1
|
Mehta P, Mazumder S. miR-146a is critical for orchestrating Mycobacterium fortuitum survival through anti-inflammatory and M2 macrophage responses in fish. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110271. [PMID: 40081436 DOI: 10.1016/j.fsi.2025.110271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/28/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
The significance of microRNAs (miRNAs) in host response to non-tuberculoid mycobacteria like Mycobacterium fortuitum remains nascent. Using zebrafish kidney macrophages (ZFKM), we elucidate a novel function of miR-146a, orchestrated by the TLR-2-PI3K-NF-κB pathway, in M. fortuitum pathogenesis. We demonstrate that miR-146a facilitates anti-inflammatory response by targeting IRAK-1 and TRAF-6 in M. fortuitum-infected ZFKM. Moreover, miR-146a mitigates M1 macrophage activity by suppressing the iNOS-NO axis while enhancing M2-specific TGF-β mRNA expression and subsequent inhibition of M. fortuitum eradication. These findings collectively suggest that miR-146a diminishes macrophage-mediate M. fortuitum clearance. Our study provides novel insights into the intricate interplay between miRNAs and mycobacterial infections. We propose a mechanistic model wherein the TLR-2/NF-κB axis initiates miR-146a expression, which, in turn, suppresses irak-1 and traf-6, fostering the development of M2 macrophages. Consequently, this creates an anti-inflammatory environment conducive to M. fortuitumsurvival. Our findings provide novel insights into the intricate interplay between miRNAs and mycobacterial persistence, a concerning aspect of pathogenesis.
Collapse
Affiliation(s)
- Priyanka Mehta
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
2
|
Mirra D, Esposito R, Spaziano G, Rafaniello C, Panico F, Squillante A, Falciani M, Abrego-Guandique DM, Caiazzo E, Gallelli L, Cione E, D’Agostino B. miRNA Signatures in Alveolar Macrophages Related to Cigarette Smoke: Assessment and Bioinformatics Analysis. Int J Mol Sci 2025; 26:1277. [PMID: 39941045 PMCID: PMC11818525 DOI: 10.3390/ijms26031277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Cigarette smoke (CS) is a driver of many respiratory diseases, including chronic obstructive pulmonary disease (COPD) and non-small cell lung cancer (NSCLC). Tobacco causes oxidative stress, impaired phagocytosis of alveolar macrophages (AMs), and alterations in gene expression in the lungs of smokers. MicroRNAs (miRNAs) are small non-coding RNAs that influence several regulatory pathways. Previously, we monitored the expressions of hsa-miR-223-5p, 16-5p, 20a-5p, -17-5p, 34a-5p, and 106a-5p in AMs derived from the bronchoalveolar lavage (BAL) of subjects with NSCLC, COPD, and smoker and non-smoker control groups. Here, we investigated the capability of CS conditionate media to modulate the abovementioned miRNAs in primary AMs obtained in the same 43 sex-matched subjects. The expressions of has-miR-34a-5p, 17-5p, 16-5p, 106a-5p, 223-5p, and 20a-5p were assessed before and after in vitro CS exposure by RT-PCR. In addition, a comprehensive bioinformatic analysis of miRNAs KEGGS and PPI linked to inflammation was performed. Distinct and common miRNA expression profiles were identified in response to CS, suggesting their possible role in smoking-related diseases. It is worth noting that, following exposure to CS, the expression levels of hsa-miR-34a-5p and 17-5p in both smokers and non-smokers, 106a-5p in non-smokers, and 20a-5p in smokers, shifted towards those found in individuals with COPD, suggesting them as a risk factor in developing this lung condition. Moreover, CS-focused sub-analysis identified miRNA which exhibited CS-dependent pattern and modulated mRNA involved in the immune system or AMs property regulation. In conclusion, our study uncovered miRNA signatures in AMs exposed to CS, indicating that CS might modify epigenetic patterns that contribute to macrophage activation and lung disease onset and progression.
Collapse
Affiliation(s)
- Davida Mirra
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (E.C.); (B.D.)
| | - Renata Esposito
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (E.C.); (B.D.)
| | - Giuseppe Spaziano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (E.C.); (B.D.)
| | - Concetta Rafaniello
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Naples, Italy;
- Section of Pharmacology “L. Donatelli”, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Francesca Panico
- Science of Health Department, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (F.P.); (D.M.A.-G.)
| | | | - Maddalena Falciani
- Pulmonary and Critical Care Medicine, Ospedale Scarlato, 84018 Scafati, Italy;
| | | | - Eleonora Caiazzo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (E.C.); (B.D.)
| | - Luca Gallelli
- Clinical Pharmacology and Pharmacovigilance Unit, Department of Health Sciences, Mater Domini Hospital, University of “Magna Graecia”, 88100 Catanzaro, Italy;
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Bruno D’Agostino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (E.C.); (B.D.)
| |
Collapse
|
3
|
Wang H, Li T, Jiang Y, Chen S, Wu Z, Zeng X, Yang K, Duan P, Zou S. Long non-coding RNA LncTUG1 regulates favourable compression force-induced cementocytes mineralization via PU.1/TLR4/SphK1 signalling. Cell Prolif 2024; 57:e13604. [PMID: 38318762 PMCID: PMC11150144 DOI: 10.1111/cpr.13604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Orthodontic tooth movement (OTM) is a highly coordinated biomechanical response to orthodontic forces with active remodelling of alveolar bone but minor root resorption. Such antiresorptive properties of root relate to cementocyte mineralization, the mechanisms of which remain largely unknown. This study used the microarray analysis to explore long non-coding ribonucleic acids involved in stress-induced cementocyte mineralization. Gain- and loss-of-function experiments, including Alkaline phosphatase (ALP) activity and Alizarin Red S staining, quantitative real-time polymerase chain reaction (qRT-PCR), Western blot, and immunofluorescence analyses of mineralization-associated factors, were conducted to verify long non-coding ribonucleic acids taurine-upregulated gene 1 (LncTUG1) regulation in stress-induced cementocyte mineralization, via targeting the Toll-like receptor 4 (TLR4)/SphK1 axis. The luciferase reporter assays, chromatin immunoprecipitation assays, RNA pull-down, RNA immunoprecipitation, and co-localization assays were performed to elucidate the interactions between LncTUG1, PU.1, and TLR4. Our findings indicated that LncTUG1 overexpression attenuated stress-induced cementocyte mineralization, while blocking the TLR4/SphK1 axis reversed the inhibitory effect of LncTUG1 on stress-induced cementocyte mineralization. The in vivo findings also confirmed the involvement of TLR4/SphK1 signalling in cementocyte mineralization during OTM. Mechanistically, LncTUG1 bound with PU.1 subsequently enhanced TLR4 promotor activity and thus transcriptionally elevated the expression of TLR4. In conclusion, our data revealed a critical role of LncTUG1 in regulating stress-induced cementocyte mineralization via PU.1/TLR4/SphK1 signalling, which might provide further insights for developing novel therapeutic strategies that could protect roots from resorption during OTM.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Tiancheng Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
- Department of Orthodontics, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of StomatologyShanghaiChina
| | - Yukun Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Shuo Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Zuping Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouChina
| | - Xinyi Zeng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Kuan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Peipei Duan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
4
|
Czubala MA, Jenkins RH, Gurney M, Wallace L, Cossins B, Dennis J, Rosas M, Andrews R, Fraser D, Taylor PR. Tissue-specific transcriptional programming of macrophages controls the microRNA transcriptome targeting multiple functional pathways. J Biol Chem 2024; 300:107244. [PMID: 38556087 PMCID: PMC11067537 DOI: 10.1016/j.jbc.2024.107244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
Recent interest in the biology and function of peritoneal tissue resident macrophages (pMΦ) has led to a better understanding of their cellular origin, programming, and renewal. The programming of pMΦ is dependent on microenvironmental cues and tissue-specific transcription factors, including GATA6. However, the contribution of microRNAs remains poorly defined. We conducted a detailed analysis of the impact of GATA6 deficiency on microRNA expression in mouse pMΦ. Our data suggest that for many of the pMΦ, microRNA composition may be established during tissue specialization and that the effect of GATA6 knockout is largely unable to be rescued in the adult by exogenous GATA6. The data are consistent with GATA6 modulating the expression pattern of specific microRNAs, directly or indirectly, and including miR-146a, miR-223, and miR-203 established by the lineage-determining transcription factor PU.1, to achieve a differentiated pMΦ phenotype. Lastly, we showed a significant dysregulation of miR-708 in pMΦ in the absence of GATA6 during homeostasis and in response to LPS/IFN-γ stimulation. Overexpression of miR-708 in mouse pMΦ in vivo altered 167 mRNA species demonstrating functional downregulation of predicted targets, including cell immune responses and cell cycle regulation. In conclusion, we demonstrate dependence of the microRNA transcriptome on tissue-specific programming of tissue macrophages as exemplified by the role of GATA6 in pMΦ specialization.
Collapse
Affiliation(s)
- Magdalena A Czubala
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, UK.
| | - Robert H Jenkins
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Mark Gurney
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Leah Wallace
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Benjamin Cossins
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - James Dennis
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Marcela Rosas
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Robert Andrews
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Donald Fraser
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, UK; Wales Kidney Research Unit, Cardiff University, Cardiff, UK
| | - Philip R Taylor
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, UK; UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, UK.
| |
Collapse
|
5
|
Chen Y, Mateski J, Gerace L, Wheeler J, Burl J, Prakash B, Svedin C, Amrick R, Adams BD. Non-coding RNAs and neuroinflammation: implications for neurological disorders. Exp Biol Med (Maywood) 2024; 249:10120. [PMID: 38463392 PMCID: PMC10911137 DOI: 10.3389/ebm.2024.10120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/15/2024] [Indexed: 03/12/2024] Open
Abstract
Neuroinflammation is considered a balanced inflammatory response important in the intrinsic repair process after injury or infection. Under chronic states of disease, injury, or infection, persistent neuroinflammation results in a heightened presence of cytokines, chemokines, and reactive oxygen species that result in tissue damage. In the CNS, the surrounding microglia normally contain macrophages and other innate immune cells that perform active immune surveillance. The resulting cytokines produced by these macrophages affect the growth, development, and responsiveness of the microglia present in both white and gray matter regions of the CNS. Controlling the levels of these cytokines ultimately improves neurocognitive function and results in the repair of lesions associated with neurologic disease. MicroRNAs (miRNAs) are master regulators of the genome and subsequently control the activity of inflammatory responses crucial in sustaining a robust and acute immunological response towards an acute infection while dampening pathways that result in heightened levels of cytokines and chemokines associated with chronic neuroinflammation. Numerous reports have directly implicated miRNAs in controlling the abundance and activity of interleukins, TGF-B, NF-kB, and toll-like receptor-signaling intrinsically linked with the development of neurological disorders such as Parkinson's, ALS, epilepsy, Alzheimer's, and neuromuscular degeneration. This review is focused on discussing the role miRNAs play in regulating or initiating these chronic neurological states, many of which maintain the level and/or activity of neuron-specific secondary messengers. Dysregulated miRNAs present in the microglia, astrocytes, oligodendrocytes, and epididymal cells, contribute to an overall glial-specific inflammatory niche that impacts the activity of neuronal conductivity, signaling action potentials, neurotransmitter robustness, neuron-neuron specific communication, and neuron-muscular connections. Understanding which miRNAs regulate microglial activation is a crucial step forward in developing non-coding RNA-based therapeutics to treat and potentially correct the behavioral and cognitive deficits typically found in patients suffering from chronic neuroinflammation.
Collapse
Affiliation(s)
- Yvonne Chen
- Department of Biology, Brandeis University, Waltham, MA, United States
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
| | - Julia Mateski
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of Biological Sciences, Gustavus Adolphus College, St. Peter, MN, United States
| | - Linda Gerace
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of English, Missouri State University, Springfield, MO, United States
| | - Jonathan Wheeler
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of Electrical and Computer Engineering Tech, New York Institute of Tech, Old Westbury, NY, United States
| | - Jan Burl
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of English, Southern New Hampshire University, Manchester, NH, United States
| | - Bhavna Prakash
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of Medicine, Tufts Medical Center, Medford, MA, United States
| | - Cherie Svedin
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of Biology, Utah Tech University, St. George, UT, United States
| | - Rebecca Amrick
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of English, Villanova University, Villanova, PA, United States
| | - Brian D Adams
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
| |
Collapse
|
6
|
Martino E, D'Onofrio N, Balestrieri A, Mele L, Sardu C, Marfella R, Campanile G, Balestrieri ML. MiR-15b-5p and PCSK9 inhibition reduces lipopolysaccharide-induced endothelial dysfunction by targeting SIRT4. Cell Mol Biol Lett 2023; 28:66. [PMID: 37587410 PMCID: PMC10428548 DOI: 10.1186/s11658-023-00482-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Endothelial dysfunction and deregulated microRNAs (miRNAs) participate in the development of sepsis and are associated with septic organ failure and death. Here, we explored the role of miR-15b-5p on inflammatory pathways in lipopolysaccharide (LPS)-treated human endothelial cells, HUVEC and TeloHAEC. METHODS The miR-15b-5p levels were evaluated in LPS-stimulated HUVEC and TeloHAEC cells by quantitative real-time PCR (qRT-PCR). Functional experiments using cell counting kit-8 (CCK-8), transfection with antagomir, and enzyme-linked immunosorbent assays (ELISA) were conducted, along with investigation of pyroptosis, apoptosis, autophagy, and mitochondrial reactive oxygen species (ROS) by cytofluorometric analysis and verified by fluorescence microscopy. Sirtuin 4 (SIRT4) levels were detected by ELISA and immunoblotting, while proprotein convertase subtilisin-kexin type 9 (PCSK9) expression was determined by flow cytometry (FACS) and immunofluorescence analyses. Dual-luciferase reporter evaluation was performed to confirm the miR-15b-5p-SIRT4 interaction. RESULTS The results showed a correlation among miR-15b-5p, PCSK9, and SIRT4 levels in septic HUVEC and TeloHAEC. Inhibition of miR-15b-5p upregulated SIRT4 content, alleviated sepsis-related inflammatory pathways, attenuated mitochondrial stress, and prevented apoptosis, pyroptosis, and autophagic mechanisms. Finally, a PCSK9 inhibitor (i-PCSK9) was used to analyze the involvement of PCSK9 in septic endothelial injury. i-PCSK9 treatment increased SIRT4 protein levels, opposed the septic inflammatory cascade leading to pyroptosis and autophagy, and strengthened the protective role of miR-15b-5p inhibition. Increased luciferase signal validated the miR-15b-5p-SIRT4 binding. CONCLUSIONS Our in vitro findings suggested the miR-15b-5p-SIRT4 axis as a suitable target for LPS-induced inflammatory pathways occurring in sepsis, and provide additional knowledge on the beneficial effect of i-PCSK9 in preventing vascular damage by targeting SIRT4.
Collapse
Affiliation(s)
- Elisa Martino
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138, Naples, Italy
| | - Nunzia D'Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138, Naples, Italy.
| | - Anna Balestrieri
- Food Safety Department, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055, Portici, Italy
| | - Luigi Mele
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Via Luciano Armanni 5, 80138, Naples, Italy
| | - Celestino Sardu
- Department of Advanced Clinical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Miraglia, 80138, Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Clinical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Miraglia, 80138, Naples, Italy
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino 1, 80137, Naples, Italy
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138, Naples, Italy
| |
Collapse
|
7
|
Zhang J, Tian W, Wang F, Liu J, Huang J, Duangmano S, Liu H, Liu M, Zhang Z, Jiang X. Advancements in understanding the role of microRnas in regulating macrophage polarization during acute lung injury. Cell Cycle 2023; 22:1694-1712. [PMID: 37415386 PMCID: PMC10446815 DOI: 10.1080/15384101.2023.2230018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/11/2023] [Accepted: 06/04/2023] [Indexed: 07/08/2023] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a critical and life-threatening illness that causes severe dyspnea, and respiratory distress and is often caused by a variety of direct or indirect factors that damage the alveolar epithelium and capillary endothelial cells, leading to inflammation factors and macrophage infiltration. Macrophages play a crucial role in the progression of ALI/ARDS, exhibiting different polarized forms at different stages of the disease that control the disease outcome. MicroRNAs (miRNA) are conserved, endogenous, short non-coding RNAs composed of 18-25 nucleotides that serve as potential markers for many diseases and are involved in various biological processes, including cell proliferation, apoptosis, and differentiation. In this review, we provide a brief overview of miRNA expression in ALI/ARDS and summarize recent research on the mechanism and pathways by which miRNAs respond to macrophage polarization, inflammation, and apoptosis. The characteristics of each pathway are also summarized to provide a comprehensive understanding of the role of miRNAs in regulating macrophage polarization during ALI/ARDS.
Collapse
Affiliation(s)
- Jianhua Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wanyi Tian
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fang Wang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jiao Liu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiang Huang
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Suwit Duangmano
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Minghua Liu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xian Jiang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Anesthesiology, Luzhou People’s Hospital, Luzhou, China
| |
Collapse
|
8
|
Han R, Li W, Tian H, Zhao Y, Zhang H, Pan W, Wang X, Xu L, Ma Z, Bao Z. Urinary microRNAs in sepsis function as a novel prognostic marker. Exp Ther Med 2023; 26:346. [PMID: 37383369 PMCID: PMC10294602 DOI: 10.3892/etm.2023.12045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 03/16/2023] [Indexed: 06/30/2023] Open
Abstract
Renal dysfunction is a common complication of sepsis. Early diagnosis and prompt treatment of sepsis with renal insufficiency are crucial for improving patient outcomes. Diagnostic markers can help identify patients at risk for sepsis and AKI, allowing for early intervention and potentially preventing the development of severe complications. The aim of the present study was to investigate the expression difference of urinary microRNAs (miRNAs/miRs) in elderly patients with sepsis and secondary renal insufficiency, and to evaluate their diagnostic value in these patients. In the present study, RNA was extracted from urine samples of elderly sepsis-related acute renal damage patients and the expression profiles of several miRNAs were analyzed. In order to evaluate the expression profile of several miRNAs, urine samples from elderly patients with acute renal damage brought on by sepsis were obtained. RNA extraction and sequencing were then performed on the samples. Furthermore, multiple bioinformatics methods were used to analyze miRNA profiles, including differential expression analysis, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis of different miRNA target genes, to further explore miRNAs that are suitable for utilization as biomarkers. A total of four miRNAs, including hsa-miR-31-5p, hsa-miR-151a-3p, hsa-miR-142-5p and hsa-miR-16-5p, were identified as potential biological markers and were further confirmed in sepsis using reverse transcription-quantitative PCR. The results of the present study demonstrated that the four urinary miRNAs were differentially expressed and may serve as specific markers for prediction of secondary acute kidney injury in elderly patients with sepsis.
Collapse
Affiliation(s)
- Rui Han
- Department of Emergency, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Wanqiu Li
- Laboratory for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Hui Tian
- Department of Gerontology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yun Zhao
- Department of Emergency, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Hui Zhang
- Laboratory for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Wei Pan
- Laboratory for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Xianyi Wang
- Laboratory for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Linfeng Xu
- Laboratory for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Zhongliang Ma
- Laboratory for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Zhijun Bao
- Department of Gerontology, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
9
|
Ryu S, Ni K, Wang C, Sivanantham A, Carnino JM, Ji HL, Jin Y. Bacterial Outer Membrane Vesicles Promote Lung Inflammatory Responses and Macrophage Activation via Multi-Signaling Pathways. Biomedicines 2023; 11:568. [PMID: 36831104 PMCID: PMC9953134 DOI: 10.3390/biomedicines11020568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Emerging evidence suggests that Gram-negative bacteria release bacterial outer membrane vesicles (OMVs) and that these play an important role in the pathogenesis of bacterial infection-mediated inflammatory responses and organ damage. Despite the fact that scattered reports have shown that OMVs released from Gram-negative bacteria may function via the TLR2/4-signaling pathway or induce pyroptosis in macrophages, our study reveals a more complex role of OMVs in the development of inflammatory lung responses and macrophage pro-inflammatory activation. We first confirmed that various types of Gram-negative bacteria release similar OMVs which prompt pro-inflammatory activation in both bone marrow-derived macrophages and lung alveolar macrophages. We further demonstrated that mice treated with OMVs via intratracheal instillation developed significant inflammatory lung responses. Using mouse inflammation and autoimmune arrays, we identified multiple altered cytokine/chemokines in both bone marrow-derived macrophages and alveolar macrophages, suggesting that OMVs have a broader spectrum of function compared to LPS. Using TLR4 knock-out cells, we found that OMVs exert more robust effects on activating macrophages compared to LPS. We next examined multiple signaling pathways, including not only cell surface antigens, but also intracellular receptors. Our results confirmed that bacterial OMVs trigger both surface protein-mediated signaling and intracellular signaling pathways, such as the S100-A8 protein-mediated pathway. In summary, our studies confirm that bacterial OMVs strongly induced macrophage pro-inflammatory activation and inflammatory lung responses via multi-signaling pathways. Bacterial OMVs should be viewed as a repertoire of pathogen-associated molecular patterns (PAMPs), exerting more robust effects than Gram-negative bacteria-derived LPS.
Collapse
Affiliation(s)
- Sunhyo Ryu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA
| | - Kareemah Ni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA
| | - Chenghao Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA
| | - Ayyanar Sivanantham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA
| | - Jonathan M. Carnino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA
| | - Hong-Long Ji
- Department of Cellular and Molecular Biology, University of Texas at Tyler Health Science Center, 11937 US Hwy 271, BMR, Lab D-11, Tyler, TX 75708, USA
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA
| |
Collapse
|
10
|
Antonakos N, Gilbert C, Théroude C, Schrijver IT, Roger T. Modes of action and diagnostic value of miRNAs in sepsis. Front Immunol 2022; 13:951798. [PMID: 35990654 PMCID: PMC9389448 DOI: 10.3389/fimmu.2022.951798] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a clinical syndrome defined as a dysregulated host response to infection resulting in life-threatening organ dysfunction. Sepsis is a major public health concern associated with one in five deaths worldwide. Sepsis is characterized by unbalanced inflammation and profound and sustained immunosuppression, increasing patient susceptibility to secondary infections and mortality. microRNAs (miRNAs) play a central role in the control of many biological processes, and deregulation of their expression has been linked to the development of oncological, cardiovascular, neurodegenerative and metabolic diseases. In this review, we discuss the role of miRNAs in sepsis pathophysiology. Overall, miRNAs are seen as promising biomarkers, and it has been proposed to develop miRNA-based therapies for sepsis. Yet, the picture is not so straightforward because of the versatile and dynamic features of miRNAs. Clearly, more research is needed to clarify the expression and role of miRNAs in sepsis, and to promote the use of miRNAs for sepsis management.
Collapse
Affiliation(s)
| | | | | | | | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
11
|
Cremonesi P, Capra E, Turri F, Lazzari B, Chessa S, Battelli G, Colombini S, Rapetti L, Castiglioni B. Effect of Diet Enriched With Hemp Seeds on Goat Milk Fatty Acids, Transcriptome, and miRNAs. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.909271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In dairy ruminants, a diet supplemented with feed rich in unsaturated fatty acids can be an effective medium to increase the health-promoting properties of milk, although their effect on the pathways/genes involved in these processes has not been properly and completely defined to date. To improve our knowledge of the cell’s activity in specific conditions, next-generation RNA-sequencing technology was used to allow whole transcriptome characterization under given conditions. In addition to this, microRNAs (miRNAs) have recently been known as post-transcriptional regulators in fatty acid and cholesterol metabolism by targeting lipid metabolism genes. In this study, to analyze the transcriptome and miRNAs in goat milk after a supplemental diet enriched with linoleic acid (hemp seeds), next-generation RNA-sequencing was used in order to point out the general biological mechanisms underlying the effects related to milk fat metabolism. Ten pluriparous Alpine goats were fed with the same pretreatment diet for 40 days; then, they were arranged to two dietary treatments consisting of control (C) and hemp seed (H)-supplemented diets. Milk samples were collected at 40 (time point = T0) and 140 days of lactation (time point = T1). Milk fatty acid (FA) profiles revealed a significant effect of hemp seeds that determined a strong increment in the preformed FA, causing a reduction in the concentration of de-novo FA. Monounsaturated and polyunsaturated n−3 FAs were increased by hemp treatment, determining a reduction in the n−6/n−3 ratio. After removing milk fats and proteins, RNA was extracted from the milk cells and transcriptomic analysis was conducted using Illumina RNA-sequencing. A total of 3,835 genes were highly differentially expressed (p-value < 0.05, fold change > 1.5, and FDR < 0.05) in the H group. Functional analyses evidenced changes in metabolism, immune, and inflammatory responses. Furthermore, modifications in feeding strategies affected also key transcription factors regulating the expression of several genes involved in milk fat metabolism, such as peroxisome proliferator-activated receptors (PPARs). Moreover, 38 (15 known and 23 novel) differentially expressed miRNAs were uncovered in the H group and their potential functions were also predicted. This study gives the possibility to improve our knowledge of the molecular changes occurring after a hemp seed supplementation in the goat diet and increase our understanding of the relationship between nutrient variation and phenotypic effects.
Collapse
|
12
|
Gierlikowski W, Gierlikowska B. MicroRNAs as Regulators of Phagocytosis. Cells 2022; 11:cells11091380. [PMID: 35563685 PMCID: PMC9106007 DOI: 10.3390/cells11091380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 12/10/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression and thus act as important regulators of cellular phenotype and function. As their expression may be dysregulated in numerous diseases, they are of interest as biomarkers. What is more, attempts of modulation of some microRNAs for therapeutic reasons have been undertaken. In this review, we discuss the current knowledge regarding the influence of microRNAs on phagocytosis, which may be exerted on different levels, such as through macrophages polarization, phagosome maturation, reactive oxygen species production and cytokines synthesis. This phenomenon plays an important role in numerous pathological conditions.
Collapse
Affiliation(s)
- Wojciech Gierlikowski
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
- Correspondence:
| | - Barbara Gierlikowska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Żwirki i Wigury 63a, 02-091 Warsaw, Poland;
| |
Collapse
|
13
|
Alkharfy K, Ahmad A, Jan B, Raish M, Rehman M. Thymoquinone modulates the expression of sepsis‑related microRNAs in a CLP model. Exp Ther Med 2022; 23:395. [PMID: 35495595 PMCID: PMC9047025 DOI: 10.3892/etm.2022.11322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a clinical syndrome common in critical care settings. In the present study, the therapeutic effect of thymoquinone (TQ) on the expression of sepsis-related microRNAs (miRNAs/miRs), levels of inflammatory markers, organ dysfunction and mortality were investigated in a cecal ligation and puncture (CLP) rat model. A single dose of TQ (1 mg/kg) was administered to animals 24 h after CLP and the mortality rate was assessed up to 7 days following the induction of sepsis. In addition, blood samples were collected at different time points and the expression levels of miRNAs (i.e. miR-16, miR-21, miR-27a and miR-34a) were examined, along with the levels of inflammatory cytokines (i.e. TNF-α, IL-1α, IL-2, IL-6 and IL-10) and sepsis markers (i.e. C-reactive protein, endothelial cell-specific molecule-1, VEGF, procalcitonin and D-dimer). Liver, kidney and lung tissues were also collected for further histological examination. Treatment with TQ significantly downregulated the miRNA expression levels, as well as the levels of inflammatory cytokines and early-stage sepsis biomarkers by 30-70% at 12-36 h (P<0.05). Furthermore, CLP model rats treated with TQ exhibited an ~80% increase in survival rate compared with that in the untreated CLP group. In addition, TQ induced the preservation of organ function and structure. In conclusion, the present study demonstrated a promising therapeutic effect of TQ against the sequelae of sepsis.
Collapse
Affiliation(s)
- Khalid Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Basit Jan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muneeb Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
14
|
Kwak G, Cheng J, Kim H, Song S, Lee SJ, Yang Y, Jeong JH, Lee JE, Messersmith PB, Kim SH. Sustained Exosome-Guided Macrophage Polarization Using Hydrolytically Degradable PEG Hydrogels for Cutaneous Wound Healing: Identification of Key Proteins and MiRNAs, and Sustained Release Formulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200060. [PMID: 35229462 DOI: 10.1002/smll.202200060] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/27/2022] [Indexed: 05/24/2023]
Abstract
Macrophages (Mφs) are characterized by remarkable plasticity, an essential component of chronic inflammation. Thus, an appropriate and timely transition from proinflammatory (M1) to anti-inflammatory (M2) Mφs during wound healing is vital to promoting resolution of acute inflammation and enhancing tissue repair. Herein, exosomes derived from M2-Mφs (M2-Exos), which contain putative key regulators driving Mφ polarization, are used as local microenvironmental cues to induce reprogramming of M1-Mφs toward M2-Mφs for effective wound management. As an injectable controlled release depot for exosomes, hydrolytically degradable poly(ethylene glycol) (PEG) hydrogels (Exogels) are designed and employed for encapsulating M2-Exos to maximize their therapeutic effects in cutaneous wound healing. The degradation time of the hydrogels is adjustable from 6 days or up to 27 days by controlling the crosslinking density and tightness. The localization of M2-Exos leads to a successful local transition from M1-Mφs to M2-Mφs within the lesion for more than 6 days, followed by enhanced therapeutic effects including rapid wound closure and increased healing quality in an animal model for cutaneous wound healing. Collectively, the hydrolytically degradable PEG hydrogel-based exosome delivery system may serve as a potential tool in regulating local polarization state of Mφs, which is crucial for tissue homeostasis and wound repair.
Collapse
Affiliation(s)
- Gijung Kwak
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jing Cheng
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, 210 Hearst Mining Building, Berkeley, CA, 94720, USA
| | - Hyosuk Kim
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Sukyung Song
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Biosystems & Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Su Jin Lee
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Yoosoo Yang
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Ji Hoon Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Ji Eun Lee
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Phillip B Messersmith
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, 210 Hearst Mining Building, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Sun Hwa Kim
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| |
Collapse
|
15
|
Petejova N, Martinek A, Zadrazil J, Klementa V, Pribylova L, Bris R, Kanova M, Sigutova R, Kacirova I, Svagera Z, Bace E, Stejskal D. Expression and 7-day time course of circulating microRNAs in septic patients treated with nephrotoxic antibiotic agents. BMC Nephrol 2022; 23:111. [PMID: 35305556 PMCID: PMC8933949 DOI: 10.1186/s12882-022-02726-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background Through regulation of signaling pathways, microRNAs (miRNAs) can be involved in sepsis and associated organ dysfunction. The aims of this study were to track the 7-day time course of blood miRNAs in patients with sepsis treated with vancomycin, gentamicin, or a non-nephrotoxic antibiotic and miRNA associations with neutrophil gelatinase-associated lipokalin (NGAL), creatinine, procalcitonin, interleukin-6, and acute kidney injury (AKI) stage. Methods Of 46 adult patients, 7 were on vancomycin, 20 on gentamicin, and 19 on another antibiotic. Blood samples were collected on days 1, 4, and 7 of treatment, and miRNAs were identified using quantitative reverse transcription PCR. Results The results showed no relationship between miRNA levels and biochemical variables on day 1. By day 7 of gentamicin treatment miR-15a-5p provided good discrimination between AKI and non-AKI (area under curve, 0.828). In patients taking vancomycin, miR-155-5p and miR-192-5p positively correlated with creatinine and NGAL values, and miR-192-5p and miR-423-5p positively correlated with procalcitonin and interleukin-6 in patients treated with a non-nephrotoxic antibiotic. In patients together we found positive correlation between miR-155-5p and miR-423-5p and all biochemical markers. Conclusion The results suggest that these four miRNAs may serve as diagnostic or therapeutic tool in sepsis, renal injury and nephrotoxic treatment. Trial registration ClinicalTrials.gov, ID: NCT04991376. Registered on 27 July 2021.
Collapse
|
16
|
MicroRNA-181c-5p modulates phagocytosis efficiency in bone marrow-derived macrophages. Inflamm Res 2022; 71:321-330. [PMID: 35020000 PMCID: PMC8919373 DOI: 10.1007/s00011-022-01539-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/09/2021] [Accepted: 01/03/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE AND DESIGN Phagocytosis and clearance of apoptotic cells are essential for inflammation resolution, efficient wound healing, and tissue homeostasis. MicroRNAs are critical modulators of macrophage polarization and function. The current study aimed to investigate the role of miR-181c-5p in macrophage phagocytosis. MATERIALS AND METHODS miR-181c-5p was identified as a potential candidate in microRNA screening of RAW264.7 macrophages fed with apoptotic cells. To investigate the role of miR-181c-5p in phagocytosis, the expression of miR-181c-5p was assessed in phagocyting bone marrow-derived macrophages. Phagocytosis efficiency was measured by fluorescence microscopy. Gain- and loss-of-function studies were performed using miR-181c-5p-specific mimic and inhibitor. The expression of the phagocytosis-associated genes and proteins of interest was evaluated by RT2 profiler PCR array and western blotting, respectively. RESULTS miR-181c-5p expression was significantly upregulated in the phagocyting macrophages. Furthermore, mimic-induced overexpression of miR-181c-5p resulted in the increased phagocytic ability of macrophages. Moreover, overexpression of miR-181c-5p resulted in upregulation of WAVE-2 in phagocyting macrophages, suggesting that miR-181c-5p may regulate cytoskeletal arrangement during macrophage phagocytosis. CONCLUSION Altogether, our data provide a novel function of miR-181c-5p in macrophage biology and suggest that targeting macrophage miR-181c-5p in injured tissues might improve clearance of dead cells and lead to efficient inflammation resolution.
Collapse
|
17
|
The Role of microRNAs in the Mammary Gland Development, Health, and Function of Cattle, Goats, and Sheep. Noncoding RNA 2021; 7:ncrna7040078. [PMID: 34940759 PMCID: PMC8708473 DOI: 10.3390/ncrna7040078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
Milk is an integral and therefore complex structural element of mammalian nutrition. Therefore, it is simple to conclude that lactation, the process of producing milk, is as complex as the mammary gland, the organ responsible for this biochemical activity. Nutrition, genetics, epigenetics, disease pathogens, climatic conditions, and other environmental variables all impact breast productivity. In the last decade, the number of studies devoted to epigenetics has increased dramatically. Reports are increasingly describing the direct participation of microRNAs (miRNAs), small noncoding RNAs that regulate gene expression post-transcriptionally, in the regulation of mammary gland development and function. This paper presents a summary of the current state of knowledge about the roles of miRNAs in mammary gland development, health, and functions, particularly during lactation. The significance of miRNAs in signaling pathways, cellular proliferation, and the lipid metabolism in agricultural ruminants, which are crucial in light of their role in the nutrition of humans as consumers of dairy products, is discussed.
Collapse
|
18
|
Fatmi A, Chabni N, Cernada M, Vento M, González-López M, Aribi M, Pallardó FV, García-Giménez JL. Clinical and immunological aspects of microRNAs in neonatal sepsis. Biomed Pharmacother 2021; 145:112444. [PMID: 34808550 DOI: 10.1016/j.biopha.2021.112444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Neonatal sepsis constitutes a highly relevant public health challenge and is the most common cause of infant morbidity and mortality worldwide. Recent studies have demonstrated that during infection epigenetic changes may occur leading to reprogramming of gene expression. Post-transcriptional regulation by short non-coding RNAs (e.g., microRNAs) have recently acquired special relevance because of their role in the regulation of the pathophysiology of sepsis and their potential clinical use as biomarkers. ~22-nucleotide of microRNAs are not only involved in regulating multiple relevant cellular and molecular functions, such as immune cell function and inflammatory response, but have also been proposed as good candidates as biomarkers in sepsis. Nevertheless, establishing clinical practice guidelines based on microRNA patterns as biomarkers for diagnosis and prognosis in neonatal sepsis has yet to be achieved. Given their differential expression across tissues in neonates, the release of specific microRNAs to blood and their expression pattern can differ compared to sepsis in adult patients. Further in-depth research is necessary to fully understand the biological relevance of microRNAs and assess their potential use in clinical settings. This review provides a general overview of microRNAs, their structure, function and biogenesis before exploring their potential clinical interest as diagnostic and prognostic biomarkers of neonatal sepsis. An important part of the review is focused on immune and inflammatory aspects of selected microRNAs that may become biomarkers for clinical use and therapeutic intervention.
Collapse
Affiliation(s)
- Ahlam Fatmi
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, W0414100, 13000 Tlemcen, Algeria
| | - Nafissa Chabni
- Faculty of Medicine, Tlemcen Medical Centre University, 13000 Tlemcen, Algeria
| | - María Cernada
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain; Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Máximo Vento
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain; Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - María González-López
- Department of Pediatrics. Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, W0414100, 13000 Tlemcen, Algeria; Biotechnology Center of Constantine (CRBt), 25000 Constantine, Algeria
| | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; INCLIVA Health Research Institute, Mixed Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; INCLIVA Health Research Institute, Mixed Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.
| |
Collapse
|
19
|
Arumugam P, Singla M, Lodha R, Rao V. Identification and characterization of novel infection associated transcripts in macrophages. RNA Biol 2021; 18:604-611. [PMID: 34747322 DOI: 10.1080/15476286.2021.1989217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
By analysis of lncRNA expression profiles of macrophages in response to Mycobacterium tuberculosis (Mtb) infection, we identified novel highly expressed transcripts, unique in encompassing a protein coding transcript- Cytidine Monophosphate Kinase 2 (CMPK2) and a previously identified lncRNA- Negative Regulator of Interferon Response (NRIR). While these transcripts (TILT1, 2,3 - TLR4 and Infection induced Long Transcript) are induced by virulent Mtb as well as lipopolysaccharide (LPS) early, lack of/delayed expression in non-viable Mtb/BCG infected cells, respectively, suggest an important role in macrophage responses. The elevated expression by 3 hr in response to fast growing bacteria further emphasizes the importance of these RNAs in the macrophage infection response. Overall, we provide evidence for the presence of multiple transcripts that form a part of the early infection response programme of macrophages.Abbreviations: IFN: Interferon; NRIR: negative regulator of interferon response; CMPK2: cytidine/ uridine monophosphate kinase; LPS: lipopolysaccharide; LAM: Lipoarabinomannan; PIMs: Phosphatidylinositol Mannosides; TILT1, 2,3: TLR4 and Infection induced Long Transcript; TLR4: Toll-like receptor 4; Mtb: Mycobacterium tuberculosis; BCG: Mycobacterium bovis BCG; MDMs: human monocyte derived macrophages.
Collapse
Affiliation(s)
- Prabhakar Arumugam
- Department of Cardio- Respiratory Disease Biology, CSIR Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.,Department of Biological Sciences, Academy of Scientific and Innovative Research, CSIR- HRDC campus, Sector 19, Kamla Nehru Nagar, Ghaziabad- 201002, India
| | - Mohit Singla
- Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Vivek Rao
- Department of Cardio- Respiratory Disease Biology, CSIR Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.,Department of Biological Sciences, Academy of Scientific and Innovative Research, CSIR- HRDC campus, Sector 19, Kamla Nehru Nagar, Ghaziabad- 201002, India
| |
Collapse
|
20
|
Amini-Farsani Z, Yadollahi-Farsani M, Arab S, Forouzanfar F, Yadollahi M, Asgharzade S. Prediction and analysis of microRNAs involved in COVID-19 inflammatory processes associated with the NF-kB and JAK/STAT signaling pathways. Int Immunopharmacol 2021; 100:108071. [PMID: 34482267 PMCID: PMC8378592 DOI: 10.1016/j.intimp.2021.108071] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
COVID-19 is the cause of a pandemic associated with substantial morbidity and mortality. As yet, there is no available approved drug to eradicate the virus. In this review article, we present an alternative study area that may contribute to the development of therapeutic targets for COVID-19. Growing evidence is revealing further pathophysiological mechanisms of COVID-19 related to the disregulation of inflammation pathways that seem to play a critical role toward COVID-19 complications. The NF-kB and JAK/STAT signaling pathways are highly activated in acute inflammation, and the excessive activity of these pathways in COVID-19 patients likely exacerbates the inflammatory responses of the host. A group of non-coding RNAs (miRNAs) manage certain features of the inflammatory process. In this study, we discuss recent advances in our understanding of miRNAs and their connection to inflammatory responses. Additionally, we consider the link between perturbations in miRNA levels and the onset of COVID-19 disease. Furthermore, previous studies published in the online databases, namely web of science, MEDLINE (PubMed), and Scopus, were reviewed for the potential role of miRNAs in the inflammatory manifestations of COVID-19. Moreover, we disclosed the interactions of inflammatory genes using STRING DB and designed interactions between miRNAs and target genes using Cityscape software. Several miRNAs, particularly miR-9, miR-98, miR-223, and miR-214, play crucial roles in the regulation of NF-kB and JAK-STAT signaling pathways as inflammatory regulators. Therefore, this group of miRNAs that mitigate inflammatory pathways can be further regarded as potential targets for far-reaching-therapeutic strategies in COVID-19 diseases.
Collapse
Affiliation(s)
- Zeinab Amini-Farsani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| | - Mahtab Yadollahi-Farsani
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Samaneh Arab
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mitra Yadollahi
- Department of Operative Dentistry, School of Dentistry, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
21
|
Abstract
Mitochondria are considered to be the powerhouse of the cell. Normal functioning of the mitochondria is not only essential for cellular energy production but also for several immunomodulatory processes. Macrophages operate in metabolic niches and rely on rapid adaptation to specific metabolic conditions such as hypoxia, nutrient limitations, or reactive oxygen species to neutralize pathogens. In this regard, the fast reprogramming of mitochondrial metabolism is indispensable to provide the cells with the necessary energy and intermediates to efficiently mount the inflammatory response. Moreover, mitochondria act as a physical scaffold for several proteins involved in immune signaling cascades and their dysfunction is immediately associated with a dampened immune response. In this review, we put special focus on mitochondrial function in macrophages and highlight how mitochondrial metabolism is involved in macrophage activation.
Collapse
Affiliation(s)
- Mohamed Zakaria Nassef
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Brunswick, Germany
| | - Jasmin E Hanke
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Brunswick, Germany
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Brunswick, Germany
| |
Collapse
|
22
|
Horváth M, Nagy G, Zsindely N, Bodai L, Horváth P, Vágvölgyi C, Nosanchuk JD, Tóth R, Gácser A. Oral Epithelial Cells Distinguish between Candida Species with High or Low Pathogenic Potential through MicroRNA Regulation. mSystems 2021; 6:6/3/e00163-21. [PMID: 33975967 PMCID: PMC8125073 DOI: 10.1128/msystems.00163-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oral epithelial cells monitor microbiome composition and initiate immune response upon dysbiosis, as in the case of Candida imbalances. Candida species, such as C. albicans and C. parapsilosis, are the most prevalent yeasts in the oral cavity. Comparison of healthy oral epithelial cell responses revealed that while C. albicans infection robustly activated inflammation cascades, C. parapsilosis primarily activated various inflammation-independent pathways. In posttranscriptional regulatory processes, several miRNAs were altered by both species. For C. parapsilosis, the dose of yeast cells directly correlated with changes in transcriptomic responses with higher fungal burdens inducing significantly different and broader changes. MicroRNAs (miRNAs) associated with carbohydrate metabolism-, hypoxia-, and vascular development-related responses dominated with C. parapsilosis infection, whereas C. albicans altered miRNAs linked to inflammatory responses. Subsequent analyses of hypoxia-inducible factor 1α (HIF1-α) and hepatic stellate cell (HSC) activation pathways predicted target genes through which miRNA-dependent regulation of yeast-specific functions may occur, which also supported the observed species-specific responses. Our findings suggest that C. parapsilosis is recognized as a commensal at low doses by the oral epithelium; however, increased fungal burden activates different pathways, some of which overlap with the inflammatory processes robustly induced by C. albicans IMPORTANCE A relatively new topic within the field of immunology involves the role of miRNAs in innate as well as adaptive immune response regulation. In recent years, posttranscriptional regulation of host-pathogenic fungal interactions through miRNAs was also suggested. Our study reveals that the distinct nature of human oral epithelial cell responses toward C. parapsilosis and C. albicans is possibly due to species-specific fine-tuning of host miRNA regulatory processes. The findings of this study also shed new light on the nature of early host cell transcriptional responses to the presence of C. parapsilosis and highlight the species' potential inflammation-independent host activation processes. These findings contribute to our better understanding of how miRNA deregulation at the oral immunological barrier, in noncanonical immune cells, may discriminate between fungal species, particularly Candida species with high or low pathogenic potential.
Collapse
Affiliation(s)
- Márton Horváth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Gábor Nagy
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Nóra Zsindely
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Péter Horváth
- Synthetic and Systems Biology Unit, Biological Research Centre (BRC), Szeged, Hungary
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Csaba Vágvölgyi
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Joshua D Nosanchuk
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Renáta Tóth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Szeged, Hungary
- MTA-SZTE Lendület Mycobiome Research Group, University of Szeged, Szeged, Hungary
| |
Collapse
|
23
|
Hum C, Loiselle J, Ahmed N, Shaw TA, Toudic C, Pezacki JP. MicroRNA Mimics or Inhibitors as Antiviral Therapeutic Approaches Against COVID-19. Drugs 2021; 81:517-531. [PMID: 33638807 PMCID: PMC7910799 DOI: 10.1007/s40265-021-01474-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 12/12/2022]
Abstract
Coronaviruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for the coronavirus disease 2019 (COVID-19) pandemic, present a significant threat to human health by inflicting a wide variety of health complications and even death. While conventional therapeutics often involve administering small molecules to fight viral infections, small non-coding RNA sequences, known as microRNAs (miRNAs/miR-), may present a novel antiviral strategy. We can take advantage of their ability to modulate host-virus interactions through mediating RNA degradation or translational inhibition. Investigations into miRNA and SARS-CoV-2 interactions can reveal novel therapeutic approaches against this virus. The viral genomes of SARS-CoV-2, severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome coronavirus (MERS-CoV) were searched using the Nucleotide Basic Local Alignment Search Tool (BLASTn) for highly similar sequences, to identify potential binding sites for miRNAs hypothesized to play a role in SARS-CoV-2 infection. miRNAs that target angiotensin-converting enzyme 2 (ACE2), the receptor used by SARS-CoV-2 and SARS-CoV for host cell entry, were also predicted. Several relevant miRNAs were identified, and their potential roles in regulating SARS-CoV-2 infections were further assessed. Current treatment options for SARS-CoV-2 are limited and have not generated sufficient evidence on safety and efficacy for treating COVID-19. Therefore, by investigating the interactions between miRNAs and SARS-CoV-2, miRNA-based antiviral therapies, including miRNA mimics and inhibitors, may be developed as an alternative strategy to fight COVID-19.
Collapse
Affiliation(s)
- Christine Hum
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Julia Loiselle
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Nadine Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Tyler A Shaw
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Caroline Toudic
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
24
|
Small extracellular vesicles derived from interferon-γ pre-conditioned mesenchymal stromal cells effectively treat liver fibrosis. NPJ Regen Med 2021; 6:19. [PMID: 33785758 PMCID: PMC8010072 DOI: 10.1038/s41536-021-00132-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are used for ameliorating liver fibrosis and aiding liver regeneration after cirrhosis; Here, we analyzed the therapeutic potential of small extracellular vesicles (sEVs) derived from interferon-γ (IFN-γ) pre-conditioned MSCs (γ-sEVs). γ-sEVs effectively induced anti-inflammatory macrophages with high motility and phagocytic abilities in vitro, while not preventing hepatic stellate cell (HSC; the major source of collagen fiber) activation in vitro. The proteome analysis of MSC-derived sEVs revealed anti-inflammatory macrophage inducible proteins (e.g., annexin-A1, lactotransferrin, and aminopeptidase N) upon IFN-γ stimulation. Furthermore, by enabling CX3CR1+ macrophage accumulation in the damaged area, γ-sEVs ameliorated inflammation and fibrosis in the cirrhosis mouse model more effectively than sEVs. Single cell RNA-Seq analysis revealed diverse effects, such as induction of anti-inflammatory macrophages and regulatory T cells, in the cirrhotic liver after γ-sEV administration. Overall, IFN-γ pre-conditioning altered sEVs resulted in efficient tissue repair indicating a new therapeutic strategy.
Collapse
|
25
|
Riahi Rad Z, Riahi Rad Z, Goudarzi H, Goudarzi M, Mahmoudi M, Yasbolaghi Sharahi J, Hashemi A. MicroRNAs in the interaction between host-bacterial pathogens: A new perspective. J Cell Physiol 2021; 236:6249-6270. [PMID: 33599300 DOI: 10.1002/jcp.30333] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022]
Abstract
Gene expression regulation plays a critical role in host-pathogen interactions, and RNAs function is essential in this process. miRNAs are small noncoding, endogenous RNA fragments that affect stability and/or translation of mRNAs, act as major posttranscriptional regulators of gene expression. miRNA is involved in regulating many biological or pathological processes through targeting specific mRNAs, including development, differentiation, apoptosis, cell cycle, cytoskeleton organization, and autophagy. Deregulated microRNA expression is associated with many types of diseases, including cancers, immune disturbances, and infection. miRNAs are a vital section of the host immune response to bacterial-made infection. Bacterial pathogens suppress host miRNA expression for their benefit, promoting survival, replication, and persistence. The role played through miRNAs in interaction with host-bacterial pathogen has been extensively studied in the past 10 years, and knowledge about these staggering molecules' function can clarify the complicated and ambiguous interactions of the host-bacterial pathogen. Here, we review how pathogens prevent the host miRNA expression. We briefly discuss emerging themes in this field, including their role as biomarkers in identifying bacterial infections, as part of the gut microbiota, on host miRNA expression.
Collapse
Affiliation(s)
- Zohreh Riahi Rad
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Riahi Rad
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Yasbolaghi Sharahi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Deng X, Lin Z, Zuo C, Fu Y. Upregulation of miR-150-5p alleviates LPS-induced inflammatory response and apoptosis of RAW264.7 macrophages by targeting Notch1. Open Life Sci 2020; 15:544-552. [PMID: 33817242 PMCID: PMC7874594 DOI: 10.1515/biol-2020-0058] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/29/2022] Open
Abstract
Circulating miR-150-5p has been identified as a prognostic marker in patients with critical illness and sepsis. Herein, we aimed to further explore the role and underlying mechanism of miR-150-5p in sepsis. Quantitative real-time-PCR assay was performed to detect the expression of miR-150-5p upon stimulation with lipopolysaccharide (LPS) in RAW264.7 cells. The levels of tumor necrosis factor-α, interleukin (IL)-6 and IL-1β were measured by ELISA assay. Cell apoptosis was determined using flow cytometry. Western blot was used to assess notch receptor 1 (Notch1) expression in LPS-induced RAW264.7 cells. Dual-luciferase reporter assay was employed to validate the target of miR-150-5p. Our data showed that miR-150-5p was downregulated and Notch1 was upregulated in LPS-stimulated RAW264.7 cells. miR-150-5p overexpression or Notch1 silencing alleviated LPS-induced inflammatory response and apoptosis in RAW264.7 cells. Moreover, Notch1 was a direct target of miR-150-5p. Notch1 abated miR-150-5p-mediated anti-inflammation and anti-apoptosis in LPS-induced RAW264.7 cells. miR-150-5p alleviated LPS-induced inflammatory response and apoptosis at least partly by targeting Notch1 in RAW264.7 cells, highlighting miR-150-5p as a target in the development of anti-inflammation and anti-apoptosis drugs for sepsis treatment.
Collapse
Affiliation(s)
- Xiaoyan Deng
- Department of ICU, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | - Zhixing Lin
- Department of ICU, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | - Chao Zuo
- Shandong Medical College, Jinan, Shandong Province, China
| | - Yanjie Fu
- Department of Burn and Plastic Surgery, Linyi People’s Hospital, No. 27, Jiefang Rd, Linyi City, 276000, Shandong Province, China
| |
Collapse
|
27
|
Wei H, Wu Q, Shi Y, Luo A, Lin S, Feng X, Jiang J, Zhang M, Wang F, Tan W. MicroRNA-15a/16/SOX5 axis promotes migration, invasion and inflammatory response in rheumatoid arthritis fibroblast-like synoviocytes. Aging (Albany NY) 2020; 12:14376-14390. [PMID: 32678069 PMCID: PMC7425471 DOI: 10.18632/aging.103480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/27/2020] [Indexed: 12/26/2022]
Abstract
Fibroblast-like synoviocytes (FLSs) are key effector cells in the pathogenesis of rheumatoid arthritis (RA) and display a unique aggressive tumor-like phenotype with remarkable hyperplasia, increased cell migration and invasion. How FLSs undergo these changes in RA remains unknown. We previously reported a novel function of transcription factor SOX5 in RA-FLSs that promote cell migration and invasion. In this study, we found that miR-15a/16 directly targets the SOX5 3’UTR and suppresses SOX5 expression. Moreover, miR-15a/16 is significantly down-regulated in RA-FLSs, which negatively correlates with SOX5 expression. Transfection with miR-15a/16 mimics in RA-FLSs inhibits cell migration, invasion, IL-1β and TNFα expression. Overexpression SOX5 in RA-FLSs decreases miR-15a/16 expression and rescues miR-15a/16-mediated inhibitory effect. Furthermore, RA patients with the lower baseline serum miR-15a/16 level present poor response of 3 months disease-modifying antirheumatic drugs (DMARDs) therapy. Collectively, this study reveals that miR-15a/16/SOX5 axis functions as a key driver of RA-FLSs invasion, migration and inflammatory response in a mutual negative feedback loop and correlates with DMARDs treatment response in RA.
Collapse
Affiliation(s)
- Hua Wei
- Division of Rheumatology, Clinical Medical College, Yangzhou University, Jiangsu Province, China
| | - Qin Wu
- Division of Rheumatology, Clinical Medical College, Yangzhou University, Jiangsu Province, China
| | - Yumeng Shi
- Division of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, China
| | - Aishu Luo
- Division of Rheumatology, The First People's Hospital of Yancheng, Jiangsu Province, China
| | - Shiyu Lin
- Division of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, China
| | - Xiaoke Feng
- Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Jiangsu Province, China
| | - Jintao Jiang
- Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Jiangsu Province, China
| | - Miaojia Zhang
- Division of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, China
| | - Fang Wang
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, China
| | - Wenfeng Tan
- Division of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, China
| |
Collapse
|
28
|
Rana S, Espinosa-Diez C, Ruhl R, Chatterjee N, Hudson C, Fraile-Bethencourt E, Agarwal A, Khou S, Thomas CR, Anand S. Differential regulation of microRNA-15a by radiation affects angiogenesis and tumor growth via modulation of acid sphingomyelinase. Sci Rep 2020; 10:5581. [PMID: 32221387 PMCID: PMC7101391 DOI: 10.1038/s41598-020-62621-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/17/2020] [Indexed: 12/28/2022] Open
Abstract
Activation of acid sphingomyelinase (SMPD1) and the generation of ceramide is a critical regulator of apoptosis in response to cellular stress including radiation. Endothelial SMPD1 has been shown to regulate tumor responses to radiation therapy. We show here that the SMPD1 gene is regulated by a microRNA (miR), miR-15a, in endothelial cells (ECs). Standard low dose radiation (2 Gy) upregulates miR-15a and decreases SMPD1 levels. In contrast, high dose radiation (10 Gy and above) decreases miR-15a and increases SMPD1. Ectopic expression of miR-15a decreases both mRNA and protein levels of SMPD1. Mimicking the effects of high dose radiation with a miR-15a inhibitor decreases cell proliferation and increases active Caspase-3 & 7. Mechanistically, inhibition of miR-15a increases inflammatory cytokines, activates caspase-1 inflammasome and increases Gasdermin D, an effector of pyroptosis. Importantly, both systemic and vascular-targeted delivery of miR-15a inhibitor decreases angiogenesis and tumor growth in a CT26 murine colorectal carcinoma model. Taken together, our findings highlight a novel role for miR mediated regulation of SMPD1 during radiation responses and establish proof-of-concept that this pathway can be targeted with a miR inhibitor.
Collapse
Affiliation(s)
- Shushan Rana
- Department of Radiation Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Cristina Espinosa-Diez
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Rebecca Ruhl
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Namita Chatterjee
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Clayton Hudson
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Eugenia Fraile-Bethencourt
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Anupriya Agarwal
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.,Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Sokchea Khou
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Charles R Thomas
- Department of Radiation Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Sudarshan Anand
- Department of Radiation Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA. .,Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| |
Collapse
|
29
|
Lécrivain AL, Beckmann BM. Bacterial RNA in extracellular vesicles: A new regulator of host-pathogen interactions? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194519. [PMID: 32142907 DOI: 10.1016/j.bbagrm.2020.194519] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 01/26/2023]
Abstract
Extracellular vesicles (EVs) are released by cells from all kingdoms and represent one form of cell-cell interaction. This universal system of communication blurs cells type boundaries, offering an new avenue for pathogens to infect their hosts. EVs carry with them an arsenal of virulence factors that have been the focus of numerous studies. During the last years, the RNA content of EVs has also gained increasing attention, particularly in the context of infection. Secreted RNA in EVs (evRNA) from several bacterial pathogens have been characterised but the exact mechanisms promoting pathogenicity remain elusive. In this review, we evaluate the potential of such transcripts to directly interact with targets in infected cells and, by this, represent a novel angle of host cell manipulation during bacterial infection. This article is part of a Special Issue entitled: RNA and gene control in bacteria edited by Dr. M. Guillier and F. Repoila.
Collapse
|
30
|
Sueur G, Boutet A, Gotanègre M, Mansat-De Mas V, Besson A, Manenti S, Bertoli S. STAT5-dependent regulation of CDC25A by miR-16 controls proliferation and differentiation in FLT3-ITD acute myeloid leukemia. Sci Rep 2020; 10:1906. [PMID: 32024878 PMCID: PMC7002454 DOI: 10.1038/s41598-020-58651-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/14/2020] [Indexed: 01/10/2023] Open
Abstract
We recently identified the CDC25A phosphatase as a key actor in proliferation and differentiation in acute myeloid leukemia expressing the FLT3-ITD mutation. In this paper we demonstrate that CDC25A level is controlled by a complex STAT5/miR-16 transcription and translation pathway working downstream of this receptor. First, we established by CHIP analysis that STAT5 is directly involved in FLT3-ITD-dependent CDC25A gene transcription. In addition, we determined that miR-16 expression is repressed by FLT3-ITD activity, and that STAT5 participates in this repression. In accordance with these results, miR-16 expression was significantly reduced in a panel of AML primary samples carrying the FLT3-ITD mutation when compared with FLT3wt cells. The expression of a miR-16 mimic reduced CDC25A protein and mRNA levels, and RNA interference-mediated down modulation of miR-16 restored CDC25A expression in response to FLT3-ITD inhibition. Finally, decreasing miR-16 expression partially restored the proliferation of cells treated with the FLT3 inhibitor AC220, while the expression of miR-16 mimic stopped this proliferation and induced monocytic differentiation of AML cells. In summary, we identified a FLT3-ITD/STAT5/miR-16/CDC25A axis essential for AML cell proliferation and differentiation.
Collapse
Affiliation(s)
- Gabrielle Sueur
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France.,Equipe labellisée La Ligue contre le Cancer 2016, Toulouse, France
| | - Alison Boutet
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France.,Equipe labellisée La Ligue contre le Cancer 2016, Toulouse, France
| | - Mathilde Gotanègre
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France
| | - Véronique Mansat-De Mas
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France.,Equipe labellisée La Ligue contre le Cancer 2016, Toulouse, France.,Laboratoire d'hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France
| | - Arnaud Besson
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, UPS and CNRS, Toulouse, France
| | - Stéphane Manenti
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France. .,Equipe labellisée La Ligue contre le Cancer 2016, Toulouse, France.
| | - Sarah Bertoli
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France. .,Equipe labellisée La Ligue contre le Cancer 2016, Toulouse, France. .,Université Toulouse III Paul Sabatier, Toulouse, France. .,Service d'hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole (IUCT-O), Toulouse, France.
| |
Collapse
|
31
|
Screening candidate microR-15a- IRAK2 regulatory pairs for predicting the response to Staphylococcus aureus-induced mastitis in dairy cows. J DAIRY RES 2019; 86:425-431. [PMID: 31722768 DOI: 10.1017/s0022029919000785] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We established a mastitis model using exogenous infection of the mammary gland of Chinese Holstein cows with Staphylococcus aureus and extracted total RNA from S. aureus-infected and healthy mammary quarters. Differential expression of genes due to mastitis was evaluated using Affymetrix technology and results revealed a total of 1230 differentially expressed mRNAs. A subset of affected genes was verified via Q-PCR and pathway analysis. In addition, Solexa high-throughput sequencing technology was used to analyze profiles of miRNA in infected and healthy quarters. These analyses revealed a total of 52 differentially expressed miRNAs. A subset of those results was verified via Q-PCR. Bioinformatics techniques were used to predict and analyze the correlations among differentially expressed miRNA and mRNA. Results revealed a total of 329 pairs of negatively associated miRNA/mRNA, with 31 upregulated pairs of mRNA and 298 downregulated pairs of mRNA. Differential expression of miR-15a and interleukin-1 receptor-associated kinase-like 2 (IRAK2), were evaluated by western blot and luciferase reporter assays. We conclude that miR-15a and miR-15a target genes (IRAK2) constitute potential miRNA-mRNA regulatory pairs for use as biomarkers to predict a mastitis response.
Collapse
|
32
|
Herdoiza Padilla E, Crauwels P, Bergner T, Wiederspohn N, Förstner S, Rinas R, Ruf A, Kleemann M, Handrick R, Tuckermann J, Otte K, Walther P, Riedel CU. mir-124-5p Regulates Phagocytosis of Human Macrophages by Targeting the Actin Cytoskeleton via the ARP2/3 Complex. Front Immunol 2019; 10:2210. [PMID: 31636629 PMCID: PMC6787173 DOI: 10.3389/fimmu.2019.02210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/02/2019] [Indexed: 01/20/2023] Open
Abstract
Phagocytosis is a cellular process crucial for recognition and removal of apoptotic cells and foreign particles, subsequently initiating appropriate immune responses. The process of phagocytosis is highly complex and involves major rearrangements of the cytoskeleton. Due to its complexity and importance for tissue homoeostasis and immune responses, it is tightly regulated. Over the last decade, microRNAs (miRNAs) have emerged as important regulators of biological pathways including the immune response by fine-tuning expression of gene regulatory networks. In order to identify miRNAs implicated in the regulation of phagocytosis, a systematic screening of all currently known, human miRNAs was performed using THP-1 macrophage-like cells and serum-opsonized latex beads. Of the total of 2,566 miRNAs analyzed, several led to significant changes in phagocytosis. Among these, we validated miR-124-5p as a novel regulator of phagocytosis. Transfection with miR-124-5p mimics reduced the number of phagocytic cells as well as the phagocytic activity of phorbol-12-myristate-13-acetate (PMA)-activated THP-1 cells and ex vivo differentiated primary human macrophages. In silico analysis suggested that miR-124-5p targets genes involved in regulation of the actin cytoskeleton. Transcriptional analyses revealed that expression of genes encoding for several subunits of the ARP2/3 complex, a crucial regulator of actin polymerization, is reduced upon transfection of cells with miR-124-5p. Further in silico analyses identified potential binding motifs for miR-124-5p in the mRNAs of these genes. Luciferase reporter assays using these binding motifs indicate that at least two of the genes (ARPC3 and ARPC4) are direct targets of miR-124-5p. Moreover, ARPC3 and ARPC4 protein levels were significantly reduced following miR-124-5p transfection. Collectively, the presented results suggest that miR-124-5p regulates phagocytosis in human macrophages by directly targeting expression of components of the ARP2/3 complex.
Collapse
Affiliation(s)
| | - Peter Crauwels
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Tim Bergner
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Nicole Wiederspohn
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Sabrina Förstner
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Rebecca Rinas
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Anna Ruf
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Michael Kleemann
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - René Handrick
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Kerstin Otte
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Christian U Riedel
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| |
Collapse
|
33
|
Lee H, Li C, Zhang Y, Zhang D, Otterbein LE, Jin Y. Caveolin-1 selectively regulates microRNA sorting into microvesicles after noxious stimuli. J Exp Med 2019; 216:2202-2220. [PMID: 31235510 PMCID: PMC6719430 DOI: 10.1084/jem.20182313] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/23/2019] [Accepted: 05/31/2019] [Indexed: 12/23/2022] Open
Abstract
Emerging evidence suggests that extracellular vesicle (EV)-containing miRNAs mediate intercellular communications in response to noxious stimuli. It remains unclear how a cell selectively sorts the cellular miRNAs into EVs. We report that caveolin-1 (cav-1) is essential for sorting of selected miRNAs into microvesicles (MVs), a main type of EVs generated by outward budding of the plasma membrane. We found that cav-1 tyrosine 14 (Y14)-phosphorylation leads to interactions between cav-1 and hnRNPA2B1, an RNA-binding protein. The cav-1/hnRNPA2B1 complex subsequently traffics together into MVs. Oxidative stress induces O-GlcNAcylation of hnRNPA2B1, resulting in a robustly altered hnRNPA2B1-bound miRNA repertoire. Notably, cav-1 pY14 also promotes hnRNPA2B1 O-GlcNAcylation. Functionally, macrophages serve as the principal recipient of epithelial MVs in the lung. MV-containing cav-1/hnRNPA2B1 complex-bound miR-17/93 activate tissue macrophages. Collectively, cav-1 is the first identified membranous protein that directly guides RNA-binding protein into EVs. Our work delineates a novel mechanism by which oxidative stress compels epithelial cells to package and secrete specific miRNAs and elicits an innate immune response.
Collapse
Affiliation(s)
- Heedoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA
| | - Chunhua Li
- Department of Computational Medicine and Bioinformatics Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI
| | - Duo Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA
| | - Leo E Otterbein
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA
| |
Collapse
|
34
|
Li T, Wan Y, Sun L, Tao S, Chen P, Liu C, Wang K, Zhou C, Zhao G. Inhibition of MicroRNA-15a/16 Expression Alleviates Neuropathic Pain Development through Upregulation of G Protein-Coupled Receptor Kinase 2. Biomol Ther (Seoul) 2019; 27:414-422. [PMID: 31189298 PMCID: PMC6609114 DOI: 10.4062/biomolther.2018.073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/24/2018] [Accepted: 08/14/2018] [Indexed: 12/26/2022] Open
Abstract
There is accumulating evidence that microRNAs are emerging as pivotal regulators in the development and progression of neuropathic pain. MicroRNA-15a/16 (miR-15a/16) have been reported to play an important role in various diseases and inflammation response processes. However, whether miR-15a/16 participates in the regulation of neuroinflammation and neuropathic pain development remains unknown. In this study, we established a mouse model of neuropathic pain by chronic constriction injury (CCI) of the sciatic nerves. Our results showed that both miR-15a and miR-16 expression was significantly upregulated in the spinal cord of CCI rats. Downregulation of the expression of miR-15a and miR-16 by intrathecal injection of a specific inhibitor significantly attenuated the mechanical allodynia and thermal hyperalgesia of CCI rats. Furthermore, inhibition of miR-15a and miR-16 downregulated the expression of interleukin-1β and tumor-necrosis factor-α in the spinal cord of CCI rats. Bioinformatic analysis predicted that G protein-coupled receptor kinase 2 (GRK2), an important regulator in neuropathic pain and inflammation, was a potential target gene of miR-15a and miR-16. Inhibition of miR-15a and miR-16 markedly increased the expression of GRK2 while downregulating the activation of p38 mitogen-activated protein kinase and NF-κB in CCI rats. Notably, the silencing of GRK2 significantly reversed the inhibitory effects of miR-15a/16 inhibition in neuropathic pain. In conclusion, our results suggest that inhibition of miR-15a/16 expression alleviates neuropathic pain development by targeting GRK2. These findings provide novel insights into the molecular pathogenesis of neuropathic pain and suggest potential therapeutic targets for preventing neuropathic pain development.
Collapse
Affiliation(s)
- Tao Li
- Department of Anesthesiology, China-Japan Union Hospital, Jilin University, Jilin 130033, China
| | - Yingchun Wan
- Department of Endocrinology, China-Japan Union Hospital, Jilin University, Jilin 130033, China
| | - Lijuan Sun
- Department of Endocrinology, China-Japan Union Hospital, Jilin University, Jilin 130033, China
| | - Shoujun Tao
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang 310006, China
| | - Peng Chen
- Department of Anesthesiology, China-Japan Union Hospital, Jilin University, Jilin 130033, China
| | - Caihua Liu
- Department of Anaesthesiology, The Central Hospital of Wuhan Affiliated with Tongji Medical College of Huazhong University of Science and Technology, Hubei 430014, China
| | - Ke Wang
- Department of Gynaecology and Obstetrics, China-Japan Union Hospital, Jilin University, Jilin 130033, China
| | - Changyu Zhou
- Department of Gastroenterology, China-Japan Union Hospital, Jilin University, Jilin 130033, China
| | - Guoqing Zhao
- Department of Anesthesiology, China-Japan Union Hospital, Jilin University, Jilin 130033, China
| |
Collapse
|
35
|
Curtale G, Rubino M, Locati M. MicroRNAs as Molecular Switches in Macrophage Activation. Front Immunol 2019; 10:799. [PMID: 31057539 PMCID: PMC6478758 DOI: 10.3389/fimmu.2019.00799] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/26/2019] [Indexed: 12/25/2022] Open
Abstract
The efficacy of macrophage- mediated inflammatory response relies on the coordinated expression of key factors, which expression is finely regulated at both transcriptional and post-transcriptional level. Several studies have provided compelling evidence that microRNAs play pivotal roles in modulating macrophage activation, polarization, tissue infiltration, and resolution of inflammation. In this review, we highlight the essential molecular mechanisms underlying the different phases of inflammation that are targeted by microRNAs to inhibit or accelerate restoration to tissue integrity and homeostasis. We further review the impact of microRNA-dependent regulation of tumor-associated macrophages and the relative implication for tumor biology.
Collapse
Affiliation(s)
- Graziella Curtale
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Marcello Rubino
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Massimo Locati
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| |
Collapse
|
36
|
Basak I, Bhatlekar S, Manne B, Stoller M, Hugo S, Kong X, Ma L, Rondina MT, Weyrich AS, Edelstein LC, Bray PF. miR-15a-5p regulates expression of multiple proteins in the megakaryocyte GPVI signaling pathway. J Thromb Haemost 2019; 17:511-524. [PMID: 30632265 PMCID: PMC6397079 DOI: 10.1111/jth.14382] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Indexed: 12/22/2022]
Abstract
Essentials The action of microRNAs (miRs) in human megakaryocyte signaling is largely unknown. Cord blood-derived human megakaryocytes (MKs) were used to test the function of candidate miRs. miR-15a-5p negatively regulated MK GPVI-mediated αIIbβ3 activation and α-granule release. miR-15a-5p acts as a potential "master-miR" regulating genes in the MK GPVI signaling pathway. SUMMARY: Background Megakaryocytes (MKs) invest their progeny platelets with proteins and RNAs. MicroRNAs (miRs), which inhibit mRNA translation into protein, are abundantly expressed in MKs and platelets. Although platelet miRs have been associated with platelet reactivity and disease, there is a paucity of information on the function of miRs in human MKs. Objective To identify MK miRs that regulate the GPVI signaling pathway in the MK-platelet lineage. Methods Candidate miRs associated with GPVI-mediated platelet aggregation were tested for functionality in cultured MKs derived from cord blood. Results An unbiased, transcriptome-wide screen in 154 healthy donors identified platelet miR-15a-5p as significantly negatively associated with CRP-induced platelet aggregation. Platelet agonist dose-response curves demonstrated activation of αIIbβ3 in suspensions of cord blood-derived cultured MKs. Overexpression and knockdown of miR-15a-5p in these MKs reduced and enhanced, respectively, CRP-induced αIIbβ3 activation but did not alter thrombin or ADP stimulation. FYN, SRGN, FCER1G, MYLK. and PRKCQ, genes involved in GPVI signaling, were identified as miR-15a-5p targets and were inhibited or de-repressed in MKs with miR-15a-5p overexpression or inhibition, respectively. Lentiviral overexpression of miR-15a-5p also inhibited GPVI-FcRγ-mediated phosphorylation of Syk and PLCγ2, GPVI downstream signaling molecules, but effects of miR-15a-5p on αIIbβ3 activation did not extend to other ITAM-signaling receptors (FcγRIIa and CLEC-2). Conclusion Cord blood-derived MKs are a useful human system for studying the functional effects of candidate platelet genes. miR-15a-5p is a potential "master-miR" for specifically regulating GPVI-mediated MK-platelet signaling. Targeting miR-15a-5p may have therapeutic potential in hemostasis and thrombosis.
Collapse
Affiliation(s)
- I. Basak
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; and Division of General Internal Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA; and George E. Wahlen VAMC, Salt Lake City, UT, 84148
| | - S. Bhatlekar
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; and Division of General Internal Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA; and George E. Wahlen VAMC, Salt Lake City, UT, 84148
| | - B.K. Manne
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; and Division of General Internal Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA; and George E. Wahlen VAMC, Salt Lake City, UT, 84148
| | - M. Stoller
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; and Division of General Internal Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA; and George E. Wahlen VAMC, Salt Lake City, UT, 84148
| | - S. Hugo
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; and Division of General Internal Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA; and George E. Wahlen VAMC, Salt Lake City, UT, 84148
| | - X. Kong
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA 19107
| | - L. Ma
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA 19107
| | - M. T. Rondina
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; and Division of General Internal Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA; and George E. Wahlen VAMC, Salt Lake City, UT, 84148
| | - A. S. Weyrich
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; and Division of General Internal Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA; and George E. Wahlen VAMC, Salt Lake City, UT, 84148
| | - L. C. Edelstein
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA 19107
| | - P. F. Bray
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; and Division of General Internal Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA; and George E. Wahlen VAMC, Salt Lake City, UT, 84148
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
37
|
Shang J, He Q, Chen Y, Yu D, Sun L, Cheng G, Liu D, Xiao J, Zhao Z. miR-15a-5p suppresses inflammation and fibrosis of peritoneal mesothelial cells induced by peritoneal dialysis via targeting VEGFA. J Cell Physiol 2018; 234:9746-9755. [PMID: 30362573 DOI: 10.1002/jcp.27660] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 10/02/2018] [Indexed: 12/22/2022]
Abstract
Long-term peritoneal dialysis (PD) often ends up with ultrafiltration failure (UFF) which is partially caused by persistent inflammation and fibrosis of peritoneal tissues. However, the mechanism is still unclear. In the current study, the peritoneum from UFF patients demonstrated inflammation and fibrosis which were positively related to the expression of vascular endothelial growth factor A (VEGFA). The in vitro model using human peritoneal mesothelial cells (HPMCs) stimulated by high glucose or advanced glycation end (AGE) product showed consistent changes of inflammation, fibrosis, and VEGFA. What's more, we showed that VEGFA was an instigator of inflammation and fibrosis. Several microRNAs (miRNAs) have been reported to regulate expression of VEGFA elsewhere. Five of them were selected to test the expression in the peritoneum of patients with PD. Results suggested that miR-15a-5p was the most significantly downregulated one. Also, in high glucose or AGE product-stimulated HPMCs, miR-15a-5p decreased. When miRNA mimic was used to restore the expression of miR-15a-5p, high glucose-induced VEGFA was repressed. The predicted binding site between these two molecules was confirmed by the dual-luciferase assay. Restoration of miR-15a-5p restrained inflammation and fibrosis of HPMCs. TGF-β1/Smad2 was shown to be the downstream signaling pathway and their activity was regulated by miR-15a-5p/VEGFA. In conclusion, our current study demonstrates that miR-15a-5p acts as a regulator of VEGFA mRNA and the following inflammation and fibrosis in peritoneal mesothelial cells. The miR-15a-5p/VEGFA pathway may be a potential target for preventing ultrafiltration failure in patients with PD.
Collapse
Affiliation(s)
- Jin Shang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qianxin He
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Chen
- Arthritis Research UK Primary Care Centre, Research Institute for Primary Care & Health Sciences, Keele University, Keele, UK
| | - Dahai Yu
- Arthritis Research UK Primary Care Centre, Research Institute for Primary Care & Health Sciences, Keele University, Keele, UK
| | - Lulu Sun
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Genyang Cheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dong Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Xiao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhanzheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
38
|
Yan Z, Jiang T, Wang P, Huang X, Yang Q, Sun W, Gun S. Circular RNA expression profile of spleen in a Clostridium perfringens type C-induced piglet model of necrotizing enteritis. FEBS Open Bio 2018; 8:1722-1732. [PMID: 30338222 PMCID: PMC6168697 DOI: 10.1002/2211-5463.12512] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 01/09/2023] Open
Abstract
Clostridium perfringens type C is a pathogen that causes necrotizing enteritis (NE), which is an intestinal tract disease in piglets. The pathogenesis of C. perfringens type C-induced NE is still unclear, leading to a lack of effective therapies. Earlier studies have reported that circular RNAs (circRNAs) are involved in the pathogenic processes of various diseases. However, it is not known if circRNAs in spleen play a role in C. perfringens type C infection in NE. To address this question, we infected 7-day-old piglets with C. perfringens type C to induce NE. Hematoxylin and eosin staining of small intestine revealed inflammation, atrophy and shedding of intestinal villi, and intestinal mucosal necrosis. We observed increased expression of cytokine genes (such as IL-1β and IL-6) and inflammation in the spleen. In addition, we used RNA-seq and bioinformatics analysis to examine changes in circRNA expression. A total of 103 circRNAs were found to be differentially expressed in NE, and Gene Ontology analysis revealed that the genes producing differentially expressed circRNAs were enriched in regulation of the cellular metabolic process protein binding. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the genes producing differentially expressed circRNAs were involved in the tumor necrosis factor signaling pathway, T cell receptor signaling pathway and nuclear factor-κB signaling pathway. Finally, we found eight circRNAs (including circ_0002220 and circ_0000821) that are related to NE. Therefore, our study provides new insights into the mechanisms underlying C. perfringens type C infection in piglets.
Collapse
Affiliation(s)
- Zunqiang Yan
- College of Animal Science and TechnologyGansu Agricultural UniversityLanzhouChina
| | - Tiantuan Jiang
- Gansu Research Center for Swine Production Engineering and TechnologyLanzhouChina
| | - Pengfei Wang
- College of Animal Science and TechnologyGansu Agricultural UniversityLanzhouChina
| | - Xiaoyu Huang
- College of Animal Science and TechnologyGansu Agricultural UniversityLanzhouChina
| | - Qiaoli Yang
- College of Animal Science and TechnologyGansu Agricultural UniversityLanzhouChina
| | - Wenyang Sun
- College of Animal Science and TechnologyGansu Agricultural UniversityLanzhouChina
| | - Shuangbao Gun
- College of Animal Science and TechnologyGansu Agricultural UniversityLanzhouChina
- Gansu Research Center for Swine Production Engineering and TechnologyLanzhouChina
| |
Collapse
|
39
|
Liu T, Xu Z, Ou D, Liu J, Zhang J. The miR-15a/16 gene cluster in human cancer: A systematic review. J Cell Physiol 2018; 234:5496-5506. [PMID: 30246332 DOI: 10.1002/jcp.27342] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/10/2018] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are an important class of endogenous small noncoding single-stranded RNAs that suppress the expression of their target genes through messenger RNA (mRNA) degradation to inhibit transcription and translation. MiRNAs play a crucial regulatory role in many biological processes including proliferation, metabolism, and cellular malignancy. miR-15a/16 is an important tumor suppressor gene cluster with a variety of factors that regulate its transcriptional activity. It has been discovered that a relative reduction of miR-15a/16 expression in various cancers is closely related to the occurrence and progression of tumors. miR-15a/16 takes part in a wide array of biological processes including tumor cell proliferation, apoptosis, invasion, and chemoresistance by binding to the 3'-untranslated region of its target gene's mRNA. In this review, we will examine the complex regulatory network of miR-15a/16 gene expression and its biological functions in human cancers to further elucidate the molecular mechanisms of its antitumor effects.
Collapse
Affiliation(s)
- Ting Liu
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Zhenru Xu
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Daming Ou
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jing Liu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Ji Zhang
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China.,Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
40
|
Zhang D, Lee H, Wang X, Rai A, Groot M, Jin Y. Exosome-Mediated Small RNA Delivery: A Novel Therapeutic Approach for Inflammatory Lung Responses. Mol Ther 2018; 26:2119-2130. [PMID: 30005869 PMCID: PMC6127502 DOI: 10.1016/j.ymthe.2018.06.007] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 06/04/2018] [Accepted: 06/07/2018] [Indexed: 02/08/2023] Open
Abstract
Exosomes (EXOs) are a type of extracellular nanovesicles released from living cells. Accumulating evidence suggests that EXOs are involved in the pathogenesis of human diseases, including lung conditions. In recent years, the potential of EXO-mediated drug delivery has gained increasing interest. In this report, we investigated whether inhaled EXOs serve as an efficient and practical delivery vehicle to activate or inhibit alveolar macrophages (AMs), subsequently modulating pulmonary immune responses. We first identified the recipient cells of the inhaled EXOs, which were labeled with PKH26. We found that only lung macrophages efficiently take up intratracheally instilled EXOs in vivo. Using modified calcium chloride-mediated transformation, we manipulated small RNA molecules in serum-derived EXOs, including siRNAs, microRNA (miRNA) mimics, and miRNA inhibitors. Via intratracheal instillation, we successfully delivered siRNA and miRNA mimics or inhibitors into lung macrophages using the serum-derived EXOs as vehicles. Furthermore, EXO siRNA or miRNA molecules are functional in modulating LPS-induced lung inflammation in vivo. Beneficially, serum-derived EXOs themselves do not trigger lung immune responses, adding more favorable features to serve as drug delivery agents. Collectively, we developed a novel protocol using serum-derived EXOs to deliver designated small RNA molecules into lung macrophages in vivo, potentially shedding light on future gene therapy of human lung diseases.
Collapse
Affiliation(s)
- Duo Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA 02118, USA
| | - Heedoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA 02118, USA
| | - Xiaoyun Wang
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Ashish Rai
- North Shore Medical Center, Salem Hospital, Boston, MA 01970, USA
| | - Michael Groot
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA 02118, USA
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA 02118, USA.
| |
Collapse
|
41
|
Jia X, Hu X, Han S, Miao X, Liu H, Li X, Lin Z, Wang Z, Gong W. Increased M1 macrophages in young miR-15a/16−/−
mice with tumour grafts or dextran sulphate sodium-induced colitis. Scand J Immunol 2018; 88:e12703. [DOI: 10.1111/sji.12703] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Xiaoqin Jia
- Department of Pathology; Institute of Translational Medicine; Medical College; Yangzhou University; Yangzhou China
| | - Xiangyu Hu
- Department of Pathology; Institute of Translational Medicine; Medical College; Yangzhou University; Yangzhou China
| | - Sen Han
- Department of Pathology; Institute of Translational Medicine; Medical College; Yangzhou University; Yangzhou China
| | - Xin Miao
- Department of Pathology; Institute of Translational Medicine; Medical College; Yangzhou University; Yangzhou China
| | - Hao Liu
- Department of General Surgery; Subei People's Hospital of Jiangsu Province; Yangzhou University; Yangzhou China
| | - Xiaomin Li
- Department of Pathology; Institute of Translational Medicine; Medical College; Yangzhou University; Yangzhou China
| | - Zhijie Lin
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research; Yangzhou University; Yangzhou China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases; Yangzhou University; Yangzhou China
- Jiangsu Key Laboratory of Zoonosis; Yangzhou University; Yangzhou China
| | - Zhengbing Wang
- Department of General Surgery; Subei People's Hospital of Jiangsu Province; Yangzhou University; Yangzhou China
| | - Weijuan Gong
- Department of Pathology; Institute of Translational Medicine; Medical College; Yangzhou University; Yangzhou China
- Department of General Surgery; Subei People's Hospital of Jiangsu Province; Yangzhou University; Yangzhou China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research; Yangzhou University; Yangzhou China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases; Yangzhou University; Yangzhou China
- Jiangsu Key Laboratory of Zoonosis; Yangzhou University; Yangzhou China
| |
Collapse
|
42
|
miR15a regulates NLRP3 inflammasome proteins in the retinal vasculature. Exp Eye Res 2018; 176:98-102. [PMID: 29981343 DOI: 10.1016/j.exer.2018.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/22/2018] [Accepted: 07/03/2018] [Indexed: 12/13/2022]
Abstract
We have previously published that miR15a can reduce inflammatory cytokines, which could be key to diabetic retinal pathology. In this work, we wanted to investigate whether miR15a altered NLR pyrin domain 3 (NLRP3) proteins. Whole retinal lysates from both miR15a overexpressing mice and endothelial cell specific miR15a/16 knockout mice were used to investigate protein levels of forkhead box protein O1 (Foxo1), NLRP3, cleaved caspase 1 and interleukin-1 beta (IL-1β). Primary human retinal endothelial cells (REC) were cultured in normal and high glucose followed by transfection with a miR15a mimic for protein analyses. miR15a expression was verified by quantitative PCR, and a luciferase binding assay was used to examine whether miR15a directly bound Foxo1. In mouse retinal lysates, loss of miR15a increased Foxo1, IL-1β, NLRP3, and cleaved caspase 1 levels. REC grown in high glucose transfected with the miR15a mimic had decreased levels of Foxo1 and NLRP3. miR15a directly binds to Foxo1. miR15a regulates NLRP3 actions in the retinal vasculature. Work in mice showed that loss of miR15a increased NLRP3 pathway signaling and Foxo1. miR15a mimics decreased levels of Foxo1 and NLRP3. Taken together, miR15a reduced inflammasome proteins and Foxo1 levels in the retinal vasculature.
Collapse
|
43
|
Ju Z, Huang J, Jiang Q, Wang C, Wang X, Zhao S. Identification of bta-miR-15a∼16a cluster expression, localization and regulated target in Holsteins. Mol Cell Probes 2018; 40:8-12. [PMID: 29859243 DOI: 10.1016/j.mcp.2018.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 01/07/2023]
Abstract
Bovine mastitis is an inflammation response of the mammary gland tissues caused mainly by pathogenic bacteria in cows. Previous studies showed that bta-miR-15a and bta-miR-16a modulate immunity and inflammation responses. In this study, we investigated the expression pattern and tissue localization of bta-miR-15a and bta-miR-16a. The expression levels of bta-miR-15a and bta-miR-16a were significantly upregulated in mammary tissues and blood neutrophils of mastitis-infected cows, compared with those of healthy cows (P < 0.05). Through in situ hybridization, we examined the tissue localization of bta-miR-15a and bta-miR-16a and found that they were expressed in the ductal and acinar cells of mammary gland tissues, where they had a stronger expression signal in the mammary tissues of cows with mastitis than that in healthy cows' tissues. Moreover, we identified CD163 as the target gene of bta-miR-15a and bta-miR-16a. Luciferase assay indicated that bta-miR-15a, bta-miR-16a, and bta-miR-15a∼16a cluster led to the significant reduction in the luciferase activity of CD163 3'UTR vector (P < 0.05). Meanwhile, the luciferase activity had a significantly low value compared with that of single bta-miR-15a or bta-miR-16a plasmid (P < 0.05) in the presence of bta-miR-15a∼16a cluster. The bta-miR-15a∼16a cluster may function more effectively in inhibiting luciferase reporter gene activity of target gene CD163 than single miRNA. Our study provides an insight into the relationship between bovine mastitis and gene expression of bta-miR-15a/16a, which suggested that bta-miR-15a∼16a cluster may play a role against mastitis by binding to target CD163 gene in Holstein dairy cattle.
Collapse
Affiliation(s)
- Zhihua Ju
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education in China, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, No.159 North of Industry Road, Jinan, 250131, Shandong, China
| | - Jinming Huang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, No.159 North of Industry Road, Jinan, 250131, Shandong, China
| | - Qiang Jiang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, No.159 North of Industry Road, Jinan, 250131, Shandong, China
| | - Changfa Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, No.159 North of Industry Road, Jinan, 250131, Shandong, China
| | - Xiuge Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, No.159 North of Industry Road, Jinan, 250131, Shandong, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education in China, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
44
|
miRNAs reshape immunity and inflammatory responses in bacterial infection. Signal Transduct Target Ther 2018; 3:14. [PMID: 29844933 PMCID: PMC5968033 DOI: 10.1038/s41392-018-0006-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/20/2017] [Accepted: 12/10/2017] [Indexed: 12/15/2022] Open
Abstract
Pathogenic bacteria cause various infections worldwide, especially in immunocompromised and other susceptible individuals, and are also associated with high infant mortality rates in developing countries. MicroRNAs (miRNAs), small non-coding RNAs with evolutionarily conserved sequences, are expressed in various tissues and cells that play key part in various physiological and pathologic processes. Increasing evidence implies roles for miRNAs in bacterial infectious diseases by modulating inflammatory responses, cell penetration, tissue remodeling, and innate and adaptive immunity. This review highlights some recent intriguing findings, ranging from the correlation between aberrant expression of miRNAs with bacterial infection progression to their profound impact on host immune responses. Harnessing of dysregulated miRNAs in bacterial infection may be an approach to improving the diagnosis, prevention and therapy of infectious diseases. Changes in production of tiny cellular RNAs in response to bacterial infection could guide the development of better diagnostics and therapies. MicroRNAs regulate other genes by binding to messenger RNA strands and controlling their translation into proteins. Xikun Zhou, Min Wu and colleagues of the University of North Dakota have now reviewed current knowledge about how microRNA levels shift during infection with various bacterial pathogens. These microRNAs can modulate the immune response as well as pathways that influence metabolic activity and cell survival. Increasing studies have indicated that shifts in microRNA levels in response to different infections could provide a potential bacterial ‘fingerprint’ for achieving accurate diagnosis. With deeper insight into how different microRNAs influence infection, it might one day day become possible to target these molecules with ‘antisense’ or ‘agonist’ drugs that modulate their activity.
Collapse
|
45
|
Mencía Castaño I, Curtin CM, Duffy GP, O'Brien FJ. Harnessing an Inhibitory Role of miR-16 in Osteogenesis by Human Mesenchymal Stem Cells for Advanced Scaffold-Based Bone Tissue Engineering. Tissue Eng Part A 2018; 25:24-33. [PMID: 29490603 DOI: 10.1089/ten.tea.2017.0460] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNA (miRNA) therapeutics is increasingly being developed to either target bone-related diseases such as osteoporosis and osteoarthritis or as the basis for novel bone tissue engineering strategies. A number of miRNAs have been reported as potential osteo-therapeutics but no consensus has yet been established on the optimal target. miR-16 has been studied extensively in nonosteogenic functions and used as functionality reporter target in the development of nonviral miRNA delivery platforms. This study hypothesized that miR-16 may also play an inhibitory role in osteogenesis due to its ability to directly target Smad5 and AcvR2a. This study thus aimed to assess the potential of miR-16 inhibition to increase osteogenesis in human mesenchymal stem cells (hMSCs) using a previously established miRNA delivery platform composed of nanohydroxyapatite (nHA) particles as nonviral vectors in combination with collagen-nHA scaffolds designed specifically for bone repair. Initial results showed that antagomiR-16 delivery efficiently increased the relative levels of both putative targets and Runx2, the key transcription factor for osteogenesis, while also increasing osteocalcin levels. Furthermore, significant increases in mineral calcium deposition by hMSCs were found in both monolayer and most importantly in scaffold-based osteodifferentiation studies, ultimately demonstrating that miR-16 inhibition further enhances the therapeutic potential of a scaffold with known potential for bone repair applications and thus holds significant therapeutic potential as a novel bone tissue engineering strategy. Furthermore, we suggest that harnessing the additional functions known to miR-16 by incorporating either its enhancers or inhibitors to tissue-specific tailored scaffolds provides exciting opportunities for a diverse range of therapeutic indications.
Collapse
Affiliation(s)
- Irene Mencía Castaño
- 1 Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,2 Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland.,3 Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Caroline M Curtin
- 1 Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,2 Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland.,3 Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Garry P Duffy
- 1 Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,2 Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland.,3 Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland.,4 Department of Anatomy, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Ireland
| | - Fergal J O'Brien
- 1 Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,2 Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland.,3 Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| |
Collapse
|
46
|
Abstract
MicroRNAs (miRNAs) are ∼22 nt RNAs that direct posttranscriptional repression of mRNA targets in diverse eukaryotic lineages. In humans and other mammals, these small RNAs help sculpt the expression of most mRNAs. This article reviews advances in our understanding of the defining features of metazoan miRNAs and their biogenesis, genomics, and evolution. It then reviews how metazoan miRNAs are regulated, how they recognize and cause repression of their targets, and the biological functions of this repression, with a compilation of knockout phenotypes that shows that important biological functions have been identified for most of the broadly conserved miRNAs of mammals.
Collapse
Affiliation(s)
- David P Bartel
- Howard Hughes Medical Institute and Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
47
|
Lu Z, Liu J, Liu X, Huang E, Yang J, Qian J, Zhang D, Liu R, Chu Y. MicroRNA 15a/16-1 suppresses aryl hydrocarbon receptor-dependent interleukin-22 secretion in CD4 + T cells and contributes to immune-mediated organ injury. Hepatology 2018; 67:1027-1040. [PMID: 29023933 DOI: 10.1002/hep.29573] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/08/2017] [Accepted: 09/27/2017] [Indexed: 12/29/2022]
Abstract
Interleukin-22 (IL-22), as a link between leukocytic and nonleukocytic cells, has gained increasing attention for its pronounced tissue-protective properties. MicroRNAs, emerging as crucial immune modulators, have been reported to be involved in the production and action of various cytokines. However, the precise control of IL-22 by microRNAs and its subsequent actions remained to be elucidated. In this study, we found a negative correlation between the expression of microRNA 15a/16-1 (miR-15a/16-1) and IL-22 in the model of concanavalin A-induced, immune-mediated liver injury. Knockout of miR-15a/16-1 ameliorated liver injury in an IL-22-dependent manner. Further results revealed that cluster of differentiation 4-positive (CD4+ ) T cells were the major source of IL-22 during liver injury and that the aryl hydrocarbon receptor was the direct target of miR-15a/16-1 in CD4+ T cells. In vivo and in vitro data showed that miR-15a/16-1 knockout CD4+ T cells produced more IL-22, while overexpression of miR-15a/16-1 down-regulated the IL-22 production by inhibiting the aryl hydrocarbon receptor. Moreover, transfer of miR-15a/16-1 knockout CD4+ T cells promoted tissue repair compared to wild-type CD4+ T cells by up-regulating IL-22. In addition, as a synergistic effect, IL-22 could down-regulate miR-15a/16-1 expression by activating phosphorylated signal transducer and activator of transcription 3-c-myc signaling, and the decrease of miR-15a/16-1 in damaged hepatocytes contributed to IL-22-mediated tissue repair by reducing cell apoptosis and promoting cell proliferation. As further proof, we demonstrated the role of miR-15a/16-1 in controlling IL-22 production and IL-22-mediated reconstruction of the intestinal epithelial barrier in a dextran sodium sulfate-induced colitis model. CONCLUSION Our results suggest that miR-15a/16-1 acts as a essential regulator of IL-22 and that the miR-15a/16-1-aryl hydrocarbon receptor-IL-22 regulatory axis plays a central role in tissue repair; modulation of miR-15a/16-1 might hold promise in developing new strategies to enhance IL-22-mediated tissue repair. (Hepatology 2018;67:1027-1040).
Collapse
Affiliation(s)
- Zhou Lu
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiajing Liu
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiaoming Liu
- Department of Dermatology and Venereology, Shenzhen Hospital, Peking University, Shenzhen, China
| | - Enyu Huang
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiao Yang
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, China
- Biotherapy Research Center, Fudan University, Shanghai, China
| | - Jiawen Qian
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, China
- Biotherapy Research Center, Fudan University, Shanghai, China
| | - Dan Zhang
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, China
- Biotherapy Research Center, Fudan University, Shanghai, China
| | - Ronghua Liu
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, China
- Biotherapy Research Center, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Wang K, Lai C, Gu H, Zhao L, Xia M, Yang P, Wang X. miR-194 Inhibits Innate Antiviral Immunity by Targeting FGF2 in Influenza H1N1 Virus Infection. Front Microbiol 2017; 8:2187. [PMID: 29163456 PMCID: PMC5674008 DOI: 10.3389/fmicb.2017.02187] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/25/2017] [Indexed: 01/07/2023] Open
Abstract
Fibroblast growth factor 2 (FGF2 or basic FGF) regulates a wide range of cell biological functions including proliferation, angiogenesis, migration, differentiation, and injury repair. However, the roles of FGF2 and the underlying mechanisms of action in influenza A virus (IAV)-induced lung injury remain largely unexplored. In this study, we report that microRNA-194-5p (miR-194) expression is significantly decreased in A549 alveolar epithelial cells (AECs) following infection with IAV/Beijing/501/2009 (BJ501). We found that miR-194 can directly target FGF2, a novel antiviral regulator, to suppress FGF2 expression at the mRNA and protein levels. Overexpression of miR-194 facilitated IAV replication by negatively regulating type I interferon (IFN) production, whereas reintroduction of FGF2 abrogated the miR-194-induced effects on IAV replication. Conversely, inhibition of miR-194 alleviated IAV-induced lung injury by promoting type I IFN antiviral activities in vivo. Importantly, FGF2 activated the retinoic acid-inducible gene I signaling pathway, whereas miR-194 suppressed the phosphorylation of tank binding kinase 1 and IFN regulatory factor 3. Our findings suggest that the miR-194-FGF2 axis plays a vital role in IAV-induced lung injury, and miR-194 antagonism might be a potential therapeutic target during IAV infection.
Collapse
Affiliation(s)
- Keyu Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Chengcai Lai
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hongjing Gu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lingna Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Min Xia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Penghui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,Beijing 302 Hospital, Beijing, China
| | - Xiliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
49
|
Self-Fordham JB, Naqvi AR, Uttamani JR, Kulkarni V, Nares S. MicroRNA: Dynamic Regulators of Macrophage Polarization and Plasticity. Front Immunol 2017; 8:1062. [PMID: 28912781 PMCID: PMC5583156 DOI: 10.3389/fimmu.2017.01062] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/15/2017] [Indexed: 12/11/2022] Open
Abstract
The ability of a healthy immune system to clear the plethora of antigens it encounters incessantly relies on the enormous plasticity displayed by the comprising cell types. Macrophages (MΦs) are crucial member of the mononuclear phagocyte system (MPS) that constantly patrol the peripheral tissues and are actively recruited to the sites of injury and infection. In tissues, infiltrating monocytes replenish MΦ. Under the guidance of the local micro-milieu, MΦ can be activated to acquire specialized functional phenotypes. Similar to T cells, functional polarization of macrophage phenotype viz., inflammatory (M1) and reparative (M2) is proposed. Equipped with diverse toll-like receptors (TLRs), these cells of the innate arm of immunity recognize and phagocytize antigens and secrete cytokines that activate the adaptive arm of the immune system and perform key roles in wound repair. Dysregulation of MΦ plasticity has been associated with various diseases and infection. MicroRNAs (miRNAs) have emerged as critical regulators of transcriptome output. Their importance in maintaining health, and their contribution toward disease, encompasses virtually all aspects of human biology. Our understanding of miRNA-mediated regulation of MΦ plasticity and polarization can be utilized to modulate functional phenotypes to counter their role in the pathogenesis of numerous disease, including cancer, autoimmunity, periodontitis, etc. Here, we provide an overview of current knowledge regarding the role of miRNA in shaping MΦ polarization and plasticity through targeting of various pathways and genes. Identification of miRNA biomarkers of diagnostic/prognostic value and their therapeutic potential by delivery of miRNA mimics or inhibitors to dynamically alter gene expression profiles in vivo is highlighted.
Collapse
Affiliation(s)
| | - Afsar Raza Naqvi
- Department of Periodontics, University of Illinois at Chicago, Chicago, IL, United States
| | - Juhi Raju Uttamani
- Department of Periodontics, University of Illinois at Chicago, Chicago, IL, United States
| | - Varun Kulkarni
- Department of Periodontics, University of Illinois at Chicago, Chicago, IL, United States
| | - Salvador Nares
- Department of Periodontics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
50
|
An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat Biotechnol 2017; 35:872-878. [PMID: 28829439 DOI: 10.1038/nbt.3947] [Citation(s) in RCA: 383] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/25/2017] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs with key roles in cellular regulation. As part of the fifth edition of the Functional Annotation of Mammalian Genome (FANTOM5) project, we created an integrated expression atlas of miRNAs and their promoters by deep-sequencing 492 short RNA (sRNA) libraries, with matching Cap Analysis Gene Expression (CAGE) data, from 396 human and 47 mouse RNA samples. Promoters were identified for 1,357 human and 804 mouse miRNAs and showed strong sequence conservation between species. We also found that primary and mature miRNA expression levels were correlated, allowing us to use the primary miRNA measurements as a proxy for mature miRNA levels in a total of 1,829 human and 1,029 mouse CAGE libraries. We thus provide a broad atlas of miRNA expression and promoters in primary mammalian cells, establishing a foundation for detailed analysis of miRNA expression patterns and transcriptional control regions.
Collapse
|