1
|
Marrocco R, Lucero-Meza E, Benedict CA. Type I interferon regulation of group I ILC subsets during both homeostasis and cytomegalovirus infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf051. [PMID: 40258300 DOI: 10.1093/jimmun/vkaf051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/04/2025] [Indexed: 04/23/2025]
Abstract
Type 1 innate lymphoid cells (ILC1s) and conventional natural killer cells belong to the group 1 ILCs (gILC1), characterized largely by T-bet expression and interferon γ secretion. While much has been done to define factors that regulate the development, differentiation, and effector functions of both cell types, little is known about what controls gILC1 homeostasis. Here, mixed bone marrow chimeras were used to define the role of type I interferon receptor (IFNAR) signaling in regulating gILC1 in the spleen and liver at homeostasis and during murine cytomegalovirus infection. We show that basal IFNAR signaling induces cell and tissue-specific phenotypic changes in gILC1, inhibiting bona-fide ILC1 markers (CD49a, CD200R, CXCR6) and regulating expression of perforin and granzymes B and C. Finally, while IFNAR signaling enhances cytokine responsiveness in vitro in both gILC1 subsets, it has a dichotomous effect on interferon γ production during murine cytomegalovirus infection, stimulating it in conventional natural killer cells and inhibiting it in ILC1.
Collapse
Affiliation(s)
- Remi Marrocco
- Center for Vaccine Innovation and Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Eduardo Lucero-Meza
- Center for Vaccine Innovation and Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Chris A Benedict
- Center for Vaccine Innovation and Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| |
Collapse
|
2
|
Naing A, McKean M, Rosen LS, Sommerhalder D, Shaik NM, Wang IM, Le Corre C, Kern KA, Mishra NH, Pal SK. First-in-human phase I study to evaluate safety, tolerability, pharmacokinetics, pharmacodynamics, immunogenicity, and antitumor activity of PF-07209960 in patients with advanced or metastatic solid tumors. ESMO Open 2025; 10:104291. [PMID: 39965362 PMCID: PMC11876874 DOI: 10.1016/j.esmoop.2025.104291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND PF-07209960 is an antibody-cytokine fusion molecule that consists of a single potency-reduced interleukin-15 (IL-15) mutein and a bivalent high-affinity anti-programmed cell death protein 1 (PD-1) full-length IgG. This phase I study (NCT04628780) evaluated the safety, tolerability, pharmacokinetics (PK), pharmacodynamics, and potential clinical benefits of PF-07209960 in patients with selected locally advanced or metastatic solid tumors for whom no standard therapy was available. MATERIALS AND METHODS Escalating doses (1-30 mg) of PF-07209960 were administered subcutaneously once every 2 weeks in 28-day cycles. The primary endpoints included dose-limiting toxicities (DLTs), adverse events (AEs), and laboratory abnormalities. The secondary endpoints included PK, anti-drug antibodies (ADA) and neutralizing antibodies (NAb) against PF-07209960, and tumor response assessed using RECIST version 1.1. RESULTS Thirty-seven patients received treatment with PF-07209960 (1-, 3-, and 10-mg groups, n = 4 each; 15 mg, n = 3; 20 mg, n = 16; 30 mg, n = 6). The median age was 59.0 years (range 31-88 years). Six (22.2%) patients had DLTs. The most frequently reported treatment-related AEs (TRAEs) (≥50%) were general disorders and administration site condition [21 (56.8%)] and skin and subcutaneous tissue disorders [20 (54.1%)]. The most frequently reported grade ≥3 TRAE was anemia [5 (13.5%)]. Two patients with microsatellite-stable colorectal cancer had confirmed partial response, one each from the PF-07209960 20-mg and 30-mg cohorts, with a duration of response of 9.5 and 3 months, respectively. The rate of ADA was 93.9% (31/33), of which 63.6% (21/33) was treatment induced and 30.3% (10/33) was treatment boosted. CONCLUSION PF-07209960 was generally manageable, with potential antitumor activity in some patients.
Collapse
Affiliation(s)
- A Naing
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, USA.
| | - M McKean
- Sarah Cannon Research Institute (SCRI), Nashville, USA
| | - L S Rosen
- UCLA Santa Monica Hematology-Oncology, Santa Monica, USA
| | | | - N M Shaik
- Clinical Pharmacology and Translational Sciences, Pfizer Inc., La Jolla, USA
| | - I-M Wang
- Clinical Pharmacology and Translational Sciences, Pfizer Inc., La Jolla, USA
| | | | | | | | - S K Pal
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, USA
| |
Collapse
|
3
|
Islam MM, Watanabe E, Salma U, Ozaki M, Irahara T, Tanabe S, Katsuki R, Oishi D, Takeyama N. Immunoadjuvant therapy in the regulation of cell death in sepsis: recent advances and future directions. Front Immunol 2024; 15:1493214. [PMID: 39720718 PMCID: PMC11666431 DOI: 10.3389/fimmu.2024.1493214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/18/2024] [Indexed: 12/26/2024] Open
Abstract
Sepsis is characterized by a concomitant early pro-inflammatory response by immune cells to an infection, and an opposing anti-inflammatory response that results in protracted immunosuppression. The primary pathological event in sepsis is widespread programmed cell death, or cellular self-sacrifice, of innate and adaptive immune cells, leading to profound immunological suppression. This severe immune dysfunction hampers effective primary pathogen clearance, thereby increasing the risk of secondary opportunistic infections, latent viral reactivation, multiple organ dysfunction, and elevated mortality. The types of cell death include apoptosis (type I programmed cell death), autophagy (type II programmed cell death), NETosis (a program for formation of neutrophil extracellular traps (NETs)) and other programmed cell deaths like pyroptosis, ferroptosis, necroptosis, each contributing to immunosuppression in distinct ways during the later phases of sepsis. Extensive apoptosis of lymphocytes, such as CD4+, CD8+ T cells, and B cells, is strongly associated with immunosuppression. Apoptosis of dendritic cells further compromises T and B cell survival and can induce T cell anergy or promote regulatory Treg cell proliferation. Moreover, delayed apoptosis and impaired neutrophil function contribute to nosocomial infections and immune dysfunction in sepsis. Interestingly, aberrant NETosis and the subsequent depletion of mature neutrophils also trigger immunosuppression, and neutrophil pyroptosis can positively regulate NETosis. The interaction between programmed cell death 1 (PD-1) or programmed cell death 1 ligand (PD-L1) plays a key role in T cell modulation and neutrophil apoptosis in sepsis. The dendritic cell growth factor, Fms-like tyrosine kinase (FLTEL), increases DC numbers, enhances CD 28 expression, attenuates PD-L1, and improves survival in sepsis. Recently, immunoadjuvant therapies have attracted attention for their potential to restore host physiological immunity and homeostasis in patients with sepsis. This review focuses on several potential immunotherapeutic agents designed to bolster suppressed innate and adaptive immune responses in the management of sepsis.
Collapse
Affiliation(s)
- Md. Monirul Islam
- Department of Emergency and Critical Care Medicine, Aichi Medical University, Nagakute, Japan
- Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong (USTC), Chattogram, Bangladesh
| | - Eizo Watanabe
- Department of Emergency and Critical Care Medicine, Aichi Medical University, Nagakute, Japan
| | - Umme Salma
- Department of Emergency and Critical Care Medicine, Aichi Medical University, Nagakute, Japan
| | - Masayuki Ozaki
- Department of Emergency and Critical Care Medicine, Aichi Medical University, Nagakute, Japan
| | - Takayuki Irahara
- Department of Emergency and Critical Care Medicine, Aichi Medical University, Nagakute, Japan
| | - Subaru Tanabe
- Department of Emergency and Critical Care Medicine, Aichi Medical University, Nagakute, Japan
| | - Ryusuke Katsuki
- Department of Emergency and Critical Care Medicine, Aichi Medical University, Nagakute, Japan
| | - Dai Oishi
- Department of Emergency and Critical Care Medicine, Aichi Medical University, Nagakute, Japan
| | - Naoshi Takeyama
- Department of Emergency and Critical Care Medicine, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
4
|
Shi W, Xu W, Song L, Zeng Q, Qi G, Qin Y, Li Z, Liu X, Jiao Z, Zhao Y, Liu N, Lu H. A tumor-conditional IL-15 safely synergizes with immunotherapy to enhance antitumor immune responses. Mol Ther 2024; 32:4482-4496. [PMID: 39489922 PMCID: PMC11638872 DOI: 10.1016/j.ymthe.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/20/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
It is a challenge to invigorate tumor-infiltrating lymphocytes without causing immune-related adverse events, which also stands as a primary factor contributing to resistance against cancer immunotherapies. Interleukin (IL)-15 can potently promote expansion and activation of T cells, but its clinical use has been limited by dose-limiting toxicities. In this study, we develop a tumor-conditional IL-15 (pro-IL-15), which masks IL-15 with steric hindrance caused by Fc fragment and IL-15Rα-sushi domain. Upon reaching the tumor site, it can be cleaved by tumor-associated proteases to release an IL-15 superagonist, resulting in potent antitumor activities. Systemic delivery of pro-IL-15 demonstrates significantly reduced toxicity but uncompromised antitumor efficacy. Pro-IL-15 can yield better effectors and vitalize terminally exhausted CD8+ T cells to overcome checkpoint blockade resistance. Moreover, pro-IL-15 promotes chemotaxis and activation of adoptive T cells, leading to eradication of advanced solid tumors and durable cures. Furthermore, pro-IL-15 shows promise for synergizing with other immunotherapies like IL-12 and oncolytic virus by improving the CD8/Treg ratio and interferon-γ levels, resulting in substantial regression of both local and metastatic cold tumors. Collectively, our results suggest that pro-IL-15 represents a compelling strategy for overcoming resistance to current immunotherapies while avoiding toxicities.
Collapse
Affiliation(s)
- Wenqiang Shi
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Frontiers Science Center for Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wei Xu
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai 200336, China
| | - Luyao Song
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Frontiers Science Center for Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qiongya Zeng
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Frontiers Science Center for Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Gen Qi
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Frontiers Science Center for Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ying Qin
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Frontiers Science Center for Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhikun Li
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai 200336, China
| | - Xianglei Liu
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China
| | - Zheng Jiao
- Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 241 Huaihai West Road, Shanghai 200030, China
| | - Yonggang Zhao
- Suzhou HKeyBio Company Ltd, 218 Xinghu Street, Suzhou 215004, China
| | - Nan Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Huili Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Frontiers Science Center for Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Chongqing Research Institute, Shanghai Jiao Tong University, Chongqing 401135, China.
| |
Collapse
|
5
|
Cai Y, Han Z, Shen J, Zou Z, Guo J, Liang Y, Li S, Liao H, Ren Z, Peng H, Fu YX. Concurrent intratumoural T reg cell depletion and CD8 + T cell expansion via a cleavable anti-4-1BB-interleukin-15 fusion protein. Nat Biomed Eng 2024:10.1038/s41551-024-01303-6. [PMID: 39623095 DOI: 10.1038/s41551-024-01303-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/31/2024] [Indexed: 12/21/2024]
Abstract
Potent agonists of the inducible co-stimulatory receptor 4-1BB are too toxic for patients with advanced cancer. Here, on the basis of observations of a weak agonist of 4-1BB depleting regulatory T (Treg) cells within the tumour microenvironment without leading to substantial restoration of dysfunctional cytotoxic T cells (CTLs), we show that effective tumour control can be achieved via concurrent Treg cell depletion and CTL expansion through an anti-4-1BB antibody fused to interleukin-15 (IL-15) via a peptide sensitive to tumour proteases. In mouse models of advanced cancers, intraperitoneal injection of the bifunctional protein attenuated the activity of the interleukin mostly in the periphery of the primary tumour while allowing for the expansion of CTLs within the tumour microenvironment, led to more effective tumour inhibition and to lower systemic toxicity than treating the cancers with combinatorial treatment with unlinked anti-4-1BB antibody and IL-15, and reduced the resistance of tumours to checkpoint blockade. Concurrent eradication of Treg cells and activation of tumour-infiltrating lymphocytes may represent a general strategy for the effective control of advanced metastatic tumours.
Collapse
Affiliation(s)
- Yueqi Cai
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Changping Laboratory, Changping District, Beijing, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Zilong Han
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Jiao Shen
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhuangzhi Zou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingya Guo
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Changping Laboratory, Changping District, Beijing, China
| | - Yong Liang
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Shijie Li
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Changping Laboratory, Changping District, Beijing, China
| | - Huiping Liao
- Changping Laboratory, Changping District, Beijing, China
| | - Zhenhua Ren
- Changping Laboratory, Changping District, Beijing, China
| | - Hua Peng
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- Guangzhou National Laboratory, Bio-Island, Guangzhou, Guangdong, China.
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Yang-Xin Fu
- School of Basic Medical Sciences, Tsinghua University, Beijing, China.
- Changping Laboratory, Changping District, Beijing, China.
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
6
|
Chen P, Li S, Nagaoka K, Kakimi K, Kataoka K, Cabral H. Nanoenabled IL-15 Superagonist via Conditionally Stabilized Protein-Protein Interactions Eradicates Solid Tumors by Precise Immunomodulation. J Am Chem Soc 2024; 146:32431-32444. [PMID: 39356776 PMCID: PMC11613988 DOI: 10.1021/jacs.4c08327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Protein complexes are crucial structures that control many biological processes. Harnessing these structures could be valuable for therapeutic therapy. However, their instability and short lifespans need to be addressed for effective use. Here, we propose an innovative approach based on a functional polymeric cloak that coordinately anchors different domains of protein complexes and assembles them into a stabilized nanoformulation. As the polymer-protein association in the cloak is pH sensitive, the nanoformulation also allows targeting the release of the protein complexes to the acidic microenvironment of tumors for aiding their therapeutic performance. Building on this strategy, we developed an IL-15 nanosuperagonist (Nano-SA) by encapsulating the interleukin-15 (IL-15)/IL-15 Receptor α (IL-15Rα) complex (IL-15cx) for fostering synergistic transpresentation in tumors. Upon intravenous administration, Nano-SA stably circulated in the bloodstream, safeguarding the integrity of IL-15cx until reaching the tumor site, where it selectively released the active complex. Thus, Nano-SA significantly amplified the antitumor immune signals while diminishing systemic off-target effects. In murine colon cancer models, Nano-SA achieved potent immunotherapeutic effects, eradicating tumors without adverse side effects. These findings highlight the transformative potential of nanotechnology for advancing protein complex-based therapies.
Collapse
Affiliation(s)
- Pengwen Chen
- Department
of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shangwei Li
- Department
of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Koji Nagaoka
- Department
of Immunotherapeutics, The University of
Tokyo Hospital, 7-3-1
Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kazuhiro Kakimi
- Department
of Immunotherapeutics, The University of
Tokyo Hospital, 7-3-1
Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kazunori Kataoka
- Innovation
Center of NanoMedicine (iCONM), Kawasaki
Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Horacio Cabral
- Department
of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
7
|
Moynihan KD, Kumar MP, Sultan H, Pappas DC, Park T, Chin SM, Bessette P, Lan RY, Nguyen HC, Mathewson ND, Ni I, Chen W, Lee Y, Liao-Chan S, Chen J, Schumacher TN, Schreiber RD, Yeung YA, Djuretic IM. IL2 Targeted to CD8+ T Cells Promotes Robust Effector T-cell Responses and Potent Antitumor Immunity. Cancer Discov 2024; 14:1206-1225. [PMID: 38563906 PMCID: PMC11215410 DOI: 10.1158/2159-8290.cd-23-1266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/05/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
IL2 signals pleiotropically on diverse cell types, some of which contribute to therapeutic activity against tumors, whereas others drive undesired activity, such as immunosuppression or toxicity. We explored the theory that targeting of IL2 to CD8+ T cells, which are key antitumor effectors, could enhance its therapeutic index. To this aim, we developed AB248, a CD8 cis-targeted IL2 that demonstrates over 500-fold preference for CD8+ T cells over natural killer and regulatory T cells (Tregs), which may contribute to toxicity and immunosuppression, respectively. AB248 recapitulated IL2's effects on CD8+ T cells in vitro and induced selective expansion of CD8+T cells in primates. In mice, an AB248 surrogate demonstrated superior antitumor activity and enhanced tolerability as compared with an untargeted IL2Rβγ agonist. Efficacy was associated with the expansion and phenotypic enhancement of tumor-infiltrating CD8+ T cells, including the emergence of a "better effector" population. These data support the potential utility of AB248 in clinical settings. Significance: The full potential of IL2 therapy remains to be unlocked. We demonstrate that toxicity can be decoupled from antitumor activity in preclinical models by limiting IL2 signaling to CD8+ T cells, supporting the development of CD8+ T cell-selective IL2 for the treatment of cancer. See related article by Kaptein et al. p. 1226.
Collapse
Affiliation(s)
| | - Manu P. Kumar
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | - Hussein Sultan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri.
| | | | - Terrence Park
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | - S. Michael Chin
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | - Paul Bessette
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | - Ruth Y. Lan
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | - Henry C. Nguyen
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | | | - Irene Ni
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | - Wei Chen
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | - Yonghee Lee
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | - Sindy Liao-Chan
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | - Jessie Chen
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | - Ton N.M. Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam; Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Robert D. Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri.
| | - Yik A. Yeung
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | | |
Collapse
|
8
|
Lu T, Ma R, Mansour AG, Bustillos C, Li Z, Li Z, Ma S, Teng KY, Chen H, Zhang J, Villalona-Calero MA, Caligiuri MA, Yu J. Preclinical Evaluation of Off-The-Shelf PD-L1+ Human Natural Killer Cells Secreting IL15 to Treat Non-Small Cell Lung Cancer. Cancer Immunol Res 2024; 12:731-743. [PMID: 38572955 PMCID: PMC11218741 DOI: 10.1158/2326-6066.cir-23-0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 01/04/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
We described previously a human natural killer (NK) cell population that upregulates PD-L1 expression upon recognizing and reacting to tumor cells or exposure to a combination of IL12, IL18, and IL15. Here, to investigate the safety and efficacy of tumor-reactive and cytokine-activated (TRACK) NK cells, human NK cells from umbilical cord blood were expanded, transduced with a retroviral vector encoding soluble (s) IL15, and further cytokine activated to induce PD-L1 expression. Our results show cryopreserved and thawed sIL15_TRACK NK cells had significantly improved cytotoxicity against non-small cell lung cancer (NSCLC) in vitro when compared with non-transduced (NT) NK cells, PD-L1+ NK cells lacking sIL15 expression (NT_TRACK NK), or NK cells expressing sIL15 without further cytokine activation (sIL15 NK cells). Intravenous injection of sIL15_TRACK NK cells into immunodeficient mice with NSCLC significantly slowed tumor growth and improved survival when compared with NT NK and sIL15 NK cells. The addition of the anti-PD-L1 atezolizumab further improved control of NSCLC growth by sIL15_TRACK NK cells in vivo. Moreover, a dose-dependent efficacy was assessed for sIL15_TRACK NK cells without observed toxicity. These experiments indicate that the administration of frozen, off-the-shelf allogeneic sIL15_TRACK NK cells is safe in preclinical models of human NSCLC and has potent antitumor activity without and with the administration of atezolizumab. A phase I clinical trial modeled after this preclinical study using sIL15_TRACK NK cells alone or with atezolizumab for relapsed or refractory NSCLC is currently underway (NCT05334329).
Collapse
MESH Headings
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/therapy
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Interleukin-15
- Animals
- Lung Neoplasms/immunology
- Lung Neoplasms/therapy
- B7-H1 Antigen/metabolism
- Mice
- Xenograft Model Antitumor Assays
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Cell Line, Tumor
- Mice, SCID
- Mice, Inbred NOD
- Female
Collapse
Affiliation(s)
- Ting Lu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Rui Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Anthony G. Mansour
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Christian Bustillos
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Zhiyao Li
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Zhenlong Li
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Kun-Yu Teng
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Hanyu Chen
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Miguel A. Villalona-Calero
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- City of Hope Comprehensive Cancer Center, Los Angeles, CA 91010, USA
| | - Michael A. Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- City of Hope Comprehensive Cancer Center, Los Angeles, CA 91010, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- City of Hope Comprehensive Cancer Center, Los Angeles, CA 91010, USA
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Los Angeles, CA 91010, USA
| |
Collapse
|
9
|
Roychowdhury S, Pant B, Cross E, Scheraga R, Vachharajani V. Effect of ethanol exposure on innate immune response in sepsis. J Leukoc Biol 2024; 115:1029-1041. [PMID: 38066660 PMCID: PMC11136611 DOI: 10.1093/jleuko/qiad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 01/06/2024] Open
Abstract
Alcohol use disorder, reported by 1 in 8 critically ill patients, is a risk factor for death in sepsis patients. Sepsis, the leading cause of death, kills over 270,000 patients in the United States alone and remains without targeted therapy. Immune response in sepsis transitions from an early hyperinflammation to persistent inflammation and immunosuppression and multiple organ dysfunction during late sepsis. Innate immunity is the first line of defense against pathogen invasion. Ethanol exposure is known to impair innate and adaptive immune response and bacterial clearance in sepsis patients. Specifically, ethanol exposure is known to modulate every aspect of innate immune response with and without sepsis. Multiple molecular mechanisms are implicated in causing dysregulated immune response in ethanol exposure with sepsis, but targeted treatments have remained elusive. In this article, we outline the effects of ethanol exposure on various innate immune cell types in general and during sepsis.
Collapse
Affiliation(s)
- Sanjoy Roychowdhury
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Bishnu Pant
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Emily Cross
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Rachel Scheraga
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
- Department of Pulmonary and Critical Care Medicine, Integrated Hospital-Care Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland OH 44195, United States
| | - Vidula Vachharajani
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
- Department of Pulmonary and Critical Care Medicine, Integrated Hospital-Care Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland OH 44195, United States
| |
Collapse
|
10
|
Jou E. Clinical and basic science aspects of innate lymphoid cells as novel immunotherapeutic targets in cancer treatment. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 209:1-60. [PMID: 39461748 DOI: 10.1016/bs.pmbts.2024.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Immunotherapy has revolutionised cancer treatment over the past decade, demonstrating remarkable efficacy across a broad range of cancer types. However, not all patients or cancer types respond to contemporary clinically-utilised immunotherapeutic strategies, which largely focus on harnessing adaptive immune T cells for cancer treatment. Accordingly, it is increasingly recognised that upstream innate immune pathways, which govern and orchestrate the downstream adaptive immune response, may prove critical in overcoming cancer immunotherapeutic resistance. Innate lymphoid cells (ILCs) are the most recently discovered major innate immune cell population. They have overarching roles in homeostasis and orchestrating protective immunity against pathogens. As innate immune counterparts of adaptive immune T cells, ILCs exert effector functions through the secretion of cytokines and direct cell-to-cell contact, with broad influence on the overall immune response. Importantly, dysregulation of ILC subsets have been associated with a range of diseases, including immunodeficiency disorders, allergy, autoimmunity, and more recently, cancer. ILCs may either promote or inhibit cancer initiation and progression depending on the cancer type and the specific ILC subsets involved. Critically, therapeutic targeting of ILCs and their associated cytokines shows promise against a wide range of cancer types in both preclinical models and early phase oncology clinical trials. This chapter provides a comprehensive overview of the current understanding of ILC subsets and the associated cytokines they produce in cancer pathogenesis, with specific focus on how these innate pathways are, or can be targeted, therapeutically to overcome therapeutic resistance and ultimately improve patient care.
Collapse
Affiliation(s)
- Eric Jou
- Department of Oncology, Oxford University Hospitals, University of Oxford, Oxford, United Kingdom; Kellogg College, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
11
|
Stenger TD, Miller JS. Therapeutic approaches to enhance natural killer cell cytotoxicity. Front Immunol 2024; 15:1356666. [PMID: 38545115 PMCID: PMC10966407 DOI: 10.3389/fimmu.2024.1356666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/05/2024] [Indexed: 04/14/2024] Open
Abstract
Enhancing the cytotoxicity of natural killer (NK) cells has emerged as a promising strategy in cancer immunotherapy, due to their pivotal role in immune surveillance and tumor clearance. This literature review provides a comprehensive overview of therapeutic approaches designed to augment NK cell cytotoxicity. We analyze a wide range of strategies, including cytokine-based treatment, monoclonal antibodies, and NK cell engagers, and discuss criteria that must be considered when selecting an NK cell product to combine with these strategies. Furthermore, we discuss the challenges and limitations associated with each therapeutic strategy, as well as the potential for combination therapies to maximize NK cell cytotoxicity while minimizing adverse effects. By exploring the wealth of research on this topic, this literature review aims to provide a comprehensive resource for researchers and clinicians seeking to develop and implement novel therapeutic strategies that harness the full potential of NK cells in the fight against cancer. Enhancing NK cell cytotoxicity holds great promise in the evolving landscape of immunotherapy, and this review serves as a roadmap for understanding the current state of the field and the future directions in NK cell-based therapies.
Collapse
Affiliation(s)
- Terran D. Stenger
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | | |
Collapse
|
12
|
Ji C, Kuang B, Buetow BS, Vitsky A, Xu Y, Huang TH, Chaparro-Riggers J, Kraynov E, Matsumoto D. Pharmacokinetics, pharmacodynamics, and toxicity of a PD-1-targeted IL-15 in cynomolgus monkeys. PLoS One 2024; 19:e0298240. [PMID: 38315680 PMCID: PMC10843171 DOI: 10.1371/journal.pone.0298240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
PF-07209960 is a novel bispecific fusion protein composed of an anti-PD-1 antibody and engineered IL-15 cytokine mutein with reduced binding affinity to its receptors. The pharmacokinetics (PK), pharmacodynamics (PD), and toxicity of PF-07209960 were evaluated following once every other week subcutaneous (SC) or intravenous (IV) administration to cynomolgus monkeys in a repeat-dose PKPD (0.01-0.3 mg/kg/dose) and GLP toxicity study (0.1-3 mg/kg/dose). PF-07209960 showed dose dependent pharmacokinetics with a terminal T1/2 of 8 and 13 hours following IV administration at 0.03 and 0.1 mg/kg, respectively. The clearance is faster than a typical IgG1 antibody. Slightly faster clearance was also observed following the second dose, likely due to increased target pool and formation of anti-drug antibodies (ADA). Despite a high incidence rate of ADA (92%) observed in GLP toxicity study, PD-1 receptor occupancy, IL-15 signaling (STAT5 phosphorylation) and T cell expansion were comparable following the first and second doses. Activation and proliferation of T cells were observed with largest increase in cell numbers found in gamma delta T cells, followed by CD4+ and CD8+ T cells, and then NK cells. Release of cytokines IL-6, IFNγ, and IL-10 were detected, which peaked at 72 hours postdose. There was PF-07209960-related mortality at ≥1 mg/kg. At scheduled necropsy, microscopic findings were generalized mononuclear infiltration in various tissues. Both the no observed adverse effect level (NOAEL) and the highest non severely toxic dose (HNSTD) were determined to be 0.3 mg/kg/dose, which corresponded to mean Cmax and AUC48 values of 1.15 μg/mL and 37.9 μg*h/mL, respectively.
Collapse
Affiliation(s)
- Changhua Ji
- Drug Safety Research and Development, Pfizer Inc, San Diego, California, United States of America
| | - Bing Kuang
- Biomedical Design, Pfizer Inc, San Diego, California, United States of America
| | - Bernard S. Buetow
- Drug Safety Research and Development, Pfizer Inc, San Diego, California, United States of America
| | - Allison Vitsky
- Drug Safety Research and Development, Pfizer Inc, San Diego, California, United States of America
| | - Yuanming Xu
- Cancer Immunology Discovery, Pfizer Inc, San Diego, California, United States of America
| | - Tzu-Hsuan Huang
- Cancer Immunology Discovery, Pfizer Inc, San Diego, California, United States of America
| | | | - Eugenia Kraynov
- Biomedical Design, Pfizer Inc, San Diego, California, United States of America
| | - Diane Matsumoto
- Drug Safety Research and Development, Pfizer Inc, San Diego, California, United States of America
| |
Collapse
|
13
|
Andreata F, Moynihan KD, Fumagalli V, Di Lucia P, Pappas DC, Kawashima K, Ni I, Bessette PH, Perucchini C, Bono E, Giustini L, Nguyen HC, Chin SM, Yeung YA, Gibbs CS, Djuretic I, Iannacone M. CD8 cis-targeted IL-2 drives potent antiviral activity against hepatitis B virus. Sci Transl Med 2024; 16:eadi1572. [PMID: 38198572 DOI: 10.1126/scitranslmed.adi1572] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024]
Abstract
CD8+ T cells are key antiviral effectors against hepatitis B virus (HBV), yet their number and function can be compromised in chronic infections. Preclinical HBV models displaying CD8+ T cell dysfunction showed that interleukin-2 (IL-2)-based treatment, unlike programmed cell death ligand 1 (PD-L1) checkpoint blockade, could reverse this defect, suggesting its therapeutic potential against HBV. However, IL-2's effectiveness is hindered by its pleiotropic nature, because its receptor is found on various immune cells, including regulatory T (Treg) cells and natural killer (NK) cells, which can counteract antiviral responses or contribute to toxicity, respectively. To address this, we developed a cis-targeted CD8-IL2 fusion protein, aiming to selectively stimulate dysfunctional CD8+ T cells in chronic HBV. In a mouse model, CD8-IL2 boosted the number of HBV-reactive CD8+ T cells in the liver without substantially altering Treg or NK cell counts. These expanded CD8+ T cells exhibited increased interferon-γ and granzyme B production, demonstrating enhanced functionality. CD8-IL2 treatment resulted in substantial antiviral effects, evidenced by marked reductions in viremia and antigenemia and HBV core antigen-positive hepatocytes. In contrast, an untargeted CTRL-IL2 led to predominant NK cell expansion, minimal CD8+ T cell expansion, negligible changes in effector molecules, and minimal antiviral activity. Human CD8-IL2 trials in cynomolgus monkeys mirrored these results, achieving a roughly 20-fold increase in peripheral blood CD8+ T cells without affecting NK or Treg cell numbers. These data support the development of CD8-IL2 as a therapy for chronic HBV infection.
Collapse
Affiliation(s)
- Francesco Andreata
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | | | - Valeria Fumagalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Pietro Di Lucia
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Keigo Kawashima
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Irene Ni
- Asher Biotherapeutics, South San Francisco, CA 94080, USA
| | | | - Chiara Perucchini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Elisa Bono
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Leonardo Giustini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Henry C Nguyen
- Asher Biotherapeutics, South San Francisco, CA 94080, USA
| | - S Michael Chin
- Asher Biotherapeutics, South San Francisco, CA 94080, USA
| | - Yik Andy Yeung
- Asher Biotherapeutics, South San Francisco, CA 94080, USA
| | - Craig S Gibbs
- Asher Biotherapeutics, South San Francisco, CA 94080, USA
| | - Ivana Djuretic
- Asher Biotherapeutics, South San Francisco, CA 94080, USA
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
14
|
Wu WC, Shiu C, Tong TK, Leung SO, Hui CW. Suppression of NK Cell Activation by JAK3 Inhibition: Implication in the Treatment of Autoimmune Diseases. J Immunol Res 2023; 2023:8924603. [PMID: 38106519 PMCID: PMC10723930 DOI: 10.1155/2023/8924603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023] Open
Abstract
Natural killer (NK) cell is an essential cytotoxic lymphocyte in our innate immunity. Activation of NK cells is of paramount importance in defending against pathogens, suppressing autoantibody production and regulating other immune cells. Common gamma chain (γc) cytokines, including IL-2, IL-15, and IL-21, are defined as essential regulators for NK cell homeostasis and development. However, it is inconclusive whether γc cytokine-driven NK cell activation plays a protective or pathogenic role in the development of autoimmunity. In this study, we investigate and correlate the differential effects of γc cytokines in NK cell expansion and activation. IL-2 and IL-15 are mainly responsible for NK cell activation, while IL-21 preferentially stimulates NK cell proliferation. Blockade of Janus tyrosine kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway by either JAK inhibitors or antibodies targeting γc receptor subunits reverses the γc cytokine-induced NK cell activation, leading to suppression of its autoimmunity-like phenotype in vitro. These results underline the mechanisms of how γc cytokines trigger autoimmune phenotype in NK cells as a potential target to autoimmune diseases.
Collapse
Affiliation(s)
- Wai Chung Wu
- SinoMab BioScience Limited, Units 303 and 305 to 307, No. 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong
| | - Carol Shiu
- SinoMab BioScience Limited, Units 303 and 305 to 307, No. 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong
| | - Tak Keung Tong
- SinoMab BioScience Limited, Units 303 and 305 to 307, No. 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong
| | - Shui On Leung
- SinoMab BioScience Limited, Units 303 and 305 to 307, No. 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong
| | - Chin Wai Hui
- SinoMab BioScience Limited, Units 303 and 305 to 307, No. 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong
| |
Collapse
|
15
|
Di Matteo S, Munari E, Fiore PF, Santopolo S, Sampaoli C, Pelosi A, Chouaib S, Tumino N, Vacca P, Mariotti FR, Ebert S, Machwirth M, Haas D, Pezzullo M, Pietra G, Grottoli M, Buart S, Mortier E, Maggi E, Moretta L, Caruana I, Azzarone B. The roles of different forms of IL-15 in human melanoma progression. Front Immunol 2023; 14:1183668. [PMID: 37334356 PMCID: PMC10272795 DOI: 10.3389/fimmu.2023.1183668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/05/2023] [Indexed: 06/20/2023] Open
Abstract
Background Melanoma is a lethal skin cancer, and the risk of developing it is increased by exposure to ultraviolet (UV) radiation. The production of cytokines such as interleukin-15 (IL-15), induced by the exposure of skin cells to UV rays, could also promote melanoma development. The aim of this study is to investigate the possible role of Interleukin-15/Interleukin-15 Receptor α (IL-15/IL-15Rα) complexes in melanoma development. Methods The expression of IL-15/IL-15Rα complexes by melanoma cells was evaluated both ex vivo and in vitro by tissue microarray, PCR, and flow cytometry. The presence of the soluble complex (sIL-15/IL-15Rα) in the plasma of metastatic melanoma patients was detected using an ELISA assay. Subsequently, we investigated the impact of natural killer (NK) cell activation after rIL-2 starvation followed by exposure to the sIL-15/IL-15Rα complex. Finally, by analyzing public datasets, we studied the correlation between IL-15 and IL-15Rα expressions and melanoma stage, NK and T-cell markers, and overall survival (OS). Results Analysis of a melanoma tissue microarray shows a significant increase in the number of IL-15+ tumor cells from the benign nevi to metastatic melanoma stages. Metastatic melanoma cell lines express a phorbol-12-myristate-13-acetate (PMA)-cleavable membrane-bound IL-15 (mbIL-15), whereas cultures from primary melanomas express a PMA-resistant isoform. Further analysis revealed that 26% of metastatic patients present with consistently high plasmatic levels of sIL-15/IL-15Rα. When the recombinant soluble human IL-15/IL-15Rα complex is added to briefly starved rIL-2-expanded NK cells, these cells exhibit strongly reduced proliferation and levels of cytotoxic activity against K-562 and NALM-18 target cells. The analysis of public gene expression datasets revealed that high IL-15 and IL-15Rα intra-tumoral production correlates with the high levels of expression of CD5+ and NKp46+ (T and NK markers) and significantly correlates with a better OS in stages II and III, but not in stage IV. Conclusions Membrane-bound and secreted IL-15/IL-15Rα complexes are continuously present during progression in melanoma. It is notable that, although IL-15/IL-15Rα initially promoted the production of cytotoxic T and NK cells, at stage IV promotion of the development of anergic and dysfunctional cytotoxic NK cells was observed. In a subgroup of melanoma metastatic patients, the continuous secretion of high amounts of the soluble complex could represent a novel NK cell immune escape mechanism.
Collapse
Affiliation(s)
- Sabina Di Matteo
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Enrico Munari
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Piera Filomena Fiore
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Silvia Santopolo
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Camilla Sampaoli
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Andrea Pelosi
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Salem Chouaib
- Institut national de la santé et de la recherche médicale Unitè Mixte Rechercce (INSERM UMR) 1186, Integrative Tumor Immunology and Cancer Immunotherapy, Gustave Roussy, École Pratique des Hautes Études (EPHE), Faculty De Médecine Univ. Paris-Sud, University Paris-Saclay, Villejuif, France
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Nicola Tumino
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Paola Vacca
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Francesca Romana Mariotti
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Stefan Ebert
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Würzburg, Würzburg, Germany
| | - Markus Machwirth
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Würzburg, Würzburg, Germany
| | - Dorothee Haas
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Würzburg, Würzburg, Germany
| | - Marco Pezzullo
- Core Facility, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Gabriella Pietra
- Department of Experimental Medicine (DiMES), University of Genoa, Genoa, Italy
- Immunology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Melania Grottoli
- Immunology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Stephanie Buart
- Institut national de la santé et de la recherche médicale Unitè Mixte Rechercce (INSERM UMR) 1186, Integrative Tumor Immunology and Cancer Immunotherapy, Gustave Roussy, École Pratique des Hautes Études (EPHE), Faculty De Médecine Univ. Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Erwan Mortier
- Nantes Université, Centre national de la recherche scientifique (CNRS), Inserm, CRCI2NA, Nantes, France
- LabEx IGO, Immunotherapy, Graft, Oncology, Nantes, France
| | - Enrico Maggi
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Ignazio Caruana
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Würzburg, Würzburg, Germany
| | - Bruno Azzarone
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
16
|
Morita N, Hoshi M, Tezuka H, Ando T, Yoshida S, Sato F, Yokoi H, Ito H, Saito K. CD8+ Regulatory T Cells Induced by Lipopolysaccharide Improve Mouse Endotoxin Shock. Immunohorizons 2023; 7:353-363. [PMID: 37212786 PMCID: PMC10579971 DOI: 10.4049/immunohorizons.2200074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 05/03/2023] [Indexed: 05/23/2023] Open
Abstract
Sepsis is a systemic inflammatory disease caused by a bacterial infection that leads to severe mortality, especially in elderly patients, because of an excessive immune response and impaired regulatory functions. Antibiotic treatment is widely accepted as the first-line therapy for sepsis; however, its excessive use has led to the emergence of multidrug-resistant bacteria in patients with sepsis. Therefore, immunotherapy may be effective in treating sepsis. Although CD8+ regulatory T cells (Tregs) are known to have immunomodulatory effects in various inflammatory diseases, their role during sepsis remains unclear. In this study, we investigated the role of CD8+ Tregs in an LPS-induced endotoxic shock model in young (8-12 wk old) and aged (18-20 mo old) mice. The adoptive transfer of CD8+ Tregs into LPS-treated young mice improved the survival rate of LPS-induced endotoxic shock. Moreover, the number of CD8+ Tregs in LPS-treated young mice increased through the induction of IL-15 produced by CD11c+ cells. In contrast, LPS-treated aged mice showed a reduced induction of CD8+ Tregs owing to the limited production of IL-15. Furthermore, CD8+ Tregs induced by treatment with the rIL-15/IL-15Rα complex prevented LPS-induced body wight loss and tissue injury in aged mice. In this study, to our knowledge, the induction of CD8+ Tregs as novel immunotherapy or adjuvant therapy for endotoxic shock might reduce the uncontrolled immune response and ultimately improve the outcomes of endotoxic shock.
Collapse
Affiliation(s)
- Nanaka Morita
- Department of Disease Control and Prevention, Fujita Health University, Toyoake, Aichi, Japan
| | - Masato Hoshi
- Department of Disease Control and Prevention, Fujita Health University, Toyoake, Aichi, Japan
- Department of Informative Clinical Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Hiroyuki Tezuka
- Cellular Function Analysis, Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi, Japan
| | - Tatsuya Ando
- Joint Research Laboratory of Clinical Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Sayaka Yoshida
- Department of Informative Clinical Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Fumiaki Sato
- Department of Informative Clinical Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Hiroyuki Yokoi
- Department of Informative Clinical Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Hiroyasu Ito
- Cellular Function Analysis, Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi, Japan
| | - Kuniaki Saito
- Department of Disease Control and Prevention, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
17
|
Wang F, Cui Y, He D, Gong L, Liang H. Natural killer cells in sepsis: Friends or foes? Front Immunol 2023; 14:1101918. [PMID: 36776839 PMCID: PMC9909201 DOI: 10.3389/fimmu.2023.1101918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Sepsis is one of the major causes of death in the hospital worldwide. The pathology of sepsis is tightly associated with dysregulation of innate immune responses. The contribution of macrophages, neutrophils, and dendritic cells to sepsis is well documented, whereas the role of natural killer (NK) cells, which are critical innate lymphoid lineage cells, remains unclear. In some studies, the activation of NK cells has been reported as a risk factor leading to severe organ damage or death. In sharp contrast, some other studies revealed that triggering NK cell activity contributes to alleviating sepsis. In all, although there are several reports on NK cells in sepsis, whether they exert detrimental or protective effects remains unclear. Here, we will review the available experimental and clinical studies about the opposing roles of NK cells in sepsis, and we will discuss the prospects for NK cell-based immunotherapeutic strategies for sepsis.
Collapse
Affiliation(s)
- Fangjie Wang
- State Key Laboratory of Trauma, Burns and Combines Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yiqin Cui
- State Key Laboratory of Trauma, Burns and Combines Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dongmei He
- State Key Laboratory of Trauma, Burns and Combines Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lisha Gong
- School of Laboratory Medicine and Technology, Harbin Medical University, Daqing, China
| | - Huaping Liang
- State Key Laboratory of Trauma, Burns and Combines Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
18
|
Antosova Z, Podzimkova N, Tomala J, Augustynkova K, Sajnerova K, Nedvedova E, Sirova M, de Martynoff G, Bechard D, Moebius U, Kovar M, Spisek R, Adkins I. SOT101 induces NK cell cytotoxicity and potentiates antibody-dependent cell cytotoxicity and anti-tumor activity. Front Immunol 2022; 13:989895. [PMID: 36300122 PMCID: PMC9590108 DOI: 10.3389/fimmu.2022.989895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
SOT101 is a superagonist fusion protein of interleukin (IL)-15 and the IL-15 receptor α (IL-15Rα) sushi+ domain, representing a promising clinical candidate for the treatment of cancer. SOT101 among other immune cells specifically stimulates natural killer (NK) cells and memory CD8+ T cells with no significant expansion or activation of the regulatory T cell compartment. In this study, we showed that SOT101 induced expression of cytotoxic receptors NKp30, DNAM-1 and NKG2D on human NK cells. SOT101 stimulated dose-dependent proliferation and the relative expansion of both major subsets of human NK cells, CD56brightCD16- and CD56dimCD16+, and these displayed an enhanced cytotoxicity in vitro. Using human PBMCs and isolated NK cells, we showed that SOT101 added concomitantly or used for immune cell pre-stimulation potentiated clinically approved monoclonal antibodies Cetuximab, Daratumumab and Obinutuzumab in killing of tumor cells in vitro. The anti-tumor efficacy of SOT101 in combination with Daratumumab was assessed in a solid multiple myeloma xenograft in CB17 SCID mouse model testing several combination schedules of administration in the early and late therapeutic setting of established tumors in vivo. SOT101 and Daratumumab monotherapies decreased with various efficacy tumor growth in vivo in dependence on the advancement of the tumor development. The combination of both drugs showed the strongest anti-tumor efficacy. Specifically, the sequencing of both drugs did not matter in the early therapeutic setting where a complete tumor regression was observed in all animals. In the late therapeutic treatment of established tumors Daratumumab followed by SOT101 administration or a concomitant administration of both drugs showed a significant anti-tumor efficacy over the respective monotherapies. These results suggest that SOT101 might significantly augment the anti-tumor activity of therapeutic antibodies by increasing NK cell-mediated activity in patients. These results support the evaluation of SOT101 in combination with Daratumumab in clinical studies and present a rationale for an optimal clinical dosing schedule selection.
Collapse
Affiliation(s)
| | - Nada Podzimkova
- Preclinical Department, SOTIO Biotech a.s, Prague, Czechia
- Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| | - Jakub Tomala
- Laboratory of Tumor Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | | | | | - Eva Nedvedova
- Preclinical Department, SOTIO Biotech a.s, Prague, Czechia
| | - Milada Sirova
- Laboratory of Tumor Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | | | | | - Ulrich Moebius
- Preclinical Department, SOTIO Biotech a.s, Prague, Czechia
| | - Marek Kovar
- Laboratory of Tumor Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Radek Spisek
- Preclinical Department, SOTIO Biotech a.s, Prague, Czechia
- Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| | - Irena Adkins
- Preclinical Department, SOTIO Biotech a.s, Prague, Czechia
- Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
- *Correspondence: Irena Adkins,
| |
Collapse
|
19
|
Kim D, Park JH, Kim TY, Kim DG, Byun JH, Kim HS. Enhanced half-life and antitumor activity of Interleukin-15 through genetic fusion of a serum albumin-specific protein binder. Int J Pharm 2022; 625:122059. [PMID: 35905933 DOI: 10.1016/j.ijpharm.2022.122059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/07/2022] [Accepted: 07/24/2022] [Indexed: 11/26/2022]
Abstract
Human interleukin-15 (hIL-15) has attracted a considerable attention as a promising cancer immunotherapeutic due to its function to directly stimulate the proliferation and cytotoxic activity of NK and T cells. Nevertheless, a relatively short half-life of hIL-15 requires repeated administration and higher doses, causing serious side effects. Here, we demonstrate an enhanced blood half-life and biological activity of hIL-15 through genetic fusion of a human serum albumin-specific protein binder (rHSA). The fusion construct (rHSA-IL15) was observed to maintain respective binding activities for both hIL-15 receptor α and human serum albumin. The rHSA-IL15 led to a significant increase in the secretion of Granzyme B and INF-γ by immune cells compare to free hIL-15, expanding the population of activated T cell subset such as CD4 + T and CD8+ T cells. The terminal half-life of the rHSA-IL15 was prolonged by around a 40-fold in transgenic mice expressing human serum albumin, compared to free hIL-15. The rHSA-IL15 resulted in distinct anti-tumor activities in xenograft SCC (squamous cell carcinoma) mouse and allograft melanoma mouse models through activation of NK and CD8+ T cells. The rHSA-IL15 is expected to be used in cancer immunotherapy, assisting in the development of other cytokines as immunotherapeutic agents with greater efficacy.
Collapse
Affiliation(s)
- Dasom Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jin-Ho Park
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Tae-Yoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; Present address: Beckmann Research Institute, City of Hope, Duarte, CA, USA
| | - Dong-Gun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea.
| | - Hak-Sung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| |
Collapse
|
20
|
Larouche JA, Fraczek PM, Kurpiers SJ, Yang BA, Davis C, Castor-Macias JA, Sabin K, Anderson S, Harrer J, Hall M, Brooks SV, Jang YC, Willett N, Shea LD, Aguilar CA. Neutrophil and natural killer cell imbalances prevent muscle stem cell-mediated regeneration following murine volumetric muscle loss. Proc Natl Acad Sci U S A 2022; 119:e2111445119. [PMID: 35377804 PMCID: PMC9169656 DOI: 10.1073/pnas.2111445119] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
Volumetric muscle loss (VML) overwhelms the innate regenerative capacity of mammalian skeletal muscle (SkM), leading to numerous disabilities and reduced quality of life. Immune cells are critical responders to muscle injury and guide tissue resident stem cell– and progenitor-mediated myogenic repair. However, how immune cell infiltration and intercellular communication networks with muscle stem cells are altered following VML and drive pathological outcomes remains underexplored. Herein, we contrast the cellular and molecular mechanisms of VML injuries that result in the fibrotic degeneration or regeneration of SkM. Following degenerative VML injuries, we observed the heightened infiltration of natural killer (NK) cells as well as the persistence of neutrophils beyond 2 wk postinjury. Functional validation of NK cells revealed an antagonistic role in neutrophil accumulation in part via inducing apoptosis and CCR1-mediated chemotaxis. The persistent infiltration of neutrophils in degenerative VML injuries was found to contribute to impairments in muscle stem cell regenerative function, which was also attenuated by transforming growth factor beta 1 (TGFβ1). Blocking TGFβ signaling reduced neutrophil accumulation and fibrosis and improved muscle-specific force. Collectively, these results enhance our understanding of immune cell–stem cell cross talk that drives regenerative dysfunction and provide further insight into possible avenues for fibrotic therapy exploration.
Collapse
Affiliation(s)
- Jacqueline A. Larouche
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
| | - Paula M. Fraczek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
| | - Sarah J. Kurpiers
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Benjamin A. Yang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
| | - Carol Davis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109
| | - Jesus A. Castor-Macias
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
| | - Kaitlyn Sabin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
| | - Shannon Anderson
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - Julia Harrer
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - Matthew Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Susan V. Brooks
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109
| | - Young C. Jang
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Nick Willett
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Carlos A. Aguilar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
21
|
Schmidt D, Ebrahimabadi S, Gomes KRDS, de Moura Aguiar G, Cariati Tirapelle M, Nacasaki Silvestre R, de Azevedo JTC, Tadeu Covas D, Picanço-Castro V. Engineering CAR-NK cells: how to tune innate killer cells for cancer immunotherapy. IMMUNOTHERAPY ADVANCES 2022; 2:ltac003. [PMID: 35919494 PMCID: PMC9327111 DOI: 10.1093/immadv/ltac003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Cell therapy is an innovative approach that permits numerous possibilities in the field of cancer treatment. CAR-T cells have been successfully used in patients with hematologic relapsed/refractory. However, the need for autologous sources for T cells is still a major drawback. CAR-NK cells have emerged as a promising resource using allogeneic cells that could be established as an off-the-shelf treatment. NK cells can be obtained from various sources, such as peripheral blood (PB), bone marrow, umbilical cord blood (CB), and induced pluripotent stem cells (iPSC), as well as cell lines. Genetic engineering of NK cells to express different CAR constructs for hematological cancers and solid tumors has shown promising preclinical results and they are currently being explored in multiple clinical trials. Several strategies have been employed to improve CAR-NK-cell expansion and cytotoxicity efficiency. In this article, we review the latest achievements and progress made in the field of CAR-NK-cell therapy.
Collapse
Affiliation(s)
- Dayane Schmidt
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sima Ebrahimabadi
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Kauan Ribeiro de Sena Gomes
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Graziela de Moura Aguiar
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Mariane Cariati Tirapelle
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Renata Nacasaki Silvestre
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Júlia Teixeira Cottas de Azevedo
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dimas Tadeu Covas
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Virginia Picanço-Castro
- Regional Blood Center of the School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
22
|
The use of supercytokines, immunocytokines, engager cytokines, and other synthetic cytokines in immunotherapy. Cell Mol Immunol 2022; 19:192-209. [PMID: 35043005 PMCID: PMC8803834 DOI: 10.1038/s41423-021-00786-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/25/2021] [Indexed: 02/08/2023] Open
Abstract
Cytokines exert powerful immunomodulatory effects that are critical to physiology and pathology in humans. The application of natural cytokines in clinical studies has not been clearly established, and there are often problems associated with toxicity or lack of efficacy. The key reasons can be attributed to the pleiotropy of cytokine receptors and undesired activation of off-target cells. With a deeper understanding of the structural principles and functional signals of cytokine-receptor interactions, artificial modification of cytokine signaling through protein engineering and synthetic immunology has become an increasingly feasible and powerful approach. Engineered cytokines are designed to selectively target cells. Herein, the theoretical and experimental evidence of cytokine engineering is reviewed, and the "supercytokines" resulting from structural enhancement and the "immunocytokines" generated by antibody fusion are described. Finally, the "engager cytokines" formed by the crosslinking of cytokines and bispecific immune engagers and other synthetic cytokines formed by nonnatural analogs are also discussed.
Collapse
|
23
|
Liu Y, Li Z, Wang Y, Cai Q, Liu H, Xu C, Zhang F. IL-15 Participates in the Pathogenesis of Polycystic Ovary Syndrome by Affecting the Activity of Granulosa Cells. Front Endocrinol (Lausanne) 2022; 13:787876. [PMID: 35250857 PMCID: PMC8894602 DOI: 10.3389/fendo.2022.787876] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/18/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Low-grade chronic inflammation may contribute to the pathogenesis of polycystic ovary syndrome (PCOS). Interleukin-15 (IL-15) is a proinflammatory cytokine involved in the development of chronic inflammation leading to obesity-associated metabolic syndrome. However, the concentration of IL-15 in follicular fluid of patients with PCOS has yet been evaluated. OBJECTIVES The aim of this study is to evaluate the expression level of IL-15 in both patients with PCOS and PCOS mice model and investigate the functional effect of IL-15 on ovarian granulosa cells. METHODS The level of IL-15 in follicular fluid (FF) was measured using cytokine array and enzyme linked immunosorbent assay (ELISA) in two cohorts from 23 PCOS patients and 18 normo-ovulatory controls. PCOS mice model was induced by subcutaneously implanted with letrozole pellet for 21 days. The expression level of IL-15 in serum, ovarian, and subcutaneous adipose tissue in PCOS mice model was measured by ELISA, real-time polymerase chain reaction (RT-PCR), immunohistochemistry (IHC), and immunofluorescence. The effect of IL-15 on the proliferation and apoptosis of the KGN cells and mouse ovarian granulosa cells (GCs) were detected by CCK-8 assay and flow cytometry, respectively. Transcript expression of 17α-hydroxylase17,20-lyase (CYP17A1), cytochrome P450 family 19 subfamily A member 1(CYP19A1), FSH receptor (FSHR), steroidogenic acute regulatory protein (StAR), and proinflammatory cytokine were quantified using RT-PCR. The protein level and phosphorylation level of p38 MAPK and JNK are detected by Western blot. Concentration of dehydroepiandrosterone sulfate (DHEAS) and progesterone (P)were measured by ELISA. RESULTS IL-15 expression in follicular fluid of patients with PCOS was significantly elevated compared with the control group, and similar results were observed in the ovarian and subcutaneous adipose tissue of PCOS mice models. Furthermore, the elevated FF IL-15 levels have a positive correlation with the serum testosterone levels. FSHR co-localized with IL-15 indicating that IL-15 production originate from ovarian granulose cells. IL-15 treatment inhibited proliferation and promoted apoptosis of KGN cells and mouse GCs. Moreover, IL-15 upregulated the transcription levels of CYP17A1, IL-1b and Ifng KGN cells. Similar results were observed in mouse GCs except concentration of DHEAS was higher in IL-15 treatment. IL-15 promoted p38 MAPK and JNK phosphorylation in KGN cells, treating KGN cells with p38 MAPK inhibitor SP600125 and JNK inhibitor SB203580 could reverse the effect of IL-15 on the proliferation and function of KGN cells. CONCLUSION The results indicate that IL-15 is involved in the pathogenesis of PCOS potentially by affecting survival, the inflammation state and steroidogenesis of granulosa cells. The practical significance of this association between IL-15 and the pathogenesis of PCOS needs further investigation.
Collapse
Affiliation(s)
- Yan Liu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Zhi Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yang Wang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Qingqing Cai
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Haiou Liu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Congjian Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- Department of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
- *Correspondence: Feifei Zhang, ; Congjian Xu,
| | - Feifei Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
- *Correspondence: Feifei Zhang, ; Congjian Xu,
| |
Collapse
|
24
|
Goswami KK, Bose A, Baral R. Macrophages in tumor: An inflammatory perspective. Clin Immunol 2021; 232:108875. [PMID: 34740843 DOI: 10.1016/j.clim.2021.108875] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/07/2021] [Accepted: 10/27/2021] [Indexed: 01/08/2023]
Abstract
Inflammation is a part of carefully co-ordinated healing immune exercise to eliminate injurious stimuli. However, in substantial number of cancer types, it contributes in shaping up of robust tumor microenvironment (TME). Solid TME promotes infiltration of tumor associated macrophages (TAMs) that contributes to cancer promotion. TAMs are functionally heterogeneous and display an extraordinary degree of plasticity, which allow 'Switching' of macrophages into an 'M2', phenotype, linked with immunosuppression, advancement of tumor angiogenesis with metastatic consequences. In contrary to the classical M1 macrophages, these M2 TAMs are high-IL-10, TGF-β secreting-'anti-inflammatory'. In this review, we will discuss the modes of infiltration and switching of TAMs into M2 anti-inflammatory state in the TME to promote immunosuppression and inflammation-driven cancer.
Collapse
Affiliation(s)
- Kuntal Kanti Goswami
- Department of Microbiology, Asutosh College, 92, S. P. Mukherjee Road, Kolkata 700026, India.
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| |
Collapse
|
25
|
Fiore PF, Di Matteo S, Tumino N, Mariotti FR, Pietra G, Ottonello S, Negrini S, Bottazzi B, Moretta L, Mortier E, Azzarone B. Interleukin-15 and cancer: some solved and many unsolved questions. J Immunother Cancer 2021; 8:jitc-2020-001428. [PMID: 33203664 PMCID: PMC7674108 DOI: 10.1136/jitc-2020-001428] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2020] [Indexed: 12/29/2022] Open
Abstract
Soluble interleukin (IL)-15 exists under two forms: as monomer (sIL-15) or as heterodimeric complex in association with sIL-15Rα (sIL-15/IL-15Rα). Both forms have been successfully tested in experimental tumor murine models and are currently undergoing investigation in phase I/II clinical trials. Despite more than 20 years research on IL-15, some controversial issues remain to be addressed. A first point concerns the detection of the sIL-15/IL-15Rα in plasma of healthy donors or patients with cancer and its biological significance. The second and third unsolved question regards the protumorigenic role of the IL-15/IL-15Rα complex in human cancer and the detrimental immunological consequences associated to prolonged exposure of natural killer (NK) cells to both forms of soluble IL-15, respectively. Data suggest that in vivo prolonged or repeated exposure to monomeric sIL-15 or the soluble complex may lead to NK hypo-responsiveness through the expansion of the CD8+/CD44+ T cell subset that would suppress NK cell functions. In vitro experiments indicate that soluble complex and monomeric IL-15 may cause NK hyporesponsiveness through a direct effect caused by their prolonged stimulation, suggesting that this mechanism could also be effective in vivo. Therefore, a better knowledge of IL-15 and a more appropriate use of both its soluble forms, in terms of concentrations and time of exposure, are essential in order to improve their therapeutic use. In cancer, the overproduction of sIL-15/IL-15Rα could represent a novel mechanism of immune escape. The soluble complex may act as a decoy cytokine unable to efficiently foster NK cells, or could induce NK hyporesponsiveness through an excessive and prolonged stimulation depending on the type of IL-15Rα isoforms associated. All these unsolved questions are not merely limited to the knowledge of IL-15 pathophysiology, but are crucial also for the therapeutic use of this cytokine. Therefore, in this review, we will discuss key unanswered issues on the heterogeneity and biological significance of IL-15 isoforms, analyzing both their cancer-related biological functions and their therapeutic implications.
Collapse
Affiliation(s)
| | - Sabina Di Matteo
- Immunology Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Nicola Tumino
- Immunology Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Gabriella Pietra
- Immuology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Experimental Medicine (DiMES), University of Genoa, Genoa, Italy
| | - Selene Ottonello
- Department of Experimental Medicine (DiMES), University of Genoa, Genoa, Italy.,Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Simone Negrini
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, Genova, Italy
| | - Barbara Bottazzi
- Department of Immunology and Inflammation, Humanitas Clinical and Research Institute, Milan, Italy
| | - Lorenzo Moretta
- Immunology Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Erwan Mortier
- University of Nantes, CNRS, Inserm, CRCINA, University of Nantes, Nantes, France .,Immunotherapy, Graft, Oncology, LabEx IGO, Nantes, France
| | - Bruno Azzarone
- Immunology Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
26
|
Zhao Y, Xie YQ, Van Herck S, Nassiri S, Gao M, Guo Y, Tang L. Switchable immune modulator for tumor-specific activation of anticancer immunity. SCIENCE ADVANCES 2021; 7:eabg7291. [PMID: 34516776 PMCID: PMC8442900 DOI: 10.1126/sciadv.abg7291] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Immune stimulatory antibodies and cytokines elicit potent antitumor immunity. However, the dose-limiting systemic toxicity greatly hinders their clinical applications. Here, we demonstrate a chemical approach, termed “switchable” immune modulator (Sw-IM), to limit the systemic exposure and therefore ameliorate their toxicities. Sw-IM is a biomacromolecular therapeutic reversibly masked by biocompatible polymers through chemical linkers that are responsive to tumor-specific stimuli, such as high reducing potential and acidic pH. Sw-IMs stay inert (switch off) in the circulation and healthy tissues but get reactivated (switch on) selectively in tumor via responsive removal of the polymer masks, thus focusing the immune boosting activities in the tumor microenvironment. Sw-IMs applied to anti–4-1BB agonistic antibody and IL-15 cytokine led to equivalent antitumor efficacy to the parental IMs with markedly reduced toxicities. Sw-IM provides a highly modular and generic approach to improve the therapeutic window and clinical applicability of potent IMs in mono- and combinational immunotherapies.
Collapse
Affiliation(s)
- Yu Zhao
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute of Materials Science & Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Yu-Qing Xie
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Simon Van Herck
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Sina Nassiri
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Min Gao
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Yugang Guo
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute of Materials Science & Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Li Tang
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute of Materials Science & Engineering, EPFL, 1015 Lausanne, Switzerland
- Corresponding author.
| |
Collapse
|
27
|
Natural Killer Cells and Type 1 Innate Lymphoid Cells in Hepatocellular Carcinoma: Current Knowledge and Future Perspectives. Int J Mol Sci 2021; 22:ijms22169044. [PMID: 34445750 PMCID: PMC8396475 DOI: 10.3390/ijms22169044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1) are specific innate lymphoid cell subsets that are key for the detection and elimination of pathogens and cancer cells. In liver, while they share a number of characteristics, they differ in many features. These include their developmental pathways, tissue distribution, phenotype and functions. NK cells and ILC1 contribute to organ homeostasis through the production of key cytokines and chemokines and the elimination of potential harmful bacteria and viruses. In addition, they are equipped with a wide range of receptors, allowing them to detect “stressed cells’ such as cancer cells. Our understanding of the role of innate lymphoid cells in hepatocellular carcinoma (HCC) is growing owing to the development of mouse models, the progress in immunotherapeutic treatment and the recent use of scRNA sequencing analyses. In this review, we summarize the current understanding of NK cells and ILC1 in hepatocellular carcinoma and discuss future strategies to take advantage of these innate immune cells in anti-tumor immunity. Immunotherapies hold great promise in HCC, and a better understanding of the role and function of NK cells and ILC1 in liver cancer could pave the way for new NK cell and/or ILC1-targeted treatment.
Collapse
|
28
|
Do-Thi VA, Lee H, Jeong HJ, Lee JO, Kim YS. Protective and Therapeutic Effects of an IL-15:IL-15Rα-Secreting Cell-Based Cancer Vaccine Using a Baculovirus System. Cancers (Basel) 2021; 13:cancers13164039. [PMID: 34439192 PMCID: PMC8394727 DOI: 10.3390/cancers13164039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
This study reports the use of the BacMam system to deliver and express self-assembling IL-15 and IL-15Rα genes to murine B16F10 melanoma and CT26 colon cancer cells. BacMam-based IL-15 and IL-15Rα were well-expressed and assembled to form the biologically functional IL-15:IL-15Rα complex. Immunization with this IL-15:IL-15Rα cancer vaccine delayed tumor growth in mice by inducing effector memory CD4+ and CD8+ cells and effector NK cells which are tumor-infiltrating. It caused strong antitumor immune responses of CD8+ effector cells in a tumor-antigen specific manner both in vitro and in vivo and significantly attenuated Treg cells which a control virus-infected cancer vaccine could induce. Post-treatment with this cancer vaccine after a live cancer cell injection also prominently delayed the growth of the tumor. Collectively, we demonstrate a vaccine platform consisting of BacMam virus-infected B16F10 or CT26 cancer cells that secrete IL-15:IL-15Rα. This study is the first demonstration of a functionally competent soluble IL-15:IL-15Rα complex-related cancer vaccine using a baculovirus system and advocates that the BacMam system can be used as a secure and rapid method of producing a protective and therapeutic cancer vaccine.
Collapse
Affiliation(s)
- Van Anh Do-Thi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea; (V.A.D.-T.); (H.J.J.)
| | - Hayyoung Lee
- Institute of Biotechnology, Chungnam National University, Daejeon 34134, Korea;
| | - Hye Jin Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea; (V.A.D.-T.); (H.J.J.)
| | - Jie-Oh Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea; (V.A.D.-T.); (H.J.J.)
- Correspondence: (J.-O.L.); (Y.S.K.)
| | - Young Sang Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
- Correspondence: (J.-O.L.); (Y.S.K.)
| |
Collapse
|
29
|
Guo J, Liang Y, Xue D, Shen J, Cai Y, Zhu J, Fu YX, Peng H. Tumor-conditional IL-15 pro-cytokine reactivates anti-tumor immunity with limited toxicity. Cell Res 2021; 31:1190-1198. [PMID: 34376814 DOI: 10.1038/s41422-021-00543-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/08/2021] [Indexed: 12/20/2022] Open
Abstract
IL-15 is a promising cytokine to expand NK and CD8+ T cells for cancer immunotherapy, but its application is limited by dose-limiting, on-target off-tumor toxicity. Here, we have developed a next-generation IL-15 that is activated inside the tumor microenvironment (TME). This pro-IL-15 has the extracellular domain of IL-15Rβ fused to the N-terminus of sIL-15-Fc through a tumor-enriched Matrix Metalloproteinase (MMP) cleavable peptide linker to block its activity. Unlike sIL-15-Fc, pro-IL-15 does not activate the peripheral expansion of NK cells and T cells, thus reducing systemic toxicity, but it still preserves efficient anti-tumor abilities. In various mouse tumors, the anti-tumor effect of pro-IL-15 depends on intratumoral CD8+ T cells and IFN-γ. Pro-IL-15 increases the stem-like TCF1+Tim-3-CD8+ T cells within tumor tissue and helps overcome immune checkpoint blockade (ICB) resistance. Moreover, pro-IL-15 synergizes with current tyrosine kinase inhibitor (TKI) targeted-therapy in a poorly inflamed TUBO tumor model, suggesting that pro-IL-15 helps overcome targeted-therapy resistance. Our results demonstrate a next-generation IL-15 cytokine that can stimulate potent anti-tumor activity without severe toxicity.
Collapse
Affiliation(s)
- Jingya Guo
- Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yong Liang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Diyuan Xue
- Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiao Shen
- Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yueqi Cai
- Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiankun Zhu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Hua Peng
- Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
30
|
Xue D, Hsu E, Fu YX, Peng H. Next-generation cytokines for cancer immunotherapy. Antib Ther 2021; 4:123-133. [PMID: 34263141 PMCID: PMC8271143 DOI: 10.1093/abt/tbab014] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/09/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Most studies focus on the first and second signals of T cell activation. However, the roles of cytokines in immunotherapy are not fully understood, and cytokines have not been widely used in patient care. Clinical application of cytokines is limited due to their short half-life in vivo, severe toxicity at therapeutic doses, and overall lack of efficacy. Several modifications have been engineered to extend their half-life and increase tumor targeting, including polyethylene glycol conjugation, fusion to tumor-targeting antibodies, and alteration of cytokine/cell receptor-binding affinity. These modifications demonstrate an improvement in either increased antitumor efficacy or reduced toxicity. However, these cytokine engineering strategies may still be improved further, as each strategy poses advantages and disadvantages in the delicate balance of targeting tumor cells, tumor-infiltrating lymphocytes, and peripheral immune cells. This review focuses on selected cytokines, including interferon-α, interleukin (IL)-2, IL-15, IL-21, and IL-12, in both preclinical studies and clinical applications. We review next-generation designs of these cytokines that improve half-life, tumor targeting, and antitumor efficacy. We also present our perspectives on the development of new strategies to potentiate cytokine-based immunotherapy.
Collapse
Affiliation(s)
- Diyuan Xue
- Key laboratory of Infection and Immunity Institute of Biophysics, Chinese Academy of Sciences, 15 Da Tun Rd, Chaoyang District, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Eric Hsu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Hua Peng
- Key laboratory of Infection and Immunity Institute of Biophysics, Chinese Academy of Sciences, 15 Da Tun Rd, Chaoyang District, Beijing 100101, China
| |
Collapse
|
31
|
Lee SH, Lim YJ, Kim CJ, Yu D, Lee JJ, Won Hong J, Baek YJ, Jung JY, Shin DJ, Kim SK. Safety and immunological effects of recombinant canine IL-15 in dogs. Cytokine 2021; 148:155599. [PMID: 34103211 DOI: 10.1016/j.cyto.2021.155599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/03/2021] [Accepted: 05/26/2021] [Indexed: 11/19/2022]
Abstract
Interleukin-15 (IL-15) is a pleiotropic cytokine that plays pivotal roles in innate and adaptive immunity. It is also a promising cytokine for treating cancer. Despite growing interest in its use as an immunotherapeutic, its safety and immunological effects in dogs have not been reported. In this study, healthy dogs were given recombinant canine IL-15 (rcIL-15) intravenously at a daily dose of 20 μg/kg for 8 days and monitored for 32 days to determine the safety and immunological effects of rcIL-15. The repeated administration of rcIL-15 was well tolerated, did not cause any serious side effects, and promoted the selective proliferation and activation of canine anti-cancer effector cells, including CD3+CD8+ cytotoxic T lymphocytes, CD3+CD5dimCD21-, and non-B/non-T NK cell populations, without stimulating Treg lymphocytes. The rcIL-15 injections also stimulated the expression of molecules and transcription factors associated with the activation and effector functions of NK cells, including CD16, NKG2D, NKp30, NKp44, NKp46, perforin, granzyme B, Ly49, T-bet, and Eomes. These results suggest that rcIL-15 might be a valuable therapeutic adjuvant to improve immunity against cancer in dogs.
Collapse
Affiliation(s)
- Soo-Hyeon Lee
- Department of Integrated Life Science and Technology, Kongju National University, Yesan-gun, Chungnam, Republic of Korea
| | - Yu-Jin Lim
- Department of Companion and Laboratory Animal Science, College of Industrial Science, Kongju National University, Yesan-gun, Chungnam, Republic of Korea
| | - Cheol-Jung Kim
- Department of Companion and Laboratory Animal Science, College of Industrial Science, Kongju National University, Yesan-gun, Chungnam, Republic of Korea
| | - Dohyeon Yu
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Je-Jung Lee
- Department of Hemotology-Oncology, Chonnam National Univresity Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Jeong Won Hong
- Research Institute for Natural Products, Kongju National University, Yesan-gun, Chungnam, Republic of Korea
| | - Yeon-Ju Baek
- Department of Companion and Laboratory Animal Science, College of Industrial Science, Kongju National University, Yesan-gun, Chungnam, Republic of Korea
| | - Ji-Youn Jung
- Department of Integrated Life Science and Technology, Kongju National University, Yesan-gun, Chungnam, Republic of Korea; Department of Companion and Laboratory Animal Science, College of Industrial Science, Kongju National University, Yesan-gun, Chungnam, Republic of Korea; Research Institute for Natural Products, Kongju National University, Yesan-gun, Chungnam, Republic of Korea
| | - Dong-Jun Shin
- Research Institute for Natural Products, Kongju National University, Yesan-gun, Chungnam, Republic of Korea; SD Medic Co, Gwangju, Republic of Korea.
| | - Sang-Ki Kim
- Department of Integrated Life Science and Technology, Kongju National University, Yesan-gun, Chungnam, Republic of Korea; Department of Companion and Laboratory Animal Science, College of Industrial Science, Kongju National University, Yesan-gun, Chungnam, Republic of Korea; Research Institute for Natural Products, Kongju National University, Yesan-gun, Chungnam, Republic of Korea.
| |
Collapse
|
32
|
Patidar M, Yadav N, Dalai SK. Development of Stable Chimeric IL-15 for Trans-Presentation by the Antigen Presenting Cells. Front Immunol 2021; 12:646159. [PMID: 33953717 PMCID: PMC8092395 DOI: 10.3389/fimmu.2021.646159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/15/2021] [Indexed: 11/23/2022] Open
Abstract
IL-15 is one of the important biologics considered for vaccine adjuvant and treatment of cancer. However, a short half-life and poor bioavailability limit its therapeutic potential. Herein, we have structured IL-15 into a chimeric protein to improve its half-life enabling greater bioavailability for longer periods. We have covalently linked IL-15 with IgG2 base to make the IL-15 a stable chimeric protein, which also increased its serum half-life by 40 fold. The dimeric structure of this kind of IgG based biologics has greater stability, resistance to proteolytic cleavage, and less frequent dosing schedule with minimum dosage for achieving the desired response compared to that of their monomeric forms. The structured chimeric IL-15 naturally forms a dimer, and retains its affinity for binding to its receptor, IL-15Rβ. Moreover, with the focused action of the structured chimeric IL-15, antigen-presenting cells (APC) would transpresent chimeric IL-15 along with antigen to the T cell, that will help the generation of quantitatively and qualitatively better antigen-specific memory T cells. In vitro and in vivo studies demonstrate the biological activity of chimeric IL-15 with respect to its ability to induce IL-15 signaling and modulating CD8+ T cell response in favor of memory generation. Thus, a longer half-life, dimeric nature, and anticipated focused transpresentation by APCs to the T cells will make chimeric IL-15 a super-agonist for memory CD8+ T cell responses.
Collapse
Affiliation(s)
- Manoj Patidar
- Institute of Science, Nirma University, Ahmedabad, India.,Department of Zoology, Govt. College Manawar, Dhar, India
| | - Naveen Yadav
- Institute of Science, Nirma University, Ahmedabad, India.,Translation Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, India
| | - Sarat K Dalai
- Institute of Science, Nirma University, Ahmedabad, India
| |
Collapse
|
33
|
Ye X, Wang X, Yu W, Yang Q, Li Y, Jin Y, Su Y, Song J, Xu B, Sun H. Synergistic effects of AAGL and anti-PD-1 on hepatocellular carcinoma through lymphocyte recruitment to the liver. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0278. [PMID: 33710817 PMCID: PMC8610148 DOI: 10.20892/j.issn.2095-3941.2020.0278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/08/2020] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Therapy for hepatocellular carcinoma (HCC) is a major challenge, and targeted therapies provide only a modest benefit in terms of overall survival. Treatment with antibodies to programmed cell death protein 1 (PD-1)/PD-L1 can restore the functions of tumor-infiltrating T cells in HCC and has shown clinical efficacy in 20% of patients with advanced HCC. Novel approaches are urgently needed to treat HCC and to augment the efficacy of immunotherapy. METHODS Tumor-bearing mice were treated with Agrocybe aegerita galectin (AAGL) alone or in combination with anti-PD-1, and the tumor sizes and lifespans of mice were determined. Transcriptome analysis, cytokine analysis, flow cytometry analysis of the number and proportion of immune cell subsets in the liver and spleen, and molecular and cellular analyses of tumors were used to define the underlying mechanisms. RESULTS AAGL significantly inhibited the growth of liver tumors in a dose-dependent manner. Furthermore, AAGL increased the expression of multiple cytokines and chemokines in tumor-bearing mouse livers; this effect was associated with the activation and migration of T cells and macrophages, in agreement with the in vitro results. Importantly, the aggregation of T cells and macrophages induced by AAGL in tumor-bearing mouse livers clearly enhanced the response to PD-1 blockade immunotherapy. CONCLUSIONS The results showed that AAGL induced the activation and migration of lymphocytes to the liver, and that the combination of AAGL and anti-PD-1 may be a promising strategy for HCC treatment.
Collapse
Affiliation(s)
- Xiangdong Ye
- College of Life Sciences, Wuhan University, Wuhan 430071, China
- Department of Biochemistry and Molecular Biology, Institute of Biomedical research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Xueqing Wang
- College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Wenhui Yu
- College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Qing Yang
- College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Yan Li
- College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Yanxia Jin
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China
| | - Yanting Su
- College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Jiaqi Song
- College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Bo Xu
- College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Hui Sun
- College of Life Sciences, Wuhan University, Wuhan 430071, China
- Hubei Province key Laboratory of Allergy and Immunology; Wuhan University, Wuhan 430071, China
| |
Collapse
|
34
|
Augustin LB, Milbauer L, Hastings SE, Leonard AS, Saltzman DA, Schottel JL. Virulence-attenuated Salmonella engineered to secrete immunomodulators reduce tumour growth and increase survival in an autochthonous mouse model of breast cancer. J Drug Target 2020; 29:430-438. [PMID: 33183080 DOI: 10.1080/1061186x.2020.1850739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The ultimate goal of bacterial based cancer therapy is to achieve non-toxic penetration and colonisation of the tumour microenvironment. To overcome this efficacy-limiting toxicity of anticancer immunotherapy, we have tested a therapy comprised of systemic delivery of a vascular disrupting agent to induce intratumoral necrotic space, cannabidiol to temporarily inhibit angiogenesis and acute inflammation, and a strain of Salmonella Typhimurium that was engineered for non-toxic colonisation and expression of immunomodulators within the tumour microenvironment. This combination treatment strategy was administered to transgenic mice burdened with autochthonous mammary gland tumours and demonstrated a statistically significant 64% slower tumour growth and a 25% increase in mean survival time compared to control animals without treatment. These experiments were accomplished with minimal toxicity as measured by less than 7% weight loss and a return to normal weight gain within three days following intravenous administration of the bacteria. Thus, non-toxic, robust colonisation of the microenvironment was achieved to produce a significant antitumor effect.
Collapse
Affiliation(s)
- Lance B Augustin
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Liming Milbauer
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Sara E Hastings
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Arnold S Leonard
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Daniel A Saltzman
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Janet L Schottel
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
35
|
Yamaguchi T, Chang CJ, Karger A, Keller M, Pfaff F, Wangkahart E, Wang T, Secombes CJ, Kimoto A, Furihata M, Hashimoto K, Fischer U, Dijkstra JM. Ancient Cytokine Interleukin 15-Like (IL-15L) Induces a Type 2 Immune Response. Front Immunol 2020; 11:549319. [PMID: 33193315 PMCID: PMC7658486 DOI: 10.3389/fimmu.2020.549319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022] Open
Abstract
Related interleukin-2, -15, and -15-like (IL-2, -15, and -15L) are ancient cytokines, with all three genes surviving in extant fish and some mammals. The present study is the first to identify IL-15L functions, namely in rainbow trout. In isolated trout splenocytes, and in vivo, purified recombinant IL-15L+IL-15Rα molecules induced expression of IL-4 and IL-13 homologs, which are markers of type 2 immunity. In contrast, trout IL-15 stimulated type 1 immunity markers, thus IL-15 and IL-15L can have opposing functions. Trout IL-15L was more dependent on "in trans" presentation by the receptor chain IL-15Rα than IL-15, and stimulated CD4-CD8-(IgM-) lymphocytes from thymus and spleen. We propose an important role for IL-15L early in the type 2 immunity cytokine cascade. Trout IL-2 and IL-15 exhibited features reminiscent of their mechanistic and functional dichotomy observed in mammals; for example, IL-15 but not IL-2 required a receptor alpha chain (only IL-15Rα in the case of fish) for its stability, and only IL-15 was efficient in stimulating lymphocytes from mucosal tissues. Data suggest that IL-15L and IL-15 may be particularly effective in stimulating innate lymphocyte type 2 cells (ILC2) and natural killer (NK) cells, respectively, but further identification of the cell types is needed. An interesting finding different from in mammals was the efficient stimulation of CD4+CD8+ thymocytes by IL-2. In short, this study presents fundamental information on the evolution of the IL-2/15/15L cytokine family.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Institute of Infectology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Chia Jung Chang
- Institute of Infectology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Eakapol Wangkahart
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Azusa Kimoto
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Mitsuru Furihata
- Nagano Prefectural Fisheries Experimental Station, Nagano, Japan
| | - Keiichiro Hashimoto
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Uwe Fischer
- Institute of Infectology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| |
Collapse
|
36
|
Ataca Atilla P, McKenna MK, Tashiro H, Srinivasan M, Mo F, Watanabe N, Simons BW, McLean Stevens A, Redell MS, Heslop HE, Mamonkin M, Brenner MK, Atilla E. Modulating TNFα activity allows transgenic IL15-Expressing CLL-1 CAR T cells to safely eliminate acute myeloid leukemia. J Immunother Cancer 2020; 8:jitc-2020-001229. [PMID: 32938629 PMCID: PMC7497527 DOI: 10.1136/jitc-2020-001229] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2020] [Indexed: 12/12/2022] Open
Abstract
Background C-type lectin-like molecule 1 (CLL-1) is highly expressed in acute myeloid leukemia (AML) but is absent in primitive hematopoietic progenitors, making it an attractive target for a chimeric antigen receptor (CAR) T-cell therapy. Here, we optimized our CLL-1 CAR for anti-leukemic activity in mouse xenograft models of aggressive AML. Methods First, we optimized the CLL-1 CAR using different spacer, transmembrane and costimulatory sequences. We used a second retroviral vector to coexpress transgenic IL15. We measured the effects of each construct on T cell phenotype and sequential (recursive) co culture assays with tumor cell targets to determine the durability of the anti tumor activity by flow cytometry. We administered CAR T cells to mice engrafted with patient derived xenografts (PDX) and AML cell line and determined anti tumor activity by bioluminescence imaging and weekly bleeding, measured serum cytokines by multiplex analysis. After euthanasia, we examined formalin-fixed/paraffin embedded sections. Unpaired two-tailed Student’s t-tests were used and values of p<0.05 were considered significant. Survival was calculated using Mantel-Cox log-rank test. Results In vitro, CLL-1 CAR T cells with interleukin-15 (IL15) were less terminally differentiated (p<0.0001) and had superior expansion compared with CD28z-CD8 CAR T cells without IL15 (p<0.001). In both AML PDX and AML cell line animal models, CLL-1 CAR T coexpressing transgenic IL15 initially expanded better than CD28z-CD8 CAR T without IL15 (p<0.0001), but produced severe acute toxicity associated with high level production of human tumor necrosis factor α (TNFα), IL15 and IL2. Histopathology showed marked inflammatory changes with tissue damage in lung and liver. This acute toxicity could be managed by two strategies, individually or in combination. The excessive TNF alpha secretion could be blocked with anti-TNF alpha antibody, while excessive T cell expansion could be arrested by activation of an inducible caspase nine safety switch by administration of dimerizing drug. Both strategies successfully prolonged tumor-free survival. Conclusion Combinatorial treatment with a TNFα blocking antibody and subsequent activation of the caspase-9 control switch increased the expansion, survival and antileukemic potency of CLL-1 CAR T-cells expressing transgenic IL15 while avoiding the toxicities associated with excessive cytokine production and long-term accumulation of activated T-cells.
Collapse
Affiliation(s)
- Pinar Ataca Atilla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Mary K McKenna
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Haruko Tashiro
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | | | - Feiyan Mo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Norihiro Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Brian Wesley Simons
- Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Alexandra McLean Stevens
- Division of Pediatric Hematology/Oncology, Texas Children's Hospital, Houston, Texas, USA.,Division of Pediatric Hematology/Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - Michele S Redell
- Division of Pediatric Hematology/Oncology, Texas Children's Hospital, Houston, Texas, USA.,Division of Pediatric Hematology/Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Maksim Mamonkin
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Erden Atilla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
37
|
Kiselevskiy M, Shubina I, Chikileva I, Sitdikova S, Samoylenko I, Anisimova N, Kirgizov K, Suleimanova A, Gorbunova T, Varfolomeeva S. Immune Pathogenesis of COVID-19 Intoxication: Storm or Silence? Pharmaceuticals (Basel) 2020; 13:E166. [PMID: 32722596 PMCID: PMC7465708 DOI: 10.3390/ph13080166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 01/08/2023] Open
Abstract
Dysregulation of the immune system undoubtedly plays an important and, perhaps, determining role in the COVID-19 pathogenesis. While the main treatment of the COVID-19 intoxication is focused on neutralizing the excessive inflammatory response, it is worth considering an equally significant problem of the immunosuppressive conditions including immuno-paralysis, which lead to the secondary infection. Therefore, choosing a treatment strategy for the immune-mediated complications of coronavirus infection, one has to pass between Scylla and Charybdis, so that, in the fight against the "cytokine storm," it is vital not to miss the point of the immune silence that turns into immuno-paralysis.
Collapse
Affiliation(s)
- Mikhail Kiselevskiy
- FSBI N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoye sh., 115548 Moscow, Russia; (I.C.); (S.S.); (I.S.); (N.A.); (K.K.); (A.S.); (T.G.); (S.V.)
| | - Irina Shubina
- FSBI N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoye sh., 115548 Moscow, Russia; (I.C.); (S.S.); (I.S.); (N.A.); (K.K.); (A.S.); (T.G.); (S.V.)
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Babadzhanov M, Doudican N, Wilken R, Stevenson M, Pavlick A, Carucci J. Current concepts and approaches to merkel cell carcinoma. Arch Dermatol Res 2020; 313:129-138. [PMID: 32666149 DOI: 10.1007/s00403-020-02107-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
Merkel cell carcinoma (MCC) is an aggressive and rare cutaneous cancer of the mechanoreceptor unit of the skin with a neuroendocrine origin. MCC incidence has been on the rise over the past two decades. Risk factors include old age, chronic UV exposure, and immunosuppression. Although MCC is a cutaneous malignancy that is often misdiagnosed as a benign nodule at the time of diagnosis, it has an aggressive disease course due to its high recurrence and metastatic potential. The PD-1/PD-L1 checkpoint blockade has recently shown promising results in the management of advanced MCC. Avelumab and pembrolizumab are considered the new standard of care for metastatic MCC. Despite advances in the field, studies are needed to elucidate the role of immunotherapy for patients who are resistant to treatment. Most ongoing clinical trials aim to assess the efficacy of checkpoint inhibitor combination therapies. This article reviews the most current literature on the surgical and medical management of MCC.
Collapse
Affiliation(s)
| | | | - Reason Wilken
- Dermatology, NYU Langone Med Center, New York, NY, USA
| | | | - Anna Pavlick
- Dermatology, NYU Langone Med Center, New York, NY, USA
| | - John Carucci
- Dermatology, NYU Langone Med Center, New York, NY, USA.
| |
Collapse
|
39
|
Kabashima K, Weidinger S. NK cells as a possible new player in atopic dermatitis. J Allergy Clin Immunol 2020; 146:276-277. [PMID: 32439430 DOI: 10.1016/j.jaci.2020.04.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Singapore Immunology Network (SIgN) and Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A∗STAR), Biopolis, Singapore.
| | - Stephan Weidinger
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
40
|
Phenotypic and functional characterization of natural killer cells in rheumatoid arthritis-regulation with interleukin-15. Sci Rep 2020; 10:5858. [PMID: 32246007 PMCID: PMC7125139 DOI: 10.1038/s41598-020-62654-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/13/2020] [Indexed: 11/23/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation and joint destruction. Previous studies have shown that natural killer (NK) cells may play an important role in the pathogenesis of RA. Interleukin (IL)-15, a pro-inflammatory cytokine which induces proliferation and differentiation of NK cells, is overexpressed in RA. In this present study, we examine various NKRs and adhesion molecule expression on NK cells from RA patients and their response to IL-15 stimulation. We also sought to study cytokine-induced memory-like (CIML) NK cells in RA patients. We established that 1. RA patients had higher NK cell percentages in peripheral blood and their serum IL-15 levels were higher compared to healthy volunteers; 2. NK cells from RA patients showed lower NKp46 expression and an impaired CD69 response to IL-15; 3. NK cells from RA patients showed higher CD158b and CD158e expression but lower CD62L expression; 4. exogenous IL-15 up-regulated CD69, CD158b, CD158e but down-regulated NKp46 and CD62L expression in RA; 5. As to CIML NK cells, restimulation - induced NK cytotoxicity and IFN-γ production was impaired in RA patients, 6. Reduced NKp46, perforin, and granzyme B expression on NK cells was found in RA patients with bone deformity and erosion, 7. RA disease activity (DAS28) showed inverse correlation with the percentages of CD56+CD3− NK cells, and NKp46 and perforin expression on NK cells, respectively. Taken together, our study demonstrated differential expression of various NK receptors in RA patients. NKp46, CD158e, and perforin expression on NK cells may serve as markers of RA severity.
Collapse
|
41
|
Knudson KM, Hicks KC, Ozawa Y, Schlom J, Gameiro SR. Functional and mechanistic advantage of the use of a bifunctional anti-PD-L1/IL-15 superagonist. J Immunother Cancer 2020; 8:e000493. [PMID: 32303618 PMCID: PMC7204804 DOI: 10.1136/jitc-2019-000493] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Anti(α)-programmed cell death-1 (PD-1)/programmed death-ligand 1 (PD-L1) monotherapy fails to provide durable clinical benefit for most patients with carcinoma. Recent studies suggested that strategies to reduce immunosuppressive cells, promote systemic T-cell responses and lymphocyte trafficking to the tumor microenvironment (TME) may improve efficacy. N-809 is a first-in-class bifunctional agent comprising the interleukin (IL)-15 superagonist N-803 fused to two αPD-L1 domains. Thus, N-809 can potentially stimulate effector immune cells through IL-15 and block immunosuppressive PD-L1. Here, we examined the antitumor efficacy and immunomodulatory effects of N-809 versus N-803+αPD-L1 combination. METHODS The ability of N-809 to block PD-L1 and induce IL-15-dependent immune effects was examined in vitro and in vivo. Antitumor efficacy of N-809 or N-803+αPD-L1 was evaluated in two murine carcinoma models and an extensive analysis of immune correlates was performed in the tumor and tumor-draining lymph node (dLN). RESULTS We demonstrate that N-809 blocks PD-L1 and induces IL-15-dependent immune effects. N-809 was well-tolerated and reduced 4T1 lung metastasis, decreased MC38 tumor burden and increased survival versus N-803+αPD-L1. Compared with N-803+αPD-L1, N-809 enhanced natural killer (NK) and CD8+ T-cell activation and function in the dLN and TME, relating to increased gene expression associated with interferon and cytokine signaling, lymphoid compartment, costimulation and cytotoxicity. The higher number of TME CD8+ T cells was attributed to enhanced infiltration, not in situ expansion. Increased TME NK and CD8+ T-cell numbers correlated with augmented chemokine ligands and receptors. Moreover, in contrast to N-803+αPD-L1, N-809 reduced immunosuppressive regulatory T cells (Treg), monocytic myeloid-derived suppressor cells (M-MDSC) and M2-like macrophages in the TME. CONCLUSIONS Our results suggest that N-809 functions by a novel immune mechanism to promote antitumor efficacy. Foremost, N-809 enhances intratumoral lymphocyte numbers by increasing trafficking via altered chemokine levels in the TME and chemokine receptor expression on CD8+ T cells and NK cells. In addition, N-809 reduces immunosuppressive and pro-tumorigenic immune cells in the TME, including Treg, M2-like macrophages and M-MDSC. Overall, these novel effects of N-809 promote an inflamed TME, leading to lower tumor burden and increased survival. These results provide mechanistic insight and rationale supporting the potential clinical study of N-809 in patients with carcinoma.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/pharmacology
- Antibodies, Bispecific/therapeutic use
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- B7-H1 Antigen/antagonists & inhibitors
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- Cell Line, Tumor/transplantation
- Cell Movement/drug effects
- Cell Movement/immunology
- Female
- Humans
- Interleukin-15/agonists
- Lymphocyte Activation/drug effects
- Lymphocyte Count
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/pathology
- Mice
- Natural Killer T-Cells/drug effects
- Natural Killer T-Cells/immunology
- Recombinant Fusion Proteins/pharmacology
- Recombinant Fusion Proteins/therapeutic use
- Single-Chain Antibodies/pharmacology
- Single-Chain Antibodies/therapeutic use
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Karin M Knudson
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Kristin C Hicks
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Yohei Ozawa
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Sofia R Gameiro
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
42
|
Crosstalk between Dendritic Cells and Immune Modulatory Agents against Sepsis. Genes (Basel) 2020; 11:genes11030323. [PMID: 32197507 PMCID: PMC7140865 DOI: 10.3390/genes11030323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells (DCs) play a critical role in the immune system which sense pathogens and present their antigens to prime the adaptive immune responses. As the progression of sepsis occurs, DCs are capable of orchestrating the aberrant innate immune response by sustaining the Th1/Th2 responses that are essential for host survival. Hence, an in-depth understanding of the characteristics of DCs would have a beneficial effect in overcoming the obstacle occurring in sepsis. This paper focuses on the role of DCs in the progression of sepsis and we also discuss the reverse sepsis-induced immunosuppression through manipulating the DC function. In addition, we highlight some potent immunotherapies that could be used as a novel strategy in the early treatment of sepsis.
Collapse
|
43
|
Mack MR, Brestoff JR, Berrien-Elliott MM, Trier AM, Yang TLB, McCullen M, Collins PL, Niu H, Bodet ND, Wagner JA, Park E, Xu AZ, Wang F, Chibnall R, Council ML, Heffington C, Kreisel F, Margolis DJ, Sheinbein D, Lovato P, Vivier E, Cella M, Colonna M, Yokoyama WM, Oltz EM, Fehniger TA, Kim BS. Blood natural killer cell deficiency reveals an immunotherapy strategy for atopic dermatitis. Sci Transl Med 2020; 12:eaay1005. [PMID: 32102931 PMCID: PMC7433875 DOI: 10.1126/scitranslmed.aay1005] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/12/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
Atopic dermatitis (AD) is a widespread, chronic skin disease associated with aberrant allergic inflammation. Current treatments involve either broad or targeted immunosuppression strategies. However, enhancing the immune system to control disease remains untested. We demonstrate that patients with AD harbor a blood natural killer (NK) cell deficiency that both has diagnostic value and improves with therapy. Multidimensional protein and RNA profiling revealed subset-level changes associated with enhanced NK cell death. Murine NK cell deficiency was associated with enhanced type 2 inflammation in the skin, suggesting that NK cells play a critical immunoregulatory role in this context. On the basis of these findings, we used an NK cell-boosting interleukin-15 (IL-15) superagonist and observed marked improvement in AD-like disease in mice. These findings reveal a previously unrecognized application of IL-15 superagonism, currently in development for cancer immunotherapy, as an immunotherapeutic strategy for AD.
Collapse
Affiliation(s)
- Madison R Mack
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jonathan R Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Melissa M Berrien-Elliott
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anna M Trier
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ting-Lin B Yang
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew McCullen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Patrick L Collins
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Haixia Niu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nancy D Bodet
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Julia A Wagner
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eugene Park
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amy Z Xu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Fang Wang
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rebecca Chibnall
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - M Laurin Council
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Friederike Kreisel
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David J Margolis
- Department of Dermatology and Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David Sheinbein
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Paola Lovato
- Skin Research, LEO Pharma A/S, Industriparken 55, Ballerup, Denmark
| | - Eric Vivier
- Aix Marseille University, APHM, CNRS, INSERM, CIML, Hôpital de la Timone, Marseille-Immunopole, Marseille, France
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wayne M Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eugene M Oltz
- Department of Microbial Infection and Immunity, Ohio State University, Wexner School of Medicine, Columbus, OH 43210, USA
| | - Todd A Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian S Kim
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
44
|
Ben-Shmuel A, Biber G, Barda-Saad M. Unleashing Natural Killer Cells in the Tumor Microenvironment-The Next Generation of Immunotherapy? Front Immunol 2020; 11:275. [PMID: 32153582 PMCID: PMC7046808 DOI: 10.3389/fimmu.2020.00275] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
The emergence of immunotherapy for cancer treatment bears considerable clinical promise. Nevertheless, many patients remain unresponsive, acquire resistance, or suffer dose-limiting toxicities. Immune-editing of tumors assists their escape from the immune system, and the tumor microenvironment (TME) induces immune suppression through multiple mechanisms. Immunotherapy aims to bolster the activity of immune cells against cancer by targeting these suppressive immunomodulatory processes. Natural Killer (NK) cells are a heterogeneous subset of immune cells, which express a diverse array of activating and inhibitory germline-encoded receptors, and are thus capable of directly targeting and killing cancer cells without the need for MHC specificity. Furthermore, they play a critical role in triggering the adaptive immune response. Enhancing the function of NK cells in the context of cancer is therefore a promising avenue for immunotherapy. Different NK-based therapies have been evaluated in clinical trials, and some have demonstrated clinical benefits, especially in the context of hematological malignancies. Solid tumors remain much more difficult to treat, and the time point and means of intervention of current NK-based treatments still require optimization to achieve long term effects. Here, we review recently described mechanisms of cancer evasion from NK cell immune surveillance, and the therapeutic approaches that aim to potentiate NK function. Specific focus is placed on the use of specialized monoclonal antibodies against moieties on the cancer cell, or on both the tumor and the NK cell. In addition, we highlight newly identified mechanisms that inhibit NK cell activity in the TME, and describe how biochemical modifications of the TME can synergize with current treatments and increase susceptibility to NK cell activity.
Collapse
Affiliation(s)
- Aviad Ben-Shmuel
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Guy Biber
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Mira Barda-Saad
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
45
|
Liu T, Guo Z, Song X, Liu L, Dong W, Wang S, Xu M, Yang C, Wang B, Cao H. High-fat diet-induced dysbiosis mediates MCP-1/CCR2 axis-dependent M2 macrophage polarization and promotes intestinal adenoma-adenocarcinoma sequence. J Cell Mol Med 2020; 24:2648-2662. [PMID: 31957197 PMCID: PMC7028862 DOI: 10.1111/jcmm.14984] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/05/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022] Open
Abstract
High‐fat diet (HFD) is a well‐known risk factor for gut microbiota dysbiosis and colorectal cancer (CRC). However, evidence relating HFD, gut microbiota and carcinogenesis is limited. Our study aimed to demonstrate that HFD‐induced gut dysbiosis promoted intestinal adenoma‐adenocarcinoma sequence. In clinical study, we found that HFD increased the incidence of advanced colorectal neoplasia (AN). The expression of monocyte chemoattractant protein 1 (MCP‐1), CC chemokine receptor 2 (CCR2) and CD163 in CRC patients with HFD was significantly higher than that in CRC patients with normal diet. When it comes to the Apcmin/+ mice, HFD consumption could induce gut dysbiosis and promote intestinal carcinogenesis, accompanying with activation of MCP‐1/CCR2 axis that recruited and polarized M2 tumour‐associated macrophages. Interestingly, transfer of faecal microbiota from HFD‐fed mice to another batch of Apcmin/+ mice in the absence of HFD could also enhance carcinogenesis without significant body weight gain and induced MCP‐1/CCR2 axis activation. HFD‐induced dysbiosis could also be transmitted. Meanwhile, antibiotics cocktail treatment was sufficient to inhibit HFD‐induced carcinogenesis, indicating the vital role of dysbiosis in cancer development. Conclusively, these data indicated that HFD‐induced dysbiosis accelerated intestinal adenoma‐adenocarcinoma sequence through activation of MCP‐1/CCR2 axis, which would provide new insight into better understanding of the mechanisms and prevention for HFD‐related CRC.
Collapse
Affiliation(s)
- Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, Tianjin, China
| | - Zixuan Guo
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, Tianjin, China
| | - Xueli Song
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, Tianjin, China
| | - Li Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, Tianjin, China
| | - Wenxiao Dong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, Tianjin, China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, Tianjin, China
| | - Mengque Xu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, Tianjin, China.,Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, Tianjin, China.,Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|
46
|
Heinze A, Grebe B, Bremm M, Huenecke S, Munir TA, Graafen L, Frueh JT, Merker M, Rettinger E, Soerensen J, Klingebiel T, Bader P, Ullrich E, Cappel C. The Synergistic Use of IL-15 and IL-21 for the Generation of NK Cells From CD3/CD19-Depleted Grafts Improves Their ex vivo Expansion and Cytotoxic Potential Against Neuroblastoma: Perspective for Optimized Immunotherapy Post Haploidentical Stem Cell Transplantation. Front Immunol 2019; 10:2816. [PMID: 31849984 PMCID: PMC6901699 DOI: 10.3389/fimmu.2019.02816] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022] Open
Abstract
Neuroblastoma (NB) is the most common solid extracranial tumor in childhood. Despite therapeutic progress, prognosis in high-risk NB is poor and innovative therapies are urgently needed. Therefore, we addressed the potential cytotoxic capacity of interleukin (IL)-activated natural killer (NK) cells compared to cytokine-induced killer (CIK) cells for the treatment of NB. NK cells were isolated from peripheral blood mononuclear cells (PBMCs) by indirect CD56-enrichment or CD3/CD19-depletion and expanded with different cytokine combinations, such as IL-2, IL-15, and/or IL-21 under feeder-cell free conditions. CIK cells were generated from PBMCs by ex vivo stimulation with interferon-γ, IL-2, OKT-3, and IL-15. Comparative analysis of expansion rate, purity, phenotype and cytotoxicity was performed. CD56-enriched NK cells showed a median expansion rate of 4.3-fold with up to 99% NK cell content. The cell product after CD3/CD19-depletion consisted of a median 43.5% NK cells that expanded significantly faster reaching also 99% of NK cell purity. After 10–12 days of expansion, both NK cell preparations showed a significantly higher median cytotoxic capacity against NB cells relative to CIK cells. Remarkably, these NK cells were also capable of efficiently killing NB spheroidal 3D culture in long-term cytotoxicity assays. Further optimization using a novel NK cell culture medium and a prolonged culturing procedure after CD3/CD19-depletion for up to 15 days enhanced the expansion rate up to 24.4-fold by maintaining the cytotoxic potential. Addition of an IL-21 boost prior to harvesting significantly increased the cytotoxicity. The final cell product consisted for the major part of CD16−, NCR-expressing, poly-functional NK cells with regard to cytokine production, CD107a degranulation and antitumor capacity. In summary, our study revealed that NK cells have a significantly higher cytotoxic potential to combat NB than CIK cell products, especially following the synergistic use of IL-15 and IL-21 for NK cell activation. Therefore, the use of IL-15+IL-21 expanded NK cells generated from CD3/CD19-depleted apheresis products seems to be highly promising as an immunotherapy in combination with haploidentical stem cell transplantation (SCT) for high-risk NB patients.
Collapse
Affiliation(s)
- Annekathrin Heinze
- Experimental Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Beatrice Grebe
- Experimental Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Melanie Bremm
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Sabine Huenecke
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Tasleem Ah Munir
- Experimental Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Lea Graafen
- Experimental Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Jochen T Frueh
- Experimental Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Michael Merker
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Eva Rettinger
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Jan Soerensen
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Thomas Klingebiel
- Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Peter Bader
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Evelyn Ullrich
- Experimental Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt am Main, Frankfurt am Main, Germany
| | - Claudia Cappel
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
47
|
Riera-Domingo C, Audigé A, Granja S, Cheng WC, Ho PC, Baltazar F, Stockmann C, Mazzone M. Immunity, Hypoxia, and Metabolism-the Ménage à Trois of Cancer: Implications for Immunotherapy. Physiol Rev 2019; 100:1-102. [PMID: 31414610 DOI: 10.1152/physrev.00018.2019] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is generally accepted that metabolism is able to shape the immune response. Only recently we are gaining awareness that the metabolic crosstalk between different tumor compartments strongly contributes to the harsh tumor microenvironment (TME) and ultimately impairs immune cell fitness and effector functions. The major aims of this review are to provide an overview on the immune system in cancer; to position oxygen shortage and metabolic competition as the ground of a restrictive TME and as important players in the anti-tumor immune response; to define how immunotherapies affect hypoxia/oxygen delivery and the metabolic landscape of the tumor; and vice versa, how oxygen and metabolites within the TME impinge on the success of immunotherapies. By analyzing preclinical and clinical endeavors, we will discuss how a metabolic characterization of the TME can identify novel targets and signatures that could be exploited in combination with standard immunotherapies and can help to predict the benefit of new and traditional immunotherapeutic drugs.
Collapse
Affiliation(s)
- Carla Riera-Domingo
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Annette Audigé
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Sara Granja
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Wan-Chen Cheng
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Ping-Chih Ho
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Fátima Baltazar
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Christian Stockmann
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| |
Collapse
|
48
|
Kim N, Lee HH, Lee HJ, Choi WS, Lee J, Kim HS. Natural killer cells as a promising therapeutic target for cancer immunotherapy. Arch Pharm Res 2019; 42:591-606. [DOI: 10.1007/s12272-019-01143-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023]
|
49
|
Plote D, Choi W, Mokkapati S, Sundi D, Ferguson JE, Duplisea J, Parker NR, Yla-Herttuala S, Committee SCB, McConkey D, Schluns KS, Dinney CP. Inhibition of urothelial carcinoma through targeted type I interferon-mediated immune activation. Oncoimmunology 2019; 8:e1577125. [PMID: 31069136 PMCID: PMC6493227 DOI: 10.1080/2162402x.2019.1577125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/04/2019] [Accepted: 01/24/2019] [Indexed: 12/26/2022] Open
Abstract
Type I interferon (IFN-I) has potent anti-tumor effects against urothelial carcinoma (UC) and may be an alternative treatment option for patients who do not respond to Bacillus Calmette-Guerin. However, the mechanisms that mediate the IFN-I-stimulated immune responses against UC have yet to be elucidated. Herein, we evaluated the anti-tumor mechanisms of IFN-I in UC in human patients and in mice. Patient tumors from a Phase I clinical trial with adenoviral interferon-α (Ad-IFNα/Syn3) showed increased expression of T cell and checkpoint markers following treatment with Ad-IFNα/Syn3 by RNAseq and immunohistochemistry analysis in 25% of patients. In mice, peritumoral injections of poly(I:C) into MB49 UC tumors was used to incite an IFN-driven inflammatory response that significantly inhibited tumor growth. IFN-I engaged both innate and adaptive cells, seen in increased intratumoral CD8 T cells, NK cells, and CD11b+Ly6G+ cells, but tumor inhibition was not reliant on any one immune cell type. Nonetheless, poly(I:C)-mediated tumor regression and change in the myeloid cell landscape was dependent on IL-6. Mice were also treated with poly(I:C) in combination with anti-PD-1 monoclonal antibody (mAb) to assess for additional benefit to tumor growth and animal survival. When used in combination with anti-PD-1 mAb, IFN-I stimulation prolonged survival, coinciding with inhibition of angiogenesis and enriched gene signatures of metabolism, extracellular matrix organization, and MAPK/AKT signaling. Altogether, these findings suggest IFN-I's immune-driven antitumor response in UC is mediated by IL-6 and a collaboration of immune cells, and its use in combination with checkpoint blockade therapy can increase clinical benefit.
Collapse
Affiliation(s)
- Devin Plote
- Cancer Biology Graduate Program, The University of Texas MD Anderson Cancer Center; University of Texas Health Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Woonyoung Choi
- James Buchanan Brady Urological Institute, Johns Hopkins Greenberg Bladder Cancer Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Sharada Mokkapati
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Debasish Sundi
- Department of Urology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - James E Ferguson
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jon Duplisea
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Seppo Yla-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - David McConkey
- James Buchanan Brady Urological Institute, Johns Hopkins Greenberg Bladder Cancer Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Kimberly S Schluns
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Colin P Dinney
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
50
|
Rothschilds A, Tzeng A, Mehta NK, Moynihan KD, Irvine DJ, Wittrup KD. Order of administration of combination cytokine therapies can decouple toxicity from efficacy in syngeneic mouse tumor models. Oncoimmunology 2019; 8:e1558678. [PMID: 31069130 PMCID: PMC6492973 DOI: 10.1080/2162402x.2018.1558678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 12/11/2022] Open
Abstract
In combination cancer immunotherapies, consideration should be given to designing treatment schedules that harmonize with the immune system's natural timing. An efficacious temporally programmed combination therapy of extended half-life interleukin 2 (eIL2), tumor targeting antibody, and interferon (IFN) α was recently reported; however, tumor-ablative efficacy was associated with significant toxicity. In the current work, altering the order and timing of the three agents is shown to decouple toxicity from efficacy. Delaying the administration of eIL2 to be concurrent with or after IFNα eliminates toxicity without affecting efficacy in multiple syngeneic tumor models and mouse strains. The toxicity resulting from eIL2 administration before IFNα is dependent on multiple systemic inflammatory cytokines including IL6, IL10, IFNγ, and tumor necrosis factor α. Natural killer (NK) cells are the main cellular contributor to toxicity, but are not essential for tumor control in this system. When pre-conditioned with eIL2, splenic NK cells became hyper-activated and upregulate IFNα signaling proteins that cause an excessive, toxic response to subsequent IFNα exposure. This work illustrates an example where accounting for the temporal dynamics of the immune system in combination therapy treatment schedule can favorably decouple efficacy and toxicity.
Collapse
Affiliation(s)
- Adrienne Rothschilds
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alice Tzeng
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Naveen K. Mehta
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kelly D. Moynihan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Darrell J. Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - K. Dane Wittrup
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|