1
|
Chaves MM. Neutrophils and purinergic signaling: Partners in the crime against Leishmania parasites? Biochimie 2025; 232:43-53. [PMID: 39855456 DOI: 10.1016/j.biochi.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/18/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
The parasite of the genus Leishmania is the causative agent of diseases that affect humans called leishmaniasis. These diseases affect millions of people worldwide and the currently existing drugs are either very toxic or the parasites acquire resistance. Therefore, new elimination mechanisms need to be elucidated so that new therapeutic strategies can be developed. Much has already been discussed about the role of neutrophils in Leishmania infection, and their participation is still controversial. A recent study showed that receptors present in the neutrophil membrane, the purinergic receptors, can control the infection when activated, but the triggering mechanism has not been elucidated. In this review, we will address the possible participation of purinergic receptors expressed in the neutrophil extracellular membrane that may be participating in the detection of Leishmania infection and their possible effects during parasitism.
Collapse
Affiliation(s)
- Mariana M Chaves
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; Bio-Manguinhos, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Saavedra-Almarza J, Malgue F, García-Gómez M, Gouët S, Edwards N, Palma V, Rosemblatt M, Sauma D. Unveiling the role of resident memory T cells in psoriasis. J Leukoc Biol 2025; 117:qiae254. [PMID: 39689031 DOI: 10.1093/jleuko/qiae254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/16/2024] [Indexed: 12/19/2024] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by periods of remission and relapse. In this pathology, keratinocytes, dendritic cells, and different subpopulations of T cells are critical to developing psoriatic lesions. Although current treatments can reduce symptoms, they reappear in previously injured areas months after stopping treatment. Evidence has pointed out that besides T-helper 17 cells, other T-cell subsets may be involved in relapses. This review focuses on the leading evidence linking resident memory T cells and P2X7 receptor to psoriasis' pathogenesis and their role in this pathology. Finally, we discuss some of the most widely used experimental murine models and novel strategies to investigate further the role of resident memory T cells in psoriasis.
Collapse
Affiliation(s)
- Juan Saavedra-Almarza
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Felipe Malgue
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Moira García-Gómez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Solange Gouët
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Natalie Edwards
- Laboratory of Stem Cells and Developmental Biology, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Verónica Palma
- Laboratory of Stem Cells and Developmental Biology, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Mario Rosemblatt
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
- Centro Ciencia & Vida, Av. del Valle Norte 725, Huechuraba, Santiago, Chile
- Faculty of Medicine and Science, Universidad San Sebastián, Lota 2465, Providencia, Santiago, Chile
| | - Daniela Sauma
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
- Centro Ciencia & Vida, Av. del Valle Norte 725, Huechuraba, Santiago, Chile
| |
Collapse
|
3
|
de Carvalho Braga G, Francisco GR, Bagatini MD. Current treatment of Psoriasis triggered by Cytokine Storm and future immunomodulation strategies. J Mol Med (Berl) 2024; 102:1187-1198. [PMID: 39212718 DOI: 10.1007/s00109-024-02481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/14/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Psoriasis is a chronic condition caused by an inflammation mediated mainly by cytokines and T cells. In COVID-19, the same type of imbalance is common, generating the Cytokine Storm and promoting a worsening in the skin conditions of patients with autoimmune disorders, such as Psoriasis. In this context, one of the main mediators of immune responses presented by SARS-CoV-2 infected patients is the Purinergic System. This immunological resource is capable of stimulating the hyperinflammatory state presented by infected individuals, mainly by the activity of the P2X7 receptor, culminating in the Cytokine Storm and consequently in the Psoriasis crisis. Currently, different drugs are used for patients with Psoriasis, such as immunosuppressants and small molecules; however, the safety of these drugs in infected patients has not been analyzed yet. In this context, studies are being developed to evaluate the possible administration of these traditional drugs to COVID-19 patients with Psoriasis crisis. Along with that, researchers must evaluate the potential of administrating P2X7 antagonists to these patients as well, improving both the systemic and the dermatological prognostics of patients, by reducing the Cytokine Storm and its general effects, but also avoiding the provocation of Psoriasis crisis.
Collapse
|
4
|
Zhan ZY, Jiang M, Zhang ZH, An YM, Wang XY, Wu YL, Nan JX, Lian LH. NETs contribute to psoriasiform skin inflammation: A novel therapeutic approach targeting IL-36 cytokines by a small molecule tetrahydroxystilbene glucoside. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155783. [PMID: 38838402 DOI: 10.1016/j.phymed.2024.155783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/09/2024] [Accepted: 05/26/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Psoriasis, a chronic immune-mediated skin disease with pathological features such as aberrant differentiation of keratinocytes, dermal-epidermal inflammation, and angiogenesis. 2,3,5,4'-Tetrahydroxy stilbene 2-Ο-β-d-glucoside (2354Glu) is a natural small molecule polyhydrostilbenes isolated from Polygonum multiglorum Thunb. The regulation of IL-36 subfamily has led to new pharmacologic strategies to reverse psoriasiform dermatitis. PURPOSE Here we investigated the therapeutic potential of 2354Glu and elucidated the underlying mechanism in psoriasis. METHODS The effects of 2354Glu on IL-36 signaling were assessed by psoriasiform in vivo, in vitro and ex vivo model. The in vivo mice model of psoriasis-like skin inflammation was established by applying imiquimod (IMQ), and the in vitro and ex vitro models were established by stimulating mouse primary keratinocyte, human keratinocytes cells (HaCaT) and ex vivo skin tissue isolated from the mice back with Polyinosine-polycytidylic acid (Poly(I:C)), IMQ, IL-36γ and Lipopolysaccharide (LPS) respectively. Moreover, NETs formation was inhibited by Cl-amidine to evaluate the effect of NETs in psoriatic mouse model. The effects of 2354Glu on skin inflammation were assessed by western blot, H&E, immunohistochemistry, immunofluorescence, enzyme-linked immunosorbent assay and real-time quantitative PCR. RESULTS In Poly(I:C)-stimulated keratinocytes, the secretion of IL-36 was inhibited after treatment with 2354Glu, similar to the effects of TLR3, P2X7R and caspase-1 inhibitors. In aldara (imiquimod)-induced mice, 2354Glu (100 and 25 mg/kg) improved immune cell infiltration and hyperkeratosis in psoriasis by directly targeting IL-36 in keratinocytes through P2X7R-caspase-1. When treatment with 2354Glu (25 mg/kg) was insufficient to inhibit IL-36γ, NETs reduced pathological features and IL-36 signaling by interacting with keratinocytes to combat psoriasis like inflammation. CONCLUSION These results indicated that NETs had a beneficial effect on psoriasiform dermatitis. 2354Glu alleviates psoriasis by directly targeting IL-36/P2X7R axis and NET formation, providing a potential candidate for the treatment of psoriasis.
Collapse
Affiliation(s)
- Zi-Ying Zhan
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Min Jiang
- Department of Pharmacology, Binzhou Medical University, Yantai Campus, Yantai, Shandong Province, China
| | - Zhi-Hong Zhang
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Ying-Mei An
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Xiang-Yuan Wang
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Yan-Ling Wu
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Ji-Xing Nan
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Li-Hua Lian
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
5
|
Russo C, Raiden S, Algieri S, Bruera MJ, De Carli N, Sarli M, Cairoli H, De Lillo L, Morales I, Seery V, Otero A, Sananez I, Simaz N, Alfiero G, Rubino G, Moya N, Aedo Portela L, Herrero M, Blanco M, Salcedo Pereira M, Ferrero F, Geffner J, Arruvito L. ATP-P2X7R pathway activation limits the Tfh cell compartment during pediatric RSV infection. Front Immunol 2024; 15:1397098. [PMID: 39044830 PMCID: PMC11263008 DOI: 10.3389/fimmu.2024.1397098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/06/2024] [Indexed: 07/25/2024] Open
Abstract
Background Follicular helper T cells (Tfh) are pivotal in B cell responses. Activation of the purinergic receptor P2X7 on Tfh cells regulates their activity. We investigated the ATP-P2X7R axis in circulating Tfh (cTfh) cells during Respiratory Syncytial Virus (RSV) infection. Methods We analyzed two cohorts: children with RSV infection (moderate, n=30; severe, n=21) and healthy children (n=23). We utilized ELISA to quantify the levels of PreF RSV protein-specific IgG antibodies, IL-21 cytokine, and soluble P2X7R (sP2X7R) in both plasma and nasopharyngeal aspirates (NPA). Additionally, luminometry was employed to determine ATP levels in plasma, NPA and supernatant culture. The frequency of cTfh cells, P2X7R expression, and plasmablasts were assessed by flow cytometry. To evaluate apoptosis, proliferation, and IL-21 production by cTfh cells, we cultured PBMCs in the presence of Bz-ATP and/or P2X7R antagonist (KN-62) and a flow cytometry analysis was performed. Results In children with severe RSV disease, we observed diminished titers of neutralizing anti-PreF IgG antibodies. Additionally, severe infections, compared to moderate cases, were associated with fewer cTfh cells and reduced plasma levels of IL-21. Our investigation revealed dysregulation in the ATP-P2X7R pathway during RSV infection. This was characterized by elevated ATP levels in both plasma and NPA samples, increased expression of P2X7R on cTfh cells, lower levels of sP2X7R, and heightened ATP release from PBMCs upon stimulation, particularly evident in severe cases. Importantly, ATP exposure decreased cTfh proliferative response and IL-21 production, while promoting their apoptosis. The P2X7R antagonist KN-62 mitigated these effects. Furthermore, disease severity positively correlated with ATP levels in plasma and NPA samples and inversely correlated with cTfh frequency. Conclusion Our findings indicate that activation of the ATP-P2X7R pathway during RSV infection may contribute to limiting the cTfh cell compartment by promoting cell death and dysfunction, ultimately leading to increased disease severity.
Collapse
Affiliation(s)
- Constanza Russo
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina, Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Silvina Raiden
- Departamento de Medicina, Hospital General de Niños Pedro de Elizalde, Buenos Aires, Argentina
| | - Silvia Algieri
- Servicio de Pediatría, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - María José Bruera
- Servicio de Pediatría, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Norberto De Carli
- Servicio de Pediatría, Clínica del Niño de Quilmes, Buenos Aires, Argentina
| | - Mariam Sarli
- Servicio de Pediatría, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Héctor Cairoli
- Departamento de Medicina, Hospital General de Niños Pedro de Elizalde, Buenos Aires, Argentina
| | - Leonardo De Lillo
- Departamento de Medicina, Hospital General de Niños Pedro de Elizalde, Buenos Aires, Argentina
| | - Ivanna Morales
- Departamento de Medicina, Hospital General de Niños Pedro de Elizalde, Buenos Aires, Argentina
| | - Vanesa Seery
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina, Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Adrián Otero
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina, Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Inés Sananez
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina, Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Nancy Simaz
- Servicio de Pediatría, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Gisela Alfiero
- Servicio de Pediatría, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Gabriela Rubino
- Servicio de Pediatría, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Néstor Moya
- Servicio de Pediatría, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Luisa Aedo Portela
- Servicio de Pediatría, Clínica del Niño de Quilmes, Buenos Aires, Argentina
| | - Mauro Herrero
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina, Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Marina Blanco
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina, Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | - Fernando Ferrero
- Departamento de Medicina, Hospital General de Niños Pedro de Elizalde, Buenos Aires, Argentina
| | - Jorge Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina, Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Lourdes Arruvito
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina, Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
6
|
Chen L, Lei X, Mahnke K. Adenosine and Its Receptors in the Pathogenesis and Treatment of Inflammatory Skin Diseases. Int J Mol Sci 2024; 25:5810. [PMID: 38891997 PMCID: PMC11172165 DOI: 10.3390/ijms25115810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Inflammatory skin diseases highlight inflammation as a central driver of skin pathologies, involving a multiplicity of mediators and cell types, including immune and non-immune cells. Adenosine, a ubiquitous endogenous immune modulator, generated from adenosine triphosphate (ATP), acts via four G protein-coupled receptors (A1, A2A, A2B, and A3). Given the widespread expression of those receptors and their regulatory effects on multiple immune signaling pathways, targeting adenosine receptors emerges as a compelling strategy for anti-inflammatory intervention. Animal models of psoriasis, contact hypersensitivity (CHS), and other dermatitis have elucidated the involvement of adenosine receptors in the pathogenesis of these conditions. Targeting adenosine receptors is effective in attenuating inflammation and remodeling the epidermal structure, potentially showing synergistic effects with fewer adverse effects when combined with conventional therapies. What is noteworthy are the promising outcomes observed with A2A agonists in animal models and ongoing clinical trials investigating A3 agonists, underscoring a potential therapeutic approach for the management of inflammatory skin disorders.
Collapse
Affiliation(s)
| | | | - Karsten Mahnke
- Department of Dermatology, University Hospital Heidelberg, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany; (L.C.)
| |
Collapse
|
7
|
Pereira MVA, Galvani RG, Gonçalves-Silva T, de Vasconcelo ZFM, Bonomo A. Tissue adaptation of CD4 T lymphocytes in homeostasis and cancer. Front Immunol 2024; 15:1379376. [PMID: 38690280 PMCID: PMC11058666 DOI: 10.3389/fimmu.2024.1379376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
The immune system is traditionally classified as a defense system that can discriminate between self and non-self or dangerous and non-dangerous situations, unleashing a tolerogenic reaction or immune response. These activities are mainly coordinated by the interaction between innate and adaptive cells that act together to eliminate harmful stimuli and keep tissue healthy. However, healthy tissue is not always the end point of an immune response. Much evidence has been accumulated over the years, showing that the immune system has complex, diversified, and integrated functions that converge to maintaining tissue homeostasis, even in the absence of aggression, interacting with the tissue cells and allowing the functional maintenance of that tissue. One of the main cells known for their function in helping the immune response through the production of cytokines is CD4+ T lymphocytes. The cytokines produced by the different subtypes act not only on immune cells but also on tissue cells. Considering that tissues have specific mediators in their architecture, it is plausible that the presence and frequency of CD4+ T lymphocytes of specific subtypes (Th1, Th2, Th17, and others) maintain tissue homeostasis. In situations where homeostasis is disrupted, such as infections, allergies, inflammatory processes, and cancer, local CD4+ T lymphocytes respond to this disruption and, as in the healthy tissue, towards the equilibrium of tissue dynamics. CD4+ T lymphocytes can be manipulated by tumor cells to promote tumor development and metastasis, making them a prognostic factor in various types of cancer. Therefore, understanding the function of tissue-specific CD4+ T lymphocytes is essential in developing new strategies for treating tissue-specific diseases, as occurs in cancer. In this context, this article reviews the evidence for this hypothesis regarding the phenotypes and functions of CD4+ T lymphocytes and compares their contribution to maintaining tissue homeostasis in different organs in a steady state and during tumor progression.
Collapse
Affiliation(s)
- Marina V. A. Pereira
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of High Complexity, Fernandes Figueira National Institute for The Health of Mother, Child, and Adolescent, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Rômulo G. Galvani
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Triciana Gonçalves-Silva
- National Center for Structural Biology and Bioimaging - CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Zilton Farias Meira de Vasconcelo
- Laboratory of High Complexity, Fernandes Figueira National Institute for The Health of Mother, Child, and Adolescent, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Adriana Bonomo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Krajewski PK, Szukała W, Szepietowski JC. The NLRP3 Inflammasome Gene Is Overexpressed in Hidradenitis Suppurativa Lesions: A Preliminary Study on the Role of Pyroptosis in Disease Pathogenesis. Curr Issues Mol Biol 2024; 46:2544-2552. [PMID: 38534777 DOI: 10.3390/cimb46030161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Hidradenitis suppurativa (HS) is a debilitating inflammatory skin disorder, and its pathogenesis remains incompletely understood. This study aimed to investigate the role of the P2X7 receptor (P2X7R) and NLRP3 inflammasome in HS pathogenesis. RNA sequencing and real-time PCR were performed to assess the gene expression levels of P2X7R and NLRP3 in the skin biopsies of HS patients and healthy controls (HC). The results of our study revealed a significantly increased expression of the NLRP3 gene in both the lesional and perilesional skin of HS patients compared to healthy controls. Moreover, the mRNA levels of NLRP3 were significantly higher in lesional skin compared to non-lesional skin in HS patients, indicating the spread of inflammation to adjacent tissues. In contrast, no significant differences in P2X7R gene expression were observed between the three groups. These findings suggest the involvement of NLRP3 inflammasomes in HS pathogenesis, while P2X7R may not play a significant role in the disease. This research sheds light on the complex inflammatory pathways in HS, highlighting the potential of NLRP3 as a therapeutic target. Understanding the molecular mechanisms underlying HS is crucial for the development of targeted treatment modalities for this debilitating condition.
Collapse
Affiliation(s)
- Piotr K Krajewski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chalubinskiego 1, 50-368 Wroclaw, Poland
| | - Weronika Szukała
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, 30-348 Krakow, Poland
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Jacek C Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chalubinskiego 1, 50-368 Wroclaw, Poland
| |
Collapse
|
9
|
Grassi F, Marino R. The P2X7 receptor in mucosal adaptive immunity. Purinergic Signal 2024; 20:9-19. [PMID: 37067746 PMCID: PMC10828151 DOI: 10.1007/s11302-023-09939-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/31/2023] [Indexed: 04/18/2023] Open
Abstract
The P2X7 receptor (P2X7R) is a widely distributed cation channel activated by extracellular ATP (eATP) with exclusive peculiarities with respect to other P2XRs. In recent years, P2X7R has been shown to regulate the adaptive immune response by conditioning T cell signaling and activation as well as polarization, lineage stability, cell death, and function in tissues. Here we revise experimental observations in this field, with a focus on adaptive immunity at mucosal sites, particularly in the gut, where eATP is hypothesized to act in the reciprocal conditioning of the host immune system and commensal microbiota to promote mutualism. The importance of P2X7R activity in the intestine is consistent with the transcriptional upregulation of P2xr7 gene by retinoic acid, a metabolite playing a key role in mucosal immunity. We emphasize the function of the eATP/P2X7R axis in controlling T follicular helper (Tfh) cell in the gut-associated lymphoid tissue (GALT) and, consequently, T-dependent secretory IgA (SIgA), with a focus on high-affinity SIgA-mediated protection from enteropathogens and shaping of a beneficial microbiota for the host.
Collapse
Affiliation(s)
- Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università Della Svizzera Italiana, 6500, Bellinzona, Switzerland.
| | - Rebecca Marino
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università Della Svizzera Italiana, 6500, Bellinzona, Switzerland
| |
Collapse
|
10
|
Gao Y, Gong B, Chen Z, Song J, Xu N, Weng Z. Damage-Associated Molecular Patterns, a Class of Potential Psoriasis Drug Targets. Int J Mol Sci 2024; 25:771. [PMID: 38255845 PMCID: PMC10815563 DOI: 10.3390/ijms25020771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Psoriasis is a chronic skin disorder that involves both innate and adaptive immune responses in its pathogenesis. Local tissue damage is a hallmark feature of psoriasis and other autoimmune diseases. In psoriasis, damage-associated molecular patterns (DAMPs) released by damaged local tissue act as danger signals and trigger inflammatory responses by recruiting and activating immune cells. They also stimulate the release of pro-inflammatory cytokines and chemokines, which exacerbate the inflammatory response and contribute to disease progression. Recent studies have highlighted the role of DAMPs as key regulators of immune responses involved in the initiation and maintenance of psoriatic inflammation. This review summarizes the current understanding of the immune mechanism of psoriasis, focusing on several important DAMPs and their mechanisms of action. We also discussed the potential of DAMPs as diagnostic and therapeutic targets for psoriasis, offering new insights into the development of more effective treatments for this challenging skin disease.
Collapse
Affiliation(s)
| | | | | | | | - Na Xu
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Y.G.); (B.G.); (Z.C.); (J.S.)
| | - Zhuangfeng Weng
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Y.G.); (B.G.); (Z.C.); (J.S.)
| |
Collapse
|
11
|
Amalia SN, Baral H, Fujiwara C, Uchiyama A, Inoue Y, Yamazaki S, Ishikawa M, Kosaka K, Sekiguchi A, Yokoyama Y, Ogino S, Torii R, Hosoi M, Shibasaki K, Motegi SI. TRPV4 Regulates the Development of Psoriasis by Controlling Adenosine Triphosphate Expression in Keratinocytes and the Neuroimmune System. J Invest Dermatol 2023; 143:2356-2365.e5. [PMID: 37263487 DOI: 10.1016/j.jid.2023.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 06/03/2023]
Abstract
TRPV4 is a calcium ion channel that is widely expressed in various cells. It is also involved in physiological and pathological processes. However, the role of TRPV4 in psoriasis remains unknown. We aimed to investigate the role of TRPV4 in psoriasis using human psoriasis skin samples and an imiquimod-induced psoriasis-like mouse model. Keratinocytes in human psoriasis skin had high TRPV4 expression. Trpv4-knockout mice had less severe dermatitis than wild-type mice in the imiquimod-induced mouse model. Knockout mice had significantly reduced epidermal thickness and a low number of infiltrated CD3+ T cells and CD68+ macrophages on the basis of histopathological studies and decreased mRNA expression of Il17a, Il17f, and Il23, as detected through qPCR. Furthermore, knockout mice had a significantly low expression of neuropeptides and the neuron marker PGP9.5. Adenosine triphosphate release was significantly suppressed by TRPV4 knockdown in both human and mouse keratinocytes in vitro. Finally, treatment with TRPV4 antagonist was significantly effective in preventing the progression of psoriasis-like dermatitis. In conclusion, TRPV4 mediates the expression of keratinocyte-derived adenosine triphosphate and increases the secretion of neuropeptides, resulting in the activation and amplification of IL-23/Th17 responses. Hence, TRPV4 can serve as a novel therapeutic target in psoriasis.
Collapse
Affiliation(s)
- Syahla Nisaa Amalia
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hritu Baral
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Chisako Fujiwara
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akihiko Uchiyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | - Yuta Inoue
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sahori Yamazaki
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Mai Ishikawa
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Keiji Kosaka
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akiko Sekiguchi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoko Yokoyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sachiko Ogino
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ryoko Torii
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Mari Hosoi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Koji Shibasaki
- Laboratory of Neurochemistry, Graduate School of Human Health Science, University of Nagasaki, Nagasaki, Japan
| | - Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
12
|
Sainz RM, Rodriguez-Quintero JH, Maldifassi MC, Stiles BM, Wennerberg E. Tumour immune escape via P2X7 receptor signalling. Front Immunol 2023; 14:1287310. [PMID: 38022596 PMCID: PMC10643160 DOI: 10.3389/fimmu.2023.1287310] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
While P2X7 receptor expression on tumour cells has been characterized as a promotor of cancer growth and metastasis, its expression by the host immune system is central for orchestration of both innate and adaptive immune responses against cancer. The role of P2X7R in anti-tumour immunity is complex and preclinical studies have described opposing roles of the P2X7R in regulating immune responses against tumours. Therefore, few P2X7R modulators have reached clinical testing in cancer patients. Here, we review the prognostic value of P2X7R in cancer, how P2X7R have been targeted to date in tumour models, and we discuss four aspects of how tumours skew immune responses to promote immune escape via the P2X7R; non-pore functional P2X7Rs, mono-ADP-ribosyltransferases, ectonucleotidases, and immunoregulatory cells. Lastly, we discuss alternative approaches to offset tumour immune escape via P2X7R to enhance immunotherapeutic strategies in cancer patients.
Collapse
Affiliation(s)
- Ricardo M. Sainz
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Jorge Humberto Rodriguez-Quintero
- Department of Cardiovascular and Thoracic Surgery, Albert Einstein College of Medicine, Montefiore Health System, Bronx, NY, United States
| | - Maria Constanza Maldifassi
- Department of Cardiovascular and Thoracic Surgery, Albert Einstein College of Medicine, Montefiore Health System, Bronx, NY, United States
| | - Brendon M. Stiles
- Department of Cardiovascular and Thoracic Surgery, Albert Einstein College of Medicine, Montefiore Health System, Bronx, NY, United States
| | - Erik Wennerberg
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
13
|
de Silva TA, Apte S, Voisey J, Spann K, Tan M, Divithotawela C, Chambers D, O’Sullivan B. Single-Cell Profiling of Cells in the Lung of a Patient with Chronic Hypersensitivity Pneumonitis Reveals Inflammatory Niche with Abundant CD39+ T Cells with Functional ATPase Phenotype: A Case Study. Int J Mol Sci 2023; 24:14442. [PMID: 37833889 PMCID: PMC10572861 DOI: 10.3390/ijms241914442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
This study investigated immune cell characteristics in chronic hypersensitivity pneumonitis (HP), focusing on CD39-expressing cells' impact on inflammation and tissue remodelling. Lung tissue from an HP patient was analysed using single-cell transcriptomics, flow cytometry, and gene expression profiling. The tissue revealed diverse cell types like macrophages, T cells, fibroblasts, and regulatory T cells (Tregs). CD39-expressing Tregs exhibited heightened ATP hydrolysis capacity and regulatory gene expression. CD39hi cells displayed markers of both Tregs and proinflammatory Th17 cells, suggesting transitional properties. Communication networks involving molecules like SPP1, collagen, CSF1, and IL-1β were identified, hinting at interactions between cell types in HP pathogenesis. This research provides insights into the immune response and cell interactions in chronic HP. CD39-expressing cells dual nature as Tregs and Th17 cells suggests a role in modulating lung inflammation, potentially affecting disease progression. These findings lay the groundwork for further research, underscoring CD39-expressing cells as potential therapeutic targets in HP.
Collapse
Affiliation(s)
- Tharushi Ayanthika de Silva
- Centre for Genomics and Personalised Health, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4000, Australia
| | - Simon Apte
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4000, Australia
- Facility of Clinical Medicine, The University of Queensland, Brisbane, QLD 4000, Australia
| | - Joanne Voisey
- Centre for Genomics and Personalised Health, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Kirsten Spann
- Centre for Immunology and Infection Control, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Maxine Tan
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4000, Australia
- Facility of Clinical Medicine, The University of Queensland, Brisbane, QLD 4000, Australia
| | - Chandima Divithotawela
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4000, Australia
| | - Daniel Chambers
- Centre for Genomics and Personalised Health, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4000, Australia
- Facility of Clinical Medicine, The University of Queensland, Brisbane, QLD 4000, Australia
| | - Brendan O’Sullivan
- Centre for Genomics and Personalised Health, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4000, Australia
- Facility of Clinical Medicine, The University of Queensland, Brisbane, QLD 4000, Australia
| |
Collapse
|
14
|
Grassi F, Salina G. The P2X7 Receptor in Autoimmunity. Int J Mol Sci 2023; 24:14116. [PMID: 37762419 PMCID: PMC10531565 DOI: 10.3390/ijms241814116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The P2X7 receptor (P2X7R) is an ATP-gated nonselective cationic channel that, upon intense stimulation, can progress to the opening of a pore permeable to molecules up to 900 Da. Apart from its broad expression in cells of the innate and adaptive immune systems, it is expressed in multiple cell types in different tissues. The dual gating property of P2X7R is instrumental in determining cellular responses, which depend on the expression level of the receptor, timing of stimulation, and microenvironmental cues, thus often complicating the interpretation of experimental data in comprehensive settings. Here we review the existing literature on P2X7R activity in autoimmunity, pinpointing the different functions in cells involved in the immunopathological processes that can make it difficult to model as a druggable target.
Collapse
Affiliation(s)
- Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland;
| | | |
Collapse
|
15
|
Peng X, Zhang Y, Bai X, Li X, Zhao R. Phasic regulation of the ATP/P2X7 receptor signaling pathway affects the function of antigen-presenting cells in experimental autoimmune uveitis. Int Immunopharmacol 2023; 119:110241. [PMID: 37141671 DOI: 10.1016/j.intimp.2023.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 05/06/2023]
Abstract
Purinergic ligand-gated ion channel 7 receptor (P2X7R) is a purine type P2 receptor that is expressed on a variety of immune cells. Recent studies have shown that P2X7R signaling is required to trigger an immune response, and P2X7R antagonist-oxidized ATP (oxATP) effectively blocks P2X7R activation. In this study, we investigated the effect of phasic regulation of the ATP/P2X7R signaling pathway on antigen-presenting cells (APCs) by constructing an experimental autoimmune uveitis (EAU) disease model. Our results demonstrated that APCs isolated from the 1st, 4th, 7th and 11th days of EAU presented antigen function and could stimulate the differentiation of naive T cells. Moreover, after stimulation by ATP and BzATP (a P2X7R agonist), antigen presentation, promoting differentiation and inflammation were enhanced. The regulation of the Th17 cell response was significantly stronger than that of the Th1 cell response. In addition, we verified that oxATP blocked the P2X7R signaling pathway on APCs, attenuated the effect of BzATP, and significantly improved the adoptive transfer EAU induced by antigen-specific T cells cocultured with APCs. Our results demonstrated that at an early stage of EAU, the ATP/P2X7R signaling pathway regulation of APCs was time dependent, and the treatment of EAU could be achieved by intervening in P2X7R function on APCs.
Collapse
Affiliation(s)
- Xiaoxiang Peng
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China; Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Yunfang Zhang
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China; Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Xue Bai
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China; Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Xinyu Li
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China; Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Ronglan Zhao
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China; Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, Shandong, China.
| |
Collapse
|
16
|
MicroRNA: Crucial modulator in purinergic signalling involved diseases. Purinergic Signal 2023; 19:329-341. [PMID: 35106737 PMCID: PMC9984628 DOI: 10.1007/s11302-022-09840-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022] Open
Abstract
Both microRNAs (miRNAs) and purinergic signalling are widely and respectively expressed in various tissues of different organisms and play vital roles in a variety of physiological and pathological processes. Here, we reviewed the current publications contributed to the relationship of miRNAs and purinergic signalling in cardiovascular diseases, gastrointestinal diseases, neurological diseases, and ophthalmic diseases. We tried to decode the miRNAs-purinergic signalling network of purinergic signalling involved diseases. The evidence indicated that more than 30 miRNAs (miR-22, miR-30, miR-146, miR-150, miR-155, miR-187, etc.) directly or indirectly modulate P1 receptors (A1, A2A, A2B, A3), P2 receptors (P2X1, P2X3, P2X4, P2X7, P2Y2, P2Y6, P2Y12), and ecto-enzymes (CD39, CD73, ADA2); P2X7 and CD73 could be modulated by multiple miRNAs (P2X7: miR-21, miR-22, miR-30, miR-135a, miR-150, miR-186, miR-187, miR-216b; CD73: miR-141, miR-101, miR-193b, miR-340, miR-187, miR-30, miR-422a); miR-187 would be the common miRNA to modulate P2X7 and CD73.
Collapse
|
17
|
Chen Y, Griffiths CEM, Bulfone-Paus S. Exploring Mast Cell-CD8 T Cell Interactions in Inflammatory Skin Diseases. Int J Mol Sci 2023; 24:1564. [PMID: 36675078 PMCID: PMC9861959 DOI: 10.3390/ijms24021564] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
The skin is exposed to environmental challenges and contains skin-resident immune cells, including mast cells (MCs) and CD8 T cells that act as sentinels for pathogens and environmental antigens. Human skin MCs and their mediators participate in the maintenance of tissue homeostasis and regulate the recruitment and activity of immune cells involved in the pathogenesis of skin diseases. The cutaneous CD8 T cell compartment is comprised of long-persisting resident memory T cells (TRM) and migratory or recirculating cells; both populations provide durable site immune surveillance. Several lines of evidence indicate that MC-derived products, such as CCL5 and TNF-α, modulate the migration and function of CD8 T cells. Conversely, activated CD8 T cells induce the upregulation of MC costimulatory molecules. Moreover, the close apposition of MCs and CD8 T cells has been recently identified in the skin of several dermatoses, such as alopecia areata. This review outlines the current knowledge about bidirectional interactions between human MCs and CD8 T cells, analyses the alteration of their communication in the context of three common skin disorders in which these cells have been found altered in number or function-psoriasis, atopic dermatitis, and vitiligo-and discusses the current unanswered questions.
Collapse
Affiliation(s)
| | | | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, Dermatology Research Centre, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
18
|
Yousefzadeh Y, Soltani-Zangbar MS, Kalafi L, Tarbiat A, Shahmohammadi Farid S, Aghebati-Maleki L, Parhizkar F, Danaii S, Taghavi S, Jadidi-Niaragh F, Samadi Kafil H, Mahmoodpoor A, Ahmadian Heris J, Hojjat-Farsangi M, Yousefi M. Evaluation of CD39, CD73, HIF-1α, and their related miRNAs expression in decidua of preeclampsia cases compared to healthy pregnant women. Mol Biol Rep 2022; 49:10183-10193. [PMID: 36048381 DOI: 10.1007/s11033-022-07887-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The Preeclampsia (PE) molecular mechanisms are not fully revealed and different biological processes are involved in the pathogenesis of PE. We aimed to evaluate adenosine and hypoxia-related signaling molecules in PE patients in the current study. METHODS Decidua tissue and peripheral blood samples were taken from 25 healthy pregnant and 25 PE women at delivery time. CD39, CD73, and Hypoxia-inducible factor-alpha (HIF-α) were evaluated in mRNA and protein level using real-time PCR and western blotting techniques, respectively. Also, miR-30a, miR-206, and miR-18a expression were evaluated by real-time PCR. At last, secretion levels of IGF and TGF-β in the taken serum of blood samples were measured by ELISA. RESULTS Our results revealed that Expression of CD39 is decreased in PE cases versus healthy controls at mRNA and protein levels (p = 0.0003 for both). CD73 and HIF-α showed an increased level of expression in PE patients at RNA and protein status (p = 0.0157 and p < 0.0001 for protein evaluation of CD73 and HIF-α, respectively). The miRNA-30a (p = 0.0037) and miR-206 (p = 0.0113) showed elevated expression in the decidua of the PE group. The concentration of secreted IGF-1 (p = 0.0002) and TGF-β (p = 0.0101) in serum samples of PE cases compared to the healthy group were decreased. CONCLUSION In conclusion, our results showed that aberrant expression of molecules that are involved in ATP catabolism and the hypoxic conditions is observed in PE cases and involved in their hypertension and inflammation could be served as PE prognosis by more confirming in comprehensive future studies. miR-206 and miR-30a play a role by regulating CD39 and CD73 as molecules that are involved in ATP catabolism as well as regulating the production of IGF-1 in the process of hypertension, which is the main feature in patients with preeclampsia. On the other hand, decreased level of miR-18a lead to upregulation of HIF-1a, and the consequence condition of hypoxia increases hypertension and inflammation in these patients.
Collapse
Affiliation(s)
- Yousef Yousefzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Mohammad Sadegh Soltani-Zangbar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Ladan Kalafi
- Gynecology Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Tarbiat
- Department of Cardiology, Medical Faculty, Urmia University of Medical Sciences, Urmia, Iran
| | - Sima Shahmohammadi Farid
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | | | - Forough Parhizkar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART Center, Eastern Azerbaijan Branch of ACECR, Tabriz, Iran
| | - Simin Taghavi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran.
| |
Collapse
|
19
|
Arneth B. The roles of nucleotide signaling and platelets in inflammation. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:910-941. [PMID: 35727041 DOI: 10.1080/15257770.2022.2085295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/23/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Nucleotides and platelets have been associated with a wide range of activities that affect the host inflammatory response. The main goal of this study is to examine the roles of nucleotide signaling and platelets in inflammation. The study analysis entailed conducting a systematic search to identify relevant articles in PsycINFO, PubMed, Web of Science, and CINAHL. The evidence gathered from the identified articles shows the roles of nucleotides and platelets in inflammation. In the extracellular environment, nucleotides act as signaling molecules that can activate nucleotide receptors to promote inflammation. Inflammation is an essential process through which the innate immune system responds to pathogens, microbes, and damage-associated molecular patterns. Moreover, research evidence shows that the mechanisms through which platelets affect inflammatory responses and regulate hemostasis are the same. The roles of nucleotides and platelets in inflammation have been explored in several studies worldwide. Although platelets and nucleotides have unique structures, both of them influence the host response to pathogens and tumors. Analysis of platelets and nucleotides will offer valuable insight for the development of new treatments for infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Borros Arneth
- Institute for Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the University of Giessen and Marburg (UKGM), Justus Liebig University, Giessen, Germany
| |
Collapse
|
20
|
Russo C, Raiden S, Algieri S, De Carli N, Davenport C, Sarli M, Bruera MJ, Seery V, Sananez I, Simaz N, Bayle C, Nivela V, Ferrero F, Geffner J, Arruvito L. Extracellular ATP and Imbalance of CD4+ T Cell Compartment in Pediatric COVID-19. Front Cell Infect Microbiol 2022; 12:893044. [PMID: 35663467 PMCID: PMC9157541 DOI: 10.3389/fcimb.2022.893044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
Severe COVID-19 in children is rare, but the reasons underlying are unclear. Profound alterations in T cell responses have been well characterized in the course of adult severe COVID-19, but little is known about the T cell function in children with COVID-19. Here, we made three major observations in a cohort of symptomatic children with acute COVID-19: 1) a reduced frequency of circulating FoxP3+ regulatory T cells, 2) the prevalence of a TH17 polarizing microenvironment characterized by high plasma levels of IL-6, IL-23, and IL17A, and an increased frequency of CD4+ T cells expressing ROR-γt, the master regulator of TH17 development, and 3) high plasma levels of ATP together with an increased expression of the P2X7 receptor. Moreover, that plasma levels of ATP displayed an inverse correlation with the frequency of regulatory T cells but a positive correlation with the frequency of CD4+ T cells positive for the expression of ROR-γt. Collectively, our data indicate an imbalance in CD4+ T cell profiles during pediatric COVID-19 that might favor the course of inflammatory processes. This finding also suggests a possible role for the extracellular ATP in the acquisition of an inflammatory signature by the T cell compartment offering a novel understanding of the involved mechanisms.
Collapse
Affiliation(s)
- Constanza Russo
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina, Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvina Raiden
- Departamento de Medicina, Hospital General de Niños Pedro de Elizalde, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvia Algieri
- Servicio de Pediatría, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Norberto De Carli
- Servicio de Pediatría Clínica del Niño de Quilmes, Buenos Aires, Argentina
| | - Carolina Davenport
- Departamento de Medicina, Hospital General de Niños Pedro de Elizalde, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariam Sarli
- Unidad de Terapia Intensiva Pediátrica, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - María José Bruera
- Unidad de Terapia Intensiva Pediátrica, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Vanesa Seery
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina, Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Inés Sananez
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina, Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Nancy Simaz
- Servicio de Pediatría, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Carola Bayle
- Departamento de Emergencias Pediátrica, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Valeria Nivela
- Departamento de Emergencias Pediátrica, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Fernando Ferrero
- Departamento de Medicina, Hospital General de Niños Pedro de Elizalde, Ciudad Autónoma de Buenos Aires, Argentina
| | - Jorge Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina, Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lourdes Arruvito
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina, Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
21
|
Raggi F, Rossi C, Faita F, Distaso M, Kusmic C, Solini A. P2X7 Receptor and Heart Function in a Mouse Model of Systemic Inflammation Due to High Fat Diet. J Inflamm Res 2022; 15:2425-2439. [PMID: 35444452 PMCID: PMC9015053 DOI: 10.2147/jir.s356038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/09/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Low-grade inflammation contributes to heart failure in obesity or type 2 diabetes mellitus. The P2X7 receptor (P2X7R) is a key regulator of several pro-inflammatory responses in multiple tissues and organs; however, its involvement in the onset of heart dysfunction remains unclear. The study evaluated the role of P2X7R as a cardiac function regulator in C57BL/6J wild-type (WT) and P2X7R knockout (KO) mice by inducing systemic inflammation with high fat diet (HFD). Methods Specific parameters of systolic and diastolic function and heart morphology were measured in vivo before animal sacrifice by high-frequency ultrasonographic analysis. Gene and protein expression of cardiac biomarkers associated with inflammatory-oxidative pathways were evaluated by real-time PCR and Western Blotting. Results P2X7R-mediated up-regulation of the NLRP3-caspase-1 complex, increased expression of key oxidative stress (NOS-2, TNFα), and chemotactic (MCP-1) mediators were revealed in WT-HFD animals. In KO-HFD mice, such inflammatory-oxidative pathway was silent. Nevertheless, HFD induced in vivo a clear alteration of diastolic pattern (E/A: p < 0.03 vs WT-HFD) and a cardiac morphologic remodelling (left ventricular mass: p < 0.05 vs WT-HFD) only in P2X7R KO animals. Surprisingly, the transcriptional and protein expression of IL-1β and IL-6, usually regulated through P2X7R activation, were significantly higher in KO-HFD than in WT-HFD mice (both p < 0.05). Furthermore, an up-regulation of miR-214 and a down-regulation of miR-126 in heart of HFD-KO mice were observed, suggesting a link between such epigenetic dysregulation and cytokine overexpression as a potential pathophysiologic mechanism concurring to the progressive cardiac dysfunction. Conclusion These findings seem to suggest a cardioprotective role of P2X7R toward this tissue-specific inflammatory damage, likely through tissue homeostasis and organ functionality preservation.
Collapse
Affiliation(s)
- Francesco Raggi
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Chiara Rossi
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Francesco Faita
- Institute of Clinical Physiology, Italian National Research Council, Pisa, Italy
| | - Mariarosaria Distaso
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Claudia Kusmic
- Institute of Clinical Physiology, Italian National Research Council, Pisa, Italy
| | - Anna Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| |
Collapse
|
22
|
Yang Y, Story ME, Hao X, Sumpter TL, Mathers AR. P2X7 Receptor Expression and Signaling on Dendritic Cells and CD4 + T Cells is Not Required but Can Enhance Th17 Differentiation. Front Cell Dev Biol 2022; 10:687659. [PMID: 35350380 PMCID: PMC8957928 DOI: 10.3389/fcell.2022.687659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
The purinergic receptor P2X7 (P2X7R) is important in inflammasome activation and generally considered to favor proinflammatory immune responses. However, there is still a limited understanding of the role of P2X7R signaling in Th cell differentiation, particularly, Th17 differentiation. Herein, the impact of P2X7R signaling on primary Th17 and Th1 cell responses was examined when P2X7R was expressed specifically on dendritic cells (DCs) and CD4+ T cells. Surprisingly, global genetic ablation and pharmacological inhibition of the P2X7R did not affect the generation of Th17 and Th1 development in response to immunization with Complete Freund's Adjuvant and the model antigens, keyhole limpet hemocyanin or OVA. However, in-depth in vitro and in vivo investigations revealed differences in the balance of Th1/Th17 differentiation when P2X7R blockade was restricted to either DCs or CD4+ T cells. In this regard, in vitro DCs treated with a P2X7R agonist released more IL-6 and IL-1β and induced a more robust Th17 response in mixed leukocyte reactions when compared to controls. To test the hypothesis that P2X7R signaling specifically in DCs enhances Th17 responses in vivo, DC-specific P2X7R deficient chimeras were immunized with CFA and OVA. In this model, the P2X7R expression on DCs decreased the Th1 response without impacting Th17 responses. Following an assessment of CD4+ T cell P2X7R signaling, it was determined that in vitro P2X7R sufficient T cells develop an increased Th17 and suppressed Th1 differentiation profile. In vivo, P2X7R expression on CD4+ T cells had no effect on Th17 differentiation but likewise significantly suppressed the Th1 response, thereby skewing the immune balance. Interestingly, it appears that WT OT-II Th1 cells are more sensitive to P2X7R-induced cell death as evidence by a decrease in cell number and an increase in T cell death. Overall, these studies indicate that in vitro P2X7R signaling does enhances Th17 responses, which suggests that compensatory Th17 differentiation mechanisms are utilized in vivo in the absence of P2X7R signaling.
Collapse
Affiliation(s)
- Yin Yang
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Meaghan E. Story
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Xingxing Hao
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Tina L. Sumpter
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Alicia R. Mathers
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
23
|
Hamoudi C, Zhao C, Abderrazak A, Salem M, Fortin PR, Sévigny J, Aoudjit F. The Purinergic Receptor P2X4 Promotes Th17 Activation and the Development of Arthritis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1115-1127. [PMID: 35165166 DOI: 10.4049/jimmunol.2100550] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/28/2021] [Indexed: 01/24/2023]
Abstract
Purinergic signaling plays a major role in T cell activation leading to IL-2 production and proliferation. However, it is unclear whether purinergic signaling contributes to the differentiation and activation of effector T cells. In this study, we found that the purinergic receptor P2X4 was associated with human Th17 cells but not with Th1 cells. Inhibition of P2X4 receptor with the specific antagonist 5-BDBD and small interfering RNA inhibited the development of Th17 cells and the production of IL-17 by effector Th17 cells stimulated via the CD3/CD28 pathway. Our results showed that P2X4 was required for the expression of retinoic acid-related orphan receptor C, which is the master regulator of Th17 cells. In contrast, inhibition of P2X4 receptor had no effect on Th1 cells and on the production of IFN-γ and it did not affect the expression of the transcription factor T-bet (T-box transcription factor). Furthermore, inhibition of P2X4 receptor reduced the production of IL-17 but not of IFN-γ by effector/memory CD4+ T cells isolated from patients with rheumatoid arthritis. In contrast to P2X4, inhibition of P2X7 and P2Y11 receptors had no effects on Th17 and Th1 cell activation. Finally, treatment with the P2X4 receptor antagonist 5-BDBD reduced the severity of collagen-induced arthritis in mice by inhibiting Th17 cell expansion and activation. Our findings provide novel insights into the role of purinergic signaling in T cell activation and identify a critical role for the purinergic receptor P2X4 in Th17 activation and in autoimmune arthritis.
Collapse
Affiliation(s)
- Chakib Hamoudi
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada.,ARThrite Center, Laval University, Quebec City, Quebec, Canada
| | - Chenqi Zhao
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada.,ARThrite Center, Laval University, Quebec City, Quebec, Canada
| | - Amna Abderrazak
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada
| | - Mabrouka Salem
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada.,ARThrite Center, Laval University, Quebec City, Quebec, Canada
| | - Paul R Fortin
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada.,ARThrite Center, Laval University, Quebec City, Quebec, Canada.,Department of Medicine, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - Jean Sévigny
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada.,ARThrite Center, Laval University, Quebec City, Quebec, Canada.,Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Fawzi Aoudjit
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada; .,ARThrite Center, Laval University, Quebec City, Quebec, Canada.,Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
24
|
Rotondo JC, Mazziotta C, Lanzillotti C, Stefani C, Badiale G, Campione G, Martini F, Tognon M. The Role of Purinergic P2X7 Receptor in Inflammation and Cancer: Novel Molecular Insights and Clinical Applications. Cancers (Basel) 2022; 14:1116. [PMID: 35267424 PMCID: PMC8909580 DOI: 10.3390/cancers14051116] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022] Open
Abstract
The purinergic P2X7 receptor (P2X7R) is a transmembrane protein whose expression has been related to a variety of cellular processes, while its dysregulation has been linked to inflammation and cancer. P2X7R is expressed in cancer and immune system cell surfaces. ATP plays a key role in numerous metabolic processes due to its abundance in the tumour microenvironment. P2X7R plays an important role in cancer by interacting with ATP. The unusual property of P2X7R is that stimulation with low doses of ATP causes the opening of a permeable channel for sodium, potassium, and calcium ions, whereas sustained stimulation with high doses of ATP favours the formation of a non-selective pore. The latter effect induces a change in intracellular homeostasis that leads to cell death. This evidence suggests that P2X7R has both pro- and anti-tumour proprieties. P2X7R is increasingly recognised as a regulator of inflammation. In this review, we aimed to describe the most relevant characteristics of P2X7R function, activation, and its ligands, while also summarising the role of P2X7R activation in the context of inflammation and cancer. The currently used therapeutic approaches and clinical trials of P2X7R modulators are also described.
Collapse
Affiliation(s)
- John Charles Rotondo
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (C.M.); (C.L.); (C.S.); (G.B.); (G.C.); (F.M.)
- Centre for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Chiara Mazziotta
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (C.M.); (C.L.); (C.S.); (G.B.); (G.C.); (F.M.)
- Centre for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Carmen Lanzillotti
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (C.M.); (C.L.); (C.S.); (G.B.); (G.C.); (F.M.)
- Centre for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Chiara Stefani
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (C.M.); (C.L.); (C.S.); (G.B.); (G.C.); (F.M.)
| | - Giada Badiale
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (C.M.); (C.L.); (C.S.); (G.B.); (G.C.); (F.M.)
| | - Giulia Campione
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (C.M.); (C.L.); (C.S.); (G.B.); (G.C.); (F.M.)
| | - Fernanda Martini
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (C.M.); (C.L.); (C.S.); (G.B.); (G.C.); (F.M.)
- Centre for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Mauro Tognon
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (C.M.); (C.L.); (C.S.); (G.B.); (G.C.); (F.M.)
| |
Collapse
|
25
|
Ferrari D, Casciano F, Secchiero P, Reali E. Purinergic Signaling and Inflammasome Activation in Psoriasis Pathogenesis. Int J Mol Sci 2021; 22:ijms22179449. [PMID: 34502368 PMCID: PMC8430580 DOI: 10.3390/ijms22179449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a chronic inflammatory disease of the skin associated with systemic and joint manifestations and accompanied by comorbidities, such as metabolic syndrome and increased risk of cardiovascular disease. Psoriasis has a strong genetic basis, but exacerbation requires additional signals that are still largely unknown. The clinical manifestations involve the interplay between dendritic and T cells in the dermis to generate a self-sustaining inflammatory loop around the TNFα/IL-23/IL-17 axis that forms the psoriatic plaque. In addition, in recent years, a critical role of keratinocytes in establishing the interplay that leads to psoriatic plaques’ formation has re-emerged. In this review, we analyze the most recent evidence of the role of keratinocytes and danger associates molecular patterns, such as extracellular ATP in the generation of psoriatic skin lesions. Particular attention will be given to purinergic signaling in inflammasome activation and in the initiation of psoriasis. In this phase, keratinocytes’ inflammasome may trigger early inflammatory pathways involving IL-1β production, to elicit the subsequent cascade of events that leads to dendritic and T cell activation. Since psoriasis is likely triggered by skin-damaging events and trauma, we can envisage that intracellular ATP, released by damaged cells, may play a role in triggering the inflammatory response underlying the pathogenesis of the disease by activating the inflammasome. Therefore, purinergic signaling in the skin could represent a new and early step of psoriasis; thus, opening the possibility to target single molecular actors of the purinome to develop new psoriasis treatments.
Collapse
Affiliation(s)
- Davide Ferrari
- Department of Life Science and Biotechnology, Section of Microbiology and Applied Pathology, University of Ferrara, 44121 Ferrara, Italy;
| | - Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (P.S.)
- Interdepartmental Research Center for the Study of Multiple Sclerosis and Inflammatory and Degenerative Diseases of the Nervous System, University of Ferrara, 44121 Ferrara, Italy
| | - Paola Secchiero
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (P.S.)
| | - Eva Reali
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
- Correspondence:
| |
Collapse
|
26
|
Krajewski PK, Szukała W, Lichawska-Cieślar A, Matusiak Ł, Jura J, Szepietowski JC. MCPIP1/Regnase-1 Expression in Keratinocytes of Patients with Hidradenitis Suppurativa: Preliminary Results. Int J Mol Sci 2021; 22:ijms22147241. [PMID: 34298861 PMCID: PMC8307415 DOI: 10.3390/ijms22147241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 11/16/2022] Open
Abstract
The pathogenesis of hidradenitis suppurativa (HS) is yet to be fully understood. However, inflammation is a key element in the development of skin lesions. The aim of this study was to evaluate the expression of monocyte chemotactic protein-1-induced protein-1 (MCPIP1) in the skin of patients suffering from HS. Skin biopsies of 15 patients with HS and 15 healthy controls were obtained and processed for immunohistochemistry, western blot, and real time PCR. The highest mean MCPIP1 mRNA expression was found in the inflammatory lesional skin of HS patients. It was significantly higher than MCPIP1 mRNA expression in the biopsies from both healthy controls and non-lesional skin of HS patients. Western blot analysis indicated that expression of MCPIP1 was elevated within both lesional and non-lesional skin compared to the healthy control. The increased MCPIP1 mRNA and protein expression level in HS lesions may indicate its possible role in the disease pathogenesis.
Collapse
Affiliation(s)
- Piotr K. Krajewski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chalubinskiego 1, 50-368 Wroclaw, Poland; (P.K.K.); (Ł.M.)
| | - Weronika Szukała
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-392 Krakow, Poland; (W.S.); (J.J.)
| | - Agata Lichawska-Cieślar
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-392 Krakow, Poland; (W.S.); (J.J.)
- Correspondence: (A.L.-C.); (J.C.S.)
| | - Łukasz Matusiak
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chalubinskiego 1, 50-368 Wroclaw, Poland; (P.K.K.); (Ł.M.)
| | - Jolanta Jura
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-392 Krakow, Poland; (W.S.); (J.J.)
| | - Jacek C. Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chalubinskiego 1, 50-368 Wroclaw, Poland; (P.K.K.); (Ł.M.)
- Correspondence: (A.L.-C.); (J.C.S.)
| |
Collapse
|
27
|
Okamoto T, Ogawa Y, Kinoshita M, Ihara T, Shimada S, Koizumi S, Kawamura T. Mechanical stretch-induced ATP release from keratinocytes triggers Koebner phenomenon in psoriasis. J Dermatol Sci 2021; 103:60-62. [PMID: 34187740 DOI: 10.1016/j.jdermsci.2021.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/19/2021] [Accepted: 06/02/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Takashi Okamoto
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Youichi Ogawa
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Manao Kinoshita
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Tatsuya Ihara
- Department of Urology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Shinji Shimada
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Tatsuyoshi Kawamura
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
28
|
Xia L, Oyang L, Lin J, Tan S, Han Y, Wu N, Yi P, Tang L, Pan Q, Rao S, Liang J, Tang Y, Su M, Luo X, Yang Y, Shi Y, Wang H, Zhou Y, Liao Q. The cancer metabolic reprogramming and immune response. Mol Cancer 2021; 20:28. [PMID: 33546704 PMCID: PMC7863491 DOI: 10.1186/s12943-021-01316-8] [Citation(s) in RCA: 628] [Impact Index Per Article: 157.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
The overlapping metabolic reprogramming of cancer and immune cells is a putative determinant of the antitumor immune response in cancer. Increased evidence suggests that cancer metabolism not only plays a crucial role in cancer signaling for sustaining tumorigenesis and survival, but also has wider implications in the regulation of antitumor immune response through both the release of metabolites and affecting the expression of immune molecules, such as lactate, PGE2, arginine, etc. Actually, this energetic interplay between tumor and immune cells leads to metabolic competition in the tumor ecosystem, limiting nutrient availability and leading to microenvironmental acidosis, which hinders immune cell function. More interestingly, metabolic reprogramming is also indispensable in the process of maintaining self and body homeostasis by various types of immune cells. At present, more and more studies pointed out that immune cell would undergo metabolic reprogramming during the process of proliferation, differentiation, and execution of effector functions, which is essential to the immune response. Herein, we discuss how metabolic reprogramming of cancer cells and immune cells regulate antitumor immune response and the possible approaches to targeting metabolic pathways in the context of anticancer immunotherapy. We also describe hypothetical combination treatments between immunotherapy and metabolic intervening that could be used to better unleash the potential of anticancer therapies.
Collapse
Affiliation(s)
- Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Pin Yi
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China.,University of South China, 421001, Hengyang, Hunan, China
| | - Lu Tang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China.,University of South China, 421001, Hengyang, Hunan, China
| | - Qing Pan
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China.,University of South China, 421001, Hengyang, Hunan, China
| | - Shan Rao
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Jiaxin Liang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Min Su
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Yiqing Yang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Yingrui Shi
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Hui Wang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China.
| |
Collapse
|
29
|
Gosselt HR, Muller IB, Jansen G, van Weeghel M, Vaz FM, Hazes JMW, Heil SG, de Jonge R. Identification of Metabolic Biomarkers in Relation to Methotrexate Response in Early Rheumatoid Arthritis. J Pers Med 2020; 10:jpm10040271. [PMID: 33321888 PMCID: PMC7768454 DOI: 10.3390/jpm10040271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022] Open
Abstract
This study aimed to identify baseline metabolic biomarkers for response to methotrexate (MTX) therapy in rheumatoid arthritis (RA) using an untargeted method. In total, 82 baseline plasma samples (41 insufficient responders and 41 sufficient responders to MTX) were selected from the Treatment in the Rotterdam Early Arthritis Cohort (tREACH, trial number: ISRCTN26791028) based on patients' EULAR response at 3 months. Metabolites were assessed using high-performance liquid chromatography-quadrupole time of flight mass spectrometry. Differences in metabolite concentrations between insufficient and sufficient responders were assessed using partial least square regression discriminant analysis (PLS-DA) and Welch's t-test. The predictive performance of the most significant findings was assessed in a receiver operating characteristic plot with area under the curve (AUC), sensitivity and specificity. Finally, overrepresentation analysis was performed to assess if the best discriminating metabolites were enriched in specific metabolic events. Baseline concentrations of homocystine, taurine, adenosine triphosphate, guanosine diphosphate and uric acid were significantly lower in plasma of insufficient responders versus sufficient responders, while glycolytic intermediates 1,3-/2,3-diphosphoglyceric acid, glycerol-3-phosphate and phosphoenolpyruvate were significantly higher in insufficient responders. Homocystine, glycerol-3-phosphate and 1,3-/2,3-diphosphoglyceric acid were independent predictors and together showed a high AUC of 0.81 (95% CI: 0.72-0.91) for the prediction of insufficient response, with corresponding sensitivity of 0.78 and specificity of 0.76. The Warburg effect, glycolysis and amino acid metabolism were identified as underlying metabolic events playing a role in clinical response to MTX in early RA. New metabolites and potential underlying metabolic events correlating with MTX response in early RA were identified, which warrant validation in external cohorts.
Collapse
Affiliation(s)
- Helen R. Gosselt
- Amsterdam Gastroenterology and Metabolism, Department of Clinical Chemistry, Amsterdam UMC, VUmc, 1081 HV Amsterdam, The Netherlands; (I.B.M.); (R.d.J.)
- Department of Clinical Chemistry, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
- Correspondence: ; Tel.: +31-20-4443029
| | - Ittai B. Muller
- Amsterdam Gastroenterology and Metabolism, Department of Clinical Chemistry, Amsterdam UMC, VUmc, 1081 HV Amsterdam, The Netherlands; (I.B.M.); (R.d.J.)
| | - Gerrit Jansen
- Amsterdam Rheumatology and Immunology Center, Amsterdam UMC, VUmc, 1081 HV Amsterdam, The Netherlands;
| | - Michel van Weeghel
- Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.v.W.); (F.M.V.)
- Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Frédéric M. Vaz
- Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.v.W.); (F.M.V.)
- Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Johanna M. W. Hazes
- Department of Rheumatology, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
- Academic Center of Excellence−Inflammunity, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Sandra G. Heil
- Department of Clinical Chemistry, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
- Academic Center of Excellence−Inflammunity, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Robert de Jonge
- Amsterdam Gastroenterology and Metabolism, Department of Clinical Chemistry, Amsterdam UMC, VUmc, 1081 HV Amsterdam, The Netherlands; (I.B.M.); (R.d.J.)
| |
Collapse
|
30
|
Fantini MC, Favale A, Onali S, Facciotti F. Tumor Infiltrating Regulatory T Cells in Sporadic and Colitis-Associated Colorectal Cancer: The Red Little Riding Hood and the Wolf. Int J Mol Sci 2020; 21:E6744. [PMID: 32937953 PMCID: PMC7555219 DOI: 10.3390/ijms21186744] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Regulatory T cells represent a class of specialized T lymphocytes that suppress unwanted immune responses and size the activation of the immune system whereby limiting collateral damages in tissues involved by inflammation. In cancer, the accumulation of Tregs is generally associated with poor prognosis. Many lines of evidence indicate that Tregs accumulation in the tumor microenvironment (TME) suppresses the immune response against tumor-associated antigens (TAA), thus promoting tumor progression in non-small cell lung carcinoma (NSLC), breast carcinoma and melanoma. In colorectal cancer (CRC) the effect of Tregs accumulation is debated. Some reports describe the association of high number of Tregs in CRC stroma with a better prognosis while others failed to find any association. These discordant results stem from the heterogeneity of the immune environment generated in CRC in which anticancer immune response may coexists with tumor promoting inflammation. Moreover, different subsets of Tregs have been identified that may exert different effects on cancer progression depending on tumor stage and their location within the tumor mass. Finally, Tregs phenotypic plasticity may be induced by cytokines released in the TME by dysplastic and other tumor-infiltrating cells thus affecting their functional role in the tumor. Here, we reviewed the recent literature about the role of Tregs in CRC and in colitis-associated colorectal cancer (CAC), where inflammation is the main driver of tumor initiation and progression. We tried to explain when and how Tregs can be considered to be the "good" or the "bad" in the colon carcinogenesis process on the basis of the available data concluding that the final effect of Tregs on sporadic CRC and CAC depends on their localization within the tumor, the subtype of Tregs involved and their phenotypic plasticity.
Collapse
Affiliation(s)
- Massimo Claudio Fantini
- Department of Medical Science and Public Health, University of Cagliari, 09042 Cagliari, Italy;
| | - Agnese Favale
- Department of Medical Science and Public Health, University of Cagliari, 09042 Cagliari, Italy;
| | - Sara Onali
- CEMAD-IBD UNIT-Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy;
| | - Federica Facciotti
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy;
| |
Collapse
|
31
|
Yan B, Liu N, Li J, Li J, Zhu W, Kuang Y, Chen X, Peng C. The role of Langerhans cells in epidermal homeostasis and pathogenesis of psoriasis. J Cell Mol Med 2020; 24:11646-11655. [PMID: 32916775 PMCID: PMC7579693 DOI: 10.1111/jcmm.15834] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
The skin is the main barrier between the human body and the outside world, which not only plays the role of a physical barrier but also functions as the first line of defence of immunology. Langerhans cells (LCs), as dendritic cells (DC) that play an important role in the immune system, are mainly distributed in the epidermis. This review focuses on the role of these epidermal LCs in regulating skin threats (such as microorganisms, ultraviolet radiation and allergens), especially psoriasis. Since human and mouse skin DC subsets share common ontogenetic characteristics, we can further explore the role of LCs in psoriatic inflammation.
Collapse
Affiliation(s)
- Bei Yan
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Nian Liu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Jie Li
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Jiaoduan Li
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Wu Zhu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Yehong Kuang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| |
Collapse
|
32
|
Li M, Yang C, Wang Y, Song W, Jia L, Peng X, Zhao R. The Expression of P2X7 Receptor on Th1, Th17, and Regulatory T Cells in Patients with Systemic Lupus Erythematosus or Rheumatoid Arthritis and Its Correlations with Active Disease. THE JOURNAL OF IMMUNOLOGY 2020; 205:1752-1762. [PMID: 32868411 DOI: 10.4049/jimmunol.2000222] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/31/2020] [Indexed: 01/21/2023]
Abstract
P2X7 receptor (P2X7R) is highly expressed on immune cells, triggering the release of cytokines and regulating autoimmune responses. To investigate P2X7R surface expression on T helper (Th) 1, Th17, and regulatory T (Treg) cells in patients with systemic lupus erythematosus (SLE) or rheumatoid arthritis (RA) and correlations with disease activity, 29 SLE and 29 RA patients and 18 healthy controls (HCs) were enrolled. We showed that SLE and RA patients had significantly higher levels of plasma cytokines (IFN-γ, IL-1β, IL-6, IL-17A, and IL-23), frequencies of Th1 and Th17 cells, and expression of P2X7R on Th1 and Th17 than HCs, and the Th17/Treg ratio was significantly increased, whereas Treg cell levels were significantly decreased. The Ca2+ influx increase following BzATP stimulation was significantly higher in CD4+PBMCs from SLE and RA patients than in HCs. Blood levels of shed P2X7R were increased in SLE and RA patients. Furthermore, 28-joint Disease Activity Score and SLE Disease Activity Index score showed negative correlations with Treg cell levels and positive correlations with Th17/Treg ratio and Th17 cell P2X7R expression. Interestingly, Th17 cell P2X7R expression was closely correlated with IL-1β, C-reactive protein, the erythrocyte sedimentation rate, anticyclic citrullinated peptide Abs, albumin, and C4. These data indicate that increased Th17 cell P2X7R expression is functionally and positively related to disease activity and some inflammatory mediators in SLE and RA patients, and P2X7R could be critical in promoting the Th17 immune response and contributing to the complex pathogenesis of SLE and RA.
Collapse
Affiliation(s)
- Mingxuan Li
- School of Laboratory Medicine, Weifang Medical University, Weifang 261053, Shandong, China
| | - Chuanyu Yang
- Department of Blood Transfusion, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China; and
| | - Yunhai Wang
- Department of Clinical Laboratory, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China
| | - Wei Song
- School of Laboratory Medicine, Weifang Medical University, Weifang 261053, Shandong, China
| | - Lina Jia
- School of Laboratory Medicine, Weifang Medical University, Weifang 261053, Shandong, China
| | - Xiaoxiang Peng
- School of Laboratory Medicine, Weifang Medical University, Weifang 261053, Shandong, China;
| | - Ronglan Zhao
- School of Laboratory Medicine, Weifang Medical University, Weifang 261053, Shandong, China;
| |
Collapse
|
33
|
Rivas-Yáñez E, Barrera-Avalos C, Parra-Tello B, Briceño P, Rosemblatt MV, Saavedra-Almarza J, Rosemblatt M, Acuña-Castillo C, Bono MR, Sauma D. P2X7 Receptor at the Crossroads of T Cell Fate. Int J Mol Sci 2020; 21:E4937. [PMID: 32668623 PMCID: PMC7404255 DOI: 10.3390/ijms21144937] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
The P2X7 receptor is a ligand-gated, cation-selective channel whose main physiological ligand is ATP. P2X7 receptor activation may also be triggered by ARTC2.2-dependent ADP ribosylation in the presence of extracellular NAD. Upon activation, this receptor induces several responses, including the influx of calcium and sodium ions, phosphatidylserine externalization, the formation of a non-selective membrane pore, and ultimately cell death. P2X7 receptor activation depends on the availability of extracellular nucleotides, whose concentrations are regulated by the action of extracellular nucleotidases such as CD39 and CD38. The P2X7 receptor has been extensively studied in the context of the immune response, and it has been reported to be involved in inflammasome activation, cytokine production, and the migration of different innate immune cells in response to ATP. In adaptive immune responses, the P2X7 receptor has been linked to T cell activation, differentiation, and apoptosis induction. In this review, we will discuss the evidence of the role of the P2X7 receptor on T cell differentiation and in the control of T cell responses in inflammatory conditions.
Collapse
Affiliation(s)
- Elizabeth Rivas-Yáñez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (E.R.-Y.); (B.P.-T.); (P.B.); (M.V.R.); (J.S.-A.); (M.R.)
| | - Carlos Barrera-Avalos
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile;
| | - Brian Parra-Tello
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (E.R.-Y.); (B.P.-T.); (P.B.); (M.V.R.); (J.S.-A.); (M.R.)
| | - Pedro Briceño
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (E.R.-Y.); (B.P.-T.); (P.B.); (M.V.R.); (J.S.-A.); (M.R.)
| | - Mariana V. Rosemblatt
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (E.R.-Y.); (B.P.-T.); (P.B.); (M.V.R.); (J.S.-A.); (M.R.)
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile
| | - Juan Saavedra-Almarza
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (E.R.-Y.); (B.P.-T.); (P.B.); (M.V.R.); (J.S.-A.); (M.R.)
| | - Mario Rosemblatt
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (E.R.-Y.); (B.P.-T.); (P.B.); (M.V.R.); (J.S.-A.); (M.R.)
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile
- Fundación Ciencia & Vida, Santiago 7780272, Chile
| | - Claudio Acuña-Castillo
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - María Rosa Bono
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (E.R.-Y.); (B.P.-T.); (P.B.); (M.V.R.); (J.S.-A.); (M.R.)
| | - Daniela Sauma
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (E.R.-Y.); (B.P.-T.); (P.B.); (M.V.R.); (J.S.-A.); (M.R.)
| |
Collapse
|
34
|
Akkaya B, Shevach EM. Regulatory T cells: Master thieves of the immune system. Cell Immunol 2020; 355:104160. [PMID: 32711171 DOI: 10.1016/j.cellimm.2020.104160] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022]
Abstract
Treg cells are the immune system's in-house combatants against pathological immune activation. Because they are vital to maintenance of peripheral tolerance, it is important to understand how they perform their functions. To this end, various mechanisms have been proposed for Treg-mediated immune inhibition. A major group of mechanisms picture Treg cells as skilled thieves stealing a plethora of molecules that would otherwise promote immune effector functions. This suggests that several million years of evolution have endowed Treg cells with efficient ways to deprive immune effectors of activating stimuli to prevent immunopathology for survival of the host. Although we are still long way from deciphering their complete set of tricks, this review will focus on the types of "crimes" committed by these master thieves in both secondary lymphoid organs and non-lymphoid tissue.
Collapse
Affiliation(s)
- Billur Akkaya
- Laboratory of Immune System Biology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ethan M Shevach
- Laboratory of Immune System Biology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
35
|
Grassi F. The P2X7 Receptor as Regulator of T Cell Development and Function. Front Immunol 2020; 11:1179. [PMID: 32587592 PMCID: PMC7297980 DOI: 10.3389/fimmu.2020.01179] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/13/2020] [Indexed: 12/24/2022] Open
Abstract
Unique structural features characterize the P2X7 receptor with respect to other P2X family members. Dual gating by eATP and regulated expression of P2X7 can imprint distinct outcomes to the T cell depending on the metabolic fitness and/or developmental stage. In the thymus, signaling by P2X7 contributes to γδ T cell lineage choice. In secondary lymphoid organs, P2X7 stimulation promotes Th1/Th17 polarization of CD4+ naïve cells, Tregs conversion to Th17 cells and cell death of Tfh cells that are not stimulated by cognate antigen. Moreover, P2X7 stimulation in eATP rich microenvironments, such as damaged and/or inflamed tissues as well as tumors, induces cell death of various T cell effector subsets.
Collapse
Affiliation(s)
- Fabio Grassi
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| |
Collapse
|
36
|
Li X, Li J, Lu F, Cao Y, Xing J, Li J, Hou R, Yin G, Zhang K. Role of SPRED1 in keratinocyte proliferation in psoriasis. J Dermatol 2020; 47:735-742. [PMID: 32396270 DOI: 10.1111/1346-8138.15369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/05/2020] [Indexed: 12/13/2022]
Abstract
Psoriasis is a recurrent inflammatory skin disease, affecting approximately 2% of the population. Previous studies have demonstrated that psoriatic dermal mesenchymal stem cells (DMSC) stimulated keratinocyte (KC) proliferation and that psoriasis exhibited missense SPRED1 mutations. To further investigate the molecular mechanism by which psoriatic DMSC stimulate KC proliferation, and the role of missense SPRED1 mutations in psoriasis, we assessed expression levels of miRNA, and both mRNA and protein of SPRED1 in normal human epidermal keratinocyte cells (NHEK) cocultured with either psoriatic or control DMSC. Expression levels of miRNA and mRNA were determined by RNA sequencing. Expression levels of spred1 protein were assessed using western blot analysis. Moreover, the variation in SPRED1 was also examined by whole-genome sequencing in 665 psoriatic patients, and verified by Sanger sequencing. Our results showed that coculture of NHEK with psoriatic DMSC induced 32 differentially expressed miRNA, in which expression levels of miR-1 increased approximately 16-fold over control DMSC-treated NHEK (P < 0.05). Likewise, expression levels of miR-21-3p increased over twofold (P < 0.05). Moreover, coculture of NHEK with psoriatic DMSC induced marked increase in expression levels of mRNA for MAPK3, CDC25B and CDC25C, while decreasing expression levels of SPRED1 mRNA and protein in comparison with control DMSC treatment (P < 0.05 for all between cocultured with control and psoriatic DMSC). Furthermore, psoriasis displayed non-synonymous mutation of SPRED1 enriched in exon 7: c.A881T:p.Y294F (chr15:38351210). These results suggest that dysregulation and mutations of SPRED1 may participate in the pathogenesis of psoriasis, including epidermal hyperproliferation.
Collapse
Affiliation(s)
- Xinhua Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Funa Lu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Yue Cao
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianxiao Xing
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Guohua Yin
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
37
|
Anderson R, Theron AJ, Rapoport BL. Immunopathogenesis of Immune Checkpoint Inhibitor-Related Adverse Events: Roles of the Intestinal Microbiome and Th17 Cells. Front Immunol 2019; 10:2254. [PMID: 31616428 PMCID: PMC6775220 DOI: 10.3389/fimmu.2019.02254] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/06/2019] [Indexed: 12/18/2022] Open
Abstract
The advent of novel, innovative, and effective anti-cancer immunotherapies has engendered an era of renewed optimism among cancer specialists and their patients. Foremost among these successful immunotherapies are monoclonal antibodies (MAbs) which target immune checkpoint inhibitor (ICI) molecules, most prominently cytotoxic T-lymphocyte-associated protein (CTLA-4) and programmed cell death protein-1 (PD-1) and its major ligand, PD-L1. These immunotherapeutic agents are, however, often associated with the occurrence of immune-mediated toxicities known as immune-related adverse events (IRAEs). The incidence of severe toxicities increases substantially when these agents are used together, particularly with CTLA-4 in combination with PD-1 or PD-L1 antagonists. Accordingly, dissociating the beneficial anti-tumor therapeutic activity of these agents from the emergence of IRAEs represents a significant challenge to attaining the optimum efficacy of ICI-targeted immunotherapy of cancer. This situation is compounded by an increasing awareness, possibly unsurprising, that both the beneficial and harmful effects of ICI-targeted therapies appear to result from an over-reactive immune system. Nevertheless, this challenge may not be insurmountable. This contention is based on acquisition of recent insights into the role of the gut microbiome and its products as determinants of the efficacy of ICI-targeted immunotherapy, as well as an increasing realization of the enigmatic involvement of Th17 cells in both anti-tumor activity and the pathogenesis of some types of IRAEs. Evidence linking the beneficial and harmful activities of ICI-targeted immunotherapy, recent mechanistic insights focusing on the gut microbiome and Th17 cells, as well as strategies to attenuate IRAEs in the setting of retention of therapeutic activity, therefore represent the major thrusts of this review.
Collapse
Affiliation(s)
- Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Annette J Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Bernardo L Rapoport
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
38
|
da Silva JLG, Passos DF, Bernardes VM, Leal DBR. ATP and adenosine: Role in the immunopathogenesis of rheumatoid arthritis. Immunol Lett 2019; 214:55-64. [PMID: 31479688 DOI: 10.1016/j.imlet.2019.08.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/20/2019] [Accepted: 08/30/2019] [Indexed: 12/16/2022]
Abstract
Rheumatoid arthritis (RA) is a classic inflammatory autoimmune disease. Local joint destruction and extra-articular manifestations of RA deeply compromise the life quality of the affected patients. RA immunopathogenesis depends on continuous immunogenic activation in which the purinergic system participates. The purinergic system comprises the signaling and metabolism of purines such as adenosine triphosphate (ATP) and adenosine. ATP signaling is involved in the activation and maintenance of the inflammatory state of RA through the activation of P2X7 and the production of cytokines, which orchestrate the pathogenesis of RA. The breakdown of ATP through the CD39/CD73 axis produces adenosine, which mostly inhibits the inflammatory process through activation of specific P1 receptors. Adenosine is hydrolyzed by adenosine deaminase (ADA) that interacts with other molecules playing additional roles in this disease. This review explores the release, metabolism, and the effects of binding of ATP and adenosine to their respective receptors in the context of RA, as well as their potential use as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jean L G da Silva
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Daniela F Passos
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Viviane M Bernardes
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Daniela B R Leal
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
39
|
Manfredini M, Giuliani AL, Ruina G, Gafà R, Bosi C, Zoppas E, Di Virgilio F, Bettoli V. The P2X7 Receptor Is Overexpressed in the Lesional Skin of Subjects Affected by Hidradenitis Suppurativa: A Preliminary Study. Dermatology 2019; 237:111-118. [PMID: 31454821 DOI: 10.1159/000502026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/09/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND P2X receptors (P2XRs) are plasma membrane channels involved in the modulation of immune responses. The role of the P2X7 receptor (P2X7R) has never been investigated in hidradenitis suppurativa (HS), which is a recurrent skin disease characterized by inflammatory nodules, scarring, and suppuration. OBJECTIVE Our aim was to investigate by immunohistochemistry (IHC) P2X7R, NLRP3 (NOD-like receptor family, pyrin domain-containing 3), and interleukin-1β (IL-1β) expression in HS lesions compared to healthy control (HC) skin. METHOD The intensity of IHC immunostaining was semi-quantitatively graded for keratinocytes, neutrophils, lymphocytes, and monocytes. Statistical significance was assessed by the Mann-Whitney U test, Cohen's κ coefficient, and χ2 test. RESULTS A total of 59 samples, 31 from HS and 28 from HC, were collected and analysed. In skin keratinocytes, lymphocytes, and monocytes, but not in neutrophils, P2X7R and NLRP3 protein expression was significantly increased in HS versus the HC group. IL-1β protein expression was also higher in HS versus the HC group both in skin keratinocytes and in the inflammatory infiltrate. Cohen's κ correlation coefficients for the expression of P2X7R versus NLRP3 or IL-1β in skin keratinocytes were significant (κ = 0.43 and 0.34, respectively). The same association between P2X7R and NLRP3 or IL-1β was confirmed by χ2 tests. CONCLUSION P2X7R, NLRP3, and IL-1β are overexpressed, and therefore the entire P2X7R/NLRP3/IL-1β pro-inflammatory axis is likely overactive in the skin of HS patients. This observation might provide clues to the pathogenesis of this disease and suggest novel therapies and markers of disease activity.
Collapse
Affiliation(s)
- Marco Manfredini
- Section of Dermatology, Department of Clinical and Experimental Medicine, University of Ferrara, Ferrara, Italy, .,Dermatology Unit, Department of Surgical, Medical, Dental and Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy,
| | - Anna Lisa Giuliani
- Oncology and Experimental Biology Section, Department of Morphology, Surgery and Experimental Medicine, Pathology, University of Ferrara, Ferrara, Italy
| | - Giulia Ruina
- Section of Dermatology, Department of Clinical and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Roberta Gafà
- Pathological Anatomy Section, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Cristina Bosi
- Pathological Anatomy Section, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elisabetta Zoppas
- Oncology and Experimental Biology Section, Department of Morphology, Surgery and Experimental Medicine, Pathology, University of Ferrara, Ferrara, Italy
| | - Francesco Di Virgilio
- Oncology and Experimental Biology Section, Department of Morphology, Surgery and Experimental Medicine, Pathology, University of Ferrara, Ferrara, Italy
| | - Vincenzo Bettoli
- Section of Dermatology, Department of Clinical and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
40
|
Tramentozzi E, Finotti P. Effects of purine-scaffold inhibitors on HUVECs: Involvement of the purinergic pathway and interference with ATP. Implications for preventing the adverse effects of extracellular Grp94. Biochem Biophys Rep 2019; 19:100661. [PMID: 31317075 PMCID: PMC6611975 DOI: 10.1016/j.bbrep.2019.100661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/13/2019] [Accepted: 06/22/2019] [Indexed: 12/30/2022] Open
Abstract
Background Extracellular Glucose-regulated protein94 (Grp94) is linked to pathological conditions disrupting the obligatory intracellular location of this Heat Shock Protein (HSP). In plasma, Grp94 is linked to IgG in complexes that drive adverse effects on vascular cells and are biomarker of gastro-intestinal cancer. By blocking ATP site in different HSPs, purine-scaffold inhibitors are used as promising anti-cancer compounds, but their effects on vasculature are not known. Methods We tested the capacity of two purine-scaffold inhibitors, PU-H71 and PU-WS13, to prevent the binding of Grp94 to IgG and to antagonize the effects of Grp94 and native Grp94-IgG complexes on HUVECs in different experimental conditions. Results PU-H71 and PU-WS13 blocked Grp94 and the formation of Grp94-IgG complexes in absence of cells. Instead, in presence of HUVECs rather than Grp94 PU-inhibitors targeted cells causing stimulation of Akt and VEGF pathways and displaying angiogenic-like effects similar to, although less intense than that provoked by Grp94 and Grp94-IgG complexes. Unlike Grp94 and Grp94-IgG complexes, PU-inhibitors also activated the purinergic pathway and increased the expression of the ATP receptor P2X7. Effects of PU-inhibitors on HUVECs were reversed by ATP and in presence of ATP PU-inhibitors were again able to block Grp94. Conclusions PU-inhibitors can display direct effects on endothelial cells by targeting the ATP receptor P2X7. In absence of ATP, PU-inhibitors preferentially bind to cells rather than Grp94. ATP antagonizes the PU-inhibitor binding to cells thus restoring the capacity to block Grp94 and Grp94-IgG complex formation. Results have implications for enhancing the therapeutic efficacy of PU-inhibitors against circulating pathogenic Grp94. Extracellular Grp94 forms pathogenic complexes with IgG. PU-inhibitors block the Grp94-IgG complex formation in absence of cells. PU-inhibitors target cells and activate the purinergic pathway. Effects of PU-inhibitors on cells are reversed by ATP. ATP restores the capacity of PU-inhibitors to block the Grp94-IgG complex formation.
Collapse
Affiliation(s)
- Elisa Tramentozzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo E.Meneghetti, 2, 35131, Padua, Italy
| | - Paola Finotti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo E.Meneghetti, 2, 35131, Padua, Italy
| |
Collapse
|
41
|
Antonioli L, Blandizzi C, Pacher P, Haskó G. The Purinergic System as a Pharmacological Target for the Treatment of Immune-Mediated Inflammatory Diseases. Pharmacol Rev 2019; 71:345-382. [PMID: 31235653 PMCID: PMC6592405 DOI: 10.1124/pr.117.014878] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Immune-mediated inflammatory diseases (IMIDs) encompass a wide range of seemingly unrelated conditions, such as multiple sclerosis, rheumatoid arthritis, psoriasis, inflammatory bowel diseases, asthma, chronic obstructive pulmonary disease, and systemic lupus erythematosus. Despite differing etiologies, these diseases share common inflammatory pathways, which lead to damage in primary target organs and frequently to a plethora of systemic effects as well. The purinergic signaling complex comprising extracellular nucleotides and nucleosides and their receptors, the P2 and P1 purinergic receptors, respectively, as well as catabolic enzymes and nucleoside transporters is a major regulatory system in the body. The purinergic signaling complex can regulate the development and course of IMIDs. Here we provide a comprehensive review on the role of purinergic signaling in controlling immunity, inflammation, and organ function in IMIDs. In addition, we discuss the possible therapeutic applications of drugs acting on purinergic pathways, which have been entering clinical development, to manage patients suffering from IMIDs.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| | - Pál Pacher
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| | - György Haskó
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| |
Collapse
|
42
|
Cao F, Hu LQ, Yao SR, Hu Y, Wang DG, Fan YG, Pan GX, Tao SS, Zhang Q, Pan HF, Wu GC. P2X7 receptor: A potential therapeutic target for autoimmune diseases. Autoimmun Rev 2019; 18:767-777. [PMID: 31181327 DOI: 10.1016/j.autrev.2019.06.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 02/15/2019] [Indexed: 12/20/2022]
Abstract
P2X7 receptor (P2X7R), a distinct ligand-gated ion channel, is a member of purinergic type 2 receptor family with ubiquitous expression in human body. Previous studies have revealed a pivotal role of P2X7R in innate and adaptive immunity. Once activated, it will meditate some vital cascaded responses including the assembly of nucleotide-binding domain (NOD) like receptor protein 3 (NLRP3) inflammasome, non-classical secretion of IL-1β, modulation of cytokine-independent pathways in inflammation such as P2X7R- transglutaminase-2 (TG2) and P2X7R-cathepsin pathway, activation and regulation of T cells, etc. In fact, above responses have been identified to be involved in the development of autoimmunity, specifically, the NLRP3 inflammasome could promote inflammation in massive autoimmune diseases and TG2, as well as cathepsin may contribute to joint destruction and degeneration in inflammatory arthritis. Recently, numerous evidences further suggested the significance of P2X7R in the pathogenesis of autoimmune diseases, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), inflammatory bowel disease (IBD), multiple sclerosis (MS), etc. In this review, we will succinctly discuss the biological characteristics and summarize the recent progress of the involvement of P2X7R in the development and pathogenesis of autoimmune diseases, as well as its clinical implications and therapeutic potential.
Collapse
Affiliation(s)
- Fan Cao
- Department of Clinical Medicine, The second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Li-Qin Hu
- School of Nursing, Anhui Medical University, 15 Feicui Road, Hefei, Anhui, China
| | - Shu-Ran Yao
- Department of Clinical Medicine, The second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Yan Hu
- School of Nursing, Anhui Medical University, 15 Feicui Road, Hefei, Anhui, China
| | - De-Guang Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, Anhui, China
| | - Yin-Guang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Gui-Xia Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Sha-Sha Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Qin Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Guo-Cui Wu
- School of Nursing, Anhui Medical University, 15 Feicui Road, Hefei, Anhui, China.
| |
Collapse
|
43
|
Tan L, Zhao S, Zhu W, Wu L, Li J, Shen M, Lei L, Chen X, Peng C. The Akkermansia muciniphila is a gut microbiota signature in psoriasis. Exp Dermatol 2019; 27:144-149. [PMID: 29130553 DOI: 10.1111/exd.13463] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2017] [Indexed: 12/12/2022]
Abstract
Psoriasis is an immune-mediated chronic inflammatory skin disease. Although its pathogenesis is not fully understood, Th17 cells and the cytokines they produce, such as IL-17, IL-22 and IL-23, play critical roles in the pathogenesis of psoriasis. Evidence has demonstrated that psoriasis has some common features, including immune responses (due to Th17 cells) and inflammatory cytokine profiles, with systematic diseases including inflammatory bowel diseases (IBDs) and obesity. Recently, studies have demonstrated that the gut microbiota plays a crucial role in host homoeostasis and immune response, particular in Th17 cells, but the role of the gut microbiota in psoriasis remains unclear. To study the relationship between gut microbiota and psoriasis, we analysed microbiota profiles in psoriasis using a 16S rDNA sequencing platform, and we found that the abundance of Akkermansia muciniphila was significantly reduced in patients with psoriasis. A. muciniphila is believed to have an important function in the pathogenesis of IBD and obesity; therefore, A. muciniphila, which is an indicator of health status, may be a key node for psoriasis as well as IBD and obesity. Taken together, our study identified that gut microbiota signature and function are significantly altered in the gut of patients with psoriasis, which provides a novel angle to understanding the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- LiRong Tan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wu Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lisha Wu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - MinXue Shen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Lei
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Purine nucleosides and nucleotides are released in the extracellular space following cell injury and act as paracrine mediators through a number of dedicated membrane receptors. In particular, extracellular ATP (eATP) significantly influences T-lymphocyte activation and phenotype. The purpose of this review is to discuss the role of ATP signaling in the T-cell-mediated alloimmune response. RECENT FINDINGS In various animal models of solid transplantation, the purinergic axis has been targeted to prevent acute rejection and to promote long-term graft tolerance. The inhibition of ATP-gated P2X receptors has been shown to halt lymphocyte activation, to downregulate both Th1 and Th17 responses and to promote T-regulatory (Treg) cell differentiation. Similarly, the inhibition of ATP signaling attenuated graft-versus-host disease in mice undergoing hematopoietic cell transplantation. Significantly, different drugs targeting the purinergic system have been recently approved for human use and may be a viable therapeutic option for transplant patients. SUMMARY The inhibition of eATP signaling downregulates the alloimmune response, expands Treg cells and promotes graft survival. This robust preclinical evidence and the recent advances in pharmacological research may lead to intriguing clinical applications.
Collapse
|
45
|
Auvinen P, Mäntyselkä P, Koponen H, Kautiainen H, Korniloff K, Ahonen T, Vanhala M. Elevation of tumor necrosis factor alpha levels is associated with restless legs symptoms in clinically depressed patients. J Psychosom Res 2018; 115:1-5. [PMID: 30470307 DOI: 10.1016/j.jpsychores.2018.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Restless legs syndrome is a sensorimotor disorder associated with several mental illnesses particularly depression. METHODS A cross-sectional study of primary care patients. The prevalence of restless legs symptoms was studied in 706 patients with depressive symptoms and 426 controls without a psychiatric diagnosis by using a structured questionnaire. The depressive symptoms were evaluated with the BDI and the psychiatric diagnosis was confirmed by means of a diagnostic interview (M.I.N.I.). The subjects with elevated depressive symptoms were divided into two groups subjects with depressive symptoms with and without clinical depression. RESULTS The prevalence of restless legs symptoms was 24.8% in the controls, 50.0% in the patients with clinical depression and 42.4% in the patients with depressive symptoms. CRP value was significantly higher (p = .003) in the clinically depressed patients than in the other groups. There was a higher concentration of TNF-α in the subjects with restless legs symptoms (7.4 ng/l ± 3.2) compared with the subjects without symptoms (6.7 ng/l ± 2.3)(p < .001). There was a significant difference in the TNF-α levels between the subjects with and without restless legs symptoms in the depression group (p < .001) and among the patients with depressive symptoms but no a depression diagnosis (p = .022). In these groups, restless legs symptoms were associated with elevated levels of TNF-α. CONCLUSIONS TNF-α level was associated with restless legs symptoms only among subjects with depressive symptoms whether they had clinical depression or not. We suggest that TNF-α could be an underlying factor between restless legs symptoms and comorbidities.
Collapse
Affiliation(s)
- Piritta Auvinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.
| | - Pekka Mäntyselkä
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Primary Health Care Unit, Kuopio University Hospital, Kuopio, Finland
| | - Hannu Koponen
- University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Hannu Kautiainen
- Primary Health Care Unit, Kuopio University Hospital, Kuopio, Finland; Folkhälsan Research Center, Helsinki, Finland
| | - Katariina Korniloff
- School of Health and Social Studies, JAMK University of Applied Sciences, Jyväskylä, Finland
| | - Tiina Ahonen
- Primary Health Care Unit, Central Finland Central Hospital, Jyväskylä, Finland
| | - Mauno Vanhala
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
46
|
Diaz-Perez JA, Killeen ME, Yang Y, Carey CD, Falo LD, Mathers AR. Extracellular ATP and IL-23 Form a Local Inflammatory Circuit Leading to the Development of a Neutrophil-Dependent Psoriasiform Dermatitis. J Invest Dermatol 2018; 138:2595-2605. [PMID: 29870687 PMCID: PMC6251745 DOI: 10.1016/j.jid.2018.05.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/16/2018] [Accepted: 05/23/2018] [Indexed: 01/14/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease dependent on the IL-23/IL-17 axis, a potent inflammatory pathway involved in pathogen clearance and autoimmunity. Several triggers have been proposed as initiators for psoriasis, including alarmins such as adenosine triphosphate. However, the role of alarmins in psoriasis pathogenesis and cutaneous inflammation has not been well addressed. Studies show that signaling through the P2X7 receptor (P2X7R) pathway underlies the development of psoriasiform inflammation. In this regard, psoriasiform dermatitis induced by IL-23 is dependent on P2X7R signaling. Furthermore, direct activation of the P2X7R is sufficient to induce a well-characterized psoriasiform dermatitis. Mechanistic studies determined that P2X7R-induced inflammation is largely dependent on the IL-1β/NLRP3 inflammasome pathway and neutrophils. In conclusion, this work provides basic mechanistic insight into local inflammatory circuits induced after purinergic P2X7R signaling that are likely involved in the pathogenesis of many inflammatory diseases, such as psoriasis.
Collapse
Affiliation(s)
- Julio A Diaz-Perez
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Meaghan E Killeen
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Yin Yang
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Cara D Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA; Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Alicia R Mathers
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.
| |
Collapse
|
47
|
Silva-Vilches C, Ring S, Mahnke K. ATP and Its Metabolite Adenosine as Regulators of Dendritic Cell Activity. Front Immunol 2018; 9:2581. [PMID: 30473700 PMCID: PMC6237882 DOI: 10.3389/fimmu.2018.02581] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
Adenosine (Ado) is a well-studied neurotransmitter, but it also exerts profound immune regulatory functions. Ado can (i) actively be released by various cells into the tissue environment and can (ii) be produced through the degradation of extracellular ATP by the concerted action of CD39 and CD73. In this sequence of events, the ectoenzyme CD39 degrades ATP into ADP and AMP, respectively, and CD73 catalyzes the last step leading to the production of Ado. Extracellular ATP acts as a “danger” signal and stimulates immune responses, i.e. by inflammasome activation. Its degradation product Ado on the other hand acts rather anti-inflammatory, as it down regulates functions of dendritic cells (DCs) and dampens T cell activation and cytokine secretion. Thus, the balance of proinflammatory ATP and anti-inflammatory Ado that is regulated by CD39+/CD73+ immune cells, is important for decision making on whether tolerance or immunity ensues. DCs express both ectoenzymes, enabling them to produce Ado from extracellular ATP by activity of CD73 and CD39 and thus allow dampening of the proinflammatory activity of adjacent leukocytes in the tissue. On the other hand, as most DCs express at least one out of four so far known Ado receptors (AdoR), DC derived Ado can also act back onto the DCs in an autocrine manner. This leads to suppression of DC functions that are normally involved in stimulating immune responses. Moreover, ATP and Ado production thereof acts as “find me” signal that guides cellular interactions of leukocytes during immune responses. In this review we will state the means by which Ado producing DCs are able to suppress immune responses and how extracellular Ado conditions DCs for their tolerizing properties.
Collapse
Affiliation(s)
- Cinthia Silva-Vilches
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, University Hospital, Heidelberg, Germany
| | - Sabine Ring
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, University Hospital, Heidelberg, Germany
| | - Karsten Mahnke
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, University Hospital, Heidelberg, Germany
| |
Collapse
|
48
|
Dotta F, Ventriglia G, Snowhite IV, Pugliese A. MicroRNAs: markers of β-cell stress and autoimmunity. Curr Opin Endocrinol Diabetes Obes 2018; 25:237-245. [PMID: 29846238 DOI: 10.1097/med.0000000000000420] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW We discuss current knowledge about microRNAs (miRNAs) in type 1 diabetes (T1D), an autoimmune disease leading to severe loss of pancreatic β-cells. We describe: the role of cellular miRNAs in regulating immune functions and pathways impacting insulin secretion and β-cell survival; circulating miRNAs as disease biomarkers. RECENT FINDINGS Studies examined miRNAs in experimental models and patients, including analysis of tissues from organ donors, peripheral blood cells, and circulating miRNAs in serum, plasma, and exosomes. Studies employed diverse designs and methodologies to detect miRNAs and measure their levels. Selected miRNAs have been linked to the regulation of key biological pathways and disease pathogenesis; several circulating miRNAs are associated with having T1D, islet autoimmunity, disease progression, and immune and metabolic functions, for example, C-peptide secretion, in multiple studies. SUMMARY A growing literature reveals multiple roles of miRNAs in T1D, provide new clues into the regulation of disease mechanisms, and identify reproducible associations. Yet challenges remain, and the field will benefit from joint efforts to analyze results, compare methodologies, formally test the robustness of miRNA associations, and ultimately move towards validating robust miRNA biomarkers.
Collapse
Affiliation(s)
- Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena
- Fondazione Umberto di Mario, Toscana Life Sciences, Siena, Italy
| | - Giuliana Ventriglia
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena
- Fondazione Umberto di Mario, Toscana Life Sciences, Siena, Italy
| | | | - Alberto Pugliese
- Diabetes Research Institute
- Department of Medicine, Division of Endocrinology and Metabolism
- Department of Microbiology and Immunology, Leonard Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
49
|
D'Addio F, Vergani A, Potena L, Maestroni A, Usuelli V, Ben Nasr M, Bassi R, Tezza S, Dellepiane S, El Essawy B, Iascone M, Iacovoni A, Borgese L, Liu K, Visner G, Dhe-Paganon S, Corradi D, Abdi R, Starling RC, Folli F, Zuccotti GV, Sayegh MH, Heeger PS, Chandraker A, Grigioni F, Fiorina P. P2X7R mutation disrupts the NLRP3-mediated Th program and predicts poor cardiac allograft outcomes. J Clin Invest 2018; 128:3490-3503. [PMID: 30010623 DOI: 10.1172/jci94524] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 05/23/2018] [Indexed: 12/23/2022] Open
Abstract
Purinergic receptor-7 (P2X7R) signaling controls Th17 and Th1 generation/differentiation, while NOD-like receptor P3 (NLRP3) acts as a Th2 transcriptional factor. Here, we demonstrated the existence of a P2X7R/NLRP3 pathway in T cells that is dysregulated by a P2X7R intracellular region loss-of-function mutation, leading to NLRP3 displacement and to excessive Th17 generation due to abrogation of the NLRP3-mediated Th2 program. This ultimately resulted in poor outcomes in cardiac-transplanted patients carrying the mutant allele, who showed abnormal Th17 generation. Transient NLRP3 silencing in nonmutant T cells or overexpression in mutant T cells normalized the Th profile. Interestingly, IL-17 blockade reduced Th17 skewing of human T cells in vitro and abrogated the severe allograft vasculopathy and abnormal Th17 generation observed in preclinical models in which P2X7R was genetically deleted. This P2X7R intracellular region mutation thus impaired the modulatory effects of P2X7R on NLRP3 expression and function in T cells and led to NLRP3 dysregulation and Th17 skewing, delineating a high-risk group of cardiac-transplanted patients who may benefit from personalized therapy.
Collapse
Affiliation(s)
- Francesca D'Addio
- International Center for Type 1 Diabetes, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, "L. Sacco" Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Andrea Vergani
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Luciano Potena
- Heart Failure and Heart Transplant Program, Department of Experimental Diagnostic and Specialty Medicine, Alma Mater-University of Bologna, Bologna, Italy
| | - Anna Maestroni
- International Center for Type 1 Diabetes, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, "L. Sacco" Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Vera Usuelli
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Moufida Ben Nasr
- International Center for Type 1 Diabetes, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, "L. Sacco" Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.,Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Roberto Bassi
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sara Tezza
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sergio Dellepiane
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Basset El Essawy
- Medicine, Al-Azhar University, Cairo, Egypt.,Transplantation Research Center, Nephrology Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | - Attilio Iacovoni
- Dipartimento Cardiovascolare, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Laura Borgese
- Heart Failure and Heart Transplant Program, Department of Experimental Diagnostic and Specialty Medicine, Alma Mater-University of Bologna, Bologna, Italy
| | - Kaifeng Liu
- Division of Respiratory Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Gary Visner
- Division of Respiratory Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Domenico Corradi
- Department of Biomedical, Biotechnological and Translational Sciences, Unit of Pathology, University of Parma, Parma, Italy
| | - Reza Abdi
- Transplantation Research Center, Nephrology Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Randall C Starling
- Heart Failure Center, Heart & Vascular Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Franco Folli
- Endocrinology and Metabolism, Department of Health Science, University of Milan, ASST Santi Paolo e Carlo, Milan, Italy
| | - Gian Vincenzo Zuccotti
- International Center for Type 1 Diabetes, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, "L. Sacco" Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.,Department of Pediatrics, Children's Hospital Buzzi, Milan, Italy
| | | | - Peter S Heeger
- Department of Medicine and Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Anil Chandraker
- Transplantation Research Center, Nephrology Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Francesco Grigioni
- Heart Failure and Heart Transplant Program, Department of Experimental Diagnostic and Specialty Medicine, Alma Mater-University of Bologna, Bologna, Italy
| | - Paolo Fiorina
- International Center for Type 1 Diabetes, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, "L. Sacco" Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.,Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Endocrinology Division, ASST Fatebenefratelli Sacco, Milan, Italy
| |
Collapse
|
50
|
Degauque N, Brosseau C, Brouard S. Regulation of the Immune Response by the Inflammatory Metabolic Microenvironment in the Context of Allotransplantation. Front Immunol 2018; 9:1465. [PMID: 29988548 PMCID: PMC6026640 DOI: 10.3389/fimmu.2018.01465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
Antigen challenge induced by allotransplantation results in the activation of T and B cells, followed by their differentiation and proliferation to mount an effective immune response. Metabolic fitness has been shown to be crucial for supporting the major shift from quiescent to active immune cells and for tuning the immune response. Metabolic reprogramming includes regulation of the balance between glycolysis and mitochondrial respiration processes. Recent research has shed new light on the functions served by the end products of metabolism such as lactate, acetate, and ATP. At enhanced local concentrations, these metabolites have complex effects in which they not only induce T and B cell responses, cell mobility, and cytokine secretion but also favor the resolution of inflammation by promoting regulatory functions. Such mechanisms are instrumental in the context of the immune response in transplantation, not only to protect the graft and/or eliminate cells targeting it but also to maintain cell homeostasis per se. Metabolic adaptation thus plays an instrumental role on the outcome of the cellular and humoral responses. This, of course, raises the possibility of drugs that would interfere in these metabolic pathways to control the immune response but also highlights the risk that some drugs may perturb this metabolism and cell homeostasis and be deleterious for graft outcome. This review focuses on how metabolic alterations of the local immune microenvironment regulate the immune response and the impact of metabolic manipulation in allotransplantation.
Collapse
Affiliation(s)
- Nicolas Degauque
- CRTI UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Carole Brosseau
- CRTI UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Sophie Brouard
- CRTI UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| |
Collapse
|