1
|
Althoff MD, Gaietto K, Holguin F, Forno E. Obesity-related Asthma: A Pathobiology-based Overview of Existing and Emerging Treatment Approaches. Am J Respir Crit Care Med 2024; 210:1186-1200. [PMID: 39311907 PMCID: PMC11568442 DOI: 10.1164/rccm.202406-1166so] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Although obesity-related asthma is associated with worse asthma outcomes, optimal treatment approaches for this complex phenotype are still largely unavailable. This state-of-the-art review article synthesizes evidence for existing and emerging treatment approaches for obesity-related asthma and highlights pathways that offer potential targets for novel therapeutics. Existing treatments targeting insulin resistance and obesity, including metformin and GLP-1 (glucagon-like-peptide 1) receptor agonists, have been associated with improved asthma outcomes, although GLP-1R agonist data in asthma are limited to individuals with comorbid obesity. Monoclonal antibodies approved for treatment of moderate to severe asthma generally appear to be effective in individuals with obesity, although this is based on retrospective or secondary analysis of clinical trials; moreover, although most of these asthma biologics are approved for use in the pediatric population, the impact of obesity on their efficacy has not been well studied in youth. Potential therapeutic targets being investigated include IL-6, arginine metabolites, nitro-fatty acids, and mitochondrial antioxidants, with clinical trials for each currently underway. Potential therapeutic targets include adipose tissue eosinophils and the GLP-1-arginine-advanced glycation end products axis, although data in humans are still needed. Finally, transcriptomic and epigenetic studies of "obese asthma" demonstrate enrichment of IFN-related signaling pathways, Rho-GTPase pathways, and integrins, suggesting that these too could represent future treatment targets. We advocate for further study of these potential therapeutic mechanisms and continued investigation of the distinct inflammatory pathways characteristic of obesity-related asthma, to facilitate effective treatment development for this unique asthma phenotype.
Collapse
Affiliation(s)
- Meghan D. Althoff
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Kristina Gaietto
- Division of Pulmonary Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Fernando Holguin
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Erick Forno
- Division of Pediatric Pulmonology, Allergy, and Sleep Medicine, Department of Pediatrics, Indiana University, Indianapolis, Indiana
| |
Collapse
|
2
|
Ruiz-Navarro J, Fernández-Hermira S, Sanz-Fernández I, Barbeito P, Navarro-Zapata A, Pérez-Martínez A, Garcia-Gonzalo FR, Calvo V, Izquierdo Pastor M. Formin-like 1β phosphorylation at S1086 is necessary for secretory polarized traffic of exosomes at the immune synapse in Jurkat T lymphocytes. eLife 2024; 13:RP96942. [PMID: 39479958 PMCID: PMC11527432 DOI: 10.7554/elife.96942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
We analyzed here how formin-like 1 β (FMNL1β), an actin cytoskeleton-regulatory protein, regulates microtubule-organizing center (MTOC) and multivesicular bodies (MVB) polarization and exosome secretion at an immune synapse (IS) model in a phosphorylation-dependent manner. IS formation was associated with transient recruitment of FMNL1β to the IS, which was independent of protein kinase C δ (PKCδ). Simultaneous RNA interference of all FMNL1 isoforms prevented MTOC/MVB polarization and exosome secretion, which were restored by FMNL1βWT expression. However, expression of the non-phosphorylatable mutant FMNL1βS1086A did not restore neither MTOC/MVB polarization nor exosome secretion to control levels, supporting the crucial role of S1086 phosphorylation in MTOC/MVB polarization and exosome secretion. In contrast, the phosphomimetic mutant, FMNL1βS1086D, restored MTOC/MVB polarization and exosome secretion. Conversely, FMNL1βS1086D mutant did not recover the deficient MTOC/MVB polarization occurring in PKCδ-interfered clones, indicating that S1086 FMNL1β phosphorylation alone is not sufficient for MTOC/MVB polarization and exosome secretion. FMNL1 interference inhibited the depletion of F-actin at the central region of the immune synapse (cIS), which is necessary for MTOC/MVB polarization. FMNL1βWT and FMNL1βS1086D, but not FMNL1βS1086A expression, restored F-actin depletion at the cIS. Thus, actin cytoskeleton reorganization at the IS underlies the effects of all these FMNL1β variants on polarized secretory traffic. FMNL1 was found in the IS made by primary T lymphocytes, both in T cell receptor (TCR) and chimeric antigen receptor (CAR)-evoked synapses. Taken together, these results point out a crucial role of S1086 phosphorylation in FMNL1β activation, leading to cortical actin reorganization and subsequent control of MTOC/MVB polarization and exosome secretion.
Collapse
Affiliation(s)
- Javier Ruiz-Navarro
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
| | | | - Irene Sanz-Fernández
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
| | - Pablo Barbeito
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
| | - Alfonso Navarro-Zapata
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, La Paz University HospitalMadridSpain
- Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Center (CNIO)MadridSpain
| | - Antonio Pérez-Martínez
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, La Paz University HospitalMadridSpain
- Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Center (CNIO)MadridSpain
- Department of Pediatric Hemato-Oncology, La Paz University HospitalMadridSpain
- Pediatric Department, Autonomous University of MadridMadridSpain
| | - Francesc R Garcia-Gonzalo
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII)MadridSpain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ)MadridSpain
| | - Víctor Calvo
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
| | | |
Collapse
|
3
|
Zahra MA, Pessin J, Rastogi D. A clinician's guide to effects of obesity on childhood asthma and into adulthood. Expert Rev Respir Med 2024; 18:759-775. [PMID: 39257361 PMCID: PMC11473229 DOI: 10.1080/17476348.2024.2403500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/20/2024] [Accepted: 09/09/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Obesity, one of the most common chronic conditions affecting the human race globally, affects several organ systems, including the respiratory system, where it contributes to onset and high burden of asthma. Childhood onset of obesity-related asthma is associated with high persistent morbidity into adulthood. AREAS COVERED In this review, we discuss the disease burden in children and adults to highlight the overlap between symptoms and pulmonary function deficits associated with obesity-related asthma in both age ranges, and then discuss the potential role of three distinct mechanisms, that of mechanical fat load, immune perturbations, and of metabolic perturbations on the disease burden. We also discuss interventions, including medical interventions for weight loss such as diet modification, that of antibiotics and anti-inflammatory therapies, as well as that of surgical intervention on amelioration of burden of obesity-related asthma. EXPERT OPINION With increase in obesity-related asthma due to increasing burden of obesity, it is evident that it is a disease entity distinct from asthma among lean individuals. The time is ripe to investigate the underlying mechanisms, focusing on identifying novel therapeutic targets as well as consideration to repurpose medications effective for other obesity-mediated complications, such as insulin resistance, dyslipidemia and systemic inflammation.
Collapse
Affiliation(s)
- Mahmoud Abu Zahra
- Division of Respiratory and Sleep Medicine, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jeffrey Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Deepa Rastogi
- Division of Respiratory and Sleep Medicine, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, United States
- Norman Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
4
|
Kaminska P, Tempes A, Scholz E, Malik AR. Cytokines on the way to secretion. Cytokine Growth Factor Rev 2024; 79:52-65. [PMID: 39227243 DOI: 10.1016/j.cytogfr.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024]
Abstract
The activation of immune cells by pro-inflammatory or immunosuppressive stimuli is followed by the secretion of immunoregulatory cytokines which serve as messengers to activate the immune response in target cells. Although the mechanisms that control the secretion of cytokines by immune cells are not yet fully understood, several key aspects of this process have recently emerged. This review focuses on cytokine release via exocytosis and highlights the routes of cytokine trafficking leading to constitutive and regulated secretion as well as the impact of sorting receptors on this process. We discuss the involvement of cytoskeletal rearrangements in vesicular transport, secretion, and formation of immunological synapses. Finally, we describe the non-classical pathways of cytokine release that are independent of vesicular ER-Golgi transport. Instead, these pathways are based on processing by inflammasome or autophagic mechanisms. Ultimately, understanding the molecular mechanisms behind cytokine release may help to identify potential therapeutic targets in diseases associated with altered immune responses.
Collapse
Affiliation(s)
- Paulina Kaminska
- Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland; Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, Warsaw 02-093, Poland
| | - Aleksandra Tempes
- Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland
| | - Ela Scholz
- Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland
| | - Anna R Malik
- Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland.
| |
Collapse
|
5
|
He S, Huang G, Lei R, Jia R, He Z, Chen J, Huang H, Huang Z, Yilihamu A, Li X, Zhuang Z, Han M, Chen X, Huang D, Nie Y. LncRNA ZFPM2-AS1 promotes phyllodes tumor progression by binding to CDC42 and inhibiting STAT1 activation. Acta Pharm Sin B 2024; 14:2942-2958. [PMID: 39027255 PMCID: PMC11252458 DOI: 10.1016/j.apsb.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 07/20/2024] Open
Abstract
Breast phyllodes tumor (PT) is a rare fibroepithelial neoplasm with potential malignant behavior. Long non-coding RNAs (lncRNAs) play multifaceted roles in various cancers, but their involvement in breast PT remains largely unexplored. In this study, microarray was leveraged for the first time to investigate the role of lncRNA in PT. We identified lncRNA ZFPM2-AS1 was significantly upregulated in malignant PT, and its overexpression endowed PT with high tumor grade and adverse prognosis. Furthermore, we elucidated that ZFPM2-AS1 promotes the proliferation, migration, and invasion of malignant PT in vitro. Targeting ZFPM2-AS1 through nanomaterial-mediated siRNA delivery in patient-derived xenograft (PDX) model could effectively inhibit tumor progression in vivo. Mechanistically, our findings showed that ZFPM2-AS1 is competitively bound to CDC42, inhibiting ACK1 and STAT1 activation, thereby launching the transcription of TNFRSF19. In conclusion, our study provides evidence that ZFPM2-AS1 plays a pivotal role in the pathogenesis of breast PT, and suggests that ZFPM2-AS1 could serve as a prognostic indicator for patients with PT as well as a promising novel therapeutic target.
Collapse
Affiliation(s)
- Shishi He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Guowei Huang
- Department of Pathology, Shantou University Medical College, Shantou 515041, China
| | - Rong Lei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Rurong Jia
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Zhanghai He
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jiewen Chen
- Department of Breast Medicine, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Hongyan Huang
- Department of Breast Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zixian Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ailifeire Yilihamu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xun Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zilin Zhuang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Mengjia Han
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xueman Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Di Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yan Nie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| |
Collapse
|
6
|
Ruiz-Navarro J, Blázquez-Cucharero S, Calvo V, Izquierdo M. Imaging the immune synapse: Three-dimensional analysis of the immune synapse. Methods Cell Biol 2024; 193:15-37. [PMID: 39919840 DOI: 10.1016/bs.mcb.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
T cell receptor (TCR) stimulation of T lymphocytes by antigen bound to the major histocompatibility complex (MHC) of an antigen-presenting cell (APC), together with the interaction of accessory molecules, induces the formation of the immunological synapse (IS), the convergence of secretion vesicles toward the centrosome, and the polarization of the centrosome to the IS. Upon IS formation, an initial increase in cortical filamentous actin (F-actin) at the IS takes place, followed by a decrease in F-actin density at the central region of the IS, which contains the secretory domain. These reversible, cortical actin cytoskeleton reorganization processes that characterize a mature IS occur during lytic granule secretion in cytotoxic T lymphocytes (CTL) and natural killer (NK) cells and cytokine-containing vesicle secretion in T-helper (Th) lymphocytes. Besides, IS formation constitutes the basis of a signaling platform that integrates signals and coordinates molecular interactions that are necessary for an appropriate antigen-specific immune response. In this chapter we deal with the three-dimensional (3D) analysis of the synaptic interface architecture, as well as the analysis of the localization of different markers at the IS.
Collapse
Affiliation(s)
- Javier Ruiz-Navarro
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | | | - Víctor Calvo
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Izquierdo
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain.
| |
Collapse
|
7
|
Ruiz-Navarro J, Calvo V, Izquierdo M. Extracellular vesicles and microvilli in the immune synapse. Front Immunol 2024; 14:1324557. [PMID: 38268920 PMCID: PMC10806406 DOI: 10.3389/fimmu.2023.1324557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024] Open
Abstract
T cell receptor (TCR) binding to cognate antigen on the plasma membrane of an antigen-presenting cell (APC) triggers the immune synapse (IS) formation. The IS constitutes a dedicated contact region between different cells that comprises a signaling platform where several cues evoked by TCR and accessory molecules are integrated, ultimately leading to an effective TCR signal transmission that guarantees intercellular message communication. This eventually leads to T lymphocyte activation and the efficient execution of different T lymphocyte effector tasks, including cytotoxicity and subsequent target cell death. Recent evidence demonstrates that the transmission of information between immune cells forming synapses is produced, to a significant extent, by the generation and secretion of distinct extracellular vesicles (EV) from both the effector T lymphocyte and the APC. These EV carry biologically active molecules that transfer cues among immune cells leading to a broad range of biological responses in the recipient cells. Included among these bioactive molecules are regulatory miRNAs, pro-apoptotic molecules implicated in target cell apoptosis, or molecules triggering cell activation. In this study we deal with the different EV classes detected at the IS, placing emphasis on the most recent findings on microvilli/lamellipodium-produced EV. The signals leading to polarized secretion of EV at the synaptic cleft will be discussed, showing that the IS architecture fulfills a fundamental task during this route.
Collapse
Affiliation(s)
- Javier Ruiz-Navarro
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Víctor Calvo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Manuel Izquierdo
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| |
Collapse
|
8
|
Zhang X, Gao L, Meng H, Zhang A, Liang Y, Lu J. Obesity alters immunopathology in cancers and inflammatory diseases. Obes Rev 2023; 24:e13638. [PMID: 37724622 DOI: 10.1111/obr.13638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023]
Abstract
Obesity is characterized by chronic low-grade inflammation and is strongly associated with multiple immunological diseases, including cancer and inflammatory diseases. Recent animal studies revealed that obesity-induced immunological changes worsen immune-driven diseases and cause resistance to immunotherapy. Here, we discuss the role of obesity in the immunopathology and treatment responses of cancers, respiratory and allergic diseases, and IL-17-mediated inflammatory diseases. We summarize the unique features of the inflammatory state of these diseases, which are orchestrated by obesity. In particular, obesity alters the immune landscape in cancers with a reprogrammed metabolic profile of tumor-infiltrating immune cells. Obesity exacerbates airway inflammation by dysregulating multiple immune-cell subsets. Obesity also dysregulates Th17, IL-17-producing mucosal-associated invariant T (MAIT), and γδ T cells, which contribute to IL-17-mediated inflammatory response in multiple sclerosis, inflammatory bowel disease, psoriasis, atopic dermatitis, and rheumatoid arthritis. By identifying the effects of obesity on immunological diseases, new strategies could be devised to target immune dysregulation caused by obesity.
Collapse
Affiliation(s)
- Xiaofen Zhang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Gao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyang Meng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ailing Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Liang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingli Lu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Paillon N, Mouro V, Dogniaux S, Maurin M, Saez Pons JJ, Ferran H, Bataille L, Zucchetti AE, Hivroz C. PD-1 inhibits T cell actin remodeling at the immunological synapse independently of its signaling motifs. Sci Signal 2023; 16:eadh2456. [PMID: 38015913 DOI: 10.1126/scisignal.adh2456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 11/08/2023] [Indexed: 11/30/2023]
Abstract
Engagement of the receptor programmed cell death molecule 1 (PD-1) by its ligands PD-L1 and PD-L2 inhibits T cell-mediated immune responses. Blocking such signaling provides the clinical effects of PD-1-targeted immunotherapy. Here, we investigated the mechanisms underlying PD-1-mediated inhibition. Because dynamic actin remodeling is crucial for T cell functions, we characterized the effects of PD-1 engagement on actin remodeling at the immunological synapse, the interface between a T cell and an antigen-presenting cell (APC) or target cell. We used microscopy to analyze the formation of immunological synapses between PD-1+ Jurkat cells or primary human CD8+ cytotoxic T cells and APCs that presented T cell-activating antibodies and were either positive or negative for PD-L1. PD-1 binding to PD-L1 inhibited T cell spreading induced by antibody-mediated activation, which was characterized by the absence of the F-actin-dense distal lamellipodial network at the immunological synapse and the Arp2/3 complex, which mediates branched actin formation. PD-1-induced inhibition of actin remodeling also prevented the characteristic deformation of T cells that contact APCs and the release of cytotoxic granules. We showed that the effects of PD-1 on actin remodeling did not require its tyrosine-based signaling motifs, which are thought to mediate the co-inhibitory effects of PD-1. Our study highlights a previously unappreciated mechanism of PD-1-mediated suppression of T cell activity, which depends on the regulation of actin cytoskeleton dynamics in a signaling motif-independent manner.
Collapse
Affiliation(s)
- Noémie Paillon
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
- Université Paris Cité, 75005 Paris, France
| | - Violette Mouro
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
- Université Paris Cité, 75005 Paris, France
| | - Stéphanie Dogniaux
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
| | - Mathieu Maurin
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
| | - Juan-José Saez Pons
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
| | - Hermine Ferran
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
- Université Paris Cité, 75005 Paris, France
| | - Laurence Bataille
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
| | - Andrés Ernesto Zucchetti
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
| | - Claire Hivroz
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
| |
Collapse
|
10
|
Guerrero SC, Panettieri RA, Rastogi D. Mechanistic Links Between Obesity and Airway Pathobiology Inform Therapies for Obesity-Related Asthma. Paediatr Drugs 2023; 25:283-299. [PMID: 36656428 PMCID: PMC11071627 DOI: 10.1007/s40272-022-00554-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/27/2022] [Indexed: 01/20/2023]
Abstract
Obesity-related asthma is associated with a high disease burden and a poor response to existent asthma therapies, suggesting that it is a distinct asthma phenotype. The proposed mechanisms that contribute to obesity-related asthma include the effects of the mechanical load of obesity, adipokine perturbations, and immune dysregulation. Each of these influences airway smooth muscle function. Mechanical fat load alters airway smooth muscle stretch affecting airway wall geometry, airway smooth muscle contractility, and agonist delivery; weight loss strategies, including medically induced weight loss, counter these effects. Among the metabolic disturbances, insulin resistance and free fatty acid receptor activation influence distinct signaling pathways in the airway smooth muscle downstream of both the M2 muscarinic receptor and the β2 adrenergic receptor, such as phospholipase C and the extracellular signal-regulated kinase signaling cascade. Medications that decrease insulin resistance and dyslipidemia are associated with a lower asthma disease burden. Leptin resistance is best understood to modulate muscarinic receptors via the neural pathways but there are no specific therapies for leptin resistance. From the immune perspective, monocytes and T helper cells are involved in systemic pro-inflammatory profiles driven by obesity, notably associated with elevated levels of interleukin-6. Clinical trials on tocilizumab, an anti-interleukin antibody, are ongoing for obesity-related asthma. This armamentarium of therapies is distinct from standard asthma medications, and once investigated for its efficacy and safety among children, will serve as a novel therapeutic intervention for pediatric obesity-related asthma. Irrespective of the directionality of the association between asthma and obesity, airway-specific mechanistic studies are needed to identify additional novel therapeutic targets for obesity-related asthma.
Collapse
Affiliation(s)
- Silvia Cabrera Guerrero
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, George Washington University, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Deepa Rastogi
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, George Washington University, 111 Michigan Ave NW, Washington, DC, 20010, USA.
| |
Collapse
|
11
|
Fernández-Hermira S, Sanz-Fernández I, Botas M, Calvo V, Izquierdo M. Analysis of centrosomal area actin reorganization and centrosome polarization upon lymphocyte activation at the immunological synapse. Methods Cell Biol 2023; 173:15-32. [PMID: 36653081 DOI: 10.1016/bs.mcb.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
T cell receptor (TCR) and B cell receptor (BCR) stimulation of T and B lymphocytes, by antigen presented on an antigen-presenting cell (APC) induces the formation of the immunological synapse (IS). IS formation is associated with an initial increase in cortical filamentous actin (F-actin) at the IS, followed by a decrease in F-actin density at the central region of the IS, which contains the secretory domain. This is followed by the convergence of secretion vesicles towards the centrosome, and the polarization of the centrosome to the IS. These reversible, cortical actin cytoskeleton reorganization processes occur during lytic granule secretion in cytotoxic T lymphocytes (CTL) and natural killer (NK) cells, proteolytic granules secretion in B lymphocytes and during cytokine-containing vesicle secretion in T-helper (Th) lymphocytes. In addition, several findings obtained in T and B lymphocytes forming IS show that actin cytoskeleton reorganization also occurs at the centrosomal area. F-actin reduction at the centrosomal area appears to be associated with centrosome polarization. In this chapter we deal with the analysis of centrosomal area F-actin reorganization, as well as the centrosome polarization analysis toward the IS.
Collapse
Affiliation(s)
| | | | - Marta Botas
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Victor Calvo
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Izquierdo
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain.
| |
Collapse
|
12
|
Pineau J, Moreau H, Duménil AML, Pierobon P. Polarity in immune cells. Curr Top Dev Biol 2023; 154:197-222. [PMID: 37100518 DOI: 10.1016/bs.ctdb.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Immune cells are responsible for pathogen detection and elimination, as well as for signaling to other cells the presence of potential danger. In order to mount an efficient immune response, they need to move and search for a pathogen, interact with other cells, and diversify the population by asymmetric cell division. All these actions are regulated by cell polarity: cell polarity controls cell motility, which is crucial for scanning peripheral tissues to detect pathogens, and recruiting immune cells to sites of infection; immune cells, in particular lymphocytes, communicate with each other by a direct contact called immunological synapse, which entails a global polarization of the cell and plays a role in activating lymphocyte response; finally, immune cells divide asymmetrically from a precursor, generating a diversity of phenotypes and cell types among daughter cells, such as memory and effector cells. This review aims at providing an overview from both biology and physics perspectives of how cell polarity shapes the main immune cell functions.
Collapse
Affiliation(s)
- Judith Pineau
- Institut Curie, PSL Research University, INSERM U932, Paris, Cedex, France; Université Paris Cité, Paris, France
| | - Hélène Moreau
- Institut Curie, PSL Research University, INSERM U932, Paris, Cedex, France
| | | | - Paolo Pierobon
- Institut Curie, PSL Research University, INSERM U932, Paris, Cedex, France.
| |
Collapse
|
13
|
Shouib R, Eitzen G. Cdc42 regulates cytokine expression and trafficking in bronchial epithelial cells. Front Immunol 2022; 13:1069499. [PMID: 36618374 PMCID: PMC9816864 DOI: 10.3389/fimmu.2022.1069499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/30/2022] [Indexed: 12/25/2022] Open
Abstract
Airway epithelial cells can respond to incoming pathogens, allergens and stimulants through the secretion of cytokines and chemokines. These pro-inflammatory mediators activate inflammatory signaling cascades that allow a robust immune response to be mounted. However, uncontrolled production and release of cytokines and chemokines can result in chronic inflammation and appears to be an underlying mechanism for the pathogenesis of pulmonary disorders such as asthma and COPD. The Rho GTPase, Cdc42, is an important signaling molecule that we hypothesize can regulate cytokine production and release from epithelial cells. We treated BEAS-2B lung epithelial cells with a set of stimulants to activate inflammatory pathways and cytokine release. The production, trafficking and secretion of cytokines were assessed when Cdc42 was pharmacologically inhibited with ML141 drug or silenced with lentiviral-mediated shRNA knockdown. We found that Cdc42 inhibition with ML141 differentially affected gene expression of a subset of cytokines; transcription of IL-6 and IL-8 were increased while MCP-1 was decreased. However, Cdc42 inhibition or depletion disrupted IL-8 trafficking and reduced its secretion even though transcription was increased. Cytokines transiting through the Golgi were particularly affected by Cdc42 disruption. Our results define a role for Cdc42 in the regulation of cytokine production and release in airway epithelial cells. This underscores the role of Cdc42 in coupling receptor activation to downstream gene expression and also as a regulator of cytokine secretory pathways.
Collapse
|
14
|
Onnis A, Andreano E, Cassioli C, Finetti F, Della Bella C, Staufer O, Pantano E, Abbiento V, Marotta G, D’Elios MM, Rappuoli R, Baldari CT. SARS-CoV-2 Spike protein suppresses CTL-mediated killing by inhibiting immune synapse assembly. J Exp Med 2022; 220:213689. [PMID: 36378226 PMCID: PMC9671159 DOI: 10.1084/jem.20220906] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
CTL-mediated killing of virally infected or malignant cells is orchestrated at the immune synapse (IS). We hypothesized that SARS-CoV-2 may target lytic IS assembly to escape elimination. We show that human CD8+ T cells upregulate the expression of ACE2, the Spike receptor, during differentiation to CTLs. CTL preincubation with the Wuhan or Omicron Spike variants inhibits IS assembly and function, as shown by defective synaptic accumulation of TCRs and tyrosine phosphoproteins as well as defective centrosome and lytic granule polarization to the IS, resulting in impaired target cell killing and cytokine production. These defects were reversed by anti-Spike antibodies interfering with ACE2 binding and reproduced by ACE2 engagement by angiotensin II or anti-ACE2 antibodies, but not by the ACE2 product Ang (1-7). IS defects were also observed ex vivo in CTLs from COVID-19 patients. These results highlight a new strategy of immune evasion by SARS-CoV-2 based on the Spike-dependent, ACE2-mediated targeting of the lytic IS to prevent elimination of infected cells.
Collapse
Affiliation(s)
- Anna Onnis
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Emanuele Andreano
- Monoclonal Antibody Discovery Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Chiara Cassioli
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Chiara Della Bella
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Oskar Staufer
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, UK
| | - Elisa Pantano
- Monoclonal Antibody Discovery Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Valentina Abbiento
- Monoclonal Antibody Discovery Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | | | - Mario Milco D’Elios
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Rino Rappuoli
- Monoclonal Antibody Discovery Lab, Fondazione Toscana Life Sciences, Siena, Italy,Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Cosima T. Baldari
- Department of Life Sciences, University of Siena, Siena, Italy,Correspondence to Cosima T. Baldari:
| |
Collapse
|
15
|
Zhang P, Zhu H. Cytokines in Thyroid-Associated Ophthalmopathy. J Immunol Res 2022; 2022:2528046. [PMID: 36419958 PMCID: PMC9678454 DOI: 10.1155/2022/2528046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 09/07/2023] Open
Abstract
Thyroid-associated ophthalmopathy (TAO), also known as thyroid eye disease (TED) or Graves' orbitopathy (GO), is a complex autoimmune condition causing visual impairment, disfigurement, and harm to patients' physical and mental health. The pathogenesis of TAO has not been fully elucidated, and the mainstream view is that coantigens shared by the thyroid and orbit trigger remodeling of extraocular muscles and orbital connective tissues through an inflammatory response. In recent years, cytokines and the immune responses they mediate have been crucial in disease progression, and currently, common evidence has shown that drugs targeting cytokines, such as tocilizumab, infliximab, and adalimumab, may be novel targets for therapy. In this review, we summarize the research development of different cytokines in TAO pathogenesis in the hope of discovering new therapeutic targets.
Collapse
Affiliation(s)
- Pengbo Zhang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Huang Zhu
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
16
|
Ravendran S, Hernández SS, König S, Bak RO. CRISPR/Cas-Based Gene Editing Strategies for DOCK8 Immunodeficiency Syndrome. Front Genome Ed 2022; 4:793010. [PMID: 35373187 PMCID: PMC8969908 DOI: 10.3389/fgeed.2022.793010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/14/2022] [Indexed: 12/17/2022] Open
Abstract
Defects in the DOCK8 gene causes combined immunodeficiency termed DOCK8 immunodeficiency syndrome (DIDS). DIDS previously belonged to the disease category of autosomal recessive hyper IgE syndrome (AR-HIES) but is now classified as a combined immunodeficiency (CID). This genetic disorder induces early onset of susceptibility to severe recurrent viral and bacterial infections, atopic diseases and malignancy resulting in high morbidity and mortality. This pathological state arises from impairment of actin polymerization and cytoskeletal rearrangement, which induces improper immune cell migration-, survival-, and effector functions. Owing to the severity of the disease, early allogenic hematopoietic stem cell transplantation is recommended even though it is associated with risk of unintended adverse effects, the need for compatible donors, and high expenses. So far, no alternative therapies have been developed, but the monogenic recessive nature of the disease suggests that gene therapy may be applied. The advent of the CRISPR/Cas gene editing system heralds a new era of possibilities in precision gene therapy, and positive results from clinical trials have already suggested that the tool may provide definitive cures for several genetic disorders. Here, we discuss the potential application of different CRISPR/Cas-mediated genetic therapies to correct the DOCK8 gene. Our findings encourage the pursuit of CRISPR/Cas-based gene editing approaches, which may constitute more precise, affordable, and low-risk definitive treatment options for DOCK8 deficiency.
Collapse
Affiliation(s)
| | | | | | - Rasmus O. Bak
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
17
|
González-Mancha N, Rodríguez-Rodríguez C, Alcover A, Merida I. Sorting Nexin 27 Enables MTOC and Secretory Machinery Translocation to the Immune Synapse. Front Immunol 2022; 12:814570. [PMID: 35095913 PMCID: PMC8790036 DOI: 10.3389/fimmu.2021.814570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/20/2021] [Indexed: 11/24/2022] Open
Abstract
Sorting nexin 27 (SNX27) association to the retromer complex mediates intracellular trafficking of cargoes containing PSD95/Dlg1/ZO-1 (PDZ)-binding C-terminal sequences from endosomes to the cell surface, preventing their lysosomal degradation. Antigen recognition by T lymphocyte leads to the formation of a highly organized structure named the immune synapse (IS), which ensures cell-cell communication and sustained T cell activation. At the neuronal synapse, SNX27 recycles PDZ-binding receptors and its defective expression is associated with synaptic dysfunction and cognitive impairment. In T lymphocytes, SNX27 was found localized at recycling endosomal compartments that polarized to the IS, suggesting a function in polarized traffic to this structure. Proteomic analysis of PDZ-SNX27 interactors during IS formation identify proteins with known functions in cytoskeletal reorganization and lipid regulation, such as diacylglycerol (DAG) kinase (DGK) ζ, as well as components of the retromer and WASH complex. In this study, we investigated the consequences of SNX27 deficiency in cytoskeletal reorganization during IS formation. Our analyses demonstrate that SNX27 controls the polarization towards the cell-cell interface of the PDZ-interacting cargoes DGKζ and the retromer subunit vacuolar protein sorting protein 26, among others. SNX27 silencing abolishes the formation of a DAG gradient at the IS and prevents re-localization of the dynactin complex component dynactin-1/p150Glued, two events that correlate with impaired microtubule organizing center translocation (MTOC). SNX27 silenced cells show marked alteration in cytoskeleton organization including a failure in the organization of the microtubule network and defects in actin clearance at the IS. Reduced SNX27 expression was also found to hinder the arrangement of signaling microclusters at the IS, as well as the polarization of the secretory machinery towards the antigen presenting cells. Our results broaden the knowledge of SNX27 function in T lymphocytes by showing a function in modulating IS organization through regulated trafficking of cargoes.
Collapse
Affiliation(s)
- Natalia González-Mancha
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Cristina Rodríguez-Rodríguez
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Andrés Alcover
- Institut Pasteur, Université de Paris, Unité Biologie Cellulaire des Lymphocytes, INSERM U1224, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue-2018, Paris, France
| | - Isabel Merida
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
18
|
Calvo V, Izquierdo M. T Lymphocyte and CAR-T Cell-Derived Extracellular Vesicles and Their Applications in Cancer Therapy. Cells 2022; 11:790. [PMID: 35269412 PMCID: PMC8909086 DOI: 10.3390/cells11050790] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Extracellular vesicles (EV) are a very diverse group of cell-derived vesicles released by almost all kind of living cells. EV are involved in intercellular exchange, both nearby and systemically, since they induce signals and transmit their cargo (proteins, lipids, miRNAs) to other cells, which subsequently trigger a wide variety of biological responses in the target cells. However, cell surface receptor-induced EV release is limited to cells from the immune system, including T lymphocytes. T cell receptor activation of T lymphocytes induces secretion of EV containing T cell receptors for antigen and several bioactive molecules, including proapoptotic proteins. These EV are specific for antigen-bearing cells, which make them ideal candidates for a cell-free, EV-dependent cancer therapy. In this review we examine the generation of EV by T lymphocytes and CAR-T cells and some potential therapeutic approaches of these EV.
Collapse
Affiliation(s)
- Victor Calvo
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
| | - Manuel Izquierdo
- Departamento de Metabolismo y Señalización Celular, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| |
Collapse
|
19
|
Cassioli C, Baldari CT. Lymphocyte Polarization During Immune Synapse Assembly: Centrosomal Actin Joins the Game. Front Immunol 2022; 13:830835. [PMID: 35222415 PMCID: PMC8873515 DOI: 10.3389/fimmu.2022.830835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Interactions among immune cells are essential for the development of adaptive immune responses. The immunological synapse (IS) provides a specialized platform for integration of signals and intercellular communication between T lymphocytes and antigen presenting cells (APCs). In the T cell the reorganization of surface molecules at the synaptic interface is initiated by T cell receptor binding to a cognate peptide-major histocompatibility complex on the APC surface and is accompanied by a polarized remodelling of the cytoskeleton and centrosome reorientation to a subsynaptic position. Although there is a general agreement on polarizing signals and mechanisms driving centrosome reorientation during IS assembly, the primary events that prepare for centrosome repositioning remain largely unexplored. It has been recently shown that in resting lymphocytes a local polymerization of filamentous actin (F-actin) at the centrosome contributes to anchoring this organelle to the nucleus. During early stages of IS formation centrosomal F-actin undergoes depletion, allowing for centrosome detachment from the nucleus and its polarization towards the synaptic membrane. We recently demonstrated that in CD4+ T cells the reduction in centrosomal F-actin relies on the activity of a centrosome-associated proteasome and implicated the ciliopathy-related Bardet-Biedl syndrome 1 protein in the dynein-dependent recruitment of the proteasome 19S regulatory subunit to the centrosome. In this short review we will feature our recent findings that collectively provide a new function for BBS proteins and the proteasome in actin dynamics, centrosome polarization and T cell activation.
Collapse
|
20
|
Qi F, Zhou J. Multifaceted roles of centrosomes in development, health, and disease. J Mol Cell Biol 2021; 13:611-621. [PMID: 34264337 PMCID: PMC8648388 DOI: 10.1093/jmcb/mjab041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 11/23/2022] Open
Abstract
The centrosome is a membrane-less organelle consisting of a pair of barrel-shaped centrioles and pericentriolar material and functions as the major microtubule-organizing center and signaling hub in animal cells. The past decades have witnessed the functional complexity and importance of centrosomes in various cellular processes such as cell shaping, division, and migration. In addition, centrosome abnormalities are linked to a wide range of human diseases and pathological states, such as cancer, reproductive disorder, brain disease, and ciliopathies. Herein, we discuss various functions of centrosomes in development and health, with an emphasis on their roles in germ cells, stem cells, and immune responses. We also discuss how centrosome dysfunctions are involved in diseases. A better understanding of the mechanisms regulating centrosome functions may lead the way to potential therapeutic targeting of this organelle in disease treatment.
Collapse
Affiliation(s)
- Feifei Qi
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Correspondence to: Feifei Qi, E-mail: ; Jun Zhou, E-mail:
| | - Jun Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
- Correspondence to: Feifei Qi, E-mail: ; Jun Zhou, E-mail:
| |
Collapse
|
21
|
Dupré L, Boztug K, Pfajfer L. Actin Dynamics at the T Cell Synapse as Revealed by Immune-Related Actinopathies. Front Cell Dev Biol 2021; 9:665519. [PMID: 34249918 PMCID: PMC8266300 DOI: 10.3389/fcell.2021.665519] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
The actin cytoskeleton is composed of dynamic filament networks that build adaptable local architectures to sustain nearly all cellular activities in response to a myriad of stimuli. Although the function of numerous players that tune actin remodeling is known, the coordinated molecular orchestration of the actin cytoskeleton to guide cellular decisions is still ill defined. T lymphocytes provide a prototypical example of how a complex program of actin cytoskeleton remodeling sustains the spatio-temporal control of key cellular activities, namely antigen scanning and sensing, as well as polarized delivery of effector molecules, via the immunological synapse. We here review the unique knowledge on actin dynamics at the T lymphocyte synapse gained through the study of primary immunodeficiences caused by mutations in genes encoding actin regulatory proteins. Beyond the specific roles of individual actin remodelers, we further develop the view that these operate in a coordinated manner and are an integral part of multiple signaling pathways in T lymphocytes.
Collapse
Affiliation(s)
- Loïc Dupré
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Laurène Pfajfer
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| |
Collapse
|
22
|
Haan N, Westacott LJ, Carter J, Owen MJ, Gray WP, Hall J, Wilkinson LS. Haploinsufficiency of the schizophrenia and autism risk gene Cyfip1 causes abnormal postnatal hippocampal neurogenesis through microglial and Arp2/3 mediated actin dependent mechanisms. Transl Psychiatry 2021; 11:313. [PMID: 34031371 PMCID: PMC8144403 DOI: 10.1038/s41398-021-01415-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 04/21/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Genetic risk factors can significantly increase chances of developing psychiatric disorders, but the underlying biological processes through which this risk is effected remain largely unknown. Here we show that haploinsufficiency of Cyfip1, a candidate risk gene present in the pathogenic 15q11.2(BP1-BP2) deletion may impact on psychopathology via abnormalities in cell survival and migration of newborn neurons during postnatal hippocampal neurogenesis. We demonstrate that haploinsufficiency of Cyfip1 leads to increased numbers of adult-born hippocampal neurons due to reduced apoptosis, without altering proliferation. We show this is due to a cell autonomous failure of microglia to induce apoptosis through the secretion of the appropriate factors, a previously undescribed mechanism. Furthermore, we show an abnormal migration of adult-born neurons due to altered Arp2/3 mediated actin dynamics. Together, our findings throw new light on how the genetic risk candidate Cyfip1 may influence the hippocampus, a brain region with strong evidence for involvement in psychopathology.
Collapse
Affiliation(s)
- Niels Haan
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK.
| | - Laura J Westacott
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK
| | - Jenny Carter
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK
| | - Michael J Owen
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK
| | - William P Gray
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK
- Brain Repair and Intercranial Neurotherapeutics Unit, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK
- Hodge Centre for Neuropsychiatric Immunology, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK
- Hodge Centre for Neuropsychiatric Immunology, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK
| | - Lawrence S Wilkinson
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK
- Hodge Centre for Neuropsychiatric Immunology, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK
- School of Psychology, Cardiff University, Tower Building, Cardiff, UK
| |
Collapse
|
23
|
Chen L, Collado K, Rastogi D. Contribution of systemic and airway immune responses to pediatric obesity-related asthma. Paediatr Respir Rev 2021; 37:3-9. [PMID: 32253127 PMCID: PMC8477371 DOI: 10.1016/j.prrv.2020.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 02/26/2020] [Indexed: 12/23/2022]
Abstract
Childhood obesity contributes to many diseases, including asthma. Although the precise mechanism by which obesity causes asthma is not known, there is literature to suggest that innate and adaptive systemic and airway immune responses in obese children with asthma differ from those in normal-weight children with asthma. Both non-allergic or non-T2 phenotype with systemic T helper (Th)1 polarization and allergic Th cell responses have been reported in childhood obesity-related asthma. There is preliminary evidence to suggest that genetic and epigenetic mechanisms contribute to these immune responses. Initial investigations into the biology of non-T2 immune responses have identified upregulation of genes in the CDC42 pathway. CDC42 is a RhoGTPase that plays a key role in Th cell physiology, including preferential naïve Th cell differentiation to Th1 cells, as well as cytokine production and exocytosis. These novel pathways are promising findings to direct targeted therapy development for obesity-related asthma to address the disease burden.
Collapse
Affiliation(s)
- Laura Chen
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY
| | - Kayla Collado
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY
| | - Deepa Rastogi
- Department of Pediatrics, George Washington University, School of Medicine and Health Sciences, United States.
| |
Collapse
|
24
|
Chauhan P, Nair A, Patidar A, Dandapat J, Sarkar A, Saha B. A primer on cytokines. Cytokine 2021; 145:155458. [PMID: 33581983 DOI: 10.1016/j.cyto.2021.155458] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/19/2022]
Abstract
Cytokines are pleiotropic polypeptides that control the development of and responses mediated by immune cells. Cytokine classification predominantly relies on [1] the target receptor(s), [2] the primary structural features of the extracellular domains of their receptors, and [3] their receptor composition. Functionally, cytokines are either pro-inflammatory or anti-inflammatory, hematopoietic colony-stimulating factors, developmental and would healing maintaining immune homeostasis. When the balance in C can form complex networks amongst themselves that may affect the homeostasis and diseases. Cytokines can affect resistance and susceptibility for many diseases and their availability in the host cytokine production and interaction is disturbed, immunopathogenesis sets in. Therefore, cytokine-targeting bispecific, and chimeric antibodies form a significant mode of immnuo-therapeutics Although the field has grown deep and wide, many areas of cytokine biology remain unknown. Here, we have reviewed these cytokines along with the organization, signaling, and functions through respective cytokine-receptor-families. Being part of the special issue on the Role of Cytokines in Leishmaniasis, this review is intended to be used as an organized primer on cytokines and not a resource for detailed discussion- for which a two-volume Handbook of cytokines is available- on each of the cytokines. Priming the readers on cytokines, we next brief the role of cytokines in Leishmaniasis. In the brief, we do not provide an account of each of the involved cytokines known to date, instead, we offer a temporal relationship between the cytokines and the progress of the infection towards the alternate outcomes- healing or non-healing- of the infection.
Collapse
Affiliation(s)
- Prashant Chauhan
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Arathi Nair
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Ashok Patidar
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Jagneshwar Dandapat
- P.G. Department of Biotechnology, Utkal University, Bhubaneswar 751004, India
| | - Arup Sarkar
- Trident Academy of Creative Technology, Bhubaneswar 751024, India
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India; Trident Academy of Creative Technology, Bhubaneswar 751024, India; Department of Allied Health Sciences, BLDE (Deemed University), Vijayapura 562135, India.
| |
Collapse
|
25
|
Saez JJ, Dogniaux S, Shafaq-Zadah M, Johannes L, Hivroz C, Zucchetti AE. Retrograde and Anterograde Transport of Lat-Vesicles during the Immunological Synapse Formation: Defining the Finely-Tuned Mechanism. Cells 2021; 10:cells10020359. [PMID: 33572370 PMCID: PMC7916135 DOI: 10.3390/cells10020359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
LAT is an important player of the signaling cascade induced by TCR activation. This adapter molecule is present at the plasma membrane of T lymphocytes and more abundantly in intracellular compartments. Upon T cell activation the intracellular pool of LAT is recruited to the immune synapse (IS). We previously described two pathways controlling LAT trafficking: retrograde transport from endosomes to the TGN, and anterograde traffic from the Golgi to the IS. We address the specific role of four proteins, the GTPase Rab6, the t-SNARE syntaxin-16, the v-SNARE VAMP7 and the golgin GMAP210, in each pathway. Using different methods (endocytosis and Golgi trap assays, confocal and TIRF microscopy, TCR-signalosome pull down) we show that syntaxin-16 is regulating the retrograde transport of LAT whereas VAMP7 is regulating the anterograde transport. Moreover, GMAP210 and Rab6, known to contribute to both pathways, are in our cellular context, specifically and respectively, involved in anterograde and retrograde transport of LAT. Altogether, our data describe how retrograde and anterograde pathways coordinate LAT enrichment at the IS and point to the Golgi as a central hub for the polarized recruitment of LAT to the IS. The role that this finely-tuned transport of signaling molecules plays in T-cell activation is discussed.
Collapse
Affiliation(s)
- Juan José Saez
- Institut Curie, Université PSL, U932 INSERM, Integrative Analysis of T Cell Activation Team, 26 Rue d’Ulm, 75248 Paris CEDEX 05, France; (J.J.S.); (S.D.)
| | - Stephanie Dogniaux
- Institut Curie, Université PSL, U932 INSERM, Integrative Analysis of T Cell Activation Team, 26 Rue d’Ulm, 75248 Paris CEDEX 05, France; (J.J.S.); (S.D.)
| | - Massiullah Shafaq-Zadah
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, 75005 Paris, France; (M.S.-Z.); (L.J.)
| | - Ludger Johannes
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, 75005 Paris, France; (M.S.-Z.); (L.J.)
| | - Claire Hivroz
- Institut Curie, Université PSL, U932 INSERM, Integrative Analysis of T Cell Activation Team, 26 Rue d’Ulm, 75248 Paris CEDEX 05, France; (J.J.S.); (S.D.)
- Correspondence: (C.H.); (A.E.Z.); Tel.: +33-156-246-438 (A.E.Z.)
| | - Andrés Ernesto Zucchetti
- Institut Curie, Université PSL, U932 INSERM, Integrative Analysis of T Cell Activation Team, 26 Rue d’Ulm, 75248 Paris CEDEX 05, France; (J.J.S.); (S.D.)
- Correspondence: (C.H.); (A.E.Z.); Tel.: +33-156-246-438 (A.E.Z.)
| |
Collapse
|
26
|
Calvo V, Izquierdo M. Role of Actin Cytoskeleton Reorganization in Polarized Secretory Traffic at the Immunological Synapse. Front Cell Dev Biol 2021; 9:629097. [PMID: 33614660 PMCID: PMC7890359 DOI: 10.3389/fcell.2021.629097] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/11/2021] [Indexed: 01/01/2023] Open
Abstract
T cell receptor (TCR) and B cell receptor (BCR) stimulation by antigen presented on an antigen-presenting cell (APC) induces the formation of the immune synapse (IS), the convergence of secretory vesicles from T and B lymphocytes toward the centrosome, and the polarization of the centrosome to the immune synapse. Immune synapse formation is associated with an initial increase in cortical F-actin at the synapse, followed by a decrease in F-actin density at the central region of the immune synapse, which contains the secretory domain. These reversible, actin cytoskeleton reorganization processes occur during lytic granule degranulation in cytotoxic T lymphocytes (CTL) and cytokine-containing vesicle secretion in T-helper (Th) lymphocytes. Recent evidences obtained in T and B lymphocytes forming synapses show that F-actin reorganization also occurs at the centrosomal area. F-actin reduction at the centrosomal area appears to be involved in centrosome polarization. In this review we deal with the biological significance of both cortical and centrosomal area F-actin reorganization and some of the derived biological consequences.
Collapse
Affiliation(s)
- Victor Calvo
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Manuel Izquierdo
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
27
|
Kashani P, Marwaha A, Feanny S, Kim VHD, Atkinson AR, Leon-Ponte M, Mendoza-Londono R, Grunebaum E. Progressive decline of T and B cell numbers and function in a patient with CDC42 deficiency. Immunol Res 2021; 69:53-58. [PMID: 33405195 DOI: 10.1007/s12026-020-09168-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/01/2020] [Indexed: 01/03/2023]
Abstract
Single allele mutations in the Cell Division Control protein 42 homolog (CDC42) gene were recently shown to cause Takenouchi-Kosaki syndrome with diverse manifestations. These include persistent mild thrombocytopenia with large platelet size, severe developmental delay, growth retardation, facial dysmorphism, and other neurodevelopmental and hematological anomalies. CDC42 deficiency might also cause myelofibrosis, myeloproliferation, and severe autoinflammation. CDC42 closely interacts with the Wiskott-Aldrich Syndrome Protein, but little is still known about the immune abnormalities associated with CDC42 deficiency. Detailed immune evaluations were performed in a patient diagnosed with a CDC42 Tyr64Cys mutation. The 19-year-old female suffered from recurrent pneumonia, otitis media, and bacteremia, which resolved at 10 years of age, concordant with the initiation of amoxicillin prophylaxis. In addition, the patient had frequent viral upper respiratory tract infections, which resolved without need for medical interventions. Immune evaluations demonstrated decreased immunoglobulin levels, inability to maintain antibody responses, progressive decline in the number of CD19+ B cells, and decreased switched memory B cells. There was also a decrease in CD4+ and CD8+ T cells, markedly reduced naïve T cells, and intermittent depressed proliferation of T cells to stimulation. Natural killer cells' number and functions were normal. However, no opportunistic infections were observed, nor was there evidence for autoinflammation. CDC42 deficiency might also be associated with decline in T and B cell function. Therefore, immunity in patients with CDC42 defects should be closely monitored, particularly among those with frequent infections or systemic autoinflammation.
Collapse
Affiliation(s)
- Paria Kashani
- Division of Immunology and Allergy, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada.,Department of Pediatrics, University of Toronto, Ontario, Toronto, Canada
| | - Ashish Marwaha
- Department of Pediatrics, University of Toronto, Ontario, Toronto, Canada.,Division of Clinical and Metabolic Genetics, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
| | - Stephen Feanny
- Division of Immunology and Allergy, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada.,Department of Pediatrics, University of Toronto, Ontario, Toronto, Canada
| | - Vy Hong-Diep Kim
- Division of Immunology and Allergy, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada.,Department of Pediatrics, University of Toronto, Ontario, Toronto, Canada
| | - Adelle R Atkinson
- Division of Immunology and Allergy, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada.,Department of Pediatrics, University of Toronto, Ontario, Toronto, Canada
| | - Matilde Leon-Ponte
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
| | - Roberto Mendoza-Londono
- Department of Pediatrics, University of Toronto, Ontario, Toronto, Canada.,Division of Clinical and Metabolic Genetics, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
| | - Eyal Grunebaum
- Division of Immunology and Allergy, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada. .,Department of Pediatrics, University of Toronto, Ontario, Toronto, Canada.
| |
Collapse
|
28
|
Pradhan R, Ngo PA, Martínez-Sánchez LDC, Neurath MF, López-Posadas R. Rho GTPases as Key Molecular Players within Intestinal Mucosa and GI Diseases. Cells 2021; 10:cells10010066. [PMID: 33406731 PMCID: PMC7823293 DOI: 10.3390/cells10010066] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Rho proteins operate as key regulators of the cytoskeleton, cell morphology and trafficking. Acting as molecular switches, the function of Rho GTPases is determined by guanosine triphosphate (GTP)/guanosine diphosphate (GDP) exchange and their lipidation via prenylation, allowing their binding to cellular membranes and the interaction with downstream effector proteins in close proximity to the membrane. A plethora of in vitro studies demonstrate the indispensable function of Rho proteins for cytoskeleton dynamics within different cell types. However, only in the last decades we have got access to genetically modified mouse models to decipher the intricate regulation between members of the Rho family within specific cell types in the complex in vivo situation. Translationally, alterations of the expression and/or function of Rho GTPases have been associated with several pathological conditions, such as inflammation and cancer. In the context of the GI tract, the continuous crosstalk between the host and the intestinal microbiota requires a tight regulation of the complex interaction between cellular components within the intestinal tissue. Recent studies demonstrate that Rho GTPases play important roles for the maintenance of tissue homeostasis in the gut. We will summarize the current knowledge on Rho protein function within individual cell types in the intestinal mucosa in vivo, with special focus on intestinal epithelial cells and T cells.
Collapse
|
29
|
Mastrogiovanni M, Juzans M, Alcover A, Di Bartolo V. Coordinating Cytoskeleton and Molecular Traffic in T Cell Migration, Activation, and Effector Functions. Front Cell Dev Biol 2020; 8:591348. [PMID: 33195256 PMCID: PMC7609836 DOI: 10.3389/fcell.2020.591348] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/24/2020] [Indexed: 12/28/2022] Open
Abstract
Dynamic localization of receptors and signaling molecules at the plasma membrane and within intracellular vesicular compartments is crucial for T lymphocyte sensing environmental cues, triggering membrane receptors, recruiting signaling molecules, and fine-tuning of intracellular signals. The orchestrated action of actin and microtubule cytoskeleton and intracellular vesicle traffic plays a key role in all these events that together ensure important steps in T cell physiology. These include extravasation and migration through lymphoid and peripheral tissues, T cell interactions with antigen-presenting cells, T cell receptor (TCR) triggering by cognate antigen-major histocompatibility complex (MHC) complexes, immunological synapse formation, cell activation, and effector functions. Cytoskeletal and vesicle traffic dynamics and their interplay are coordinated by a variety of regulatory molecules. Among them, polarity regulators and membrane-cytoskeleton linkers are master controllers of this interplay. Here, we review the various ways the T cell plasma membrane, receptors, and their signaling machinery interplay with the actin and microtubule cytoskeleton and with intracellular vesicular compartments. We highlight the importance of this fine-tuned crosstalk in three key stages of T cell biology involving cell polarization: T cell migration in response to chemokines, immunological synapse formation in response to antigen cues, and effector functions. Finally, we discuss two examples of perturbation of this interplay in pathological settings, such as HIV-1 infection and mutation of the polarity regulator and tumor suppressor adenomatous polyposis coli (Apc) that leads to familial polyposis and colorectal cancer.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Marie Juzans
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| | - Andrés Alcover
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| | - Vincenzo Di Bartolo
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| |
Collapse
|
30
|
Rastogi D, Johnston AD, Nico J, Loh LN, Jorge Y, Suzuki M, Macian F, Greally JM. Functional Genomics of the Pediatric Obese Asthma Phenotype Reveal Enrichment of Rho-GTPase Pathways. Am J Respir Crit Care Med 2020; 202:259-274. [PMID: 32255672 PMCID: PMC7365356 DOI: 10.1164/rccm.201906-1199oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 04/03/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: Obesity-related asthma disproportionately affects minority children and is associated with nonatopic T-helper type 1 (Th1) cell polarized inflammation that correlates with pulmonary function deficits. Its underlying mechanisms are poorly understood.Objectives: To use functional genomics to identify cellular mechanisms associated with nonatopic inflammation in obese minority children with asthma.Methods: CD4+ (cluster of differentiation 4-positive) Th cells from 59 obese Hispanic and African American children with asthma and 61 normal-weight Hispanic and African American children with asthma underwent quantification of the transcriptome and DNA methylome and genotyping. Expression and methylation quantitative trait loci revealed the contribution of genetic variation to transcription and DNA methylation. Adjusting for Th-cell subtype proportions discriminated loci where transcription or methylation differences were driven by differences in subtype proportions from loci that were independently associated with obesity-related asthma.Measurements and Main Results: Obese children with asthma had more memory and fewer naive Th cells than normal-weight children with asthma. Differentially expressed and methylated genes and methylation quantitative trait loci in obese children with asthma, independent of Th-cell subtype proportions, were enriched in Rho-GTPase pathways. Inhibition of CDC42 (cell division cycle 42), one of the Rho-GTPases associated with Th-cell differentiation, was associated with downregulation of the IFNγ, but not the IL-4, gene. Differential expression of the RPS27L (40S ribosomal protein S27-like) gene, part of the p53/mammalian target of rapamycin pathway, was due to nonrandom distribution of expression quantitative trait loci variants between groups. Differentially expressed and/or methylated genes, including RPS27L, were associated with pulmonary function deficits in obese children with asthma.Conclusions: We found enrichment of Rho-GTPase pathways in obese asthmatic Th cells, identifying them as a novel therapeutic target for obesity-related asthma, a disease that is suboptimally responsive to current therapies.
Collapse
Affiliation(s)
- Deepa Rastogi
- Department of Pediatrics
- Department of Pathology, and
| | - Andrew D. Johnston
- Department of Genetics, Albert Einstein College of Medicine, New York, New York
| | | | | | | | - Masako Suzuki
- Department of Genetics, Albert Einstein College of Medicine, New York, New York
| | | | - John M. Greally
- Department of Genetics, Albert Einstein College of Medicine, New York, New York
| |
Collapse
|
31
|
Bello-Gamboa A, Velasco M, Moreno S, Herranz G, Ilie R, Huetos S, Dávila S, Sánchez A, Bernardino De La Serna J, Calvo V, Izquierdo M. Actin reorganization at the centrosomal area and the immune synapse regulates polarized secretory traffic of multivesicular bodies in T lymphocytes. J Extracell Vesicles 2020; 9:1759926. [PMID: 32939232 PMCID: PMC7480611 DOI: 10.1080/20013078.2020.1759926] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
T-cell receptor stimulation induces the convergence of multivesicular bodies towards the microtubule-organizing centre (MTOC) and the polarization of the MTOC to the immune synapse (IS). These events lead to exosome secretion at the IS. We describe here that upon IS formation centrosomal area F-actin decreased concomitantly with MTOC polarization to the IS. PKCδ-interfered T cell clones showed a sustained level of centrosomal area F-actin associated with defective MTOC polarization. We analysed the contribution of two actin cytoskeleton-regulatory proteins, FMNL1 and paxillin, to the regulation of cortical and centrosomal F-actin networks. FMNL1β phosphorylation and F-actin reorganization at the IS were inhibited in PKCδ-interfered clones. F-actin depletion at the central region of the IS, a requirement for MTOC polarization, was associated with FMNL1β phosphorylation at its C-terminal, autoregulatory region. Interfering all FMNL1 isoforms prevented MTOC polarization; nonetheless, FMNL1β re-expression restored MTOC polarization in a centrosomal area F-actin reorganization-independent manner. Moreover, PKCδ-interfered clones exhibited decreased paxillin phosphorylation at the MTOC, which suggests an alternative actin cytoskeleton regulatory pathway. Our results infer that PKCδ regulates MTOC polarization and secretory traffic leading to exosome secretion in a coordinated manner by means of two distinct pathways, one involving FMNL1β regulation and controlling F-actin reorganization at the IS, and the other, comprising paxillin phosphorylation potentially controlling centrosomal area F-actin reorganization. Abbreviations Ab, antibody; AICD, activation-induced cell death; AIP, average intensity projection; APC, antigen-presenting cell; BCR, B-cell receptor for antigen; C, centre of mass; cent2, centrin 2; cIS, central region of the immune synapse; CMAC, CellTracker™ Blue (7-amino-4-chloromethylcoumarin); cSMAC, central supramolecular activation cluster; CTL, cytotoxic T lymphocytes; DAG, diacylglycerol; DGKα, diacylglycerol kinase α; Dia1, Diaphanous-1; dSMAC, distal supramolecular activation cluster; ECL, enhanced chemiluminescence; ESCRT, endosomal sorting complex required for traffic; F-actin, filamentous actin; Fact-low cIS, F-actin-low region at the centre of the immune synapse; FasL, Fas ligand; FMNL1, formin-like 1; fps, frames per second; GFP, green fluorescent protein; HBSS, Hank’s balanced salt solution; HRP, horseradish peroxidase; ILV, intraluminal vesicles; IS, immune synapse; MFI, mean fluorescence intensity; MHC, major histocompatibility complex; MIP, maximal intensity projection; MVB, multivesicular bodies; MTOC, microtubule-organizing centre; NS, not significant; PBL, peripheral blood lymphocytes; PKC, protein kinase C; PKCδ, protein kinase C δ isoform; PLC, phospholipase C; PMA, phorbol myristate acetate; Pol. Index, polarization index; pSMAC, peripheral supramolecular activation cluster; PSF, point spread function; ROI, region of interest; SD, standard deviation; shRNA, short hairpin RNA; SEE, Staphylococcus enterotoxin E; SMAC, supramolecular activation cluster; TCR, T-cell receptor for antigen; T-helper (Th); TRANS, transmittance; WB, Western blot.
Collapse
Affiliation(s)
- Ana Bello-Gamboa
- Department of Metabolism and Cell Signaling, Instituto De Investigaciones Biomédicas Alberto Sols. CSIC-UAM, Madrid, Spain.,Departamento De Bioquímica. Facultad De Medicina, UAM Madrid, Spain
| | - Marta Velasco
- Department of Metabolism and Cell Signaling, Instituto De Investigaciones Biomédicas Alberto Sols. CSIC-UAM, Madrid, Spain.,Departamento De Bioquímica. Facultad De Medicina, UAM Madrid, Spain
| | - Solange Moreno
- Department of Metabolism and Cell Signaling, Instituto De Investigaciones Biomédicas Alberto Sols. CSIC-UAM, Madrid, Spain.,Departamento De Bioquímica. Facultad De Medicina, UAM Madrid, Spain
| | - Gonzalo Herranz
- Department of Metabolism and Cell Signaling, Instituto De Investigaciones Biomédicas Alberto Sols. CSIC-UAM, Madrid, Spain.,Departamento De Bioquímica. Facultad De Medicina, UAM Madrid, Spain.,Centro De Biología Molecular Severo Ochoa, Universidad Autónoma De Madrid, Cantoblanco, Madrid, Spain
| | - Roxana Ilie
- Department of Metabolism and Cell Signaling, Instituto De Investigaciones Biomédicas Alberto Sols. CSIC-UAM, Madrid, Spain.,Departamento De Bioquímica. Facultad De Medicina, UAM Madrid, Spain
| | - Silvia Huetos
- Department of Metabolism and Cell Signaling, Instituto De Investigaciones Biomédicas Alberto Sols. CSIC-UAM, Madrid, Spain.,Departamento De Bioquímica. Facultad De Medicina, UAM Madrid, Spain
| | - Sergio Dávila
- Department of Metabolism and Cell Signaling, Instituto De Investigaciones Biomédicas Alberto Sols. CSIC-UAM, Madrid, Spain.,Departamento De Bioquímica. Facultad De Medicina, UAM Madrid, Spain.,Nanostructured Functional Surfaces Program, IMDEA Nanociencia, Universidad Autónoma De Madrid, Cantoblanco, Madrid, Spain
| | - Alicia Sánchez
- Department of Metabolism and Cell Signaling, Instituto De Investigaciones Biomédicas Alberto Sols. CSIC-UAM, Madrid, Spain.,Departamento De Bioquímica. Facultad De Medicina, UAM Madrid, Spain.,Neuroimmunology Unit, Puerta De Hierro-Segovia De Arana Health Research Institute, Madrid, Spain
| | - Jorge Bernardino De La Serna
- National Heart & Lung Institute, Faculty of Medicine, Imperial College London, South Kensington Campus, London, UK.,Central Laser Facility, Science and Technology Facilities Council, UK Research and Innovation. Research Complex at Harwell, Harwell-Oxford, UK
| | - Víctor Calvo
- Department of Metabolism and Cell Signaling, Instituto De Investigaciones Biomédicas Alberto Sols. CSIC-UAM, Madrid, Spain.,Departamento De Bioquímica. Facultad De Medicina, UAM Madrid, Spain
| | - Manuel Izquierdo
- Department of Metabolism and Cell Signaling, Instituto De Investigaciones Biomédicas Alberto Sols. CSIC-UAM, Madrid, Spain.,Departamento De Bioquímica. Facultad De Medicina, UAM Madrid, Spain
| |
Collapse
|
32
|
Inducible Polarized Secretion of Exosomes in T and B Lymphocytes. Int J Mol Sci 2020; 21:ijms21072631. [PMID: 32290050 PMCID: PMC7177964 DOI: 10.3390/ijms21072631] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022] Open
Abstract
Exosomes are extracellular vesicles (EV) of endosomal origin (multivesicular bodies, MVB) constitutively released by many different eukaryotic cells by fusion of MVB to the plasma membrane. However, inducible exosome secretion controlled by cell surface receptors is restricted to very few cell types and a limited number of cell surface receptors. Among these, exosome secretion is induced in T lymphocytes and B lymphocytes when stimulated at the immune synapse (IS) via T-cell receptors (TCR) and B-cell receptors (BCR), respectively. IS formation by T and B lymphocytes constitutes a crucial event involved in antigen-specific, cellular, and humoral immune responses. Upon IS formation by T and B lymphocytes with antigen-presenting cells (APC), the convergence of MVB towards the microtubule organization center (MTOC), and MTOC polarization to the IS, are involved in polarized exosome secretion at the synaptic cleft. This specialized mechanism provides the immune system with a finely-tuned strategy to increase the specificity and efficiency of crucial secretory effector functions of B and T lymphocytes. As inducible exosome secretion by antigen-receptors is a critical and unique feature of the immune system this review considers the study of the traffic events leading to polarized exosome secretion at the IS and some of their biological consequences.
Collapse
|
33
|
Szczawinska-Poplonyk A, Ploski R, Bernatowska E, Pac M. A Novel CDC42 Mutation in an 11-Year Old Child Manifesting as Syndromic Immunodeficiency, Autoinflammation, Hemophagocytic Lymphohistiocytosis, and Malignancy: A Case Report. Front Immunol 2020; 11:318. [PMID: 32231661 PMCID: PMC7082228 DOI: 10.3389/fimmu.2020.00318] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/10/2020] [Indexed: 12/23/2022] Open
Abstract
Background: The CDC42 (Cell Division Cycle 42) gene product, CDC42, is a member of the family of small Rho GTPases, which are implicated in a broad spectrum of physiological functions in cell cycle regulation, including establishing and controlling of the cell actin cytoskeleton, vesicle trafficking, cell polarity, proliferation, motility and migration, transcription activation, reactive oxygen species production, and tumorigenesis. The CDC42 gene mutations are associated with distinct clinical phenotypes characterized by neurodevelopmental, growth, hematological, and immunological disturbances. Case presentation: We report the case of an 11-year-old boy with syndromic features, immunodeficiency, and autoinflammation who developed hemophagocytic lymphohistiocytosis and malignant lymphoproliferation. In this patient, a novel heterozygous p.Cys81Tyr mutation in the CDC42 gene was found by whole exome sequencing. Conclusions: The Cdc42 molecule plays a pivotal role in cell cycle regulation and a wide array of tissue-specific functions, and its deregulation may result in a broad spectrum of molecular and cellular dysfunctions, making patients with CDC42 gene mutations susceptible to infections, immune dysregulation, and malignancy. In the patient studied, a syndromic phenotype with facial dysmorphism, neurodevelopmental delay, immunodeficiency, autoinflammation, and hemophagocytic lymphohistiocytosis shares common features with Takenouchi–Kosaki syndrome and with C-terminal variants in CDC42. It is important to emphasize that Hodgkin's lymphoma is described for the first time in the medical literature in a pediatric patient with the novel p.Cys81Tyr mutation in the CDC42 gene. Further studies are required to delineate precisely the CDC42 genotype–phenotype correlations.
Collapse
Affiliation(s)
- Aleksandra Szczawinska-Poplonyk
- Department of Pediatric Pneumonology, Allergology and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Rafal Ploski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Bernatowska
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - Malgorzata Pac
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
34
|
Rastogi D. Pediatric obesity-related asthma: A prototype of pediatric severe non-T2 asthma. Pediatr Pulmonol 2020; 55:809-817. [PMID: 31912992 PMCID: PMC7694442 DOI: 10.1002/ppul.24600] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/28/2019] [Indexed: 12/31/2022]
Abstract
Childhood obesity contributes to many diseases, including asthma. There is literature to suggest that asthma developing as a consequence of obesity has a nonallergic or non-T2 phenotype. In this review, obesity-related asthma is utilized as a prototype of non-T2 asthma in children to discuss several nonallergic mechanisms that underlie childhood asthma. Obesity-related asthma is associated with systemic T helper (Th)1 polarization occurring with monocyte activation. These immune responses are mediated by insulin resistance and dyslipidemia, metabolic abnormalities associated with obesity, that are themselves associated with pulmonary function deficits in obese asthmatics. As in other multifactorial diseases, there is both a genetic and an environmental contribution to pediatric obesity-related asthma. In addition to genetic susceptibility, differential DNA methylation is associated with non-T2 immune responses in pediatric obesity-related asthma. Initial investigations into the biology of non-T2 immune responses have identified the upregulation of genes in the CDC42 pathway. CDC42 is a RhoGTPase that plays a key role in Th cell physiology, including preferential naïve Th cell differentiation to Th1 cells, and cytokine production and exocytosis. Although these novel pathways are promising findings to direct targeted therapy development for obesity-related asthma to address the disease burden, there is evidence to suggest that dietary interventions, including diet modification, rather than caloric restriction alone, decrease disease burden. Adoption of a diet rich in micronutrients, including carotenoids and 25-OH cholecalciferol, a vitamin D metabolite, may be beneficial since these are positively correlated with pulmonary function indices, while being protective against metabolic abnormalities associated with the obese asthma phenotype.
Collapse
Affiliation(s)
- Deepa Rastogi
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
35
|
Kared H, Tan SW, Lau MC, Chevrier M, Tan C, How W, Wong G, Strickland M, Malleret B, Amoah A, Pilipow K, Zanon V, Govern NM, Lum J, Chen JM, Lee B, Florian MC, Geiger H, Ginhoux F, Ruiz-Mateos E, Fulop T, Rajasuriar R, Kamarulzaman A, Ng TP, Lugli E, Larbi A. Immunological history governs human stem cell memory CD4 heterogeneity via the Wnt signaling pathway. Nat Commun 2020; 11:821. [PMID: 32041953 PMCID: PMC7010798 DOI: 10.1038/s41467-020-14442-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 01/09/2020] [Indexed: 12/21/2022] Open
Abstract
The diversity of the naïve T cell repertoire drives the replenishment potential and capacity of memory T cells to respond to immune challenges. Attrition of the immune system is associated with an increased prevalence of pathologies in aged individuals, but whether stem cell memory T lymphocytes (TSCM) contribute to such attrition is still unclear. Using single cells RNA sequencing and high-dimensional flow cytometry, we demonstrate that TSCM heterogeneity results from differential engagement of Wnt signaling. In humans, aging is associated with the coupled loss of Wnt/β-catenin signature in CD4 TSCM and systemic increase in the levels of Dickkopf-related protein 1, a natural inhibitor of the Wnt/β-catenin pathway. Functional assays support recent thymic emigrants as the precursors of CD4 TSCM. Our data thus hint that reversing TSCM defects by metabolic targeting of the Wnt/β-catenin pathway may be a viable approach to restore and preserve immune homeostasis in the context of immunological history.
Collapse
Affiliation(s)
- Hassen Kared
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore.
| | - Shu Wen Tan
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Mai Chan Lau
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Marion Chevrier
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Crystal Tan
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Wilson How
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Glenn Wong
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Marie Strickland
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Benoit Malleret
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Amanda Amoah
- Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - Karolina Pilipow
- Humanitas Clinical and Research Center, Laboratory of Translational Immunology (LTI), Rozzano, Italy
| | - Veronica Zanon
- Humanitas Clinical and Research Center, Laboratory of Translational Immunology (LTI), Rozzano, Italy
| | - Naomi Mc Govern
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Jin Miao Chen
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | | | - Hartmut Geiger
- Institute of Molecular Medicine, University of Ulm, Ulm, Germany
- Experimental Hematology and Cancer Biology, CCHMC, Cincinnati, OH, USA
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Ezequiel Ruiz-Mateos
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, Seville, Spain
| | - Tamas Fulop
- Department of Medicine, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Reena Rajasuriar
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Adeeba Kamarulzaman
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
- Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tze Pin Ng
- Gerontology Research Programme and Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Enrico Lugli
- Humanitas Clinical and Research Center, Laboratory of Translational Immunology (LTI), Rozzano, Italy
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore.
- Department of Medicine, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada.
| |
Collapse
|
36
|
Zutshi S, Kumar S, Chauhan P, Bansode Y, Nair A, Roy S, Sarkar A, Saha B. Anti-Leishmanial Vaccines: Assumptions, Approaches, and Annulments. Vaccines (Basel) 2019; 7:vaccines7040156. [PMID: 31635276 PMCID: PMC6963565 DOI: 10.3390/vaccines7040156] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Abstract
Leishmaniasis is a neglected protozoan parasitic disease that occurs in 88 countries but a vaccine is unavailable. Vaccination with live, killed, attenuated (physically or genetically) Leishmania have met with limited success, while peptide-, protein-, or DNA-based vaccines showed promise only in animal models. Here, we critically assess several technical issues in vaccination and expectation of a host-protective immune response. Several studies showed that antigen presentation during priming and triggering of the same cells in infected condition are not comparable. Altered proteolytic processing, antigen presentation, protease-susceptible sites, and intracellular expression of pathogenic proteins during Leishmania infection may vary dominant epitope selection, MHC-II/peptide affinity, and may deter the reactivation of desired antigen-specific T cells generated during priming. The robustness of the memory T cells and their functions remains a concern. Presentation of the antigens by Leishmania-infected macrophages to antigen-specific memory T cells may lead to change in the T cells' functional phenotype or anergy or apoptosis. Although cells may be activated, the peptides generated during infection may be different and cross-reactive to the priming peptides. Such altered peptide ligands may lead to suppression of otherwise active antigen-specific T cells. We critically assess these different immunological issues that led to the non-availability of a vaccine for human use.
Collapse
Affiliation(s)
| | - Sunil Kumar
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Prashant Chauhan
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Yashwant Bansode
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Arathi Nair
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Somenath Roy
- Department of Human Physiology with Community Health, Vidyasagar University, Midnapore 721102, India.
| | - Arup Sarkar
- Department of Biotechnology, Trident Academy of Creative Technology, Bhubaneswar 751024, India.
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
- Department of Biotechnology, Trident Academy of Creative Technology, Bhubaneswar 751024, India.
| |
Collapse
|
37
|
Zucchetti AE, Bataille L, Carpier JM, Dogniaux S, San Roman-Jouve M, Maurin M, Stuck MW, Rios RM, Baldari CT, Pazour GJ, Hivroz C. Tethering of vesicles to the Golgi by GMAP210 controls LAT delivery to the immune synapse. Nat Commun 2019; 10:2864. [PMID: 31253807 PMCID: PMC6599081 DOI: 10.1038/s41467-019-10891-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 06/08/2019] [Indexed: 01/06/2023] Open
Abstract
The T cell immune synapse is a site of intense vesicular trafficking. Here we show that the golgin GMAP210, known to capture vesicles and organize membrane traffic at the Golgi, is involved in the vesicular transport of LAT to the immune synapse. Upon activation, more GMAP210 interact with LAT-containing vesicles and go together with LAT to the immune synapse. Regulating LAT recruitment and LAT-dependent signaling, GMAP210 controls T cell activation. Using a rerouting and capture assay, we show that GMAP210 captures VAMP7-decorated vesicles. Overexpressing different domains of GMAP210, we also show that GMAP210 allows their specific delivery to the immune synapse by tethering LAT-vesicles to the Golgi. Finally, in a model of ectopic expression of LAT in ciliated cells, we show that GMAP210 tethering activity controls the delivery of LAT to the cilium. Hence, our results reveal a function for the golgin GMAP210 conveying specific vesicles to the immune synapse.
Collapse
Affiliation(s)
- Andres Ernesto Zucchetti
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Laurence Bataille
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Jean-Marie Carpier
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France.,Immunobiology Department, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Stéphanie Dogniaux
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Mabel San Roman-Jouve
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Mathieu Maurin
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Michael W Stuck
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rosa M Rios
- Cell Dynamics and Signaling Department, CABIMER-CSIC/US/UPO, 41092, Seville, Spain
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Claire Hivroz
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France.
| |
Collapse
|
38
|
Spatial distribution of IL4 controls iNKT cell-DC crosstalk in tumors. Cell Mol Immunol 2019; 17:496-506. [PMID: 31160756 PMCID: PMC7192838 DOI: 10.1038/s41423-019-0243-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/08/2019] [Indexed: 11/08/2022] Open
Abstract
The spatiotemporal distribution of cytokines orchestrates immune responses in vivo, yet the underlying mechanisms remain to be explored. We showed here that the spatial distribution of interleukin-4 (IL4) in invariant natural killer T (iNKT) cells regulated crosstalk between iNKT cells and dendritic cells (DCs) and controlled iNKT cell-mediated T-helper type 1 (Th1) responses. The persistent polarization of IL4 induced by strong lipid antigens, that is, α-galactosylceramide (αGC), caused IL4 accumulation at the immunological synapse (IS), which promoted the activation of the IL4R-STAT6 (signal transducer and activator of transcription 6) pathway and production of IL12 in DCs, which enhanced interferon-γ (IFNγ) production in iNKT cells. Conversely, the nonpolarized secretion of IL4 induced by Th2 lipid antigens with a short or unsaturated chain was incapable of enhancing this iNKT cell-DC crosstalk and thus shifted the immune response to a Th2-type response. The nonpolarized secretion of IL4 in response to Th2 lipid antigens was caused by the degradation of Cdc42 in iNKT cells. Moreover, reduced Cdc42 expression was observed in tumor-infiltrating iNKT cells, which impaired IL4 polarization and disturbed iNKT cell-DC crosstalk in tumors.
Collapse
|
39
|
Herranz G, Aguilera P, Dávila S, Sánchez A, Stancu B, Gómez J, Fernández-Moreno D, de Martín R, Quintanilla M, Fernández T, Rodríguez-Silvestre P, Márquez-Expósito L, Bello-Gamboa A, Fraile-Ramos A, Calvo V, Izquierdo M. Protein Kinase C δ Regulates the Depletion of Actin at the Immunological Synapse Required for Polarized Exosome Secretion by T Cells. Front Immunol 2019; 10:851. [PMID: 31105694 PMCID: PMC6499072 DOI: 10.3389/fimmu.2019.00851] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/02/2019] [Indexed: 12/02/2022] Open
Abstract
Multivesicular bodies (MVB) are endocytic compartments that enclose intraluminal vesicles (ILVs) formed by inward budding from the limiting membrane of endosomes. In T lymphocytes, ILVs are secreted as Fas ligand-bearing, pro-apoptotic exosomes following T cell receptor (TCR)-induced fusion of MVB with the plasma membrane at the immune synapse (IS). In this study we show that protein kinase C δ (PKCδ), a novel PKC isotype activated by diacylglycerol (DAG), regulates TCR-controlled MVB polarization toward the IS and exosome secretion. Concomitantly, we demonstrate that PKCδ-interfered T lymphocytes are defective in activation-induced cell death. Using a DAG sensor based on the C1 DAG-binding domain of PKCδ and a GFP-PKCδ chimera, we reveal that T lymphocyte activation enhances DAG levels at the MVB endomembranes which mediates the association of PKCδ to MVB. Spatiotemporal reorganization of F-actin at the IS is inhibited in PKCδ-interfered T lymphocytes. Therefore, we propose PKCδ as a DAG effector that regulates the actin reorganization necessary for MVB traffic and exosome secretion.
Collapse
Affiliation(s)
- Gonzalo Herranz
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Pablo Aguilera
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Sergio Dávila
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Alicia Sánchez
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Bianca Stancu
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Jesús Gómez
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - David Fernández-Moreno
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Raúl de Martín
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Mario Quintanilla
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Teresa Fernández
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Pablo Rodríguez-Silvestre
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Laura Márquez-Expósito
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Ana Bello-Gamboa
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Alberto Fraile-Ramos
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Víctor Calvo
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Manuel Izquierdo
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| |
Collapse
|
40
|
Abstract
For over a century, the centrosome has been an organelle more easily tracked than understood, and the study of its peregrinations within the cell remains a chief underpinning of its functional investigation. Increasing attention and new approaches have been brought to bear on mechanisms that control centrosome localization in the context of cleavage plane determination, ciliogenesis, directional migration, and immunological synapse formation, among other cellular and developmental processes. The Golgi complex, often linked with the centrosome, presents a contrasting case of a pleiomorphic organelle for which functional studies advanced somewhat more rapidly than positional tracking. However, Golgi orientation and distribution has emerged as an area of considerable interest with respect to polarized cellular function. This chapter will review our current understanding of the mechanism and significance of the positioning of these organelles.
Collapse
|
41
|
Polarity of CD4+ T cells towards the antigen presenting cell is regulated by the Lck adapter TSAd. Sci Rep 2018; 8:13319. [PMID: 30190583 PMCID: PMC6127336 DOI: 10.1038/s41598-018-31510-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/08/2018] [Indexed: 01/02/2023] Open
Abstract
Polarization of T cells towards the antigen presenting cell (APC) is critically important for appropriate activation and differentiation of the naïve T cell. Here we used imaging flow cytometry (IFC) and show that the activation induced Lck and Itk adapter T cell specific adapter protein (TSAd), encoded by SH2D2A, modulates polarization of T cells towards the APC. Upon exposure to APC presenting the cognate antigen Id, Sh2d2a−/− CD4+ T cells expressing Id-specific transgenic T cell receptor (TCR), displayed impaired polarization of F-actin and TCR to the immunological synapse (IS). Sh2d2a−/− T-cells that did polarize F-actin and TCR still displayed impaired polarization of PKCξ, PAR3 and the microtubule-organizing center (MTOC). In vitro differentiation of activated Sh2d2a−/− T cells was skewed towards an effector memory (Tem) rather than a central memory (Tcm) phenotype. A similar trend was observed for Id-specific TCR Sh2d2a−/− T cells stimulated with APC and cognate antigen. Taken together our data suggest that TSAd modulates differentiation of experienced T cells possibly through polarization of CD4+ T cells towards the APC.
Collapse
|
42
|
Li N, Wang C, Sun S, Zhang C, Lü D, Chen Q, Long M. Microgravity-Induced Alterations of Inflammation-Related Mechanotransduction in Endothelial Cells on Board SJ-10 Satellite. Front Physiol 2018; 9:1025. [PMID: 30108515 PMCID: PMC6079262 DOI: 10.3389/fphys.2018.01025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 07/11/2018] [Indexed: 12/19/2022] Open
Abstract
Endothelial cells (ECs) are mechanosensitive cells undergoing morphological and functional changes in space. Ground-based study has provided a body of evidences about how ECs can respond to the effect of simulated microgravity, however, these results need to be confirmed by spaceflight experiments in real microgravity. In this work, we cultured EA.hy926 ECs on board the SJ-10 Recoverable Scientific Satellite for 3 and 10 days, and analyzed the effects of space microgravity on the ECs. Space microgravity suppressed the glucose metabolism, modulated the expression of cellular adhesive molecules such as ICAM-1, VCAM-1, and CD44, and depressed the pro-angiogenesis and pro-inflammation cytokine secretion. Meanwhile, it also induced the depolymerization of actin filaments and microtubules, promoted the vimentin accumulation, restrained the collagen I and fibronectin deposition, regulated the mechanotransduction through focal adhesion kinase and Rho GTPases, and enhanced the exosome-mediated mRNA transfer. Unlike the effect of simulated microgravity, neither three-dimensional growth nor enhanced nitric oxide production was observed in our experimental settings. This work furthers the understandings in the effects and mechanisms of space microgravity on ECs, and provides useful information for future spaceflight experimental design.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Microgravity - National Microgravity Laboratory, Center of Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengzhi Wang
- Key Laboratory of Microgravity - National Microgravity Laboratory, Center of Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shujin Sun
- Key Laboratory of Microgravity - National Microgravity Laboratory, Center of Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chen Zhang
- Key Laboratory of Microgravity - National Microgravity Laboratory, Center of Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dongyuan Lü
- Key Laboratory of Microgravity - National Microgravity Laboratory, Center of Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qin Chen
- Key Laboratory of Microgravity - National Microgravity Laboratory, Center of Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mian Long
- Key Laboratory of Microgravity - National Microgravity Laboratory, Center of Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
43
|
Calvo V, Izquierdo M. Imaging Polarized Secretory Traffic at the Immune Synapse in Living T Lymphocytes. Front Immunol 2018; 9:684. [PMID: 29681902 PMCID: PMC5897431 DOI: 10.3389/fimmu.2018.00684] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/20/2018] [Indexed: 12/20/2022] Open
Abstract
Immune synapse (IS) formation by T lymphocytes constitutes a crucial event involved in antigen-specific, cellular and humoral immune responses. After IS formation by T lymphocytes and antigen-presenting cells, the convergence of secretory vesicles toward the microtubule-organizing center (MTOC) and MTOC polarization to the IS are involved in polarized secretion at the synaptic cleft. This specialized mechanism appears to specifically provide the immune system with a fine strategy to increase the efficiency of crucial secretory effector functions of T lymphocytes, while minimizing non-specific, cytokine-mediated stimulation of bystander cells, target cell killing and activation-induced cell death. The molecular bases involved in the polarized secretory traffic toward the IS in T lymphocytes have been the focus of interest, thus different models and several imaging strategies have been developed to gain insights into the mechanisms governing directional secretory traffic. In this review, we deal with the most widely used, state-of-the-art approaches to address the molecular mechanisms underlying this crucial, immune secretory response.
Collapse
Affiliation(s)
- Víctor Calvo
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Manuel Izquierdo
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| |
Collapse
|
44
|
Carpier JM, Zucchetti AE, Bataille L, Dogniaux S, Shafaq-Zadah M, Bardin S, Lucchino M, Maurin M, Joannas LD, Magalhaes JG, Johannes L, Galli T, Goud B, Hivroz C. Rab6-dependent retrograde traffic of LAT controls immune synapse formation and T cell activation. J Exp Med 2018; 215:1245-1265. [PMID: 29440364 PMCID: PMC5881459 DOI: 10.1084/jem.20162042] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 11/30/2017] [Accepted: 01/11/2018] [Indexed: 12/24/2022] Open
Abstract
The adapter molecule linker for activation of T cells (LAT) orchestrates the formation of signalosomes upon T cell receptor (TCR) stimulation. LAT is present in different intracellular pools and is dynamically recruited to the immune synapse upon stimulation. However, the intracellular traffic of LAT and its function in T lymphocyte activation are ill defined. We show herein that LAT, once internalized, transits through the Golgi-trans-Golgi network (TGN), where it is repolarized to the immune synapse. This retrograde transport of LAT depends on the small GTPase Rab6 and the target soluble N-ethylmaleimide-sensitive factor attachment protein receptor (t-SNARE) Syntaxin-16, two regulators of the endosome-to-Golgi/TGN retrograde transport. We also show in vitro in Syntaxin-16- or Rab6-silenced human cells and in vivo in CD4+ T lymphocytes of the Rab6 knockout mouse that this retrograde traffic controls TCR stimulation. These results establish that the retrograde traffic of LAT from the plasma membrane to the Golgi-TGN controls the polarized delivery of LAT at the immune synapse and T lymphocyte activation.
Collapse
Affiliation(s)
- Jean-Marie Carpier
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Andres E Zucchetti
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Laurence Bataille
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Stéphanie Dogniaux
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Massiullah Shafaq-Zadah
- Cellular and Chemical Biology of Membranes and Therapeutic Delivery Unit, Institut Curie, Paris Sciences and Lettres Research University, INSERM U1143, CNRS UMR 3666, Paris, France
| | - Sabine Bardin
- Molecular Mechanisms of Intracellular Transport Group, Institut Curie, Paris Sciences and Lettres Research University, CNRS UMR 144, Paris, France
| | - Marco Lucchino
- Cellular and Chemical Biology of Membranes and Therapeutic Delivery Unit, Institut Curie, Paris Sciences and Lettres Research University, INSERM U1143, CNRS UMR 3666, Paris, France
| | - Mathieu Maurin
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Leonel D Joannas
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Joao Gamelas Magalhaes
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Ludger Johannes
- Cellular and Chemical Biology of Membranes and Therapeutic Delivery Unit, Institut Curie, Paris Sciences and Lettres Research University, INSERM U1143, CNRS UMR 3666, Paris, France
| | - Thierry Galli
- Center of Psychiatry and Neurosciences, Membrane Traffic in Health and Diseased Brain, Université Paris Descartes, Sorbonne Paris Cité, INSERM ERL U950, Paris, France
| | - Bruno Goud
- Molecular Mechanisms of Intracellular Transport Group, Institut Curie, Paris Sciences and Lettres Research University, CNRS UMR 144, Paris, France
| | - Claire Hivroz
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| |
Collapse
|
45
|
Yan F, Mo X, Liu J, Ye S, Zeng X, Chen D. Thymic function in the regulation of T cells, and molecular mechanisms underlying the modulation of cytokines and stress signaling (Review). Mol Med Rep 2017; 16:7175-7184. [PMID: 28944829 PMCID: PMC5865843 DOI: 10.3892/mmr.2017.7525] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 05/12/2017] [Indexed: 01/08/2023] Open
Abstract
The thymus is critical in establishing and maintaining the appropriate microenvironment for promoting the development and selection of T cells. The function and structure of the thymus gland has been extensively studied, particularly as the thymus serves an important physiological role in the lymphatic system. Numerous studies have investigated the morphological features of thymic involution. Recently, research attention has increasingly been focused on thymic proteins as targets for drug intervention. Omics approaches have yielded novel insights into the thymus and possible drug targets. The present review addresses the signaling and transcriptional functions of the thymus, including the molecular mechanisms underlying the regulatory functions of T cells and their role in the immune system. In addition, the levels of cytokines secreted in the thymus have a significant effect on thymic functions, including thymocyte migration and development, thymic atrophy and thymic recovery. Furthermore, the regulation and molecular mechanisms of stress-mediated thymic atrophy and involution were investigated, with particular emphasis on thymic function as a potential target for drug development and discovery using proteomics.
Collapse
Affiliation(s)
- Fenggen Yan
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Xiumei Mo
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Junfeng Liu
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Siqi Ye
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Xing Zeng
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Dacan Chen
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
46
|
Hivroz C, Larghi P, Jouve M, Ardouin L. Purification of LAT-Containing Membranes from Resting and Activated T Lymphocytes. Methods Mol Biol 2017; 1584:355-368. [PMID: 28255712 DOI: 10.1007/978-1-4939-6881-7_21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In T lymphocytes, the immune synapse is an active zone of vesicular traffic. Directional transport of vesicular receptors and signaling molecules from or to the immune synapse has been shown to play an important role in T-cell receptor (TCR) signal transduction. However, how vesicular trafficking is regulating the activation of T cells is still a burning question, and the characterization of these intracellular compartments remains the first step to understand this process. We describe herein a protocol, which combines a separation of membranes on flotation gradient with an affinity purification of Strep-tagged fusion transmembrane proteins with Strep-Tactin® resin, allowing the purification of membranes containing the Strep-tagged molecule of interest. By keeping the membranes intact, this protocol leads to the purification of molecules physically associated with the Strep-tagged protein as well as of molecules present in the same membrane compartment: transmembrane proteins, proteins strongly associated with the membranes, and luminal proteins. The example shown herein is the purification of membrane compartment prepared from T lymphocytes expressing LAT fused to a Strep-tag.
Collapse
Affiliation(s)
- Claire Hivroz
- Section Recherche, Institut Curie, INSERM U932, 26 Rue d'Ulm, 75248, Paris, Cedex 05, France
- PSL Research University, Paris, France
- Immunity and Cancer, INSERM U932, Paris, France
| | - Paola Larghi
- University of Milan, Milan, Italy
- Istituto Nazionale Genetica Molecolare 'Romeo ed Enrica Invernizzi', INGM, Milan, Italy
| | - Mabel Jouve
- Section Recherche, Institut Curie, INSERM U932, 26 Rue d'Ulm, 75248, Paris, Cedex 05, France
- PSL Research University, Paris, France
- Immunity and Cancer, INSERM U932, Paris, France
| | - Laurence Ardouin
- Section Recherche, Institut Curie, INSERM U932, 26 Rue d'Ulm, 75248, Paris, Cedex 05, France.
- PSL Research University, Paris, France.
- Immunity and Cancer, INSERM U932, Paris, France.
| |
Collapse
|
47
|
Guillou L, Babataheri A, Saitakis M, Bohineust A, Dogniaux S, Hivroz C, Barakat AI, Husson J. T-lymphocyte passive deformation is controlled by unfolding of membrane surface reservoirs. Mol Biol Cell 2016; 27:3574-3582. [PMID: 27605708 PMCID: PMC5221589 DOI: 10.1091/mbc.e16-06-0414] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/02/2016] [Indexed: 01/03/2023] Open
Abstract
T-lymphocyte passive deformation when squeezing through narrow capillaries is limited by the excess membrane contained in microvilli and membrane folds. During active processes such as transendothelial migration, larger deformations are made possible by an increase in membrane area, possibly through recruitment of internal membrane reservoirs. T-lymphocytes in the human body routinely undergo large deformations, both passively, when going through narrow capillaries, and actively, when transmigrating across endothelial cells or squeezing through tissue. We investigate physical factors that enable and limit such deformations and explore how passive and active deformations may differ. Employing micropipette aspiration to mimic squeezing through narrow capillaries, we find that T-lymphocytes maintain a constant volume while they increase their apparent membrane surface area upon aspiration. Human resting T-lymphocytes, T-lymphoblasts, and the leukemic Jurkat T-cells all exhibit membrane rupture above a critical membrane area expansion that is independent of either micropipette size or aspiration pressure. The unfolded membrane matches the excess membrane contained in microvilli and membrane folds, as determined using scanning electron microscopy. In contrast, during transendothelial migration, a form of active deformation, we find that the membrane surface exceeds by a factor of two the amount of membrane stored in microvilli and folds. These results suggest that internal membrane reservoirs need to be recruited, possibly through exocytosis, for large active deformations to occur.
Collapse
Affiliation(s)
- Lionel Guillou
- Laboratoire d'Hydrodynamique, Ecole Polytechnique, CNRS UMR 7646, 91128 Palaiseau, France
| | - Avin Babataheri
- Laboratoire d'Hydrodynamique, Ecole Polytechnique, CNRS UMR 7646, 91128 Palaiseau, France
| | - Michael Saitakis
- Institut Curie, INSERM U932, PSL Research University, F-75005 Paris, France
| | - Armelle Bohineust
- Institut Curie, INSERM U932, PSL Research University, F-75005 Paris, France.,Institut Pasteur, INSERM U668, Dynamics of Immune Responses Unit, 75015 Paris, France
| | - Stéphanie Dogniaux
- Institut Curie, INSERM U932, PSL Research University, F-75005 Paris, France
| | - Claire Hivroz
- Institut Curie, INSERM U932, PSL Research University, F-75005 Paris, France
| | - Abdul I Barakat
- Laboratoire d'Hydrodynamique, Ecole Polytechnique, CNRS UMR 7646, 91128 Palaiseau, France
| | - Julien Husson
- Laboratoire d'Hydrodynamique, Ecole Polytechnique, CNRS UMR 7646, 91128 Palaiseau, France
| |
Collapse
|
48
|
Janssen E, Tohme M, Hedayat M, Leick M, Kumari S, Ramesh N, Massaad MJ, Ullas S, Azcutia V, Goodnow CC, Randall KL, Qiao Q, Wu H, Al-Herz W, Cox D, Hartwig J, Irvine DJ, Luscinskas FW, Geha RS. A DOCK8-WIP-WASp complex links T cell receptors to the actin cytoskeleton. J Clin Invest 2016; 126:3837-3851. [PMID: 27599296 DOI: 10.1172/jci85774] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 07/28/2016] [Indexed: 11/17/2022] Open
Abstract
Wiskott-Aldrich syndrome (WAS) is associated with mutations in the WAS protein (WASp), which plays a critical role in the initiation of T cell receptor-driven (TCR-driven) actin polymerization. The clinical phenotype of WAS includes susceptibility to infection, allergy, autoimmunity, and malignancy and overlaps with the symptoms of dedicator of cytokinesis 8 (DOCK8) deficiency, suggesting that the 2 syndromes share common pathogenic mechanisms. Here, we demonstrated that the WASp-interacting protein (WIP) bridges DOCK8 to WASp and actin in T cells. We determined that the guanine nucleotide exchange factor activity of DOCK8 is essential for the integrity of the subcortical actin cytoskeleton as well as for TCR-driven WASp activation, F-actin assembly, immune synapse formation, actin foci formation, mechanotransduction, T cell transendothelial migration, and homing to lymph nodes, all of which also depend on WASp. These results indicate that DOCK8 and WASp are in the same signaling pathway that links TCRs to the actin cytoskeleton in TCR-driven actin assembly. Further, they provide an explanation for similarities in the clinical phenotypes of WAS and DOCK8 deficiency.
Collapse
|
49
|
Bustos-Morán E, Blas-Rus N, Martín-Cófreces NB, Sánchez-Madrid F. Orchestrating Lymphocyte Polarity in Cognate Immune Cell-Cell Interactions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:195-261. [PMID: 27692176 DOI: 10.1016/bs.ircmb.2016.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The immune synapse (IS) is a specialized structure established between different immune cells that fulfills several functions, including a role as a communication bridge. This intimate contact between a T cell and an antigen-presenting cell promotes the proliferation and differentiation of lymphocytes involved in the contact. T-cell activation requires the specific triggering of the T-cell receptor (TCR), which promotes the activation of different signaling pathways inducing the polarization of the T cell. During this process, different adhesion and signaling receptors reorganize at specialized membrane domains, concomitantly to the polarization of the tubulin and actin cytoskeletons, forming stable polarization platforms. The centrosome also moves toward the IS, driving the movement of different organelles, such as the biosynthetic, secretory, degrading machinery, and mitochondria, to sustain T-cell activation. A proper orchestration of all these events is essential for T-cell effector functions and the accomplishment of a complete immune response.
Collapse
Affiliation(s)
- Eugenio Bustos-Morán
- Vascular Pathophysiology Area, Spanish National Center of Cardiovascular Research (CNIC), Madrid, Spain
| | - Noelia Blas-Rus
- Department of Immunology, La Princesa Hospital, Autonomus University of Madrid (UAM), Health Research Institute of Princesa Hospital (ISS-IP), Madrid, Spain
| | - Noa Beatriz Martín-Cófreces
- Vascular Pathophysiology Area, Spanish National Center of Cardiovascular Research (CNIC), Madrid, Spain.,Department of Immunology, La Princesa Hospital, Autonomus University of Madrid (UAM), Health Research Institute of Princesa Hospital (ISS-IP), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Vascular Pathophysiology Area, Spanish National Center of Cardiovascular Research (CNIC), Madrid, Spain.,Department of Immunology, La Princesa Hospital, Autonomus University of Madrid (UAM), Health Research Institute of Princesa Hospital (ISS-IP), Madrid, Spain
| |
Collapse
|
50
|
A major secretory defect of tumour-infiltrating T lymphocytes due to galectin impairing LFA-1-mediated synapse completion. Nat Commun 2016; 7:12242. [PMID: 27447355 PMCID: PMC4961845 DOI: 10.1038/ncomms12242] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/15/2016] [Indexed: 12/20/2022] Open
Abstract
Surface galectin has been shown to contribute to dysfunctions of human tumour-infiltrating lymphocytes (TILs). We show here that galectin-covered CD8 TILs produce normal amounts of intracellular cytokines, but fail to secrete them because of defective actin rearrangements at the synapse. The non-secreting TILs also display reduced adhesion to their targets, together with defective LFA-1 recruitment and activation at the synapse. These defects are relieved by releasing surface galectin. As mild LFA-1 blockade on normal blood T cells emulate the defects of galectin-covered TILs, we conclude that galectin prevents the formation of a functional secretory synapse by preventing optimal LFA-1 triggering. Our results highlight a major secretory defect of TILs that is not revealed by widely used intracellular cytokine immunomonitoring assays. They also provide additional insights into the T-cell response, by showing that different thresholds of LFA-1 triggering are required to promote the intracellular production of cytokines and their secretion. Galectin-3 is a sugar-binding protein that can inhibit antitumour cytotoxic immunity. Here the authors show that Galectin-3 expressed by tumour cells inhibits LFA-1 on cytotoxic lymphocytes, impairing immunological synapse formation, IFNg secretion, and target cell killing.
Collapse
|