1
|
Yue T, Sun Y, Dai Y, Jin F. Mechanisms for resistance to BCMA-targeted immunotherapies in multiple myeloma. Blood Rev 2025; 70:101256. [PMID: 39818472 DOI: 10.1016/j.blre.2025.101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Multiple myeloma (MM) remains incurable and patients eventually face the relapse/refractory dilemma. B cell maturation antigen (BCMA)-targeted immunotherapeutic approaches have shown great effectiveness in patients with relapsed/refractory MM, mainly including chimeric antigen receptor T cells (CAR-T), bispecific T cell engagers (TCEs), and antibody-drug conjugates (ADCs). However, their impact on long-term survival remains to be determined. Nonetheless, resistance to these novel therapies is still inevitable, raising a challenge that we have never met in both laboratory research and clinical practice. In this scenario, the investigation aiming to enhance and prolong the anti-MM activity of BCMA-targeted therapies has been expanding rapidly. Despite considerable uncertainty in our understanding of the mechanisms for their resistance, they have mainly been attributed to antigen-dependency, T cell-driven factors, and (immune) tumor microenvironment. In this review, we summarize the current understanding of the mechanisms for resistance to BCMA-targeted immunotherapies and discuss potential strategies for overcoming it.
Collapse
Affiliation(s)
- Tingting Yue
- Department of Hematology, First Hospital of Jilin University, Changchun, Jilin, China; Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yue Sun
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Fengyan Jin
- Department of Hematology, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
2
|
Jafari N, Abediankenari S. Role of microRNAs in immunoregulatory functions of epithelial cells. BMC Immunol 2024; 25:84. [PMID: 39707170 PMCID: PMC11662810 DOI: 10.1186/s12865-024-00675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/27/2024] [Indexed: 12/23/2024] Open
Abstract
Epithelial cells (ECs) provide the first line of defense against microbial threats and environmental challenges. They participate in the host's immune responses via the expression and secretion of various immune-related molecules such as cytokines and chemokines, as well as interaction with immune cells. A growing body of evidence suggests that the dysregulated function of ECs can be involved in the pathophysiology of a broad range of infectious, autoimmune, and inflammatory diseases, including inflammatory bowel disease (IBD), asthma, multiple sclerosis, and rheumatoid arthritis. To maintain a substantial immunoregulatory function of ECs, precise expression of different molecules and their regulatory effects are indispensable. MicroRNAs (miRNAs, miRs) are small non-coding RNAs that regulate gene expression commonly at post-transcriptional level through degradation of target messenger RNAs (mRNAs) or suppression of protein translation. MiRNAs implicate as critical regulators in many cellular processes, including apoptosis, growth, differentiation, and immune response. Due to the crucial roles of miRNAs in such a vast range of biological processes, they have become the spotlight of biological research for more than two decades, but we are still at the beginning stages of the use of miRNA-based therapies in the improvement of human health. Hence, in the present paper, attempts are made to provide a comprehensive overview with regard to the roles of miRNAs in the immunoregulatory functions of ECs. A better understanding of the molecular mechanisms through which immunoregulatory properties of ECs are manifested, could aid the development of efficient strategies to prevent and treat multiple human diseases.
Collapse
Affiliation(s)
- Narjes Jafari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Abediankenari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
3
|
Balasubramaniam M, Mokhtar AMA. Past and present discovery of the BAFF/APRIL system - A bibliometric study from 1999 to 2023. Cell Signal 2024; 120:111201. [PMID: 38714287 DOI: 10.1016/j.cellsig.2024.111201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Cytokines from the Tumour Necrosis Factor (TNF) family are important regulators of both physiological and pathological processes. The discovery of novel TNF ligands and receptors, BAFF and APRIL, have opened up new possibilities for scientists to explore the effect of these cytokines on the human immune system. The role of BAFF/APRIL system in B lymphocytes is particularly important for survival and maintenance of homeostasis. Aberrant expression of the system is associated with various immunological disorders. Hence, this study provides a comprehensive overview of the past and present BAFF/APRIL system research development in a bibliometric perspective. To our best knowledge, this is the first ever bibliometric analysis conducted focusing on the BAFF/APRIL system. A total of 1055 relevant documents were retrieved from WoSCC. Microsoft Excel, VOSviewer, and Biblioshiny of R studio were bibliometric tools used to analyse the scientific literature. From 1999, the annual publications showed an upward trend, with Journal of Immunology being the most productive journal. USA leads the race for BAFF/APRIL system research developments. Pascal Schneider, a senior researcher affiliated with University of Lausanne, Switzerland was recognised as the most productive author and institution in the BAFF/APRIL system research field. The research focus transitioned from focusing on the role of the system in B cell biology, to immunological disorders and finally to development of BAFF/APRIL targeting drugs. Despite several studies elucidating briefly the pathway mechanism of BAFF/APRIL system in B-cell selection, substantial research on the mechanism of action in disease models and T cell activation and development of immunomodulating drugs from natural origins remains largely unexplored. Therefore, future research focusing on these areas are crucial for the deeper understanding of the system in disease manifestations and progression allowing a better treatment management for various immunological disorders.
Collapse
Affiliation(s)
- Muggunna Balasubramaniam
- Small G protein Research Group, Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia; Green Biopolymer Coating and Packaging Centre, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
| | - Ana Masara Ahmad Mokhtar
- Small G protein Research Group, Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia; Green Biopolymer Coating and Packaging Centre, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia.
| |
Collapse
|
4
|
He M, Jiang W, Li X, Liu H, Ren H, Lin Y. 25-hydroxycholesterol promotes proliferation and metastasis of lung adenocarcinoma cells by regulating ERβ/TNFRSF17 axis. BMC Cancer 2024; 24:505. [PMID: 38649856 PMCID: PMC11034116 DOI: 10.1186/s12885-024-12227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Lung adenocarcinoma is the main type of lung cancer in women. Our previous findings have evidenced that 25-hydroxycholesterol (25-HC) promotes migration and invasion of lung adenocarcinoma cells (LAC), during which LXR as a 25-HC receptor plays an important role. Estrogen receptor beta (ERβ) is a receptor of 27-hydroxycholesterol that is structurally analogous to 25-HC, but its role in the functional actions of 25-HC remained largely unknown. In this study, we demonstrated that 25-HC treatment triggered ERβ expression in LAC. Knockdown of ERβ inhibited 25-HC-mediated proliferation, migration and invasion, and reduced 25-HC-induced LAC metastasis in vivo. Further investigation revealed that ERβ knockdown restrained the expression of TNFRSF17 (BCMA). In vivo experiments also confirmed that ERβ knockdown blocked 25-HC-induced TNFRSF17 expression. TNFRSF17 knockdown also restrained 25-HC-induced proliferation, migration and invasion. Bioinformatic analysis showed that the levels of ERβ and TNFRSF17 were elevated in lung adenocarcinoma, and were closely related to tumor stages and nodal metastasis status. These results suggested that 25-HC promoted the proliferation and metastasis of LAC by regulating ERβ/TNFRSF17 axis.
Collapse
Affiliation(s)
- Mengting He
- Department of Critical Care Medicine, Shandong University of Traditional Chinese Medicine, 250000, Jinan, Shandong, China
| | - Wenbo Jiang
- Department of Thoracic Surgery, Daqing Longnan Hospital, 163453, Daqing, Heilongjiang, China
| | - Xingkai Li
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Hongjin Liu
- Department of Critical Care Medicine, Shandong University of Traditional Chinese Medicine, 250000, Jinan, Shandong, China
| | - Hongsheng Ren
- Department of Critical Care Medicine, Shandong University of Traditional Chinese Medicine, 250000, Jinan, Shandong, China.
- Department of Critical Care Medicine, Shandong provincial Hospital Affiliated to Shandong First MedicalUniversity, 250021, Jinan, Shandong, China.
| | - Yanliang Lin
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Department of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China.
| |
Collapse
|
5
|
Wang B, Hu H, Wang X, Shao Z, Shi D, Wu F, Liu J, Zhang Z, Li J, Xia Z, Liu W, Wu Q. POLE2 promotes osteosarcoma progression by enhancing the stability of CD44. Cell Death Discov 2024; 10:177. [PMID: 38627379 PMCID: PMC11021398 DOI: 10.1038/s41420-024-01875-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 04/19/2024] Open
Abstract
Osteosarcoma (OS) is the most prevalent primary malignancy of bone in children and adolescents. It is extremely urgent to develop a new therapy for OS. In this study, the GSE14359 chip from the GEO database was used to screen differentially expressed genes in OS. DNA polymerase epsilon 2 (POLE2) was confirmed to overexpress in OS tissues and cell lines by immunohistochemical staining, qPCR and Western blot. Knockdown of POLE2 inhibited the proliferation and migration of OS cells in vitro, as well as the growth of tumors in vivo, while the apoptosis rate was increased. Bioinformatics analysis revealed that CD44 and Rac signaling pathway were the downstream molecule and pathway of POLE2, which were inhibited by knockdown of POLE2. POLE2 reduced the ubiquitination degradation of CD44 by acting on MDM2. Moreover, knockdown of CD44 inhibited the tumor-promoting effects of POLE2 overexpression on OS cells. In conclusion, POLE2 augmented the expression of CD44 via inhibiting MDM2-mediated ubiquitination, and then activated Rac signaling pathway to influence the progression of OS, indicating that POLE2/CD44 might be potential targets for OS treatment.
Collapse
Affiliation(s)
- Baichuan Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Hongzhi Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Xiaohui Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Deyao Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Fashuai Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Jianxiang Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Juan Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Zhidao Xia
- Institute of Life Sciences 2, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Weijian Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China.
| | - Qiang Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China.
| |
Collapse
|
6
|
Huang HW, Chen CC, Lin KI, Hsu TL, Wong CH. Single Site N-Glycosylation of B Cell Maturation Antigen (BCMA) Inhibits γ-Secretase-Mediated Shedding and Improves Surface Retention and Cell Survival. ACS Chem Biol 2024; 19:153-161. [PMID: 38085681 DOI: 10.1021/acschembio.3c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
B cell maturation antigen (BCMA), a member of the tumor necrosis factor receptor (TNFR) family, on the cell surface plays a key role in maintaining the survival of plasma cells and malignant as well as inflammatory accessory cells. Therefore, targeting BCMA or disrupting its interaction with ligands has been a potential approach to cancer therapy. BCMA contains a single N-glycosylation site, but the function of N-glycan on BCMA is not understood. Here, we found that the N-glycosylation of BCMA promoted its cell-surface retention while removing the N-glycan increased BCMA secretion through γ-secretase-mediated shedding. Addition of γ-secretase inhibitor prevented nonglycosylated BCMA from shedding and protected cells from dexamethasone and TRAIL-induced apoptosis.
Collapse
Affiliation(s)
- Han-Wen Huang
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Chen-Chun Chen
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Tsui-Ling Hsu
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
7
|
The BAFF-APRIL System in Cancer. Cancers (Basel) 2023; 15:cancers15061791. [PMID: 36980677 PMCID: PMC10046288 DOI: 10.3390/cancers15061791] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
B cell-activating factor (BAFF; also known as CD257, TNFSF13B, BLyS) and a proliferation-inducing ligand (APRIL; also known as CD256, TNFSF13) belong to the tumor necrosis factor (TNF) family. BAFF was initially discovered as a B-cell survival factor, whereas APRIL was first identified as a protein highly expressed in various cancers. These discoveries were followed by over two decades of extensive research effort, which identified overlapping signaling cascades between BAFF and APRIL, controlling immune homeostasis in health and driving pathogenesis in autoimmunity and cancer, the latter being the focus of this review. High levels of BAFF, APRIL, and their receptors have been detected in different cancers and found to be associated with disease severity and treatment response. Here, we have summarized the role of the BAFF-APRIL system in immune cell differentiation and immune tolerance and detailed its pathogenic functions in hematological and solid cancers. We also highlight the emerging therapeutics targeting the BAFF-APRIL system in different cancer types.
Collapse
|
8
|
Yang M, Wang P, Liu T, Zou X, Xia Y, Li C, Wang X. High throughput sequencing revealed enhanced cell cycle signaling in SLE patients. Sci Rep 2023; 13:159. [PMID: 36599883 DOI: 10.1038/s41598-022-27310-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
The multi-system involvement and high heterogeneity of systemic lupus erythematosus (SLE) pose great challenges to its diagnosis and treatment. The purpose of the current study is to identify genes and pathways involved in the pathogenesis of SLE. High throughput sequencing was performed on the PBMCs from SLE patients. We conducted differential gene analysis, gene ontology (GO) analysis, kyoto encyclopedia of genes and genomes (KEGG) analysis, and quantitative real-time PCR (qRT-PCR) verification. Protein-protein interaction (PPI) analysis, alternative splicing analysis, and disease correlation analysis were conducted on some key pathogenic genes as well. Furthermore, si-CDC6 was used for transfection and cell proliferation was monitored using a cell counting kit-8 (CCK-8) assay. We identified 2495 differential genes (1494 upregulated and 1001 downregulated) in SLE patients compared with healthy controls. The significantly upregulated genes were enriched in the biological process-related GO terms of the cell cycle, response to stress, and chromosome organization. KEGG enrichment analysis revealed 7 significantly upregulated pathways including SLE, alcoholism, viral carcinogenesis, cell cycle, proteasome, malaria, and transcriptional misregulation in cancer. We successfully verified some differential genes on the SLE pathway and the cell cycle pathway. CDC6, a key gene in the cell cycle pathway, had remarkably higher MXE alternative splicing events in SLE patients than that in controls, which may explain its significant upregulation in SLE patients. We found that CDC6 participates in the pathogenesis of many proliferation-related diseases and its levels are positively correlated with the severity of SLE. Knockdown of CDC6 suppressed the proliferation of Hela cells and PBMCs from SLE patients in vitro. We identified SLE-related genes and their alternative splicing events. The cell cycle pathway and the cell cycle-related biological processes are over-activated in SLE patients. We revealed a higher incidence of MXE events of CDC6, which may lead to its high expression in SLE patients. Upregulated cell cycle signaling and CDC6 may be related to the hyperproliferation and pathogenesis of SLE.
Collapse
Affiliation(s)
- Mingyue Yang
- Laboratory for Tumor Immunology, Translational Medicine Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Peisong Wang
- Thyroid Surgery Department, General Surgery Center, First Hospital of Jilin University, Changchun, 130021, China
| | - Tao Liu
- Department of Rheumatology and Immunology, First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaojuan Zou
- Department of Rheumatology and Immunology, First Hospital of Jilin University, Changchun, 130021, China
| | - Ying Xia
- Laboratory for Tumor Immunology, Translational Medicine Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Chenxu Li
- Laboratory for Tumor Immunology, Translational Medicine Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaosong Wang
- Laboratory for Tumor Immunology, Translational Medicine Department, First Hospital of Jilin University, Changchun, 130021, China.
- Institute of Translational Medicine, First Hospital of Jilin University, No.519 Dongminzhu Street, Changchun, 130021, China.
| |
Collapse
|
9
|
Wu L, Huang Y, Sienkiewicz J, Sun J, Guiang L, Li F, Yang L, Golubovskaya V. Bispecific BCMA-CD3 Antibodies Block Multiple Myeloma Tumor Growth. Cancers (Basel) 2022; 14:cancers14102518. [PMID: 35626122 PMCID: PMC9139578 DOI: 10.3390/cancers14102518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
BCMA antigen is overexpressed in multiple myeloma cells and has been shown to be a promising target for novel cellular and antibody therapeutics. The humanized BCMA (clone 4C8A) antibody that effectively targeted multiple myeloma in a CAR (chimeric antigen receptor) format was used for designing several formats of bispecific BCMA-CD3 antibodies. Several different designs of univalent and bivalent humanized BCMA-CD3 CrossMAB and BCMA-FAB-CD3 ScFv-Fc antibodies were tested for binding with BCMA-positive cells and T cells and for killing by real time cytotoxic activity and IFN-gamma secretion with CHO-BCMA target cells and with multiple myeloma MM1S and H929 cell lines. All BCMA-CD3 antibodies demonstrated specific binding by FACS to CHO-BCMA, multiple myeloma cells, and to T cells with affinity Kd in the nM range. All antibodies with T cells specifically killed CHO-BCMA and multiple myeloma cells in a dose-dependent manner. The BCMA-CD3 antibodies with T cells secreted IFN-gamma with EC50 in the nM range. In addition, three BCMA bispecific antibodies had high in vivo efficacy using an MM1S xenograft NSG mouse model. The data demonstrate the high efficacy of novel hBCMA-CD3 antibodies with multiple myeloma cells and provide a basis for future pre-clinical and clinical development.
Collapse
Affiliation(s)
- Lijun Wu
- Promab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA; (L.W.); (Y.H.); (J.S.); (J.S.); (L.G.); (F.L.); (L.Y.)
- Forevertek Biotechnology, Janshan Road, Changsha Hi-Tech Industrial Development Zone, Changsha 410205, China
| | - Yanwei Huang
- Promab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA; (L.W.); (Y.H.); (J.S.); (J.S.); (L.G.); (F.L.); (L.Y.)
| | - John Sienkiewicz
- Promab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA; (L.W.); (Y.H.); (J.S.); (J.S.); (L.G.); (F.L.); (L.Y.)
| | - Jinying Sun
- Promab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA; (L.W.); (Y.H.); (J.S.); (J.S.); (L.G.); (F.L.); (L.Y.)
| | - Liselle Guiang
- Promab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA; (L.W.); (Y.H.); (J.S.); (J.S.); (L.G.); (F.L.); (L.Y.)
| | - Feng Li
- Promab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA; (L.W.); (Y.H.); (J.S.); (J.S.); (L.G.); (F.L.); (L.Y.)
| | - Liming Yang
- Promab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA; (L.W.); (Y.H.); (J.S.); (J.S.); (L.G.); (F.L.); (L.Y.)
| | - Vita Golubovskaya
- Promab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA; (L.W.); (Y.H.); (J.S.); (J.S.); (L.G.); (F.L.); (L.Y.)
- Correspondence: ; Tel.: +1-510-974-0697
| |
Collapse
|
10
|
Humayun A, Fornace AJ. GADD45 in Stress Signaling, Cell Cycle Control, and Apoptosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:1-22. [PMID: 35505159 DOI: 10.1007/978-3-030-94804-7_1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
GADD45 is a gene family consisting of GADD45A, GADD45B, and GADD45G that is often induced by DNA damage and other stress signals associated with growth arrest and apoptosis. Many of these roles are carried out via signaling mediated by p38 mitogen-activated protein kinases (MAPKs). The GADD45 proteins can contribute to p38 activation either by activation of upstream kinase(s) or by direct interaction, as well as suppression of p38 activity in certain cases. In vivo, there are important tissue and cell type specific differences in the roles for GADD45 in MAPK signaling. In addition to being p53-regulated, GADD45A has also been found to contribute to p53 activation via p38. Like other stress and signaling proteins, GADD45 proteins show complex regulation and numerous effectors. More recently, aberrant GADD45 expression has been found in several human cancers, but the mechanisms behind these findings largely remain to be understood.
Collapse
Affiliation(s)
- Arslon Humayun
- Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Albert J Fornace
- Lombardi Comprehensive Cancer Center, Washington, DC, USA.
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, USA.
| |
Collapse
|
11
|
Tian J, Locker J. Gadd45 in the Liver: Signal Transduction and Transcriptional Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:87-99. [DOI: 10.1007/978-3-030-94804-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Warakomska M, Tynecka M, Lemancewicz D, Grubczak K, Dzieciol J, Moniuszko M, Eljaszewicz A, Bolkun L. The effects of BAFF and APRIL signaling on non-small cell lung cancer cell proliferation and invasiveness. Oncol Lett 2021; 22:728. [PMID: 34429768 DOI: 10.3892/ol.2021.12989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/18/2021] [Indexed: 11/05/2022] Open
Abstract
Lung cancer represents the most common type of human malignancy and is the main cause of cancer-associated mortality worldwide. To improve the effectiveness of treatment strategies, a better understanding of the mechanisms of cancer progression and invasiveness is required. Recently, B-cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL), two relatively newly described cytokines belonging to the tumor necrosis factor superfamily, have been shown to play a role in cancer progression. However, at present, the effects of both cytokines on lung cancer cells remain unclear. The present study aimed therefore to understand the direct effects of BAFF and APRIL on non-small cell lung cancer (NSCLC) progression. To do so, reverse transcription quantitative PCR and western blotting were used to evaluate whether A549 and H2030 NSCLC cells express receptors for both BAFF and APRIL. The results demonstrated that both investigated cell lines expressed BAFF-R (receptor specific to BAFF only) and transmembrane activator and CAML interactor (TACI; shared receptor for both cytokines). In addition, functional experiments were performed to determine the effects of BAFF and APRIL stimulation on cancer cell viability. The results demonstrated no direct effects of BAFF and APRIL on NSCLC cell proliferation and invasiveness. In summary, the present study demonstrated that NSCLC cells possess the ability to respond directly to both BAFF and APRIL. However, activation of BAFF-R and TACI signaling in cancer cells did not increase the proliferative capacity and invasiveness. Further investigation is thus required to better understand the role of BAFF and APRIL on the progression of NSCLC.
Collapse
Affiliation(s)
- Martyna Warakomska
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Marlena Tynecka
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Dorota Lemancewicz
- Department of Human Anatomy, Medical University of Bialystok, 15-230 Bialystok, Poland.,Department of Haematology, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Janusz Dzieciol
- Department of Human Anatomy, Medical University of Bialystok, 15-230 Bialystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland.,Department of Allergology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Lukasz Bolkun
- Department of Human Anatomy, Medical University of Bialystok, 15-230 Bialystok, Poland
| |
Collapse
|
13
|
Gao L, Morine Y, Yamada S, Saito Y, Ikemoto T, Tokuda K, Miyazaki K, Okikawa S, Takasu C, Shimada M. The BAFF/NFκB axis is crucial to interactions between sorafenib-resistant HCC cells and cancer-associated fibroblasts. Cancer Sci 2021; 112:3545-3554. [PMID: 34159680 PMCID: PMC8409310 DOI: 10.1111/cas.15041] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment affects malignancy in hepatocellular carcinoma (HCC) cells, and cancer-associated fibroblasts (CAFs) play an important role in the microenvironment. As recent studies indicated a difference between CAFs isolated from chemoresistant and non-resistant cancer tissues, therefore we investigated the intracellular mechanism in resistant HCC co-cultured CAFs and interactions between these CAFs with cancer cells. We established a sorafenib-resistant (SR) Huh7 (human HCC) cell line, and characterized it with cytokine assays, then developed CAFs by co-culturing human hepatic stellate cells with resistant or parental Huh7 cells. The 2 types of CAFs were co-cultured with parental Huh7 cells, thereafter the cell viability of these Huh7 cells was checked under sorafenib treatment. The SR Huh7 (Huh7SR ) cells expressed increased B-cell activating factor (BAFF), which promoted high expression of CAF-specific markers in Huh7SR -co-cultured CAFs, showed activated BAFF, BAFF-R, and downstream of the NFκB-Nrf2 pathway, and aggravated invasion, migration, and drug resistance in co-cultured Huh7 cells. When we knocked down BAFF expression in Huh7SR cells, the previously increased malignancy and BAFF/NFκB axis in Huh7SR -co-cultured CAFs reversed, and enhanced chemoresistance in co-cultured Huh7 cells returned as well. In conclusion, the BAFF/NFκB pathway was activated in CAFs co-cultured with cell-culture medium from resistant Huh7, which promoted chemoresistance, and increased the malignancy in co-cultured non-resistant Huh7 cells. This suggests that the BAFF/NFκB axis in CAFs might be a potential therapeutic target in chemoresistance of HCC.
Collapse
Affiliation(s)
- Luping Gao
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuji Morine
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Shinichiro Yamada
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yu Saito
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tetsuya Ikemoto
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kazunori Tokuda
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Katsuki Miyazaki
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Shouhei Okikawa
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Chie Takasu
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Mitsuo Shimada
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
14
|
Pan M, Liu J, Huang D, Guo Y, Luo K, Yang M, Gao W, Xu Q, Zhang W, Mai K. FoxO3 Modulates LPS-Activated Hepatic Inflammation in Turbot ( Scophthalmus maximus L.). Front Immunol 2021; 12:679704. [PMID: 34276667 PMCID: PMC8281027 DOI: 10.3389/fimmu.2021.679704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022] Open
Abstract
In mammals, forkhead box O3 (foxo3) plays important roles in liver immune system. The foxo3 can regulate cell cycle, DNA repair, hypoxia, apoptosis and so on. However, as such an important transcription factor, few studies on foxo3 in fish have been reported. The present study characterized the foxo3 in turbot (Scophthalmus maximus L.). Lipopolysaccharide (LPS) incubated in vitro (hepatocytes) and injected in vivo (turbot liver) were used to construct inflammatory models. The foxo3 was interfered and overexpressed to investigate its functions in liver inflammation. The open reading frame (ORF) of foxo3 was 1998 bp (base pair), encoding 665 amino acids. Sequence analysis showed that foxo3 of turbot was highly homologous to other fishes. Tissue distribution analysis revealed that the highest expression of foxo3 was in muscle. Immunofluorescence result showed that foxo3 was expressed in cytoplasm and nucleus. Knockdown of foxo3 significantly increased mRNA levels of tumor necrosis factor-α (tnf-α), interleukin-1β (il-1β), interleukin-6 (il-6), myeloid-differentiation factor 88 (myd88), cd83, toll-like receptor 2 (tlr-2) and protein level of c-Jun N-terminal kinase (JNK) in sifoxo3 + LPS (siRNA of foxo3+ LPS) group compared with NC + LPS (negative control + LPS) group in turbot hepatocytes. Overexpressed foxo3 significantly decreased mRNA levels of tnf-α, il-6, nuclear transcription factor-kappa B (nf-κb), cd83, tlr-2 and the protein level of JNK in vitro. In vivo analysis, foxo3 knockdown significantly increased levels of GOT in serum after LPS injection compared with NC+LPS group. Overexpressed foxo3 significantly decreased levels of GPT and GOT in pcDNA3.1-foxo3+LPS group compared with pcDNA3.1+LPS group in vivo. Foxo3 knockdown significantly increased mRNA levels of tnf-α, il-1β, il-6, nf-κb, myd88 and protein level of JNK in vivo in sifoxo3+LPS group compared with NC+LPS group in turbot liver. Overexpressed foxo3 significantly decreased mRNA levels of il-1β, il-6, myd88, cd83, jnk and protein level of JNK in pcDNA3.1-foxo3+LPS group compared with pcDNA3.1+LPS group in turbot liver. The results indicated that foxo3 might modulate LPS-activated hepatic inflammation in turbot by decreasing the proinflammatory cytokines, the levels of GOT and GPT as well as activating JNK/caspase-3 and tlr-2/myd88/nf-κb pathways. Taken together, these findings indicated that FoxO3 may play important roles in liver immune responses to LPS in turbot and the research of FoxO3 in liver immunity enriches the studies on immune regulation, and provides theoretical basis and molecular targets for solving liver inflammation and liver injury in fish.
Collapse
Affiliation(s)
- Mingzhu Pan
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
| | - Jiahuan Liu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
| | - Dong Huang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
| | - Yanlin Guo
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
| | - Kai Luo
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
| | - Mengxi Yang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
| | - Weihua Gao
- Department of Fisheries, College of Animal Science, Yangtze University, Jingzhou, China
| | - Qiaoqing Xu
- Department of Fisheries, College of Animal Science, Yangtze University, Jingzhou, China
| | - Wenbing Zhang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
- Department of Fisheries, College of Animal Science, Yangtze University, Jingzhou, China
| | - Kangsen Mai
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
- Department of Fisheries, College of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
15
|
Yang S, Pang L, Dai W, Wu S, Ren T, Duan Y, Zheng Y, Bi S, Zhang X, Kong J. Role of Forkhead Box O Proteins in Hepatocellular Carcinoma Biology and Progression (Review). Front Oncol 2021; 11:667730. [PMID: 34123834 PMCID: PMC8190381 DOI: 10.3389/fonc.2021.667730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/28/2021] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC), the most common type of malignant tumor of the digestive system, is associated with high morbidity and mortality. The main treatment for HCC is surgical resection. Advanced disease, recurrence, and metastasis are the main factors affecting prognosis. Chemotherapy and radiotherapy are not sufficiently efficacious for the treatment of primary and metastatic HCC; therefore, optimizing targeted therapy is essential for improving outcomes. Forkhead box O (FOXO) proteins are widely expressed in cells and function to integrate a variety of growth factors, oxidative stress signals, and other stimulatory signals, thereby inducing the specific expression of downstream signal factors and regulation of the cell cycle, senescence, apoptosis, oxidative stress, HCC development, and chemotherapy sensitivity. Accordingly, FOXO proteins are considered multifunctional targets of cancer treatment. The current review discusses the roles of FOXO proteins, particularly FOXO1, FOXO3, FOXO4, and FOXO6, in HCC and establishes a theoretical basis for the potential targeted therapy of HCC.
Collapse
Affiliation(s)
- Shaojie Yang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liwei Pang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wanlin Dai
- Innovation Institute of China Medical University, Shenyang, China
| | - Shuodong Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tengqi Ren
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunlong Duan
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuting Zheng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shiyuan Bi
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaolin Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing Kong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Möckel T, Basta F, Weinmann-Menke J, Schwarting A. B cell activating factor (BAFF): Structure, functions, autoimmunity and clinical implications in Systemic Lupus Erythematosus (SLE). Autoimmun Rev 2020; 20:102736. [PMID: 33333233 DOI: 10.1016/j.autrev.2020.102736] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/28/2020] [Indexed: 12/30/2022]
Abstract
The B cell activating factor (BAFF), or B lymphocyte stimulator (BLyS), is a B cell survival factor which supports autoreactive B cells and prevents their deletion. BAFF expression is closely linked with autoimmunity and is enhanced by genetic alterations and viral infections. Furthermore, BAFF seems to be involved in adipogenesis, atherosclerosis, neuro-inflammatory processes and ischemia reperfusion (I/R) injury. BAFF is commonly overexpressed in Systemic Lupus Erythematosus (SLE) and strongly involved in the pathogenesis of the disease. The relationship between BAFF levels, disease activity and damage accrual in SLE is controversial, but growing evidence is emerging on its role in renal involvement. Belimumab, a biologic BAFF inhibitor, has been the first biologic agent licensed for SLE therapy so far. As Rituximab (RTX) has been shown to increase BAFF levels following B cell depletion, the combination therapy of RTX plus belimumab (being evaluated in two RCT) seems to be a valuable option for several clinical scenarios. In this review we will highlight the growing body of evidence of immune and non-immune related BAFF expression in experimental and clinical settings.
Collapse
Affiliation(s)
- Tamara Möckel
- Department of Internal Medicine I, Division of Rheumatology and Clinical Immunology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Fabio Basta
- Acura Rheumatology Center Rhineland Palatinate, Bad Kreuznach, Germany
| | - Julia Weinmann-Menke
- Department of Internal Medicine I, Division of Nephrology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Andreas Schwarting
- Department of Internal Medicine I, Division of Rheumatology and Clinical Immunology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany; Acura Rheumatology Center Rhineland Palatinate, Bad Kreuznach, Germany
| |
Collapse
|
17
|
You W, Xu Z, Sun Y, Valencak TG, Wang Y, Shan T. GADD45α drives brown adipose tissue formation through upregulating PPARγ in mice. Cell Death Dis 2020; 11:585. [PMID: 32719383 PMCID: PMC7385159 DOI: 10.1038/s41419-020-02802-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
Stress can lead to obesity and metabolic dysfunction, but the underlying mechanisms are unclear. Here we identify GADD45α, a stress-inducible histone folding protein, as a potential regulator for brown adipose tissue biogenesis. Unbiased transcriptomics data indicate a positive correlation between adipose Gadd45a mRNA level and obesity. At the cellular level, Gadd45a knockdown promoted proliferation and lipolysis of brown adipocytes, while Gadd45a overexpression had the opposite effects. Consistently, using a knockout (Gadd45a−/−) mouse line, we found that GADD45α deficiency inhibited lipid accumulation and promoted expression of thermogenic genes in brown adipocytes, leading to improvements in insulin sensitivity, glucose uptake, energy expenditure. At the molecular level, GADD45α deficiency increased proliferation through upregulating expression of cell cycle related genes. GADD45α promoted brown adipogenesis via interacting with PPARγ and upregulating its transcriptional activity. Our new data suggest that GADD45α may be targeted to promote non-shivering thermogenesis and metabolism while counteracting obesity.
Collapse
Affiliation(s)
- Wenjing You
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Ye Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | | | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China. .,The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China. .,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China.
| |
Collapse
|
18
|
TNFSF13 upregulation confers chemotherapeutic resistance via triggering autophagy initiation in triple-negative breast cancer. J Mol Med (Berl) 2020; 98:1255-1267. [PMID: 32671412 DOI: 10.1007/s00109-020-01952-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/26/2020] [Accepted: 07/10/2020] [Indexed: 12/31/2022]
Abstract
Since chemotherapy is a main strategy to treat triple-negative breast cancer (TNBC) patients currently, identifying a biomarker to predict chemotherapeutic responses is urgently needed for patients to avoid suffering through unnecessary chemotherapeutic treatments. Here, we found that the endogenous expression of TNFSF13 in a panel of TNBC cell lines highly correlates with paclitaxel (PTX) and doxorubicin IC50 concentrations. Whereas knocking down TNFSF13 enhances PTX effectiveness in PTX-insensitive MDA-MB231 cells, recombinant TNFSF13 (recTNFSF13) desensitizes PTX-sensitive HCC1806 cells to PTX treatment. Moreover, Kaplan-Meier analysis revealed that higher TNFSF13 mRNA expression significantly predicts an increased risk for cancer recurrence in estrogen receptor (ER)-negative breast cancer patients receiving an anthracycline-based treatment. Accordingly, immunohistochemistry experiments indicated that higher levels of TNFSF13 protein are detected in TNBC patients who do not respond to an anthracycline-based treatment. The in silico analysis and Western blotting demonstrated that TNFSF13 expression inversely associates with the activity of the Akt-mTOR pathway, which acts as a negative regulator of autophagy activity. Significantly, the pharmaceutical inhibition of autophagy activity restores the therapeutic effectiveness of PTX in TNFSF13-treated HCC1806 cells. These findings suggest that TNFSF13 can serve as a predictive biomarker for TNBC patients, who can use it to decide whether to receive chemotherapy. KEY MESSAGES: TNFSF13 upregulation correlates with a poor response to chemotherapy in TNBCs. TNFSF13 promotes autophagy initiation in chemotherapeutic resistant TNBCs. Therapeutic targeting of autophagy initiation overcomes the TNFSF13-related chemoresistance. TNFSF13 could be a predictive biomarker for TNBC patients receiving chemotherapy.
Collapse
|
19
|
Kampa M, Notas G, Stathopoulos EN, Tsapis A, Castanas E. The TNFSF Members APRIL and BAFF and Their Receptors TACI, BCMA, and BAFFR in Oncology, With a Special Focus in Breast Cancer. Front Oncol 2020; 10:827. [PMID: 32612943 PMCID: PMC7308424 DOI: 10.3389/fonc.2020.00827] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Tumor necrosis factor (TNF) superfamily consists of 19 ligands and 29 receptors and is related to multiple cellular events from proliferation and differentiation to apoptosis and tumor reduction. In this review, we overview the whole system, and we focus on A proliferation-inducing ligand (APRIL, TNFSF13) and B cell-activating factor (BAFF, TNFSF13B) and their receptors transmembrane activator and Ca2+ modulator (CAML) interactor (TACI, TNFRSF13B), B cell maturation antigen (BCMA, TNFRSF17), and BAFF receptor (BAFFR, TNFRSF13C). We explore their role in cancer and novel biological therapies introduced for multiple myeloma and further focus on breast cancer, in which the modulation of this system seems to be of potential interest, as a novel therapeutic target. Finally, we discuss some precautions which should be taken into consideration, while targeting the APRIL–BAFF system.
Collapse
Affiliation(s)
- Marilena Kampa
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklon, Greece
| | - George Notas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklon, Greece
| | | | - Andreas Tsapis
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklon, Greece
| | - Elias Castanas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklon, Greece
| |
Collapse
|
20
|
The activation of BAFF/APRIL system in spleen and lymph nodes of Plasmodium falciparum infected patients. Sci Rep 2020; 10:3865. [PMID: 32123265 PMCID: PMC7052189 DOI: 10.1038/s41598-020-60763-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/13/2020] [Indexed: 12/16/2022] Open
Abstract
Previous studies have reported activation of the B cell-activating factor (BAFF)/a proliferation-inducing ligand (APRIL) system in T independent immunity against malaria infection. Plasmodium falciparum (P. falciparum) infected animal model is not feasible. Therefore, little is known about the occurrence of BAFF/APRIL system and changes in falciparum lymphoid tissues. This study aimed to investigate the expression of BAFF/APRIL system components in lymphoid tissues from P. falciparum infected patients. Spleen and lymph node samples from 14 patients were collected at autopsy. Normal spleens and bacterially infected tonsils served as controls. The protein and/or mRNA expression of BAFF/APRIL and their cognate receptors, BAFF-R, TACI and BCMA, were determined by immunohistochemistry and RT-qPCR, respectively. The spleens of the patients exhibited significantly higher BAFF-R protein expression than normal spleens. Although without appropriate control, BCMA protein was markedly observed only in the lymph nodes. BAFF and BCMA mRNA levels were also significantly elevated in the spleen tissues of the patients compared with normal spleens. The overall BAFF-R protein levels in the lymphoid tissues of the patients correlated positively with parasitaemia. These findings are the first to confirm that BAFF/APRIL system activation in lymphoid tissues and is positively correlated with the parasitaemia levels in falciparum malaria.
Collapse
|
21
|
Chen B, Guo L, Chen X, El-Senousey HK, Ma M, Jebessa E, Nie Q. Cellular function of chicken FOXO3 and its associations with chicken growth. Poult Sci 2019; 98:5109-5117. [PMID: 31265733 DOI: 10.3382/ps/pez397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/13/2019] [Indexed: 01/08/2023] Open
Abstract
FOXO3 belongs to the Forkhead O transcription factor family and it is an important gene in multiple biological processes, such as cell cycle control, cell proliferation, cell apoptosis, human longevity, and oxidative stress. Previous studies have shown that FOXO3 is associated with skeletal muscle growth and adipose development in mammals. However, the sequence of chicken FOXO3 is still incomplete and the cellular functions of FOXO3 in chickens are poorly understood. Thus, we obtained the full-length sequence of chicken FOXO3 by 5' rapid amplification of cDNA ends (5' RACE) and the phylogenetic tree showed that the chicken FOXO3 sequence was homologous with those in other species. Flow cytometry analysis and 5-ethynyl-2'-deoxyuridine assays showed that FOXO3 repressed cellular proliferation and induced apoptosis in a chicken hepatocellular carcinoma cell line (LMH). Mutations were screened in the second exon of FOXO3 and 13 synonymous single nucleotide polymorphisms were found in the test population. Further analysis showed that rs317670452 and rs15379317 were associated with many growth and carcass traits, such as the body weight at different ages and breast muscle weight. Our results indicate that chicken FOXO3 has similar cellular functions to those found in mammals and it is significantly associated with chicken growth.
Collapse
Affiliation(s)
- Biao Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Lijin Guo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Xiaolan Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | | | - Manting Ma
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Endashaw Jebessa
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| |
Collapse
|
22
|
Han N, Yuan F, Xian P, Liu N, Liu J, Zhang H, Zhang H, Yao K, Yuan G. GADD45a Mediated Cell Cycle Inhibition Is Regulated By P53 In Bladder Cancer. Onco Targets Ther 2019; 12:7591-7599. [PMID: 31571910 PMCID: PMC6754676 DOI: 10.2147/ott.s222223] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/04/2019] [Indexed: 11/23/2022] Open
Abstract
Background Bladder cancer (BC) is one of the most prevalent malignancies of the genitourinary system, yet the underlying mechanism of BC progression still remains unclear. Growth arrest and DNA damage-inducible 45 alpha (GADD45a) is a repressive gene implicated in cell cycle regulation, as well as in human cancers development. However, its role in BC remains to be determined. Methods First, quantitative real-time polymerase chain reaction (PCR) and Western blot assays were used to detect GADD45a expression in BC tissues and adjacent non-tumor tissues, as well as in bladder cancer cell lines, respectively. Then, cell counting kit-8 (CCK-8) assays, colony formation assays, and flow cytometry assays were used to measure the ability of cell growth, proliferation and cell cycle distribution. Lentiviral infection technology was used to increase gene expression, while siRNA interfering technology was used to knockdown gene expression. Finally, nude mice were used to construct tumor-burdened models in vivo by injecting tumor cells subcutaneously. Results PCR results showed that the level of GADD45a mRNA and protein levels were lower in BC tissues than in adjacent normal tissues. After increasing GADD45a expression, both the ability of growth and proliferation of BC cells were seriously impaired. Additionally, the upregulation of GADD45a expression resulted in BC cell cycle in G2/M and S phases in a p53-regulated pathway. Conclusion GADD45a-mediated cell cycle inhibition is regulated by p53 in bladder cancer cells.
Collapse
Affiliation(s)
- Na Han
- Health Examination and Oncology Screening Center, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China.,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Fang Yuan
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China.,Department of Urology, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Peng Xian
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China.,Department of Urology, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Nan Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China.,Department of Urology, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Jianmin Liu
- Department of Otolaryngology Head and Neck Surgery, People's Hospital of Deyang, Deyang 618000, People's Republic of China
| | - Haiyan Zhang
- Health Examination and Oncology Screening Center, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China.,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Huayong Zhang
- Department of Thyroid and Breast Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, People's Republic of China
| | - Kai Yao
- Department of Urology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Gangjun Yuan
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China.,Department of Urology, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| |
Collapse
|
23
|
Lee CM, Lee J, Nam MJ, Choi YS, Park SH. Tomentosin Displays Anti-Carcinogenic Effect in Human Osteosarcoma MG-63 Cells via the Induction of Intracellular Reactive Oxygen Species. Int J Mol Sci 2019; 20:ijms20061508. [PMID: 30917517 PMCID: PMC6471964 DOI: 10.3390/ijms20061508] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022] Open
Abstract
Tomentosin is a natural sesquiterpene lactone extracted from various plants and is widely used as a medicine because it exhibits essential therapeutic properties. In this study, we investigated the anti-carcinogenic effects of tomentosin in human osteosarcoma MG-63 cells by performing cell migration/viability/proliferation, apoptosis, and reactive oxygen species (ROS) analysis assays. MG-63 cells were treated with various doses of tomentosin. After treatment with tomentosin, MG-63 cells were analyzed using the MTT assay, colony formation assay, cell counting assay, wound healing assay, Boyden chamber assay, zymography assay, cell cycle analysis, FITC Annexin V apoptosis assay, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, western blot analysis, and ROS detection analysis. Our results indicated that tomentosin decreased cell viability and migration ability in MG-63 cells. Moreover, tomentosin induced apoptosis, cell cycle arrest, DNA damage, and ROS production in MG-63 cells. Furthermore, tomentosin-induced intracellular ROS decreased cell viability and induced apoptosis, cell cycle arrest, and DNA damage in MG-63 cells. Taken together, our results suggested that tomentosin exerted anti-carcinogenic effects in MG-63 cells by induction of intracellular ROS.
Collapse
Affiliation(s)
- Chang Min Lee
- Department of Biological Science, Gachon University, Seongnam 13120, Korea.
| | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea.
| | - Myeong Jin Nam
- Department of Biological Science, Gachon University, Seongnam 13120, Korea.
| | - Youn Soo Choi
- Department of Biomedical Sciences, Seoul National University Graduate School, Department of Medicine, College of Medicine, Seoul National University, Seoul 03080, Korea.
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong 30016, Korea.
| |
Collapse
|
24
|
Wen DY, Huang JC, Wang JY, Pan WY, Zeng JH, Pang YY, Yang H. Potential clinical value and putative biological function of miR-122-5p in hepatocellular carcinoma: A comprehensive study using microarray and RNA sequencing data. Oncol Lett 2018; 16:6918-6929. [PMID: 30546424 PMCID: PMC6256359 DOI: 10.3892/ol.2018.9523] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023] Open
Abstract
In order to determine the diagnostic efficacy of microRNA (miR)-122-5p and to identify the potential molecular signaling pathways underlying the function of miR-122-5p in hepatocellular carcinoma (HCC), the expression profiles of data collected from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and literature databases were analyzed, along with any associations between clinicopathological characteristics and the diagnostic value of miR-122-5p in HCC. The intersection of 12 online prediction databases and differentially expressed genes from TCGA and GEO were utilized in order to select the prospective target genes of miR-122-5p in HCC. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction network (PPI) analyses were subsequently performed based on the selected target genes. The average expression level of miR-122-5p was decreased in HCC patients compared with controls from TCGA database (P<0.001), and the downregulation of miR-122-5p was significantly associated with HCC tissues (P<0.001), tumor vascular invasion (P<0.001), metastasis (P=0.001), sex (P=0.006), virus infection status (P=0.001) and tissue (compared with serum; P<0.001) in cases from the GEO database. The pooled sensitivity and specificity for miR-122-5p to diagnose HCC were 0.60 [95% confidence interval (CI), 0.48–0.71] and 0.81 (95% CI, 0.70–0.89), respectively. The area under the curve (AUC) value was 0.76 (95% CI, 0.72–0.80), while in Meta-DiSc 1.4, the AUC was 0.76 (Q*=0.70). The pooled sensitivity and specificity were 0.60 (95% CI, 0.57–0.62) and 0.79 (95% CI, 0.76–0.81), respectively. A total of 198 overlapping genes were selected as the potential target genes of miR-122-5p, and 7 genes were defined as the hub genes from the PPI network. Cell division cycle 6 (CDC6), minichromosome maintenance complex component 4 (MCM4) and MCM8, which serve pivotal functions in the occurrence and development of HCC, were the most significant hub genes. The regulation of cell proliferation for cellular adhesion and the biosynthesis of amino acids was highlighted in the GO and KEGG pathway analyses. The downregulation of miR-122-5p in HCC demonstrated diagnostic value, worthy of further attention. Therefore, miR-122-5p may function as a tumor suppressor by modulating genome replication.
Collapse
Affiliation(s)
- Dong-Yue Wen
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jia-Cheng Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jie-Yu Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Wen-Ya Pan
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jiang-Hui Zeng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yu-Yan Pang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hong Yang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
25
|
Berahovich R, Zhou H, Xu S, Wei Y, Guan J, Guan J, Harto H, Fu S, Yang K, Zhu S, Li L, Wu L, Golubovskaya V. CAR-T Cells Based on Novel BCMA Monoclonal Antibody Block Multiple Myeloma Cell Growth. Cancers (Basel) 2018; 10:cancers10090323. [PMID: 30208593 PMCID: PMC6162381 DOI: 10.3390/cancers10090323] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 02/07/2023] Open
Abstract
The cell-surface protein B cell maturation antigen (BCMA, CD269) has emerged as a promising target for CAR-T cell therapy for multiple myeloma. In order to create a novel BCMA CAR, we generated a new BCMA monoclonal antibody, clone 4C8A. This antibody exhibited strong and selective binding to human BCMA. BCMA CAR-T cells containing the 4C8A scFv were readily detected with recombinant BCMA protein by flow cytometry. The cells were cytolytic for RPMI8226, H929, and MM1S multiple myeloma cells and secreted high levels of IFN-γ in vitro. BCMA-dependent cytotoxicity and IFN-γ secretion were also observed in response to CHO (Chinese Hamster Ovary)-BCMA cells but not to parental CHO cells. In a mouse subcutaneous tumor model, BCMA CAR-T cells significantly blocked RPMI8226 tumor formation. When BCMA CAR-T cells were given to mice with established RPMI8226 tumors, the tumors experienced significant shrinkage due to CAR-T cell activity and tumor cell apoptosis. The same effect was observed with 3 humanized BCMA-CAR-T cells in vivo. These data indicate that novel CAR-T cells utilizing the BCMA 4C8A scFv are effective against multiple myeloma and warrant future clinical development.
Collapse
Affiliation(s)
- Robert Berahovich
- ProMab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA.
| | - Hua Zhou
- ProMab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA.
| | - Shirley Xu
- ProMab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA.
| | - Yuehua Wei
- ProMab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA.
| | - Jasper Guan
- ProMab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA.
| | - Jian Guan
- ProMab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA.
| | - Hizkia Harto
- ProMab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA.
| | - Shuxiang Fu
- Forevertek Biotechnology Co., Ltd., Building M0, Oversea Graduate Park National High-Tech Industrial Zone, Changsha 410003, China.
| | - Kaihuai Yang
- Forevertek Biotechnology Co., Ltd., Building M0, Oversea Graduate Park National High-Tech Industrial Zone, Changsha 410003, China.
| | - Shuying Zhu
- Forevertek Biotechnology Co., Ltd., Building M0, Oversea Graduate Park National High-Tech Industrial Zone, Changsha 410003, China.
| | - Le Li
- ProMab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA.
- Forevertek Biotechnology Co., Ltd., Building M0, Oversea Graduate Park National High-Tech Industrial Zone, Changsha 410003, China.
| | - Lijun Wu
- ProMab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA.
| | - Vita Golubovskaya
- ProMab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA.
| |
Collapse
|
26
|
Pelekanou V, Notas G, Athanasouli P, Alexakis K, Kiagiadaki F, Peroulis N, Kalyvianaki K, Kampouri E, Polioudaki H, Theodoropoulos P, Tsapis A, Castanas E, Kampa M. BCMA (TNFRSF17) Induces APRIL and BAFF Mediated Breast Cancer Cell Stemness. Front Oncol 2018; 8:301. [PMID: 30131941 PMCID: PMC6091000 DOI: 10.3389/fonc.2018.00301] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/18/2018] [Indexed: 01/16/2023] Open
Abstract
Recent advances in cancer immunology revealed immune-related properties of cancer cells as novel promising therapeutic targets. The two TNF superfamily members, APRIL (TNFSF13), and BAFF (TNFSF13B), which are type II membrane proteins, released in active forms by proteolytic cleavage and are primarily involved in B-lymphocyte maturation, have also been associated with tumor growth and aggressiveness in several solid tumors, including breast cancer. In the present work we studied the effect of APRIL and BAFF on epithelial to mesenchymal transition, migration, and stemness of breast cancer cells. Our findings show that both molecules increase epithelial to mesenchymal transition and migratory capacity of breast cancer cells, as well as cancer stem cell numbers, by increasing the expression of pluripotency genes such as ALDH1A1, KLF4, and NANOG. These effects are mediated by their common receptor BCMA (TNFRSF17) and the JNK signaling pathway. Interestingly, transcriptional data analysis from breast cancer cells and patients revealed that androgens can increase APRIL transcription and subsequently, in an autocrine/paracrine manner, enhance its pluripotency effect. In conclusion, our data suggest a possible role of APRIL and BAFF in breast cancer disease progression and provide evidence for a new possible mechanism of therapy resistance, that could be particularly relevant in aromatase inhibitors-treated patients, were local androgen is increased.
Collapse
Affiliation(s)
- Vasiliki Pelekanou
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - George Notas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Paraskevi Athanasouli
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Konstantinos Alexakis
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Fotini Kiagiadaki
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Nikolaos Peroulis
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Konstantina Kalyvianaki
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Errika Kampouri
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Hara Polioudaki
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | | | - Andreas Tsapis
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Elias Castanas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Marilena Kampa
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
27
|
van Doeselaar S, Burgering BMT. FOXOs Maintaining the Equilibrium for Better or for Worse. Curr Top Dev Biol 2018; 127:49-103. [PMID: 29433740 DOI: 10.1016/bs.ctdb.2017.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A paradigm shift is emerging within the FOXO field and accumulating evidence indicates that we need to reappreciate the role of FOXOs, at least in cancer development. Here, we discuss the possibility that FOXOs are both tumor suppressors as well as promoters of tumor progression. This is mostly dependent on the biological context. Critical to this dichotomous role is the notion that FOXOs are central in preserving cellular homeostasis in redox control, genomic stability, and protein turnover. From this perspective, a paradoxical role in both suppressing and enhancing tumor progression can be reconciled. As many small molecules targeting the PI3K pathway are developed by big pharmaceutical companies and/or are in clinical trial, we will discuss what the consequences may be for the context-dependent role of FOXOs in tumor development in treatment options based on active PI3K signaling in tumors.
Collapse
Affiliation(s)
- Sabina van Doeselaar
- Molecular Cancer Research, Center Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Boudewijn M T Burgering
- Molecular Cancer Research, Center Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
28
|
Dou H, Yan Z, Zhang M, Xu X. APRIL promotes non-small cell lung cancer growth and metastasis by targeting ERK1/2 signaling. Oncotarget 2017; 8:109289-109300. [PMID: 29312608 PMCID: PMC5752521 DOI: 10.18632/oncotarget.22672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the major subtype of lung cancer, which is the most common cause of cancer-related mortality in the world. It is a complex disease involving multiple genetic alterations. As a cytokine belonging to the Tumor Necrosis Factor-α (TNF- α) family, the - a proliferation-inducing ligand (APRIL) expression and its signaling have been studied in many human solid tumor types, but the data on APRIL signaling in NSCLC are lacking. The aim of this study was to evaluate the APRIL expression and investigate its signaling in NSCLC. The expression of APRIL and its receptors, B cell maturation antigen (BCMA) and transmembrane activator and calcium-modulatorand cyclophilin ligand interactor (TACI), was analyzed by using immunohistochemistry in NSCLC samples. Quantitative RT-PCR was performed to evaluate mRNA expression of APRIL, BCMA and TACI in human lung adenocarcinoma cell lines A549, H1299, and H1650. Cell proliferation was measured by using the cell proliferation and cytotoxicity assay kit 8 (CCK8) assay, cell migration by using wound healing assay, and cell invasion by using transwall assay. The protein level of APRIL, BCMA and TAC, and the activation of extracellular regulated protein kinases 1/2 (ERK1/2) signaling, were determined by western blot. Our results indicated, APRIL and its receptors BCMA and TACI, were overexpressed in most of human NSCLC samples and cell lines; APRIL promoted tumor proliferation, migration and metastasis in A549 and H1299 cells via BCMA and TACI. Furthermore, ERK1/2 activation was involved in APRIL signaling through TACI but not BCMA in A549 and H1299 cells. APRIL might serve as a potential prognostic biomarker for NSCLC, and APRIL related signaling pathway could be a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Hengli Dou
- Department of Neurosurgery, The Fourth Hospital of Jinan, Jinan 250013, Shandong, China
| | - Zhaohua Yan
- Department of Neurosurgery, The Fourth Hospital of Jinan, Jinan 250013, Shandong, China
| | - Meng Zhang
- Department of Neurosurgery, The Fourth Hospital of Jinan, Jinan 250013, Shandong, China
| | - Xiaoxin Xu
- Department of Neurosurgery, The Fourth Hospital of Jinan, Jinan 250013, Shandong, China
| |
Collapse
|
29
|
Fletcher NF, Clark AR, Balfe P, McKeating JA. TNF superfamily members promote hepatitis C virus entry via an NF-κB and myosin light chain kinase dependent pathway. J Gen Virol 2017; 98:405-412. [PMID: 27983476 PMCID: PMC5797950 DOI: 10.1099/jgv.0.000689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Preventing virally induced liver disease begins with an understanding of the host factors that define susceptibility to infection. Hepatitis C virus (HCV) is a global health issue, with an estimated 170 million infected individuals at risk of developing liver disease including fibrosis and hepatocellular carcinoma. The liver is the major reservoir supporting HCV replication and this hepatocellular tropism is defined by HCV engagement of cellular entry receptors. Hepatocytes are polarized in vivo and this barrier function limits HCV entry. We previously reported that activated macrophages promote HCV entry into polarized hepatocytes via a TNF-α-dependent process; however, the underlying mechanism was not defined. In this study, we show that several TNF superfamily members, including TNF-α, TNF-β, TWEAK and LIGHT, promote HCV entry via NF-κB-mediated activation of myosin light chain kinase (MLCK) and disruption of tight junctions. These observations support a model where HCV hijacks an inflammatory immune response to stimulate infection and uncovers a role for NF-κB-MLCK signalling in maintaining hepatocellular tight junctions.
Collapse
Affiliation(s)
- N F Fletcher
- Centre for Human Virology, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - A R Clark
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - P Balfe
- Centre for Human Virology, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - J A McKeating
- Present address: Nuffield Department of Medicine, University of Oxford, UK.,Centre for Human Virology, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| |
Collapse
|
30
|
Dou H, Yan Z, Zhang M, Xu X. APRIL, BCMA and TACI proteins are abnormally expressed in non-small cell lung cancer. Oncol Lett 2016; 12:3351-3355. [PMID: 27900003 PMCID: PMC5103951 DOI: 10.3892/ol.2016.5095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/12/2016] [Indexed: 11/23/2022] Open
Abstract
Lung cancer is the leading cause of cancer-associated mortality. Non-small cell lung cancer (NSCLC) accounts for >80% of lung cancers. The overall survival for NSCLC is dismal, with a 5-year survival of <5% for patients. Thus, identifying an effective biomarker for early diagnosis of lung cancer is the first essential step to reduce mortality. It has been recognized that certain inflammatory and immune responses are important in lung cancer development and prevention. The present study demonstrated that, in NSCLC, a proliferation-inducing ligand (APRIL), B-cell maturation antigen (BCMA)and transmembrane activator and CAML interactor (TACI) proteins are abnormally expressed by immunohistochemistry, reverse transcription-quantitative polymerase chain reaction and western blotting. In addition, the expression of APRIL, BCMA and TACI were observed to be involved in extracellular signal-regulated kinase (ERK)1/2 activation in A549 cells. Overall, the present study provides evidence that APRIL and its receptors, BCMA and TACI, may play roles in the biological processes of NSCLC tumors through the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Hengli Dou
- Department of Neurosurgery, The Fourth Hospital of Jinan, Jinan, Shandong 250031, P.R. China
| | - Zhaohua Yan
- Department of Neurosurgery, The Fourth Hospital of Jinan, Jinan, Shandong 250031, P.R. China
| | - Meng Zhang
- Department of Neurosurgery, The Fourth Hospital of Jinan, Jinan, Shandong 250031, P.R. China
| | - Xiaoxin Xu
- Department of Neurosurgery, The Fourth Hospital of Jinan, Jinan, Shandong 250031, P.R. China
| |
Collapse
|
31
|
Wu H, Bi X, Cao F, Zhu C, Liu H, Song J, Ma L, Ma L, Zhang Y, Zhao D, Liu H, Xu X, Zhang S. Molecular Characterization of Equine APRIL and its Expression Analysis During the Adipogenic Differentiation of Equine Adipose-Derived Stem Cell In Vitro. Anim Biotechnol 2016; 27:262-8. [PMID: 27565870 DOI: 10.1080/10495398.2016.1182540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A proliferation inducing ligand (APRIL) is a member of the TNF superfamily. It shares two receptors with B-cell activating factor (BAFF), B-cell maturation antigen (BCMA), and transmembrane activator and CAML interactor (TACI). Herein, the equine APRIL was identified from equine adipose-derived stem cell (ASC), and the protein expression of APRIL and its related molecules were detected during the adipogenic differentiation of equine ASC in vitro. The equine APRIL gene was located on chromosome 11, spans 1852 base pairs (bp). Its open reading frame covers 753 bp, encoding a 250-amino acid protein with the typical TNF structure domain. During the two weeks' adipogenic differentiation of equine ASC, although the protein expression of APRIL and TACI had an insignificant change, that of BCMA increased significantly. Moreover, with the addition of recombinant protein His6-sAPRIL, a reduced differentiation of equine ASC toward adipocyte was detected. These results may provide the basis for investigating the role of APRIL in ASC adipogenic differentiation.
Collapse
Affiliation(s)
- Haitao Wu
- a Jiangsu Key Laboratory for Molecular and Medical Biotechnology , Life Science College, Nanjing Normal University , Nanjing , P.R. China.,b Basic Medical College , Nanjing University of Chinese Medicine , Nanjing , P.R. China
| | - Xiaolin Bi
- c College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing , P.R. China
| | - Fang Cao
- a Jiangsu Key Laboratory for Molecular and Medical Biotechnology , Life Science College, Nanjing Normal University , Nanjing , P.R. China
| | - Cuicui Zhu
- a Jiangsu Key Laboratory for Molecular and Medical Biotechnology , Life Science College, Nanjing Normal University , Nanjing , P.R. China
| | - Hongzhen Liu
- a Jiangsu Key Laboratory for Molecular and Medical Biotechnology , Life Science College, Nanjing Normal University , Nanjing , P.R. China
| | - Jinyun Song
- a Jiangsu Key Laboratory for Molecular and Medical Biotechnology , Life Science College, Nanjing Normal University , Nanjing , P.R. China
| | - Lei Ma
- a Jiangsu Key Laboratory for Molecular and Medical Biotechnology , Life Science College, Nanjing Normal University , Nanjing , P.R. China
| | - Li Ma
- a Jiangsu Key Laboratory for Molecular and Medical Biotechnology , Life Science College, Nanjing Normal University , Nanjing , P.R. China
| | - Yi Zhang
- a Jiangsu Key Laboratory for Molecular and Medical Biotechnology , Life Science College, Nanjing Normal University , Nanjing , P.R. China
| | - Dongwei Zhao
- a Jiangsu Key Laboratory for Molecular and Medical Biotechnology , Life Science College, Nanjing Normal University , Nanjing , P.R. China
| | - Hongyan Liu
- a Jiangsu Key Laboratory for Molecular and Medical Biotechnology , Life Science College, Nanjing Normal University , Nanjing , P.R. China
| | - Xinzhou Xu
- a Jiangsu Key Laboratory for Molecular and Medical Biotechnology , Life Science College, Nanjing Normal University , Nanjing , P.R. China
| | - Shuangquan Zhang
- a Jiangsu Key Laboratory for Molecular and Medical Biotechnology , Life Science College, Nanjing Normal University , Nanjing , P.R. China
| |
Collapse
|
32
|
Significance of BAFF/APRIL Expression and Their Receptors in Pediatric Patients With Acute Lymphoblastic Leukemia. J Pediatr Hematol Oncol 2016; 38:167-72. [PMID: 26950089 DOI: 10.1097/mph.0000000000000549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this study, we investigated the mRNA expression and protein levels of B-cell activating factor (BAFF)/a proliferation-inducing ligand (APRIL) and their receptors in acute lymphoblastic leukemia (ALL) cell lines and pediatric patients with ALL using real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blotting. The location and level of the BAFF/APRIL proteins in ALL cell lines were also detected by immunofluorescence cytochemistry and flow cytometry. Correlations between plasma protein levels of BAFF/APRIL and primary clinical parameters were analyzed. We found that BAFF/APRIL was highly expressed in pediatric ALL patients and ALL cell lines. The BAFF/APRIL proteins were located on the cell membrane, and the proportion of positive cells and mean fluorescence intensity were significantly higher than in the healthy control group (P<0.05). The mRNA expression and protein levels of BAFF/APRIL and their receptors in untreated ALL children were significantly higher than in healthy controls (P<0.05) as well as were significantly reduced in the remission group (P<0.05). The plasma protein levels of BAFF/APRIL were positively correlated with the white blood cell count, lactate dehydrogenase, and serum ferritin. Abnormal levels of BAFF/APRIL in pediatric ALL suggest that BAFF/APRIL are associated with the development and progression of ALL in children and may provide information for the development of BAFF-based and APRIL-based targeted therapies.
Collapse
|
33
|
Chen L, Tian H, Li M, Ge C, Zhao F, Zhang L, Li H, Liu J, Wang T, Yao M, Li J. Derivate isocorydine inhibits cell proliferation in hepatocellular carcinoma cell lines by inducing G2/M cell cycle arrest and apoptosis. Tumour Biol 2015; 37:5951-61. [PMID: 26596832 DOI: 10.1007/s13277-015-4362-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/30/2015] [Indexed: 12/15/2022] Open
Abstract
We have previously demonstrated that isocorydine (ICD) can be served as a potential antitumor agent in hepatocellular carcinoma (HCC). A novel derivate of isocorydine (d-ICD) could significantly improve its anticancer activity in tumors. However, the molecular mechanisms of d-ICD on HCC cells remain to be unclear. In this study, we observed that d-ICD inhibited cell proliferation and induced apoptosis of HCC cells in a concentration-dependent manner. We found d-ICD induced G2/M cycle arrest of HCC cells via DNA damage 45 alpha (GADD45A) and p21 pathway in vitro and in vivo. In d-ICD-treated cells, cell cycle-related proteins cyclin B1 and p-CDC2 were upregulated and p-cyclin B1, CDC2, and E2F1 were inhibited. p21 expression can be reversed by knockdown of GADD45A in d-ICD-treated HCC cells. Enforced expression of CCAAT/enhancer-binding protein β (C/EBPβ) in combination with d-ICD enhanced the p21 expression in HCC cells. Furthermore, the luciferase reporter assay showed that upregulation of GADD45A by C/EBPβ was achieved through the increase of GADD45A promoter activity. These findings indicate that d-ICD inhibits cell proliferation and induces cell cycle arrest through activation of C/EBPβ-GADD45A-p21 pathway in HCC cells. d-ICD might be a promising chemotherapeutic agent for the treatment of HCC.
Collapse
Affiliation(s)
- Lijuan Chen
- Shanghai Medical College, Fudan University, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Meng Li
- Shanghai Medical College, Fudan University, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Chao Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Fangyu Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Lixing Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Hong Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Junxi Liu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory Fornatural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Tingpu Wang
- College of Life Sciences and Chemistry, Tianshui Normal University, Tianshui, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Jinjun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
34
|
Li DH, Yang Q, Zhou JS, Zhang ZW, Miao MY, Yang SS, Xu WD. Regulatory role of B-cell maturation antigen on the toxic effect of chromium ions on human SaOS-2 osteoblasts. Biotechnol Appl Biochem 2015; 64:638-646. [PMID: 26011700 DOI: 10.1002/bab.1401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 05/21/2015] [Indexed: 01/07/2023]
Abstract
Metal prostheses of artificial joints undergo wear, producing numerous metal particles and ions, such as Cr3+ . Cr3+ is considered a key factor leading to aseptic loosening. Many studies focus on the effect of Cr3+ on osteoblasts; however, little is known about the effect of Cr3+ on the B-cell maturation antigen (BCMA) in the osteoblasts. In this study, we first demonstrated the BCMA expressed in human SaOS-2 osteoblasts through reverse transcriptase-PCR, Western blot, and immunocytochemical analyses. Cr3+ decreased alkaline phosphatase (ALP), osteocalcin (OC), cell mineralization, and collagen type I mRNA and protein expression. Moreover, Cr3+ has an inhibitive effect on the expression of the BCMA in human SaOS-2 osteoblasts. However, after we upregulated the expression of the BCMA, ALP, OC, cell mineralization, and collagen type I mRNA and protein expression were increased. Overall, this study demonstrates that the BCMA is involved in human SaOS-2 osteoblast osteogenetic metabolism and plays a regulatory role on the toxic effect of chromium ions on human SaOS-2 osteoblasts.
Collapse
Affiliation(s)
- D H Li
- Department of Orthopedics, Changhai Hospital Affiliated to the Second Military Medical University, Yangpu, Shanghai, People's Republic of China
| | - Q Yang
- Department of Orthopedics, Changhai Hospital Affiliated to the Second Military Medical University, Yangpu, Shanghai, People's Republic of China
| | - J S Zhou
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Yangpu, Shanghai, People's Republic of China
| | - Z W Zhang
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Yangpu, Shanghai, People's Republic of China
| | - M Y Miao
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Yangpu, Shanghai, People's Republic of China
| | - S S Yang
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Yangpu, Shanghai, People's Republic of China
| | - W D Xu
- Department of Orthopedics, Changhai Hospital Affiliated to the Second Military Medical University, Yangpu, Shanghai, People's Republic of China
| |
Collapse
|
35
|
García-Castro A, Zonca M, Florindo-Pinheiro D, Carvalho-Pinto CE, Cordero A, Gutiérrez del Burgo B, García-Grande A, Mañes S, Hahne M, González-Suárez E, Planelles L. APRIL promotes breast tumor growth and metastasis and is associated with aggressive basal breast cancer. Carcinogenesis 2015; 36:574-84. [DOI: 10.1093/carcin/bgv020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
36
|
Hedbrant A, Erlandsson A, Delbro D, Wijkander J. Conditioned media from human macrophages of M1 phenotype attenuate the cytotoxic effect of 5‑fluorouracil on the HT‑29 colon cancer cell line. Int J Oncol 2014; 46:37-46. [PMID: 25310018 PMCID: PMC4238731 DOI: 10.3892/ijo.2014.2696] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/12/2014] [Indexed: 12/17/2022] Open
Abstract
Resistance of tumor cells to chemotherapy, such as 5-fluorouracil (5-FU), is an obstacle for successful treatment of cancer. As a follow-up of a previous study we have investigated the effect of conditioned media (CM) from macrophages of M1 or M2 phenotypes on 5-FU cytotoxicity on the colon cancer cell lines HT-29 and CACO-2. HT-29 cells, but not CACO-2 cells, having been treated with a combination of M1 CM and 5-FU recovered their cell growth to a much larger extent compared to cells having been treated with 5-FU alone when further cultured for 7 days in fresh media. M1 CM treatment of HT-29, but not CACO-2 cells, induced cell cycle arrest in the G0/G1 and G2/M phases. 5-FU treatment induced accumulation of cells in S-phase in both HT-29 and CACO-2 cells. This accumulation of cells in S-phase was attenuated by combined M1 CM and 5-FU treatment in HT-29 cells, but not in CACO-2 cells. The mRNA expression of cell cycle regulatory proteins and 5-FU metabolic enzymes were analyzed in an attempt to find possible mechanisms for the M1 CM induced attenuation of 5-FU cytotoxicity in HT-29. Thymidylate synthetase (TS) and thymidine phosphorylase (TP) were found to be substantially downregulated and upregulated, respectively, in HT-29 cells treated with M1 CM, making them unlikely as mediators of reduced 5-FU cytotoxicity. Among cell cycle regulating proteins, p21 was induced in HT-29 cells, but not in CACO-2 cells, in response to M1 CM treatment. However, small interfering RNA (siRNA) knockdown of p21 had no effect on the M1 CM induced cell cycle arrest seen in HT-29 and neither did it change the growth recovery after combined treatment of HT-29 cells with M1 CM and 5-FU. In conclusion, treatment of HT-29 cells with M1 CM reduces the cytotoxic effect of 5-FU and this is mediated by a M1 CM induced cell cycle arrest in the G0/G1 and G2/M phases. So far, we lack an explanation why this action is absent in the CACO-2 cells. The current findings may be important for optimization of chemotherapy in colon cancer.
Collapse
Affiliation(s)
| | - Ann Erlandsson
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Dick Delbro
- School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| | - Jonny Wijkander
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| |
Collapse
|
37
|
Hsu YC, Huang TY, Chen MJ. Therapeutic ROS targeting of GADD45γ in the induction of G2/M arrest in primary human colorectal cancer cell lines by cucurbitacin E. Cell Death Dis 2014; 5:e1198. [PMID: 24763055 PMCID: PMC4001305 DOI: 10.1038/cddis.2014.151] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/21/2014] [Accepted: 03/10/2014] [Indexed: 02/06/2023]
Abstract
Cucurbitacin E (CuE) or α-elaterin is a natural compound previously shown to be an antifeedant as well as a potent chemopreventive agent against several types of cancer. The present study investigated the anticancer effects of CuE on colorectal cancer (CRC) using primary cell lines isolated from five CRC patients in Taiwan, Specifically, we explored the anti-proliferation and cell cycle G2/M arrest induced by CuE in CRC cells. MPM-2 flow cytometry tests show that CuE-treated cells accumulated in metaphase (CuE 2.5-7.5 μM). Results further indicate that CuE produced G2/M arrest as well as the downregulation of CDC2 and cyclin B1 expression and dissociation. Both effects increased proportionally with the dose of CuE; however, the inhibition of proliferation, arrest of mitosis, production of reactive oxygen species (ROS), and loss of mitochondrial membrane potential (ΔΨm) were found to be dependent on the quantity of CuE used to treat the cancer cells. In addition, cell cycle arrest in treated cells coincided with the activation of the gene GADD45(α, β, γ). Incubation with CuE resulted in the binding of GADD45γ to CDC2, which suggests that the delay in CuE-induced mitosis is regulated by the overexpression of GADD45γ. Our findings suggest that, in addition to the known effects on cancer prevention, CuE may have antitumor activities in established CRC.
Collapse
Affiliation(s)
- Y-C Hsu
- Graduate Institute of Medical Science, College of Health Sciences, Chang Jung Christian University, Tainan, Taiwan
- Innovative Research Center of Medicine, College of Health Sciences, Chang Jung Christian University, Tainan, Taiwan
| | - T-Y Huang
- Department of Neurosurgery, Tainan Sin-Lau Hospital, Tainan, Taiwan
| | - M-J Chen
- Division of Traumatology, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
- Department of Sports Management, College of Leisure and Recreation Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| |
Collapse
|
38
|
Post-exercise impact of ingested whey protein hydrolysate on gene expression profiles in rat skeletal muscle: activation of extracellular signal-regulated kinase 1/2 and hypoxia-inducible factor-1α. Br J Nutr 2014; 111:2067-78. [DOI: 10.1017/s0007114514000233] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have previously shown that whey protein hydrolysate (WPH) causes a greater increase in muscle protein synthesis than does a mixture of amino acids that is identical in amino acid composition. The present study was conducted to investigate the effect of WPH on gene expression. Male Sprague–Dawley rats subjected to a 2 h swimming exercise were administered either a carbohydrate–amino acid diet or a carbohydrate–WPH diet immediately after exercise. At 1 h after exercise, epitrochlearis muscle mRNA was sampled and subjected to DNA microarray analysis. We found that ingestion of WPH altered 189 genes after considering the false discovery rate. Among the up-regulated genes, eight Gene Ontology (GO) terms were enriched, which included key elements such as Cd24, Ccl2, Ccl7 and Cxcl1 involved in muscle repair after exercise. In contrast, nine GO terms were enriched in gene sets that were down-regulated by the ingestion of WPH, and these GO terms fell into two clusters, ‘regulation of ATPase activity’ and ‘immune response’. Furthermore, we found that WPH activated two upstream proteins, extracellular signal-regulated kinase 1/2 (ERK1/2) and hypoxia-inducible factor-1α (HIF-1α), which might act as key factors for regulating gene expression. These results suggest that ingestion of WPH, compared with ingestion of a mixture of amino acids with an identical amino acid composition, induces greater changes in the post-exercise gene expression profile via activation of the proteins ERK1/2 and HIF-1α.
Collapse
|
39
|
Salvador JM, Brown-Clay JD, Fornace AJ. Gadd45 in stress signaling, cell cycle control, and apoptosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 793:1-19. [PMID: 24104470 DOI: 10.1007/978-1-4614-8289-5_1] [Citation(s) in RCA: 262] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The first identified Gadd45 gene, Gadd45a, encodes a ubiquitously expressed protein that is often induced by DNA damage and other stress signals associated with growth arrest and apoptosis. This protein and the other two members of this small gene family, Gadd45b and Gadd45g, have been implicated in a variety of the responses to cell injury including cell cycle checkpoints, apoptosis, and DNA repair. In vivo, many of the prominent roles for the Gadd45 proteins are associated with signaling mediated by p38 mitogen-activated protein kinases (MAPK). Gadd45 proteins can contribute to p38 activation either by activation of upstream kinase(s) or by direct interaction. In vivo, there are important tissue and cell-type-specific differences in the roles for Gadd45 in MAPK signaling. In addition to being p53-regulated, Gadd45a has been found to contribute to p53 activation via p38. Like other stress and signaling proteins, Gadd45 proteins show complex regulation and numerous effectors.
Collapse
Affiliation(s)
- Jesús M Salvador
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, (CNB-CSIC) Lab 417, c/Darwin n 3, Campus Cantoblanco, 28049, Madrid, Spain
| | | | | |
Collapse
|
40
|
Pelekanou V, Notas G, Kampa M, Tsentelierou E, Stathopoulos EN, Tsapis A, Castanas E. BAFF, APRIL, TWEAK, BCMA, TACI and Fn14 proteins are related to human glioma tumor grade: immunohistochemistry and public microarray data meta-analysis. PLoS One 2013; 8:e83250. [PMID: 24376672 PMCID: PMC3869762 DOI: 10.1371/journal.pone.0083250] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 11/01/2013] [Indexed: 11/30/2022] Open
Abstract
Gliomas are common and lethal tumors of the central nervous system (CNS). Genetic alterations, inflammatory and angiogenic processes have been identified throughout tumor progression; however, treatment still remains palliative for most cases. Biological research on parameters influencing cell survival, invasion and tumor heterogeneity identified several cytokines interfering in CNS inflammation, oxidative stress and malignant transformation, including TNF-superfamily (TNFSF) members. In this report we performed a meta-analysis of public gene-array data on the expression of a group of TNFSF ligands (BAFF, APRIL, TWEAK) and their receptors (BAFF-R, TACI, BCMA, Fn14) in gliomas. In addition, we investigated by immunohistochemistry (IHC) the tumor cells' expression of these ligands and receptors in a series of 56 gliomas of different grade. We show that in IHC, BAFF and APRIL as well as their cognate receptors (BCMA, TACI) and Fn14 expression correlate with tumor grade. This result was not evidenced in micro-arrays meta-analysis. Finally, we detected for the first time Fn14, BAFF, BCMA and TACI in glioma-related vascular endothelium. Our data, combined with our previous report in glioma cell lines, suggest a role for these receptors and ligands in glioma biology and advance these molecules as potential markers for the classification of these tumors to the proliferative, angiogenic or stem-like molecular subtype.
Collapse
Affiliation(s)
- Vassiliki Pelekanou
- Laboratories of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
- Laboratories of Pathology, University of Crete, School of Medicine, Heraklion, Greece
| | - George Notas
- Laboratories of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| | - Marilena Kampa
- Laboratories of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| | | | | | - Andreas Tsapis
- Laboratories of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
- INSERM U976, Hôpital Saint Louis, Paris, France; (4) Université Paris Diderot, Paris, France
| | - Elias Castanas
- Laboratories of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| |
Collapse
|
41
|
Lian M, Fang J, Han D, Ma H, Wang R, Yang F. The up-regulation expression of APRIL is a marker of glottic malignant disease. Eur Arch Otorhinolaryngol 2013; 271:2781-7. [PMID: 24276470 DOI: 10.1007/s00405-013-2826-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 11/13/2013] [Indexed: 12/11/2022]
Abstract
A proliferation-inducing ligand (APRIL) is a member of the tumor necrosis factor (TNF) family. Recent studies have implied that APRIL is closely related to solid tumors and hematological tumors, indicating that APRIL could be a potential marker to diagnose glottic malignant disease. The purpose of this study was to investigate the difference of the APRIL mRNA and protein expression in glottic malignant disease, corresponding adjacent non-neoplastic tissues and glottic benign lesion, and detect the influence of different clinical parameter in glottic carcinoma. The APRIL mRNA expression in the glottic carcinoma, corresponding adjacent non-neoplastic tissues and glottic polypus tissue samples from patients was detected by qRT-PCR. Moreover, we studied the APRIL protein expression in pathological sections of other patients with glottic carcinoma or glottic polypus using immunohistochemistry. All the patients with different clinical parameter underwent surgery. Using qRT-PCR, we revealed an up-regulation of APRIL mRNA expression in glottic carcinoma as compared to glottic polypus and corresponding adjacent non-neoplastic tissues, but no significant difference with T stages, histopathological differentiation grade or lymph node metastasis in glottic carcinoma. The result of the immunohistochemistry was the same, with no influence of different clinical parameter in glottic carcinoma. These results strongly suggest that APRIL could be a potential diagnosed marker to distinguish glottic malignant disease from glottic benign lesion, and it may play an important role in the development of glottic malignant disease.
Collapse
Affiliation(s)
- Meng Lian
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China,
| | | | | | | | | | | |
Collapse
|
42
|
Vincent FB, Saulep-Easton D, Figgett WA, Fairfax KA, Mackay F. The BAFF/APRIL system: emerging functions beyond B cell biology and autoimmunity. Cytokine Growth Factor Rev 2013; 24:203-15. [PMID: 23684423 PMCID: PMC7108297 DOI: 10.1016/j.cytogfr.2013.04.003] [Citation(s) in RCA: 300] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The BAFF system plays a key role in the development of autoimmunity, especially in systemic lupus erythematosus (SLE). This often leads to the assumption that BAFF is mostly a B cell factor with a specific role in autoimmunity. Focus on BAFF and autoimmunity, driven by pharmaceutical successes with the recent approval of a novel targeted therapy Belimumab, has relegated other potential roles of BAFF to the background. Far from being SLE-specific, the BAFF system has a much broader relevance in infection, cancer and allergy. In this review, we provide the latest views on additional roles of the BAFF system in health and diseases, as well as an update on BAFF and autoimmunity, with particular focus on current clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Fabienne Mackay
- Corresponding author at: Department of Immunology, Monash University, Central Clinical School, Alfred Hospital, 89 Commercial Road, Melbourne, Victoria 3004, Australia. Tel.: +61 3 99030713; fax: +61 3 99030038.
| |
Collapse
|
43
|
Gadd45 in the Liver: Signal Transduction and Transcriptional Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 793:69-80. [DOI: 10.1007/978-1-4614-8289-5_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
La Cava A. Targeting the BLyS-APRIL signaling pathway in SLE. Clin Immunol 2012; 148:322-7. [PMID: 23269199 DOI: 10.1016/j.clim.2012.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/27/2012] [Accepted: 11/28/2012] [Indexed: 10/27/2022]
Abstract
The B lymphocyte stimulator (BLyS)-A PRoliferation-Inducing Ligand (APRIL) signaling pathway has an important role in the selection, maturation and survival of B cells and plays a significant role in the pathogenesis of systemic lupus erythematosus (SLE). The inhibition of BLyS, a survival factor for transitional and mature B cells, has recently proven to be successful in large phase III clinical trials that led to the approval of an anti-BLyS monoclonal antibody (belimumab) for the treatment of SLE. Yet, there is currently a need to both understand better the mechanisms of action of belimumab in SLE and better define the subsets of patients that are more likely to respond to the drug.
Collapse
Affiliation(s)
- Antonio La Cava
- Department of Medicine, University of California Los Angeles, 1000 Veteran Avenue 32-59, Los Angeles, CA 90095-1670, USA.
| |
Collapse
|