornea susceptible to infection, focusing primarily on our own research efforts during the past three decades. This has included studies of host factors underlying the constitutive barrier function of the healthy cornea, its response to bacterial challenge when intrinsic resistance is not compromised, pathogen virulence mechanisms, and the effects of contact lens wear that alter the outcome of host-microbe interactions. For almost all of this work, we have utilized the bacterium Pseudomonas aeruginosa because it is the leading cause of lens-related microbial keratitis. While not yet common among corneal isolates, clinical isolates of P. aeruginosa have emerged that are resistant to virtually all currently available antibiotics, leading the United States CDC (Centers for Disease Control) to add P. aeruginosa to its list of most serious threats. Compounding this concern, the development of advanced contact lenses for biosensing and augmented reality, together with the escalating incidence of myopia, could portent an epidemic of vision-threatening corneal infections in the future. Thankfully, technological advances in genomics, proteomics, metabolomics and imaging combined with emerging models of contact lens-associated P. aeruginosa infection hold promise for solving the problem - and possibly life-threatening infections impacting other tissues.
Collapse
Affiliation(s)
- Suzanne M J Fleiszig
- School of Optometry, University of California, Berkeley, CA, USA; Graduate Group in Vision Science, University of California, Berkeley, CA, USA; Graduate Groups in Microbiology and Infectious Diseases & Immunity, University of California, Berkeley, CA, USA.
| | - Abby R Kroken
- School of Optometry, University of California, Berkeley, CA, USA
| | - Vincent Nieto
- School of Optometry, University of California, Berkeley, CA, USA
| | | | - Stephanie J Wan
- Graduate Group in Vision Science, University of California, Berkeley, CA, USA
| | | | - David J Evans
- School of Optometry, University of California, Berkeley, CA, USA; College of Pharmacy, Touro University California, Vallejo, CA, USA
| |
Collapse
|
33
|
Livingston ET, Mursalin MH, Callegan MC. A Pyrrhic Victory: The PMN Response to Ocular Bacterial Infections. Microorganisms 2019; 7:E537. [PMID: 31703354 PMCID: PMC6920826 DOI: 10.3390/microorganisms7110537] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022] Open
Abstract
Some tissues of the eye are susceptible to damage due to their exposure to the outside environment and inability to regenerate. Immune privilege, although beneficial to the eye in terms of homeostasis and protection, can be harmful when breached or when an aberrant response occurs in the face of challenge. In this review, we highlight the role of the PMN (polymorphonuclear leukocyte) in different bacterial ocular infections that invade the immune privileged eye at the anterior and posterior segments: keratitis, conjunctivitis, uveitis, and endophthalmitis. Interestingly, the PMN response from the host seems to be necessary for pathogen clearance in ocular disease, but the inflammatory response can also be detrimental to vision retention. This "Pyrrhic Victory" scenario is explored in each type of ocular infection, with details on PMN recruitment and response at the site of ocular infection. In addition, we emphasize the differences in PMN responses between each ocular disease and its most common corresponding bacterial pathogen. The in vitro and animal models used to identify PMN responses, such as recruitment, phagocytosis, degranulation, and NETosis, are also outlined in each ocular infection. This detailed study of the ocular acute immune response to infection could provide novel therapeutic strategies for blinding diseases, provide more general information on ocular PMN responses, and reveal areas of bacterial ocular infection research that lack PMN response studies.
Collapse
Affiliation(s)
- Erin T. Livingston
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (E.T.L.); (M.H.M.)
| | - Md Huzzatul Mursalin
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (E.T.L.); (M.H.M.)
| | - Michelle C. Callegan
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (E.T.L.); (M.H.M.)
- Department of Ophthalmology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Neuroscience, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Dean McGee Eye Institute, Oklahoma City, OK 73104, USA
| |
Collapse
|
34
|
Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxo-dodecanoyl)-l-homoserine lactone triggers mitochondrial dysfunction and apoptosis in neutrophils through calcium signaling. Med Microbiol Immunol 2019; 208:855-868. [DOI: 10.1007/s00430-019-00631-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/27/2019] [Indexed: 01/29/2023]
|
35
|
Elabed H, González-Tortuero E, Ibacache-Quiroga C, Bakhrouf A, Johnston P, Gaddour K, Blázquez J, Rodríguez-Rojas A. Seawater salt-trapped Pseudomonas aeruginosa survives for years and gets primed for salinity tolerance. BMC Microbiol 2019; 19:142. [PMID: 31234794 PMCID: PMC6591848 DOI: 10.1186/s12866-019-1499-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/31/2019] [Indexed: 01/08/2023] Open
Abstract
Background In nature, microorganisms have to adapt to long-term stressful conditions often with growth limitations. However, little is known about the evolution of the adaptability of new bacteria to such environments. Pseudomonas aeruginosa, an opportunistic pathogen, after natural evaporation of seawater, was shown to be trapped in laboratory-grown halite crystals and to remain viable after entrapment for years. However, how this bacterium persists and survives in such hypersaline conditions is not understood. Results In this study, we aimed to understand the basis of survival, and to characterise the physiological changes required to develop salt tolerance using P. aeruginosa as a model. Several clones of P. aeruginosa were rescued after 14 years in naturally evaporated marine salt crystals. Incubation of samples in nutrient-rich broth allowed re-growth and subsequent plating yielded observable colonies. Whole genome sequencing of the P. aeruginosa isolates confirmed the recovery of the original strain. The re-grown strains, however, showed a new phenotype consisting of an enhanced growth in growing salt concentration compared to the ancestor strain. The intracellular accumulation of K+ was elicited by high concentration of Na+ in the external medium to maintain the homeostasis. Whole transcriptomic analysis by microarray indicated that 78 genes had differential expression between the parental strain and its derivative clones. Sixty-one transcripts were up-regulated, while 17 were down-regulated. Based on a collection of single-gene knockout mutants and gene ontology analysis, we suggest that the adaptive response in P. aeruginosa to hyper-salinity relies on multiple gene product interactions. Conclusions The individual gene contributions build up the observed phenotype, but do not ease the identification of salinity-related metabolic pathways. The long-term inclusion of P. aeruginosa in salt crystals primes the bacteria, mediating a readjustment of the bacterial physiology to growth in higher salt concentrations. Our findings provide a starting point to understand how P. aeruginosa, a relevant environmental and pathogenic bacterium, survives to long-term salt stress. Electronic supplementary material The online version of this article (10.1186/s12866-019-1499-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hamouda Elabed
- Laboratory of Contagious Diseases and Biologically Active Substances LR99-ES27 Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia.,Department of Microbial Biotechnology, Spanish National Center for Biotechnology (CNB), Madrid, Spain
| | - Enrique González-Tortuero
- Department of Veterinary and Animal Sciences, Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Ibacache-Quiroga
- Department of Microbial Biotechnology, Spanish National Center for Biotechnology (CNB), Madrid, Spain.,Centro de Micro-Bioinnovación, Escuela de Nutrición y Dietética, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| | - Amina Bakhrouf
- Laboratory of Analysis, Treatment and Valorization of Environmental Polluants and products, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Paul Johnston
- Institute of Biology, FreieUniversität Berlin, Berlin, Germany
| | - Kamel Gaddour
- Laboratory of Analysis, Treatment and Valorization of Environmental Polluants and products, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Jesús Blázquez
- Department of Microbial Biotechnology, Spanish National Center for Biotechnology (CNB), Madrid, Spain
| | | |
Collapse
|
36
|
Thanabalasuriar A, Scott BNV, Peiseler M, Willson ME, Zeng Z, Warrener P, Keller AE, Surewaard BGJ, Dozier EA, Korhonen JT, Cheng LIT, Gadjeva M, Stover CK, DiGiandomenico A, Kubes P. Neutrophil Extracellular Traps Confine Pseudomonas aeruginosa Ocular Biofilms and Restrict Brain Invasion. Cell Host Microbe 2019; 25:526-536.e4. [PMID: 30930127 DOI: 10.1016/j.chom.2019.02.007] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/30/2018] [Accepted: 02/21/2019] [Indexed: 12/17/2022]
Abstract
Bacterial biofilm infections are difficult to eradicate because of antibiotic insusceptibility and high recurrence rates. Biofilm formation by Pseudomonas aeruginosa, a leading cause of bacterial keratitis, is facilitated by the bacterial Psl exopolysaccharide and associated with heightened virulence. Using intravital microscopy, we observed that neutrophilic recruitment to corneal infections limits P. aeruginosa biofilms to the outer eye surface, preventing bacterial dissemination. Neutrophils moved to the base of forming biofilms, where they underwent neutrophil extracellular trap formation (NETosis) in response to high expression of the bacterial type-3 secretion system (T3SS). NETs formed a barrier "dead zone," confining bacteria to the external corneal environment and inhibiting bacterial dissemination into the brain. Once formed, ocular biofilms were resistant to antibiotics and neutrophil killing, advancing eye pathology. However, blocking both Psl and T3SS together with antibiotic treatment broke down the biofilm and reversed keratitis, suggesting future therapeutic strategies for this intractable infection.
Collapse
Affiliation(s)
- Ajitha Thanabalasuriar
- University of Calgary, Department of Physiology and Pharmacology, Calvin Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, Calgary, AB, Canada; Microbial Sciences, MedImmune/AstraZeneca LLC, Gaithersburg, MD, USA
| | - Brittney Noelle Vivian Scott
- University of Calgary, Department of Physiology and Pharmacology, Calvin Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, Calgary, AB, Canada
| | - Moritz Peiseler
- University of Calgary, Department of Physiology and Pharmacology, Calvin Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, Calgary, AB, Canada
| | - Michelle Elizabeth Willson
- University of Calgary, Department of Physiology and Pharmacology, Calvin Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, Calgary, AB, Canada
| | - Zhutian Zeng
- University of Calgary, Department of Physiology and Pharmacology, Calvin Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, Calgary, AB, Canada
| | - Paul Warrener
- Microbial Sciences, MedImmune/AstraZeneca LLC, Gaithersburg, MD, USA
| | | | - Bas Gerardus Johannes Surewaard
- University of Calgary, Department of Physiology and Pharmacology, Calvin Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, Calgary, AB, Canada
| | | | - Juha Tapio Korhonen
- University of Calgary, Department of Physiology and Pharmacology, Calvin Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, Calgary, AB, Canada
| | - Lily I-Ting Cheng
- Microbial Sciences, MedImmune/AstraZeneca LLC, Gaithersburg, MD, USA
| | - Mihaela Gadjeva
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - C Kendall Stover
- Microbial Sciences, MedImmune/AstraZeneca LLC, Gaithersburg, MD, USA
| | | | - Paul Kubes
- University of Calgary, Department of Physiology and Pharmacology, Calvin Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, Calgary, AB, Canada.
| |
Collapse
|
37
|
A novel murine model for contact lens wear reveals clandestine IL-1R dependent corneal parainflammation and susceptibility to microbial keratitis upon inoculation with Pseudomonas aeruginosa. Ocul Surf 2018; 17:119-133. [PMID: 30439473 DOI: 10.1016/j.jtos.2018.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE Contact lens wear carries a risk of complications, including corneal infection. Solving these complications has been hindered by limitations of existing animal models. Here, we report development of a new murine model of contact lens wear. METHODS C57BL/6 mice were fitted with custom-made silicone-hydrogel contact lenses with or without prior inoculation with Pseudomonas aeruginosa (PAO1-GFP). Contralateral eyes served as controls. Corneas were monitored for pathology, and examined ex vivo using high-magnification, time-lapse imaging. Fluorescent reporter mice allowed visualization of host cell membranes and immune cells. Lens-colonizing bacteria were detected by viable counts and FISH. Direct-colony PCR was used for bacterial identification. RESULTS Without deliberate inoculation, lens-wearing corneas remained free of visible pathology, and retained a clarity similar to non-lens wearing controls. CD11c-YFP reporter mice revealed altered numbers, and distribution, of CD11c-positive cells in lens-wearing corneas after 24 h. Worn lenses showed bacterial colonization, primarily by known conjunctival or skin commensals. Corneal epithelial cells showed vacuolization during lens wear, and after 5 days, cells with phagocyte morphology appeared in the stroma that actively migrated over resident keratocytes that showed altered morphology. Immunofluorescence confirmed stromal Ly6G-positive cells after 5 days of lens wear, but not in MyD88 or IL-1R gene-knockout mice. P. aeruginosa-contaminated lenses caused infectious pathology in most mice from 1 to 13 days. CONCLUSIONS This murine model of contact lens wear appears to faithfully mimic events occurring during human lens wear, and could be valuable for experiments, not possible in humans, that help solve the pathogenesis of lens-related complications.
Collapse
|
38
|
Kaminski A, Gupta KH, Goldufsky JW, Lee HW, Gupta V, Shafikhani SH. Pseudomonas aeruginosa ExoS Induces Intrinsic Apoptosis in Target Host Cells in a Manner That is Dependent on its GAP Domain Activity. Sci Rep 2018; 8:14047. [PMID: 30232373 PMCID: PMC6145893 DOI: 10.1038/s41598-018-32491-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/03/2018] [Indexed: 11/08/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that causes serious infections in immunocompromised individuals and cystic fibrosis patients. ExoS and ExoT are two homologous bifunctional Type III Secretion System (T3SS) virulence factors that induce apoptosis in target host cells. They possess a GTPase Activating Protein (GAP) domain at their N-termini, which share ~76% homology, and an ADP-ribosyltransferase (ADPRT) domain at their C-termini, which target non-overlapping substrates. Both the GAP and the ADPRT domains contribute to ExoT's cytotoxicity in target epithelial cells, whereas, ExoS-induced apoptosis is reported to be primarily due to its ADPRT domain. In this report, we demonstrate that ExoS/GAP domain is both necessary and sufficient to induce mitochondrial apoptosis. Our data demonstrate that intoxication with ExoS/GAP domain leads to enrichment of Bax and Bim into the mitochondrial outer-membrane, disruption of mitochondrial membrane and release of and cytochrome c into the cytosol, which activates initiator caspase-9 and effector caspase-3, that executes cellular death. We posit that the contribution of the GAP domain in ExoS-induced apoptosis was overlooked in prior studies due to its slower kinetics of cytotoxicity as compared to ADPRT. Our data clarify the field and reveal a novel virulence function for ExoS/GAP as an inducer of apoptosis.
Collapse
Affiliation(s)
- Amber Kaminski
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Kajal H Gupta
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Josef W Goldufsky
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Ha Won Lee
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Vineet Gupta
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Sasha H Shafikhani
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA.
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA.
- Cancer Center, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
39
|
Mohankumar V, Ramalingam S, Chidambaranathan GP, Prajna L. Autophagy induced by type III secretion system toxins enhances clearance of Pseudomonas aeruginosa from human corneal epithelial cells. Biochem Biophys Res Commun 2018; 503:1510-1515. [DOI: 10.1016/j.bbrc.2018.07.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
|
40
|
Sharma P, Guha S, Garg P, Roy S. Differential expression of antimicrobial peptides in corneal infection and regulation of antimicrobial peptides and reactive oxygen species by type III secretion system of Pseudomonas aeruginosa. Pathog Dis 2018; 76:4794940. [DOI: 10.1093/femspd/fty001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/06/2018] [Indexed: 11/14/2022] Open
|
41
|
Madhu SN, Jha KK, Karthyayani AP, Gajjar DU. Ex vivo Caprine Model to Study Virulence Factors in Keratitis. J Ophthalmic Vis Res 2018; 13:383-391. [PMID: 30479706 PMCID: PMC6210866 DOI: 10.4103/jovr.jovr_131_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Purpose: To develop an infectious keratitis model using caprine (goat) corneas and to investigate the expression of virulence factors during infection. Methods: Goat eyes were surface-sterilized and dissected, and the corneas were placed on an agarose-gelatin solid support (0.5% in phosphate-buffered saline) in a 12-well culture plate containing 10% fetal bovine serum-supplemented culture medium for 3 weeks. Cell viability tests (trypan blue and MTT) were performed on the cultured corneas. Corneas were infected with Pseudomonas aeruginosa and Fusarium solani separately. Infection progression was observed via histological analysis and hematoxylin and eosin (H-E) staining. For Pseudomonas-infected corneas, expression of eight virulence genes (exoS, exoT, exoY, alpR, prpL, lasA, lasB, and algD) was determined via quantitative real-time PCR (qRT-PCR) at 48-h and 72-h time-points. For Fusarium-infected corneas, expression of five proteases (C7Z0E6, C7ZFW9, C7Z7U2, C7ZNV5, and C7YY94) was quantified via qRT-PCR at 2, 4, and 8 days after infection. Protease from infected corneas was detected via gelatin zymography. Results: Goat corneas with a viable epithelium could be maintained for 15 days. Pseudomonas infection progressed rapidly, and complete corneal degradation was observed on day 4 after infection. Fusarium infection progressed more slowly. Histological analysis and H-E staining of Fusarium-infected cornea revealed mycelia penetrating all layers of the cornea. qRT-PCR revealed expression of all eight virulence factors, and statistically significant difference in expression of prpL and alpR in Pseudomonas-infected corneas. Expression of C7ZNV5 was highest in Fusarium-infected corneas. Conclusion: Goat corneas can be used to evaluate the expression of virulence factors involved in Pseudomonas and Fusarium infection.
Collapse
Affiliation(s)
- Swati N Madhu
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Kartik Kumar Jha
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Annapoorna P Karthyayani
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Devarshi Urvish Gajjar
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| |
Collapse
|
42
|
Pseudomonas aeruginosa Effector ExoS Inhibits ROS Production in Human Neutrophils. Cell Host Microbe 2017; 21:611-618.e5. [PMID: 28494242 DOI: 10.1016/j.chom.2017.04.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 03/10/2017] [Accepted: 04/11/2017] [Indexed: 12/31/2022]
Abstract
Neutrophils are the first line of defense against bacterial infections, and the generation of reactive oxygen species is a key part of their arsenal. Pathogens use detoxification systems to avoid the bactericidal effects of reactive oxygen species. Here we demonstrate that the Gram-negative pathogen Pseudomonas aeruginosa is susceptible to reactive oxygen species but actively blocks the reactive oxygen species burst using two type III secreted effector proteins, ExoS and ExoT. ExoS ADP-ribosylates Ras and prevents it from interacting with and activating phosphoinositol-3-kinase (PI3K), which is required to stimulate the phagocytic NADPH-oxidase that generates reactive oxygen species. ExoT also affects PI3K signaling via its ADP-ribosyltransferase activity but does not act directly on Ras. A non-ribosylatable version of Ras restores reactive oxygen species production and results in increased bacterial killing. These findings demonstrate that subversion of the host innate immune response requires ExoS-mediated ADP-ribosylation of Ras in neutrophils.
Collapse
|
43
|
Saleeb M, Sundin C, Aglar Ö, Pinto AF, Ebrahimi M, Forsberg Å, Schüler H, Elofsson M. Structure-activity relationships for inhibitors of Pseudomonas aeruginosa exoenzyme S ADP-ribosyltransferase activity. Eur J Med Chem 2017; 143:568-576. [PMID: 29207339 DOI: 10.1016/j.ejmech.2017.11.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 12/18/2022]
Abstract
During infection, the Gram-negative opportunistic pathogen Pseudomonas aeruginosa employs its type III secretion system to translocate the toxin exoenzyme S (ExoS) into the eukaryotic host cell cytoplasm. ExoS is an essential in vivo virulence factor that enables P. aeruginosa to avoid phagocytosis and eventually kill the host cell. ExoS elicits its pathogenicity mainly via ADP-ribosyltransferase (ADPRT) activity. We recently identified a new class of ExoS ADPRT inhibitors with in vitro IC50 of around 20 μM in an enzymatic assay using a recombinant ExoS ADPRT domain. Herein, we report structure-activity relationships of this compound class by comparing a total of 51 compounds based on a thieno [2,3-d]pyrimidin-4(3H)-one and 4-oxo-3,4-dihydroquinazoline scaffolds. Improved inhibitors with in vitro IC50 values of 6 μM were identified. Importantly, we demonstrated that the most potent inhibitors block ADPRT activity of native full-length ExoS secreted by viable P. aeruginosa with an IC50 value of 1.3 μM in an enzymatic assay. This compound class holds promise as starting point for development of novel antibacterial agents.
Collapse
Affiliation(s)
- Michael Saleeb
- Department of Chemistry, Umeå University, 90187, Umeå, Sweden
| | | | - Öznur Aglar
- Department of Chemistry, Umeå University, 90187, Umeå, Sweden
| | - Ana Filipa Pinto
- Department of Medicinal Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden
| | - Mahsa Ebrahimi
- Department of Medicinal Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden
| | - Åke Forsberg
- Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden
| | - Herwig Schüler
- Department of Medicinal Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden
| | - Mikael Elofsson
- Department of Chemistry, Umeå University, 90187, Umeå, Sweden.
| |
Collapse
|
44
|
Morales-Espinosa R, Delgado G, Espinosa LF, Isselo D, Méndez JL, Rodriguez C, Miranda G, Cravioto A. Fingerprint Analysis and Identification of Strains ST309 as a Potential High Risk Clone in a Pseudomonas aeruginosa Population Isolated from Children with Bacteremia in Mexico City. Front Microbiol 2017; 8:313. [PMID: 28298909 PMCID: PMC5331068 DOI: 10.3389/fmicb.2017.00313] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/15/2017] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen and is associated with nosocomial infections. Its ability to thrive in a broad range of environments is due to a large and diverse genome of which its accessory genome is part. The objective of this study was to characterize P. aeruginosa strains isolated from children who developed bacteremia, using pulse-field gel electrophoresis, and in terms of its genomic islands, virulence genes, multilocus sequence type, and antimicrobial susceptibility. Our results showed that P. aeruginosa strains presented the seven virulence genes: toxA, lasB, lecA, algR, plcH, phzA1, and toxR, a type IV pilin alleles (TFP) group I or II. Additionally, we detected a novel pilin and accessory gene, expanding the number of TFP alleles to group VI. All strains presented the PAPI-2 Island and the majority were exoU+ and exoS+ genotype. Ten percent of the strains were multi-drug resistant phenotype, 18% extensively drug-resistant, 68% moderately resistant and only 3% were susceptible to all the antimicrobial tested. The most prevalent acquired β-Lactamase was KPC. We identified a group of ST309 strains, as a potential high risk clone. Our finding also showed that the strains isolated from patients with bacteremia have important virulence factors involved in colonization and dissemination as: a TFP group I or II; the presence of the exoU gene within the PAPI-2 island and the presence of the exoS gene.
Collapse
Affiliation(s)
- Rosario Morales-Espinosa
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Gabriela Delgado
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Luis F Espinosa
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Dassaev Isselo
- Servicio de Pediatría, Hospital Regional 36 San Alejandro, IMSS Puebla, Mexico
| | - José L Méndez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Cristina Rodriguez
- Laboratorio de Bacteriología, Facultad de Veterinaria y Zootecnia, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Guadalupe Miranda
- Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Unidad de Investigación en Epidemiología Hospitalaria Mexico City, Mexico
| | | |
Collapse
|
45
|
Lin CK, Kazmierczak BI. Inflammation: A Double-Edged Sword in the Response to Pseudomonas aeruginosa Infection. J Innate Immun 2017; 9:250-261. [PMID: 28222444 DOI: 10.1159/000455857] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/05/2017] [Indexed: 12/22/2022] Open
Abstract
The Gram-negative opportunistic pathogen Pseudomonas aeruginosa exploits failures of barrier defense and innate immunity to cause acute infections at a range of anatomic sites. We review the defense mechanisms that normally protect against P. aeruginosa pulmonary infection, as well as the bacterial products and activities that trigger their activation. Innate immune recognition of P. aeruginosa is critical for pathogen clearance; nonetheless, inflammation is also associated with pathogen persistence and poor host outcomes. We describe P. aeruginosa adaptations that improve this pathogen's fitness in the inflamed airway, and briefly discuss strategies to manipulate inflammation to benefit the host. Such adjunct therapies may become increasingly important in the treatment of acute and chronic infections caused by this multi-drug-resistant pathogen.
Collapse
|
46
|
Leal T, Bergamini G, Huaux F, Panin N, Noel S, Dhooghe B, Haaf JB, Mauri P, Motta S, Di Silvestre D, Melotti P, Sorio C. Azithromycin Attenuates Pseudomonas-Induced Lung Inflammation by Targeting Bacterial Proteins Secreted in the Cultured Medium. Front Immunol 2016; 7:499. [PMID: 27895643 PMCID: PMC5108761 DOI: 10.3389/fimmu.2016.00499] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/26/2016] [Indexed: 12/20/2022] Open
Abstract
Background Pseudomonas aeruginosa airway infections are a major cause of morbidity and mortality in patients with cystic fibrosis (CF). Azithromycin improves the related clinical outcomes, but its mechanisms of action remain poorly understood. We tested the hypothesis that azithromycin downregulates P. aeruginosa-induced pro-inflammatory responses by modifying release of bacterial proteins. Methods We monitored inflammatory markers in lungs of CF mutant mice and their littermate controls in response to conditioned media (CM) collected from the reference P. aeruginosa PAO1 strain cultured in the presence or in the absence of azithromycin. A mass spectrometry-based proteomic approach was applied to examine whether the macrolide elicits a differential release of bacterial proteins. Results CM collected from azithromycin-untreated PAO1 cultures induced powerful pro-inflammatory neutrophil-dominated responses. Azithromycin attenuated the responses, mainly of macrophage chemoattractant protein-1, tumor necrosis factor-α, and interferon-γ, in CF but not in wild-type mice. Proteomic analysis showed that azithromycin upregulated an array of bacterial proteins including those associated with regulation of immune functions and with repair and resolution of inflammatory responses like the chaperone DnaK and the S-adenosylmethionine synthase, while it downregulated the extracellular heme acquisition protein HasA and the catalytic enzyme lysylendopeptidase. Conclusion Supernatants collected from cultures of the bacterial strain PAO1 represent a novel experimental model to trigger in vivo lung inflammatory responses that should be closer to those obtained with live bacteria, but without bacterial infection. Combined with a bactericidal effect, complex regulation of bacterial innate immune and metabolic factors released in the cultured medium by the action of the macrolide can contribute to its anti-inflammatory effects.
Collapse
Affiliation(s)
- Teresinha Leal
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain , Brussels , Belgium
| | - Gabriella Bergamini
- Cystic Fibrosis Translational Research Laboratory "D. Lissandrini", Department of Medicine, Division of General Pathology, University of Verona, Verona, Italy; Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - François Huaux
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain , Brussels , Belgium
| | - Nadtha Panin
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain , Brussels , Belgium
| | - Sabrina Noel
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain , Brussels , Belgium
| | - Barbara Dhooghe
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain , Brussels , Belgium
| | - Jeremy B Haaf
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain , Brussels , Belgium
| | - Pierluigi Mauri
- Institute for Biomedical Technologies (ITB-CNR), Segrate , Milan , Italy
| | - Sara Motta
- Institute for Biomedical Technologies (ITB-CNR), Segrate , Milan , Italy
| | - Dario Di Silvestre
- Institute for Biomedical Technologies (ITB-CNR), Segrate , Milan , Italy
| | - Paola Melotti
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata di Verona , Verona , Italy
| | - Claudio Sorio
- Cystic Fibrosis Translational Research Laboratory "D. Lissandrini", Department of Medicine, Division of General Pathology, University of Verona , Verona , Italy
| |
Collapse
|
47
|
Chen Y, Cheng N, Xu Y, Huang K, Luo Y, Xu W. Point-of-care and visual detection of P. aeruginosa and its toxin genes by multiple LAMP and lateral flow nucleic acid biosensor. Biosens Bioelectron 2016; 81:317-323. [DOI: 10.1016/j.bios.2016.03.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/04/2016] [Accepted: 03/05/2016] [Indexed: 11/26/2022]
|
48
|
Abstract
INTRODUCTION Ocular infections remain an important cause of blindness worldwide and represent a challenging public health concern. In this regard, microbial keratitis due to fungal, bacterial, or viral infection can result in significant vision loss secondary to corneal scarring or surface irregularity. Left untreated corneal perforation and endophthalmitis can result, leading to loss of the eye. Rigorously studied animal models of disease pathogenesis have provided novel information that suggests new modes of treatment that may be efficacious clinically and emerging clinical data is supportive of some of these discoveries. AREAS COVERED This review focuses on advances in our understanding of disease pathogenesis in animal models and clinical studies and how these relate to improved clinical treatment. We also discuss a novel approach to treatment of microbial keratitis due to infection with these bacterial pathogens using PACK-CXL and recommend increased basic and clinical studies to address and refine the efficacy of this procedure. EXPERT COMMENTARY Because resistance to antibiotics has developed over time to these bacterial pathogens, caution must be exercised in treatment. Attractive novel modes of treatment that hold new promise for further investigation include lipid based therapy, as well as use of small molecules that bind deleterious specific host responsive molecules and use of microRNA based therapies.
Collapse
|
49
|
Xu X, Yu H, Zhang D, Xiong J, Qiu J, Xin R, He X, Sheng H, Cai W, Jiang L, Zhang K, Hu X. Role of ppGpp in Pseudomonas aeruginosa acute pulmonary infection and virulence regulation. Microbiol Res 2016; 192:84-95. [PMID: 27664726 DOI: 10.1016/j.micres.2016.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 11/28/2022]
Abstract
During infection, bacteria might generate adaptive responses to facilitate their survival and colonization in the host environment. The alarmone guanosine 5'-triphosphate-3'-diphosphate (ppGpp), the levels of which are regulated by the RelA and SpoT enzymes, plays a critical role in mediating bacterial adaptive responses and virulence. However, the mechanism by which ppGpp regulates virulence-associated traits in Pseudomonas aeruginosa is poorly understood. To investigate the regulatory role of ppGpp, the ppGpp-deficient strain ΔRS (relA and spoT gene double mutant) and the complemented strain ΔRS(++) (complemented with relA and spoT genes) were constructed. Herein, we reported that the ΔRS strain showed decreased cytotoxicity towards A549 human alveolar adenocarcinoma cell lines and led to reduced mortality, lung edema and inflammatory cell infiltration in a mouse model of acute pneumonia compared to wild-type PAO1 and the complemented strain ΔRS(++). Subsequent analyses demonstrated that the ΔRS strain displayed reduced T3SS expression, decreased levels of elastase activity, pyocyanin, pyoverdin and alginate, and inhibited swarming and biofilm formation compared to PAO1 and the complemented strain ΔRS(++). In addition, the results demonstrate that ppGpp-mediated regulation of T3SS, virulence factor production, and swarming occurs in a quinolone quorum-sensing system-dependent manner. Taken together, these results suggest that ppGpp is required for virulence regulation in P. aeruginosa, providing new clues for the development of interference strategies against bacterial infection.
Collapse
Affiliation(s)
- Xiaohui Xu
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Hua Yu
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Di Zhang
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Junzhi Xiong
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jing Qiu
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Rong Xin
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiaomei He
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Halei Sheng
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Wenqiang Cai
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Lu Jiang
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Kebin Zhang
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | - Xiaomei Hu
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China.
| |
Collapse
|
50
|
Parker D, Ahn D, Cohen T, Prince A. Innate Immune Signaling Activated by MDR Bacteria in the Airway. Physiol Rev 2016; 96:19-53. [PMID: 26582515 DOI: 10.1152/physrev.00009.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Health care-associated bacterial pneumonias due to multiple-drug resistant (MDR) pathogens are an important public health problem and are major causes of morbidity and mortality worldwide. In addition to antimicrobial resistance, these organisms have adapted to the milieu of the human airway and have acquired resistance to the innate immune clearance mechanisms that normally prevent pneumonia. Given the limited efficacy of antibiotics, bacterial clearance from the airway requires an effective immune response. Understanding how specific airway pathogens initiate and regulate innate immune signaling, and whether this response is excessive, leading to host-induced pathology may guide future immunomodulatory therapy. We will focus on three of the most important causes of health care-associated pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, and review the mechanisms through which an inappropriate or damaging innate immune response is stimulated, as well as describe how airway pathogens cause persistent infection by evading immune activation.
Collapse
Affiliation(s)
- Dane Parker
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Danielle Ahn
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Taylor Cohen
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Alice Prince
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| |
Collapse
|