1
|
Festa LK, Jordan-Sciutto KL, Grinspan JB. Neuroinflammation: An Oligodendrocentric View. Glia 2025; 73:1113-1129. [PMID: 40059542 PMCID: PMC12014387 DOI: 10.1002/glia.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/16/2025]
Abstract
Chronic neuroinflammation, driven by central nervous system (CNS)-resident astrocytes and microglia, as well as infiltration of the peripheral immune system, is an important pathologic mechanism across a range of neurologic diseases. For decades, research focused almost exclusively on how neuroinflammation impacted neuronal function; however, there is accumulating evidence that injury to the oligodendrocyte lineage is an important component for both pathologic and clinical outcomes. While oligodendrocytes are able to undergo an endogenous repair process known as remyelination, this process becomes inefficient and usually fails in the presence of sustained inflammation. The present review focuses on our current knowledge regarding activation of the innate and adaptive immune systems in the chronic demyelinating disease, multiple sclerosis, and provides evidence that sustained neuroinflammation in other neurologic conditions, such as perinatal white matter injury, traumatic brain injury, and viral infections, converges on oligodendrocyte injury. Lastly, the therapeutic potential of targeting the impact of inflammation on the oligodendrocyte lineage in these diseases is discussed.
Collapse
Affiliation(s)
- Lindsay K Festa
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kelly L Jordan-Sciutto
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Judith B Grinspan
- Department of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Atuk Kahraman T, Yılmaz M, Aslan K, Canatan H, Kara A, Nalbantoglu OU, Gundogdu A, Eken A. Lycopene Supplemented Mediterranean Diet Ameliorates Experimental Autoimmune Encephalomyelitis (EAE) in Mice and Changes Intestinal Microbiome. J Neuroimmune Pharmacol 2025; 20:50. [PMID: 40323426 PMCID: PMC12052919 DOI: 10.1007/s11481-025-10212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/27/2025] [Indexed: 05/08/2025]
Abstract
This study aimed to determine the effects of the Mediterranean diet (MD) and lycopene on the development of EAE and on inflammatory markers. In the 43-day study, 72 female C57BL/6 mice were randomly divided into eight groups according to whether they were EAE or naive (control) mice, fed a Western diet or a MD, and whether they received lycopene. During the study, mice were fed ad libitum, and lycopene groups were given 10 mg/kg/day lycopene per mouse every other day for 28 days in oral gavage. The mice were scored for EAE, sacrificed and their spleen, lymph nodes, and spinal cords were removed. We observed slightly delayed EAE onset in the MD-Lyc group compared to the others, and the EAE clinical scores were also lower than in the other groups. T-cell counts in the spleen and lymph nodes of the MD-Lyc group were significantly lower than in other groups. The production of IFN-γ and IL-22 was higher than in the other groups. IL-17 A cytokine produced in the spleen was lower in the MD-Lyc group than in the other groups. In addition, the highest myelination score was seen in the MD-Lyc group. MD-Lyc group also had a unique microbiome profile compared with the remaining groups. In summary, MD and lycopene administration positively impacted EAE scores and myelination. However, more comprehensive studies at the in vitro and in vivo levels are needed to reveal the effect of this intervention on cell numbers in the CNS.
Collapse
Affiliation(s)
- Tutku Atuk Kahraman
- Department of Nutrition and Dietetics, Institute of Health Sciences, Erciyes University, Kayseri, 38039, Türkiye
- , Current Address: 6/b, 2404th Street, Yenişehir, Mersin, 33110, Türkiye
| | - Müge Yılmaz
- Department of Nutrition and Dietetics, Institute of Health Sciences, Erciyes University, Kayseri, 38039, Türkiye
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Erciyes University, Kayseri, 38030, Türkiye
| | - Kübra Aslan
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38030, Türkiye
- Genome and Stem Cell Center (GenKok), Erciyes University, Melikgazi, Kayseri, 38280, Türkiye
| | - Halit Canatan
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38030, Türkiye
- Genome and Stem Cell Center (GenKok), Erciyes University, Melikgazi, Kayseri, 38280, Türkiye
| | - Ayca Kara
- Genome and Stem Cell Center (GenKok), Erciyes University, Melikgazi, Kayseri, 38280, Türkiye
| | - Ozkan Ufuk Nalbantoglu
- Genome and Stem Cell Center (GenKok), Erciyes University, Melikgazi, Kayseri, 38280, Türkiye
- Department of Computer Engineering, Faculty of Engineering, Erciyes University, Kayseri, 38030, Türkiye
| | - Aycan Gundogdu
- Genome and Stem Cell Center (GenKok), Erciyes University, Melikgazi, Kayseri, 38280, Türkiye
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, 38030, Türkiye
| | - Ahmet Eken
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38030, Türkiye.
- Genome and Stem Cell Center (GenKok), Erciyes University, Melikgazi, Kayseri, 38280, Türkiye.
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
3
|
Golabi M, Kazemi D, Chadeganipour AS, Fouladseresht H, Sullman MJM, Ghezelbash B, Dastgerdi AY, Eskandari N. The Role of Cobalamin in Multiple Sclerosis: An Update. Inflammation 2025; 48:485-500. [PMID: 38902541 DOI: 10.1007/s10753-024-02075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
Multiple sclerosis (MS) is a neurodegenerative condition that results in axonal and permanent damage to the central nervous system, necessitating healing owing to autoimmune reactions and persistent neuroinflammation. Antioxidant and anti-inflammatory drugs are essential for the management of oxidative stress and neuroinflammation. Additionally, multivitamin supplementation, particularly vitamin B12 (cobalamin), may be beneficial for neuronal protection. Although there is no documented connection between vitamin B12 deficiency and MS, researchers have explored its potential as a metabolic cause. This review highlights the therapeutic benefits of cobalamin (Cbl) in patients with MS.
Collapse
Affiliation(s)
- Marjan Golabi
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Danial Kazemi
- Student Research Committee, Isfahan University of Medical Science, Isfahan, Iran
| | | | - Hamed Fouladseresht
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mark J M Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Behrooz Ghezelbash
- Laboratory Hematology and Blood Banking, School of Allied Medical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ava Yeganegi Dastgerdi
- Department of Cell and Molecular Biology, Falavarjan Branch, Islamic Azad University of Science, Isfahan, Iran
| | - Nahid Eskandari
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
4
|
Ramón-Vázquez A, Flood P, Cashman TL, Patil P, Ghosh S. T lymphocyte plasticity in chronic inflammatory diseases: The emerging role of the Ikaros family as a key Th17-Treg switch. Autoimmun Rev 2025; 24:103735. [PMID: 39719186 DOI: 10.1016/j.autrev.2024.103735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024]
Abstract
T helper (Th) 17 and regulatory T (Treg) cells are highly plastic CD4+ Th cell subsets, being able not only to actively adapt to their microenvironment, but also to interconvert, acquiring mixed identity markers. These phenotypic changes are underpinned by transcriptional control mechanisms, chromatin reorganization events and epigenetic modifications, that can be hereditable and stable over time. The Ikaros family of transcription factors have a predominant role in T cell subset specification through mechanisms of transcriptional program regulation that enable phenotypical diversification. They are crucial factors in maintaining Th17/Treg balance and therefore, homeostatic conditions in the tissues. However, they are also implicated in pathogenic processes, where their transcriptional repression contributes to the control of autoimmune processes. In this review, we discuss how T cell fate, specifically in humans, is regulated by the Ikaros family and its interplay with additional factors like the Notch signaling pathway, gut microbiota and myeloid-T cell interactions. Further, we highlight how the transcriptional activity of the Ikaros family impacts the course of T cell mediated chronic inflammatory diseases like rheumatoid and psoriatic arthritis, inflammatory bowel disease, systemic lupus erythematosus and multiple sclerosis. We conclude by discussing recently developed therapeutics designed to target Ikaros family members.
Collapse
Affiliation(s)
| | - P Flood
- APC Microbiome Ireland, University College Cork, Ireland
| | - T L Cashman
- APC Microbiome Ireland, University College Cork, Ireland
| | - P Patil
- APC Microbiome Ireland, University College Cork, Ireland
| | - S Ghosh
- APC Microbiome Ireland, University College Cork, Ireland; College of Medicine and Health, University College Cork, Ireland
| |
Collapse
|
5
|
Hygino J, Sales MC, Sacramento PM, Kasahara TM, da Silva JCC, Bilhão R, Andrade RM, Vasconcelos CCF, Bento CAM. Hyperresponsiveness of Corticoid-Resistant Th17/Tc-17 Cells to TLR-2 and TLR-4 Ligands is a Feature of Multiple Sclerosis Patients at Higher Risk of Therapy Failure. J Inflamm Res 2024; 17:8775-8797. [PMID: 39564547 PMCID: PMC11573880 DOI: 10.2147/jir.s476110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/25/2024] [Indexed: 11/21/2024] Open
Abstract
Purpose The presence of T cells expressing TLR-2 and TLR-4 has been associated with relapsing-remitting multiple sclerosis (RRMS) pathogenesis. Here, we evaluated whether the effectiveness of DMT in controlling clinical activity of the disease would be associated with modulation of proportion of TLRs+ T cells. Patients and Methods Whole peripheral blood mononuclear cells, purified CD4+ and CD8+ T cells from RRMS patients were cultured with different stimuli. The frequency of IL-17-secreting CD4+ and CD8+ T cells positive for TLR-2 and TLR-4 was determined by flow cytometry. The cytokine profile of these T cells following TLR-2 and TLR-4 stimulation was determined by Multiplex. Some of these T cell cultures were treated with hydrocortisone. The levels of LPS-binding protein (LBP) were dosed by ELISA. Clinical (occurrence of relapses) and radiological (number of active brain lesions) activity were evaluated during the 1-year follow-up. Results Despite DMT, high intensity of TLR-2 and TLR-4 expression on (CD4+ and CD8+) T-cells, as well as the frequency of IL-17-secreting (CD4+ and CD8+) T-cells, are predictive of future RRMS relapses. Moreover, higher cytokine production related to Th17/Tc-17 phenotypes in response to TLR-2 and TLR-4 agonists was observed in DMT-treated patients and displayed an elevated number of brain lesions. The hyperresponsiveness of MS-derived T-cells to TLR-2 and TLR-4 ligands, with high levels of IL-1β, IL-6, IL-17, IFN-γ and GM-CSF in response to both TLR agonists, positively correlated with plasma LBP levels. Interestingly, corticoid was less efficient in reducing Th17 and Tc-17 cytokine production induced by TLR-2 and TLR-4 ligands in DMT-treated patients who relapsed during follow-up. Conclusion Collectively, the data suggested that persistence of circulating Th17 and Tc17 cells expressing elevated levels of functional TLR-2 and TLR-4 could indicate high disease activity and lower therapeutic efficacy in RRMS patients.
Collapse
Affiliation(s)
- Joana Hygino
- Post-Graduate Program in Neurology, Federal University of the State of Rio de Janeiro, Rio de Janeiro City, Brazil
| | - Marisa C Sales
- Post-Graduate Program in Microbiology, University of the State of Rio de Janeiro, Rio de Janeiro City, Brazil
| | - Priscila M Sacramento
- Post-Graduate Program in Neurology, Federal University of the State of Rio de Janeiro, Rio de Janeiro City, Brazil
| | - Taissa M Kasahara
- Post-graduate Program in Molecular and Cellular Biology, Federal University of the State of Rio de Janeiro, Rio de Janeiro City, Brazil
| | - Júlio César Costa da Silva
- Post-graduate Program in Molecular and Cellular Biology, Federal University of the State of Rio de Janeiro, Rio de Janeiro City, Brazil
| | - Rafaela Bilhão
- Post-graduate Program in Molecular and Cellular Biology, Federal University of the State of Rio de Janeiro, Rio de Janeiro City, Brazil
| | - Regis M Andrade
- Department of General Medicine, Federal University of the State of Rio de Janeiro, Rio de Janeiro City, Brazil
| | | | - Cleonice A M Bento
- Post-Graduate Program in Neurology, Federal University of the State of Rio de Janeiro, Rio de Janeiro City, Brazil
- Post-graduate Program in Molecular and Cellular Biology, Federal University of the State of Rio de Janeiro, Rio de Janeiro City, Brazil
- Department of General Medicine, Federal University of the State of Rio de Janeiro, Rio de Janeiro City, Brazil
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro City, Brazil
| |
Collapse
|
6
|
Cordeiro B, Ahn JJ, Gawde S, Ucciferri C, Alvarez-Sanchez N, Revelo XS, Stickle N, Massey K, Brooks DG, Guthridge JM, Pardo G, Winer DA, Axtell RC, Dunn SE. Obesity intensifies sex-specific interferon signaling to selectively worsen central nervous system autoimmunity in females. Cell Metab 2024; 36:2298-2314.e11. [PMID: 39168127 PMCID: PMC11463735 DOI: 10.1016/j.cmet.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/29/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
Obesity has been implicated in the rise of autoimmunity in women. We report that obesity induces a serum protein signature that is associated with T helper 1 (Th1), interleukin (IL)-17, and multiple sclerosis (MS) signaling pathways selectively in human females. Females, but not male mice, subjected to diet-induced overweightness/obesity (DIO) exhibited upregulated Th1/IL-17 inflammation in the central nervous system during experimental autoimmune encephalomyelitis, a model of MS. This was associated with worsened disability and a heightened expansion of myelin-specific Th1 cells in the peripheral lymphoid organs. Moreover, at steady state, DIO increased serum levels of interferon (IFN)-α and potentiated STAT1 expression and IFN-γ production by naive CD4+ T cells uniquely in female mice. This T cell phenotype was driven by increased adiposity and was prevented by the removal of ovaries or knockdown of the type I IFN receptor in T cells. Our findings offer a mechanistic explanation of how obesity enhances autoimmunity.
Collapse
Affiliation(s)
- Brendan Cordeiro
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| | | | - Saurabh Gawde
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, Oklahoma University Health Science Center, Oklahoma City, OK 73104, USA
| | - Carmen Ucciferri
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nuria Alvarez-Sanchez
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| | - Xavier S Revelo
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Natalie Stickle
- Bioinformatics and High Performance Computing Core, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Kaylea Massey
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - David G Brooks
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Joel M Guthridge
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Gabriel Pardo
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Multiple Sclerosis Center of Excellence, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Daniel A Winer
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Buck Institute for Research on Aging, Novato, CA 94945, USA; Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
| | - Robert C Axtell
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, Oklahoma University Health Science Center, Oklahoma City, OK 73104, USA.
| | - Shannon E Dunn
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Women's College Research Institute, Women's College Hospital, Toronto, ON M5G 1N8, Canada; Sunnybrook Research Institute, Sunnybrook Hospital, Toronto, ON M4M 3M5, Canada.
| |
Collapse
|
7
|
Szymura SJ, Wang L, Zhang T, Cha SC, Song J, Dong Z, Anderson A, Oh E, Lee V, Wang Z, Parshottam S, Rao S, Olsem JB, Crumpton BN, Lee HC, Manasanch EE, Neelapu S, Kwak LW, Thomas SK. Personalized neoantigen vaccines as early intervention in untreated patients with lymphoplasmacytic lymphoma: a non-randomized phase 1 trial. Nat Commun 2024; 15:6874. [PMID: 39128904 PMCID: PMC11317512 DOI: 10.1038/s41467-024-50880-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 07/22/2024] [Indexed: 08/13/2024] Open
Abstract
Lymphoplasmacytic lymphoma (LPL) is an incurable low-grade lymphoma with no standard therapy. Nine asymptomatic patients treated with a first-in-human, neoantigen DNA vaccine experienced no dose limiting toxicities (primary endpoint, NCT01209871). All patients achieve stable disease or better, with one minor response, and median time to progression of 72+ months. Post-vaccine single-cell transcriptomics reveal dichotomous antitumor responses, with reduced tumor B-cells (tracked by unique B cell receptor) and their survival pathways, but no change in clonal plasma cells. Downregulation of human leukocyte antigen (HLA) class II molecules and paradoxical upregulation of insulin-like growth factor (IGF) by the latter suggest resistance mechanisms. Vaccine therapy activates and expands bone marrow T-cell clonotypes, and functional neoantigen-specific responses (secondary endpoint), but not co-inhibitory pathways or Treg, and reduces protumoral signaling by myeloid cells, suggesting favorable perturbation of the tumor immune microenvironment. Future strategies may require combinations of vaccines with agents targeting plasma cell subpopulations, or blockade of IGF-1 signaling or myeloid cell checkpoints.
Collapse
Affiliation(s)
- Szymon J Szymura
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Lin Wang
- Department of Computational and Quantitative Medicine, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Tiantian Zhang
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Soung-Chul Cha
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Joo Song
- Division of Hematopathology, Department of Pathology, City of Hope, Duarte, CA, USA
| | - Zhenyuan Dong
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Aaron Anderson
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Elizabeth Oh
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Vincent Lee
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Zhe Wang
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Sapna Parshottam
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Sheetal Rao
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jasper B Olsem
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Brandon N Crumpton
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Hans C Lee
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Elisabet E Manasanch
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Sattva Neelapu
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Larry W Kwak
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA.
| | - Sheeba K Thomas
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
8
|
Gębka-Kępińska B, Adamczyk B, Gębka D, Czuba Z, Szczygieł J, Adamczyk-Sowa M. Cytokine Profiling in Cerebrospinal Fluid of Patients with Newly Diagnosed Relapsing-Remitting Multiple Sclerosis (RRMS): Associations between Inflammatory Biomarkers and Disease Activity. Int J Mol Sci 2024; 25:7399. [PMID: 39000506 PMCID: PMC11242697 DOI: 10.3390/ijms25137399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Cytokines regulate immune responses and are crucial to MS pathogenesis. This study evaluated pro-inflammatory and anti-inflammatory cytokine concentrations in the CSF of de novo diagnosed RRMS patients compared to healthy controls. We assessed cytokine levels in the CSF of 118 de novo diagnosed RRMS patients and 112 controls, analyzing relationships with time from symptom onset to diagnosis, MRI lesions, and serum vitamin D levels. Elevated levels of IL-2, IL-4, IL-6, IL-13, FGF-basic, and GM-CSF, and lower levels of IL-1β, IL-1RA, IL-5, IL-7, IL-9, IL-10, IL-12p70, IL-15, G-CSF, PDGF-bb, and VEGF were observed in RRMS patients compared to controls. IL-2, IL-4, IL-12p70, PDGF, G-CSF, GM-CSF, and FGF-basic levels increased over time, while IL-10 decreased. IL-1β, IL-1RA, IL-6, TNF-α, and PDGF-bb levels negatively correlated with serum vitamin D. TNF-α levels positively correlated with post-contrast-enhancing brain lesions. IL-15 levels negatively correlated with T2 and Gd(+) lesions in C-spine MRI, while TNF-α, PDGF-bb, and FGF-basic correlated positively with T2 lesions in C-spine MRI. IL-6 levels positively correlated with post-contrast-enhancing lesions in Th-spine MRI. Distinct cytokine profiles in the CSF of de novo diagnosed MS patients provide insights into MS pathogenesis and guide immunomodulatory therapy strategies.
Collapse
Affiliation(s)
- Barbara Gębka-Kępińska
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| | - Bożena Adamczyk
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| | - Dorota Gębka
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| | - Zenon Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| | - Jarosław Szczygieł
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| | - Monika Adamczyk-Sowa
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| |
Collapse
|
9
|
Aliyu M, Zohora FT, Ceylan A, Hossain F, Yazdani R, Azizi G. Immunopathogenesis of multiple sclerosis: molecular and cellular mechanisms and new immunotherapeutic approaches. Immunopharmacol Immunotoxicol 2024; 46:355-377. [PMID: 38634438 DOI: 10.1080/08923973.2024.2330642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/09/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a central nervous system (CNS) demyelinating autoimmune disease with increasing global prevalence. It predominantly affects females, especially those of European descent. The interplay between environmental factors and genetic predisposition plays a crucial role in MS etiopathogenesis. METHODS We searched recent relevant literature on reputable databases, which include, PubMed, Embase, Web of Science, Scopus, and ScienceDirect using the following keywords: multiple sclerosis, pathogenesis, autoimmunity, demyelination, therapy, and immunotherapy. RESULTS Various animal models have been employed to investigate the MS etiopathogenesis and therapeutics. Autoreactive T cells within the CNS recruit myeloid cells through chemokine expression, leading to the secretion of inflammatory cytokines driving the MS pathogenesis, resulting in demyelination, gliosis, and axonal loss. Key players include T cell lymphocytes (CD4+ and CD8+), B cells, and neutrophils. Signaling dysregulation in inflammatory pathways and the immunogenetic basis of MS are essential considerations for any successful therapy to MS. Data indicates that B cells and neutrophils also have significant roles in MS, despite the common belief that T cells are essential. High neutrophil-to-lymphocyte ratios correlate with MS severity, indicating their contribution to disease progression. Dysregulated signaling pathways further exacerbate MS progression. CONCLUSION MS remains incurable, but disease-modifying therapies, monoclonal antibodies, and immunomodulatory drugs offer hope for patients. Research on the immunogenetics and immunoregulatory functions of gut microbiota is continuing to provide light on possible treatment avenues. Understanding the complex interplay between genetic predisposition, environmental factors, and immune dysregulation is critical for developing effective treatments for MS.
Collapse
Affiliation(s)
- Mansur Aliyu
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, International Campus, TUMS-IC, Tehran, Iran
- Department of Medical Microbiology, Faculty of Clinical Science, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Fatema Tuz Zohora
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Ayca Ceylan
- Medical Faculty, Department of Pediatrics, Division of Immunology and Allergy, Selcuk University, Konya, Turkey
| | - Fariha Hossain
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Reza Yazdani
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gholamreza Azizi
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
10
|
Amoriello R, Memo C, Ballerini L, Ballerini C. The brain cytokine orchestra in multiple sclerosis: from neuroinflammation to synaptopathology. Mol Brain 2024; 17:4. [PMID: 38263055 PMCID: PMC10807071 DOI: 10.1186/s13041-024-01077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/18/2024] [Indexed: 01/25/2024] Open
Abstract
The central nervous system (CNS) is finely protected by the blood-brain barrier (BBB). Immune soluble factors such as cytokines (CKs) are normally produced in the CNS, contributing to physiological immunosurveillance and homeostatic synaptic scaling. CKs are peptide, pleiotropic molecules involved in a broad range of cellular functions, with a pivotal role in resolving the inflammation and promoting tissue healing. However, pro-inflammatory CKs can exert a detrimental effect in pathological conditions, spreading the damage. In the inflamed CNS, CKs recruit immune cells, stimulate the local production of other inflammatory mediators, and promote synaptic dysfunction. Our understanding of neuroinflammation in humans owes much to the study of multiple sclerosis (MS), the most common autoimmune and demyelinating disease, in which autoreactive T cells migrate from the periphery to the CNS after the encounter with a still unknown antigen. CNS-infiltrating T cells produce pro-inflammatory CKs that aggravate local demyelination and neurodegeneration. This review aims to recapitulate the state of the art about CKs role in the healthy and inflamed CNS, with focus on recent advances bridging the study of adaptive immune system and neurophysiology.
Collapse
Affiliation(s)
- Roberta Amoriello
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy.
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50139, Florence, Italy.
| | - Christian Memo
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50139, Florence, Italy
| | - Laura Ballerini
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50139, Florence, Italy
| | - Clara Ballerini
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy.
| |
Collapse
|
11
|
Eftekhari R, Ewanchuk BW, Rawji KS, Yates RM, Noorbakhsh F, Kuipers HF, Hollenberg MD. Blockade of Proteinase-Activated Receptor 2 (PAR2) Attenuates Neuroinflammation in Experimental Autoimmune Encephalomyelitis. J Pharmacol Exp Ther 2024; 388:12-22. [PMID: 37699708 DOI: 10.1124/jpet.123.001685] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/17/2023] [Accepted: 08/08/2023] [Indexed: 09/14/2023] Open
Abstract
Proteinase-activated receptor-2 (PAR2), which modulates inflammatory responses, is elevated in the central nervous system in multiple sclerosis (MS) and in its murine model, experimental autoimmune encephalomyelitis (EAE). In PAR2-null mice, disease severity of EAE is markedly diminished. We therefore tested whether inhibiting PAR2 activation in vivo might be a viable strategy for the treatment of MS. Using the EAE model, we show that a PAR2 antagonist, the pepducin palmitoyl-RSSAMDENSEKKRKSAIK-amide (P2pal-18S), attenuates EAE progression by affecting immune cell function. P2pal-18S treatment markedly diminishes disease severity and reduces demyelination, as well as the infiltration of T-cells and macrophages into the central nervous system. Moreover, P2pal-18S decreases granulocyte-macrophage colony-stimulating factor (GM-CSF) production and T-cell activation in cultured splenocytes and prevents macrophage polarization in vitro. We conclude that PAR2 plays a key role in regulating neuroinflammation in EAE and that PAR2 antagonists represent promising therapeutic agents for treating MS and other neuroinflammatory diseases. SIGNIFICANCE STATEMENT: Proteinase-activated receptor-2 modulates inflammatory responses and is increased in multiple sclerosis lesions. We show that the proteinase-activated receptor-2 antagonist palmitoyl-RSSAMDENSEKKRKSAIK-amide reduces disease in the murine experimental autoimmune encephalomyelitis model of multiple sclerosis by inhibiting T-cell and macrophage activation and infiltration into the central nervous system, making it a potential treatment for multiple sclerosis.
Collapse
Affiliation(s)
- Rahil Eftekhari
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Benjamin W Ewanchuk
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Khalil S Rawji
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Robin M Yates
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Farshid Noorbakhsh
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Hedwich F Kuipers
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| |
Collapse
|
12
|
Nguyen Ky M, Duran A, Hasantari I, Bru A, Deloire M, Brochet B, Ruet A, Schmitt N. Natalizumab Treatment Induces Proinflammatory CD4 T Cells Preferentially in the Integrin β7+ Compartment. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200166. [PMID: 37739811 PMCID: PMC10519437 DOI: 10.1212/nxi.0000000000200166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/19/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND AND OBJECTIVES Natalizumab, a monoclonal humanized antibody targeting integrin α4, inhibits the transmigration of lymphocytes into the CNS by preventing the interaction of integrin α4β1 with V-CAM expressed on brain vascular endothelial cells. Although natalizumab treatment reduces the clinical relapse rate in patients with relapsing-remitting MS, its discontinuation after reactivation of the JC virus is associated with a rebound of the disease in 20% of patients. The mechanisms of this rebound are not elucidated, but natalizumab increases the frequencies of circulating CD4 T cells expressing proinflammatory cytokines as well as the proportion of circulating Th17/Th1 cells (Th1-like Th17 cells). Gut-derived memory CD4 T cells are a population of growing interest in the pathogenesis of MS, but whether and how their properties are affected by natalizumab is not known. Here, we studied the phenotype and cytokine expression profile of circulating gut-derived memory CD4 T cells in patients with relapsing-remitting MS under natalizumab. METHODS We identified gut-derived memory CD4 T cells by their expression of integrin β7 and compared their properties and those of integrin β7- memory CD4 T cells across healthy donors and patients with relapsing-remitting MS treated or not with natalizumab. We also compared the capacity of integrin β7- and integrin β7+ CD4 T-cell subsets to transmigrate in vitro across a model of blood-brain barrier. RESULTS The proportions of proinflammatory Th17/Th1 cells as well as of IL-17A+IFNγ+ and IL-17A+GM-CSF+ cells were higher in memory CD4 T cells expressing integrin β7 in patients receiving natalizumab compared with healthy donors and patients with relapsing-remitting MS not receiving natalizumab. By contrast, integrin β7 negative memory CD4 T cells only presented a modest increased in their proportion of Th17/Th1 cells under natalizumab. We further observed that integrin β7+ Th17/Th1 cells migrated as efficiently as integrin β7- Th17/Th1 across a monolayer of brain microvascular endothelial cells. DISCUSSION Our study shows that circulating integrin β7+ memory CD4 T cells of patients with relapsing-remitting MS under natalizumab are enriched in proinflammatory cells supporting the hypothesis that integrin β7+ memory CD4 T cells could play a pathogenic role in the disease rebound observed at natalizumab discontinuation.
Collapse
Affiliation(s)
- Mélanie Nguyen Ky
- From the Immunoconcept (M.N.K., A.D., I.H., A.B., N.S.), CNRS UMR 5164, University of Bordeaux; Service de Neurologie (M.D., A.R.), CRC SEP, Centre Hospitalier Universitaire (CHU) de Bordeaux; and INSERM U 1215 (B.B., A.R.), Neurocentre Magendie, University of Bordeaux, France
| | - Adrien Duran
- From the Immunoconcept (M.N.K., A.D., I.H., A.B., N.S.), CNRS UMR 5164, University of Bordeaux; Service de Neurologie (M.D., A.R.), CRC SEP, Centre Hospitalier Universitaire (CHU) de Bordeaux; and INSERM U 1215 (B.B., A.R.), Neurocentre Magendie, University of Bordeaux, France
| | - Iris Hasantari
- From the Immunoconcept (M.N.K., A.D., I.H., A.B., N.S.), CNRS UMR 5164, University of Bordeaux; Service de Neurologie (M.D., A.R.), CRC SEP, Centre Hospitalier Universitaire (CHU) de Bordeaux; and INSERM U 1215 (B.B., A.R.), Neurocentre Magendie, University of Bordeaux, France
| | - Agnès Bru
- From the Immunoconcept (M.N.K., A.D., I.H., A.B., N.S.), CNRS UMR 5164, University of Bordeaux; Service de Neurologie (M.D., A.R.), CRC SEP, Centre Hospitalier Universitaire (CHU) de Bordeaux; and INSERM U 1215 (B.B., A.R.), Neurocentre Magendie, University of Bordeaux, France
| | - Mathilde Deloire
- From the Immunoconcept (M.N.K., A.D., I.H., A.B., N.S.), CNRS UMR 5164, University of Bordeaux; Service de Neurologie (M.D., A.R.), CRC SEP, Centre Hospitalier Universitaire (CHU) de Bordeaux; and INSERM U 1215 (B.B., A.R.), Neurocentre Magendie, University of Bordeaux, France
| | - Bruno Brochet
- From the Immunoconcept (M.N.K., A.D., I.H., A.B., N.S.), CNRS UMR 5164, University of Bordeaux; Service de Neurologie (M.D., A.R.), CRC SEP, Centre Hospitalier Universitaire (CHU) de Bordeaux; and INSERM U 1215 (B.B., A.R.), Neurocentre Magendie, University of Bordeaux, France
| | - Aurélie Ruet
- From the Immunoconcept (M.N.K., A.D., I.H., A.B., N.S.), CNRS UMR 5164, University of Bordeaux; Service de Neurologie (M.D., A.R.), CRC SEP, Centre Hospitalier Universitaire (CHU) de Bordeaux; and INSERM U 1215 (B.B., A.R.), Neurocentre Magendie, University of Bordeaux, France
| | - Nathalie Schmitt
- From the Immunoconcept (M.N.K., A.D., I.H., A.B., N.S.), CNRS UMR 5164, University of Bordeaux; Service de Neurologie (M.D., A.R.), CRC SEP, Centre Hospitalier Universitaire (CHU) de Bordeaux; and INSERM U 1215 (B.B., A.R.), Neurocentre Magendie, University of Bordeaux, France.
| |
Collapse
|
13
|
Martin SJ, Brand-Arzamendi K, Saab G, Muccilli A, Oh J, Schneider R. GM-CSF is a marker of compartmentalised intrathecal inflammation in multiple sclerosis. Mult Scler 2023; 29:1373-1382. [PMID: 37700482 DOI: 10.1177/13524585231195861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
BACKGROUND Granulocyte-macrophage colony stimulating factor (GM-CSF) is a pro-inflammatory cytokine secreted by various immune cells. Several studies have demonstrated an expansion of GM-CSF producing T cells in the blood or CSF of people with MS (pwMS). However, whether this equates to greater concentrations of circulating cytokine remains unknown as quantification is difficult with traditional assays. OBJECTIVE To determine whether GM-CSF can be quantified and whether GM-CSF levels are elevated in pwMS. METHODS We employed Single Molecule Array (Simoa) to measure GM-CSF in both CSF and blood. We then investigated relationships between GM-CSF levels and measures of blood-CSF-barrier integrity. RESULTS GM-CSF was quantifiable in all samples and was significantly higher in the CSF of pwMS compared with controls. No association was found between CSF GM-CSF levels and Q-Albumin - a measure of blood-CSF-barrier integrity. CSF GM-CSF correlated with measures of intrathecal inflammation, and these relationships were greater in primary progressive MS compared with relapsing-remitting MS. CONCLUSION GM-CSF levels are elevated specifically in the CSF of pwMS. Our results suggest that elevated cytokine levels may reflect (at least partial) intrathecal production, as opposed to simple diffusion across a dysfunctional blood-CSF-barrier.
Collapse
Affiliation(s)
- S-J Martin
- St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON, Canada
| | - K Brand-Arzamendi
- St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON, Canada
| | - G Saab
- St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - A Muccilli
- St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - J Oh
- St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - R Schneider
- St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Farzam-Kia N, Moratalla AC, Lemaître F, Levert A, Da Cal S, Margarido C, Carpentier Solorio Y, Arbour N. GM-CSF distinctly impacts human monocytes and macrophages via ERK1/2-dependent pathways. Immunol Lett 2023; 261:47-55. [PMID: 37516253 DOI: 10.1016/j.imlet.2023.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Human monocytes and macrophages are two major myeloid cell subsets with similar and distinct functions in tissue homeostasis and immune responses. GM-CSF plays a fundamental role in myeloid cell differentiation and activation. Hence, we compared the effects of GM-CSF on the expression of several immune mediators by human monocytes and monocyte-derived macrophages obtained from healthy donors. We report that GM-CSF similarly elevated the expression of CD80 and ICAM-1 and reduced HLA-DR levels on both myeloid cell subsets. However, GM-CSF increased the percentage of macrophages expressing surface IL-15 but reduced the proportion of monocytes carrying surface IL-15. Moreover, GM-CSF significantly increased the secretion of IL-4, IL-6, TNF, CXCL10, and IL-27 by macrophages while reducing the secretion of IL-4 and CXCL10 by monocytes. We show that GM-CSF triggered ERK1/2, STAT3, STAT5, and SAPK/JNK pathways in both myeloid subsets. Using a pharmacological inhibitor (U0126) preventing ERK phosphorylation, we demonstrated that this pathway was involved in both the GM-CSF-induced increase and decrease of the percentage of IL-15+ macrophages and monocytes, respectively. Moreover, ERK1/2 contributed to GM-CSF-triggered secretion of IL-4, IL-6, TNF, IL-27 and CXCL10 by macrophages. However, the ERK1/2 pathway exhibited different roles in monocytes and macrophages for the GM-CSF-mediated impact on surface makers (CD80, HLA-DR, and ICAM-1). Our data demonstrate that GM-CSF stimulation induces differential responses by human monocytes and monocyte-derived macrophages and that some but not all of these effects are ERK-dependent.
Collapse
Affiliation(s)
- Negar Farzam-Kia
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Ana Carmena Moratalla
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Florent Lemaître
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Annie Levert
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Sandra Da Cal
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Clara Margarido
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Yves Carpentier Solorio
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Nathalie Arbour
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.
| |
Collapse
|
15
|
Alsaad AMS, Ansari MA, Nadeem A, Attia SM, Bakheet SA, Alomar HA, Ahmad SF. Histamine H4 Receptor Agonist, 4-Methylhistamine, Aggravates Disease Progression and Promotes Pro-Inflammatory Signaling in B Cells in an Experimental Autoimmune Encephalomyelitis Mouse Model. Int J Mol Sci 2023; 24:12991. [PMID: 37629172 PMCID: PMC10455358 DOI: 10.3390/ijms241612991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
We sought to assess the impact of 4-Methylhistamine (4-MeH), a specific agonist targeting the Histamine H4 Receptor (H4R), on the progression of experimental autoimmune encephalomyelitis (EAE) and gain insight into the underlying mechanism. EAE is a chronic autoimmune, inflammatory, and neurodegenerative disease of the central nervous system (CNS) characterized by demyelination, axonal damage, and neurodegeneration. Over the past decade, pharmacological research into the H4R has gained significance in immune and inflammatory disorders. For this study, Swiss Jim Lambert EAE mice were treated with 4-MeH (30 mg/kg/day) via intraperitoneal administration from days 14 to 42, and the control group was treated with a vehicle. Subsequently, we evaluated the clinical scores. In addition, flow cytometry was employed to estimate the impact of 4-Methylhistamine (4-MeH) on NF-κB p65, GM-CSF, MCP-1, IL-6, and TNF-α within CD19+ and CXCR5+ spleen B cells. Additionally, we investigated the effect of 4-MeH on the mRNA expression levels of Nf-κB p65, Gmcsf, Mcp1, Il6, and Tnfα in the brain of mice using RT-PCR. Notably, the clinical scores of EAE mice treated with 4-MeH showed a significant increase compared with those treated with the vehicle. The percentage of cells expressing CD19+NF-κB p65+, CXCR5+NF-κB p65+, CD19+GM-CSF+, CXCR5+GM-CSF+, CD19+MCP-1+, CXCR5+MCP-1+, CD19+IL-6+, CXCR5+IL-6+, CD19+TNF-α+, and CXCR5+TNF-α+ exhibited was more pronounced in 4-MeH-treated EAE mice when compared to vehicle-treated EAE mice. Moreover, the administration of 4-MeH led to increased expression of NfκB p65, Gmcsf, Mcp1, Il6, and Tnfα mRNA in the brains of EAE mice. This means that the H4R agonist promotes pro-inflammatory mediators aggravating EAE symptoms. Our results indicate the harmful role of H4R agonists in the pathogenesis of MS in an EAE mouse model.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
16
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 287] [Impact Index Per Article: 143.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
17
|
Alghibiwi H, Ansari MA, Nadeem A, Algonaiah MA, Attia SM, Bakheet SA, Albekairi TH, Almudimeegh S, Alhamed AS, Shahid M, Alwetaid MY, Alassmrry YA, Ahmad SF. DAPTA, a C-C Chemokine Receptor 5 (CCR5), Leads to the Downregulation of Notch/NF-κB Signaling and Proinflammatory Mediators in CD40 + Cells in Experimental Autoimmune Encephalomyelitis Model in SJL/J Mice. Biomedicines 2023; 11:1511. [PMID: 37371605 DOI: 10.3390/biomedicines11061511] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system characterized by motor deficits, cognitive impairment, fatigue, pain, and sensory and visual dysfunction. CD40, highly expressed in B cells, plays a significant role in MS pathogenesis. The experimental autoimmune encephalomyelitis (EAE) mouse model of MS has been well established, as well as its relevance in MS patients. This study aimed to evaluate the therapeutic potential of DAPTA, a selective C-C chemokine receptor 5 (CCR5) antagonist in the murine model of MS, and to expand the knowledge of its mechanism of action. Following the induction of EAE, DAPTA was administrated (0.01 mg/kg, i.p.) daily from day 14 to day 42. We investigated the effects of DAPTA on NF-κB p65, IκBα, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α in CD40+ spleen B cells using flow cytometry. Furthermore, we also analyzed the effect of DAPTA on NF-κB p65, IκBα, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α mRNA expression levels using qRT-PCR in brain tissue. EAE mice treated with DAPTA showed substantial reductions in NF-κB p65, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α but an increase in the IκBα of CD40+ B lymphocytes. Moreover, EAE mice treated with DAPTA displayed decreased NF-κB p65, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α and but showed increased IκBα mRNA expression levels. This study showed that DAPTA has significant neuroprotective potential in EAE via the downregulation of inflammatory mediators and NF-κB/Notch signaling. Collectively, DAPTA might have potential therapeutic targets for use in MS treatment.
Collapse
Affiliation(s)
- Hanan Alghibiwi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Majed Ali Algonaiah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Thamer H Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Almudimeegh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah S Alhamed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Y Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yasseen A Alassmrry
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
18
|
Ma X, Ma R, Zhang M, Qian B, Wang B, Yang W. Recent Progress in Multiple Sclerosis Treatment Using Immune Cells as Targets. Pharmaceutics 2023; 15:pharmaceutics15030728. [PMID: 36986586 PMCID: PMC10057470 DOI: 10.3390/pharmaceutics15030728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/02/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune-mediated demyelinating disease of the central nervous system. The main pathological features are inflammatory reaction, demyelination, axonal disintegration, reactive gliosis, etc. The etiology and pathogenesis of the disease have not been clarified. The initial studies believed that T cell-mediated cellular immunity is the key to the pathogenesis of MS. In recent years, more and more evidence has shown that B cells and their mediated humoral immune and innate immune cells (such as microglia, dendritic cells, macrophages, etc.) also play an important role in the pathogenesis of MS. This article mainly reviews the research progress of MS by targeting different immune cells and analyzes the action pathways of drugs. The types and mechanisms of immune cells related to the pathogenesis are introduced in detail, and the mechanisms of drugs targeting different immune cells are discussed in depth. This article aims to clarify the pathogenesis and immunotherapy pathway of MS, hoping to find new targets and strategies for the development of therapeutic drugs for MS.
Collapse
Affiliation(s)
- Xiaohong Ma
- Department of Neuroscience, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Rong Ma
- School of Pharmaceutical Sciences, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Mengzhe Zhang
- School of Pharmaceutical Sciences, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Baicheng Qian
- Department of Neuroscience, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Baoliang Wang
- Department of Neuroscience, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
- Correspondence: (B.W.); (W.Y.)
| | - Weijing Yang
- School of Pharmaceutical Sciences, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (B.W.); (W.Y.)
| |
Collapse
|
19
|
Pant H, Hercus TR, Tumes DJ, Yip KH, Parker MW, Owczarek CM, Lopez AF, Huston DP. Translating the biology of β common receptor-engaging cytokines into clinical medicine. J Allergy Clin Immunol 2023; 151:324-344. [PMID: 36424209 DOI: 10.1016/j.jaci.2022.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 11/23/2022]
Abstract
The family of cytokines that comprises IL-3, IL-5, and GM-CSF was discovered over 30 years ago, and their biological activities and resulting impact in clinical medicine has continued to expand ever since. Originally identified as bone marrow growth factors capable of acting on hemopoietic progenitor cells to induce their proliferation and differentiation into mature blood cells, these cytokines are also recognized as key mediators of inflammation and the pathobiology of diverse immunologic diseases. This increased understanding of the functional repertoire of IL-3, IL-5, and GM-CSF has led to an explosion of interest in modulating their functions for clinical management. Key to the successful clinical translation of this knowledge is the recognition that these cytokines act by engaging distinct dimeric receptors and that they share a common signaling subunit called β-common or βc. The structural determination of how IL-3, IL-5, and GM-CSF interact with their receptors and linking this to their differential biological functions on effector cells has unveiled new paradigms of cell signaling. This knowledge has paved the way for novel mAbs and other molecules as selective or pan inhibitors for use in different clinical settings.
Collapse
Affiliation(s)
- Harshita Pant
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Timothy R Hercus
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Damon J Tumes
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Kwok Ho Yip
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Michael W Parker
- Bio 21 Institute, The University of Melbourne, Melbourne, Australia; St Vincent's Institute of Medical Research, Melbourne, Australia
| | | | - Angel F Lopez
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| | - David P Huston
- Texas A&M University School of Medicine, Houston, Tex; Houston Methodist Hospital and Research Institute, Houston, Tex.
| |
Collapse
|
20
|
Farzam-Kia N, Lemaître F, Carmena Moratalla A, Carpentier Solorio Y, Da Cal S, Jamann H, Klement W, Antel J, Duquette P, Girard JM, Prat A, Larochelle C, Arbour N. Granulocyte-macrophage colony-stimulating factor-stimulated human macrophages demonstrate enhanced functions contributing to T-cell activation. Immunol Cell Biol 2023; 101:65-77. [PMID: 36260372 DOI: 10.1111/imcb.12600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/10/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been implicated in numerous chronic inflammatory diseases, including multiple sclerosis (MS). GM-CSF impacts multiple properties and functions of myeloid cells via species-specific mechanisms. Therefore, we assessed the effect of GM-CSF on different human myeloid cell populations found in MS lesions: monocyte-derived macrophages (MDMs) and microglia. We previously reported a greater number of interleukin (IL)-15+ myeloid cells in the brain of patients with MS than in controls. Therefore, we investigated whether GM-CSF exerts its deleterious effects in MS by increasing IL-15 expression on myeloid cells. We found that GM-CSF increased the proportion of IL-15+ cells and/or IL-15 levels on nonpolarized, M1-polarized and M2-polarized MDMs from healthy donors and patients with MS. GM-CSF also increased IL-15 levels on human adult microglia. When cocultured with GM-CSF-stimulated MDMs, activated autologous CD8+ T lymphocytes secreted and expressed significantly higher levels of effector molecules (e.g. interferon-γ and GM-CSF) compared with cocultures with unstimulated MDMs. However, neutralizing IL-15 did not attenuate enhanced effector molecule expression on CD8+ T lymphocytes triggered by GM-CSF-stimulated MDMs. We showed that GM-CSF stimulation of MDMs increased their expression of CD80 and ICAM-1 and their secretion of IL-6, IL-27 and tumor necrosis factor. These molecules could participate in boosting the effector properties of CD8+ T lymphocytes independently of IL-15. By contrast, GM-CSF did not alter CD80, IL-27, tumor necrosis factor and chemokine (C-X-C motif) ligand 10 expression/secretion by human microglia. Therefore, our results underline the distinct impact of GM-CSF on human myeloid cells abundantly present in MS lesions.
Collapse
Affiliation(s)
- Negar Farzam-Kia
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Florent Lemaître
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Ana Carmena Moratalla
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Yves Carpentier Solorio
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Sandra Da Cal
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Hélène Jamann
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Wendy Klement
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Jack Antel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Pierre Duquette
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Multiple Sclerosis Clinic-CHUM, Montréal, QC, Canada
| | - Jean Marc Girard
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Multiple Sclerosis Clinic-CHUM, Montréal, QC, Canada
| | - Alexandre Prat
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Multiple Sclerosis Clinic-CHUM, Montréal, QC, Canada
| | - Catherine Larochelle
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Multiple Sclerosis Clinic-CHUM, Montréal, QC, Canada
| | - Nathalie Arbour
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| |
Collapse
|
21
|
He YF, Jiang ZG, Wu N, Bian N, Ren JL. Correlation between COVID-19 and hepatitis B: A systematic review. World J Gastroenterol 2022; 28:6599-6618. [PMID: 36569273 PMCID: PMC9782843 DOI: 10.3748/wjg.v28.i46.6599] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/29/2022] [Accepted: 11/19/2022] [Indexed: 12/08/2022] Open
Abstract
BACKGROUND There is growing evidence that patients with coronavirus disease 2019 (COVID-19) frequently present with liver impairment. Hepatitis B virus (HBV) remains a major public health threat in current society. Both severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and HBV can cause liver damage, and current findings on whether HBV infection increases disease severity in COVID-19 patients are inconsistent, and whether SARS-CoV-2 infection accelerates hepatitis B progression or leads to a worse prognosis in hepatitis B patients has not been adequately elucidated. AIM To explore the complex relationship between COVID-19 and hepatitis B in order to inform the research and management of patients co-infected with SARS-CoV-2 and HBV. METHODS An experienced information specialist searched the literature in the following online databases: PubMed, China National Knowledge Infrastructure, Google Scholar, Scopus, Wiley, Web of Science, Cochrane, and ScienceDirect. The literature published from December 2019 to September 1, 2022 was included in the search. We also searched medRxiv and bioRxiv for gray literature and manually scanned references of included articles. Articles reporting studies conducted in humans discussing hepatitis B and COVID-19 were included. We excluded duplicate publications. News reports, reports, and other gray literature were included if they contained quantifiable evidence (case reports, findings, and qualitative analysis). Some topics that included HBV or COVID-19 samples but did not have quantitative evidence were excluded from the review. RESULTS A total of 57 studies were eligible and included in this review. They were from 11 countries, of which 33 (57.9%) were from China. Forty-two of the 57 studies reported abnormalities in liver enzymes, three mainly reported abnormalities in blood parameters, four indicated no significant liver function alterations, and another eight studies did not provide data on changes in liver function. Fifty-seven studies were retrospective and the total number of co-infections was 1932, the largest sample size was 7723, and the largest number of co-infections was 353. Most of the studies suggested an interaction between hepatitis B and COVID-19, while 12 studies clearly indicated no interaction between hepatitis B and COVID-19. Six of the 57 studies clearly reported HBV activation. Six studies were related to liver transplant patients. CONCLUSION There is some association between COVID-19 and hepatitis B. Future high-quality randomized trials are needed to further elucidate the interaction between COVID-19 and hepatitis B.
Collapse
Affiliation(s)
- Yan-Fei He
- Health Management Center, The Sixth Medical Center, Chinese PLA General Hospital, Beijing 100048, China
| | - Zhi-Gang Jiang
- Department of Statistics, Zunyi Medical University, Guizhou 563006, Guizhou Province, China
| | - Ni Wu
- Health Management Center, The Sixth Medical Center, Chinese PLA General Hospital, Beijing 100048, China
| | - Ning Bian
- Health Management Center, The Sixth Medical Center, Chinese PLA General Hospital, Beijing 100048, China
| | - Jun-Lin Ren
- Department of Infection Control, The Sixth Medical Center, Chinese PLA General Hospital, Beijing 100048, China
| |
Collapse
|
22
|
Elghannam MT, Hassanien MH, Ameen YA, ELattar GM, ELRay AA, Turky EA, ELTalkawy MD. COVID-19 and liver diseases. EGYPTIAN LIVER JOURNAL 2022; 12:43. [PMID: 35880136 PMCID: PMC9301896 DOI: 10.1186/s43066-022-00202-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/06/2022] [Indexed: 12/15/2022] Open
Abstract
Coronavirus causes an outbreak of viral pneumonia that spread throughout the world. Liver injury is becoming more widely recognized as a component of the clinical picture of COVID-19 infection. Hepatitis with serum ALT elevation has been reported in up to half of patients. Patients with CLD were at a higher risk of decompensation with liver failure, hospitalization, and mortality. The percentage of acute liver injury (ALI) varied from 5 to 28%. COVID-19 hinders HCV elimination by 2030. It is recommended to continue treatment of chronic HCV and chronic HBV if already receiving treatment. Consider using antiviral therapy to prevent viral flare-ups in patients with occult or resolved HBV and COVID-19 who are receiving immunosuppressive agents. Patients with AIH do not have an increased risk of adverse outcomes even in high-risk areas. There is an association between MAFLD and disease progression. Patients with any type of cancer are at a higher risk of infection and are more likely to develop more severe clinical outcomes. Most societies advise against immunosuppressant modifications in patients with mild COVID-19, whereas in rare cases such as severe lymphopenia, worsening pneumonia, or bacterial or fungal superinfection, reduction or discontinuation of antiproliferative agents and lymphocyte-depleting therapies has been suggested.
Collapse
|
23
|
Lezhnyova V, Davidyuk Y, Mullakhmetova A, Markelova M, Zakharov A, Khaiboullina S, Martynova E. Analysis of herpesvirus infection and genome single nucleotide polymorphism risk factors in multiple sclerosis, Volga federal district, Russia. Front Immunol 2022; 13:1010605. [PMID: 36451826 PMCID: PMC9703080 DOI: 10.3389/fimmu.2022.1010605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/03/2022] [Indexed: 09/29/2023] Open
Abstract
Multiple sclerosis (MS) is a heterogeneous disease where herpesvirus infection and genetic predisposition are identified as the most consistent risk factors. Serum and blood samples were collected from 151 MS and 70 controls and used to analyze circulating antibodies for, and DNA of, Epstein Barr virus (EBV), human cytomegalovirus (HCMV), human herpes virus 6 (HHV6), and varicella zoster virus (VZV). The frequency of selected single nucleotide polymorphisms (SNPs) in MS and controls were studied. Herpesvirus DNA in blood samples were analyzed using qPCR. Anti-herpesvirus antibodies were detected by ELISA. SNPs were analyzed by the allele-specific PCR. For statistical analysis, Fisher exact test, odds ratio and Kruskall-Wallis test were used; p<0.05 values were considered as significant. We have found an association between circulating anti-HHV6 antibodies and MS diagnosis. We also confirmed higher frequency of A and C alleles in rs2300747 and rs12044852 of CD58 gene and G allele in rs929230 of CD6 gene in MS as compared to controls. Fatigue symptom was linked to AC and AA genotype in rs12044852 of CD58 gene. An interesting observation was finding higher frequency of GG genotype in rs12722489 of IL2RA and T allele in rs1535045 of CD40 genes in patient having anti-HHV6 antibodies. A link was found between having anti-VZV antibodies in MS and CC genotype in rs1883832 of CD40 gene.
Collapse
Affiliation(s)
- Vera Lezhnyova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Yuriy Davidyuk
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Asia Mullakhmetova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Maria Markelova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Alexander Zakharov
- Department of Neurology and Neurosurgery, Samara State Medical University, Samara, Russia
| | - Svetlana Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Ekaterina Martynova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| |
Collapse
|
24
|
Abstract
Inflammation is a biological process that dynamically alters the surrounding microenvironment, including participating immune cells. As a well-protected organ surrounded by specialized barriers and with immune privilege properties, the central nervous system (CNS) tightly regulates immune responses. Yet in neuroinflammatory conditions, pathogenic immunity can disrupt CNS structure and function. T cells in particular play a key role in promoting and restricting neuroinflammatory responses, while the inflamed CNS microenvironment can influence and reshape T cell function and identity. Still, the contraction of aberrant T cell responses within the CNS is not well understood. Using autoimmunity as a model, here we address the contribution of CD4 T helper (Th) cell subsets in promoting neuropathology and disease. To address the mechanisms antagonizing neuroinflammation, we focus on the control of the immune response by regulatory T cells (Tregs) and describe the counteracting processes that preserve their identity under inflammatory challenges. Finally, given the influence of the local microenvironment on immune regulation, we address how CNS-intrinsic signals reshape T cell function to mitigate abnormal immune T cell responses.
Collapse
Affiliation(s)
- Nail Benallegue
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000, Nantes, France
| | - Hania Kebir
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jorge I. Alvarez
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
25
|
Liu R, Du S, Zhao L, Jain S, Sahay K, Rizvanov A, Lezhnyova V, Khaibullin T, Martynova E, Khaiboullina S, Baranwal M. Autoreactive lymphocytes in multiple sclerosis: Pathogenesis and treatment target. Front Immunol 2022; 13:996469. [PMID: 36211343 PMCID: PMC9539795 DOI: 10.3389/fimmu.2022.996469] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by destruction of the myelin sheath structure. The loss of myelin leads to damage of a neuron’s axon and cell body, which is identified as brain lesions on magnetic resonance image (MRI). The pathogenesis of MS remains largely unknown. However, immune mechanisms, especially those linked to the aberrant lymphocyte activity, are mainly responsible for neuronal damage. Th1 and Th17 populations of lymphocytes were primarily associated with MS pathogenesis. These lymphocytes are essential for differentiation of encephalitogenic CD8+ T cell and Th17 lymphocyte crossing the blood brain barrier and targeting myelin sheath in the CNS. B-lymphocytes could also contribute to MS pathogenesis by producing anti-myelin basic protein antibodies. In later studies, aberrant function of Treg and Th9 cells was identified as contributing to MS. This review summarizes the aberrant function and count of lymphocyte, and the contributions of these cell to the mechanisms of MS. Additionally, we have outlined the novel MS therapeutics aimed to amend the aberrant function or counts of these lymphocytes.
Collapse
Affiliation(s)
- Rongzeng Liu
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Shushu Du
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Lili Zhao
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Sahil Jain
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Kritika Sahay
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Albert Rizvanov
- Gene and cell Department, Kazan Federal University, Kazan, Russia
| | - Vera Lezhnyova
- Gene and cell Department, Kazan Federal University, Kazan, Russia
| | - Timur Khaibullin
- Neurological Department, Republican Clinical Neurological Center, Kazan, Russia
| | | | - Svetlana Khaiboullina
- Gene and cell Department, Kazan Federal University, Kazan, Russia
- *Correspondence: Svetlana Khaiboullina, ; Manoj Baranwal, ;
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
- *Correspondence: Svetlana Khaiboullina, ; Manoj Baranwal, ;
| |
Collapse
|
26
|
Ansari MA, Nadeem A, Attia SM, Bakheet SA, Shahid M, Rehman MU, Alanazi MM, Alhamed AS, Ibrahim KE, Albekairi NA, Ahmad SF. CCR1 antagonist J-113863 corrects the imbalance of pro- and anti-inflammatory cytokines in a SJL/J mouse model of relapsing-remitting multiple sclerosis. Immunobiology 2022; 227:152245. [PMID: 35868215 DOI: 10.1016/j.imbio.2022.152245] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
Multiple sclerosis (MS), an immune-mediated and neurodegenerative disorder of the central nervous system (CNS), is characterized by infiltrating myelin-reactive T lymphocytes and demyelinating lesions. Experimental autoimmune encephalomyelitis (EAE) is a well-established animal model used to study MS. To explore the impact of chemokine receptor CCR1 blockade in EAE and the underlying mechanisms, we used CCR1 antagonist J-113863 in PLP139-151-induced EAE in SJL/J mice. Following EAE induction, mice were treated with J-113863 (10 mg/kg) daily from day 14 until day 25. We investigated the effect of J-113863 on expression levels of GM-CSF, IL-6, IL-10, IL-27 in CD4+ spleen cells, using flow cytometry. We also analyzed the effect of J-113863 on GM-CSF, IL-6, IL-10, IL-27 mRNA and protein expression levels using RT-PCR and Western blot analysis in brain tissues. J-113863 treatment decreased the populations of CD4+GM-CSF+ and CD4+IL-6+ cells and increased CD4+IL-27+ and CD4+IL-10+ cells in the spleen. J-113863 had a suppressive effect on the mRNA and protein expression levels of GM-CSF, and IL-6 in the brain tissue. On the other hand, J-113863 treatment increased the mRNA and protein expression of IL-10 and IL-27 in the brain tissue. Our results highlighted J-113863's potential role in suppressing pro-inflammatory expression and up-regulating anti-inflammatory mediators, which could represent a beneficial alternative approach to MS treatment.
Collapse
Affiliation(s)
- Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah S Alhamed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
27
|
Rasouli J, Casella G, Zhang W, Xiao D, Kumar G, Fortina P, Zhang GX, Ciric B, Rostami A. Transcription Factor RUNX3 Mediates Plasticity of ThGM Cells Toward Th1 Phenotype. Front Immunol 2022; 13:912583. [PMID: 35860266 PMCID: PMC9289370 DOI: 10.3389/fimmu.2022.912583] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
GM-CSF-producing T helper (Th) cells play a crucial role in the pathogenesis of autoimmune diseases such as multiple sclerosis (MS). Recent studies have identified a distinct population of GM-CSF-producing Th cells, named ThGM cells, that also express cytokines TNF, IL-2, and IL-3, but lack expression of master transcription factors (TF) and signature cytokines of commonly recognized Th cell lineages. ThGM cells are highly encephalitogenic in a mouse model of MS, experimental autoimmune encephalomyelitis (EAE). Similar to Th17 cells, in response to IL-12, ThGM cells upregulate expression of T-bet and IFN-γ and switch their phenotype to Th1. Here we show that in addition to T-bet, TF RUNX3 also contributes to the Th1 switch of ThGM cells. T-bet-deficient ThGM cells in the CNS of mice with EAE had low expression of RUNX3, and knockdown of RUNX3 expression in ThGM cells abrogated the Th1-inducing effect of IL-12. Comparison of ThGM and Th1 cell transcriptomes showed that ThGM cells expressed a set of TFs known to inhibit the development of other Th lineages. Lack of expression of lineage-specific cytokines and TFs by ThGM cells, together with expression of TFs that inhibit the development of other Th lineages, suggests that ThGM cells are a non-polarized subset of Th cells with lineage characteristics.
Collapse
Affiliation(s)
- Javad Rasouli
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Giacomo Casella
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Weifeng Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Dan Xiao
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Gaurav Kumar
- Sidney Kimmel Cancer Center, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Paolo Fortina
- Sidney Kimmel Cancer Center, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Translation and Precision Medicine, Sapienza University, Rome, Italy
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Abdolmohamad Rostami,
| |
Collapse
|
28
|
MINUTTI-ZANELLA C, BOJALIL-ÁLVAREZ L, GARCÍA-VILLASEÑOR E, LÓPEZ-MARTÍNEZ B, PÉREZ-TURRENT M, MURRIETA-ÁLVAREZ I, RUIZ-DELGADO GJ, ARGÜELLES GJRUIZ. miRNAs in multiple sclerosis: A clinical approach. Mult Scler Relat Disord 2022; 63:103835. [DOI: 10.1016/j.msard.2022.103835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022]
|
29
|
do Sacramento PM, Sales M, Kasahara TDM, Monteiro C, Oyamada H, Dias ASO, Lopes L, Castro CT, Rossi ÁD, Milioni LM, Agrawal A, Alvarenga R, Vasconcelos CC, Bento CADM. Major depression favors the expansion of Th17-like cells and decrease the proportion of CD39 +Treg cell subsets in response to myelin antigen in multiple sclerosis patients. Cell Mol Life Sci 2022; 79:298. [PMID: 35585332 PMCID: PMC11073410 DOI: 10.1007/s00018-022-04315-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/31/2022] [Accepted: 04/18/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND Mood disorders have been associated with risk of clinical relapses in multiple sclerosis (MS), a demyelinating disease mediated by myelin-specific T cells. OBJECTIVES We aimed to investigate the impact of major depressive disorder (MDD) and cytokine profile of T-cells in relapsing remitting MS patients. METHODS For our study, plasma and PBMC were obtained from 60 MS patients (30 with lifetime MDD) in remission phase. The PBMC cultures were stimulated with anti-CD3/anti-CD28 beads or myelin basic protein (MBP), and effector and regulatory T cell phenotypes were determined by flow cytometry. The cytokine levels, both in the plasma or in the supernatants collected from PBMC cultures, were quantified by Luminex. In some experiments, the effect of serotonin (5-HT) was investigated. RESULTS Here, higher Th17-related cytokine levels in response to anti-CD3/anti-CD28 and MBP were quantified in the plasma and PBMC cultures of the MS/MDD group in comparison with MS patients. Further, elevated frequency of CD4+ and CD8+ T cells capable of producing IL-17, IL-22 and GM-CSF was observed in depressed patients. Interestingly, the percentage of myelin-specific IFN-γ+IL-17+ and IFN-γ+GM-CSF+ CD4+ T cells directly correlated with neurological disabilities. In contrast, the occurrence of MDD reduced the proportion of MBP-specific CD39+Tregs subsets. Notably, the severity of both neurological disorder and depressive symptoms inversely correlated with these Tregs. Finally, the addition of 5-HT downregulated the release of Th17-related cytokines in response to anti-CD3/anti-CD28 and myelin antigen. CONCLUSIONS In summary, our findings suggested that recurrent major depression, by favoring imbalances of effector Th17 and Treg cell subsets, contributes to MS severity.
Collapse
Affiliation(s)
- Priscila Mendonça do Sacramento
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Frei Caneca 94, Rio de Janeiro, RJ, 20261-040, Brazil.
- Post-Graduate Program in Microbiology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Marisa Sales
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Frei Caneca 94, Rio de Janeiro, RJ, 20261-040, Brazil
- Post-Graduate Program in Microbiology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Taissa de Matos Kasahara
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Frei Caneca 94, Rio de Janeiro, RJ, 20261-040, Brazil
| | - Clarice Monteiro
- Department of Immunology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hugo Oyamada
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Frei Caneca 94, Rio de Janeiro, RJ, 20261-040, Brazil
- Post-Graduate Program in Microbiology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aleida Soraia Oliveira Dias
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Frei Caneca 94, Rio de Janeiro, RJ, 20261-040, Brazil
- Post-Graduate Program in Microbiology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lana Lopes
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Frei Caneca 94, Rio de Janeiro, RJ, 20261-040, Brazil
- Post-Graduate Program in Microbiology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camilla Teixeira Castro
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Frei Caneca 94, Rio de Janeiro, RJ, 20261-040, Brazil
- Post-Graduate Program in Microbiology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Átila Duque Rossi
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucas Mattos Milioni
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Regina Alvarenga
- Department of General Medicine, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
- Post-Graduate Program in Neurology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia Cristina Vasconcelos
- Department of General Medicine, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
- Post-Graduate Program in Neurology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cleonice Alves de Melo Bento
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Frei Caneca 94, Rio de Janeiro, RJ, 20261-040, Brazil.
- Post-Graduate Program in Neurology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
- Post-Graduate Program in Microbiology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
30
|
Fujiwara M, Raheja R, Garo LP, Ajay AK, Kadowaki-Saga R, Karandikar SH, Gabriely G, Krishnan R, Beynon V, Paul A, Patel A, Saxena S, Hu D, Healy BC, Chitnis T, Gandhi R, Weiner HL, Murugaiyan G. microRNA-92a promotes CNS autoimmunity by modulating the regulatory and inflammatory T cell balance. J Clin Invest 2022; 132:e155693. [PMID: 35298438 PMCID: PMC9106347 DOI: 10.1172/jci155693] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/16/2022] [Indexed: 01/11/2023] Open
Abstract
A disequilibrium between immunosuppressive Tregs and inflammatory IL-17-producing Th17 cells is a hallmark of autoimmune diseases, including multiple sclerosis (MS). However, the molecular mechanisms underlying the Treg and Th17 imbalance in CNS autoimmunity remain largely unclear. Identifying the factors that drive this imbalance is of high clinical interest. Here, we report a major disease-promoting role for microRNA-92a (miR-92a) in CNS autoimmunity. miR-92a was elevated in experimental autoimmune encephalomyelitis (EAE), and its loss attenuated EAE. Mechanistically, miR-92a mediated EAE susceptibility in a T cell-intrinsic manner by restricting Treg induction and suppressive capacity, while supporting Th17 responses, by directly repressing the transcription factor Foxo1. Although miR-92a did not directly alter Th1 differentiation, it appeared to indirectly promote Th1 cells by inhibiting Treg responses. Correspondingly, miR-92a inhibitor therapy ameliorated EAE by concomitantly boosting Treg responses and dampening inflammatory T cell responses. Analogous to our findings in mice, miR-92a was elevated in CD4+ T cells from patients with MS, and miR-92a silencing in patients' T cells promoted Treg development but limited Th17 differentiation. Together, our results demonstrate that miR-92a drives CNS autoimmunity by sustaining the Treg/Th17 imbalance and implicate miR-92a as a potential therapeutic target for MS.
Collapse
Affiliation(s)
- Mai Fujiwara
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Radhika Raheja
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lucien P. Garo
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Amrendra K. Ajay
- Renal Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ryoko Kadowaki-Saga
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sukrut H. Karandikar
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Galina Gabriely
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Rajesh Krishnan
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Vanessa Beynon
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Anu Paul
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Amee Patel
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shrishti Saxena
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Dan Hu
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Brian C. Healy
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tanuja Chitnis
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Roopali Gandhi
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Howard L. Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Gopal Murugaiyan
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Burrack AL, Schmiechen ZC, Patterson MT, Miller EA, Spartz EJ, Rollins MR, Raynor JF, Mitchell JS, Kaisho T, Fife BT, Stromnes IM. Distinct myeloid antigen-presenting cells dictate differential fates of tumor-specific CD8+ T cells in pancreatic cancer. JCI Insight 2022; 7:e151593. [PMID: 35393950 PMCID: PMC9057584 DOI: 10.1172/jci.insight.151593] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 02/18/2022] [Indexed: 01/12/2023] Open
Abstract
We investigate how myeloid subsets differentially shape immunity to pancreatic ductal adenocarcinoma (PDA). We show that tumor antigenicity sculpts myeloid cell composition and functionality. Antigenicity promotes accumulation of type 1 dendritic cells (cDC1), which is driven by Xcr1 signaling, and overcomes macrophage-mediated suppression. The therapeutic activity of adoptive T cell therapy or programmed cell death ligand 1 blockade required cDC1s, which sustained splenic Klrg1+ cytotoxic antitumor T cells and functional intratumoral T cells. KLRG1 and cDC1 genes correlated in human tumors, and PDA patients with high intratumoral KLRG1 survived longer than patients with low intratumoral KLRG1. The immunotherapy CD40 agonist also required host cDC1s for maximal therapeutic benefit. However, CD40 agonist exhibited partial therapeutic benefit in cDC1-deficient hosts and resulted in priming of tumor-specific yet atypical CD8+ T cells with a regulatory phenotype and that failed to participate in tumor control. Monocyte/macrophage depletion using clodronate liposomes abrogated T cell priming yet enhanced the antitumor activity of CD40 agonist in cDC1-deficient hosts via engagement of innate immunity. In sum, our study supports that cDC1s are essential for sustaining effective antitumor T cells and supports differential roles for cDC1s and monocytes/macrophages in instructing T cell fate and immunotherapy response.
Collapse
Affiliation(s)
- Adam L. Burrack
- Department of Microbiology and Immunology
- Center for Immunology
| | | | | | - Ebony A. Miller
- Department of Microbiology and Immunology
- Center for Immunology
| | | | | | | | - Jason S. Mitchell
- Center for Immunology
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Kimiidera, Wakayama, Japan
| | - Brian T. Fife
- Center for Immunology
- Department of Medicine, and
- Masonic Cancer Center, and
| | - Ingunn M. Stromnes
- Department of Microbiology and Immunology
- Center for Immunology
- Masonic Cancer Center, and
- Center for Genome Engineering, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
32
|
Manivasagam S, Williams JL, Vollmer LL, Bollman B, Bartleson JM, Ai S, Wu GF, Klein RS. Targeting IFN-λ Signaling Promotes Recovery from Central Nervous System Autoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1341-1351. [PMID: 35181638 PMCID: PMC9012116 DOI: 10.4049/jimmunol.2101041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Type III IFNs (IFNLs) are newly discovered cytokines, acting at epithelial and other barriers, that exert immunomodulatory functions in addition to their primary roles in antiviral defense. In this study, we define a role for IFNLs in maintaining autoreactive T cell effector function and limiting recovery in a murine model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis. Genetic or Ab-based neutralization of the IFNL receptor (IFNLR) resulted in lack of disease maintenance during experimental autoimmune encephalomyelitis, with loss of CNS Th1 effector responses and limited axonal injury. Phenotypic effects of IFNLR signaling were traced to increased APC function, with associated increase in T cell production of IFN-γ and GM-CSF. Consistent with this, IFNL levels within lesions of CNS tissues derived from patients with MS were elevated compared with MS normal-appearing white matter. Furthermore, expression of IFNLR was selectively elevated in MS active lesions compared with inactive lesions or normal-appearing white matter. These findings suggest IFNL signaling as a potential therapeutic target to prevent chronic autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Sindhu Manivasagam
- Department of Medicine, Washington University in St. Louis, St. Louis, MO
| | | | - Lauren L Vollmer
- Department of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Bryan Bollman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO; and
| | - Juliet M Bartleson
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO
| | - Shenjian Ai
- Department of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Gregory F Wu
- Department of Neurology, Washington University in St. Louis, St. Louis, MO; and
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO
| | - Robyn S Klein
- Department of Medicine, Washington University in St. Louis, St. Louis, MO;
- Department of Neurology, Washington University in St. Louis, St. Louis, MO; and
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
33
|
Amatruda M, Chapouly C, Woo V, Safavi F, Zhang J, Dai D, Therattil A, Moon C, Villavicencio J, Gordon A, Parkos C, Horng S. Astrocytic junctional adhesion molecule-A regulates T cell entry past the glia limitans to promote central nervous system autoimmune attack. Brain Commun 2022; 4:fcac044. [PMID: 35265839 PMCID: PMC8899531 DOI: 10.1093/braincomms/fcac044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 10/05/2021] [Accepted: 02/16/2022] [Indexed: 11/15/2022] Open
Abstract
Contact-mediated interactions between the astrocytic endfeet and infiltrating immune cells within the perivascular space are underexplored, yet represent potential regulatory check-points against CNS autoimmune disease and disability. Reactive astrocytes upregulate junctional adhesion molecule-A, an immunoglobulin-like cell surface receptor that binds to T cells via its ligand, the integrin, lymphocyte function-associated antigen-1. Here, we tested the role of astrocytic junctional adhesion molecule-A in regulating CNS autoinflammatory disease. In cell co-cultures, we found that junctional adhesion molecule-A-mediated signalling between astrocytes and T cells increases levels of matrix metalloproteinase-2, C–C motif chemokine ligand 2 and granulocyte-macrophage colony-stimulating factor, pro-inflammatory factors driving lymphocyte entry and pathogenicity in multiple sclerosis and experimental autoimmune encephalomyelitis, an animal model of CNS autoimmune disease. In experimental autoimmune encephalomyelitis, mice with astrocyte-specific JAM-A deletion (mGFAP:CreJAM-Afl/fl) exhibit decreased levels of matrix metalloproteinase-2, reduced ability of T cells to infiltrate the CNS parenchyma from the perivascular spaces and a milder histopathological and clinical course of disease compared with wild-type controls (JAM-Afl/fl). Treatment of wild-type mice with intraperitoneal injection of soluble junctional adhesion molecule-A blocking peptide decreases the severity of experimental autoimmune encephalomyelitis, highlighting the potential of contact-mediated astrocyte–immune cell signalling as a novel translational target against neuroinflammatory disease.
Collapse
Affiliation(s)
| | | | - Viola Woo
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Farinaz Safavi
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Joy Zhang
- University of Virginia School of Medicine, Charlottesville, VA, USA
| | - David Dai
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | | - Chang Moon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jorge Villavicencio
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra Gordon
- Miller School of Medicine at University of Miami, Miami, FL, USA
| | - Charles Parkos
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sam Horng
- Correspondence to: Sam Horng, MD, PhD Icahn School of Medicine at Mount Sinai Icahn 10-20A, 1468 Madison Avenue New York NY, 10029, USA E-mail:
| |
Collapse
|
34
|
Wu WC, Tian J, Xiao D, Guo YX, Xiao Y, Wu XY, Casella G, Rasouli J, Yan YP, Rostami A, Wang LB, Zhang Y, Li X. Engineered extracellular vesicles encapsulated Bryostatin-1 as therapy for neuroinflammation. NANOSCALE 2022; 14:2393-2410. [PMID: 35088795 DOI: 10.1039/d1nr05517h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Targeted and effective drug delivery to central nervous system (CNS) lesions is a major challenge in the treatment of multiple sclerosis (MS). Extracellular vesicles (EVs) have great promise as a drug delivery nanosystem given their unique characteristics, including a strong cargo-loading capacity, low immunogenicity, high biocompatibility, inherent stability, high delivery efficiency, ease of manipulation, and blood-brain barrier (BBB) penetration. Clinical applications are, however, limited by their insufficient targeting capability and "dilution effects" upon systemic administration. Neural stem cells (NSCs) provide an abundant source of EVs because of their remarkable capacity for self-renewal. Here, we developed a novel therapeutic strategy for local delivery and treatment using EVPs, which are derived from NSCs with the expression of the CNS lesion targeting ligand-PDGFRα. Furthermore, we used EVPs as a targeting carrier for encapsulating Bryostatin-1 (Bryo-1), a natural compound with remarkable anti-inflammation ability. Our data showed that Bryo-1 delivered by EVPs was more stable and concentrated in the CNS than native Bryo-1. Systemic injection of a low dosage (1 × 108 particles) of EVPs + Bryo-1, versus only EVPs or Bryo-1 administration, significantly ameliorated clinical disease development, decreased the infiltration of pro-inflammatory cells, blocked myelin loss and astrogliosis, protected BBB integrity, and altered microglia pro-inflammatory phenotype in the CNS of EAE mice. Taken as a whole, our study showed that engineered EVs have a CNS targeting capacity, and it provides potentially powerful therapeutic effects for the treatment of various neuroinflammatory diseases.
Collapse
Affiliation(s)
- Wen-Cheng Wu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Jing Tian
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Dan Xiao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Xin Guo
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Yun Xiao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Xiao-Yu Wu
- The General Hospital of Ningxia Medical University, Yinchuan, 750001, China
| | - Giacomo Casella
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Javad Rasouli
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ya-Ping Yan
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Li-Bin Wang
- The General Hospital of Ningxia Medical University, Yinchuan, 750001, China
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
35
|
Castro C, Oyamada HAA, Cafasso MOSD, Lopes LM, Monteiro C, Sacramento PM, Alves-Leon SV, da Fontoura Galvão G, Hygino J, de Souza JPBM, Bento CAM. Elevated proportion of TLR2- and TLR4-expressing Th17-like cells and activated memory B cells was associated with clinical activity of cerebral cavernous malformations. J Neuroinflammation 2022; 19:28. [PMID: 35109870 PMCID: PMC8808981 DOI: 10.1186/s12974-022-02385-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/12/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Recent evidences have suggested the involvement of toll-like receptor (TLR)-4 in the pathogenesis of cerebral cavernous malformations (CCM). Elevated frequency of TLR+T-cells has been associated with neurological inflammatory disorders. As T-cells and B-cells are found in CCM lesions, the objective of the present study was to evaluate the cytokine profile of T-cells expressing TLR2 and TLR4, as well as B-cell subsets, in asymptomatic (CCMAsympt) and symptomatic (CCMSympt) patients. METHODS For our study, the cytokine profile from TLR2+ and TLR4+ T-cell and B-cell subsets in CCMAsympt and CCMSympt patients was investigated using flow cytometry and ELISA. T-cells were stimulated in vitro with anti-CD3/anti-CD28 beads or TLR2 (Pam3C) and TLR4 (LPS) ligands. RESULTS CCMSymptc patients presented a higher frequency of TLR4+(CD4+ and CD8+) T-cells and greater density of TLR4 expression on these cells. With regard to the cytokine profile, the percentage of TLR2+ and TLR4+ Th17 cells was higher in CCMSympt patients. In addition, an elevated proportion of TLR4+ Tc-1 cells, as well as Tc-17 and Th17.1 cells expressing TLR2 and TLR4, was observed in the symptomatic patients. By contrast, the percentage of TLR4+ IL-10+CD4+ T cells was higher in the CCMAsympt group. Both Pam3C and LPS were more able to elevate the frequency of IL-6+CD4+T cells and Th17.1 cells in CCMSympt cell cultures. Furthermore, in comparison with asymptomatic patients, purified T-cells from the CCMSympt group released higher levels of Th17-related cytokines in response to Pam3C and, mainly, LPS, as well as after activation via TCR/CD28. Concerning the B-cell subsets, a higher frequency of memory and memory activated B-cells was observed in CCMSympt patients. CONCLUSIONS Our findings reveal an increase in circulating Th17/Tc-17 cell subsets expressing functional TLR2 and, mainly, TLR4 molecules, associated with an increase in memory B-cell subsets in CCM patients with clinical activity of the disease.
Collapse
Affiliation(s)
- Camilla Castro
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Frei Caneca 94, Rio de Janeiro, RJ, 20261-040, Brazil
- Post-Graduate Program in Microbiology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hugo A A Oyamada
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Frei Caneca 94, Rio de Janeiro, RJ, 20261-040, Brazil
- Post-Graduate Program in Microbiology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Octávio S D Cafasso
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Frei Caneca 94, Rio de Janeiro, RJ, 20261-040, Brazil
| | - Lana M Lopes
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Frei Caneca 94, Rio de Janeiro, RJ, 20261-040, Brazil
- Post-Graduate Program in Microbiology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarice Monteiro
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Frei Caneca 94, Rio de Janeiro, RJ, 20261-040, Brazil
- Post-Graduate Program in Microbiology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscila M Sacramento
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Frei Caneca 94, Rio de Janeiro, RJ, 20261-040, Brazil
- Post-Graduate Program in Microbiology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Soniza Vieira Alves-Leon
- Post-Graduate Program in Neurology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
- Translational Neuroscience Laboratory (LabNet), University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo da Fontoura Galvão
- Service of Neurosurgery, University Hospital of the Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Joana Hygino
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Frei Caneca 94, Rio de Janeiro, RJ, 20261-040, Brazil
- Post-Graduate Program in Neurology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge Paes Barreto Marcondes de Souza
- Post-Graduate Program in Neurology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
- Service of Neurosurgery, University Hospital of the Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Post-Graduate Program of Surgical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cleonice A M Bento
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Frei Caneca 94, Rio de Janeiro, RJ, 20261-040, Brazil.
- Post-Graduate Program in Microbiology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
- Post-Graduate Program in Neurology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
36
|
Ucciferri CC, Dunn SE. Effect of puberty on the immune system: Relevance to multiple sclerosis. Front Pediatr 2022; 10:1059083. [PMID: 36533239 PMCID: PMC9755749 DOI: 10.3389/fped.2022.1059083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
Puberty is a dynamic period marked by changing levels of sex hormones, the development of secondary sexual characteristics and reproductive maturity. This period has profound effects on various organ systems, including the immune system. The critical changes that occur in the immune system during pubertal onset have been shown to have implications for autoimmune conditions, including Multiple Sclerosis (MS). MS is rare prior to puberty but can manifest in children after puberty. This disease also has a clear female preponderance that only arises following pubertal onset, highlighting a potential role for sex hormones in autoimmunity. Early onset of puberty has also been shown to be a risk factor for MS. The purpose of this review is to overview the evidence that puberty regulates MS susceptibility and disease activity. Given that there is a paucity of studies that directly evaluate the effects of puberty on the immune system, we also discuss how the immune system is different in children and mice of pre- vs. post-pubertal ages and describe how gonadal hormones may regulate these immune mechanisms. We present evidence that puberty enhances the expression of co-stimulatory molecules and cytokine production by type 2 dendritic cells (DC2s) and plasmacytoid dendritic cells (pDCs), increases T helper 1 (Th1), Th17, and T follicular helper immunity, and promotes immunoglobulin (Ig)G antibody production. Overall, this review highlights how the immune system undergoes a functional maturation during puberty, which has the potential to explain the higher prevalence of MS and other autoimmune diseases seen in adolescence.
Collapse
Affiliation(s)
- Carmen C Ucciferri
- Department of Immunology, The University of Toronto, Toronto, ON, Canada
| | - Shannon E Dunn
- Department of Immunology, The University of Toronto, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada.,Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada
| |
Collapse
|
37
|
Ingelfinger F, De Feo D, Becher B. GM-CSF: Master regulator of the T cell-phagocyte interface during inflammation. Semin Immunol 2021; 54:101518. [PMID: 34763973 DOI: 10.1016/j.smim.2021.101518] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/23/2021] [Indexed: 12/21/2022]
Abstract
The role of granulocyte-macrophage colony-stimulating factor (GM-CSF) was sequentially redefined during the past decades. Originally described as a hematopoietic growth factor for myelopoiesis, GM-CSF was recognized as a central mediator of inflammation bridging the innate and adaptive arms of the immune system. Phagocytes sensing GM-CSF adapt an inflammatory phenotype and facilitate pathogen clearance. However, in the context of chronic tissue inflammation, GM-CSF secreted by tissue-invading lymphocytes has detrimental effects by licensing tissue damage and hyperinflammation. Accordingly, therapeutic intervention at the T cell-phagocyte interface represents an attractive target to ameliorate disease progression and immunopathology. Although GM-CSF is largely dispensable for steady state myelopoiesis, dysregulation, as seen in chronic inflammatory diseases, may however lead to disrupted haematopoiesis and long-term effects on bone marrow output. Here, we will survey the role of GM-CSF during inflammation, discuss the extent to which GM-CSF-secreting T cells, debate their introduction as a separate T cell lineage and explore current and future clinical implications of GM-CSF in human disease settings.
Collapse
Affiliation(s)
- Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Donatella De Feo
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
38
|
Chitu V, Biundo F, Stanley ER. Colony stimulating factors in the nervous system. Semin Immunol 2021; 54:101511. [PMID: 34743926 DOI: 10.1016/j.smim.2021.101511] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/23/2021] [Indexed: 01/02/2023]
Abstract
Although traditionally seen as regulators of hematopoiesis, colony-stimulating factors (CSFs) have emerged as important players in the nervous system, both in health and disease. This review summarizes the cellular sources, patterns of expression and physiological roles of the macrophage (CSF-1, IL-34), granulocyte-macrophage (GM-CSF) and granulocyte (G-CSF) colony stimulating factors within the nervous system, with a particular focus on their actions on microglia. CSF-1 and IL-34, via the CSF-1R, are required for the development, proliferation and maintenance of essentially all CNS microglia in a temporal and regional specific manner. In contrast, in steady state, GM-CSF and G-CSF are mainly involved in regulation of microglial function. The alterations in expression of these growth factors and their receptors, that have been reported in several neurological diseases, are described and the outcomes of their therapeutic targeting in mouse models and humans are discussed.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
39
|
Lynning M, Hanehøj K, Westergaard K, Kjær Ersbøll A, Claesson MH, Boesen F, Skovgaard L. Effect of Acupuncture on Cytokine Levels in Persons with Multiple Sclerosis: A Randomized Controlled Trial. J Altern Complement Med 2021; 27:832-840. [PMID: 34265224 DOI: 10.1089/acm.2020.0510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: Cytokines have been found to play a role in the disease activity of multiple sclerosis (MS). Previous studies indicate that acupuncture can affect cytokine levels in persons with other inflammatory diseases. Objectives: The aim of this study is to investigate the effect of acupuncture on cytokine levels and health-related quality of life (HRQoL) in persons with MS. Materials and Methods: A single-blind, randomized controlled trial was performed. Participants (n = 66) were randomized into three groups (real acupuncture, sham acupuncture, and reference). Participants in the real acupuncture and sham groups received six treatments during a period of 4 weeks. The serum levels of 11 pro- and anti-inflammatory cytokines (IFNγ, IL-1β, IL-6, IL-8, IL-12p70, IL-13, TNFα, IL-10, IL-4, IL-2, and IL-17A) were assessed at baseline, after 2 and 4 weeks of treatment, and 4 weeks after the final treatment. Changes in HRQoL were assessed using the Functional Assessment of Multiple Sclerosis questionnaire. Results: No statistically significant differences in plasma levels between the three groups were seen for either of the cytokines, nor were there any differences between the groups for HRQoL. Conclusions: In this study, the authors could not demonstrate that a 4-week acupuncture treatment had a measurable effect on the plasma levels of seven selected cytokines or on HRQoL among people with MS. The trial was registered with the ISRCTN registry as ISRCTN34352011.
Collapse
Affiliation(s)
| | | | | | - Annette Kjær Ersbøll
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | - Mogens Helweg Claesson
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
40
|
Veroni C, Aloisi F. The CD8 T Cell-Epstein-Barr Virus-B Cell Trialogue: A Central Issue in Multiple Sclerosis Pathogenesis. Front Immunol 2021; 12:665718. [PMID: 34305896 PMCID: PMC8292956 DOI: 10.3389/fimmu.2021.665718] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
The cause and the pathogenic mechanisms leading to multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system (CNS), are still under scrutiny. During the last decade, awareness has increased that multiple genetic and environmental factors act in concert to modulate MS risk. Likewise, the landscape of cells of the adaptive immune system that are believed to play a role in MS immunopathogenesis has expanded by including not only CD4 T helper cells but also cytotoxic CD8 T cells and B cells. Once the key cellular players are identified, the main challenge is to define precisely how they act and interact to induce neuroinflammation and the neurodegenerative cascade in MS. CD8 T cells have been implicated in MS pathogenesis since the 80's when it was shown that CD8 T cells predominate in MS brain lesions. Interest in the role of CD8 T cells in MS was revived in 2000 and the years thereafter by studies showing that CNS-recruited CD8 T cells are clonally expanded and have a memory effector phenotype indicating in situ antigen-driven reactivation. The association of certain MHC class I alleles with MS genetic risk implicates CD8 T cells in disease pathogenesis. Moreover, experimental studies have highlighted the detrimental effects of CD8 T cell activation on neural cells. While the antigens responsible for T cell recruitment and activation in the CNS remain elusive, the high efficacy of B-cell depleting drugs in MS and a growing number of studies implicate B cells and Epstein-Barr virus (EBV), a B-lymphotropic herpesvirus that is strongly associated with MS, in the activation of pathogenic T cells. This article reviews the results of human studies that have contributed to elucidate the role of CD8 T cells in MS immunopathogenesis, and discusses them in light of current understanding of autoreactivity, B-cell and EBV involvement in MS, and mechanism of action of different MS treatments. Based on the available evidences, an immunopathological model of MS is proposed that entails a persistent EBV infection of CNS-infiltrating B cells as the target of a dysregulated cytotoxic CD8 T cell response causing CNS tissue damage.
Collapse
Affiliation(s)
| | - Francesca Aloisi
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
41
|
Éliás S, Schmidt A, Gomez-Cabrero D, Tegnér J. Gene Regulatory Network of Human GM-CSF-Secreting T Helper Cells. J Immunol Res 2021; 2021:8880585. [PMID: 34285924 PMCID: PMC8275380 DOI: 10.1155/2021/8880585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/14/2021] [Accepted: 03/20/2021] [Indexed: 12/13/2022] Open
Abstract
GM-CSF produced by autoreactive CD4-positive T helper cells is involved in the pathogenesis of autoimmune diseases, such as multiple sclerosis. However, the molecular regulators that establish and maintain the features of GM-CSF-positive CD4 T cells are unknown. In order to identify these regulators, we isolated human GM-CSF-producing CD4 T cells from human peripheral blood by using a cytokine capture assay. We compared these cells to the corresponding GM-CSF-negative fraction, and furthermore, we studied naïve CD4 T cells, memory CD4 T cells, and bulk CD4 T cells from the same individuals as additional control cell populations. As a result, we provide a rich resource of integrated chromatin accessibility (ATAC-seq) and transcriptome (RNA-seq) data from these primary human CD4 T cell subsets and we show that the identified signatures are associated with human autoimmune diseases, especially multiple sclerosis. By combining information about mRNA expression, DNA accessibility, and predicted transcription factor binding, we reconstructed directed gene regulatory networks connecting transcription factors to their targets, which comprise putative key regulators of human GM-CSF-positive CD4 T cells as well as memory CD4 T cells. Our results suggest potential therapeutic targets to be investigated in the future in human autoimmune disease.
Collapse
Affiliation(s)
- Szabolcs Éliás
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, ki.se Karolinska University Hospital & Science for Life Laboratory, 17176 Solna, Stockholm, Sweden
| | - Angelika Schmidt
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, ki.se Karolinska University Hospital & Science for Life Laboratory, 17176 Solna, Stockholm, Sweden
| | - David Gomez-Cabrero
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, ki.se Karolinska University Hospital & Science for Life Laboratory, 17176 Solna, Stockholm, Sweden
- Mucosal & Salivary Biology Division, King's College London Dental Institute, London SE1 9RT, UK
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955–6900, Saudi Arabia
| | - Jesper Tegnér
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, ki.se Karolinska University Hospital & Science for Life Laboratory, 17176 Solna, Stockholm, Sweden
- Biological and Environmental Sciences and Engineering Division, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955–6900, Saudi Arabia
| |
Collapse
|
42
|
Rasouli J, Casella G, Ishikawa LLW, Thome R, Boehm A, Ertel A, Melo-Silva CR, Mari ER, Porazzi P, Zhang W, Xiao D, Sigal LJ, Fortina P, Zhang GX, Rostami A, Ciric B. IFN-β Acts on Monocytes to Ameliorate CNS Autoimmunity by Inhibiting Proinflammatory Cross-Talk Between Monocytes and Th Cells. Front Immunol 2021; 12:679498. [PMID: 34149716 PMCID: PMC8213026 DOI: 10.3389/fimmu.2021.679498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/12/2021] [Indexed: 01/18/2023] Open
Abstract
IFN-β has been the treatment for multiple sclerosis (MS) for almost three decades, but understanding the mechanisms underlying its beneficial effects remains incomplete. We have shown that MS patients have increased numbers of GM-CSF+ Th cells in circulation, and that IFN-β therapy reduces their numbers. GM-CSF expression by myelin-specific Th cells is essential for the development of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. These findings suggested that IFN-β therapy may function via suppression of GM-CSF production by Th cells. In the current study, we elucidated a feedback loop between monocytes and Th cells that amplifies autoimmune neuroinflammation, and found that IFN-β therapy ameliorates central nervous system (CNS) autoimmunity by inhibiting this proinflammatory loop. IFN-β suppressed GM-CSF production in Th cells indirectly by acting on monocytes, and IFN-β signaling in monocytes was required for EAE suppression. IFN-β increased IL-10 expression by monocytes, and IL-10 was required for the suppressive effects of IFN-β. IFN-β treatment suppressed IL-1β expression by monocytes in the CNS of mice with EAE. GM-CSF from Th cells induced IL-1β production by monocytes, and, in a positive feedback loop, IL-1β augmented GM-CSF production by Th cells. In addition to GM-CSF, TNF and FASL expression by Th cells was also necessary for IL-1β production by monocyte. IFN-β inhibited GM-CSF, TNF, and FASL expression by Th cells to suppress IL-1β secretion by monocytes. Overall, our study describes a positive feedback loop involving several Th cell- and monocyte-derived molecules, and IFN-β actions on monocytes disrupting this proinflammatory loop.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Autoimmunity/drug effects
- Cell Communication/genetics
- Cell Communication/immunology
- Cytokines/metabolism
- Disease Models, Animal
- Disease Susceptibility/immunology
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Granulocyte-Macrophage Colony-Stimulating Factor/biosynthesis
- Interferon-beta/metabolism
- Interferon-beta/pharmacology
- Mice
- Mice, Knockout
- Monocytes/drug effects
- Monocytes/immunology
- Monocytes/metabolism
- T-Lymphocytes, Helper-Inducer/drug effects
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
Collapse
Affiliation(s)
- Javad Rasouli
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Giacomo Casella
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | | | - Rodolfo Thome
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Alexandra Boehm
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Adam Ertel
- Sidney Kimmel Cancer Center, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Carolina R. Melo-Silva
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Elisabeth R. Mari
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Patrizia Porazzi
- Sidney Kimmel Cancer Center, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Weifeng Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Dan Xiao
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Luis J. Sigal
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Paolo Fortina
- Sidney Kimmel Cancer Center, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Translation and Precision Medicine, Sapienza University, Rome, Italy
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
43
|
Weng WT, Kuo PC, Brown DA, Scofield BA, Furnas D, Paraiso HC, Wang PY, Yu IC, Yen JH. 4-Ethylguaiacol modulates neuroinflammation and Th1/Th17 differentiation to ameliorate disease severity in experimental autoimmune encephalomyelitis. J Neuroinflammation 2021; 18:110. [PMID: 33975618 PMCID: PMC8111955 DOI: 10.1186/s12974-021-02143-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/29/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a progressive autoimmune disease characterized by the accumulation of pathogenic inflammatory immune cells in the central nervous system (CNS) that subsequently causes focal inflammation, demyelination, axonal injury, and neuronal damage. Experimental autoimmune encephalomyelitis (EAE) is a well-established murine model that mimics the key features of MS. Presently, the dietary consumption of foods rich in phenols has been reported to offer numerous health benefits, including anti-inflammatory activity. One such compound, 4-ethylguaiacol (4-EG), found in various foods, is known to attenuate inflammatory immune responses. However, whether 4-EG exerts anti-inflammatory effects on modulating the CNS inflammatory immune responses remains unknown. Thus, in this study, we assessed the therapeutic effect of 4-EG in EAE using both chronic and relapsing-remitting animal models and investigated the immunomodulatory effects of 4-EG on neuroinflammation and Th1/Th17 differentiation in EAE. METHODS Chronic C57BL/6 EAE and relapsing-remitting SJL/J EAE were induced followed by 4-EG treatment. The effects of 4-EG on disease progression, peripheral Th1/Th17 differentiation, CNS Th1/Th17 infiltration, microglia (MG) activation, and blood-brain barrier (BBB) disruption in EAE were evaluated. In addition, the expression of MMP9, MMP3, HO-1, and Nrf2 was assessed in the CNS of C57BL/6 EAE mice. RESULTS Our results showed that 4-EG not only ameliorated disease severity in C57BL/6 chronic EAE but also mitigated disease progression in SJL/J relapsing-remitting EAE. Further investigations of the cellular and molecular mechanisms revealed that 4-EG suppressed MG activation, mitigated BBB disruption, repressed MMP3/MMP9 production, and inhibited Th1 and Th17 infiltration in the CNS of EAE. Furthermore, 4-EG suppressed Th1 and Th17 differentiation in the periphery of EAE and in vitro Th1 and Th17 cultures. Finally, we found 4-EG induced HO-1 expression in the CNS of EAE in vivo as well as in MG, BV2 cells, and macrophages in vitro. CONCLUSIONS Our work demonstrates that 4-EG confers protection against autoimmune disease EAE through modulating neuroinflammation and inhibiting Th1 and Th17 differentiation, suggesting 4-EG, a natural compound, could be potentially developed as a therapeutic agent for the treatment of MS/EAE.
Collapse
Affiliation(s)
- Wen-Tsan Weng
- Department of Microbiology and Immunology, Indiana University School of Medicine, 2101 E. Coliseum Boulevard, Fort Wayne, IN, 46805, USA
| | - Ping-Chang Kuo
- Department of Microbiology and Immunology, Indiana University School of Medicine, 2101 E. Coliseum Boulevard, Fort Wayne, IN, 46805, USA
| | - Dennis A Brown
- Department of Pharmaceutical Sciences, Manchester University College of Pharmacy, Natural and Health Sciences, Fort Wayne, IN, USA
| | - Barbara A Scofield
- Department of Microbiology and Immunology, Indiana University School of Medicine, 2101 E. Coliseum Boulevard, Fort Wayne, IN, 46805, USA
| | - Destin Furnas
- Department of Microbiology and Immunology, Indiana University School of Medicine, 2101 E. Coliseum Boulevard, Fort Wayne, IN, 46805, USA
| | - Hallel C Paraiso
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Fort Wayne, IN, USA
| | - Pei-Yu Wang
- Graduate Institute of Brain and Mind Science, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Chen Yu
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Fort Wayne, IN, USA
| | - Jui-Hung Yen
- Department of Microbiology and Immunology, Indiana University School of Medicine, 2101 E. Coliseum Boulevard, Fort Wayne, IN, 46805, USA.
| |
Collapse
|
44
|
Clénet ML, Laurent C, Lemaitre F, Farzam-Kia N, Tastet O, Devergne O, Lahav B, Girard M, Duquette P, Prat A, Larochelle C, Arbour N. The IL-27/IL-27R axis is altered in CD4 + and CD8 + T lymphocytes from multiple sclerosis patients. Clin Transl Immunology 2021; 10:e1262. [PMID: 33728050 PMCID: PMC7934284 DOI: 10.1002/cti2.1262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 01/29/2021] [Accepted: 02/16/2021] [Indexed: 11/07/2022] Open
Abstract
Objectives Pro‐ and anti‐inflammatory properties have been attributed to interleukin‐27 (IL‐27). Nevertheless, the impact of this cytokine on chronic inflammatory diseases such as multiple sclerosis (MS) remains ill‐defined. We investigated the biology of IL‐27 and its specific receptor IL‐27Rα in MS patients. Methods Levels of IL‐27 and its natural antagonist (IL‐27‐Rα) were measured by ELISA in biological fluids. CD4+ and CD8+ T lymphocytes were isolated from untreated relapsing–remitting MS patients and healthy donors. Transcriptome‐wide analysis compared T‐cell subsets stimulated or not with IL‐27. Expression of the IL‐27Rα, key immune factors, STAT phosphorylation and cytokine production was assessed by flow cytometry. Results We observed elevated levels of IL‐27 in the serum and cerebrospinal fluid of MS patients compared with controls. Moreover, we show that specific IL‐27‐mediated effects on T lymphocytes are reduced in MS patients including the induction of PD‐L1. IL‐27‐triggered STAT3 signalling pathway is enhanced in CD4+ and CD8+ T lymphocytes from MS patients. Elevated IL‐27Rα levels in serum from MS patients are sufficient to impair the capacity of IL‐27 to act on immune cells. We demonstrate that shedding of IL‐27Rα by activated CD4+ T lymphocytes from MS patients contributes to the increased IL‐27Rα peripheral levels and consequently can dampen the IL‐27 responsiveness. Conclusion Our work identifies several mechanisms that are altered in the IL‐27/IL‐27R axis in MS patients, especially in T lymphocytes. Our results underline the importance of characterising the biology of cytokines in human patients prior to design new therapeutics.
Collapse
Affiliation(s)
- Marie-Laure Clénet
- Department of Neurosciences Université de Montréal and CRCHUM Montreal QC Canada
| | - Cyril Laurent
- Department of Neurosciences Université de Montréal and CRCHUM Montreal QC Canada
| | - Florent Lemaitre
- Department of Neurosciences Université de Montréal and CRCHUM Montreal QC Canada
| | - Negar Farzam-Kia
- Department of Neurosciences Université de Montréal and CRCHUM Montreal QC Canada
| | - Olivier Tastet
- Department of Neurosciences Université de Montréal and CRCHUM Montreal QC Canada
| | - Odile Devergne
- INSERM CNRS Centre d'Immunologie et des Maladies Infectieuses Sorbonne Université Paris France
| | | | - Marc Girard
- Department of Neurosciences Université de Montréal and CRCHUM Montreal QC Canada.,MS-CHUM Clinic Montreal QC Canada
| | - Pierre Duquette
- Department of Neurosciences Université de Montréal and CRCHUM Montreal QC Canada.,MS-CHUM Clinic Montreal QC Canada
| | - Alexandre Prat
- Department of Neurosciences Université de Montréal and CRCHUM Montreal QC Canada.,MS-CHUM Clinic Montreal QC Canada
| | - Catherine Larochelle
- Department of Neurosciences Université de Montréal and CRCHUM Montreal QC Canada.,MS-CHUM Clinic Montreal QC Canada
| | - Nathalie Arbour
- Department of Neurosciences Université de Montréal and CRCHUM Montreal QC Canada
| |
Collapse
|
45
|
Plasek LM, Valadkhan S. lncRNAs in T lymphocytes: RNA regulation at the heart of the immune response. Am J Physiol Cell Physiol 2021; 320:C415-C427. [PMID: 33296288 PMCID: PMC8294623 DOI: 10.1152/ajpcell.00069.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Genome-wide analyses in the last decade have uncovered the presence of a large number of long non-protein-coding transcripts that show highly tissue- and state-specific expression patterns. High-throughput sequencing analyses in diverse subsets of immune cells have revealed a complex and dynamic expression pattern for these long noncoding RNAs (lncRNAs) that correlate with the functional states of immune cells. Although the vast majority of lncRNAs expressed in immune cells remain unstudied, functional studies performed on a small subset have indicated that their state-specific expressions pattern frequently has a regulatory impact on the function of immune cells. In vivo and in vitro studies have pointed to the involvement of lncRNAs in a wide variety of cellular processes, including both the innate and adaptive immune response through mechanisms ranging from epigenetic and transcriptional regulation to sequestration of functional molecules in subcellular compartments. This review will focus mainly on the role of lncRNAs in CD4+ and CD8+ T cells, which play pivotal roles in adaptive immunity. Recent studies have pointed to key physiological functions for lncRNAs during several developmental and functional stages of the life cycle of lymphocytes. Although lncRNAs play important physiological roles in lymphocytic response to antigenic stimulation, differentiation into effector cells, and secretion of cytokines, their dysregulated expression can promote or sustain pathological states such as autoimmunity, chronic inflammation, cancer, and viremia. This, together with their highly cell type-specific expression patterns, makes lncRNAs ideal therapeutic targets and underscores the need for additional studies into the role of these understudied transcripts in adaptive immune response.
Collapse
|
46
|
Li D, Ding X, Xie M, Tian D, Xia L. COVID-19-associated liver injury: from bedside to bench. J Gastroenterol 2021; 56:218-230. [PMID: 33527211 PMCID: PMC7849620 DOI: 10.1007/s00535-021-01760-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been a global challenge since December 2019. Although most patients with COVID-19 exhibit mild clinical manifestations, in approximately 5% of these patients, the disease eventually progresses to severe lung injury or even multiorgan dysfunction. This situation represents various challenges to hepatology. In the context of liver injury in patients with COVID-19, several key problems need to be solved. For instance, it is important to determine whether SARS-CoV-2 can directly invade liver, especially when ACE2 appears to be negligibly expressed on hepatocytes. In addition, the mechanisms underlying liver dysfunction in COVID-19 patients are not fully understood, which are likely multifactorial and related to hyperinflammation, dysregulated immune responses, abnormal coagulation and drugs. Here, we systematically describe the potential pathogenesis of COVID-19-associated liver injury and propose several hypotheses about its etiopathogenesis.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Xiangming Ding
- Department of Gastroenterology, Henan Provincial People's Hospital, Zhengzhou, 450000, Henan Province, China
| | - Meng Xie
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Dean Tian
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
47
|
Sales MC, Kasahara TM, Sacramento PM, Rossi ÁD, Cafasso MOS, Oyamada HA, Hygino J, Alvim F, Andrade RM, Cristina Vasconcelos C, Bento CA. Selective serotonin reuptake inhibitor attenuates the hyperresponsiveness of TLR2 + and TLR4 + Th17/Tc17-like cells in multiple sclerosis patients with major depression. Immunology 2021; 162:290-305. [PMID: 33112414 PMCID: PMC7884649 DOI: 10.1111/imm.13281] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Elevated frequency of Th17-like cells expressing Toll-like receptors (TLRs) has been recently associated with relapsing-remitting multiple sclerosis (MS) pathogenesis, a chronic inflammatory demyelinating autoimmune disease of the central nervous system. We aimed to investigate the impact of current major depressive disorder (MDD) on the behaviour of these cells following in vitro stimulation with TLR2, TLR4, TLR5 and TLR9 agonists. Here, the level of both cell proliferation and cytokine production related to Th17/Tc17 phenotypes in response to TLR2 (Pam3C) and TLR4 (LPS) ligands was significantly higher in CD4+ and CD8+ T-cell cultures from MS/MDD patients when compared to non-depressed patients. These cytokine levels were positively associated with neurological disabilities in patients. No difference for responsiveness to TLR5 (flagellin) and TLR9 (ODN) agonists was observed. LPS, but not Pam3C, induced significant IL-10 release, mainly in patients without MDD. Interestingly, more intense expression of TLR2 and TLR4 on these cells was observed in MDD patients. Finally, in vitro addition of serotonin and treatment of MDD patients with selective serotonin reuptake inhibitors (SSRIs) reduced the production of Th17/Tc17-related cytokines by CD4+ and CD8+ T cells in response to Pam3C and LPS. However, only SSRI therapy diminished the frequency and intensity of TLR2 and TLR4 expression on circulating CD4+ and CD8+ T cells. In summary, although preliminary, our findings suggest that adverse events that elevate circulating levels of TLR2 and TLR4 ligands can affect MS pathogenesis, particularly among depressed patients.
Collapse
Affiliation(s)
- Marisa C. Sales
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
- Post‐graduate Program in MicrobiologyUniversity of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Taissa M. Kasahara
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Priscila M. Sacramento
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
- Post‐graduate Program in MicrobiologyUniversity of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Átila D. Rossi
- Department of GeneticsFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Marcos Octávio S.D. Cafasso
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Hugo A.A. Oyamada
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
- Post‐graduate Program in MicrobiologyUniversity of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Joana Hygino
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
- Post‐graduate Program in NeurologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Fabianna Alvim
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Regis M. Andrade
- Department of General Medicine DepartmentFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
| | | | - Cleonice A.M. Bento
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
- Post‐graduate Program in NeurologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
- Department of General Medicine DepartmentFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
| |
Collapse
|
48
|
Han B, Zhang YY, Ye ZQ, Xiao Y, Rasouli J, Wu WC, Ye SM, Guo XY, Zhu L, Rostami A, Wang LB, Zhang Y, Li X. Montelukast alleviates inflammation in experimental autoimmune encephalomyelitis by altering Th17 differentiation in a mouse model. Immunology 2021; 163:185-200. [PMID: 33480040 DOI: 10.1111/imm.13308] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 12/25/2022] Open
Abstract
Montelukast is a leukotriene receptor antagonist that is known to prevent allergic rhinitis and asthma. Blocking the Cysteinyl leukotriene receptor (CysLTR1), one of the primary receptors of leukotrienes, has been demonstrated to be efficacious in ameliorating experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), through disrupting chemotaxis of infiltrating T cells. However, the role of CysLTR1 in the pathogenesis of MS is not well understood. Here, we show that MS patients had higher expression of CysLTR1 in the circulation and central nervous system (CNS). The majority of CD4+ T cells expressed CysLTR1 in MS lesions. Among T-cell subsets, Th17 cells had the highest expression of CysLTR1, and blocking CysLTR1 signalling abrogated their development in vitro. Inhibition of CysLTR1 by montelukast suppressed EAE development in both a prophylactic and therapeutic manner and inhibited myelin loss in EAE mice. Similarly, the in vivo results showed that montelukast inhibited Th17 response in EAE mice and that Th17 cells treated with montelukast had reduced encephalitogenic in adoptive EAE. Our findings strongly suggest that targeting Th17 response by inhibiting CysLTR1 signalling could be a promising therapeutic strategy for the treatment of MS and CNS inflammatory diseases.
Collapse
Affiliation(s)
- Bing Han
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yan-Yan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Ze-Qing Ye
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yun Xiao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Javad Rasouli
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Wen-Cheng Wu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Su-Min Ye
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xin-Yue Guo
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Lin Zhu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Li-Bin Wang
- The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
49
|
Schmiechen ZC, Stromnes IM. Mechanisms Governing Immunotherapy Resistance in Pancreatic Ductal Adenocarcinoma. Front Immunol 2021; 11:613815. [PMID: 33584701 PMCID: PMC7876239 DOI: 10.3389/fimmu.2020.613815] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/10/2020] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy with an overall 5-year survival rate of 10%. Disease lethality is due to late diagnosis, early metastasis and resistance to therapy, including immunotherapy. PDA creates a robust fibroinflammatory tumor microenvironment that contributes to immunotherapy resistance. While previously considered an immune privileged site, evidence demonstrates that in some cases tumor antigen-specific T cells infiltrate and preferentially accumulate in PDA and are central to tumor cell clearance and long-term remission. Nonetheless, PDA can rapidly evade an adaptive immune response using a myriad of mechanisms. Mounting evidence indicates PDA interferes with T cell differentiation into potent cytolytic effector T cells via deficiencies in naive T cell priming, inducing T cell suppression or promoting T cell exhaustion. Mechanistic research indicates that immunotherapy combinations that change the suppressive tumor microenvironment while engaging antigen-specific T cells is required for treatment of advanced disease. This review focuses on recent advances in understanding mechanisms limiting T cell function and current strategies to overcome immunotherapy resistance in PDA.
Collapse
Affiliation(s)
- Zoe C. Schmiechen
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Ingunn M. Stromnes
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, United States
- Center for Genome Engineering, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
50
|
Bianchi N, Emming S, Zecca C, Monticelli S. Vitamin D and IFN-β Modulate the Inflammatory Gene Expression Program of Primary Human T Lymphocytes. Front Immunol 2020; 11:566781. [PMID: 33343562 PMCID: PMC7746617 DOI: 10.3389/fimmu.2020.566781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/03/2020] [Indexed: 01/21/2023] Open
Abstract
IFN-β treatment is a commonly used therapy for relapsing-remitting multiple sclerosis (MS), while vitamin D deficiency correlates with an increased risk of MS and/or its activity. MS is a demyelinating chronic inflammatory disease of the central nervous system, in which activated T lymphocytes play a major role, and may represent direct targets of IFN-β and vitamin D activities. However, the underlying mechanism of action of vitamin D and IFN-β, alone or in combination, remains incompletely understood, especially when considering their direct effects on the ability of T lymphocytes to produce inflammatory cytokines. We profiled the expression of immune-related genes and microRNAs in primary human T lymphocytes in response to vitamin D and IFN-β, and we dissected the impact of these treatments on cytokine production and T cell proliferation. We found that the treatments influenced primarily memory T cell plasticity, rather than polarization toward a stable phenotype. Moreover, our data revealed extensive reprogramming of the transcriptional output of primary T cells in response to vitamin D and IFN-β and provide the bases for further mechanistic insights into these commonly used treatments.
Collapse
Affiliation(s)
- Niccolò Bianchi
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Stefan Emming
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Chiara Zecca
- Neurocenter of Southern Switzerland, Ospedale Regionale di Lugano, and Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
| | - Silvia Monticelli
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
| |
Collapse
|