1
|
Qian H, Zhang J, Tian L, Liu L, Li M, Jiang Z, Lei X, Zheng W, Sun P, Zheng X. When estrogen deficiency meets immune responses induced by rabies vaccination. Microbiol Spectr 2025; 13:e0272624. [PMID: 40131860 PMCID: PMC12054079 DOI: 10.1128/spectrum.02726-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/08/2025] [Indexed: 03/27/2025] Open
Abstract
Estrogen deficiency in postmenopausal women is accompanied by immune status alterations, leading to a chronic low-grade inflammatory phenotype. Immediate rabies postexposure prophylaxis (PEP) following a transdermal bite or scratch from a rabies-infected animal is urgently needed. However, whether immune alterations in postmenopausal women influence the reaction to rabies vaccination remains unclear. Bilateral ovariectomized (OVX) and Sham mice were immunized with modified live vaccine RABV LBNSE. LBNSE immunization had no obvious pathological effect on the mice in either group and effectively protected all mice from RABV attack. Although 100% protection was found, the reduction rate of viral neutralizing antibody titers in the LBNSE-OVX mice was greater than that in the LBNSE-Sham mice. LBNSE immunization recruited/activated fewer dendritic cells (DCs) and B cells in the lymph nodes, while more B cells were detected in the blood of LBNSE-OVX mice than in that of LBNSE-Sham mice. Th1 and Th2 immune responses are both rapidly induced in LBNSE-OVX-subjected mice and are inclined toward a Th2-biased immune response. LBNSE immunization in OVX mice elicited similar amounts of RABV-specific CD4+ and CD8+ T cells as those in Sham mice. Our data revealed that the protective efficacy of rabies vaccination was slightly decreased by estrogen deficiency and that DC and B lymphocyte recruitment/activation and Th-mediated responses in splenocytes were partly altered; however, rabies vaccination offered sufficient protection against RABV within the observation period, helping alleviate anxiety related to rabies virus exposure after menopause. Additional measures might be helpful to improve long-term effective protection in postmenopausal women.IMPORTANCEMenopause has a distinct effect on the decrease in the female immune system, and whether protection efficacy after rabies vaccination in postmenopausal women is influenced requires evaluation. Our findings demonstrated that although viral neutralizing antibody (VNA) titers in the LBNSE-OVX mice were similar to those in the LBNSE-Sham mice, VNAs declined faster than those in the LBNSE-Sham mice within the observation period. Fewer dendritic cells in the lymph nodes were recruited/activated in LBNSE-OVX mice than in LBNSE-Sham mice, whereas B cells in the lymph nodes and peripheral blood exhibited the opposite tendency. Th2-biased immune responses were induced in LBNSE-OVX mice, and no significant changes were observed in RABV-specific CD4+ or CD8+ T cells. These results provide evidence that rabies vaccination could provide effective protection for postmenopausal women within the observation period, but other measures might be needed to improve protection, which is beneficial for alleviating anxiety of menopausal women when facing rabies immunization.
Collapse
Affiliation(s)
- Hua Qian
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Junjie Zhang
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Li Tian
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lele Liu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Menghua Li
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zezheng Jiang
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoying Lei
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenwen Zheng
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Peilu Sun
- Institute of Pharmacology, Shandong First Medical University, Jinan, Shandong, China
| | - Xuexing Zheng
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
2
|
Greygoose E, Metharom P, Kula H, Seckin TK, Seckin TA, Ayhan A, Yu Y. The Estrogen-Immune Interface in Endometriosis. Cells 2025; 14:58. [PMID: 39791759 PMCID: PMC11720315 DOI: 10.3390/cells14010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
Endometriosis is a gynecologic condition characterized by the growth of endometrium-like stroma and glandular elements outside of the uterine cavity. The involvement of hormonal dysregulation, specifically estrogen, is well established in the initiation, progression, and maintenance of the condition. Evidence also highlights the association between endometriosis and altered immune states. The human endometrium is a highly dynamic tissue that undergoes frequent remodeling in response to hormonal regulation during the menstrual cycle. Similarly, endometriosis shares this propensity, compounded by unclear pathogenic mechanisms, presenting unique challenges in defining its etiology and pathology. Here, we provide a lens to understand the interplay between estrogen and innate and adaptive immune systems throughout the menstrual cycle in the pathogenesis of endometriosis. Estrogen is closely linked to many altered inflammatory and immunomodulatory states, affecting both tissue-resident and circulatory immune cells. This review summarizes estrogenic interactions with specific myeloid and lymphoid cells, highlighting their implications in the progression of endometriosis.
Collapse
Affiliation(s)
- Emily Greygoose
- Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
| | - Pat Metharom
- Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
| | - Hakan Kula
- Department of Obstetrics and Gynecology, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey
| | - Timur K. Seckin
- Burnett School of Medicine, Texas Christian University, Fort Worth, TX 76104, USA;
| | - Tamer A. Seckin
- Department of Gynecology, Lenox Hill Hospital, and Hofstra University, New York, NY 10075, USA
| | - Ayse Ayhan
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yu Yu
- Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
- Discipline of Obstetrics and Gynaecology, Medical School, University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
3
|
Burra P, Zanetto A, Schnabl B, Reiberger T, Montano-Loza AJ, Asselta R, Karlsen TH, Tacke F. Hepatic immune regulation and sex disparities. Nat Rev Gastroenterol Hepatol 2024; 21:869-884. [PMID: 39237606 DOI: 10.1038/s41575-024-00974-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/07/2024]
Abstract
Chronic liver disease is a major cause of morbidity and mortality worldwide. Epidemiology, clinical phenotype and response to therapies for gastrointestinal and liver diseases are commonly different between women and men due to sex-specific hormonal, genetic and immune-related factors. The hepatic immune system has unique regulatory functions that promote the induction of intrahepatic tolerance, which is key for maintaining liver health and homeostasis. In liver diseases, hepatic immune alterations are increasingly recognized as a main cofactor responsible for the development and progression of chronic liver injury and fibrosis. In this Review, we discuss the basic mechanisms of sex disparity in hepatic immune regulation and how these mechanisms influence and modify the development of autoimmune liver diseases, genetic liver diseases, portal hypertension and inflammation in chronic liver disease. Alterations in gut microbiota and their crosstalk with the hepatic immune system might affect the progression of liver disease in a sex-specific manner, creating potential opportunities for novel diagnostic and therapeutic approaches to be evaluated in clinical trials. Finally, we identify and propose areas for future basic, translational and clinical research that will advance our understanding of sex disparities in hepatic immunity and liver disease.
Collapse
Affiliation(s)
- Patrizia Burra
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padua University Hospital, Padua, Italy.
| | - Alberto Zanetto
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Aldo J Montano-Loza
- Division of Gastroenterology and Liver Unit, Department of Medicine, University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Tom Hemming Karlsen
- Department of Transplantation Medicine, Clinic of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital and University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Clinic of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| |
Collapse
|
4
|
Floreani A, Gabbia D, De Martin S. Are Gender Differences Important for Autoimmune Liver Diseases? Life (Basel) 2024; 14:500. [PMID: 38672770 PMCID: PMC11050899 DOI: 10.3390/life14040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Gender Medicine has had an enormous expansion over the last ten years. Autoimmune liver diseases include several conditions, i.e., autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), and conditions involving the liver or biliary tree overlapping with AIH, as well as IgG4-related disease. However, little is known about the impact of sex in the pathogenesis and natural history of these conditions. The purpose of this review is to provide an update of the gender disparities among the autoimmune liver diseases by reviewing the data published from 1999 to 2023. The epidemiology of these diseases has been changing over the last years, due to the amelioration of knowledge in their diagnosis, pathogenesis, and treatment. The clinical data collected so far support the existence of sex differences in the natural history of autoimmune liver diseases. Notably, their history could be longer than that which is now known, with problems being initiated even at a pediatric age. Moreover, gender disparity has been observed during the onset of complications related to end-stage liver disease, including cancer incidence. However, there is still an important debate among researchers about the impact of sex and the pathogenesis of these conditions. With this review, we would like to emphasize the urgency of basic science and clinical research to increase our understanding of the sex differences in autoimmune liver diseases.
Collapse
Affiliation(s)
- Annarosa Floreani
- Scientific Consultant IRCCS Negrar, 37024 Verona, Italy
- University of Padova, 35122 Padova, Italy
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (D.G.); (S.D.M.)
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (D.G.); (S.D.M.)
| |
Collapse
|
5
|
Grünhagel B, Borggrewe M, Hagen SH, Ziegler SM, Henseling F, Glau L, Thiele RJ, Pujantell M, Sivayoganathan V, Padoan B, Claussen JM, Düsedau A, Hennesen J, Bunders MJ, Bonn S, Tolosa E, Krebs CF, Dorn C, Altfeld M. Reduction of IFN-I responses by plasmacytoid dendritic cells in a longitudinal trans men cohort. iScience 2023; 26:108209. [PMID: 37953956 PMCID: PMC10637924 DOI: 10.1016/j.isci.2023.108209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Type I interferons (IFN-I) are important mediators of antiviral immunity and autoimmune diseases. Female plasmacytoid dendritic cells (pDCs) exert an elevated capacity to produce IFN-I upon toll-like receptor 7 (TLR7) activation compared to male pDCs, and both sex hormones and X-encoded genes have been implicated in these sex-specific differences. Using longitudinal samples from a trans men cohort receiving gender-affirming hormone therapy (GAHT), the impact of testosterone injections on TLR7-mediated IFN-I production by pDCs was assessed. Single-cell RNA analyses of pDCs showed downregulation of IFN-I-related gene expression signatures but also revealed transcriptional inter-donor heterogeneity. Longitudinal quantification showed continuous reduction of IFN-I protein production by pDCs and reduced expression of IFN-I-stimulated genes in peripheral blood mononuclear cells (PBMCs). These studies in trans men demonstrate that testosterone administration reduces IFN-I production by pDCs over time and provide insights into the immune-modulatory role of testosterone in sex-specific IFN-I-mediated immune responses.
Collapse
Affiliation(s)
- Benjamin Grünhagel
- Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Malte Borggrewe
- Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany
| | - Sven Hendrik Hagen
- Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Susanne M. Ziegler
- Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Florian Henseling
- Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Laura Glau
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Rebecca-Jo Thiele
- Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Maria Pujantell
- Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Varshi Sivayoganathan
- III. Department of Medicine, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany
- Hamburg Center for Translational Immunology, 20251 Hamburg, Germany
| | - Benedetta Padoan
- Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Janna M. Claussen
- Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Arne Düsedau
- Technology Platform Flow Cytometry/FACS, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Jana Hennesen
- Technology Platform Flow Cytometry/FACS, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Madeleine J. Bunders
- Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany
| | - Eva Tolosa
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Christian F. Krebs
- III. Department of Medicine, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany
- Hamburg Center for Translational Immunology, 20251 Hamburg, Germany
| | | | - Marcus Altfeld
- Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| |
Collapse
|
6
|
Anesi N, Miquel CH, Laffont S, Guéry JC. The Influence of Sex Hormones and X Chromosome in Immune Responses. Curr Top Microbiol Immunol 2023; 441:21-59. [PMID: 37695424 DOI: 10.1007/978-3-031-35139-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Males and females differ in their susceptibility to develop autoimmunity and allergy but also in their capacity to cope with infections and cancers. Cellular targets and molecular pathways underlying sexual dimorphism in immunity have started to emerge and appeared multifactorial. It became increasingly clear that sex-linked biological factors have important impact on the development, tissue maintenance and effector function acquisition of distinct immune cell populations, thereby regulating multiple layers of innate or adaptive immunity through distinct mechanisms. This review discusses the recent development in our understanding of the cell-intrinsic actions of biological factors linked to sex, sex hormones and sex chromosome complement, on immune cells, which may account for the sex differences in susceptibility to autoimmune diseases and allergies, and the sex-biased responses in natural immunity and cancer.
Collapse
Affiliation(s)
- Nina Anesi
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, 31300, Toulouse, France
| | - Charles-Henry Miquel
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, 31300, Toulouse, France
| | - Sophie Laffont
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, 31300, Toulouse, France
| | - Jean-Charles Guéry
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, 31300, Toulouse, France.
- INSERM UMR1291, Centre Hospitalier Universitaire Purpan, Place du Dr. Baylac, 31024, Toulouse Cedex 3, France.
| |
Collapse
|
7
|
Dodd KC, Menon M. Sex bias in lymphocytes: Implications for autoimmune diseases. Front Immunol 2022; 13:945762. [PMID: 36505451 PMCID: PMC9730535 DOI: 10.3389/fimmu.2022.945762] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
Autoimmune diseases are characterized by a significant sex dimorphism, with women showing increased susceptibility to disease. This is, at least in part, due to sex-dependent differences in the immune system that are influenced by the complex interplay between sex hormones and sex chromosomes, with contribution from sociological factors, diet and gut microbiota. Sex differences are evident in the number and function of lymphocyte populations. Women mount a stronger pro-inflammatory response than males, with increased lymphocyte proliferation, activation and pro-inflammatory cytokine production, whereas men display expanded regulatory cell subsets. Ageing alters the immune landscape of men and women in differing ways, resulting in changes in autoimmune disease susceptibility. Here we review the current literature on sex differences in lymphocyte function, the factors that influence this, and the implications for autoimmune disease. We propose that improved understanding of sex bias in lymphocyte function can provide sex-specific tailoring of treatment strategies for better management of autoimmune diseases.
Collapse
Affiliation(s)
- Katherine C. Dodd
- Lydia Becker Institute of Immunology and Inflammation, Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom,Manchester Centre for Clinical Neurosciences, Salford Royal Hospital, Salford, United Kingdom
| | - Madhvi Menon
- Lydia Becker Institute of Immunology and Inflammation, Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom,*Correspondence: Madhvi Menon,
| |
Collapse
|
8
|
Lennard Richard ML, Wirth JR, Khatiwada A, Chung D, Gilkeson GS, Cunningham MA. Conditional knockout of oestrogen receptor alpha in CD11c + cells impacts female survival and inflammatory cytokine profile in murine lupus. Immunology 2022; 167:354-367. [PMID: 35778961 PMCID: PMC9562028 DOI: 10.1111/imm.13541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/26/2022] [Indexed: 11/26/2022] Open
Abstract
Oestrogen and oestrogen receptor alpha (ERα) have been implicated in systemic lupus erythematosus pathogenesis. ERα signalling influences dendritic cell (DC) development and function, as well as inflammation and downstream immune responses. We previously reported that ERα modulates multiple Toll-like receptor-stimulated pathways in both conventional and plasmacytoid DCs in lupus-prone mice. For example, CD11chi MHCII+ cell numbers are reduced in mice with global ERα deficiency or when expressing a short variant of ERα. Herein, RNA-seq analysis of CD11chi cells from bone marrow of NZM2410 mice expressing WT ERα versus ERα short versus ERα null revealed differentially expressed complement genes, interferon-related genes and cytokine signalling (e.g., IL-17 and Th17 pathways). To better understand the role of ERα in CD11c+ cells, lupus prone NZM2410 mice with selective deletion of the Esr1 gene in CD11c+ cells were generated. Phenotype and survival of these mice were similar with the exception of Cre positive (CrePos) female mice. CrePos females, but not males, all died unexpectedly prior to 35 weeks. DC subsets were not significantly different between groups. Since ERα is necessary for robust development of DCs, this result suggests that DC fate was determined prior to CD11c expression and subsequent ERα deletion (i.e., proximally in DC ontogeny). Overall, findings point to a clear functional role for ERα in regulating cytokine signalling and inflammation, suggesting that further study into ERα-mediated regulatory mechanisms in DCs and other immune cell types is warranted.
Collapse
Affiliation(s)
- Mara L. Lennard Richard
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jena R. Wirth
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Aastha Khatiwada
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Dongjun Chung
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Gary S. Gilkeson
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
- Medical Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, USA
| | - Melissa A. Cunningham
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
9
|
Dias SP, Brouwer MC, Boelen A, van de Beek D. Cerebrospinal fluid sex steroid hormones in bacterial meningitis. Medicine (Baltimore) 2022; 101:e30452. [PMID: 36086742 PMCID: PMC10980494 DOI: 10.1097/md.0000000000030452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
Unfavorable outcome in bacterial meningitis is related to excessive inflammation and higher inflammatory markers have been reported in female than in male patients. Sex steroid hormones have immunomodulatory properties and can be found in the cerebrospinal fluid (CSF); however, their actions have not been studied in bacterial meningitis. We investigated the association between CSF sex steroid hormone levels and inflammatory parameters, disease severity, and outcome in pneumococcal meningitis. We identified adults with culture-proven pneumococcal meningitis in a prospective cohort study (2006-2014). We measured estradiol and testosterone in CSF using liquid chromatography-tandem mass spectrometry and sex hormone-binding globulin (SHBG) using an enzyme-linked immunoassay. Hormone levels were compared according to outcome, which was graded using the Glasgow Outcome Scale (a score of 5 indicating favorable, 1-4 unfavorable outcome). Correlation analysis was used to measure the association between hormone levels and inflammatory cytokines, chemokines, and complement factors as well as severity of illness, as measured by the Glasgow Coma Scale and the Dutch Meningitis Risk Score. We included 60 patients: 20 men, 20 premenopausal (<50 years), and 20 postmenopausal (>50 years) women. Twenty-one (35%) patients had an unfavorable outcome and 11 (18%) died. Cases with an unfavorable outcome exhibited higher estradiol (median 14.0 vs 5.0 pmol/L, P = .04) and lower SHBG (0.40 vs 1.0 nmol/L, P = .03) levels compared with those with a favorable outcome. Estradiol was positively correlated with C-reactive protein (R = 0.42, P = .001), CSF protein (R = 0.33, P = .01), and proinflammatory cytokine levels. CSF concentrations of the sex steroid hormone estradiol were associated with outcome and CSF inflammation. Understanding the dose and time-dependent interaction between sex steroid hormones and the inflammatory response in bacterial meningitis represents an important and understudied topic.
Collapse
Affiliation(s)
- Sara P. Dias
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef, The Netherlands
- Department of Neurology, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
- ESCMID Study Group for Infections of the Brain” for SPD, MCB and DvdB
| | - Matthijs C. Brouwer
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef, The Netherlands
- ESCMID Study Group for Infections of the Brain” for SPD, MCB and DvdB
| | - Anita Boelen
- Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef, The Netherlands
| | - Diederik van de Beek
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef, The Netherlands
- ESCMID Study Group for Infections of the Brain” for SPD, MCB and DvdB
| |
Collapse
|
10
|
Schafer JM, Xiao T, Kwon H, Collier K, Chang Y, Abdel-Hafiz H, Bolyard C, Chung D, Yang Y, Sundi D, Ma Q, Theodorescu D, Li X, Li Z. Sex-biased adaptive immune regulation in cancer development and therapy. iScience 2022; 25:104717. [PMID: 35880048 PMCID: PMC9307950 DOI: 10.1016/j.isci.2022.104717] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The cancer research field is finally starting to unravel the mystery behind why males have a higher incidence and mortality rate than females for nearly all cancer types of the non-reproductive systems. Here, we explain how sex - specifically sex chromosomes and sex hormones - drives differential adaptive immunity across immune-related disease states including cancer, and why males are consequently more predisposed to tumor development. We highlight emerging data on the roles of cell-intrinsic androgen receptors in driving CD8+ T cell dysfunction or exhaustion in the tumor microenvironment and summarize ongoing clinical efforts to determine the impact of androgen blockade on cancer immunotherapy. Finally, we outline a framework for future research in cancer biology and immuno-oncology, underscoring the importance of a holistic research approach to understanding the mechanisms of sex dimorphisms in cancer, so sex will be considered as an imperative factor for guiding treatment decisions in the future.
Collapse
Affiliation(s)
- Johanna M. Schafer
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
| | - Tong Xiao
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
| | - Hyunwoo Kwon
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
- Medical Scientist Training Program, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Katharine Collier
- Division of Medical Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
| | - Yuzhou Chang
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
- Department of Biomedical Informatics, the Ohio State University, Columbus, OH 43210, USA
| | - Hany Abdel-Hafiz
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Chelsea Bolyard
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
| | - Dongjun Chung
- Department of Biomedical Informatics, the Ohio State University, Columbus, OH 43210, USA
| | - Yuanquan Yang
- Division of Medical Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
| | - Debasish Sundi
- Department of Urology, the Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Qin Ma
- Department of Biomedical Informatics, the Ohio State University, Columbus, OH 43210, USA
| | - Dan Theodorescu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xue Li
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
| |
Collapse
|
11
|
Balan I, Aurelian L, Williams KS, Campbell B, Meeker RB, Morrow AL. Inhibition of human macrophage activation via pregnane neurosteroid interactions with toll-like receptors: Sex differences and structural requirements. Front Immunol 2022; 13:940095. [PMID: 35967446 PMCID: PMC9373802 DOI: 10.3389/fimmu.2022.940095] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
We recently discovered that (3α,5α)3-hydroxypregnan-20-one (allopregnanolone) inhibits pro-inflammatory toll-like receptor (TLR) activation and cytokine/chemokine production in mouse macrophage RAW264.7 cells. The present studies evaluate neurosteroid actions upon TLR activation in human macrophages from male and female healthy donors. Buffy coat leukocytes were obtained from donors at the New York Blood Center (http://nybloodcenter.org/), and peripheral blood mononuclear cells were isolated and cultured to achieve macrophage differentiation. TLR4 and TLR7 were activated by lipopolysaccharide (LPS) or imiquimod in the presence/absence of allopregnanolone or related neurosteroids and pro-inflammatory markers were detected by ELISA or western blotting. Cultured human monocyte-derived-macrophages exhibited typical morphology, a mixed immune profile of both inflammatory and anti-inflammatory markers, with no sex difference at baseline. Allopregnanolone inhibited TLR4 activation in male and female donors, preventing LPS-induced elevations of TNF-α, MCP-1, pCREB and pSTAT1. In contrast, 3α,5α-THDOC and SGE-516 inhibited the TLR4 pathway activation in female, but not male donors. Allopregnanolone completely inhibited TLR7 activation by imiquimod, blocking IL-1-β, IL-6, pSTAT1 and pIRF7 elevations in females only. 3α,5α-THDOC and SGE-516 partially inhibited TLR7 activation, only in female donors. The results indicate that allopregnanolone inhibits TLR4 and TLR7 activation in cultured human macrophages resulting in diminished cytokine/chemokine production. Allopregnanolone inhibition of TLR4 activation was found in males and females, but inhibition of TLR7 signals exhibited specificity for female donors. 3α,5α-THDOC and SGE-516 inhibited TLR4 and TLR7 pathways only in females. These studies demonstrate anti-inflammatory effects of allopregnanolone in human macrophages for the first time and suggest that inhibition of pro-inflammatory cytokines/chemokines may contribute to its therapeutic actions.
Collapse
Affiliation(s)
- Irina Balan
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States
| | - Laure Aurelian
- Stanford University School of Medicine, Stanford, CA, United States
| | - Kimberly S. Williams
- Department of Neurology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States
| | - Brian Campbell
- Translational Sciences, Sage Therapeutics Inc., Cambridge, MA, United States
| | - Rick B. Meeker
- Department of Neurology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States
| | - A. Leslie Morrow
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States
- *Correspondence: A. Leslie Morrow,
| |
Collapse
|
12
|
Upregulated influenza A viral entry factors and enhanced interferon-alpha response in the nasal epithelium of pregnant rats. Heliyon 2022; 8:e09407. [PMID: 35592667 PMCID: PMC9111991 DOI: 10.1016/j.heliyon.2022.e09407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/02/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022] Open
Abstract
Despite the increased severity of influenza A infection in pregnancy, knowledge about the expression of cell entry factors for influenza A virus (IAV) and the innate immune response in the nasal epithelium, the primary portal of viral entry, is limited. Here, we compared the expression of IAV cell entry factors and the status of the innate immune response in the nasal epithelium of pregnant vs. non-pregnant female rats. IAV cell entry factors — sialic acid [SA] α-2,3- and α-2,6-linked glycans for avian and human IAV, respectively — were detected and quantified with lectin-based immunoblotting and flow cytometry. Baseline frequencies of innate immune cell phenotypes in single cell suspensions of the nasal epithelium were studied with flow cytometry. Subsequently, the magnitude of interferon and cytokine responses was studied with ELISA and cytokine arrays after intranasal resiquimod, a Toll-like receptor 7/8 agonist that mimics IAV infection. We noted substantially increased expression of cell entry factors for both avian and human IAV in the nasal epithelium during pregnancy. Assessment of the innate immune state of the nasal epithelium during pregnancy revealed two previously unreported features: (i) increased presence of tissue-resident plasmacytoid dendritic cells, and (ii) markedly enhanced release of interferon-α but not of the other interferons or cytokines 2 h after intranasal resiquimod. Collectively, our findings challenge the conventional notion of pregnancy-induced immunosuppression as a cause for severe influenza A disease and suggest the need for focused studies on viral tropism during pregnancy to better understand the proximate cause for the observed immunopathology.
Collapse
|
13
|
Mateus D, Sebastião AI, Carrascal MA, do Carmo A, Matos AM, Cruz MT. Crosstalk between estrogen, dendritic cells, and SARS-CoV-2 infection. Rev Med Virol 2022; 32:e2290. [PMID: 34534372 PMCID: PMC8646421 DOI: 10.1002/rmv.2290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022]
Abstract
The novel coronavirus disease 2019 (Covid-19) first appeared in Wuhan and has so far killed more than four million people worldwide. Men are more affected than women by Covid-19, but the cellular and molecular mechanisms behind these differences are largely unknown. One plausible explanation is that differences in sex hormones could partially account for this distinct prevalence in both sexes. Accordingly, several papers have reported a protective role of 17β-estradiol during Covid-19, which might help explain why women appear less likely to die from Covid-19 than men. 17β-estradiol is the predominant and most biologically active endogenous estrogen, which signals through estrogen receptor α, estrogen receptor β, and G protein-coupled estrogen receptor 1. These receptors are expressed in mature cells from the innate and the adaptive immune system, particularly on dendritic cells (DCs), suggesting that estrogens could modulate their effector functions. DCs are the most specialized and proficient antigen-presenting cells, acting at the interface of innate and adaptive immunity with a powerful capacity to prime antigen-specific naive CD8+ T cells. DCs are richly abundant in the lung where they respond to viral infection. A relative increase of mature DCs in broncho-alveolar lavage fluids from Covid-19 patients has already been reported. Here we will describe how SARS-CoV-2 acts on DCs, the role of estrogen on DC immunobiology, summarise the impact of sex hormones on the immune response against Covid-19, and explore clinical trials regarding Covid-19.
Collapse
Affiliation(s)
- Daniela Mateus
- Faculty of Pharmacy—FFUCUniversity of CoimbraCoimbraPortugal
| | | | - Mylène A. Carrascal
- Center for Neuroscience and Cell Biology—CNCUniversity of CoimbraCoimbraPortugal
- UpCellsTecnimed GroupSintraPortugal
| | - Anália do Carmo
- Clinical Pathology DepartmentCentro Hospitalar e Universitário de CoimbraCoimbraPortugal
| | - Ana Miguel Matos
- Faculty of Pharmacy—FFUCUniversity of CoimbraCoimbraPortugal
- Chemical Engineering Processes and Forest Products Research Center, CIEPQPFFaculty of Sciences and Technology, University of CoimbraCoimbraPortugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy—FFUCUniversity of CoimbraCoimbraPortugal
- Center for Neuroscience and Cell Biology—CNCUniversity of CoimbraCoimbraPortugal
| |
Collapse
|
14
|
Stanciu AE, Verzia A, Stanciu MM, Zamfirescu A, Gheorghe DC. Analysis of the Correlation between the Radioactive Iodine Activity and Neutrophil-to-Lymphocyte Ratio in Patients with Differentiated Thyroid Cancer. Cancers (Basel) 2022; 14:cancers14081899. [PMID: 35454805 PMCID: PMC9024474 DOI: 10.3390/cancers14081899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
Publications investigating the effect of radioactive iodine (131I) therapy on the circulating peripheral blood cells in patients with differentiated thyroid cancer (DTC) are limited to blood samples collected more than 92 h after 131I. Studies conducted on blood samples collected up to 92 h are rare due to the radioactive contamination risk. This research aimed to assess the relationship between the prescribed 131I activity, human whole blood activity, and peripheral blood cells at many time points (6, 22, 46, 69, and 92 h after 131I). The study enrolled 50 female patients with DTC who received a 131I median activity of 90.54 mCi (3.35 GBq). The neutrophil-to-lymphocyte ratio (NLR) was measured as an inflammatory marker. 131I uptake in the residual thyroid tissue peaked after 46 h. Blood activity decreased in the first 46 h and increased 69 h after the 131I intake. Blood activity was associated with the absolute lymphocyte count and the NLR at 69 h (r = −0.49 and r = 0.52, p < 0.001). Our results demonstrate that the time interval between 46 and 69 h should be associated with the release of hematological inflammatory mediators, such as neutrophils and lymphocytes, to eradicate tumor cells in response to 131I therapy.
Collapse
Affiliation(s)
- Adina Elena Stanciu
- Department of Carcinogenesis and Molecular Biology, Institute of Oncology Bucharest, 022328 Bucharest, Romania
- Correspondence:
| | - Andreea Verzia
- Cernavoda Nuclear Power Plant Division, Nuclearelectrica, 905200 Cernavoda, Romania;
| | - Marcel Marian Stanciu
- Electrical Engineering Faculty, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Anca Zamfirescu
- Department of Radionuclide Therapy, Institute of Oncology Bucharest, 022328 Bucharest, Romania; or
| | - Dan Cristian Gheorghe
- ENT Department, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania;
| |
Collapse
|
15
|
Leffler J, Trend S, Gorman S, Hart PH. Sex-Specific Environmental Impacts on Initiation and Progression of Multiple Sclerosis. Front Neurol 2022; 13:835162. [PMID: 35185777 PMCID: PMC8850837 DOI: 10.3389/fneur.2022.835162] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/12/2022] [Indexed: 12/28/2022] Open
Abstract
The immunological mechanisms that contribute to multiple sclerosis (MS) differ between males and females. Females are 2–3 times more likely to develop MS compared to males, however the reason for this discrepancy is unknown. Once MS is established, there is a more inflammatory yet milder form of disease in females whereas males generally suffer from more severe disease and faster progression, neural degradation, and disability. Some of these differences relate to genetics, including genetic control of immune regulatory genes on the X-chromosome, as well as immune modulatory properties of sex hormones. Differences in MS development may also relate to how sex interacts with environmental risk factors. There are several environmental risk factors for MS including late-onset Epstein Barr virus infection, low serum vitamin D levels, low UV radiation exposure, smoking, obesity, and lack of physical activity. Most of these risk factors impact males and females differently, either due to biological or immunological processes or through behavioral differences. In this review, we explore these differences further and focus on how the interaction of environmental risk factors with sex hormones may contribute to significantly different prevalence and pathology of MS in males and females.
Collapse
Affiliation(s)
- Jonatan Leffler
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- *Correspondence: Jonatan Leffler
| | - Stephanie Trend
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia
| | - Shelley Gorman
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Prue H. Hart
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
16
|
Tyagi R, Kant S, Pradhan A, Wakhlu A, Bajaj DK, Bajpai J. Estimates of Prevalence of Pulmonary Hypertension according to Different International Definitions. Can Respir J 2021; 2021:1385322. [PMID: 34876943 PMCID: PMC8645389 DOI: 10.1155/2021/1385322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/15/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Pulmonary hypertension is a dreaded disease associated with considerable morbidity and mortality. The pulmonary hypertension developing due to chronic respiratory disease is a unique subset with symptoms often getting masqueraded by the underlying respiratory condition. The importance of early detection of this complication has been realized worldwide, and recently, the definition of pulmonary hypertension was revised to set the cutoff of mean pulmonary artery pressure (mPAP) at 20 mmHg instead of 25 mmHg at rest. In our study, we have tried to estimate the difference this new definition brings to the prevalence of pulmonary hypertension among interstitial lung disease patients at our centre. METHODS This was a cross-sectional study in which all the patients of ILDs (n = 239) attending the outdoor and indoor Department of Respiratory Medicine, King George's Medical University, India, for the duration of one year were subjected to transthoracic echocardiography along with measurement of serum pro-B-type natriuretic peptide (BNP) and troponin T values. The data were analyzed using the different definitions, and the prevalence was compared. RESULT Incidence of pulmonary hypertension among ILD patients at mPAP cutoff ≥ 25 was 28.9%, while that at value ≥20 mmHg, incidence of pulmonary hypertension increased to 46.0%. An increment of 15-20% in incidence of pulmonary hypertension was observed among different types of ILD when cutoff of mPAP was changed. CONCLUSION The new definition helps in a significant increase in the detection of pulmonary hypertension, which certainly helps in earlier detection and better management of patients.
Collapse
Affiliation(s)
- Richa Tyagi
- Department of Respiratory Medicine, King George's Medical University, Lucknow, UP, India
| | - Surya Kant
- Department of Respiratory Medicine, King George's Medical University, Lucknow, UP, India
| | - Akshyaya Pradhan
- Department of Cardiology, King George's Medical University, Lucknow, UP, India
| | - Anupam Wakhlu
- Department of Rheumatology, King George's Medical University, Lucknow, UP, India
| | - Darshan Kumar Bajaj
- Department of Respiratory Medicine, King George's Medical University, Lucknow, UP, India
| | - Jyoti Bajpai
- Department of Respiratory Medicine, King George's Medical University, Lucknow, UP, India
| |
Collapse
|
17
|
Ryan L, Mills KHG. Sex differences regulate immune responses in experimental autoimmune encephalomyelitis and multiple sclerosis. Eur J Immunol 2021; 52:24-33. [PMID: 34727577 DOI: 10.1002/eji.202149589] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/29/2021] [Indexed: 12/26/2022]
Abstract
MS is an autoimmune disease of the CNS that afflicts over 2.5 million people worldwide. There are striking sex differences in the susceptibility to and progression of this disease in humans. Females are twice as likely to develop MS than males, whereas disease progression and disability is more rapid in males compared with females; however, the latter is still controversial. There is growing evidence, mainly from animal models, that innate and adaptive immune responses are different in males and females, and that this can influence the outcome of a range of diseases including infection, cancer, and autoimmunity. Since MS is an immune-mediated disease, sex differences in pathogenic immune responses may account for some of the differences in susceptibility to and progression seen in men versus women. Indeed, data from the mouse model of MS, EAE, have already provided some evidence that female mice have earlier disease onset associated with stronger Th17 responses. This review will discuss the possible immunological basis of sex differences in susceptibility and disease outcome in EAE and MS and how a better understanding of sex differences in the responses to disease-modifying therapies may lead to improved patient treatment.
Collapse
Affiliation(s)
- Lucy Ryan
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Kingston H G Mills
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
18
|
Xing E, Billi AC, Gudjonsson JE. Sex Bias and Autoimmune Diseases. J Invest Dermatol 2021; 142:857-866. [PMID: 34362556 DOI: 10.1016/j.jid.2021.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/03/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023]
Abstract
Sex bias in immune function has been well-described, and women have been shown to counter immunologically stimulating phenomena such as infection, malignancy, and trauma with more protective responses than men. Heightened immunity in women may also result in a predisposition for loss of self-tolerance and development of autoimmunity, reflected by the overwhelming female sex bias of patients with autoimmune diseases. In this review, we discuss the postulated evolutionary etiologies for sexual dimorphism in immunity. We also review the molecular mechanisms underlying divergent immune responses in men and women, including sex hormone effects, X chromosome dosage, and autosomal sex-biased genes. With increasing evidence that autoimmune disease susceptibility is influenced by numerous hormonal and genetic factors, a comprehensive understanding of these topics may facilitate the development of much-needed targeted therapeutics.
Collapse
Affiliation(s)
- Enze Xing
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Allison C Billi
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Johann E Gudjonsson
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA; A. Alfred Taubman Medical Research Institute, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
19
|
Current and emerging estrogen receptor-targeted therapies for the treatment of breast cancer. Essays Biochem 2021; 65:985-1001. [PMID: 34328178 DOI: 10.1042/ebc20200174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022]
Abstract
Nearly 80% of all breast cancers are estrogen receptor positive (ER+) and require the activity of this transcription factor for tumor growth and survival. Thus, endocrine therapies, which target the estrogen signaling axis, have and will continue to be the cornerstone of therapy for patients diagnosed with ER+ disease. Several inhibitors of ER activity exist, including aromatase inhibitors (AIs), selective estrogen receptor modulators (SERMs), selective estrogen receptor degraders/down-regulators (SERDs), and ER proteolysis-targeting chimeras (ER PROTACs); drugs which differ in the mechanism(s) by which they inhibit this signaling pathway. Notwithstanding their significant impact on the management of this disease, resistance to existing endocrine therapies remains a major impediment to durable clinical responses. Although the mechanisms of resistance are complex and varied, dependence on ER is typically retained after progression on SERMs and AIs, suggesting that ER remains a bona fide therapeutic target. The discovery and development of orally bioavailable drugs that eliminate ER expression (SERDs and ER PROTACs) will likely aid in treating this growing patient population. All of the existing endocrine therapies were developed with the intent of inhibiting the cancer cell intrinsic actions of ER and/or with the objective of achieving extreme estrogen deprivation and most achieve that goal. A longstanding question that remains to be addressed, however, is how actions of existing interventions extrinsic to the cancer cells influence tumor biology. We believe that these issues need to be addressed in the development of strategies to develop the next generation of ER-modulators optimized for positive activities in both cancer cells and other cells within the tumor microenvironment (TME).
Collapse
|
20
|
Blawn KT, Kellohen KL, Galloway EA, Wahl J, Vivek A, Verkhovsky VG, Barker NK, Cottier KE, Vallecillo TG, Langlais PR, Liktor-Busa E, Vanderah TW, Largent-Milnes TM. Sex hormones regulate NHE1 functional expression and brain endothelial proteome to control paracellular integrity of the blood endothelial barrier. Brain Res 2021; 1763:147448. [PMID: 33771519 PMCID: PMC10494867 DOI: 10.1016/j.brainres.2021.147448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Sex hormones have been implicated in pH regulation of numerous physiological systems. One consistent factor of these studies is the sodium-hydrogen exchanger 1 (NHE1). NHE1 has been associated with pH homeostasis at epithelial barriers. Hormone fluctuations have been implicated in protection and risk for breaches in blood brain barrier (BBB)/blood endothelial barrier (BEB) integrity. Few studies, however, have investigated BBB/BEB integrity in neurological disorders in the context of sex-hormone regulation of pH homeostasis. METHODS//RESULTS Physiologically relevant concentrations of 17-β-estradiol (E2, 294 pM), progesterone (P, 100 nM), and testosterone (T,3.12 nM) were independently applied to cultured immortalized bEnd.3 brain endothelial cells to study the BEB. Individual gonadal hormones showed preferential effects on extracellular pH (E2), 14C-sucrose uptake (T), stimulated paracellular breaches (P) with dependence on functional NHE1 expression without impacting transendothelial resistance (TEER) or total protein expression. While total NHE1 expression was not changed as determined via whole cell lysate and subcellular fractionation experiment, biotinylation of NHE1 for surface membrane expression showed E2 reduced functional expression. Quantitative proteomic analysis revealed divergent effects of 17-β-estradiol and testosterone on changes in protein abundance in bEnd.3 endothelial cells as compared to untreated controls. CONCLUSIONS These data suggest that circulating levels of sex hormones may independently control BEB integrity by 1) regulating pH homeostasis through NHE1 functional expression and 2) modifying the endothelial proteome.
Collapse
Affiliation(s)
- Kiera T Blawn
- University of Arizona, Department of Pharmacology, Tucson, AZ, USA
| | | | - Emily A Galloway
- University of Arizona, Department of Pharmacology, Tucson, AZ, USA
| | - Jared Wahl
- University of Arizona, Department of Pharmacology, Tucson, AZ, USA
| | - Anjali Vivek
- University of Arizona, Department of Pharmacology, Tucson, AZ, USA
| | | | - Natalie K Barker
- University of Arizona, Department of Medicine, Division of Endocrinology, College of Medicine, Tucson, AZ, USA
| | | | | | - Paul R Langlais
- University of Arizona, Department of Medicine, Division of Endocrinology, College of Medicine, Tucson, AZ, USA
| | | | - Todd W Vanderah
- University of Arizona, Department of Pharmacology, Tucson, AZ, USA
| | | |
Collapse
|
21
|
Green MS, Nitzan D, Schwartz N, Niv Y, Peer V. Sex differences in the case-fatality rates for COVID-19-A comparison of the age-related differences and consistency over seven countries. PLoS One 2021; 16:e0250523. [PMID: 33914806 PMCID: PMC8084161 DOI: 10.1371/journal.pone.0250523] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Early in the COVID-19 pandemic, it was noted that males seemed to have higher case-fatality rates than females. We examined the magnitude and consistency of the sex differences in age-specific case-fatality rates (CFRs) in seven countries. METHODS Data on the cases and deaths from COVID-19, by sex and age group, were extracted from the national official agencies from Denmark, England, Israel, Italy, Spain, Canada and Mexico. Age-specific CFRs were computed for males and females separately. The ratio of the male to female CFRs were computed and meta-analytic methods were used to obtained pooled estimates of the male to female ratio of the CFRs over the seven countries, for all age-groups. Meta-regression and sensitivity analysis were conducted to evaluate the age and country contribution to differences. RESULTS The CFRs were consistently higher in males at all ages. The pooled M:F CFR ratios were 1.71, 1.88, 2.11, 2.11, 1.84, 1.78 and 1.49, for ages 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80+ respectively. In meta-regression, age group and country were associated with the heterogeneity in the CFR ratios. CONCLUSIONS The sex differences in the age-specific CFRs are intriguing. Sex differences in the incidence and mortality have been found in many infectious diseases. For COVID-19, factors such as sex differences in the prevalence of underlying diseases may play a part in the CFR differences. However, the consistently greater case-fatality rates in males at all ages suggests that sex-related factors impact on the natural history of the disease. This could provide important clues as to the mechanisms underlying the severity of COVID-19 in some patients.
Collapse
Affiliation(s)
| | - Dorit Nitzan
- World Health Organization, European Region, Copenhagen, Denmark
| | - Naama Schwartz
- School of Public Health, University of Haifa, Haifa, Israel
| | - Yaron Niv
- Israel Ministry of Health, Jerusalem, Israel
| | - Victoria Peer
- School of Public Health, University of Haifa, Haifa, Israel
| |
Collapse
|
22
|
Alharshawi K, Fey H, Vogle A, Klenk T, Kim M, Aloman C. Sex specific effect of alcohol on hepatic plasmacytoid dendritic cells. Int Immunopharmacol 2020; 90:107166. [PMID: 33199233 DOI: 10.1016/j.intimp.2020.107166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Alcoholic liver disease includes a spectrum of clinical and histological entities. They result from the combined direct effect of alcohol and its metabolites on immune cells and resident tissue cells. In humans and mice, females are more susceptible to alcoholic liver injury than males. Despite being involved in sex specific differences of immune mediated tissue injury, plasmacytoid dendritic cells (pDCs) have not been thoroughly assessed as a cellular target of alcohol in humans or mice. Therefore, Meadows-Cook diet was used to study alcohol effect on hepatic dendritic cells. Alcohol consumption for 12 weeks increased hepatic pDCs in female mice. The expression of the C-C chemokine receptor type 2 (CCR2) increased in hepatic pDC of alcohol-fed female mice. Bone marrow transplant chimera showed CCR2 dependent bone marrow egress of pDCs. Chronic alcohol exposure has a sex specific effect on hepatic pDCs population that may explain sex differences to alcoholic liver disease.
Collapse
Affiliation(s)
- Khaled Alharshawi
- Division of Digestive Diseases and Nutrition, Section of Hepatology, Rush University, Chicago, IL 60612, United States
| | - Holger Fey
- Division of Digestive Diseases and Nutrition, Section of Hepatology, Rush University, Chicago, IL 60612, United States
| | - Alyx Vogle
- Division of Digestive Diseases and Nutrition, Section of Hepatology, Rush University, Chicago, IL 60612, United States
| | - Tori Klenk
- Division of Digestive Diseases and Nutrition, Section of Hepatology, Rush University, Chicago, IL 60612, United States
| | - Miran Kim
- Division of Digestive Diseases and Nutrition, Section of Hepatology, Rush University, Chicago, IL 60612, United States
| | - Costica Aloman
- Division of Digestive Diseases and Nutrition, Section of Hepatology, Rush University, Chicago, IL 60612, United States.
| |
Collapse
|
23
|
Ulmert I, Henriques-Oliveira L, Pereira CF, Lahl K. Mononuclear phagocyte regulation by the transcription factor Blimp-1 in health and disease. Immunology 2020; 161:303-313. [PMID: 32799350 PMCID: PMC7692253 DOI: 10.1111/imm.13249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 02/04/2023] Open
Abstract
B lymphocyte‐induced maturation protein‐1 (Blimp‐1), the transcription factor encoded by the gene Prdm1, plays a number of crucial roles in the adaptive immune system, which result in the maintenance of key effector functions of B‐ and T‐cells. Emerging clinical data, as well as mechanistic evidence from mouse studies, have additionally identified critical functions of Blimp‐1 in the maintenance of immune homeostasis by the mononuclear phagocyte (MNP) system. Blimp‐1 regulation of gene expression affects various aspects of MNP biology, including developmental programmes such as fate decisions of monocytes entering peripheral tissue, and functional programmes such as activation, antigen presentation and secretion of soluble inflammatory mediators. The highly tissue‐, subset‐ and state‐specific regulation of Blimp‐1 expression in MNPs suggests that Blimp‐1 is a dynamic regulator of immune activation, integrating environmental cues to fine‐tune the function of innate cells. In this review, we will discuss the current knowledge regarding Blimp‐1 regulation and function in macrophages and dendritic cells.
Collapse
Affiliation(s)
- Isabel Ulmert
- Division of Biopharma, Institute for Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | | | - Carlos-Filipe Pereira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Katharina Lahl
- Division of Biopharma, Institute for Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark.,Immunology Section, Lund University, Lund, Sweden
| |
Collapse
|
24
|
Justina VD, Giachini FR, Sullivan JC, Webb RC. Toll-Like Receptors Contribute to Sex Differences in Blood Pressure Regulation. J Cardiovasc Pharmacol 2020; 76:255-266. [PMID: 32902942 PMCID: PMC7751064 DOI: 10.1097/fjc.0000000000000869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) play an important role in the innate immune system, and recently, they have been shown to be involved in the regulation of blood pressure. The incidence of hypertension is higher in men, and it increases in postmenopausal women. In fact, premenopausal women are protected from cardiovascular disease compared with age-matched men, and it is well established that this protective effect is lost with menopause. However, the molecular mechanisms underlying this protection in women are unknown. Whether or not it could be related to differential activation of the innate immune system remains to be elucidated. This review focuses on (1) the differences between men and women in TLR activation and (2) whether TLR activation may influence the regulation of blood pressure in a sex-dependent manner.
Collapse
Affiliation(s)
- Vanessa Dela Justina
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Fernanda R. Giachini
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil
- Institute of Health Sciences and Health, Universidad Federal De Mato Grosso, Barra Do Garcas, Brazil
| | - Jennifer C. Sullivan
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA
| | - R. Clinton Webb
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA
| |
Collapse
|
25
|
Green MS, Schwartz N, Peer V. Sex differences in campylobacteriosis incidence rates at different ages - a seven country, multi-year, meta-analysis. A potential mechanism for the infection. BMC Infect Dis 2020; 20:625. [PMID: 32842973 PMCID: PMC7445732 DOI: 10.1186/s12879-020-05351-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 08/16/2020] [Indexed: 01/29/2023] Open
Abstract
Background There is evidence that males have higher incidence rates (IR) of campylobacteriois than females. The objectives of this study were to determine whether these observations differ between age groups and are consistent over different countries and during different time periods. Methods We obtained data on IRs of campylobacteriosis by sex and age group over a period of 11–26 years from seven countries. Male to female incidence rate ratios (IRR) were computed by age group, country and time period. For each age group, we used meta-analytic methods to combine the IRRs. Sensitivity analysis was used to test whether the results are robust to differences between countries and time periods. Meta-regression was conducted to estimate the different effects of age, country, and time period on the IRR. Results In the age groups < 1, 1–4, 5–9, 10–14, 15–44, 45–64 and 65+ years old, the pooled IRRs (with 95% CI) were 1.31 (1.26–1.37), 1.34 (1.31–1.37), 1.35 (1.32–1.38), 1.73 (1.68–1.79), 1.10 (1.08–1.12), 1.19(1.17–1.21) and 1.27 (1.24–1.30), respectively. For each age group, the excess campylobacteriosis IRs in males differed at different age groups. However, despite some quantitative differences between countries, the excess was consistently present over long time-periods. In meta-regression analysis, age group was responsible for almost all the variation in the IRRs. Conclusions The male predominance in campylobacteriosis IRs starts in infancy. This suggests that this is due, at least in part, to physiological or genetic differences and not just behavioural factors. These findings can provide clues to the mechanisms of the infection and could lead to more targeted treatments and vaccine development.
Collapse
Affiliation(s)
- Manfred S Green
- School of Public Health, University of Haifa, Abba Khoushy 199, Mount Carmel, 3498838, Haifa, Israel.
| | - Naama Schwartz
- School of Public Health, University of Haifa, Abba Khoushy 199, Mount Carmel, 3498838, Haifa, Israel
| | - Victoria Peer
- School of Public Health, University of Haifa, Abba Khoushy 199, Mount Carmel, 3498838, Haifa, Israel
| |
Collapse
|
26
|
El-Badry E, Macharia G, Claiborne D, Brooks K, Dilernia DA, Goepfert P, Kilembe W, Allen S, Gilmour J, Hunter E. Better Viral Control despite Higher CD4 + T Cell Activation during Acute HIV-1 Infection in Zambian Women Is Linked to the Sex Hormone Estradiol. J Virol 2020; 94:e00758-20. [PMID: 32461316 PMCID: PMC7394904 DOI: 10.1128/jvi.00758-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023] Open
Abstract
The influence of biological sex on disease progression in HIV-1-infected individuals has been focused on the chronic stage of infection, but little is known about how sex differences influence acute HIV-1 infection. We observed profound differences in viral load and CD4+ T cell activation from the earliest time points in men and women in a Zambian heterosexual acute infection cohort. Women exhibited a >2-fold higher rate of CD4+ T cell loss despite significantly lower viral loads (VL) than men. The importance of studying acute infection was highlighted by the observation that very early in infection, women exhibited significantly higher levels of CD4+ T cell activation, a difference that was lost over the first 3 years of infection as activation in men increased. In women, activation of CD4+ T cells in the acute phase was significantly correlated with plasma levels of 17β-estradiol (E2). However, unlike in men, higher CD4+ T cell activation in women was not associated with higher VL. In contrast, a higher E2 level in early infection was associated with lower early and set-point VL in women. We attribute this to an inhibitory effect of estradiol on virus replication, which we were able to observe with relevant transmitted/founder viruses in vitro Thus, estradiol plays a key role in defining major differences between men and women during early HIV-1 infection by contributing to both viral control and CD4+ T cell loss, an effect that extends into the chronic phase of the disease.IMPORTANCE Previous studies have identified sex-specific differences during chronic HIV-1 infection, but little is known about sex differences in the acute phase, or how disparities in the initial response to the virus may affect disease. We demonstrate that restriction of viral load in women begins during acute infection and is maintained into chronic infection. Despite this, women exhibit more rapid CD4+ T cell loss than men. These profound differences are influenced by 17β-estradiol, which contributes both to T cell activation and to reduced viral replication. Thus, we conclude that estradiol plays a key role in shaping responses to early HIV-1 infection that influence the chronic phase of disease.
Collapse
Affiliation(s)
- Elina El-Badry
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Gladys Macharia
- Department of Medicine, Imperial College London, London, United Kingdom
- International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom
| | - Daniel Claiborne
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Kelsie Brooks
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Darío A Dilernia
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Paul Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Susan Allen
- Zambia-Emory HIV Research Project, Lusaka, Zambia
- Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | - Jill Gilmour
- Department of Medicine, Imperial College London, London, United Kingdom
- International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom
| | - Eric Hunter
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
27
|
Sex and Gender Influences on Cancer Immunotherapy Response. Biomedicines 2020; 8:biomedicines8070232. [PMID: 32708265 PMCID: PMC7400663 DOI: 10.3390/biomedicines8070232] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/17/2020] [Accepted: 07/18/2020] [Indexed: 12/22/2022] Open
Abstract
The global burden of cancer is growing and a wide disparity in the incidence, malignancy and mortality of different types of cancer between each sex has been demonstrated. The sex specificity of cancer appears to be a relevant issue in the management of the disease, and studies investigating the role of sex and gender are becoming extremely urgent. Sex hormones are presumably the leading actors of sex differences in cancer, especially estrogens. They modulate gene expression, alter molecules and generate disparities in effectiveness and side effects of anticancer therapies. Recently immunotherapy aims to improve anticancer treatment strategies reducing off-target effects of chemotherapy and direct cancer cells killing. It is recognized as a fruitful strategy to treat and possible to cure cancer. Immunotherapeutic agents are used to activate or boost the activation of the immune system to fight cancer cells through physiological mechanisms often evaded in the offensive march of the disease. These therapeutic strategies have allowed new successes, but also have serious adverse effects including non-specific inflammation and autoimmunity. Sex and gender issues are of primary importance in this field, due to their recognized role in inflammation, immunity and cancer, and the clarification and understanding of these aspects is a necessary step to increase the responses and to diminish the adverse effects of immunotherapy. This review describes the available knowledge on the role of sex and gender in cancer immunotherapy, and will offer insights to stimulate the attention and practice of clinicians and researchers in a gender perspective of new cancer treatment strategies.
Collapse
|
28
|
Estrogen Receptors Alpha and Beta in Acute Myeloid Leukemia. Cancers (Basel) 2020; 12:cancers12040907. [PMID: 32276421 PMCID: PMC7226505 DOI: 10.3390/cancers12040907] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/24/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
Estrogen receptor (ER) signaling has been widely studied in a variety of solid tumors, where the differential expression of ERα and ERβ subtypes can impact prognosis. ER signaling has only recently emerged as a target of interest in acute myeloid leukemia (AML), an aggressive hematological malignancy with sub-optimal therapeutic options and poor clinical outcomes. In a variety of tumors, ERα activation has proliferative effects, while ERβ targeting results in cell senescence or death. Aberrant ER expression and hypermethylation have been characterized in AML, making ER targeting in this disease of great interest. This review describes the expression patterns of ERα and ERβ in AML and discusses the differing signaling pathways associated with each of these receptors. Furthermore, we assess how these signaling pathways can be targeted by various selective estrogen receptor modulators to induce AML cell death. We also provide insight into ER targeting in AML and discuss pending questions that require further study.
Collapse
|
29
|
Scully EP, Gandhi M, Johnston R, Hoh R, Lockhart A, Dobrowolski C, Pagliuzza A, Milush JM, Baker CA, Girling V, Ellefson A, Gorelick R, Lifson J, Altfeld M, Alter G, Cedars M, Solomon A, Lewin SR, Karn J, Chomont N, Bacchetti P, Deeks SG. Sex-Based Differences in Human Immunodeficiency Virus Type 1 Reservoir Activity and Residual Immune Activation. J Infect Dis 2020; 219:1084-1094. [PMID: 30371873 DOI: 10.1093/infdis/jiy617] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/26/2018] [Indexed: 01/31/2023] Open
Abstract
Plasma human immunodeficiency virus type 1 (HIV-1) RNA levels in women are lower early in untreated HIV-1 infection compared with those in men, but women have higher T-cell activation and faster disease progression when adjusted for viral load. It is not known whether these sex differences persist during effective antiretroviral therapy (ART), or whether they would be relevant for the evaluation and implementation of HIV-1 cure strategies. We prospectively enrolled a cohort of reproductive-aged women and matched men on suppressive ART and measured markers of HIV-1 persistence, residual virus activity, and immune activation. The frequency of CD4+ T cells harboring HIV-1 DNA was comparable between the sexes, but there was higher cell-associated HIV-1 RNA, higher plasma HIV-1 (single copy assay), and higher T-cell activation and PD-1 expression in men compared with women. These sex-related differences in immune phenotype and HIV-1 persistence on ART have significant implications for the design and measurement of curative interventions.
Collapse
Affiliation(s)
- Eileen P Scully
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts.,Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Monica Gandhi
- Department of Medicine, University of California, San Francisco
| | | | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco
| | - Ainsley Lockhart
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge
| | | | - Amélie Pagliuzza
- Research Centre, Centre Hospitalier de l'Université de Montréal and Université de Montréal, Quebec, Canada
| | | | | | - Valerie Girling
- Department of Medicine, University of California, San Francisco
| | - Arlvin Ellefson
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, Maryland
| | - Jeffrey Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, Maryland
| | | | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge
| | - Marcelle Cedars
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco
| | - Ajantha Solomon
- Peter Doherty Institute of Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Sharon R Lewin
- Peter Doherty Institute of Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | | | - Nicolas Chomont
- Research Centre, Centre Hospitalier de l'Université de Montréal and Université de Montréal, Quebec, Canada
| | - Peter Bacchetti
- Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco
| |
Collapse
|
30
|
Abstract
Sexual dimorphisms account for differences in clinical manifestations or incidence of infectious or autoimmune diseases and malignancy between females and males. Females develop enhanced innate and adaptive immune responses than males and are less susceptible to many infections of bacterial, viral, parasitic, and fungal origin and malignancies but in contrast, they are more prone to develop autoimmune diseases. The higher susceptibility to infections in males is observed from birth to adulthood, suggesting that sex chromosomes and not sex hormones have a major role in sexual dimorphism in innate immunity. Sex-based regulation of immune responses ultimately contributes to age-related disease development and life expectancy. Differences between males and females have been described in the expression of pattern recognition receptors of the innate immune response and in the functional responses of phagocytes and antigen presenting cells. Different factors have been shown to account for the sex-based disparity in immune responses, including genetic factors and hormonal mediators, which contribute independently to dimorphism in the innate immune response. For instance, several genes encoding for innate immune molecules are located on the X chromosome. In addition, estrogen and/or testosterone have been reported to modulate the differentiation, maturation, lifespan, and effector functions of innate immune cells, including neutrophils, macrophages, natural killer cells, and dendritic cells. In this review, we will focus on differences between males and females in innate immunity, which represents the first line of defense against pathogens and plays a fundamental role in the activation, regulation, and orientation of the adaptive immune response.
Collapse
Affiliation(s)
- Sébastien Jaillon
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini, 20090, Pieve Emanuele, Milan, Italy. .,Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| | - Kevin Berthenet
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Cecilia Garlanda
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini, 20090, Pieve Emanuele, Milan, Italy. .,Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| |
Collapse
|
31
|
Peer V, Schwartz N, Green MS. Consistent, Excess Viral Meningitis Incidence Rates in Young Males: A Multi-country, Multi-year, Meta-analysis of National Data. The Importance of Sex as a Biological Variable. EClinicalMedicine 2019; 15:62-71. [PMID: 31709415 PMCID: PMC6833362 DOI: 10.1016/j.eclinm.2019.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/30/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sex can be an important biological variable in the immune response to infections and the response to vaccines. The magnitude and consistency in age-specific sex differences in the incidence of viral infections remain unclear. METHODS We obtained data from national official agencies on cases of viral meningitis by sex and age group over a period of 6-16 years from five countries: Canada, Czech Republic, Germany, Israel, and Poland. Male to female incidence rate ratios (RR) were computed for each year, by country, and age group. For each age group, we used meta-analysis methodology to combine the incidence RRs. Meta-regression was conducted to the estimate the effects of age, country, and time period on the RR. FINDINGS In the age groups < 1, 1-4, 5-9, 10-14, there were consistently higher incidence rates in males, over countries and time. The pooled incidence RRs (with 95% CI) were 1.38 (1.30-1.47), 1.94 (1.85-2.03), 1.98 (1.88-2.07), and 1.58 (1.47-1.71) respectively. In young and middle-age adults there were no differences with pooled incidence RRs of 1.00 (0.97-1.03), and 0.97 (0.94-1.00), respectively. Sensitivity analysis confirms that the results are stable and robust. Meta-regression showed that almost all the variations in the incidence RRs were contributed by age group. INTERPRETATION The higher incidence rates from viral meningitis in males under the age of 15 are remarkably consistent across countries and time-periods. These findings emphasize the importance of sex as a biological variable in infectious diseases. This could provide keys to the mechanisms of infection and lead to more personalized treatment and vaccine doses and schedules. FUNDING There was no funding source for this article.
Collapse
|
32
|
Liao ZH, Huang T, Xiao JW, Gu RC, Ouyang J, Wu G, Liao H. Estrogen signaling effects on muscle-specific immune responses through controlling the recruitment and function of macrophages and T cells. Skelet Muscle 2019; 9:20. [PMID: 31358063 PMCID: PMC6661750 DOI: 10.1186/s13395-019-0205-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
Background Estrogen signaling is indispensable for muscle regeneration, yet the role of estrogen in the development of muscle inflammation, especially in the intramuscular T cell response, and the influence on the intrinsic immuno-behaviors of myofibers remain largely unknown. We investigated this issue using the mice model of cardiotoxin (CTX)-induced myoinjury, with or without estrogen level adjustment. Methods CTX injection i.m. (tibialis anterior, TA) was performed for preparing mice myoinjury model. Injection s.c. of 17β-estradiol (E2) or estrogen receptor antagonist 4-OHT, or ovariectomy (OVX), was used to change estrogen level of animal models in vivo. Serum E2 level was evaluated by ELISA. Gene levels of estrogen receptor (ERs) and cytokines/chemokines in inflamed muscle were monitored by qPCR. Inflammatory infiltration was observed by immunofluorescence. Macrophage and T cell phenotypes were analyzed by FACS. Immunoblotting was used to assess protein levels of ERs and immunomolecules in C2C12 myotubes treated with E2 or 4-OHT, in the presence of IFN-γ. Results We monitored the increased serum E2 level and the upregulated ERβ in regenerated myofibres after myotrauma. The absence of estrogen in vivo resulted in the more severe muscle inflammatory infiltration, involving the recruitment of monocyte/macrophage and CD4+ T cells, and the heightened proinflammatory (M1) macrophage. Moreover, estrogen signaling loss led to Treg cells infiltration decrease, Th1 response elevation in inflamed muscle, and the markedly expression upregulation of immunomolecules in IFN-γ-stimulated C2C12 myotubes in vitro. Conclusion Our data suggest that estrogen is a positive intervention factor for muscle inflammatory response, through its effects on controlling intramuscular infiltration and phenotypes of monocytes/macrophages, on affecting accumulation and function of Treg cells, and on suppressing Th1 response in inflamed muscle. Our findings also imply an inhibition effect of estrogen on the intrinsic immune behaviors of muscle cells.
Collapse
Affiliation(s)
- Zhao Hong Liao
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, Southern Medical University, Guangzhou, 510515, China
| | - Tao Huang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, Southern Medical University, Guangzhou, 510515, China
| | - Jiang Wei Xiao
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, Southern Medical University, Guangzhou, 510515, China
| | - Rui Cai Gu
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, Southern Medical University, Guangzhou, 510515, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, Southern Medical University, Guangzhou, 510515, China
| | - Gang Wu
- Department of Emergency, NanFang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Hua Liao
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
33
|
Affiliation(s)
- Jean-Charles Guéry
- Centre de Physiopathologie de Toulouse Purpan (CPTP), 31024 Toulouse Cedex 3, France; Université de Toulouse, 31300 Toulouse, France; Inserm, CNRS, UPS, 31300 Toulouse, France.
| |
Collapse
|
34
|
Genetic variation in TLR pathway and the risk of pulmonary tuberculosis in a Moldavian population. INFECTION GENETICS AND EVOLUTION 2019; 68:84-90. [DOI: 10.1016/j.meegid.2018.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/20/2018] [Accepted: 12/04/2018] [Indexed: 11/20/2022]
|
35
|
Eaddy Norton A, Broyles AD. Drug allergy in children and adults: Is it the double X chromosome? Ann Allergy Asthma Immunol 2018; 122:148-155. [PMID: 30465863 DOI: 10.1016/j.anai.2018.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE This article reviews the latest science and epidemiologic studies related to drug allergy in children and adults to explore possible mechanisms related to female propensity for drug allergy. DATA SOURCES PubMed literature review, focusing primarily on the last 5 years. STUDY SELECTIONS Articles reviewing the science behind female predisposition to atopic and asthmatic conditions and epidemiologic studies reviewing drug allergy and drug-induced anaphylaxis. RESULTS Despite adult female predilection for atopic conditions, few laboratory studies explore sex-specific mechanisms in atopic/allergic diseases, and most are focused on autoimmunity and asthma. Drug allergy is more frequently reported in adult females compared with adult males. Adult females are also more likely to have drug-induced anaphylaxis (DIA), although no clear sex predominance has been reported in fatal or severe DIA. Studies in children suggest the reverse picture, with prepubertal males more likely to have drug allergy and DIA than prepubertal girls. CONCLUSION Possible explanations for female predisposition for drug allergy are multifactorial and include disproportionate utilization of health care with more exposure to antibiotics or medications, genetic factors related to the X chromosome, epigenetic changes, and discrepant hormonal interactions with immune cells.
Collapse
Affiliation(s)
- Allison Eaddy Norton
- Vanderbilt Children's Hospital, Division of Pediatric Pulmonary, Allergy and Immunology, School of Medicine, Nashville, Tennessee
| | - Ana Dioun Broyles
- Boston Children's Hospital, Division of Allergy and Immunology, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
36
|
Cunningham MA, Richard ML, Wirth JR, Scott JL, Eudaly J, Ruiz P, Gilkeson GS. Novel mechanism for estrogen receptor alpha modulation of murine lupus. J Autoimmun 2018; 97:59-69. [PMID: 30416032 DOI: 10.1016/j.jaut.2018.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022]
Abstract
Female sex is a risk factor for lupus. Sex hormones, sex chromosomes and hormone receptors are implicated in the pathogenic pathways in lupus. Estrogen receptor alpha (ERα) knockout (KO) mice are used for defining hormone receptor effects in lupus. Prior studies of ERα KO in lupus have conflicting results, likely due to sex hormone levels, different lupus strains and different ERα KO constructs. Our objective was to compare a complete KO of ERα vs. the original functional KO of ERα (expressing a short ERα) on disease expression and immune phenotype, while controlling sex hormone levels. We studied female lupus prone NZM2410 WT and ERα mutant mice. All mice (n = 44) were ovariectomized (OVX) for hormonal control. Groups of each genotype were estrogen (E2)-repleted after OVX. We found that OVXed NZM mice expressing the truncated ERα (ERα short) had significantly reduced nephritis and prolonged survival compared to both wildtype and the complete ERαKO (ERα null) mice, but surprisingly only if E2-repleted. ERα null mice were not protected regardless of E2 status. We observed significant differences in splenic B cells and dendritic cells and a decrease in cDC2 (CD11b+CD8-) dendritic cells, without a concomitant decrease in cDC1 (CD11b-CD8a+) cells comparing ERα short to ERα null or WT mice. Our data support a protective role for the ERα short protein. ERα short is similar to an endogenously expressed ERα variant (ERα46). Modulating its expression/activity represents a potential approach for treating female-predominant autoimmune diseases.
Collapse
Affiliation(s)
- Melissa A Cunningham
- Medical University of South Carolina, Division of Rheumatology and Immunology, Charleston, SC, 29425, USA.
| | - Mara Lennard Richard
- Medical University of South Carolina, Division of Rheumatology and Immunology, Charleston, SC, 29425, USA
| | - Jena R Wirth
- Medical University of South Carolina, Division of Rheumatology and Immunology, Charleston, SC, 29425, USA
| | - Jennifer L Scott
- Medical University of South Carolina, Division of Rheumatology and Immunology, Charleston, SC, 29425, USA
| | - Jackie Eudaly
- Medical University of South Carolina, Division of Rheumatology and Immunology, Charleston, SC, 29425, USA
| | - Phil Ruiz
- University of Miami, School of Medicine, Department of Pathology, 1611 N.W. 12th Ave., Holtz Center, East Tower, Room 2101, Miami, FL, 33136, USA
| | - Gary S Gilkeson
- Medical University of South Carolina, Division of Rheumatology and Immunology, Charleston, SC, 29425, USA; Ralph H. Johnson Veterans Affairs Hospital, Charleston, SC, 29425, USA
| |
Collapse
|
37
|
Garnier L, Laffont S, Lélu K, Yogev N, Waisman A, Guéry JC. Estrogen Signaling in Bystander Foxp3neg CD4+ T Cells Suppresses Cognate Th17 Differentiation in Trans and Protects from Central Nervous System Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2018; 201:3218-3228. [DOI: 10.4049/jimmunol.1800417] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/25/2018] [Indexed: 12/31/2022]
|
38
|
Female predisposition to TLR7-driven autoimmunity: gene dosage and the escape from X chromosome inactivation. Semin Immunopathol 2018; 41:153-164. [PMID: 30276444 DOI: 10.1007/s00281-018-0712-y] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/17/2018] [Indexed: 12/13/2022]
Abstract
Women develop stronger immune responses than men, with positive effects on the resistance to viral or bacterial infections but magnifying also the susceptibility to autoimmune diseases like systemic lupus erythematosus (SLE). In SLE, the dosage of the endosomal Toll-like receptor 7 (TLR7) is crucial. Murine models have shown that TLR7 overexpression suffices to induce spontaneous lupus-like disease. Conversely, suppressing TLR7 in lupus-prone mice abolishes SLE development. TLR7 is encoded by a gene on the X chromosome gene, denoted TLR7 in humans and Tlr7 in the mouse, and expressed in plasmacytoid dendritic cells (pDC), monocytes/macrophages, and B cells. The receptor recognizes single-stranded RNA, and its engagement promotes B cell maturation and the production of pro-inflammatory cytokines and antibodies. In female mammals, each cell randomly inactivates one of its two X chromosomes to equalize gene dosage with XY males. However, 15 to 23% of X-linked human genes escape X chromosome inactivation so that both alleles can be expressed simultaneously. It has been hypothesized that biallelic expression of X-linked genes could occur in female immune cells, hence fostering harmful autoreactive and inflammatory responses. We review here the current knowledge of the role of TLR7 in SLE, and recent evidence demonstrating that TLR7 escapes from X chromosome inactivation in pDCs, monocytes, and B lymphocytes from women and Klinefelter syndrome men. Female B cells where TLR7 is thus biallelically expressed display higher TLR7-driven functional responses, connecting the presence of two X chromosomes with the enhanced immunity of women and their increased susceptibility to TLR7-dependent autoimmune syndromes.
Collapse
|
39
|
Schwinge D, Schramm C. Sex-related factors in autoimmune liver diseases. Semin Immunopathol 2018; 41:165-175. [DOI: 10.1007/s00281-018-0715-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022]
|
40
|
Kadel S, Kovats S. Sex Hormones Regulate Innate Immune Cells and Promote Sex Differences in Respiratory Virus Infection. Front Immunol 2018; 9:1653. [PMID: 30079065 PMCID: PMC6062604 DOI: 10.3389/fimmu.2018.01653] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/04/2018] [Indexed: 01/27/2023] Open
Abstract
Sex differences in the incidence and severity of respiratory virus infection are widely documented in humans and murine models and correlate with sex biases in numbers and/or functional responses of innate immune cells in homeostasis and lung infection. Similarly, changes in sex hormone levels upon puberty, pregnancy, and menopause/aging are associated with qualitative and quantitative differences in innate immunity. Immune cells express receptors for estrogens (ERα and ERβ), androgens (AR), and progesterone (PR), and experimental manipulation of sex hormone levels or receptors has revealed that sex hormone receptor activity often underlies sex differences in immune cell numbers and/or functional responses in the respiratory tract. While elegant studies have defined mechanistic roles for sex hormones and receptors in innate immune cells, much remains to be learned about the cellular and molecular mechanisms of action of ER, PR, and AR in myeloid cells and innate lymphocytes to promote the initiation and resolution of antiviral immunity in the lung. Here, we review the literature on sex differences and sex hormone regulation in innate immune cells in the lung in homeostasis and upon respiratory virus infection.
Collapse
Affiliation(s)
- Sapana Kadel
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Susan Kovats
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
41
|
Buschow SI, Biesta PJ, Groothuismink ZMA, Erler NS, Vanwolleghem T, Ho E, Najera I, Ait-Goughoulte M, de Knegt RJ, Boonstra A, Woltman AM. TLR7 polymorphism, sex and chronic HBV infection influence plasmacytoid DC maturation by TLR7 ligands. Antiviral Res 2018; 157:27-37. [PMID: 29964062 DOI: 10.1016/j.antiviral.2018.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023]
Abstract
TLR7 agonists are of high interest for the treatment of cancer, auto-immunity and chronic viral infections. They are known to activate plasmacytoid dendritic cells (pDCs) to produce high amounts of Type I Interferon (IFN) and to facilitate T and B cell responses, the latter with the help of maturation markers such as CD40, CD80 and CD86. The TLR7 single nucleotide polymorphism (SNP) rs179008 (GLn11Leu), sex and chronic viral infection have all been reported to influence pDC IFN production. It is unknown, however, whether these factors also influence pDC phenotypic maturation and thereby IFN-independent pDC functions. Furthermore, it is unclear whether SNP rs179008 influences HBV susceptibility and/or clearance. Here we investigated whether the SNP rs179008, sex and HBV infection affected phenotypic maturation of pDCs from 38 healthy individuals and 28 chronic HBV patients. In addition, we assessed SNP prevalence in a large cohort of healthy individuals (n = 231) and chronic HBV patients (n = 1054). Consistent with previous reports, the rs179008 variant allele was largely absent in Asians and more prevalent in Caucasians. Among Caucasians, the SNP was equally prevalent in healthy and chronically infected males. The SNP was, however, significantly more prevalent in healthy females than in those with chronic HBV infection (42 versus 28%), suggesting that in females it may offer protection from chronic infection. Ex vivo experiments demonstrated that induction of the co-stimulatory molecules CD40 and CD86 by TLR7 ligands, but not TLR9 ligands, was augmented in pDCs from healthy SNP-carrying females. Furthermore, CD80 and CD86 upregulation was more pronounced in females independent of the SNP. Lastly, our data suggested that chronic HBV infection impairs pDC maturation. These findings provide insight into factors determining TLR7 responses, which is important for further clinical development of TLR7-based therapies.
Collapse
Affiliation(s)
- Sonja I Buschow
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, The Netherlands
| | - Paula J Biesta
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, The Netherlands
| | - Zwier M A Groothuismink
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, The Netherlands
| | - Nicole S Erler
- Department of Biostatistics, Erasmus MC University Medical Center Rotterdam, The Netherlands
| | - Thomas Vanwolleghem
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, The Netherlands; Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp and Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| | - Erwin Ho
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp and Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| | - Isabel Najera
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, Switzerland
| | - Malika Ait-Goughoulte
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, Switzerland
| | - Robert J de Knegt
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, The Netherlands
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, The Netherlands
| | - Andrea M Woltman
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, The Netherlands.
| |
Collapse
|
42
|
Bereshchenko O, Bruscoli S, Riccardi C. Glucocorticoids, Sex Hormones, and Immunity. Front Immunol 2018; 9:1332. [PMID: 29946321 PMCID: PMC6006719 DOI: 10.3389/fimmu.2018.01332] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/29/2018] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoid hormones regulate essential body functions in mammals, control cell metabolism, growth, differentiation, and apoptosis. Importantly, they are potent suppressors of inflammation, and multiple immune-modulatory mechanisms involving leukocyte apoptosis, differentiation, and cytokine production have been described. Due to their potent anti-inflammatory and immune-suppressive activity, synthetic glucocorticoids (GCs) are the most prescribed drugs used for treatment of autoimmune and inflammatory diseases. It is long been noted that males and females exhibit differences in the prevalence in several autoimmune diseases (AD). This can be due to the role of sexual hormones in regulation of the immune responses, acting through their endogenous nuclear receptors to mediate gene expression and generate unique gender-specific cellular environments. Given the fact that GCs are the primary physiological anti-inflammatory hormones, and that sex hormones may also exert immune-modulatory functions, the link between GCs and sex hormones may exist. Understanding the nature of this possible crosstalk is important to unravel the reason of sexual disparity in AD and to carefully prescribe these drugs for the treatment of inflammatory diseases. In this review, we discuss similarities and differences between the effects of sex hormones and GCs on the immune system, to highlight possible axes of functional interaction.
Collapse
Affiliation(s)
- Oxana Bereshchenko
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy.,Department of Surgery and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Stefano Bruscoli
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
43
|
Leffler J, Stumbles PA, Strickland DH. Immunological Processes Driving IgE Sensitisation and Disease Development in Males and Females. Int J Mol Sci 2018; 19:E1554. [PMID: 29882879 PMCID: PMC6032271 DOI: 10.3390/ijms19061554] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 01/15/2023] Open
Abstract
IgE sensitisation has increased significantly over the last decades and is a crucial factor in the development of allergic diseases. IgE antibodies are produced by B cells through the process of antigen presentation by dendritic cells, subsequent differentiation of CD4⁺ Th2 cells, and class switching in B cells. However, many of the factors regulating these processes remain unclear. These processes affect males and females differently, resulting in a significantly higher prevalence of IgE sensitisation in males compared to females from an early age. Before the onset of puberty, this increased prevalence of IgE sensitisation is also associated with a higher prevalence of clinical symptoms in males; however, after puberty, females experience a surge in the incidence of allergic symptoms. This is particularly apparent in allergic asthma, but also in other allergic diseases such as food and contact allergies. This has been partly attributed to the pro- versus anti-allergic effects of female versus male sex hormones; however, it remains unclear how the expression of sex hormones translates IgE sensitisation into clinical symptoms. In this review, we describe the recent epidemiological findings on IgE sensitisation in male and females and discuss recent mechanistic studies casting further light on how the expression of sex hormones may influence the innate and adaptive immune system at mucosal surfaces and how sex hormones may be involved in translating IgE sensitisation into clinical manifestations.
Collapse
Affiliation(s)
- Jonatan Leffler
- Telethon Kids Institute, The University of Western Australia, 100 Roberts Rd, Subiaco, WA 6008, Australia.
| | - Philip A Stumbles
- Telethon Kids Institute, The University of Western Australia, 100 Roberts Rd, Subiaco, WA 6008, Australia.
- School of Paediatrics and Child Health, The University of Western Australia, Subiaco, WA 6008, Australia.
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia.
| | - Deborah H Strickland
- Telethon Kids Institute, The University of Western Australia, 100 Roberts Rd, Subiaco, WA 6008, Australia.
| |
Collapse
|
44
|
Parl FF, Crooke PS, Plummer WD, Dupont WD. Genomic-Epidemiologic Evidence That Estrogens Promote Breast Cancer Development. Cancer Epidemiol Biomarkers Prev 2018; 27:899-907. [PMID: 29789325 DOI: 10.1158/1055-9965.epi-17-1174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/23/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022] Open
Abstract
Background: Estrogens are a prime risk factor for breast cancer, yet their causal relation to tumor formation remains uncertain. A recent study of 560 breast cancers identified 82 genes with 916 point mutations as drivers in the genesis of this malignancy. Because estrogens play a major role in breast cancer development and are also known to regulate the expression of numerous genes, we hypothesize that the 82 driver genes are likely to be influenced by estrogens, such as 17ß-estradiol (E2), and the estrogen receptor ESR1 (ERα). Because different types of tumors are characterized by unique sets of cancer driver genes, we also argue that the fraction of driver genes regulated by E2-ESR1 is lower in malignancies not associated with estrogens, e.g., acute myeloid leukemia (AML).Methods: We performed a literature search of each driver gene to determine its E2-ESR1 regulation.Results: Fifty-three of the 82 driver genes (64.6%) identified in breast cancers showed evidence of E2-ESR1 regulation. In contrast, only 19 of 54 mutated driver genes (35.2%) identified in AML were linked to E2-ESR1. Among the 916 driver mutations found in breast cancers, 813 (88.8%) were linked to E2-ESR1 compared with 2,046 of 3,833 in AML (53.4%).Conclusions: Risk assessment revealed that mutations in estrogen-regulated genes are much more likely to be associated with elevated breast cancer risk, while mutations in unregulated genes are more likely to be associated with AML.Impact: These results increase the plausibility that estrogens promote breast cancer development. Cancer Epidemiol Biomarkers Prev; 27(8); 899-907. ©2018 AACR.
Collapse
Affiliation(s)
- Fritz F Parl
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee.
| | - Philip S Crooke
- Department of Mathematics, Vanderbilt University, Nashville, Tennessee
| | - W Dale Plummer
- Department of Health Policy, Vanderbilt University, Nashville, Tennessee
| | - William D Dupont
- Department of Health Policy, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
45
|
Batton KA, Austin CO, Bruno KA, Burger CD, Shapiro BP, Fairweather D. Sex differences in pulmonary arterial hypertension: role of infection and autoimmunity in the pathogenesis of disease. Biol Sex Differ 2018; 9:15. [PMID: 29669571 PMCID: PMC5907450 DOI: 10.1186/s13293-018-0176-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 04/09/2018] [Indexed: 01/14/2023] Open
Abstract
Registry data worldwide indicate an overall female predominance for pulmonary arterial hypertension (PAH) of 2–4 over men. Genetic predisposition accounts for only 1–5% of PAH cases, while autoimmune diseases and infections are closely linked to PAH. Idiopathic PAH may include patients with undiagnosed autoimmune diseases based on the relatively high presence of autoantibodies in this group. The two largest PAH registries to date report a sex ratio for autoimmune connective tissue disease-associated PAH of 9:1 female to male, highlighting the need for future studies to analyze subgroup data according to sex. Autoimmune diseases that have been associated with PAH include female-dominant systemic sclerosis, systemic lupus erythematosus, rheumatoid arthritis, Sjögren’s syndrome, and thyroiditis as well as male-dominant autoimmune diseases like myocarditis which has been linked to HIV-associated PAH. The sex-specific association of PAH to certain infections and autoimmune diseases suggests that sex hormones and inflammation may play an important role in driving the pathogenesis of disease. However, there is a paucity of data on sex differences in inflammation in PAH, and more research is needed to better understand the pathogenesis underlying PAH in men and women. This review uses data on sex differences in PAH and PAH-associated autoimmune diseases from registries to provide insight into the pathogenesis of disease.
Collapse
Affiliation(s)
- Kyle A Batton
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | | | - Katelyn A Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Charles D Burger
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Brian P Shapiro
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
46
|
Edwards M, Dai R, Ahmed SA. Our Environment Shapes Us: The Importance of Environment and Sex Differences in Regulation of Autoantibody Production. Front Immunol 2018; 9:478. [PMID: 29662485 PMCID: PMC5890161 DOI: 10.3389/fimmu.2018.00478] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/22/2018] [Indexed: 01/17/2023] Open
Abstract
Consequential differences exist between the male and female immune systems’ ability to respond to pathogens, environmental insults or self-antigens, and subsequent effects on immunoregulation. In general, females when compared with their male counterparts, respond to pathogenic stimuli and vaccines more robustly, with heightened production of antibodies, pro-inflammatory cytokines, and chemokines. While the precise reasons for sex differences in immune response to different stimuli are not yet well understood, females are more resistant to infectious diseases and much more likely to develop autoimmune diseases. Intrinsic (i.e., sex hormones, sex chromosomes, etc.) and extrinsic (microbiome composition, external triggers, and immune modulators) factors appear to impact the overall outcome of immune responses between sexes. Evidence suggests that interactions between environmental contaminants [e.g., endocrine disrupting chemicals (EDCs)] and host leukocytes affect the ability of the immune system to mount a response to exogenous and endogenous insults, and/or return to normal activity following clearance of the threat. Inherently, males and females have differential immune response to external triggers. In this review, we describe how environmental chemicals, including EDCs, may have sex differential influence on the outcome of immune responses through alterations in epigenetic status (such as modulation of microRNA expression, gene methylation, or histone modification status), direct and indirect activation of the estrogen receptors to drive hormonal effects, and differential modulation of microbial sensing and composition of host microbiota. Taken together, an intriguing question develops as to how an individual’s environment directly and indirectly contributes to an altered immune response, dysregulation of autoantibody production, and influence autoimmune disease development. Few studies exist utilizing well-controlled cohorts of both sexes to explore the sex differences in response to EDC exposure and the effects on autoimmune disease development. Translational studies incorporating multiple environmental factors in animal models of autoimmune disease are necessary to determine the interrelationships that occur between potential etiopathological factors. The presence or absence of autoantibodies is not a reliable predictor of disease. Therefore, future studies should incorporate all the susceptibility/influencing factors, coupled with individual genomics, epigenomics, and proteomics, to develop a model that better predicts, diagnoses, and treats autoimmune diseases in a personalized-medicine fashion.
Collapse
Affiliation(s)
- Michael Edwards
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Rujuan Dai
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - S Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
47
|
Koenig A, Buskiewicz I, Huber SA. Age-Associated Changes in Estrogen Receptor Ratios Correlate with Increased Female Susceptibility to Coxsackievirus B3-Induced Myocarditis. Front Immunol 2017; 8:1585. [PMID: 29201031 PMCID: PMC5696718 DOI: 10.3389/fimmu.2017.01585] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/03/2017] [Indexed: 01/01/2023] Open
Abstract
Sexual bias is a hallmark in various diseases. This review evaluates sexual dimorphism in clinical and experimental coxsackievirus B3 (CVB3) myocarditis, and how sex bias in the experimental disease changes with increased age. Coxsackieviruses are major causes of viral myocarditis, an inflammation of the heart muscle, which is more frequent and severe in men than women. Young male mice infected with CVB3 develop heart-specific autoimmunity and severe myocarditis. Females infected during estrus (high estradiol) develop T-regulatory cells and when infected during diestrus (low estradiol) develop autoimmunity similar to males. During estrus, protection depends on estrogen receptor alpha (ERα), which promotes type I interferon, activation of natural killer/natural killer T cells and suppressor cell responses. Estrogen receptor beta has opposing effects to ERα and supports pro-inflammatory immunity. However, the sexual dimorphism of the disease is significantly ameliorated in aged animals when old females become as susceptible as males. This correlates to a selective loss of the ERα that is required for immunosuppression. Therefore, sex-associated hormones control susceptibility in the virus-mediated disease, but their impact can alter with the age and physiological stage of the individual.
Collapse
Affiliation(s)
- Andreas Koenig
- Department of Pathology, University of Vermont, Burlington, VT, United States
| | - Iwona Buskiewicz
- Department of Pathology, University of Vermont, Burlington, VT, United States
| | - Sally A Huber
- Department of Pathology, University of Vermont, Burlington, VT, United States
| |
Collapse
|
48
|
Scott JL, Wirth JR, Eudaly J, Ruiz P, Cunningham MA. Complete knockout of estrogen receptor alpha is not directly protective in murine lupus. Clin Immunol 2017; 183:132-141. [PMID: 28822833 DOI: 10.1016/j.clim.2017.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/11/2017] [Accepted: 08/12/2017] [Indexed: 12/17/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic and potentially severe autoimmune disease that disproportionately affects women. Despite a known role for hormonal factors impacting autoimmunity and disease pathogenesis, the specific mechanisms of action remain poorly understood. Our laboratory previously backcrossed "estrogen receptor alpha knockout (ERαKO)" mice onto the NZM2410 lupus prone background to generate NZM/ERαKO mice. This original ERαKO mouse, developed in the mid-1990s and utilized in hundreds of published studies, is not in fact ERα null. They express an N-terminally truncated ERα, and are considered a functional KO. They have physiologic deficiencies including infertility due to disruption of a critical activation domain (AF-1) at the N terminus of ERα, required for most classic estrogen (E2) actions. We demonstrated that female NZM/ERαKO mice had significantly less renal disease and significantly prolonged survival compared to WT littermates despite similar serum levels of autoantibodies and glomerular immune complex deposition. Herein, we present results of experiments using a lupus prone true ERα-/- mice (deletional KO mice on the NZM2410 background), surprisingly finding that these animals were not protected if they were ovariectomized, suggesting that another hormonal component confers protection, possibly testosterone, rather than the absence of the full-length ERα.
Collapse
Affiliation(s)
- Jennifer L Scott
- Medical University of South Carolina, Division of Rheumatology and Immunology, Charleston, SC 29425, USA
| | - Jena R Wirth
- Medical University of South Carolina, Division of Rheumatology and Immunology, Charleston, SC 29425, USA
| | - Jackie Eudaly
- Medical University of South Carolina, Division of Rheumatology and Immunology, Charleston, SC 29425, USA
| | - Phil Ruiz
- University of Miami, School of Medicine, Department of Pathology, 1611 N.W. 12th Ave., Holtz Center, East Tower, Room 2101, Miami, FL 33136, USA
| | - Melissa A Cunningham
- Medical University of South Carolina, Division of Rheumatology and Immunology, Charleston, SC 29425, USA.
| |
Collapse
|
49
|
Increased cathepsin S in Prdm1 -/- dendritic cells alters the T FH cell repertoire and contributes to lupus. Nat Immunol 2017; 18:1016-1024. [PMID: 28692065 PMCID: PMC5568473 DOI: 10.1038/ni.3793] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/16/2017] [Indexed: 12/15/2022]
Abstract
Aberrant population expansion of follicular helper T cells (TFH cells) occurs in patients with lupus. An unanswered question is whether an altered repertoire of T cell antigen receptors (TCRs) is associated with such expansion. Here we found that the transcription factor Blimp-1 (encoded by Prdm1) repressed expression of the gene encoding cathepsin S (Ctss), a cysteine protease that cleaves invariant chains and produces antigenic peptides for loading onto major histocompatibility complex (MHC) class II molecules. The increased CTSS expression in dendritic cells (DCs) from female mice with dendritic cell-specific conditional knockout of Prdm1 (CKO mice) altered the presentation of antigen to CD4+ T cells. Analysis of complementarity-determining region 3 (CDR3) regions containing the β-chain variable region (Vβ) demonstrated a more diverse repertoire of TFH cells from female CKO mice than of those from wild-type mice. In vivo treatment of CKO mice with a CTSS inhibitor abolished the lupus-related phenotype and reduced the diversity of the TFH cell TCR repertoire. Thus, Blimp-1 deficiency in DCs led to loss of appropriate regulation of Ctss expression in female mice and thereby modulated antigen presentation and the TFH cell repertoire to contribute to autoimmunity.
Collapse
|
50
|
Laffont S, Seillet C, Guéry JC. Estrogen Receptor-Dependent Regulation of Dendritic Cell Development and Function. Front Immunol 2017; 8:108. [PMID: 28239379 PMCID: PMC5300975 DOI: 10.3389/fimmu.2017.00108] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/23/2017] [Indexed: 12/23/2022] Open
Abstract
Autoimmunity, infectious diseases and cancer affect women and men differently. Because they tend to develop more vigorous adaptive immune responses than men, women are less susceptible to some infectious diseases but also at higher risk of autoimmunity. The regulation of immune responses by sex-dependent factors probably involves several non-redundant mechanisms. A privileged area of study, however, concerns the role of sex steroid hormones in the biology of innate immune cells, especially dendritic cells (DCs). In recent years, our understanding of the lineage origin of DC populations has expanded, and the lineage-committing transcription factors shaping peripheral DC subsets have been identified. Both progenitor cells and mature DC subsets express estrogen receptors (ERs), which are ligand-dependent transcription factors. This suggests that estrogens may contribute to the reported sex differences in immunity by regulating DC biology. Here, we review the recent literature and highlight evidence that estrogen-dependent activation of ERα regulates the development or the functional responses of particular DC subsets. The in vitro model of GM-CSF-induced DC differentiation shows that CD11c+ CD11bint Ly6cneg cells depend on ERα activation by estrogen for their development, and for the acquisition of competence to activate naive CD4+ T lymphocytes and mount a robust pro-inflammatory cytokine response to CD40 stimulation. In this model, estrogen signaling in conjunction with GM-CSF is necessary to promote early interferon regulatory factor (Irf)-4 expression in macrophage-DC progenitors and their subsequent differentiation into IRF-4hi CD11c+ CD11bint Ly6cneg cells, closely related to the cDC2 subset. The Flt3L-induced model of DC differentiation in turn shows that ERα signaling promotes the development of conventional DC (cDC) and plasmacytoid DC (pDC) with higher capability of pro-inflammatory cytokine production in response to TLR stimulation. Likewise, cell-intrinsic ER signaling positively regulates the TLR-driven production of type I interferons (IFNs) in mouse pDCs in vivo. This effect of estrogens likely contributes to the greater proficiency of women's pDCs than men's as regards the production of type I IFNs elicited by TLR7 ligands. In summary, evidence is emerging in support of the notion that estrogen signaling regulates important aspects of cDC and pDC development and/or effector functions, in both mice and humans.
Collapse
Affiliation(s)
- Sophie Laffont
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, INSERM, CNRS, UPS , Toulouse , France
| | - Cyril Seillet
- Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Jean-Charles Guéry
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, INSERM, CNRS, UPS , Toulouse , France
| |
Collapse
|