1
|
Lim B, Kim SC, Kim HJ, Kim JH, Seo YJ, Lim C, Park Y, Sheet S, Kim D, Lim DH, Park K, Lee KT, Kim WI, Kim JM. Single-cell transcriptomics of bronchoalveolar lavage during PRRSV infection with different virulence. Nat Commun 2025; 16:1112. [PMID: 39875369 PMCID: PMC11775223 DOI: 10.1038/s41467-024-54676-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 11/18/2024] [Indexed: 01/30/2025] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses in the global swine industry due to its high genetic diversity and different virulence levels, which complicate disease management and vaccine development. This study evaluated longitudinal changes in the immune cell composition of bronchoalveolar lavage fluid and the clinical outcomes across PRRSV strains with varying virulence, using techniques including single-cell transcriptomics. In highly virulent infection, faster viral replication results in an earlier peak lung-damage time point, marked by significant interstitial pneumonia, a significant decrease in macrophages, and an influx of lymphocytes. Viral tracking reveals less than 5% of macrophages are directly infected, and further analysis indicates bystander cell death, likely regulated by exosomal microRNAs as a significant factor. In contrast, the peak intermediate infection shows a delayed lung-damage time point with fewer cell population modifications. Furthermore, anti-inflammatory M2-like macrophages (SPP1-CXCL14high) are identified and their counts increase during the peak lung-damage time point, likely contributing to local defense and lung recovery, which is not observed in high virulent infection. These findings provide a comprehensive description of the immune cellular landscape and differential PRRSV virulence mechanisms, which will help build new hypotheses to understand PRRSV pathogenesis and other respiratory infections.
Collapse
Affiliation(s)
- Byeonghwi Lim
- Functional Genomics & Bioinformatics Laboratory, Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Seung-Chai Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Hwan-Ju Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Jae-Hwan Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, Jeollabuk-do, 55365, Republic of Korea
| | - Young-Jun Seo
- Functional Genomics & Bioinformatics Laboratory, Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Chiwoong Lim
- Functional Genomics & Bioinformatics Laboratory, Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Yejee Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, Jeollabuk-do, 55365, Republic of Korea
| | - Sunirmal Sheet
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, Jeollabuk-do, 55365, Republic of Korea
| | - Dahye Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, Jeollabuk-do, 55365, Republic of Korea
| | - Do-Hwan Lim
- School of Systems Biomedical Science, Soongsil University, Seoul, 06978, Republic of Korea
| | - Kyeongsoon Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Kyung-Tai Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, Jeollabuk-do, 55365, Republic of Korea.
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea.
| | - Jun-Mo Kim
- Functional Genomics & Bioinformatics Laboratory, Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
2
|
Ammons DT, Chow L, Goodrich L, Bass L, Larson B, Williams ZJ, Stoneback JW, Dow S, Pezzanite LM. Characterization of the single cell landscape in normal and osteoarthritic equine joints. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:88. [PMID: 39507442 PMCID: PMC11534742 DOI: 10.21037/atm-24-40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/30/2024] [Indexed: 11/08/2024]
Abstract
Background Osteoarthritis (OA) is a major source of pain and disability worldwide. Understanding of disease progression is evolving, but OA is increasingly thought to be a multifactorial disease in which the innate immune system plays a role in regulating and perpetuating low-grade inflammation. The aim of this study was to enhance our understanding of OA immunopathogenesis through characterization of the transcriptomic responses in OA joints, with the goal to facilitate the development of targeted therapies. Methods Single-cell RNA sequencing (scRNA-seq) was completed on cells isolated from the synovial fluid of three normal and three OA equine joints. In addition to synovial fluid, scRNA-seq was also performed on synovium from one normal joint and one OA joint. Results Characterization of 28,639 cells isolated from normal and OA-affected equine synovial fluid revealed the composition to be entirely immune cells (CD45+) with 8 major populations and 26 subpopulations identified. In synovial fluid, we found myeloid cells (macrophage and dendritic cells) to be overrepresented and T cells (CD4 and CD8) to be underrepresented in OA relative to normal joints. Through subcluster and differential abundance analysis of T cells we further identified a relative overrepresentation of IL23R+ gamma-delta (γδ) T cells in OA-affected joints (a cell type we report to be enriched in gene signatures associated with T helper 17 mediated immunity). Analysis of an additional 17,690 cells (11 distinct cell type clusters) obtained from synovium of one horse led to the identification of an OA-associated reduction in the relative abundance of synovial macrophages, which contrasts with the increased relative abundance of macrophages in synovial fluid. Completion of cell-cell interaction analysis implicated myeloid cells in disease progression, suggesting that the myeloid-myeloid interactions were increased in OA-affected joints. Conclusions Overall, this work provides key insights into the composition of equine synovial fluid and synovium in health and OA. The data generated in this study provides equine-specific cell type gene signatures which can be applied to future investigations. Furthermore, our analysis highlights the potential role of macrophages and IL23R+ γδ T cells in OA immunopathogenesis.
Collapse
Affiliation(s)
- Dylan T Ammons
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Laurie Goodrich
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Luke Bass
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Blaine Larson
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Zoë J Williams
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jason W Stoneback
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Steven Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Lynn M Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
3
|
Krueger JG, Eyerich K, Kuchroo VK, Ritchlin CT, Abreu MT, Elloso MM, Fourie A, Fakharzadeh S, Sherlock JP, Yang YW, Cua DJ, McInnes IB. IL-23 past, present, and future: a roadmap to advancing IL-23 science and therapy. Front Immunol 2024; 15:1331217. [PMID: 38686385 PMCID: PMC11056518 DOI: 10.3389/fimmu.2024.1331217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
Interleukin (IL)-23, an IL-12 cytokine family member, is a hierarchically dominant regulatory cytokine in a cluster of immune-mediated inflammatory diseases (IMIDs), including psoriasis, psoriatic arthritis, and inflammatory bowel disease. We review IL-23 biology, IL-23 signaling in IMIDs, and the effect of IL-23 inhibition in treating these diseases. We propose studies to advance IL-23 biology and unravel differences in response to anti-IL-23 therapy. Experimental evidence generated from these investigations could establish a novel molecular ontology centered around IL-23-driven diseases, improve upon current approaches to treating IMIDs with IL-23 inhibition, and ultimately facilitate optimal identification of patients and, thereby, outcomes.
Collapse
Affiliation(s)
- James G. Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States
| | - Kilian Eyerich
- Department of Medicine, Division of Dermatology and Venereology, Karolinska Institute, Stockholm, Sweden
- Department of Dermatology and Venereology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Vijay K. Kuchroo
- Evergrande Center for Immunologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Christopher T. Ritchlin
- Allergy, Immunology & Rheumatology Division, Center for Musculoskeletal Research, University of Rochester Medical School, Rochester, NY, United States
| | - Maria T. Abreu
- Division of Gastroenterology, Department of Medicine, University of Miami Leonard Miller School of Medicine, Miami, FL, United States
| | | | - Anne Fourie
- Janssen Research & Development, LLC, San Diego, CA, United States
| | - Steven Fakharzadeh
- Immunology Global Medical Affairs, Janssen Pharmaceutical Companies of Johnson & Johnson, Horsham, PA, United States
| | - Jonathan P. Sherlock
- Janssen Research & Development, LLC, Spring House, PA, United States
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Ya-Wen Yang
- Immunology Global Medical Affairs, Janssen Pharmaceutical Companies of Johnson & Johnson, Horsham, PA, United States
| | - Daniel J. Cua
- Janssen Research & Development, LLC, Spring House, PA, United States
| | - Iain B. McInnes
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
4
|
Han P, Tang J, Xu X, Meng P, Wu K, Sun B, Song X. Identification of the grass carp interleukin-23 receptor and its proinflammatory role in intestinal inflammation. Int J Biol Macromol 2024; 265:130946. [PMID: 38521334 DOI: 10.1016/j.ijbiomac.2024.130946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
The interleukin 23 receptor (IL-23R) is associated with a variety of inflammatory diseases in humans and other mammals. However, whether IL-23R is involved in inflammatory diseases in teleost fish is less understood. Thus, to investigate the potential involvement of IL-23R in fish inflammatory diseases, the full-length cDNA of IL-23R from grass carp Ctenopharyngodon idella was cloned and used to generate a recombinant protein (rgcIL-23R) containing the extracellular domain of IL-23R, against which a polyclonal antibody (rgcIL-23R pAb) was then developed. qPCR analysis revealed that IL-23R mRNA was significantly upregulated in most grass carp tissues in response to infection with Gram-negative Aeromonas hydrophila. Treatment with rgcIL-23R significantly induced IL-17A/F1 expression in C. idella kidney (CIK) cells. By contrast, knockdown of IL-23R caused significant decreases in IL-23R, STAT3, and IL-17N expression in CIK cells after lipopolysaccharide (LPS) stimulation. Similarly, rgcIL-23R pAb treatment effectively inhibited the LPS-induced increase in the expression of IL-23 subunit genes and those of the IL-23/IL-17 pathway in CIK cells. Furthermore, intestinal symptoms identical to those caused by A. hydrophila were induced by anal intubation with rgcIL-23R, but suppressed by rgcIL-23R pAb. Therefore, these results suggest that IL-23R has a crucial role in the regulation of intestinal inflammation and, thus, is a promising target for controlling inflammatory diseases in farmed fish.
Collapse
Affiliation(s)
- Panpan Han
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Jian Tang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Xufang Xu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Pengkun Meng
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Kang Wu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Bingyao Sun
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China.
| | - Xuehong Song
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China.
| |
Collapse
|
5
|
Fan Q, Yan R, Li Y, Lu L, Liu J, Li S, Fu T, Xue Y, Liu J, Li Z. Exploring Immune Cell Diversity in the Lacrimal Glands of Healthy Mice: A Single-Cell RNA-Sequencing Atlas. Int J Mol Sci 2024; 25:1208. [PMID: 38279208 PMCID: PMC10816500 DOI: 10.3390/ijms25021208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
The lacrimal gland is responsible for maintaining the health of the ocular surface through the production of tears. However, our understanding of the immune system within the lacrimal gland is currently limited. Therefore, in this study, we utilized single-cell RNA sequencing and bioinformatic analysis to identify and analyze immune cells and molecules present in the lacrimal glands of normal mice. A total of 34,891 cells were obtained from the lacrimal glands of mice and classified into 18 distinct cell clusters using Seurat clustering. Within these cell populations, 26 different immune cell subpopulations were identified, including T cells, innate lymphocytes, macrophages, mast cells, dendritic cells, and B cells. Network analysis revealed complex cell-cell interactions between these immune cells, with particularly significant interactions observed among T cells, macrophages, plasma cells, and dendritic cells. Interestingly, T cells were found to be the main source of ligands for the Thy1 signaling pathway, while M2 macrophages were identified as the primary target of this pathway. Moreover, some of these immune cells were validated using immunohistological techniques. Collectively, these findings highlight the abundance and interactions of immune cells and provide valuable insights into the complexity of the lacrimal gland immune system and its relevance to associated diseases.
Collapse
Affiliation(s)
- Qiwei Fan
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Q.F.); (J.L.)
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
| | - Ruyu Yan
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Yan Li
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Liyuan Lu
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Jiangman Liu
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Q.F.); (J.L.)
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
| | - Senmao Li
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Ting Fu
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Yunxia Xue
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Jun Liu
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Zhijie Li
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| |
Collapse
|
6
|
Etherington MS, Hanna AN, Medina BD, Liu M, Tieniber AD, Kwak HV, Tardy KJ, Levin L, Do KJ, Rossi F, Zeng S, DeMatteo RP. Tyrosine Kinase Inhibition Activates Intratumoral γδ T Cells in Gastrointestinal Stromal Tumor. Cancer Immunol Res 2024; 12:107-119. [PMID: 37922405 PMCID: PMC10842124 DOI: 10.1158/2326-6066.cir-23-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/09/2023] [Accepted: 10/31/2023] [Indexed: 11/05/2023]
Abstract
γδ T cells are a rare but potent subset of T cells with pleiotropic functions. They commonly reside within tumors but the response of γδ T cells to tyrosine kinase inhibition is unknown. To address this, we studied a genetically engineered mouse model of gastrointestinal stromal tumor (GIST) driven by oncogenic Kit signaling that responds to the Kit inhibitor imatinib. At baseline, γδ T cells were antitumoral, as blockade of either γδ T-cell receptor or IL17A increased tumor weight and decreased antitumor immunity. However, imatinib therapy further stimulated intratumoral γδ T cells, as determined by flow cytometry and single-cell RNA sequencing (scRNA-seq). Imatinib expanded a highly activated γδ T-cell subset with increased IL17A production and higher expression of immune checkpoints and cytolytic effector molecules. Consistent with the mouse model, γδ T cells produced IL17A in fresh human GIST specimens, and imatinib treatment increased γδ T-cell gene signatures, as measured by bulk tumor RNA-seq. Furthermore, tumor γδ T cells correlated with survival in patients with GIST. Our findings highlight the interplay between tumor cell oncogene signaling and antitumor immune responses and identify γδ T cells as targets for immunotherapy in GIST.
Collapse
Affiliation(s)
- Mark S Etherington
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew N Hanna
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Benjamin D Medina
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mengyuan Liu
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew D Tieniber
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hyunjee V Kwak
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Katherine J Tardy
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lillian Levin
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kevin J Do
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ferdinando Rossi
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shan Zeng
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ronald P DeMatteo
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Mezghiche I, Yahia-Cherbal H, Rogge L, Bianchi E. Interleukin 23 receptor: Expression and regulation in immune cells. Eur J Immunol 2024; 54:e2250348. [PMID: 37837262 DOI: 10.1002/eji.202250348] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/15/2023]
Abstract
The importance of IL-23 and its specific receptor, IL-23R, in the pathogenesis of several chronic inflammatory diseases has been established, but the underlying pathological mechanisms are not fully understood. This review focuses on IL-23R expression and regulation in immune cells.
Collapse
Affiliation(s)
| | | | - Lars Rogge
- Institut Pasteur, Université Paris Cité, Paris, France
| | | |
Collapse
|
8
|
Shao H, Kaplan HJ, Sun D. The Role of Adenosine in γδ T-Cell Regulation of Th17 Responses in Experimental Autoimmune Uveitis. Biomolecules 2023; 13:1432. [PMID: 37892114 PMCID: PMC10604616 DOI: 10.3390/biom13101432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Autoimmune diseases caused by T cells can arise from either T-helper 1 (Th1) or T-helper 17 (Th17)-type pathogenic T cells. However, it is unclear whether these two T-cell subsets are influenced by distinct pathogenic factors and whether treatments that are effective for Th1 responses also work for Th17 responses. To compare these two pathogenic responses, we conducted a systematic analysis in a mouse model of experimental autoimmune uveitis (EAU) to identify the factors that promote or inhibit each response and to determine their responses to various treatments. Our study found that the two types of pathogenic responses differ significantly in their pathological progressions and susceptibility to treatments. Specifically, we observed that extracellular adenosine is a crucial pathogenic molecule involved in the pathogenicity of inflammation and T-cell reactivity and that reciprocal interaction between adenosine and gamma delta (γδ) T cells plays a significant role in amplifying Th17 responses in the development of autoimmune diseases. The potential effect of targeting adenosine or adenosine receptors is analyzed regarding whether such targeting constitutes an effective approach to modulating both γδ T-cell responses and the pathogenic Th17 responses in autoimmune diseases.
Collapse
Affiliation(s)
- Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY 40202, USA
| | - Henry J. Kaplan
- Department of Ophthalmology and Biochemistry & Molecular Biology, St. Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Deming Sun
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90033, USA
| |
Collapse
|
9
|
Kang I, Kim Y, Lee HK. Double-edged sword: γδ T cells in mucosal homeostasis and disease. Exp Mol Med 2023; 55:1895-1904. [PMID: 37696894 PMCID: PMC10545763 DOI: 10.1038/s12276-023-00985-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 09/13/2023] Open
Abstract
The mucosa is a tissue that covers numerous body surfaces, including the respiratory tract, digestive tract, eye, and urogenital tract. Mucosa is in direct contact with pathogens, and γδ T cells perform various roles in the tissue. γδ T cells efficiently defend the mucosa from various pathogens, such as viruses, bacteria, and fungi. In addition, γδ T cells are necessary for the maintenance of homeostasis because they select specific organisms in the microbiota and perform immunoregulatory functions. Furthermore, γδ T cells directly facilitate pregnancy by producing growth factors. However, γδ T cells can also play detrimental roles in mucosal health by amplifying inflammation, thereby worsening allergic responses. Moreover, these cells can act as major players in autoimmune diseases. Despite their robust roles in the mucosa, the application of γδ T cells in clinical practice is lacking because of factors such as gaps between mice and human cells, insufficient knowledge of the target of γδ T cells, and the small population of γδ T cells. However, γδ T cells may be attractive targets for clinical use due to their effector functions and low risk of inducing graft-versus-host disease. Therefore, robust research on γδ T cells is required to understand the crucial features of these cells and apply these knowledges to clinical practices.
Collapse
Affiliation(s)
- In Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yumin Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
10
|
Zhang C, Liu X, Xiao J, Jiang F, Fa L, Jiang H, Zhou L, Su W, Xu Z. γδ T cells in autoimmune uveitis pathogenesis: A promising therapeutic target. Biochem Pharmacol 2023; 213:115629. [PMID: 37257721 DOI: 10.1016/j.bcp.2023.115629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Autoimmune uveitis is a non-infectious, inflammatory intraocular disease that affects the uveal and adjacent tissues. It frequently causes varying degrees of visual loss. Evidence for the strong association between activated γδ T cells and the development of autoimmune uveitis is growing. The innate and adaptive immune response are connected in the early phases by the γδ T cells that contain the γ and δ chains. γδ T cells can identify antigens in a manner that is not constrained by the MHC. When activated by various pathways, γδ T cells can not only secrete pro-inflammatory factors early on (such as IL-17), but they can also promote Th17 cells responses, which ultimately exacerbates autoimmune uveitis. Therefore, we review the mechanisms by which γδ T cells affect autoimmune uveitis in different activation and disease states. Moreover, we also prospect for immunotherapies targeting different γδ T cell-related action pathways, providing a reference for exploring new drug for the treatment of autoimmune uveitis.
Collapse
Affiliation(s)
- Chun Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jing Xiao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fanwen Jiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Luzhong Fa
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hui Jiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lin Zhou
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
11
|
Sun D, Shao H, Kaplan HJ. TLR ligand ligation switches adenosine receptor usage of BMDCs leading to augmented Th17 responses in experimental autoimmune uveitis. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:73-84. [PMID: 36569633 PMCID: PMC9768583 DOI: 10.1016/j.crimmu.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/05/2022] [Accepted: 04/05/2022] [Indexed: 12/27/2022] Open
Abstract
The extracellular level of adenosine increases greatly during inflammation, which modulates immune responses. We have previously reported that adenosine enhances Th17 responses while it suppresses Th1 responses. This study examined whether response of DC to adenosine contributes to the biased effect of adenosine and determined whether adenosine and TLR ligands have counteractive or synergistic effects on DC function. Our results show that adenosine is actively involved in both in vitro and in vivo activation of pathogenic T cells by DCs; however, under adenosine effect DCs' capability of promoting Th1 versus Th17 responses are dissociated. Moreover, activation of A2ARs on DCs inhibits Th1 responses whereas activation of A2BRs on DC enhances Th17 responses. An intriguing observation was that TLR engagement switches the adenosine receptor from A2ARs to A2BRs usage of bone marrow-derived dendritic cells (BMDCs) and adenosine binding to BMDCs via A2BR converts adenosine's anti-to proinflammatory effect. The dual effects of adenosine and TLR ligand on BMDCs synergistically enhances the Th17 responses whereas the dual effect on Th1 responses is antagonistic. The results imply that Th17 responses will gain dominance when inflammatory environment accumulates both TLR ligands and adenosine and the underlying mechanisms include that TLR ligand exposure has a unique effect switching adenosine receptor usage of DCs from A2ARs to A2BRs, via which Th17 responses are promoted. Our observation should improve our understanding on the balance of Th1 and Th17 responses in the pathogenesis of autoimmune and other related diseases.
Collapse
Affiliation(s)
- Deming Sun
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90033, United States
- Corresponding author. Department of Ophthalmology, University of California Los Angeles, Los Angeles, CA, 90033, USA.
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY, 40202, United States
| | - Henry J. Kaplan
- Saint Louis University (SLU) Eye Institute, SLU School of Medicine, Saint Louis, MO, 63104, United States
| |
Collapse
|
12
|
Shao H, Kaplan HJ, Sun D. Bidirectional Effect of IFN-γ on Th17 Responses in Experimental Autoimmune Uveitis. FRONTIERS IN OPHTHALMOLOGY 2022; 2:831084. [PMID: 36188211 PMCID: PMC9521044 DOI: 10.3389/fopht.2022.831084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Pro- and ant-inflammatory effects of IFN-γ have been repeatedly found in various immune responses, including cancer and autoimmune diseases. In a previous study we showed that the timing of treatment determines the effect of adenosine-based immunotherapy. In this study we examined the role of IFN-γ in pathogenic Th17 responses in experimental autoimmune uveitis (EAU). We observed that IFN-γ has a bidirectional effect on Th17 responses, when tested both in vitro and in vivo. Anti-IFN-γ antibody inhibits Th17 responses when applied in the initial phase of the immune response; however, it enhances the Th17 response if administered in a later phase of EAU. In the current study we showed that IFN-γ is an important immunomodulatory molecule in γδ T cell activation, as well as in Th17 responses. These results should advance our understanding of the regulation of Th17 responses in autoimmunity.
Collapse
Affiliation(s)
- Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY, United States
| | - Henry J. Kaplan
- Department of Ophthalmology, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Deming Sun
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
13
|
Sun D, Chan N, Shao H, Born WK, Kaplan HJ. γδ T Cells Activated in Different Inflammatory Environments Are Functionally Distinct. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1224-1231. [PMID: 35101894 DOI: 10.4049/jimmunol.2100967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022]
Abstract
γδ T cells are important immunoregulatory cells in experimental autoimmune uveitis (EAU), and the activation status of γδ T cells determines their disease-enhancing or inhibitory effects. Because γδ T cells can be activated via various pathways, we questioned whether the nature of their activation might impact their function. In this study, we show that γδ T cells activated under different inflammatory conditions differ greatly in their functions. Whereas anti-CD3 treatment activated both IFN-γ+ and IL-17+ γδ T cells, cytokines preferentially activated IL-17+ γδ T cells. γδ T cells continued to express high levels of surface CD73 after exposure to inflammatory cytokines, but they downregulated surface CD73 after exposure to dendritic cells. Although both CD73high and CD73low cells have a disease-enhancing effect, the CD73low γδ T cells are less inhibitory. We also show that polarized activation not only applies to αβ T cells and myeloid cells, but also to γδ T cells. After activation under Th17-polarizing conditions, γδ T cells predominantly expressed IL-17 (gdT17), but after activation under Th1 polarizing conditions (gdT1) they mainly expressed IFN-γ. The pro-Th17 activity of γδ T cells was associated with gdT17, but not gdT1. Our results demonstrate that the functional activity of γδ T cells is strikingly modulated by their activation level, as well as the pathway through which they were activated.
Collapse
Affiliation(s)
- Deming Sun
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA;
| | - Nymph Chan
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY
| | - Willi K Born
- Department of Biomedical Research, National Jewish Health Center, Denver, CO; and
| | - Henry J Kaplan
- School of Medicine, Saint Louis University, St. Louis, MO
| |
Collapse
|
14
|
Zhang W, Pajulas A, Kaplan MH. γδ T Cells in Skin Inflammation. Crit Rev Immunol 2022; 42:43-56. [PMID: 37075018 PMCID: PMC10439530 DOI: 10.1615/critrevimmunol.2022047288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Gamma delta (γδ) T cells are a subset of T lymphocytes that express T cell receptor γ and 5 chains and display structural and functional heterogeneity. γδ T cells are typically of low abundance in the body and account for 1-5% of the blood lymphocytes and peripheral lymphoid tissues. As a bridge between innate and adaptive immunity, γδ T cells are uniquely poised to rapidly respond to stimulation and can regulate immune responses in peripheral tissues. The dendritic epidermal T cells in the skin epidermis can secrete growth factors to regulate skin homeostasis and re-epithelization and release inflammatory factors to mediate wound healing during skin inflammatory responses. Dermal γδ T cells can regulate the inflammatory process by producing interleukin-17 and other cytokines or chemokines. Here, we offer a review of the immune functions of γδ T cells, intending to understand their role in regulating skin barrier integrity and skin wound healing, which may be crucial for the development of novel therapeutics in skin diseases like atopic dermatitis and psoriasis.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Microbiology & Immunology, Indiana University School Medicine, Indianapolis, IN 46202
| | - Abigail Pajulas
- Department of Microbiology & Immunology, Indiana University School Medicine, Indianapolis, IN 46202
| | - Mark H Kaplan
- Department of Microbiology & Immunology, Indiana University School Medicine, Indianapolis, IN 46202
| |
Collapse
|
15
|
Sun D, Ko M, Shao H, Kaplan HJ. Adenosine receptor ligation tips the uveitogenic Th1 and Th17 balance towards the latter in experimental autoimmune uveitis-induced mouse. CURRENT RESEARCH IN IMMUNOLOGY 2021; 2:93-103. [PMID: 34825178 PMCID: PMC8612466 DOI: 10.1016/j.crimmu.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Various pathological conditions are accompanied by release of adenosine triphosphate (ATP) from the intracellular to the extracellular compartment, where it degrades into adenosine and modulates immune responses. Previous studies concluded that both ATP and its degradation product adenosine are important immune-regulatory molecules; ATP acted as a danger signal that promotes immune responses, but adenosine's effect was inhibitory. We show that adenosine receptor ligation plays an important role in balancing Th1 and Th17 pathogenic T cell responses in experimental autoimmune uveitis (EAU). While its effect on Th1 responses is inhibitory, its effect on Th17 responses is enhancing, thereby impacting the balance between Th1 and Th17 responses. Mechanistic studies showed that this effect is mediated via several immune cells, among which γδ T cell activation and dendritic cell differentiation are prominent; adenosine- and γδ-mediated immunoregulation synergistically impact each other's effect. Adenosine receptor ligation augments the activation of γδ T cells, which is an important promoter for Th17 responses and has a strong effect on dendritic cell (DC) differentiation, tipping the balance from generation of DCs that stimulate Th1 responses to those that stimulate Th17 responses. The knowledge acquired in this study should improve our understanding of the immune-regulatory effect of extracellular ATP-adenosine metabolism and improve treatment for autoimmune diseases caused by both Th1-and Th17-type pathogenic T cells.
Collapse
Affiliation(s)
- Deming Sun
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90033, United States
- Corresponding author. Department of Ophthalmology, University of California Los Angeles, Los Angeles, CA90033, USA.
| | - Minhee Ko
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90033, United States
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY, 40202, United States
| | - Henry J. Kaplan
- Saint Louis University (SLU) Eye Institute, SLU School of Medicine, Saint Louis, MO, 63104, United States
| |
Collapse
|
16
|
Ko MK, Shao H, Kaplan HJ, Sun D. Timing Effect of Adenosine-Directed Immunomodulation on Mouse Experimental Autoimmune Uveitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:153-161. [PMID: 34127521 PMCID: PMC8669050 DOI: 10.4049/jimmunol.2100182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/13/2021] [Indexed: 01/09/2023]
Abstract
Adenosine is an important regulatory molecule of the immune response. We have previously reported that treatment of experimental autoimmune uveitis (EAU)-prone mice with an adenosine-degrading enzyme (adenosine deaminase) prohibited EAU development by inhibiting Th17 pathogenic T cell responses. To further validate that the targeting of adenosine or adenosine receptors effectively modulates Th17 responses, we investigated the effect of adenosine receptor antagonists. In this study, we show that the A2AR antagonist SCH 58261 (SCH) effectively modulates aberrant Th17 responses in induced EAU. However, timing of the treatment is important. Whereas SCH inhibits EAU when administered during the active disease stage, it did not do so if administered during quiescent disease stages, thus implying that the existing immune status influences the therapeutic effect. Mechanistic studies showed that inhibition of γδ T cell activation is crucially involved in adenosine-based treatment. Adenosine is an important costimulator of γδ T cell activation, which is essential for promoting Th17 responses. During ongoing disease stages, adenosine synergizes with existing high levels of cytokines, leading to augmented γδ T cell activation and Th17 responses, but in quiescent disease stages, when existing cytokine levels are low, adenosine does not enhance γδ T cell activation. Our results demonstrated that blockade of the synergistic effect between adenosine and inflammatory cytokines at active disease stages can ameliorate high-degree γδ T cell activation and, thus, suppress Th17 pathogenic T cell responses.
Collapse
Affiliation(s)
- Minhee K Ko
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY; and
| | - Henry J Kaplan
- Saint Louis University Eye Institute, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO
| | - Deming Sun
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA;
| |
Collapse
|
17
|
Sun D, Ko MK, Shao H, Kaplan HJ. Augmented Th17-stimulating activity of BMDCs as a result of reciprocal interaction between γδ and dendritic cells. Mol Immunol 2021; 134:13-24. [PMID: 33689926 PMCID: PMC8629029 DOI: 10.1016/j.molimm.2021.02.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/08/2021] [Accepted: 02/23/2021] [Indexed: 12/17/2022]
Abstract
Our previous studies demonstrated that γδ T cells have a strong regulatory effect on Th17 autoimmune responses in experimental autoimmune uveitis (EAU). In the current study, we show that reciprocal interactions between mouse γδ T cells and dendritic cells (DCs) played a major role in γδ regulation of Th17 responses. Mouse bone marrow-derived dendritic cells (BMDCs) acquired an increased ability to enhance Th17 autoimmune responses after exposure to γδ T cells; meanwhile, after exposure, a significant portion of the BMDCs expressed CD73 - a molecule that is fundamental in the conversion of immunostimulatory ATP into immunosuppressive adenosine. Functional studies showed that CD73+ BMDCs were uniquely effective in stimulating the Th17 responses, as compared to CD73- BMDCs; and activated γδ T cells are much more effective than non-activated γδ T cells at inducing CD73+ BMDCs. As a result, activated γδ T cells acquired greater Th17-enhancing activity. Treatment of BMDCs with the CD73-specific antagonist APCP abolished the enhancing effect of the BMDCs. γδ T cells more effectively induced CD73+ BMDCs from the BMDCs that were pre-exposed to TLR ligands, and the response was further augmented by adenosine. Moreover, BMDCs acquired increased ability to stimulate γδ activation after pre-exposure to TLR ligands and adenosine. Our results demonstrated that both extra-cellular adenosine and TLR ligands are critical factors in augmented Th17 responses in this autoimmune disease, and the reciprocal interactions between γδ T cells and DCs play a major role in promoting Th17 responses.
Collapse
Affiliation(s)
- Deming Sun
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90033, United States.
| | - Minhee K Ko
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90033, United States
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY, 40202, United States
| | - Henry J Kaplan
- Saint Louis University (SLU) Eye Institute, SLU School of Medicine, Saint Louis, MO, 63104, United States
| |
Collapse
|
18
|
Glassman CR, Mathiharan YK, Jude KM, Su L, Panova O, Lupardus PJ, Spangler JB, Ely LK, Thomas C, Skiniotis G, Garcia KC. Structural basis for IL-12 and IL-23 receptor sharing reveals a gateway for shaping actions on T versus NK cells. Cell 2021; 184:983-999.e24. [PMID: 33606986 PMCID: PMC7899134 DOI: 10.1016/j.cell.2021.01.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/23/2020] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
Interleukin-12 (IL-12) and IL-23 are heterodimeric cytokines that are produced by antigen-presenting cells to regulate the activation and differentiation of lymphocytes, and they share IL-12Rβ1 as a receptor signaling subunit. We present a crystal structure of the quaternary IL-23 (IL-23p19/p40)/IL-23R/IL-12Rβ1 complex, together with cryoelectron microscopy (cryo-EM) maps of the complete IL-12 (IL-12p35/p40)/IL-12Rβ2/IL-12Rβ1 and IL-23 receptor (IL-23R) complexes, which reveal "non-canonical" topologies where IL-12Rβ1 directly engages the common p40 subunit. We targeted the shared IL-12Rβ1/p40 interface to design a panel of IL-12 partial agonists that preserved interferon gamma (IFNγ) induction by CD8+ T cells but impaired cytokine production from natural killer (NK) cells in vitro. These cell-biased properties were recapitulated in vivo, where IL-12 partial agonists elicited anti-tumor immunity to MC-38 murine adenocarcinoma absent the NK-cell-mediated toxicity seen with wild-type IL-12. Thus, the structural mechanism of receptor sharing used by IL-12 family cytokines provides a protein interface blueprint for tuning this cytokine axis for therapeutics.
Collapse
Affiliation(s)
- Caleb R Glassman
- Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yamuna Kalyani Mathiharan
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin M Jude
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leon Su
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ouliana Panova
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Patrick J Lupardus
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jamie B Spangler
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lauren K Ely
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christoph Thomas
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Georgios Skiniotis
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - K Christopher Garcia
- Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
19
|
Ko MK, Shao H, Kaplan HJ, Sun D. CD73 + Dendritic Cells in Cascading Th17 Responses of Experimental Autoimmune Uveitis-Induced Mice. Front Immunol 2020; 11:601272. [PMID: 33343573 PMCID: PMC7738634 DOI: 10.3389/fimmu.2020.601272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022] Open
Abstract
Previous studies have shown that CD73 is pivotal in the conversion of pro-inflammatory adenosine triphosphate into anti-inflammatory adenosine and that immune cells of the same type that express different levels of CD73 are functionally distinct. In this study we show that adenosine enhances the Th17 promoting effect of dendritic cells (DCs), and DCs expressing CD73 critically augment Th17 responses. Bone marrow dendritic cells (BMDCs) do not constantly express CD73; however, a significant portion of the BMDCs expressed CD73 after exposure to Toll-like receptor ligand, leading to stronger Th17 responses by converting adenosine monophosphate to adenosine. We show that the CD73+ BMDCs play a critical role in cascading Th17 responses, and CD73+ BMDCs are functionally augmented after treatment with Toll-like receptor ligand. Splenic antigen presenting cells (DCs) of CD73−/− mouse have a poor Th17-stimulating effect, even after exposure to lipopolysaccharide (LPS) or γδ T cells, indicating that induction of CD73+ DCs is critically involved in augmented Th17 responses. We conclude that CD73+ DCs critically trigger cascading Th17 responses, and the activated Th17 cells that express CD73 further augment Th17 responses, leading to cascading exacerbation. Hence, disabling the CD73 function of DCs should block this cascading response and mitigate Th17 responses.
Collapse
Affiliation(s)
- MinHee K Ko
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY, United States
| | - Henry J Kaplan
- Department of Ophthalmology, Saint Louis University (SLU) Eye Institute, SLU School of Medicine, Saint Louis, MO, United States
| | - Deming Sun
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
20
|
Higaki A, Mahmoud AUM, Paradis P, Schiffrin EL. Role of interleukin-23/interleukin-17 axis in T-cell-mediated actions in hypertension. Cardiovasc Res 2020; 117:1274-1283. [PMID: 32870976 DOI: 10.1093/cvr/cvaa257] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/01/2020] [Accepted: 08/25/2020] [Indexed: 12/25/2022] Open
Abstract
Current knowledge suggests that hypertension is in part mediated by immune mechanisms. Both interleukin (IL)-23 and IL-17 are up-regulated in several experimental hypertensive rodent models, as well as in hypertensive humans in observational studies. Recent preclinical studies have shown that either IL-23 or IL-17A treatment induce blood pressure elevation. However, the IL-23/IL-17 axis has not been a major therapeutic target in hypertension, unlike in other autoimmune diseases. In this review, we summarize current knowledge on the role of these cytokines in immune mechanisms contributing to hypertension, and discuss the potential of IL-23/IL-17-targeted therapy for treatment of hypertension.
Collapse
Affiliation(s)
| | | | | | - Ernesto L Schiffrin
- Lady Davis Institute for Medical Research.,Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte-Ste-Catherine Road, Montreal, Quebec H3T 1E2, Canada
| |
Collapse
|
21
|
Wang B, Tian Q, Guo D, Lin W, Xie X, Bi H. Activated γδ T Cells Promote Dendritic Cell Maturation and Exacerbate the Development of Experimental Autoimmune Uveitis (EAU) in Mice. Immunol Invest 2020; 50:164-183. [PMID: 31985304 DOI: 10.1080/08820139.2020.1716786] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Our previous study reveals that gamma delta (γδ) T cells were activated and dendritic cells (DCs) underwent maturation during the inflammation phase in experimental autoimmune uveitis (EAU) mice, and the interaction between DCs and γδ T cells may significantly exacerbate the development of EAU. However, the interactions between DCs and γδ T cells that can affect DCs maturation to influence EAU development must be further addressed. In this study we showed that mature DC numbers in TCR-δ-/- (KO) EAU mice were lower than those in wild-type (WT) C57BL/6 (B6) mice. The γδ T cells harvested from WT EAU mice secreted more interferon-γ (IFN-γ), however, after blocking IFN-γ, the maturation of DCs was significantly downregulated. By contrast, the percentage of IFN-γ- and IL-17-producing CD4+ T cells in KO EAU mice decreased to a greater extent than that in WT EAU mice during the inflammatory phase. Additionally, the levels of IFN-γ/IL-17 in serum were in agreement with those of CD4+ T cells. Furthermore, after activated γδ T cells injection, the inflammatory symptoms of EAU mice were more aggravated. In vitro co-cultures of both cell types showed that activated γδ T cells may induce DCs to generate higher levels of intracellular cell adhesion molecule-1 (ICAM-1/CD54), CD80, CD83, and CD86. Moreover, co-culture of the two cells may induce the activation of CD4+ T cells. Taken together, our results demonstrated that activated γδ T cells may promote DCs maturation and further enhance the generation of Th1/Th17 cells in EAU mice, resulting in exacerbated EAU.
Collapse
Affiliation(s)
- Beibei Wang
- First Clinical College, Shandong University of Traditional Chinese Medicine , Jinan, P. R. China.,Department of Ophthalmology, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine , Jinan, P. R. China
| | - Qingmei Tian
- First Clinical College, Shandong University of Traditional Chinese Medicine , Jinan, P. R. China.,Department of Ophthalmology, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine , Jinan, P. R. China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Eye Institute of Shandong University of Traditional Chinese Medicine , Jinan, P. R. China
| | - Wei Lin
- Department of Microbiology, Shandong Academy of Medical Sciences , Jinan, People's Republic of China
| | - Xiaofeng Xie
- Department of Ophthalmology, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine , Jinan, P. R. China
| | - Hongsheng Bi
- First Clinical College, Shandong University of Traditional Chinese Medicine , Jinan, P. R. China.,Department of Ophthalmology, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine , Jinan, P. R. China.,Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Eye Institute of Shandong University of Traditional Chinese Medicine , Jinan, P. R. China
| |
Collapse
|
22
|
Fitzpatrick S, Lausch R, Barrington RA. CCR6-Positive γδ T Cells Provide Protection Against Intracorneal HSV-1 Infection. Invest Ophthalmol Vis Sci 2020; 60:3952-3962. [PMID: 31560369 DOI: 10.1167/iovs.19-27810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose γδ T cells offer an important early immune defense against many different pathogens, both bacterial and viral. Herein, we examined the capacity of γδ T cell subsets to provide protection in the cornea against herpes simplex virus-1 (HSV-1). Methods C57Bl/6 (wild-type [WT]), γδ T-cell deficient (TCRδ-/-) and CCR6-deficient (CCR6-/-) mice were infected intracorneally with HSV-1. At multiple time points following infection, corneas were excised, and cells were immunostained for surface markers, intracellular cytokines, and analyzed using flow cytometry. WT and CCR6-/- γδ T cells were adoptively transferred into TCRδ-/- mice and corneal scores and survival were measured. Results Intracorneal infection of mice lacking γδ T cells exhibited increased corneal opacity scores, elevated viral titers, and higher mortality compared with WT mice. Both CCR6+ and CCR6neg γδ T cell subsets were observed in corneas after virus infection. CCR6+ γδ T cells produced IL-17A and were predominantly CD44+CD62L+, consistent with natural IL-17+ γδ T cells. In contrast IL-17A production by CCR6neg γδ T cells was infrequent, and this subset was largely single positive for CD62L or CD44. The CCR6+ subset appeared to provide protection against HSV-1 as follows: (1) CCR6-/- mice had more severe corneal opacity compared with WT mice; and (2) adoptive transfer of γδ T cells from WT mice restored protection in TCRδ-/- mice whereas transfer of γδ T cells from CCR6-/- mice did not. Conclusions γδ T cells in the cornea can be divided into CCR6+ and CCR6neg subsets with the former conferring protection early after intracorneal HSV-1 infection.
Collapse
Affiliation(s)
- Steffani Fitzpatrick
- Department of Microbiology & Immunology, University of South Alabama Mobile, Alabama, United States
| | - Robert Lausch
- Department of Microbiology & Immunology, University of South Alabama Mobile, Alabama, United States
| | - Robert A Barrington
- Department of Microbiology & Immunology, University of South Alabama Mobile, Alabama, United States
| |
Collapse
|
23
|
DeKuiper JL, Coussens PM. Mycobacterium avium sp. paratuberculosis (MAP) induces IL-17a production in bovine peripheral blood mononuclear cells (PBMCs) and enhances IL-23R expression in-vivo and in-vitro. Vet Immunol Immunopathol 2019; 218:109952. [PMID: 31593889 DOI: 10.1016/j.vetimm.2019.109952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/31/2022]
Abstract
Johne's disease (JD) is a chronic inflammatory gastrointestinal disease of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). Control of JD is difficult largely due to insensitive diagnostic tools, a long subclinical stage of infection, and lack of effective vaccines. Correlates of protection are lacking in model systems of JD and the sources of inflammation due to JD are not well characterized. Commonly studied immune responses, such as the Th1/Th2 paradigm, do not adequately explain host responses to MAP. A potential role for non-classical immune responses to MAP, such as that mediated by Th17 cells, has been suggested. Indeed, MAP antigens induce mRNAs encoding the cytokines IL-23 and IL-17a in bovine peripheral blood mononuclear cells (PBMCs). IL-23 and IL-17a production have both been associated with Th17-like immune responses. Th17 cells are also defined by surface expression of the IL-23 receptor (IL-23R). To determine the relative prevalence of potential Th17 cells in PBMCs from MAP test positive and MAP test negative cows, PBMCs were isolated and analyzed by immunostaining and flow cytometry. Fresh PBMCs from MAP test positive cows (n = 12) contained a significantly higher proportion of IL-23R positive cells in populations of CD4+, CD8+, and Yδ + T cells than in cells from MAP test negative cows (n = 12; p < 0.05). Treatment with MAP antigens increased the percentage of all T cell subsets with surface expression of IL-23R when compared to untreated (n = 12; p < 0.05) cells. ELISA results for IL-17a secretion revealed a higher concentration of IL-17a secreted from PBMCs treated with MAP antigen (n = 20) than from PBMCs not treated with MAP antigens (n = 20) (p < 0.001), regardless of the JD test status of source cows. Also, we observed a moderate negative correlation between JD diagnostic scores for JD + cows and plasma IL-17a concentration (n = 42; r = -0.437; p-value < 0.004). Plasma with low and mid JD- scores (n = 31; n = 9; 0.1 ≤ X < 0.3) had significantly more IL-17a when compared to plasma with high JD- scores (n = 10; 0.3 ≤ X < 0.46; p-values < 0.05). Similarly, plasma with low JD + score values (0.55 ≤ X < 1.0; n = 9) had significantly more IL-17a when compared to plasma with high JD + score values (X ≥ 2.0; n = 21; p < 0.05). Overall, plasma from JD + cows (0.55 < X ≤ 2.86; n = 41) had significantly less IL-17a than plasma from JD- cows (0 < X ≤ 0.46; n = 70). Our data suggests that Th17-like cells may indeed play a role in early immune responses to MAP infection and development or control of JD.
Collapse
Affiliation(s)
- Justin L DeKuiper
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Paul M Coussens
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
24
|
Nguyen CT, Maverakis E, Eberl M, Adamopoulos IE. γδ T cells in rheumatic diseases: from fundamental mechanisms to autoimmunity. Semin Immunopathol 2019; 41:595-605. [PMID: 31506867 PMCID: PMC6815259 DOI: 10.1007/s00281-019-00752-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/29/2019] [Indexed: 02/06/2023]
Abstract
The innate and adaptive arms of the immune system tightly regulate immune responses in order to maintain homeostasis and host defense. The interaction between those two systems is critical in the activation and suppression of immune responses which if unchecked may lead to chronic inflammation and autoimmunity. γδ T cells are non-conventional lymphocytes, which express T cell receptor (TCR) γδ chains on their surface and straddle between innate and adaptive immunity. Recent advances in of γδ T cell biology have allowed us to expand our understanding of γδ T cell in the dysregulation of immune responses and the development of autoimmune diseases. In this review, we summarize current knowledge on γδ T cells and their roles in skin and joint inflammation as commonly observed in rheumatic diseases.
Collapse
Affiliation(s)
- Cuong Thach Nguyen
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, USA
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Emanual Maverakis
- Department of Dermatology, School of Medicine, University of California at Davis, Davis, CA, USA
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine and Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - Iannis E Adamopoulos
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, USA.
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA, USA.
| |
Collapse
|
25
|
Li X, Liang D, Shao H, Born WK, Kaplan HJ, Sun D. Adenosine receptor activation in the Th17 autoimmune responses of experimental autoimmune uveitis. Cell Immunol 2019; 339:24-28. [PMID: 30249343 DOI: 10.1016/j.cellimm.2018.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/07/2018] [Accepted: 09/18/2018] [Indexed: 01/16/2023]
Abstract
Th17-type autoreactive T cells contribute to pathogenicity in autoimmune diseases, including autoimmune uveitis. However, the mechanisms of regulation of Th17 cell activities remain unsolved and are likely to be tissue- and disease specific. In this review, we have summarized our studies from the murine model of experimental autoimmune uveitis (EAU). The resultsdemonstrate that γδ T cells have a regulatory effect on Th17 response. The regulatory effects of γδ T cells depend on their action state. Activated γδ T cells express significantly high levels of adenosine receptor A2 (A2AR) but low CD73. Both molecules are crucially involved in adenosine generation, thus modifying T cell responses. While the increased expression of A2AR-allows activated γδ T cells to bind adenosine more effectively than other immune cells, the decreased CD73 restricts their ability to convert AMP to adenosine. Adenosine affects Th1 and Th17 autoimmune responses differently. Its activation of γδ T cells shifts the Th1/Th17 balance towards the Th17 autoreactivity.
Collapse
Affiliation(s)
- Xiaohua Li
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90033, USA
| | - Dongchun Liang
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90033, USA
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY 40202, USA
| | - Willi K Born
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY 40202, USA
| | - Deming Sun
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90033, USA.
| |
Collapse
|
26
|
ten Berge JC, Fazil Z, Born LI, Wolfs RCW, Schreurs MWJ, Dik WA, Rothova A. Intraocular cytokine profile and autoimmune reactions in retinitis pigmentosa, age-related macular degeneration, glaucoma and cataract. Acta Ophthalmol 2019; 97:185-192. [PMID: 30298670 PMCID: PMC6585720 DOI: 10.1111/aos.13899] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/21/2018] [Indexed: 12/27/2022]
Abstract
Purpose To analyse intraocular cytokine levels and prevalence of intraocular antiretinal antibodies (ARAs) in patients with retinitis pigmentosa (RP), age‐related macular degeneration (AMD), glaucoma and cataract, and correlate the results to clinical manifestations. Methods We collected intraocular fluid samples from patients with RP (n = 25), AMD (n = 12), glaucoma (n = 28) and cataract (n = 22), and serum samples paired with the intraocular fluids from patients with RP (N = 7) and cataract (n = 10). Interleukin (IL)‐1β, IL‐1ra, IL‐2, IL‐6, IL‐6rα, IL‐7, IL‐8, IL‐10, IL‐17A, IL‐23, thymus‐ and activation‐regulated chemokine (TARC), monocyte chemoattractant protein‐1 (MCP‐1), tumour necrosis factor‐alpha (TNF‐α), placental growth factor (PlGF) and vascular endothelial growth factor (VEGF) were measured using a multiplex assay. Antiretinal antibodies (ARA) detection was performed by indirect immunofluorescence. Results Increasing age was associated with increasing levels of IL‐6, IL‐8, TNF‐α and VEGF. All patient groups exhibited distinct profiles of intraocular cytokines. Intraocular levels of IL‐8 were highest in patients with AMD and glaucoma. Cataract patients exhibited high intraocular levels of IL‐23. Intraocular levels of IL‐2, IL‐6, MCP‐1 and PlGF in RP patients exceeded the levels of serum, indicating intraocular production. Intraocular ARAs were found in only one patient with AMD. Conclusion Increased levels of inflammatory cytokines in intraocular fluid of patients with originally noninflammatory ocular diseases show that intraocular inflammation is involved in their pathogenesis of these entities. Moreover, we show that increasing age is associated with increasing levels of intraocular cytokines and conclude that future studies on intraocular mediators should be corrected for age of patients.
Collapse
Affiliation(s)
| | - Zainab Fazil
- Department of Ophthalmology Erasmus Medical Center Rotterdam the Netherlands
| | | | - Roger C. W. Wolfs
- Department of Ophthalmology Erasmus Medical Center Rotterdam the Netherlands
| | - Marco W. J. Schreurs
- Department of Immunology Laboratory Medical Immunology Erasmus Medical Center Rotterdam the Netherlands
| | - Wim A. Dik
- Department of Immunology Laboratory Medical Immunology Erasmus Medical Center Rotterdam the Netherlands
| | - Aniki Rothova
- Department of Ophthalmology Erasmus Medical Center Rotterdam the Netherlands
| |
Collapse
|
27
|
Liang D, Shao H, Born WK, O'Brien RL, Kaplan HJ, Sun D. High level expression of A2ARs is required for the enhancing function, but not for the inhibiting function, of γδ T cells in the autoimmune responses of EAU. PLoS One 2018; 13:e0199601. [PMID: 29928041 PMCID: PMC6013223 DOI: 10.1371/journal.pone.0199601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/11/2018] [Indexed: 12/20/2022] Open
Abstract
We previously reported that activated γδ T cells greatly enhance autoimmune responses, particularly the Th17 response. To determine the mechanisms involved, we made a series of comparisons between activated and non-activated γδ T cells. Our results showed that activated γδ T cells expressed greatly increased levels of A2A adenosine receptor (A2AR) and decreased amounts of CD73, as well as increased amounts of T cell activation markers such as CD69, CD44 and CD25. We show that A2AR is a major functional molecule in the enhancing activity of γδ T cells. A2AR-/- γδ T cells (isolated from A2AR-/- mouse), lost their Th17-enhancing activity as did A2AR+/+ γδ T cells (isolated from wt-B6 mouse) after treatment with an A2AR antagonist. Since γδ T cells possess either an enhancing or an inhibiting effect, we also tested whether A2AR expression on γδ T cells is essential to their inhibiting effect. Our results showed that the inhibiting effect of A2AR-/- γδ T cells was as potent as that of A2AR+/+ γδ T cells. In a previous report we showed that the expression of different levels of CD73 molecule allowed γδ T cells to adjust their suppressive activity; in the current study, we show that expression of increased amounts of A2AR allows γδ T cells to more effectively exert their enhancing function.
Collapse
Affiliation(s)
- Dongchun Liang
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Willi K. Born
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States of America
| | - Rebecca L. O'Brien
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States of America
| | - Henry J. Kaplan
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Deming Sun
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| |
Collapse
|
28
|
Liang D, Woo JI, Shao H, Born WK, O'Brien RL, Kaplan HJ, Sun D. Ability of γδ T cells to modulate the Foxp3 T cell response is dependent on adenosine. PLoS One 2018; 13:e0197189. [PMID: 29771938 PMCID: PMC5957379 DOI: 10.1371/journal.pone.0197189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/27/2018] [Indexed: 12/02/2022] Open
Abstract
Whether γδ T cells inhibit or enhance the Foxp3 T cell response depends upon their activation status. The critical enhancing effector in the supernatant is adenosine. Activated γδ T cells express adenosine receptors at high levels, which enables them to deprive Foxp3+ T cells of adenosine, and to inhibit their expansion. Meanwhile, cell-free supernatants of γδ T cell cultures enhance Foxp3 T cell expansion. Thus, inhibition and enhancement by γδ T cells of Foxp3 T cell response are a reflection of the balance between adenosine production and absorption by γδ T cells. Non-activated γδ T cells produce adenosine but bind little, and thus enhance the Foxp3 T cell response. Activated γδ T cells express high density of adenosine receptors and have a greatly increased ability to bind adenosine. Extracellular adenosine metabolism and expression of adenosine receptor A2ARs by γδ T cells played a major role in the outcome of γδ and Foxp3 T cell interactions. A better understanding of the functional conversion of γδ T cells could lead to γδ T cell-targeted immunotherapies for related diseases.
Collapse
MESH Headings
- Adenosine/pharmacology
- Animals
- Cells, Cultured
- Female
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Mice
- Mice, Knockout
- Receptor, Adenosine A2A/genetics
- Receptor, Adenosine A2A/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
Collapse
Affiliation(s)
- Dongchun Liang
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Jeong-Im Woo
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY, United States of America
| | - Willi K. Born
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States of America
| | - Rebecca L. O'Brien
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States of America
| | - Henry J. Kaplan
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY, United States of America
| | - Deming Sun
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
- * E-mail:
| |
Collapse
|
29
|
Ridaura VK, Bouladoux N, Claesen J, Chen YE, Byrd AL, Constantinides MG, Merrill ED, Tamoutounour S, Fischbach MA, Belkaid Y. Contextual control of skin immunity and inflammation by Corynebacterium. J Exp Med 2018; 215:785-799. [PMID: 29382696 PMCID: PMC5839758 DOI: 10.1084/jem.20171079] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/03/2017] [Accepted: 12/21/2017] [Indexed: 12/23/2022] Open
Abstract
Belkaid et al. show that Corynebacterium, a dominant skin microbe, promotes activation of γδ T cells in a mycolic acid–dependent manner without altering skin homeostasis. Such effect promotes inflammation in the context of high-fat-diet and psoriasis-like settings. How defined microbes influence the skin immune system remains poorly understood. Here we demonstrate that Corynebacteria, dominant members of the skin microbiota, promote a dramatic increase in the number and activation of a defined subset of γδ T cells. This effect is long-lasting, occurs independently of other microbes, and is, in part, mediated by interleukin (IL)-23. Under steady-state conditions, the impact of Corynebacterium is discrete and noninflammatory. However, when applied to the skin of a host fed a high-fat diet, Corynebacterium accolens alone promotes inflammation in an IL-23–dependent manner. Such effect is highly conserved among species of Corynebacterium and dependent on the expression of a dominant component of the cell envelope, mycolic acid. Our data uncover a mode of communication between the immune system and a dominant genus of the skin microbiota and reveal that the functional impact of canonical skin microbial determinants is contextually controlled by the inflammatory and metabolic state of the host.
Collapse
Affiliation(s)
- Vanessa K Ridaura
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Nicolas Bouladoux
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jan Claesen
- Department of Bioengineering, Stanford University, Stanford, CA
| | - Y Erin Chen
- Department of Bioengineering, Stanford University, Stanford, CA
| | - Allyson L Byrd
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD.,Department of Bioinformatics, Boston University, Boston, MA
| | - Michael G Constantinides
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Eric D Merrill
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Samira Tamoutounour
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | | | - Yasmine Belkaid
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD .,Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
30
|
Liang D, Shao H, Born WK, O’Brien RL, Kaplan HJ, Sun D. Connection between γδ T-cell- and Adenosine- Mediated Immune Regulation in the Pathogenesis of Experimental Autoimmune Uveitis. Crit Rev Immunol 2018; 38:233-243. [PMID: 30004859 PMCID: PMC6361114 DOI: 10.1615/critrevimmunol.2018026150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Regulatory effects of γδ T-cells on immune responses have been studied for years. We have investigated the regulatory effect of γδ T-cells on Th1 and Th17 autoimmune responses, and have studied molecular and cellular mechanisms by which γδ T-cells enhance or inhibit immune responses, exploiting a well-characterized murine model of experimental autoimmune uveitis (EAU). Our results show that (1) aberrant γδ T-cell activation is an important pathogenic event in EAU; (2) γδ T-cells have a unique regulatory effect on Th17 autoimmune responses, which is shaped by the activation status of γδ T-cells; and (3) γδ-mediated immunoregulation is closely linked with the extracellular adenosine metabolism. Reciprocal interactions between γδ T-cells and extracellular adenosine partially determine the development of EAU.
Collapse
Affiliation(s)
- Dongchun Liang
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, Kentucky
| | - Willi K. Born
- Department of Biomedical Research, National Jewish Health, Denver, Colorado
| | - Rebecca L. O’Brien
- Department of Biomedical Research, National Jewish Health, Denver, Colorado
| | - Henry J. Kaplan
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, Kentucky
| | - Deming Sun
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
31
|
Zhao Z, Liang Y, Liu Y, Xu P, Flamme-Wiese MJ, Sun D, Sun J, Mullins RF, Chen Y, Cai J. Choroidal γδ T cells in protection against retinal pigment epithelium and retinal injury. FASEB J 2017; 31:4903-4916. [PMID: 28729290 DOI: 10.1096/fj.201700533r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 07/05/2017] [Indexed: 12/17/2022]
Abstract
γδ T cells located near the epithelial barrier are integral components of local inflammatory and innate immune responses. We have previously reported the presence of choroidal γδ T cells in a model of chronic degeneration of the retinal pigment epithelium (RPE). The goals of the current study were to further define the functions of choroidal γδ T cells and to explore the underlying mechanisms of their action. Our data demonstrate that choroidal γδ T cells are activated by RPE injury in response to NaIO3 treatment, and that they express genes that encode immunosuppressive cytokines, such as IL-4 and IL-10. γδ-T-cell-deficient mice developed profound RPE and retinal damage at doses that caused minimal effects in wild-type mice, and adoptive transfer of γδ T cells prevented sensitization. Intravitreal injection of IL-4 and IL-10 ameliorated RPE toxicity that was induced by NaIO3Ex vivo coculture of γδ T cells with RPE explants activated the production of anti-inflammatory cytokines via an aryl hydrocarbon receptor (AhR)-dependent mechanism. AhR deficiency abolished the protective effects of γδ T cells after adoptive transfer. Collectively, these findings define important roles for choroid γδ T cells in maintaining tissue homeostasis in the outer retina.-Zhao, Z., Liang, Y., Liu, Y., Xu, P., Flamme-Wiese, M. J., Sun, D., Sun, J., Mullins, R. F., Chen, Y., Cai, J. Choroidal γδ T cells in protection against retinal pigment epithelium and retinal injury.
Collapse
Affiliation(s)
- Zhenyang Zhao
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yin Liu
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Pei Xu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Miles J Flamme-Wiese
- Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, Iowa, USA
| | - Deming Sun
- Doheny Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Robert F Mullins
- Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, Iowa, USA
| | - Yan Chen
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jiyang Cai
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, USA;
| |
Collapse
|
32
|
Meng Z, Wang J, Yuan Y, Cao G, Fan S, Gao C, Wang L, Li Z, Wu X, Wu Z, Zhao L, Yin Z. γδ T cells are indispensable for interleukin-23-mediated protection against Concanavalin A-induced hepatitis in hepatitis B virus transgenic mice. Immunology 2017; 151:43-55. [PMID: 28092402 DOI: 10.1111/imm.12712] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/26/2016] [Accepted: 01/09/2017] [Indexed: 12/22/2022] Open
Abstract
Hepatitis B virus surface antigen (HBsAg) carriers are highly susceptible to liver injury triggered by environmental biochemical stimulation. Previously, we have reported an inverse correlation between γδ T cells and liver damage in patients with hepatitis B virus (HBV). However, whether γδ T cells play a role in regulating the hypersensitivity of HBsAg carriers to biochemical stimulation-induced hepatitis is unknown. In this study, using HBV transgenic (HBs-Tg) and HBs-Tg T-cell receptor-δ-deficient (TCR-δ-/- ) mice, we found that mice genetically deficient in γδ T cells exhibited more severe liver damage upon Concanavalin A (Con A) treatment, as indicated by substantially higher serum alanine aminotransferase levels, further elevated interferon-γ (IFN-γ) levels and more extensive necrosis. γδ T-cell deficiency resulted in elevated IFN-γ in CD4+ T cells but not in natural killer or natural killer T cells. The depletion of CD4+ T cells and neutralization of IFN-γ reduced liver damage in HBs-Tg and HBs-Tg-TCR-δ-/- mice to a similar extent. Further investigation revealed that HBs-Tg mice showed an enhanced interleukin-17 (IL-17) signature. The administration of exogenous IL-23 enhanced IL-17A production from Vγ4 γδ T cells and ameliorated liver damage in HBs-Tg mice, but not in HBs-Tg-TCR-δ-/- mice. In summary, our results demonstrated that γδ T cells played a protective role in restraining Con A-induced hepatitis by inhibiting IFN-γ production from CD4+ T cells and are indispensable for IL-23-mediated protection against Con A-induced hepatitis in HBs-Tg mice. These results provided a potential therapeutic approach for treating the hypersensitivity of HBV carriers to biochemical stimulation-induced liver damage.
Collapse
Affiliation(s)
- Ziyu Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jingya Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yifang Yuan
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Guangchao Cao
- The first Affiliate Hospital, Biomedical Translational Research Institute, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, China
| | - Shuobing Fan
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chao Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Li Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zheng Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoli Wu
- Tianjin Engineering Centre of Micro-Nano Biomaterials and Detection-Treatment Technology, College of Life Sciences, Tianjin University, Tianjin, China
| | - Zhenzhou Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Liqing Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhinan Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,The first Affiliate Hospital, Biomedical Translational Research Institute, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
33
|
Liang D, Nian H, Shao H, Kaplan HJ, Sun D. Functional Conversion and Dominance of γδ T Subset in Mouse Experimental Autoimmune Uveitis. THE JOURNAL OF IMMUNOLOGY 2017; 198:1429-1438. [PMID: 28069804 DOI: 10.4049/jimmunol.1601510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/14/2016] [Indexed: 12/19/2022]
Abstract
We have previously shown that activated γδ T cells have a much stronger proinflammatory effect in the development of experimental autoimmune uveitis than their nonactivated counterparts. Our present study explored γδ T cell subsets are functionally distinct in autoimmune pathogenesis and determined the pathogenic contribution of biased Vγ4+ γδ T cell activation in this disease. By systematically comparing two major peripheral γδ T cell subsets, the Vγ1+ and the Vγ4+ cells, we found that the Vγ4+ cells were readily activated in B6 mice during experimental autoimmune uveitis development, whereas Vγ1+ cells remained nonactivated. Cytokines that were abundantly found in the serum of immunized mice activated Vγ4+, but did not activate Vγ1+, cells. The Vγ4+ cells had a strong proinflammatory activity, whereas the Vγ1+ cells remained nonactivated when tested immediately after isolation from immunized mice. However, when the Vγ1+ cells were activated in vitro, they promoted inflammation. Our results demonstrated that activation is a major factor in switching the enhancing and inhibiting effects of both Vγ1+ and Vγ4+ γδ T cell subsets, and that γδ T cell subsets differ greatly in their activation requirements. Whether the enhancing or inhibiting function of γδ T cells is dominant is mainly determined by the proportion of the γδ T cells that are activated versus the proportion not activated.
Collapse
Affiliation(s)
- Dongchun Liang
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90033
| | - Hong Nian
- Tianjin Medical University Eye Hospital, Eye Institute and School of Optometry and Ophthalmology, Tianjin 300384, China; and
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY 40202
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY 40202
| | - Deming Sun
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90033;
| |
Collapse
|
34
|
Zhao R, Liang D, Sun D. Blockade of Extracellular ATP Effect by Oxidized ATP Effectively Mitigated Induced Mouse Experimental Autoimmune Uveitis (EAU). PLoS One 2016; 11:e0155953. [PMID: 27196432 PMCID: PMC4873015 DOI: 10.1371/journal.pone.0155953] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/07/2016] [Indexed: 12/20/2022] Open
Abstract
Various pathological conditions are accompanied by ATP release from the intracellular to the extracellular compartment. Extracellular ATP (eATP) functions as a signaling molecule by activating purinergic P2 purine receptors. The key P2 receptor involved in inflammation was identified as P2X7R. Recent studies have shown that P2X7R signaling is required to trigger the Th1/Th17 immune response, and oxidized ATP (oxATP) effectively blocks P2X7R activation. In this study we investigated the effect of oxATP on mouse experimental autoimmune uveitis (EAU). Our results demonstrated that induced EAU in B6 mice was almost completely abolished by the administration of small doses of oxATP, and the Th17 response, but not the Th1 response, was significantly weakened in the treated mice. Mechanistic studies showed that the therapeutic effects involve the functional change of a number of immune cells, including dendritic cells (DCs), T cells, and regulatory T cells. OxATP not only directly inhibits the T cell response; it also suppresses T cell activation by altering the function of DCs and Foxp3+ T cell. Our results demonstrated that inhibition of P2X7R activation effectively exempts excessive autoimmune inflammation, which may indicate a possible therapeutic use in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Ronglan Zhao
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90033, United States of America
- Department of Medical Laboratory, Key Laboratory of Clinical Laboratory Diagnostics in the University of Shandong, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Dongchun Liang
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90033, United States of America
| | - Deming Sun
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90033, United States of America
- * E-mail:
| |
Collapse
|
35
|
Barros-Martins J, Schmolka N, Fontinha D, Pires de Miranda M, Simas JP, Brok I, Ferreira C, Veldhoen M, Silva-Santos B, Serre K. Effector γδ T Cell Differentiation Relies on Master but Not Auxiliary Th Cell Transcription Factors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:3642-52. [PMID: 26994218 DOI: 10.4049/jimmunol.1501921] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/23/2016] [Indexed: 11/19/2022]
Abstract
γδ T lymphocytes are programmed into distinct IFN-γ-producing CD27(+) (γδ27(+)) and IL-17-producing CD27(-) (γδ27(-)) subsets that play key roles in protective or pathogenic immune responses. Although the signature cytokines are shared with their αβ Th1 (for γδ27(+)) and Th17 (for γδ27(-)) cell counterparts, we dissect in this study similarities and differences in the transcriptional requirements of murine effector γδ27(+), γδ27(-)CCR6(-), and γδ27(-)CCR6(+) γδ T cell subsets and αβ T cells. We found they share dependence on the master transcription factors T-bet and RORγt for IFN-γ and IL-17 production, respectively. However, Eomes is fully dispensable for IFN-γ production by γδ T cells. Furthermore, the Th17 cell auxiliary transcription factors RORα and BATF are not required for IL-17 production by γδ27(-) cell subsets. We also show that γδ27(-) (but not γδ27(+)) cells become polyfunctional upon IL-1β plus IL-23 stimulation, cosecreting IL-17A, IL-17F, IL-22, GM-CSF, and IFN-γ. Collectively, our in vitro and in vivo data firmly establish the molecular segregation between γδ27(+) and γδ27(-) T cell subsets and provide novel insight on the nonoverlapping transcriptional networks that control the differentiation of effector γδ versus αβ T cell subsets.
Collapse
Affiliation(s)
- Joana Barros-Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Nina Schmolka
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Diana Fontinha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Marta Pires de Miranda
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - J Pedro Simas
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Ingrid Brok
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Cristina Ferreira
- Laboratory for Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom; and
| | - Marc Veldhoen
- Laboratory for Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom; and
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto Gulbenkian de Ciência, 2781-901 Oeiras, Portugal
| | - Karine Serre
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal;
| |
Collapse
|
36
|
Liang D, Zuo A, Zhao R, Shao H, Born WK, O'Brien RL, Kaplan HJ, Sun D. CD73 Expressed on γδ T Cells Shapes Their Regulatory Effect in Experimental Autoimmune Uveitis. PLoS One 2016; 11:e0150078. [PMID: 26919582 PMCID: PMC4769068 DOI: 10.1371/journal.pone.0150078] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/09/2016] [Indexed: 12/20/2022] Open
Abstract
γδ T cells can either enhance or inhibit an adaptive immune response, but the mechanisms involved are not fully understood. Given that CD73 is the main enzyme responsible for conversion of AMP into the immunosuppressive molecule adenosine, we investigated its role in the regulatory function of γδ T cells in experimental autoimmune uveitis (EAU). We found that γδ T cells expressed different amounts of CD73 during the different stages of EAU and that low CD73 expression on γδ T cells correlated with enhanced Th17 response-promoting activity. Functional comparison of CD73-deficient and wild-type B6 (CD73+/+) mice showed that failure to express CD73 decreased both the enhancing and suppressive effects of γδ T cells on EAU. We also demonstrated that γδ T cells expressed different amounts of CD73 when activated by different pathways, which enabled them to either enhance or inhibit an adaptive immune response. Our results demonstrate that targeting CD73 expression on γδ T cells may allow us to manipulate their pro- or anti-inflammatory effect on Th17 responses.
Collapse
MESH Headings
- 5'-Nucleotidase/biosynthesis
- 5'-Nucleotidase/deficiency
- 5'-Nucleotidase/genetics
- 5'-Nucleotidase/physiology
- Adenosine/metabolism
- Adenosine Monophosphate/metabolism
- Animals
- Cells, Cultured
- Dendritic Cells/immunology
- Eye Proteins/immunology
- Eye Proteins/toxicity
- Female
- Gene Expression Regulation/immunology
- Interferon-gamma/blood
- Interferon-gamma/deficiency
- Interleukin-17/blood
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nervous System Autoimmune Disease, Experimental/enzymology
- Nervous System Autoimmune Disease, Experimental/immunology
- Peptide Fragments/immunology
- Peptide Fragments/toxicity
- Receptors, Antigen, T-Cell, gamma-delta/analysis
- Receptors, Antigen, T-Cell, gamma-delta/deficiency
- Retinol-Binding Proteins/immunology
- Retinol-Binding Proteins/toxicity
- T-Lymphocyte Subsets/enzymology
- T-Lymphocyte Subsets/immunology
- T-Lymphocytes, Regulatory/enzymology
- T-Lymphocytes, Regulatory/immunology
- Th1 Cells/immunology
- Th17 Cells/immunology
- Uveitis/enzymology
- Uveitis/immunology
Collapse
Affiliation(s)
- Dongchun Liang
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California 90033, United States of America
| | - Aijun Zuo
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California 90033, United States of America
| | - Ronglan Zhao
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California 90033, United States of America
- Department of Medical Laboratory, Key Laboratory of Clinical Laboratory Diagnostics in University of Shandong, Weifang Medical University, Weifang 261053, Shandong, China
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, Kentucky 40202, United States of America
| | - Willi K. Born
- Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206, United States of America
| | - Rebecca L. O'Brien
- Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206, United States of America
| | - Henry J. Kaplan
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, Kentucky 40202, United States of America
| | - Deming Sun
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California 90033, United States of America
| |
Collapse
|
37
|
Sakoda Y, Nagai T, Murata S, Mizuno Y, Kurosawa H, Shoda H, Morishige N, Yanai R, Sonoda KH, Tamada K. Pathogenic Function of Herpesvirus Entry Mediator in Experimental Autoimmune Uveitis by Induction of Th1- and Th17-Type T Cell Responses. THE JOURNAL OF IMMUNOLOGY 2016; 196:2947-54. [PMID: 26912321 DOI: 10.4049/jimmunol.1501742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/20/2016] [Indexed: 01/23/2023]
Abstract
Herpesvirus entry mediator (HVEM), a member of the TNFR superfamily, serves as a unique molecular switch to mediate both stimulatory and inhibitory cosignals, depending on its functions as a receptor or ligand interacting with multiple binding partners. In this study, we explored the cosignaling functions of HVEM in experimental autoimmune uveitis (EAU), a mouse model resembling human autoimmune uveitis conditions such as ocular sarcoidosis and Behcet disease. Our studies revealed that EAU severity significantly decreased in HVEM-knockout mice compared with wild-type mice, suggesting that stimulatory cosignals from the HVEM receptor are predominant in EAU. Further studies elucidated that the HVEM cosignal plays an important role in the induction of both Th1- and Th17-type pathogenic T cells in EAU, including differentiation of IL-17-producing αβ(+)γδ(-) conventional CD4(+) T cells. Mice lacking lymphotoxin-like, inducible expression, competes with herpes simplex virus glycoprotein D for HVEM, a receptor expressed by T lymphocytes : LIGHT), B- and T-lymphocyte attenuator (BTLA) or both LIGHT and BTLA are also less susceptible to EAU, indicating that LIGHT-HVEM and BTLA-HVEM interactions, two major molecular pathways mediating HVEM functions, are both important in determining EAU pathogenesis. Finally, blocking HVEM cosignals by antagonistic anti-HVEM Abs ameliorated EAU. Taken together, our studies revealed a novel function of the HVEM cosignaling molecule and its ligands in EAU pathogenesis through the induction of Th1- and Th17-type T cell responses and suggested that HVEM-related molecular pathways can be therapeutic targets in autoimmune uveitis.
Collapse
Affiliation(s)
- Yukimi Sakoda
- Department of Immunology, Yamaguchi University Graduate School of Medicine, Ube City, Yamaguchi 755-8505, Japan; and
| | - Tomohiko Nagai
- Department of Immunology, Yamaguchi University Graduate School of Medicine, Ube City, Yamaguchi 755-8505, Japan; and Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube City, Yamaguchi 755-8505, Japan
| | - Sizuka Murata
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube City, Yamaguchi 755-8505, Japan
| | - Yukari Mizuno
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube City, Yamaguchi 755-8505, Japan
| | - Hiromi Kurosawa
- Department of Immunology, Yamaguchi University Graduate School of Medicine, Ube City, Yamaguchi 755-8505, Japan; and
| | - Hiromi Shoda
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube City, Yamaguchi 755-8505, Japan
| | - Naoyuki Morishige
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube City, Yamaguchi 755-8505, Japan
| | - Ryoji Yanai
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube City, Yamaguchi 755-8505, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube City, Yamaguchi 755-8505, Japan
| | - Koji Tamada
- Department of Immunology, Yamaguchi University Graduate School of Medicine, Ube City, Yamaguchi 755-8505, Japan; and
| |
Collapse
|
38
|
Liang D, Zuo A, Zhao R, Shao H, Kaplan HJ, Sun D. Regulation of Adenosine Deaminase on Induced Mouse Experimental Autoimmune Uveitis. THE JOURNAL OF IMMUNOLOGY 2016; 196:2646-54. [PMID: 26856700 DOI: 10.4049/jimmunol.1502294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/05/2016] [Indexed: 01/25/2023]
Abstract
Adenosine is an important regulator of the immune response, and adenosine deaminase (ADA) inhibits this regulatory effect by converting adenosine into functionally inactive molecules. Studies showed that adenosine receptor agonists can be anti- or proinflammatory. Clarification of the mechanisms that cause these opposing effects should provide a better guide for therapeutic intervention. In this study, we investigated the effect of ADA on the development of experimental autoimmune uveitis (EAU) induced by immunizing EAU-prone mice with a known uveitogenic peptide, IRBP1-20. Our results showed that the effective time to administer a single dose of ADA to suppress induction of EAU was 8-14 d postimmunization, shortly before EAU expression; however, ADA treatment at other time points exacerbated disease. ADA preferentially inhibited Th17 responses, and this effect was γδ T cell dependent. Our results demonstrated that the existing immune status strongly influences the anti- or proinflammatory effects of ADA. Our observations should help to improve the design of ADA- and adenosine receptor-targeted therapies.
Collapse
Affiliation(s)
- Dongchun Liang
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90033
| | - Aijun Zuo
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90033
| | - Ronglan Zhao
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90033; Department of Medical Laboratory, Key Laboratory of Clinical Laboratory Diagnostics, University of Shandong, Weifang Medical University, Weifang, Shandong 261053, China; and
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY 40202
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY 40202
| | - Deming Sun
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90033;
| |
Collapse
|
39
|
Ujiie H, Shevach EM. γδ T Cells Protect the Liver and Lungs of Mice from Autoimmunity Induced by Scurfy Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2016; 196:1517-28. [PMID: 26773142 DOI: 10.4049/jimmunol.1501774] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/10/2015] [Indexed: 02/06/2023]
Abstract
γδ T cells have been shown to have immunoregulatory functions in several experimental autoimmune models. A mutation of the Foxp3 gene leads to the absence of regulatory T cells (Tregs) and a fatal systemic autoimmune disease in scurfy mice. Transfer of scurfy lymphocytes to RAG deficient (RAG(-/-)) recipients reproduces the inflammatory phenotype of the scurfy donor, including hepatitis and pneumonitis. In this study, we show that TCRα(-/-) recipients, which lack αβ T cells but have γδ T cells and B cells, are significantly protected from the hepatitis and pneumonitis, but not the dermatitis, induced by adoptive transfer of scurfy lymphocytes. Cotransfer of γδ T cells, but not B cells, prevented hepatitis and pneumonitis in RAG(-/-) recipients of scurfy lymphocytes. γδ T cells in the TCRα(-/-) recipients of scurfy cells markedly expanded and expressed a highly activated (CD62L(lo)CD44(hi)) phenotype. The activated γδ T cells expressed high levels of CD39 and NKG2D on their cell surface. A high frequency of scurfy T cells in TCRα(-/-) recipients produced IL-10, suggesting that γδ T cells may enhance suppressor cytokine production from scurfy T cells in TCRα(-/-) recipients. This study indicates that γδ T cells may contribute to the maintenance of immunological homeostasis by suppressing autoreactive T cells in liver and lung.
Collapse
Affiliation(s)
- Hideyuki Ujiie
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ethan M Shevach
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
40
|
Liang D, Zuo A, Shao H, Chen M, Kaplan HJ, Sun D. A2B adenosine receptor activation switches differentiation of bone marrow cells to a CD11c(+)Gr-1(+) dendritic cell subset that promotes the Th17 response. Immun Inflamm Dis 2015; 3:360-73. [PMID: 26734458 PMCID: PMC4693722 DOI: 10.1002/iid3.74] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/21/2015] [Accepted: 06/30/2015] [Indexed: 01/15/2023] Open
Abstract
Adenosine is one of the major molecules associated with inflammation. We have previously reported that an adenosine receptor (AR) agonist has an enhancing effect on Th17 autoimmune responses, even though it suppressed Th1 responses. To determine the mechanism involved, we have examined the effect of AR agonists on mouse bone marrow dendritic cell (BMDC) differentiation and function. We show that mouse bone marrow cells (BMCs) differentiated into CD11c(+)Gr-1(+) dentritic cells (DCs) when cultured in granulocyte macrophage colony-stimulating factor (GM-CSF)-containing medium containing an AR agonist. The non-selective AR agonist NECA and an A2BR-specific agonist had a similar effect, and the effect of NECA could be blocked by an A2BR-specific antagonist. Unlike CD11c(+)Gr-1(-) BMDCs, which have a greater stimulatory effect on Th1 T cells than Th17 cells, CD11c(+)Gr-1(+) BMDCs had a greater stimulatory effect on Th17 autoreactive T cells than on Th1 autoreactive T cells and this effect depended on γδ T cell activation.
Collapse
Affiliation(s)
- Dongchun Liang
- Department of Ophthalmology of the University of California Los AngelesDoheny Eye InstituteCalifornia90033USA
| | - Aijun Zuo
- Department of Ophthalmology of the University of California Los AngelesDoheny Eye InstituteCalifornia90033USA
| | - Hui Shao
- Department of Ophthalmology and Visual SciencesKentucky Lions Eye CenterUniversity of LouisvilleLouisvilleKentucky40202USA
| | - Mingjiazi Chen
- Department of Ophthalmology of the University of California Los AngelesDoheny Eye InstituteCalifornia90033USA
| | - Henry J. Kaplan
- Department of Ophthalmology and Visual SciencesKentucky Lions Eye CenterUniversity of LouisvilleLouisvilleKentucky40202USA
| | - Deming Sun
- Department of Ophthalmology of the University of California Los AngelesDoheny Eye InstituteCalifornia90033USA
| |
Collapse
|
41
|
Chen M, Liang D, Zuo A, Shao H, Kaplan HJ, Sun D. An A2B Adenosine Receptor Agonist Promotes Th17 Autoimmune Responses in Experimental Autoimmune Uveitis (EAU) via Dendritic Cell Activation. PLoS One 2015; 10:e0132348. [PMID: 26147733 PMCID: PMC4492970 DOI: 10.1371/journal.pone.0132348] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/13/2015] [Indexed: 12/13/2022] Open
Abstract
We have recently reported that, although adenosine receptor (AR) agonists have a suppressive effect on Th1 autoreactive T cells, their effect on Th17 autoreactive T cells and γδ T cells is stimulatory and this effect is mainly mediated via A2A adenosine receptors (A2ARs). In this study, we further demonstrate that treatment of C57BL/6 (B6) mice with a selective A2B adenosine receptor (A2BR) agonist greatly enhanced the development of experimental autoimmune uveitis (EAU), whereas treatment with an A2BR antagonist significantly ameliorated severity of EAU. The A2BR agonist-treated mice showed augmented Th17, but not Th1, responses. Mechanistic studies showed that the A2BR agonist-induced enhancement of the Th17 response was significantly lower when TCR-δ-/- mice received the same treatment and that transfer of γδ T cells into TCR-δ-/- mice partially restored this effect. We also showed that dendritic cells (DCs) from A2BR agonist-treated mice showed a significantly increased ability to activate γδ T cells and Th17 autoreactive T cells. Thus, our previous studies have shown that, in EAU, activated γδ T cells possess greatly increased ability to enhance Th17 autoimmune responses. In the present study, we showed that exposure of DCs to A2BR agonist facilitated γδ T cell activation, leading to augmented Th17 responses and progressive EAU development. Our results further support our previous finding that AR agonists have distinct effects on Th1 and Th17 autoimmune responses.
Collapse
Affiliation(s)
- Mingjiazi Chen
- Doheny Eye Institute and Department of Ophthalmology, University of California, Los Angeles, CA90033, United States of America
| | - Dongchun Liang
- Doheny Eye Institute and Department of Ophthalmology, University of California, Los Angeles, CA90033, United States of America
| | - Aijun Zuo
- Doheny Eye Institute and Department of Ophthalmology, University of California, Los Angeles, CA90033, United States of America
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY40202, United States of America
| | - Henry J. Kaplan
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY40202, United States of America
| | - Deming Sun
- Doheny Eye Institute and Department of Ophthalmology, University of California, Los Angeles, CA90033, United States of America
- * E-mail:
| |
Collapse
|
42
|
Sun D, Liang D, Kaplan HJ, Shao H. The role of Th17-associated cytokines in the pathogenesis of experimental autoimmune uveitis (EAU). Cytokine 2015; 74:76-80. [PMID: 25742774 PMCID: PMC4457592 DOI: 10.1016/j.cyto.2014.12.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 12/16/2022]
Abstract
The proinflammatory and pathogenic function of Th17 cells in autoimmune diseases have been established but the mechanism by which such cells cause disease remains to be determined. Inflammatory cytokines produced by Th17 cells may either promote or inhibit disease development. The major cytokines produced by the uveitogenic T cells, such as IL-17 and IL-22, are not always pathogenic, and the disease-inducing ability of pathogenic T cells is not immediately correlated to the amount of cytokine they produce. Future studies identifying factors causing increased Th17 responses and determining the types of cells that regulating Th17 autoreactive T cells should facilitate our effort of understanding Th17-mediated disease pathogenesis.
Collapse
Affiliation(s)
- Deming Sun
- Doheny Eye Institute, and Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles (UCLA), 1355 San Pablo Street, Los Angeles, CA 90033, USA.
| | - Dongchun Liang
- Doheny Eye Institute, and Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles (UCLA), 1355 San Pablo Street, Los Angeles, CA 90033, USA
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY 40202, USA
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
43
|
Interleukin 12 (IL-12) family cytokines: Role in immune pathogenesis and treatment of CNS autoimmune disease. Cytokine 2015; 75:249-55. [PMID: 25796985 DOI: 10.1016/j.cyto.2015.01.030] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/23/2015] [Accepted: 01/23/2015] [Indexed: 12/18/2022]
Abstract
Cytokines play crucial roles in coordinating the activities of innate and adaptive immune systems. In response to pathogen recognition, innate immune cells secrete cytokines that inform the adaptive immune system about the nature of the pathogen and instruct naïve T cells to differentiate into the appropriate T cell subtypes required to clear the infection. These include Interleukins, Interferons and other immune-regulatory cytokines that exhibit remarkable functional redundancy and pleiotropic effects. The focus of this review, however, is on the enigmatic Interleukin 12 (IL-12) family of cytokines. This family of cytokines plays crucial roles in shaping immune responses during antigen presentation and influence cell-fate decisions of differentiating naïve T cells. They also play essential roles in regulating functions of a variety of effector cells, making IL-12 family cytokines important therapeutic targets or agents in a number of inflammatory diseases, such as the CNS autoimmune diseases, uveitis and multiple sclerosis.
Collapse
|
44
|
Abstract
γδ T cells represent a small population of overall T lymphocytes (0.5-5%) and have variable tissue distribution in the body. γδ T cells can perform complex functions, such as immune surveillance, immunoregulation, and effector function, without undergoing clonal expansion. Heterogeneous distribution and anatomic localization of γδ T cells in the normal and inflamed tissues play an important role in alloimmunity, autoimmunity, or immunity. The cross-talk between γδ T cells and other immune cells and phenotypic and functional plasticity of γδ T cells have been given recent attention in the field of immunology. In this review, we discussed the cellular and molecular interaction of γδ T cells with other immune cells and its mechanism in the pathogenesis of various autoimmune diseases.
Collapse
Affiliation(s)
- Sourav Paul
- National Centre for Cell Science, Pune University Campus, Pune, India
| | - Shilpi
- National Centre for Cell Science, Pune University Campus, Pune, India
| | - Girdhari Lal
- National Centre for Cell Science, Pune University Campus, Pune, India
| |
Collapse
|
45
|
Liang D, Zuo A, Shao H, Chen M, Kaplan HJ, Sun D. Anti-inflammatory or proinflammatory effect of an adenosine receptor agonist on the Th17 autoimmune response is inflammatory environment-dependent. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:5498-505. [PMID: 25367119 PMCID: PMC4299924 DOI: 10.4049/jimmunol.1401959] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adenosine is a key endogenous signaling molecule that regulates a wide range of physiological functions, including immune system function and inflammation. Studies have shown that adenosine receptor (AR) agonists can be either anti-inflammatory or proinflammatory in immune responses and in inflammation, and the clarification of the mechanisms causing these opposing effects should provide a better guide for therapeutic intervention. Whereas previous studies mostly examined the effects of AR agonists on Th1-type immune responses, in this study, we compared their effect on Th17 and Th1 autoimmune responses in experimental autoimmune uveitis, a mouse model of human uveitis induced by immunization with the human interphotoreceptor retinoid-binding protein peptides 1-20. We showed that injection of mice with a nonselective AR agonist, 5'-N-ethylcarboxamidoadenosine (NECA), at an early stage after immunization had an inhibitory effect on both Th1 and Th17 responses, whereas injection of the same amount of NECA at a late stage inhibited the Th1 response but had an enhancing effect on the Th17 response. We also showed that the effects of NECA on Th1 and Th17 responses were completely dissociated, that the enhancing effect of NECA on Th17 responses was modulated by γδ T cells, and that the response of γδ T cells to NECA was determined by their activation status. We conclude that the inflammatory environment has a strong impact on converting the effect of AR agonist on the Th17 autoimmune response from anti-inflammatory to proinflammatory. Our observation should help in the designing of better AR-targeted therapies.
Collapse
MESH Headings
- Adenosine-5'-(N-ethylcarboxamide)/administration & dosage
- Animals
- Anti-Inflammatory Agents/administration & dosage
- Autoantigens/immunology
- Autoimmune Diseases/chemically induced
- Autoimmune Diseases/immunology
- Autoimmune Diseases/therapy
- Cells, Cultured
- Eye Proteins/immunology
- Female
- Humans
- Immunomodulation/drug effects
- Immunomodulation/genetics
- Inflammation Mediators/administration & dosage
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Animal
- Peptide Fragments/immunology
- Purinergic P1 Receptor Agonists/administration & dosage
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Retinol-Binding Proteins/immunology
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Uveitis/chemically induced
- Uveitis/immunology
- Uveitis/therapy
Collapse
Affiliation(s)
- Dongchun Liang
- Doheny Eye Institute, University of California, Los Angeles, Los Angeles, CA 90033; Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA 90033; and
| | - Aijun Zuo
- Doheny Eye Institute, University of California, Los Angeles, Los Angeles, CA 90033; Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA 90033; and
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY 40202
| | - Mingjiazi Chen
- Doheny Eye Institute, University of California, Los Angeles, Los Angeles, CA 90033; Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA 90033; and
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY 40202
| | - Deming Sun
- Doheny Eye Institute, University of California, Los Angeles, Los Angeles, CA 90033; Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA 90033; and
| |
Collapse
|
46
|
Liang D, Zuo A, Shao H, Chen M, Kaplan HJ, Sun D. Roles of the adenosine receptor and CD73 in the regulatory effect of γδ T cells. PLoS One 2014; 9:e108932. [PMID: 25268760 PMCID: PMC4182534 DOI: 10.1371/journal.pone.0108932] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/04/2014] [Indexed: 11/18/2022] Open
Abstract
The adenosine A2A receptor (A2AR), the main functional adenosine receptor on murine T cells, plays a unique role in the attenuation of inflammation and tissue damage in vivo. Here, we showed that, of the immune cell types tested, activated γδ T cells expressed the highest levels of A2AR mRNA and that A2AR ligation inhibited αβ T cell activation, but enhanced γδ T cell activation. We also showed that the inhibitory effect of an adenosine receptor agonist on autoreactive T cells was prevented by addition of a low percentage of activated γδ T cells. Furthermore, compared to resting cells, activated γδ T cells expressed significantly lower levels of CD73, an enzyme involved in the generation of extracellular adenosine. Exogenous AMP had a significant inhibitory effect on autoreactive T cell responses, but only in the presence of CD73+ γδ T cells, and this effect was abolished by a CD73 inhibitor. Our results show that expression of increased amounts of A2AR allows γδ T cells to bind adenosine and thereby attenuate its suppressive effect, while decreased expression of CD73 results in less generation of adenosine in the inflammatory site. Together, these events allow activated γδ T cells to acquire increased proinflammatory activity, leading to augmented autoimmune responses.
Collapse
Affiliation(s)
- Dongchun Liang
- Doheny Eye Institute, Department of Ophthalmology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Aijun Zuo
- Doheny Eye Institute, Department of Ophthalmology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Mingjiazi Chen
- Doheny Eye Institute, Department of Ophthalmology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Henry J. Kaplan
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Deming Sun
- Doheny Eye Institute, Department of Ophthalmology, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
47
|
Cai Y, Xue F, Fleming C, Yang J, Ding C, Ma Y, Liu M, Zhang HG, Zheng J, Xiong N, Yan J. Differential developmental requirement and peripheral regulation for dermal Vγ4 and Vγ6T17 cells in health and inflammation. Nat Commun 2014; 5:3986. [PMID: 24909159 PMCID: PMC4068267 DOI: 10.1038/ncomms4986] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 04/29/2014] [Indexed: 02/08/2023] Open
Abstract
Dermal IL-17-producing γδT cells play a critical role in skin inflammation. However, their development and peripheral regulation have not been fully elucidated. Here we demonstrate that dermal γδT cells develop from the embryonic thymus and undergo homeostatic proliferation after birth with diversified TCR repertoire. Vγ6T cells are bona fide resident but precursors of dermal Vγ4T cells may require extrathymic environment for imprinting skin homing properties. Thymic Vγ6T cells are more competitive than Vγ4 for dermal γδT cell reconstitution and TCRδ−/− mice reconstituted with Vγ6 develop psoriasis-like inflammation after IMQ-application. Although both IL-23 and IL-1β promote Vγ4 and Vγ6 proliferation, Vγ4 are the main source of IL-17 production, which requires IL-1 signaling. Mice with deficiency of IL-1RI signaling have significantly decreased skin inflammation. These studies reveal a differential developmental requirement and peripheral regulation for dermal Vγ6 and Vγ4 γδT cells, implying a new mechanism that may be involved in skin inflammation.
Collapse
Affiliation(s)
- Yihua Cai
- 1] James Graham Brown Cancer Center, Department of Medicine and Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky 40202, USA [2]
| | - Feng Xue
- 1] Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China [2]
| | - Chris Fleming
- James Graham Brown Cancer Center, Department of Medicine and Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky 40202, USA
| | - Jie Yang
- Center for Molecular Immunology and Infectious Diseases and Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Chuanlin Ding
- James Graham Brown Cancer Center, Department of Medicine and Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky 40202, USA
| | - Yunfeng Ma
- James Graham Brown Cancer Center, Department of Medicine and Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky 40202, USA
| | - Min Liu
- James Graham Brown Cancer Center, Department of Medicine and Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky 40202, USA
| | - Huang-ge Zhang
- James Graham Brown Cancer Center, Department of Medicine and Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky 40202, USA
| | - Jie Zheng
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| | - Na Xiong
- Center for Molecular Immunology and Infectious Diseases and Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Jun Yan
- James Graham Brown Cancer Center, Department of Medicine and Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky 40202, USA
| |
Collapse
|
48
|
Poggi A, Zocchi MR. NK cell autoreactivity and autoimmune diseases. Front Immunol 2014; 5:27. [PMID: 24550913 PMCID: PMC3912987 DOI: 10.3389/fimmu.2014.00027] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/17/2014] [Indexed: 01/14/2023] Open
Abstract
Increasing evidences have pointed out the relevance of natural killer (NK) cells in organ-specific and systemic autoimmune diseases. NK cells bear a plethora of activating and inhibiting receptors that can play a role in regulating reactivity with autologous cells. The activating receptors recognize natural ligands up-regulated on virus-infected or stressed or neoplastic cells. Of note, several autoimmune diseases are thought to be linked to viral infections as one of the first event in inducing autoimmunity. Also, it is conceivable that autoimmunity can be triggered when a dysregulation of innate immunity occurs, activating T and B lymphocytes to react with self-components. This would imply that NK cells can play a regulatory role during adaptive immunity; indeed, innate lymphoid cells (ILCs), comprising the classical CD56(+) NK cells, have a role in maintaining or alternating tissue homeostasis secreting protective and/or pro-inflammatory cytokines. In addition, NK cells display activating receptors involved in natural cytotoxicity and the activating isoforms of receptors for HLA class I that can interact with healthy host cells and induce damage without any evidence of viral infection or neoplastic-induced alteration. In this context, the interrelationship among ILC, extracellular-matrix components, and mesenchymal stromal cells can be considered a key point for the control of homeostasis. Herein, we summarize evidences for a role of NK cells in autoimmune diseases and will give a point of view of the interplay between NK cells and self-cells in triggering autoimmunity.
Collapse
Affiliation(s)
- Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, Scientific Institute San Raffaele, Milan, Italy
| |
Collapse
|