1
|
Mladinich MC, Himmler GE, Conde JN, Gorbunova EE, Schutt WR, Sarkar S, Tsirka SAE, Kim HK, Mackow ER. Age-dependent Powassan virus lethality is linked to glial cell activation and divergent neuroinflammatory cytokine responses in a murine model. J Virol 2024; 98:e0056024. [PMID: 39087762 PMCID: PMC11334436 DOI: 10.1128/jvi.00560-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/27/2024] [Indexed: 08/02/2024] Open
Abstract
Powassan virus (POWV) is an emergent tick-borne flavivirus that causes fatal encephalitis in the elderly and long-term neurologic sequelae in survivors. How age contributes to severe POWV encephalitis remains an enigma, and no animal models have assessed age-dependent POWV neuropathology. Inoculating C57BL/6 mice with a POWV strain (LI9) currently circulating in Ixodes ticks resulted in age-dependent POWV lethality 10-20 dpi. POWV infection of 50-week-old mice was 82% fatal with lethality sequentially reduced by age to 7.1% in 10-week-old mice. POWV LI9 was neuroinvasive in mice of all ages, causing acute spongiform CNS pathology and reactive gliosis 5-15 dpi that persisted in survivors 30 dpi. High CNS viral loads were found in all mice 10 dpi. However, by 15 dpi, viral loads decreased by 2-4 logs in 10- to 40-week-old mice, while remaining at high levels in 50-week-old mice. Age-dependent differences in CNS viral loads 15 dpi occurred concomitantly with striking changes in CNS cytokine responses. In the CNS of 50-week-old mice, POWV induced Th1-type cytokines (IFNγ, IL-2, IL-12, IL-4, TNFα, IL-6), suggesting a neurodegenerative pro-inflammatory M1 microglial program. By contrast, in 10-week-old mice, POWV-induced Th2-type cytokines (IL-10, TGFβ, IL-4) were consistent with a neuroprotective M2 microglial phenotype. These findings correlate age-dependent CNS cytokine responses and viral loads with POWV lethality and suggest potential neuroinflammatory therapeutic targets. Our results establish the age-dependent lethality of POWV in a murine model that mirrors human POWV severity and long-term CNS pathology in the elderly. IMPORTANCE Powassan virus is an emerging tick-borne flavivirus causing lethal encephalitis in aged individuals. We reveal an age-dependent POWV murine model that mirrors human POWV encephalitis and long-term CNS damage in the elderly. We found that POWV is neuroinvasive and directs reactive gliosis in all age mice, but at acute stages selectively induces pro-inflammatory Th1 cytokine responses in 50-week-old mice and neuroprotective Th2 cytokine responses in 10-week-old mice. Our findings associate CNS viral loads and divergent cytokine responses with age-dependent POWV lethality and survival outcomes. Responses of young mice suggest potential therapeutic targets and approaches for preventing severe POWV encephalitis that may be broadly applicable to other neurodegenerative diseases. Our age-dependent murine POWV model permits analysis of vaccines that prevent POWV lethality, and therapeutics that resolve severe POWV encephalitis.
Collapse
Affiliation(s)
- Megan C. Mladinich
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Grace E. Himmler
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Jonas N. Conde
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Elena E. Gorbunova
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - William R. Schutt
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Shayan Sarkar
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Styliani-Anna E. Tsirka
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Hwan Keun Kim
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Erich R. Mackow
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| |
Collapse
|
2
|
Hwang M, Bergmann CC. Neurotropic murine coronavirus mediated demyelination: Factors dampening pathogenesis. J Neuroimmunol 2024; 393:578382. [PMID: 38850674 DOI: 10.1016/j.jneuroim.2024.578382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/12/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Virus infections and autoimmune responses are implicated as primary triggers of demyelinating diseases. Specifically, the association of Epstein-Barr virus (EBV) infection with development of multiple sclerosis (MS) has re-ignited an interest in virus induced autoimmune responses to CNS antigens. Nevertheless, demyelination may also be caused by immune mediated bystander pathology in an attempt to control direct infection in the CNS. Tissue damage as a result of anti-viral responses or low level viral persistence may lead to immune activation manifesting in demyelinating lesions, axonal damage and clinical symptoms. This review focuses on the neurotropic mouse coronavirus induced demyelination model to highlight how immune responses activated during the acute phase pave the way to dampen pathology and promote repair. We specifically discuss the role of immune dampening factors programmed cell death ligand 1 (PD-L1) and interleukin (IL)-10, as well as microglia and triggering receptor expressed on myeloid cells 2 (Trem2), in limiting demyelination independent of viral persistence.
Collapse
Affiliation(s)
- Mihyun Hwang
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA; Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Cornelia C Bergmann
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA; Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
3
|
Andres-Martin F, James C, Catalfamo M. IL-27 expression regulation and its effects on adaptive immunity against viruses. Front Immunol 2024; 15:1395921. [PMID: 38966644 PMCID: PMC11222398 DOI: 10.3389/fimmu.2024.1395921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
IL-27, a member of the IL-6/IL-12 cytokine superfamily, is primarily secreted by antigen presenting cells, specifically by dendric cells, macrophages and B cells. IL-27 has antiviral activities and modulates both innate and adaptive immune responses against viruses. The role of IL-27 in the setting of viral infections is not well defined and both pro-inflammatory and anti-inflammatory functions have been described. Here, we discuss the latest advancements in the role of IL-27 in several viral infection models of human disease. We highlight important aspects of IL-27 expression regulation, the critical cell sources at different stages of the infection and their impact in cell mediated immunity. Lastly, we discuss the need to better define the antiviral and modulatory (pro-inflammatory vs anti-inflammatory) properties of IL-27 in the context of human chronic viral infections.
Collapse
Affiliation(s)
| | | | - Marta Catalfamo
- Department of Microbiology Immunology, Georgetown University School of Medicine, Washington, DC, United States
| |
Collapse
|
4
|
Antony F, Pundkar C, Sandey M, Mishra A, Suryawanshi A. Role of IL-27 in HSV-1-Induced Herpetic Stromal Keratitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:474-485. [PMID: 37326494 PMCID: PMC10495105 DOI: 10.4049/jimmunol.2200420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Herpetic stromal keratitis (HSK) is a painful and vision-impairing disease caused by recurrent HSV-1 infection of the cornea. The virus replication in the corneal epithelium and associated inflammation play a dominant role in HSK progression. Current HSK treatments targeting inflammation or virus replication are partially effective and promote HSV-1 latency, and long-term use can cause side effects. Thus, understanding molecular and cellular events that control HSV-1 replication and inflammation is crucial for developing novel HSK therapies. In this study, we report that ocular HSV-1 infection induces the expression of IL-27, a pleiotropic immunoregulatory cytokine. Our data indicate that HSV-1 infection stimulates IL-27 production by macrophages. Using a primary corneal HSV-1 infection mouse model and IL-27 receptor knockout mice, we show that IL-27 plays a critical role in controlling HSV-1 shedding from the cornea, the optimum induction of effector CD4+ T cell responses, and limiting HSK progression. Using in vitro bone marrow-derived macrophages, we show that IL-27 plays an antiviral role by regulating macrophage-mediated HSV-1 killing, IFN-β production, and IFN-stimulated gene expression after HSV-1 infection. Furthermore, we report that IL-27 is critical for macrophage survival, Ag uptake, and the expression of costimulatory molecules involved in the optimum induction of effector T cell responses. Our results indicate that IL-27 promotes endogenous antiviral and anti-inflammatory responses and represents a promising target for suppressing HSK progression.
Collapse
Affiliation(s)
- Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| | - Chetan Pundkar
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| | - Maninder Sandey
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| | - Amarjit Mishra
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| |
Collapse
|
5
|
Kim D, Kim S, Kang MS, Yin Z, Min B. Cell type specific IL-27p28 (IL-30) deletion in mice uncovers an unexpected regulatory function of IL-30 in autoimmune inflammation. Sci Rep 2023; 13:1812. [PMID: 36725904 PMCID: PMC9892501 DOI: 10.1038/s41598-023-27413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/02/2023] [Indexed: 02/03/2023] Open
Abstract
IL-27 is an IL-12 family cytokine with immune regulatory properties, capable of modulating inflammatory responses, including autoimmunity. While extensive studies investigated the major target cells of IL-27 mediating its functions, the source of IL-27 especially during tissue specific autoimmune inflammation has not formally been examined. IL-27p28 subunit, also known as IL-30, was initially discovered as an IL-27-specific subunit, and it has thus been deemed as a surrogate marker to denote IL-27 expression. However, IL-30 can be secreted independently of Ebi3, a subunit that forms bioactive IL-27 with IL-30. Moreover, IL-30 itself may act as a negative regulator antagonizing IL-27. In this study, we exploited various cell type specific IL-30-deficient mouse models and examined the source of IL-30 in a T cell mediated autoimmune neuroinflammation. We found that IL-30 expressed by infiltrating and CNS resident APC subsets, infiltrating myeloid cells and microglia, is central in limiting the inflammation. However, dendritic cell-derived IL-30 was dispensable for the disease development. Unexpectedly, in cell type specific IL-30 deficient mice that develop severe EAE, IL-30 expression in the remaining wild-type APC subsets is disproportionately increased, suggesting that increased endogenous IL-30 production may be involved in the severe pathogenesis. In support, systemic recombinant IL-30 administration exacerbates EAE severity. Our results demonstrate that dysregulated endogenous IL-30 expression may interfere with immune regulatory functions of IL-27, promoting encephalitogenic inflammation in vivo.
Collapse
Affiliation(s)
- Dongkyun Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sohee Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Myung-Su Kang
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
6
|
Interleukin-27 Promotes Divergent Effects on HIV-1 Infection in Peripheral Blood Mononuclear Cells through BST-2/Tetherin. J Virol 2023; 97:e0175222. [PMID: 36602368 PMCID: PMC9888194 DOI: 10.1128/jvi.01752-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Interleukin-27 (IL-27) is able to inhibit HIV-1 replication in peripheral blood mononuclear cells (PBMCs), macrophages, and dendritic cells. Here, we identify that IL-27 can produce opposing effects on HIV-1 replication in PBMCs and that the HIV-1 restriction factor BST-2/Tetherin is involved in both inhibitory and enhancing effects on HIV-1 infection induced by IL-27. IL-27 inhibited HIV-1 replication when added to cells 2 h after infection, promoting the prototypical BST-2/Tetherin-induced virion accumulation at the cell membrane of HIV-1-infected PBMCs. BST-2/Tetherin gene expression was significantly upregulated in the IL-27-treated PBMCs, with a simultaneous increase in the number of BST-2/Tetherin+ cells. The silencing of BST-2/Tetherin diminished the anti-HIV-1 effect of IL-27. In contrast, IL-27 increased HIV-1 production when added to infected cells 4 days after infection. This enhancing effect was prevented by BST-2/Tetherin gene knockdown, which also permitted IL-27 to function again as an HIV-1 inhibitory factor. These contrasting roles of IL-27 were associated with the dynamic of viral production, since the IL-27-mediated enhancement of virus replication was prevented by antiretroviral treatment of infected cells, as well as by keeping cells under agitation to avoid cell-to-cell contact. Likewise, inhibition of CD11a, an integrin associated with HIV-1 cell-to-cell transmission, abrogated the IL-27 enhancement of HIV-1 production. Our findings illustrate the complexity of the HIV-1-host interactions and may impact the potential therapeutic use of IL-27 and other soluble mediators that induce BST-2/Tetherin expression for HIV-1 infection. IMPORTANCE Here, we describe new findings related to the ability of the cytokine IL-27 to regulate the growth of HIV-1 in CD4+ T lymphocytes. IL-27 has long been considered a potent inhibitor of HIV-1 replication, a notion based on several reports showing that this cytokine controls HIV-1 infection in peripheral blood mononuclear cells (PBMCs), monocyte-derived macrophages, and dendritic cells. However, our present results are contrary to the current knowledge that IL-27 acts only as a powerful downregulator of HIV-1 replication. We observed that IL-27 can either prevent or enhance viral growth in PBMCs, an outcome dependent on when this cytokine is added to the infected cells. We detected that the increase of HIV-1 dissemination is due to enhanced cell-to-cell transmission with the involvement of the interferon-induced HIV-1 restriction factor BST-2/Tetherin and CD11a (LFA-1), an integrin that participates in formation of virological synapse.
Collapse
|
7
|
Angel JP, Daniels BP. Paradoxical roles for programmed cell death signaling during viral infection of the central nervous system. Curr Opin Neurobiol 2022; 77:102629. [PMID: 36162201 PMCID: PMC10754211 DOI: 10.1016/j.conb.2022.102629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/10/2023]
Abstract
Programmed cell death (PCD) is an essential mechanism of antimicrobial defense. Recent work has revealed an unexpected diversity in the types of PCD elicited during infection, as well as defined unique roles for different PCD modalities in shaping the immune response. Here, we review recent work describing unique ways in which PCD signaling operates within the infected central nervous system (CNS). These studies reveal striking complexity in the regulation of PCD signaling by CNS cells, including both protective and pathological outcomes in the control of infection. Studies defining the specialized molecular mechanisms shaping PCD responses in the CNS promise to yield much needed new insights into the pathogenesis of neuroinvasive viral infection, informing future therapeutic development.
Collapse
Affiliation(s)
- Juan P Angel
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA. https://twitter.com/JuanP_Angell
| | - Brian P Daniels
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
8
|
Amsden H, Kourko O, Roth M, Gee K. Antiviral Activities of Interleukin-27: A Partner for Interferons? Front Immunol 2022; 13:902853. [PMID: 35634328 PMCID: PMC9134790 DOI: 10.3389/fimmu.2022.902853] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/14/2022] [Indexed: 12/17/2022] Open
Abstract
Emergence of new, pandemic-level viral threats has brought to the forefront the importance of viral immunology and continued improvement of antiviral therapies. Interleukin-27 (IL-27) is a pleiotropic cytokine that regulates both innate and adaptive immune responses. Accumulating evidence has revealed potent antiviral activities of IL-27 against numerous viruses, including HIV, influenza, HBV and more. IL-27 contributes to the immune response against viruses indirectly by increasing production of interferons (IFNs) which have various antiviral effects. Additionally, IL-27 can directly interfere with viral infection both by acting similarly to an IFN itself and by modulating the differentiation and function of various immune cells. This review discusses the IFN-dependent and IFN-independent antiviral mechanisms of IL-27 and highlights the potential of IL-27 as a therapeutic cytokine for viral infection.
Collapse
Affiliation(s)
| | | | | | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
9
|
Expressions of Interleukin-27 in Oral Lichen Planus, Oral Leukoplakia, and Oral Squamous Cell Carcinoma. Inflammation 2022; 45:1023-1038. [DOI: 10.1007/s10753-021-01599-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/30/2022]
|
10
|
Cheng J, Myers TG, Levinger C, Kumar P, Kumar J, Goshu BA, Bosque A, Catalfamo M. IL-27 induces IFN/STAT1-dependent genes and enhances function of TIGIT + HIVGag-specific T cells. iScience 2022; 25:103588. [PMID: 35005538 PMCID: PMC8717455 DOI: 10.1016/j.isci.2021.103588] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/03/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
HIV-specific T cells have diminished effector function and fail to control/eliminate the virus. IL-27, a member of the IL-6/IL-12 cytokine superfamily has been shown to inhibit HIV replication. However, whether or not IL-27 can enhance HIV-specific T cell function is largely unknown. In the present manuscript, we investigated the role of IL-27 signaling in human T cells by evaluating the global transcriptional changes related to the function of HIV-specific T cells. We found that T cells from people living with HIV (PLWH), expressed higher levels of STAT1 leading to enhanced STAT1 activation upon IL-27 stimulation. Observed IL-27 induced transcriptional changes were associated with IFN/STAT1-dependent pathways in CD4 and CD8 T cells. Importantly, IL-27 dependent modulation of T-bet expression promoted IFNγ secretion by TIGIT+HIVGag-specific T cells. This new immunomodulatory effect of IL-27 on HIV-specific T cell function suggests its potential therapeutic use in cure strategies.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Microbiology and Immunology, Georgetown University School of Medicine, 3970 Reservoir Road, N.W, New Research Building, Room EG19A, Washington, DC 20057, USA
| | - Timothy G. Myers
- Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Callie Levinger
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Princy Kumar
- Division of Infectious Diseases and Travel Medicine, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Jai Kumar
- Division of Infectious Diseases and Travel Medicine, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Bruktawit A. Goshu
- Department of Microbiology and Immunology, Georgetown University School of Medicine, 3970 Reservoir Road, N.W, New Research Building, Room EG19A, Washington, DC 20057, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alberto Bosque
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Marta Catalfamo
- Department of Microbiology and Immunology, Georgetown University School of Medicine, 3970 Reservoir Road, N.W, New Research Building, Room EG19A, Washington, DC 20057, USA
| |
Collapse
|
11
|
Saadi F, Pal D, Sarma JD. Spike Glycoprotein Is Central to Coronavirus Pathogenesis-Parallel Between m-CoV and SARS-CoV-2. Ann Neurosci 2021; 28:201-218. [PMID: 35341224 PMCID: PMC8948335 DOI: 10.1177/09727531211023755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/24/2021] [Indexed: 01/04/2023] Open
Abstract
Coronaviruses (CoVs) are single-stranded, polyadenylated, enveloped RNA of positive polarity with a unique potential to alter host tropism. This has been exceptionally demonstrated by the emergence of deadly virus outbreaks of the past: Severe Acute Respiratory Syndrome (SARS-CoV) in 2003 and Middle East Respiratory Syndrome (MERS-CoV) in 2012. The 2019 outbreak by the new cross-species transmission of SARS-CoV-2 has put the world on alert. CoV infection is triggered by receptor recognition, membrane fusion, and successive viral entry mediated by the surface Spike (S) glycoprotein. S protein is one of the major antigenic determinants and the target for neutralizing antibodies. It is a valuable target in antiviral therapies because of its central role in cell-cell fusion, viral antigen spread, and host immune responses leading to immunopathogenesis. The receptor-binding domain of S protein has received greater attention as it initiates host attachment and contains major antigenic determinants. However, investigating the therapeutic potential of fusion peptide as a part of the fusion core complex assembled by the heptad repeats 1 and 2 (HR1 and HR2) is also warranted. Along with receptor attachment and entry, fusion mechanisms should also be explored for designing inhibitors as a therapeutic intervention. In this article, we review the S protein function and its role in mediating membrane fusion, spread, tropism, and its associated pathogenesis with notable therapeutic strategies focusing on results obtained from studies on a murine β-Coronavirus (m-CoV) and its associated disease process.
Collapse
Affiliation(s)
- Fareeha Saadi
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Kolkata, West Bengal, India
| | - Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Kolkata, West Bengal, India
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Sensory neuron-associated macrophages as novel modulators of neuropathic pain. Pain Rep 2021; 6:e873. [PMID: 33981924 PMCID: PMC8108583 DOI: 10.1097/pr9.0000000000000873] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 12/28/2022] Open
Abstract
The peripheral nervous system comprises an infinity of neural networks that act in the communication between the central nervous system and the most diverse tissues of the body. Along with the extension of the primary sensory neurons (axons and cell bodies), a population of resident macrophages has been described. These newly called sensory neuron-associated macrophages (sNAMs) seem to play an essential role in physiological and pathophysiological processes, including infection, autoimmunity, nerve degeneration/regeneration, and chronic neuropathic pain. After different types of peripheral nerve injury, there is an increase in the number and activation of sNAMs in the sciatic nerve and sensory ganglia. The activation of sNAMs and their participation in neuropathic pain development depends on the stimulation of pattern recognition receptors such as Toll-like receptors and Nod-like receptors, chemokines/cytokines, and microRNAs. On activation, sNAMs trigger the production of critical inflammatory mediators such as proinflammatory cytokines (eg, TNF and IL-1β) and reactive oxygen species that can act in the amplification of primary sensory neurons sensitization. On the other hand, there is evidence that sNAMs can produce antinociceptive mediators (eg, IL-10) that counteract neuropathic pain development. This review will present the cellular and molecular mechanisms behind the participation of sNAMs in peripheral nerve injury-induced neuropathic pain development. Understanding how sNAMs are activated and responding to nerve injury can help set novel targets for the control of neuropathic pain.
Collapse
|
13
|
Kaneko N, Satta S, Komuro Y, Muthukrishnan SD, Kakarla V, Guo L, An J, Elahi F, Kornblum HI, Liebeskind DS, Hsiai T, Hinman JD. Flow-Mediated Susceptibility and Molecular Response of Cerebral Endothelia to SARS-CoV-2 Infection. Stroke 2021; 52:260-270. [PMID: 33161843 PMCID: PMC7769899 DOI: 10.1161/strokeaha.120.032764] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is associated with an increased rate of cerebrovascular events including ischemic stroke and intracerebral hemorrhage. The mechanisms underlying cerebral endothelial susceptibility and response to SARS-CoV-2 are unknown yet critical to understanding the association of SARS-CoV-2 infection with cerebrovascular events. METHODS Endothelial cells were isolated from human brain and analyzed by RNA sequencing. Human umbilical vein and human brain microvascular cells were used in both monolayer culture and endothelialized within a 3-dimensional printed vascular model of the middle cerebral artery. Gene expression levels were measured by quantitative polymerase chain reaction and direct RNA hybridization. Recombinant SARS-CoV-2 S protein and S protein-containing liposomes were used to measure endothelial binding by immunocytochemistry. RESULTS ACE2 (angiotensin-converting enzyme-2) mRNA levels were low in human brain and monolayer endothelial cell culture. Within the 3-dimensional printed vascular model, ACE2 gene expression and protein levels were progressively increased by vessel size and flow rates. SARS-CoV-2 S protein-containing liposomes were detected in human umbilical vein endothelial cells and human brain microvascular endothelial cells in 3-dimensional middle cerebral artery models but not in monolayer culture consistent with flow dependency of ACE2 expression. Binding of SARS-CoV-2 S protein triggered 83 unique genes in human brain endothelial cells including upregulation of complement component C3. CONCLUSIONS Brain endothelial cells are susceptible to direct SARS-CoV-2 infection through flow-dependent expression of ACE2. Viral S protein binding triggers a unique gene expression profile in brain endothelia that may explain the association of SARS-CoV-2 infection with cerebrovascular events.
Collapse
Affiliation(s)
- Naoki Kaneko
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles
| | - Sandro Satta
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles
| | - Yutaro Komuro
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles
| | - Sree Deepthi Muthukrishnan
- Intellectual and Developmental Disabilities Research Center, Semel Institute of Neuroscience, University of California Los Angeles
| | | | - Lea Guo
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles
| | - Jennifer An
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles
| | - Fanny Elahi
- Memory and Aging Center, University of California San Francisco
| | - Harley I. Kornblum
- Intellectual and Developmental Disabilities Research Center, Semel Institute of Neuroscience, University of California Los Angeles
| | - David S. Liebeskind
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles
| | - Tzung Hsiai
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles
- Veterans Healthcare Administration, Greater Los Angeles Healthcare System
| | - Jason D. Hinman
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles
- Veterans Healthcare Administration, Greater Los Angeles Healthcare System
| |
Collapse
|
14
|
Oladunni FS, Park JG, Pino PA, Gonzalez O, Akhter A, Allué-Guardia A, Olmo-Fontánez A, Gautam S, Garcia-Vilanova A, Ye C, Chiem K, Headley C, Dwivedi V, Parodi LM, Alfson KJ, Staples HM, Schami A, Garcia JI, Whigham A, Platt RN, Gazi M, Martinez J, Chuba C, Earley S, Rodriguez OH, Mdaki SD, Kavelish KN, Escalona R, Hallam CRA, Christie C, Patterson JL, Anderson TJC, Carrion R, Dick EJ, Hall-Ursone S, Schlesinger LS, Alvarez X, Kaushal D, Giavedoni LD, Turner J, Martinez-Sobrido L, Torrelles JB. Lethality of SARS-CoV-2 infection in K18 human angiotensin-converting enzyme 2 transgenic mice. Nat Commun 2020; 11:6122. [PMID: 33257679 PMCID: PMC7705712 DOI: 10.1038/s41467-020-19891-7] [Citation(s) in RCA: 297] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Vaccine and antiviral development against SARS-CoV-2 infection or COVID-19 disease would benefit from validated small animal models. Here, we show that transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) by the human cytokeratin 18 promoter (K18 hACE2) represent a susceptible rodent model. K18 hACE2 transgenic mice succumbed to SARS-CoV-2 infection by day 6, with virus detected in lung airway epithelium and brain. K18 ACE2 transgenic mice produced a modest TH1/2/17 cytokine storm in the lung and spleen that peaked by day 2, and an extended chemokine storm that was detected in both lungs and brain. This chemokine storm was also detected in the brain at day 6. K18 hACE2 transgenic mice are, therefore, highly susceptible to SARS-CoV-2 infection and represent a suitable animal model for the study of viral pathogenesis, and for identification and characterization of vaccines (prophylactic) and antivirals (therapeutics) for SARS-CoV-2 infection and associated severe COVID-19 disease.
Collapse
Affiliation(s)
- Fatai S Oladunni
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Jun-Gyu Park
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Paula A Pino
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Olga Gonzalez
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Anwari Akhter
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | | | - Angélica Olmo-Fontánez
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
- Integrated Biomedical Sciences Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Shalini Gautam
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | | | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Kevin Chiem
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
- Integrated Biomedical Sciences Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Colwyn Headley
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Varun Dwivedi
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Laura M Parodi
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Kendra J Alfson
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Hilary M Staples
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Alyssa Schami
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
- Integrated Biomedical Sciences Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Juan I Garcia
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Alison Whigham
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Roy Neal Platt
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Michal Gazi
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Jesse Martinez
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Colin Chuba
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Stephanie Earley
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | | | | | | | - Renee Escalona
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Cory R A Hallam
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Corbett Christie
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Jean L Patterson
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Tim J C Anderson
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Ricardo Carrion
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Edward J Dick
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | | | | | - Xavier Alvarez
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Deepak Kaushal
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Luis D Giavedoni
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Joanne Turner
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA.
| | | | | |
Collapse
|
15
|
Abstract
IL-27 is a pleiotropic cytokine capable of influencing both innate and adaptive immune responses. With anti- and pro-inflammatory activity, IL-27 exerts its opposing effects in a cell-dependent and infectious context-specific manner. Upon pathogenic stimuli, IL-27 regulates innate immune cells, such as monocytes, dendritic cells, macrophages and neutrophils. Immune responses involving these innate cells that are negatively regulated by IL-27 signaling include inflammatory cytokine production, phagolysosomal acidification following phagocytosis, oxidative burst and autophagy. IL-27 signaling is crucial in maintaining the subtle balance between Th1 and Th2 immunity, in which protective inflammation is upregulated within the early stages of infection and subsequently downregulated once microbial growth is controlled. The immunomodulatory effects of IL-27 provide promising therapeutic targets for multiple disease types. A primary role of IL-27 is to communicate between various immune cells to initiate different immune responses. Among these responses are those involved with destroying and eliminating microbial pathogens and then turning off inflammatory responses when the infectious threat has been resolved. IL-27 possesses both anti- and pro-inflammatory activity that varies with context, immune cell and pathogen stimulus. Depending on the precise formula of these details, there are important implications for IL-27 in disease outcomes. As such, harnessing or opposing IL-27 activity may have the potential to treat a variety of infectious diseases.
Collapse
Affiliation(s)
- Jessica M Povroznik
- Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA.,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV 26506, USA
| | - Cory M Robinson
- Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA.,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV 26506, USA
| |
Collapse
|
16
|
Xia L, Tan T, Li Y, Zhong Q, Shi M. Blockade of IL-27 signaling ameliorates herpes stromal keratitis with upregulated CD4 + Foxp3 + regulatory T cells influx in mice. Indian J Ophthalmol 2020; 67:1821-1828. [PMID: 31638041 PMCID: PMC6836587 DOI: 10.4103/ijo.ijo_1780_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose: The purpose of this study was to investigate the production of IL-27 p28 and EBI3 in the ocular inflammatory sites, and the role of IL-27 signaling in a model of HSV-1 induced herpetic stromal keratitis (HSK). Methods: The BALB/c mice were injected intraperitoneally (24 h before infection) with anti-IL-27 antibody or IgG antibody as control, infected with HSV-1 via corneal scarification, and then injected intraperitoneally with anti-IL-27 antibody or IgG antibody at 1, 3, and 5 days postinfection. Slit lamp and histopathology were used to assess disease outcome. The levels of IL-27 p28 and EBI3 in corneas were determined by western blotting and immunofluorescence. Furthermore, viral titers were determined, and immune cell infiltrates were collected and analyzed by flow cytometry. Results: We found that the levels of IL-27 p28 and EBI3 in corneas were elevated significantly at the peak of HSK, and both of them were expressed simultaneously in the epithelium, stroma, and endothelium of corneas. In the group of anti-IL-27 treatment, the severity of the corneal lesion and CD4+ T cells infiltration were significantly decreased, and the percentage of CD4+ Foxp3+ Tregs was upregulated markedly in the spleen, DLNs and cornea of HSK mice compared to IgG treatment. Conclusion: These results provided evidence that IL-27 as a pathogenic pro-inflammatory cytokine controlled CD4+ Foxp3+ Tregs production in HSK, which ultimately resulted in promoting the progression of HSK and poor prognosis.
Collapse
Affiliation(s)
- Likun Xia
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Tianchang Tan
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Yang Li
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Qiuyue Zhong
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Mei Shi
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| |
Collapse
|
17
|
Fonseca MM, Davoli-Ferreira M, Santa-Cecília F, Guimarães RM, Oliveira FFB, Kusuda R, Ferreira DW, Alves-Filho JC, Cunha FQ, Cunha TM. IL-27 Counteracts Neuropathic Pain Development Through Induction of IL-10. Front Immunol 2020; 10:3059. [PMID: 32047492 PMCID: PMC6997342 DOI: 10.3389/fimmu.2019.03059] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Neuroimmune–glia interactions have been implicated in the development of neuropathic pain. Interleukin-27 (IL-27) is a cytokine that presents regulatory activity in inflammatory conditions of the central nervous system. Thus, we hypothesized that IL-27 would participate in the neuropathic pain process. Here, we found that neuropathic pain caused by peripheral nerve injury (spared nerve injury model; SNI), was enhanced in IL-27-deficient(−/−) mice, whereas nociceptive pain is similar to that of wild-type mice. SNI induced an increase in the expression of IL-27 and its receptor subunit (Wsx1) in the sensory ganglia and spinal cord. IL-27 receptor was expressed mainly in resident macrophage, microglia, and astrocytes of the sensory ganglia and spinal cord, respectively. Finally, we identify that the antinociceptive effect of IL-27 was not observed in IL-10−/− mice. These results provided evidence that IL-27 is a cytokine produced after peripheral nerve injury that counteracts neuropathic pain development through induction of the antinociceptive cytokine IL-10. In summary, our study unraveled the role of IL-27 as a regulatory cytokine that counteracts the development of neuropathic pain after peripheral nerve damage. In conclusion, they indicate that immunotherapies based on IL-27 could emerge as possible therapeutic approaches for the prevention of neuropathic pain development after peripheral nerve injury.
Collapse
Affiliation(s)
- Miriam M Fonseca
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Marcela Davoli-Ferreira
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil.,Graduate Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Flávia Santa-Cecília
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Rafaela M Guimarães
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil.,Graduate Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Francisco F B Oliveira
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Ricardo Kusuda
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - David W Ferreira
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - José C Alves-Filho
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| |
Collapse
|
18
|
Guo Y, Cao W, Zhu Y. Immunoregulatory Functions of the IL-12 Family of Cytokines in Antiviral Systems. Viruses 2019; 11:v11090772. [PMID: 31443406 PMCID: PMC6784021 DOI: 10.3390/v11090772] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/05/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022] Open
Abstract
Members of the interleukin 12 (IL-12) family have been known to be inflammatory factors since their discovery. The IL-12 family consists of IL-12, IL-23, IL-27, IL-35, and a new member, IL-39, which has recently been identified and has not yet been studied extensively. Current literature has described the mechanisms of immunity of these cytokines and potential uses for therapy and medical cures. IL-12 was found first and is effective in combatting a wide range of naturally occurring viral infections through the upregulation of various cytokines to clear the infected cells. IL-23 has an essential function in immune networks, can induce IL-17 production, and can antagonize inhibition from IL-12 in the presence of T helper (Th) 17 cells, resulting in type II IFN (IFN-γ) regulation. IL-27 has a competitive relationship to IL-35 because they both include the same subunit, the Epstein–Barr virus-induced gene3 (EBi3). This review provides a simple introduction to the IL-12 family and focuses on their functions relevant to their actions to counteract viral infections.
Collapse
Affiliation(s)
- Yifei Guo
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wei Cao
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying Zhu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
19
|
Chen J, Liu W, Zhu W. Foxp3⁺ Treg Cells Are Associated with Pathological Process of Autoimmune Hepatitis by Activating Methylation Modification in Autoimmune Hepatitis Patients. Med Sci Monit 2019; 25:6204-6212. [PMID: 31422415 PMCID: PMC6711260 DOI: 10.12659/msm.915408] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Autoimmune hepatitis (AIH) is a chronic hepatic disorder. This study investigated role of Foxp3+ regulatory T cells (Treg) and methylation-regulated Tregs in AIH pathological processes. Material/Methods Forty consecutive patients diagnosed with hepatitis were enrolled and divided into a virus hepatitis (n=20) group and an AIH group (n=20). Twenty healthy individuals were assigned to the healthy control group (HC, n=20), Liver function biomarkers were detected on an automatic biochemical analyzer. Serum auto-antibodies were evaluated using immunofluorescence method. Histopathological evaluation was conducted with liver tissues. Treg cells were counted using FACS flow cytometry. Peripheral lymphocytes surface/intracellular biomarkers, CD4+CD25+, CD127, and Foxp3, were examined. Serum cytokines were evaluated using cytometric bead array. Methylation-specific PCR (MS-PCR) was conducted to identify the status of Foxp3 gene methylation. Results Levels of liver function biomarkers were significantly increased in the AIH group compared to the HC group (p<0.05). Levels of ANA and ASMA were significantly enhanced in the AIH group compared to the HC group (p<0.05). Other auto-antibodies, including anti-AHA, anti-ribosome P protein, and anti-RO-52, were also discovered in the AIH group. Severe lymphocytic infiltration and inflammatory cells clustering were discovered in AIH patients. There were significantly fewer CD4+CD25+ T cells in the AIH group, and interleukin 6 (IL-6) and IL-10 levels were significantly decreased compared to the HC group (p<0.05). CD127+ Treg and Foxp3+ Treg expressions were decreased in the AIH group compared to the HC group (p<0.05). Foxp3 in Treg cells of AIH patients exhibited higher methylation frequency compared to that of HC patients (p<0.05). Conclusions Foxp3+ regulatory T cells were involved in pathological processes by activating methylation modification in autoimmune hepatitis patients.
Collapse
Affiliation(s)
- Jiang Chen
- Yibin Traditional Chinese Medicine Hospital, Yibin, Sichuan, China (mainland)
| | - Wen Liu
- Yibin Traditional Chinese Medicine Hospital, Yibin, Sichuan, China (mainland)
| | - Wenjing Zhu
- The No. 2 People's Hospital of Yibin, Yibin, Sichuan, China (mainland)
| |
Collapse
|
20
|
Huang Z, Zak J, Pratumchai I, Shaabani N, Vartabedian VF, Nguyen N, Wu T, Xiao C, Teijaro JR. IL-27 promotes the expansion of self-renewing CD8 + T cells in persistent viral infection. J Exp Med 2019; 216:1791-1808. [PMID: 31164392 PMCID: PMC6683984 DOI: 10.1084/jem.20190173] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/04/2019] [Accepted: 05/07/2019] [Indexed: 12/21/2022] Open
Abstract
CXCR5+ TCF1+ CD8+ T cells sustain responses during persistent viral infection and mediate the proliferative burst following anti-PD1 treatment. Huang et al. show that IL-27 supports rapid division of these cells by competing with type 1 interferon for STAT1, driving IRF1 expression and preventing cell death. Chronic infection and cancer are associated with suppressed T cell responses in the presence of cognate antigen. Recent work identified memory-like CXCR5+ TCF1+ CD8+ T cells that sustain T cell responses during persistent infection and proliferate upon anti-PD1 treatment. Approaches to expand these cells are sought. We show that blockade of interferon type 1 (IFN-I) receptor leads to CXCR5+ CD8+ T cell expansion in an IL-27– and STAT1-dependent manner. IFNAR1 blockade promoted accelerated cell division and retention of TCF1 in virus-specific CD8+ T cells. We found that CD8+ T cell–intrinsic IL-27 signaling safeguards the ability of TCF1hi cells to maintain proliferation and avoid terminal differentiation or programmed cell death. Mechanistically, IL-27 endowed rapidly dividing cells with IRF1, a transcription factor that was required for sustained division in a cell-intrinsic manner. These findings reveal that IL-27 opposes IFN-I to uncouple effector differentiation from cell division and suggest that IL-27 signaling could be exploited to augment self-renewing T cells in chronic infections and cancer.
Collapse
Affiliation(s)
- Zhe Huang
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| | - Jaroslav Zak
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| | - Isaraphorn Pratumchai
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA.,Department of Chemical Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Namir Shaabani
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| | - Vincent F Vartabedian
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| | - Nhan Nguyen
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| | - Tuoqi Wu
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Changchun Xiao
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| | - John R Teijaro
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
21
|
Savarin C, Bergmann CC. Fine Tuning the Cytokine Storm by IFN and IL-10 Following Neurotropic Coronavirus Encephalomyelitis. Front Immunol 2018; 9:3022. [PMID: 30619363 PMCID: PMC6306494 DOI: 10.3389/fimmu.2018.03022] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
The central nervous system (CNS) is vulnerable to several viral infections including herpes viruses, arboviruses and HIV to name a few. While a rapid and effective immune response is essential to limit viral spread and mortality, this anti-viral response needs to be tightly regulated in order to limit immune mediated tissue damage. This balance between effective virus control with limited pathology is especially important due to the highly specialized functions and limited regenerative capacity of neurons, which can be targets of direct virus cytolysis or bystander damage. CNS infection with the neurotropic strain of mouse hepatitis virus (MHV) induces an acute encephalomyelitis associated with focal areas of demyelination, which is sustained during viral persistence. Both innate and adaptive immune cells work in coordination to control virus replication. While type I interferons are essential to limit virus spread associated with early mortality, perforin, and interferon-γ promote further virus clearance in astrocytes/microglia and oligodendrocytes, respectively. Effective control of virus replication is nonetheless associated with tissue damage, characterized by demyelinating lesions. Interestingly, the anti-inflammatory cytokine IL-10 limits expansion of tissue lesions during chronic infection without affecting viral persistence. Thus, effective coordination of pro- and anti-inflammatory cytokines is essential during MHV induced encephalomyelitis in order to protect the host against viral infection at a limited cost.
Collapse
Affiliation(s)
- Carine Savarin
- Department of Neuroscience, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH, United States
| | - Cornelia C Bergmann
- Department of Neuroscience, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH, United States
| |
Collapse
|
22
|
Wehrens EJ, Wong KA, Gupta A, Khan A, Benedict CA, Zuniga EI. IL-27 regulates the number, function and cytotoxic program of antiviral CD4 T cells and promotes cytomegalovirus persistence. PLoS One 2018; 13:e0201249. [PMID: 30044874 PMCID: PMC6059457 DOI: 10.1371/journal.pone.0201249] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 07/11/2018] [Indexed: 12/11/2022] Open
Abstract
The role of IL-27 in antiviral immunity is still incompletely understood, especially in the context of chronic viruses that induce a unique environment in their infected host. Cytomegalovirus (CMV) establishes a persistent, tissue localized infection followed by lifelong latency. CMV infects the majority of people and although asymptomatic in healthy individuals, can cause serious disease or death in those with naïve or compromised immune systems. Therefore, there is an urgent need to develop a protective CMV vaccine for people at-risk and identifying key regulators of the protective immune response towards CMV will be crucial. Here we studied mouse CMV (MCMV) in IL-27 receptor deficient animals (Il27ra-/-) to assess the role of IL-27 in regulating CMV immunity. We found that IL-27 enhanced the number of antiviral CD4 T cells upon infection. However, in contrast to a well-established role for CD4 T cells in controlling persistent replication and a positive effect of IL-27 on their numbers, IL-27 promoted MCMV persistence in the salivary gland. This coincided with IL-27 mediated induction of IL-10 production in CD4 T cells. Moreover, IL-27 reduced expression of the transcription factor T-bet and restricted a cytotoxic phenotype in antiviral CD4 T cells. This is a highly intriguing result given the profound cytotoxic phenotype of CMV-specific CD4 T cells seen in humans and we established that dendritic cell derived IL-27 was responsible for this effect. Together, these data show that IL-27 regulates the number and effector functions of MCMV-specific CD4 T cells and could be targeted to enhance control of persistent/latent infection.
Collapse
Affiliation(s)
- Ellen J. Wehrens
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Kurt A. Wong
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Ankan Gupta
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Ayesha Khan
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Chris A. Benedict
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Elina I. Zuniga
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
23
|
Altered regulatory cytokine profiles in cases of pediatric respiratory syncytial virus infection. Cytokine 2018; 103:57-62. [PMID: 29324262 PMCID: PMC7130056 DOI: 10.1016/j.cyto.2017.12.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/25/2017] [Accepted: 12/27/2017] [Indexed: 12/11/2022]
Abstract
Objectives Regulatory cytokines are associated with viral infection. The objective of this study was to evaluate the relation between serum regulatory cytokines concentrations and respiratory syncytial virus (RSV) disease. Methods We enrolled 325 children aged < 24 months who were diagnosed with acute respiratory tract infection. Twenty age-matched healthy children were enrolled as controls. Nasopharyngeal swabs were analyzed to identify virus by reverse transcription polymerase chain reaction, and blood samples were taken to quantify the regulatory cytokine concentrations, including interleukin (IL)-35, IL-10 and transforming growth factor (TGF)-β1 using the Bio-Plex immunoassay or enzyme-linked immunosorbent assay. Results RSV disease was associated with a great regulatory cytokine response than healthy children, among 89 RSV-infected patients, serum IL-35 (P = .0001) and IL-10 (P = .006) was significantly elevated in comparison with healthy controls. Young children (0< age ≤6 months) with RSV infection had significantly lower IL-35 and IL-10 expression but needed more oxygen therapy and more severe disease comparing with older children (12< age <24 months). Comparing with mild group, the expression levels of IL-10 were significantly lower in children with moderate and severe disease (P = .012 and P = .005, respectively). And levels of IL-10 was inversely associated with total duration of RSV infection symptoms (r = − 0.311, P = .019). Conclusion Children with RSV infected had increased serum regulatory cytokine IL-10 and IL-35 concentrations. Elevated expression of IL-10 and IL-35 were contributed to protect hypoxia and reduce the severity of disease.
Collapse
|
24
|
Do J, Kim D, Kim S, Valentin-Torres A, Dvorina N, Jang E, Nagarajavel V, DeSilva TM, Li X, Ting AH, Vignali DAA, Stohlman SA, Baldwin WM, Min B. Treg-specific IL-27Rα deletion uncovers a key role for IL-27 in Treg function to control autoimmunity. Proc Natl Acad Sci U S A 2017; 114:10190-10195. [PMID: 28874534 PMCID: PMC5617261 DOI: 10.1073/pnas.1703100114] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dysregulated Foxp3+ Treg functions result in uncontrolled immune activation and autoimmunity. Therefore, identifying cellular factors modulating Treg functions is an area of great importance. Here, using Treg-specific Il27ra-/- mice, we report that IL-27 signaling in Foxp3+ Tregs is essential for Tregs to control autoimmune inflammation in the central nervous system (CNS). Following experimental autoimmune encephalomyelitis (EAE) induction, Treg-specific Il27ra-/- mice develop more severe EAE. Consistent with the severe disease, the numbers of IFNγ- and IL-17-producing CD4 T cells infiltrating the CNS tissues are greater in these mice. Treg accumulation in the inflamed CNS tissues is not affected by the lack of IL-27 signaling in Tregs, suggesting a functional defect of Il27ra-/- Tregs. IL-10 production by conventional CD4 T cells and their CNS accumulation are rather elevated in Treg-specific Il27ra-/- mice. Analysis with Treg fate-mapping reporter mice further demonstrates that IL-27 signaling in Tregs may control stability of Foxp3 expression. Finally, systemic administration of recombinant IL-27 in Treg-specific Il27ra-/- mice fails to ameliorate the disease even in the presence of IL-27-responsive conventional CD4 T cells. These findings uncover a previously unknown role of IL-27 in regulating Treg function to control autoimmune inflammation.
Collapse
Affiliation(s)
- Jeongsu Do
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Dongkyun Kim
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Sohee Kim
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Alice Valentin-Torres
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Nina Dvorina
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Eunjung Jang
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Vivekananthan Nagarajavel
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Tara M DeSilva
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Xiaoxia Li
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Angela H Ting
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Tumor Microenvironment Center, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232
| | - Stephen A Stohlman
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - William M Baldwin
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Booki Min
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195;
| |
Collapse
|
25
|
Klein RS, Hunter CA. Protective and Pathological Immunity during Central Nervous System Infections. Immunity 2017; 46:891-909. [PMID: 28636958 PMCID: PMC5662000 DOI: 10.1016/j.immuni.2017.06.012] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 02/08/2023]
Abstract
The concept of immune privilege of the central nervous system (CNS) has dominated the study of inflammatory processes in the brain. However, clinically relevant models have highlighted that innate pathways limit pathogen invasion of the CNS and adaptive immunity mediates control of many neural infections. As protective responses can result in bystander damage, there are regulatory mechanisms that balance protective and pathological inflammation, but these mechanisms might also allow microbial persistence. The focus of this review is to consider the host-pathogen interactions that influence neurotropic infections and to highlight advances in our understanding of innate and adaptive mechanisms of resistance as key determinants of the outcome of CNS infection. Advances in these areas have broadened our comprehension of how the immune system functions in the brain and can readily overcome immune privilege.
Collapse
Affiliation(s)
- Robyn S Klein
- Departments of Medicine, Pathology and Immunology, Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
26
|
Savarin C, Bergmann CC. Viral-induced suppression of self-reactive T cells: Lessons from neurotropic coronavirus-induced demyelination. J Neuroimmunol 2017; 308:12-16. [PMID: 28108025 PMCID: PMC5474352 DOI: 10.1016/j.jneuroim.2017.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/06/2017] [Accepted: 01/10/2017] [Indexed: 12/16/2022]
Abstract
Genetic and environmental factors, i.e. infections, have been proposed to contribute to disease induction and relapsing events in multiple sclerosis (MS), an autoimmune demyelinating disease of the central nervous system (CNS). While research has mainly focused on virus associated autoimmune activation, less is known about prevention of autoimmunity, especially following resolving infections associated with CNS tissue damage. This review discusses novel insights on control of self-reactive (SR) T cells activated during neurotropic coronavirus-induced demyelination. A new concept is introduced that SR T cells can be dampened by distinct regulatory mechanisms in the periphery and the CNS, thereby preventing autoimmune disease. Virus-induced demyelination activates myelin specific T cells. Virus-induced regulatory mechanisms limit pathogenic self-reactive R CD4 T cells. Self-reactive CD4 T cells are controlled by distinct mechanisms in the CLN and CNS.
Collapse
Affiliation(s)
- Carine Savarin
- Lerner Research Institute, Cleveland Clinic, Neuroscience Department NC-30, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Cornelia C Bergmann
- Lerner Research Institute, Cleveland Clinic, Neuroscience Department NC-30, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
27
|
Clement M, Marsden M, Stacey MA, Abdul-Karim J, Gimeno Brias S, Costa Bento D, Scurr MJ, Ghazal P, Weaver CT, Carlesso G, Clare S, Jones SA, Godkin A, Jones GW, Humphreys IR. Cytomegalovirus-Specific IL-10-Producing CD4+ T Cells Are Governed by Type-I IFN-Induced IL-27 and Promote Virus Persistence. PLoS Pathog 2016; 12:e1006050. [PMID: 27926930 PMCID: PMC5142785 DOI: 10.1371/journal.ppat.1006050] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/09/2016] [Indexed: 01/23/2023] Open
Abstract
CD4+ T cells support host defence against herpesviruses and other viral pathogens. We identified that CD4+ T cells from systemic and mucosal tissues of hosts infected with the β-herpesviridae human cytomegalovirus (HCMV) or murine cytomegalovirus (MCMV) express the regulatory cytokine interleukin (IL)-10. IL-10+CD4+ T cells co-expressed TH1-associated transcription factors and chemokine receptors. Mice lacking T cell-derived IL-10 elicited enhanced antiviral T cell responses and restricted MCMV persistence in salivary glands and secretion in saliva. Thus, IL-10+CD4+ T cells suppress antiviral immune responses against CMV. Expansion of this T-cell population in the periphery was promoted by IL-27 whereas mucosal IL-10+ T cell responses were ICOS-dependent. Infected Il27rα-deficient mice with reduced peripheral IL-10+CD4+ T cell accumulation displayed robust T cell responses and restricted MCMV persistence and shedding. Temporal inhibition experiments revealed that IL-27R signaling during initial infection was required for the suppression of T cell immunity and control of virus shedding during MCMV persistence. IL-27 production was promoted by type-I IFN, suggesting that β-herpesviridae exploit the immune-regulatory properties of this antiviral pathway to establish chronicity. Further, our data reveal that cytokine signaling events during initial infection profoundly influence virus chronicity. Viruses including the pathogenic β-herpesvirus human cytomegalovirus (HCMV) can replicate within and disseminate from mucosal tissues. Understanding how to improve antiviral immune responses to restrict virus replication in the mucosa could help counter virus transmission. Studies in the murine cytomegalovirus (MCMV) model have demonstrated the importance of the CD4+ T cells in control of mucosal MCMV replication. However, this process is inefficient, allowing virus persistence. Herein, we reveal that production by CD4+ T cells of the immune-suppressive soluble protein, or cytokine, interleukin (IL)-10 facilitates virus persistence in mucosal tissue. Mice deficient in T cell-derived IL-10 mounted heightened T cell responses and reduced virus replication in the salivary glands and shedding in the saliva. The cytokine IL-27 induced IL-10-producing CD4+ T cells in the periphery whereas a cell surface-expressed protein, ICOS, promoted mucosal IL-10+ T cell responses. IL-27 acted in the initial stages of infection to impinge on T cell responses and antiviral control. In turn, IL-27 production in response to viral infection was triggered by type-I interferon, a prototypic antiviral cytokine. Thus, our data suggest that herpesviruses may exploit immune-suppressive properties of this early antiviral cytokine response to facilitate persistence within and shedding from mucosal tissue.
Collapse
Affiliation(s)
- Mathew Clement
- Division of Infection & Immunity, Cardiff University, Cardiff, United Kingdom
- * E-mail: (MC); (IRH)
| | - Morgan Marsden
- Division of Infection & Immunity, Cardiff University, Cardiff, United Kingdom
| | - Maria A. Stacey
- Division of Infection & Immunity, Cardiff University, Cardiff, United Kingdom
| | - Juneid Abdul-Karim
- Division of Infection & Immunity, Cardiff University, Cardiff, United Kingdom
| | - Silvia Gimeno Brias
- Division of Infection & Immunity, Cardiff University, Cardiff, United Kingdom
| | - Diana Costa Bento
- Division of Infection & Immunity, Cardiff University, Cardiff, United Kingdom
| | - Martin J. Scurr
- Division of Infection & Immunity, Cardiff University, Cardiff, United Kingdom
| | - Peter Ghazal
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Casey T. Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Gianluca Carlesso
- Respiratory, Inflammation and Autoimmunity, Research Department, MedImmune LLC, Gaithersburg, MD, United States of America
| | - Simon Clare
- Wellcome Trust Sanger Institute, Cambridgeshire, United Kingdom
| | - Simon A. Jones
- Division of Infection & Immunity, Cardiff University, Cardiff, United Kingdom
| | - Andrew Godkin
- Division of Infection & Immunity, Cardiff University, Cardiff, United Kingdom
| | - Gareth W. Jones
- Division of Infection & Immunity, Cardiff University, Cardiff, United Kingdom
| | - Ian R. Humphreys
- Division of Infection & Immunity, Cardiff University, Cardiff, United Kingdom
- Wellcome Trust Sanger Institute, Cambridgeshire, United Kingdom
- * E-mail: (MC); (IRH)
| |
Collapse
|
28
|
Savarin C, Bergmann CC, Hinton DR, Stohlman SA. Differential Regulation of Self-reactive CD4 + T Cells in Cervical Lymph Nodes and Central Nervous System during Viral Encephalomyelitis. Front Immunol 2016; 7:370. [PMID: 27708643 PMCID: PMC5030268 DOI: 10.3389/fimmu.2016.00370] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/07/2016] [Indexed: 12/12/2022] Open
Abstract
Viral infections have long been implicated as triggers of autoimmune diseases, including multiple sclerosis (MS), a central nervous system (CNS) inflammatory demyelinating disorder. Epitope spreading, molecular mimicry, cryptic antigen, and bystander activation have been implicated as mechanisms responsible for activating self-reactive (SR) immune cells, ultimately leading to organ-specific autoimmune disease. Taking advantage of coronavirus JHM strain of mouse hepatitis virus (JHMV)-induced demyelination, this study demonstrates that the host also mounts counteractive measures to specifically limit expansion of endogenous SR T cells. In this model, immune-mediated demyelination is associated with induction of SR T cells after viral control. However, their decline during persisting infection, despite ongoing demyelination, suggests an active control mechanism. Antigen-specific IL-10-secreting CD4+ T cells (Tr1) and Foxp3+ regulatory T cells (Tregs), both known to control autoimmunity and induced following JHMV infection, were assessed for their relative in vivo suppressive function of SR T cells. Ablation of Foxp3+ Tregs in chronically infected DEREG mice significantly increased SR CD4+ T cells within cervical lymph nodes (CLN), albeit without affecting their numbers or activation within the CNS compared to controls. In contrast, infected IL-27 receptor deficient (IL-27R-/-) mice, characterized by a drastic reduction of Tr1 cells, revealed that SR CD4+ T cells in CLN remained unchanged but were specifically increased within the CNS. These results suggest that distinct Treg subsets limit SR T cells in the draining lymph nodes and CNS to maximize suppression of SR T-cell-mediated autoimmune pathology. The JHMV model is thus valuable to decipher tissue-specific mechanisms preventing autoimmunity.
Collapse
Affiliation(s)
- Carine Savarin
- Department of Neurosciences, NC-30, Lerner Research Institute, Cleveland Clinic Foundation , Cleveland, OH , USA
| | - Cornelia C Bergmann
- Department of Neurosciences, NC-30, Lerner Research Institute, Cleveland Clinic Foundation , Cleveland, OH , USA
| | - David R Hinton
- Department of Pathology, Keck School of Medicine, University of Southern California , Los Angeles, CA , USA
| | - Stephen A Stohlman
- Department of Neurosciences, NC-30, Lerner Research Institute, Cleveland Clinic Foundation , Cleveland, OH , USA
| |
Collapse
|
29
|
Interleukin-27 as a Novel Biomarker for Early Cardiopulmonary Failure in Enterovirus 71-Infected Children with Central Nervous System Involvement. Mediators Inflamm 2016; 2016:4025167. [PMID: 27403033 PMCID: PMC4925946 DOI: 10.1155/2016/4025167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/19/2016] [Indexed: 11/18/2022] Open
Abstract
Enterovirus 71 (EV71) is a major pathogen for severe hand, foot, and mouth disease (HFMD), which leads to severe neurological complications and has high morbidity and mortality. Reliable biomarker for the prediction of deterioration in EV71-infected children with central nervous system (CNS) involvement may reduce the cardiopulmonary failure and mortality. Here, we found that serum IL-27 levels were significantly higher in stage III EV71-infected HFMD patients with early cardiopulmonary failure and strong correlation with CRP levels. IL27p28 polymorphisms (rs153109, rs17855750, and rs181206) did not influence IL-27 production, and these three SNPs were not associated with EV71 infection risk and clinical stage. IL-27 can be used as an prediction indicator for early cardiopulmonary failure in EV71-infected children with CNS involvement.
Collapse
|
30
|
Reiss CS. Innate Immunity in Viral Encephalitis. NEUROTROPIC VIRAL INFECTIONS 2016. [PMCID: PMC7153449 DOI: 10.1007/978-3-319-33189-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Carol Shoshkes Reiss
- Departments of Biology and Neural Science, New York University, New York, New York USA
| |
Collapse
|
31
|
Abstract
Neurotropic strains of the mouse hepatitis virus (MHV) cause a range of diseases in infected mice ranging from mild encephalitis with clearance of the virus followed by demyelination to rapidly fatal encephalitis. This chapter discusses the structure, life cycle, transmission, and pathology of neurotropic coronaviruses, as well as the immune response to coronavirus infection. Mice infected with neurotropic strains of MHV have provided useful systems in which to study processes of virus- and immune-mediated demyelination and virus clearance and/or persistence in the CNS, and the mechanisms of virus evasion of the immune system.
Collapse
|
32
|
Sénécal V, Deblois G, Beauseigle D, Schneider R, Brandenburg J, Newcombe J, Moore CS, Prat A, Antel J, Arbour N. Production of IL-27 in multiple sclerosis lesions by astrocytes and myeloid cells: Modulation of local immune responses. Glia 2015; 64:553-69. [PMID: 26649511 DOI: 10.1002/glia.22948] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/20/2015] [Accepted: 11/17/2015] [Indexed: 01/22/2023]
Abstract
The mechanisms whereby human glial cells modulate local immune responses are not fully understood. Interleukin-27 (IL-27), a pleiotropic cytokine, has been shown to dampen the severity of experimental autoimmune encephalomyelitis, but it is still unresolved whether IL-27 plays a role in the human disease multiple sclerosis (MS). IL-27 contribution to local modulation of immune responses in the brain of MS patients was investigated. The expression of IL-27 subunits (EBI3 and p28) and its cognate receptor IL-27R (the gp130 and TCCR chains) was elevated within post-mortem MS brain lesions compared with normal control brains. Moreover, astrocytes (GFAP(+) cells) as well as microglia and macrophages (Iba1(+) cells) were important sources of IL-27. Brain-infiltrating CD4 and CD8 T lymphocytes expressed the IL-27R specific chain (TCCR) implying that these cells could respond to local IL-27 sources. In primary cultures of human astrocytes inflammatory cytokines increased IL-27 production, whereas myeloid cell inflammatory M1 polarization and inflammatory cytokines enhanced IL-27 expression in microglia and macrophages. Astrocytes in postmortem tissues and in vitro expressed IL-27R. Moreover, IL-27 triggered the phosphorylation of the transcription regulator STAT1, but not STAT3 in human astrocytes; indeed IL-27 up-regulated MHC class I expression on astrocytes in a STAT1-dependent manner. These findings demonstrated that IL-27 and its receptor were elevated in MS lesions and that local IL-27 can modulate immune properties of astrocytes and infiltrating immune cells. Thus, therapeutic strategies targeting IL-27 may influence not only peripheral but also local inflammatory responses within the brain of MS patients.
Collapse
Affiliation(s)
- Vincent Sénécal
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| | - Gabrielle Deblois
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| | - Diane Beauseigle
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| | - Raphael Schneider
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| | - Jonas Brandenburg
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| | - Jia Newcombe
- NeuroResource, UCL Institute of Neurology, University College London, London, WC1N 1PJ, England
| | - Craig S Moore
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Alexandre Prat
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| | - Jack Antel
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Nathalie Arbour
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| |
Collapse
|
33
|
Savarin C, Bergmann CC, Gaignage M, Stohlman SA. Self-reactive CD4(+) T cells activated during viral-induced demyelination do not prevent clinical recovery. J Neuroinflammation 2015; 12:207. [PMID: 26559484 PMCID: PMC4642610 DOI: 10.1186/s12974-015-0426-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/06/2015] [Indexed: 12/18/2022] Open
Abstract
Background Microbial infections have been implicated in initiating and enhancing severity of autoimmune diseases including the demyelinating disease multiple sclerosis (MS). Nevertheless, the incidence of both acute and persisting viral infections without evidence of autoimmune sequelae suggests that this process is well controlled. The conditions promoting or stemming self-reactive (SR) T cells following viral-induced tissue damage thus need to be better defined. Using a non-fatal viral mouse model of encephalomyelitis associated with demyelination and disability, yet ultimate clinical improvement, this study set out to monitor uptake and presentation of endogenous myelin antigens, as well as induction and fate of SR T cells. Methods Activation and central nervous system (CNS) recruitment of myelin-specific CD4 T cells was analyzed by flow cytometry during encephalomyelitis induced by a glia tropic murine coronavirus. Potential antigen-presenting cells (APC) ingesting myelin were characterized by flow cytometry and their ability to activate SR T cells tested by co-culture with carboxyfluorescein succinimidyl ester (CFSE)-labeled myelin-specific CD4 T cells. Endogenous SR T cell kinetics was analyzed within both cervical lymph nodes and CNS by Enzyme-Linked ImmunoSpot (ELISPOT) following viral infection. Results The data demonstrate the presence of APC capable of activating SR T cells in both draining lymph nodes and the CNS temporally correlating with overt demyelination. While both the CNS-infiltrating myeloid population and microglia ingested myelin, only CNS-infiltrating APC were capable of presenting endogenous myelin antigen to SR T cells ex vivo. Finally, SR T cell activation from the endogenous T cell repertoire was most notable when infectious virus was controlled and paralleled myelin damage. Although SR T cell accumulation peaked in the persistently infected CNS during maximal demyelination, they were not preferentially retained. Their gradual decline, despite ongoing demyelination, suggested minimal re-stimulation and pathogenic function in vivo consistent with the lack of autoimmune symptoms. Conclusions The results demonstrate the potential for CNS tissue destruction to induce and recruit SR T cells to the injury site and support a host suppressive mechanism limiting development of autoimmunity.
Collapse
Affiliation(s)
- Carine Savarin
- Department of Neurosciences NC-30, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| | - Cornelia C Bergmann
- Department of Neurosciences NC-30, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| | - Melanie Gaignage
- Department of Neurosciences NC-30, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, USA. .,Present address: Unit of Experimental Medicine, de Duve Institute, Universite Catholique de Louvain, Brussels, Belgium.
| | - Stephen A Stohlman
- Department of Neurosciences NC-30, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
34
|
Venkatesan A, Benavides DR. Autoimmune encephalitis and its relation to infection. Curr Neurol Neurosci Rep 2015; 15:3. [PMID: 25637289 DOI: 10.1007/s11910-015-0529-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Encephalitis, an inflammatory condition of the brain that results in substantial morbidity and mortality, has numerous causes. Over the past decade, it has become increasingly recognized that autoimmune conditions contribute significantly to the spectrum of encephalitis causes. Clinical suspicion and early diagnosis of autoimmune etiologies are of particular importance due to the need for early institution of immune suppressive therapies to improve outcome. Emerging clinical observations suggest that the most commonly recognized cause of antibody-mediated autoimmune encephalitis, anti-N-methyl-D-aspartate (NMDA) receptor encephalitis, may in some cases be triggered by herpes virus infection. Other conditions such as Rasmussen's encephalitis (RE) and febrile infection-related epilepsy syndrome (FIRES) have also been posited to be autoimmune conditions triggered by infectious agents. This review focuses on emerging concepts in central nervous system autoimmunity and addresses clinical and mechanistic findings linking autoimmune encephalitis and infections. Particular consideration will be given to anti-NMDA receptor encephalitis and its relation to herpes simplex encephalitis.
Collapse
Affiliation(s)
- Arun Venkatesan
- Johns Hopkins Encephalitis Center, Department of Neurology, Johns Hopkins University School of Medicine, Meyer 6-113, 600 N. Wolfe Street, Baltimore, MD, 21287, USA,
| | | |
Collapse
|
35
|
Puntambekar SS, Hinton DR, Yin X, Savarin C, Bergmann CC, Trapp BD, Stohlman SA. Interleukin-10 is a critical regulator of white matter lesion containment following viral induced demyelination. Glia 2015; 63:2106-2120. [PMID: 26132901 PMCID: PMC4755156 DOI: 10.1002/glia.22880] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 06/08/2015] [Accepted: 06/08/2015] [Indexed: 12/29/2022]
Abstract
Neurotropic coronavirus induces an acute encephalomyelitis accompanied by focal areas of demyelination distributed randomly along the spinal column. The initial areas of demyelination increase only slightly after the control of infection. These circumscribed focal lesions are characterized by axonal sparing, myelin ingestion by macrophage/microglia, and glial scars associated with hypertrophic astrocytes, which proliferate at the lesion border. Accelerated virus control in mice lacking the anti‐inflammatory cytokine IL‐10 was associated with limited initial demyelination, but low viral mRNA persistence similar to WT mice and declining antiviral cellular immunity. Nevertheless, lesions exhibited sustained expansion providing a model of dysregulated white matter injury temporally remote from the acute CNS insult. Expanding lesions in the absence of IL‐10 are characterized by sustained microglial activation and partial loss of macrophage/microglia exhibiting an acquired deactivation phenotype. Furthermore, IL‐10 deficiency impaired astrocyte organization into mesh like structures at the lesion borders, but did not prevent astrocyte hypertrophy. The formation of discrete foci of demyelination in IL‐10 sufficient mice correlated with IL‐10 receptor expression exclusively on astrocytes in areas of demyelination suggesting a critical role for IL‐10 signaling to astrocytes in limiting expansion of initial areas of white matter damage. GLIA 2015;63:2106–2120
Collapse
Affiliation(s)
- Shweta S Puntambekar
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
| | - David R Hinton
- Department of Pathology, The University of Southern California Keck School of Medicine, Los Angeles, California
| | - Xinghua Yin
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Carine Savarin
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Cornelia C Bergmann
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Bruce D Trapp
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Stephen A Stohlman
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
36
|
Affiliation(s)
- Hiroki Yoshida
- Department of Biomolecular Sciences, Division of Molecular and Cellular Immunoscience, Saga University Faculty of Medicine, Saga 849-8501, Japan;
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-4539;
| |
Collapse
|
37
|
Rottenberg ME, Carow B. SOCS3 and STAT3, major controllers of the outcome of infection with Mycobacterium tuberculosis. Semin Immunol 2014; 26:518-32. [DOI: 10.1016/j.smim.2014.10.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 01/04/2023]
|