1
|
Bamias G, Menghini P, Pizarro TT, Cominelli F. Targeting TL1A and DR3: the new frontier of anti-cytokine therapy in IBD. Gut 2025; 74:652-668. [PMID: 39266053 PMCID: PMC11885054 DOI: 10.1136/gutjnl-2024-332504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024]
Abstract
TNF-like cytokine 1A (TL1A) and its functional receptor, death-domain receptor 3 (DR3), are members of the TNF and TNFR superfamilies, respectively, with recognised roles in regulating innate and adaptive immune responses; additional existence of a decoy receptor, DcR3, indicates a tightly regulated cytokine system. The significance of TL1A:DR3 signalling in the pathogenesis of inflammatory bowel disease (IBD) is supported by several converging lines of evidence. Herein, we aim to provide a comprehensive understanding of what is currently known regarding the TL1A/DR3 system in the context of IBD. TL1A and DR3 are expressed by cellular subsets with important roles for the initiation and maintenance of intestinal inflammation, serving as potent universal costimulators of effector immune responses, indicating their participation in the pathogenesis of IBD. Recent evidence also supports a homoeostatic role for TL1A:DR3 via regulation of Tregs and innate lymphoid cells. TL1A and DR3 are also expressed by stromal cells and may contribute to inflammation-induced or inflammation-independent intestinal fibrogenesis. Finally, discovery of genetic polymorphisms with functional consequences may allow for patient stratification, including differential responses to TL1A-targeted therapeutics. In conclusion, TL1A:DR3 signalling plays a central and multifaceted role in the immunological pathways that underlie intestinal inflammation, such as that observed in IBD. Such evidence provides the foundation for developing pharmaceutical approaches targeting this ligand-receptor pair in IBD.
Collapse
Affiliation(s)
- Giorgos Bamias
- GI Unit, 3rd Academic Department of Internal Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece
| | - Paola Menghini
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Fabio Cominelli
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Solitano V, Jairath V, Ungaro F, Peyrin-Biroulet L, Danese S. TL1A inhibition for inflammatory bowel disease treatment: From inflammation to fibrosis. MED 2024; 5:386-400. [PMID: 38574740 DOI: 10.1016/j.medj.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/09/2024] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
The pivotal role of TL1A in modulating immune pathways crucial for inflammatory bowel disease (IBD) and intestinal fibrosis offers a promising therapeutic target. Phase 2 trials (TUSCANY and ARTEMIS-UC) evaluating an anti-TL1A antibody show progress in expanding IBD therapeutic options. First-in-human data reveal reduced expression of genes associated with extracellular matrix remodeling and fibrosis post-anti-TL1A treatment. Investigational drug TEV-48574, potentially exerting dual antifibrotic and anti-inflammatory effects, is undergoing a phase 2 basket study in both ulcerative colitis (UC) and Crohn disease (CD). Results are eagerly awaited, marking advancements in IBD therapeutics. This critical review comprehensively examines the existing literature, illuminating TL1A and the intricate role of DR3 in IBD, emphasizing the evolving therapeutic landscape and ongoing clinical trials, with potential implications for more effective IBD management.
Collapse
Affiliation(s)
- Virginia Solitano
- Division of Gastroenterology, Western University, London, ON, Canada; Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy
| | - Vipul Jairath
- Division of Gastroenterology, Western University, London, ON, Canada; Department of Epidemiology and Biostatistics, Western University, London, ON, Canada
| | - Federica Ungaro
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy; Division of Immunology, Transplantation, and Infectious Disease, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology and Inserm NGERE U1256, University Hospital of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France; Department of Gastroenterology, Nancy University Hospital, Vandœuvre-lès-Nancy, France; INFINY Institute, Nancy University Hospital, Vandœuvre-lès-Nancy, France; FHU-CURE, Nancy University Hospital, Vandœuvre-lès-Nancy, France; Groupe Hospitalier privé Ambroise Paré - Hartmann, Paris IBD Center, Neuilly sur Seine, France; Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, QC, Canada
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
3
|
Meng F, Jiang X, Wang X, Zheng Q, Wang XN, Mei C, Yan S, He Y, Xue J, Zhang X, Fu W, You Y, Zhai J, Wang Y, Sun X. Tumor necrosis factor-like cytokine 1A plays a role in inflammatory bowel disease pathogenesis. Proc Natl Acad Sci U S A 2023; 120:e2120771120. [PMID: 37579137 PMCID: PMC10452302 DOI: 10.1073/pnas.2120771120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/03/2023] [Indexed: 08/16/2023] Open
Abstract
The binding of tumor necrosis factor-like cytokine 1A (TL1A) to death receptor 3 (DR3) plays an important role in the interaction between dendritic cells (DCs) and T cells and contributes to intestinal inflammation development. However, the mechanism by which DCs expressing TL1A mediate helper T (Th) cell differentiation in the intestinal lamina propria (LP) during the pathogenesis of inflammatory bowel disease remains unclear. In this study, we found that TL1A/DR3 promoted Th1 and Th17 cell differentiation in T-T and DC-T cell interaction-dependent manners. TL1A-deficient CD4+ T cells failed to polarize into Th1/Th17 cells and did not cause colonic inflammation in a T cell transfer colitis model. Notably, TL1A was located in the cytoplasm and nuclei of DCs, positively regulated the DC-specific ICAM-grabbing nonintegrin/RAF1/nuclear factor κB signaling pathway, enhanced the antigen uptake ability of DCs, and promoted TLR4-mediated DC activation, inducing naive CD4+ T cell differentiation into Th1 and Th17 cells. Our work reveals that TL1A plays a regulatory role in inflammatory bowel disease pathogenesis.
Collapse
Affiliation(s)
- Fanxiang Meng
- Department of Immunology, Basic Medicine College, China Medical University, Shenyang, Liaoning Province110122, China
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province110801, China
| | - Xuefeng Jiang
- Department of Immunology, Basic Medicine College, China Medical University, Shenyang, Liaoning Province110122, China
| | - Xiao Wang
- Department of Immunology, Basic Medicine College, China Medical University, Shenyang, Liaoning Province110122, China
| | - Qianqian Zheng
- Department of Pathophysiology, Basic Medicine College, China Medical University, Shenyang, Liaoning Province110122, China
| | - Xiaonan N. Wang
- Department of Immunology, Basic Medicine College, China Medical University, Shenyang, Liaoning Province110122, China
| | - Chenxue Mei
- Department of Immunology, Basic Medicine College, China Medical University, Shenyang, Liaoning Province110122, China
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province110122, China
| | - Siqi Yan
- Department of Immunology, Basic Medicine College, China Medical University, Shenyang, Liaoning Province110122, China
| | - Yuting He
- Department of Immunology, Basic Medicine College, China Medical University, Shenyang, Liaoning Province110122, China
| | - Junxiu Xue
- Department of Immunology, Basic Medicine College, China Medical University, Shenyang, Liaoning Province110122, China
| | - Xiaoqing Zhang
- Department of Immunology, Basic Medicine College, China Medical University, Shenyang, Liaoning Province110122, China
- Teaching Center for Medical Experiment, China Medical University, Shenyang, Liaoning Province110122, China
| | - Wenda Fu
- Department of Immunology, Basic Medicine College, China Medical University, Shenyang, Liaoning Province110122, China
- Department of Blood Transfusion, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province710032, China
| | - Yong You
- Department of Immunology, Basic Medicine College, China Medical University, Shenyang, Liaoning Province110122, China
- Department of Immunology, Chengde medical university, Chengde, Hebei Province067000, China
| | - Jingbo Zhai
- Medical College, Inner Mongolia Minzu University, Tongliao028000, China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao028000, China
| | - Yuanyuan Wang
- Department of Anesthesiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province110032, China
| | - Xun Sun
- Department of Immunology, Basic Medicine College, China Medical University, Shenyang, Liaoning Province110122, China
| |
Collapse
|
4
|
Zhang D, Zhang J, Zhang J, Ji X, Qi Q, Xu J, Pan Y, Liu X, Sun F, Zeng R, Dong L. Identification of a novel role for TL1A/DR3 deficiency in acute respiratory distress syndrome that exacerbates alveolar epithelial disruption. Respir Res 2023; 24:182. [PMID: 37434162 DOI: 10.1186/s12931-023-02488-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/01/2023] [Indexed: 07/13/2023] Open
Abstract
Alveolar epithelial barrier is a potential therapeutic target for acute respiratory distress syndrome (ARDS). However, an effective intervention against alveolar epithelial barrier has not been developed. Here, based on single-cell RNA and mRNA sequencing results, death receptor 3 (DR3) and its only known ligand tumor necrosis factor ligand-associated molecule 1A (TL1A) were significantly reduced in epithelium from an ARDS mice and cell models. The apparent reduction in the TL1A/DR3 axis in lungs from septic-ARDS patients was correlated with the severity of the disease. The examination of knockout (KO) and alveolar epithelium conditional KO (CKO) mice showed that TL1A deficiency exacerbated alveolar inflammation and permeability in lipopolysaccharide (LPS)-induced ARDS. Mechanistically, TL1A deficiency decreased glycocalyx syndecan-1 and tight junction-associated zonula occludens 3 by increasing cathepsin E level for strengthening cell-to-cell permeability. Additionally, DR3 deletion aggravated barrier dysfunction and pulmonary edema in LPS-induced ARDS through the above mechanisms based on the analyses of DR3 CKO mice and DR3 overexpression cells. Therefore, the TL1A/DR3 axis has a potential value as a key therapeutic signaling for the protection of alveolar epithelial barrier.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Jianning Zhang
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Jintao Zhang
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Xiang Ji
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Qian Qi
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Jiawei Xu
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Yun Pan
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Xiaofei Liu
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Fang Sun
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Rong Zeng
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Liang Dong
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China.
| |
Collapse
|
5
|
Shimodaira Y, More SK, Hamade H, Blackwood AY, Abraham JP, Thomas LS, Miller JH, Stamps DT, Castanon SL, Jacob N, Ha CWY, Devkota S, Shih DQ, Targan SR, Michelsen KS. DR3 Regulates Intestinal Epithelial Homeostasis and Regeneration After Intestinal Barrier Injury. Cell Mol Gastroenterol Hepatol 2023; 16:83-105. [PMID: 37011811 PMCID: PMC10213104 DOI: 10.1016/j.jcmgh.2023.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND & AIMS Tumor necrosis factor (TNF) superfamily member tumor necrosis factor-like protein 1A (TL1A) has been associated with the susceptibility and severity of inflammatory bowel diseases. However, the function of the tumor necrosis factor-like protein 1A and its receptor death receptor 3 (DR3) in the development of intestinal inflammation is incompletely understood. We investigated the role of DR3 expressed by intestinal epithelial cells (IECs) during intestinal homeostasis, tissue injury, and regeneration. METHODS Clinical phenotype and histologic inflammation were assessed in C57BL/6 (wild-type), Tl1a-/- and Dr3-/- mice in dextran sulfate sodium (DSS)-induced colitis. We generated mice with an IEC-specific deletion of DR3 (Dr3ΔIEC) and assessed intestinal inflammation and epithelial barrier repair. In vivo intestinal permeability was assessed by fluorescein isothiocyanate dextran uptake. Proliferation of IECs was analyzed by bromodeoxyuridine incorporation. Expression of DR3 messenger RNA was assessed by fluorescent in situ hybridization. Small intestinal organoids were used to determine ex vivo regenerative potential. RESULTS Dr3-/- mice developed more severe colonic inflammation than wild-type mice in DSS-induced colitis with significantly impaired IEC regeneration. Homeostatic proliferation of IECs was increased in Dr3-/- mice, but blunted during regeneration. Cellular localization and expression of the tight junction proteins Claudin-1 and zonula occludens-1 were altered, leading to increased homeostatic intestinal permeability. Dr3ΔIEC mice recapitulated the phenotype observed in Dr3-/- mice with increased intestinal permeability and IEC proliferation under homeostatic conditions and impaired tissue repair and increased bacterial translocation during DSS-induced colitis. Impaired regenerative potential and altered zonula occludens-1 localization also were observed in Dr3ΔIEC enteroids. CONCLUSIONS Our findings establish a novel function of DR3 in IEC homeostasis and postinjury regeneration independent of its established role in innate lymphoid cells and T-helper cells.
Collapse
Affiliation(s)
- Yosuke Shimodaira
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Shyam K More
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Hussein Hamade
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Anna Y Blackwood
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jay P Abraham
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Lisa S Thomas
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jordan H Miller
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Dalton T Stamps
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Sofi L Castanon
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Noam Jacob
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California; Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Connie W Y Ha
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Suzanne Devkota
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - David Q Shih
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Stephan R Targan
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kathrin S Michelsen
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
6
|
Kokkotis G, Bamias G. TL1A as a therapeutic target in inflammatory bowel disease. Expert Rev Clin Immunol 2022; 18:551-555. [PMID: 35507314 DOI: 10.1080/1744666x.2022.2074401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/03/2022] [Indexed: 11/04/2022]
Affiliation(s)
- Georgios Kokkotis
- GI Unit, 3 Department of Internal Medicine, Sotiria Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Giorgos Bamias
- GI Unit, 3 Department of Internal Medicine, Sotiria Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Hassan-Zahraee M, Ye Z, Xi L, Baniecki ML, Li X, Hyde CL, Zhang J, Raha N, Karlsson F, Quan J, Ziemek D, Neelakantan S, Lepsy C, Allegretti JR, Romatowski J, Scherl EJ, Klopocka M, Danese S, Chandra DE, Schoenbeck U, Vincent MS, Longman R, Hung KE. Antitumor Necrosis Factor-like Ligand 1A Therapy Targets Tissue Inflammation and Fibrosis Pathways and Reduces Gut Pathobionts in Ulcerative Colitis. Inflamm Bowel Dis 2022; 28:434-446. [PMID: 34427649 PMCID: PMC8889296 DOI: 10.1093/ibd/izab193] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND The first-in-class treatment PF-06480605 targets the tumor necrosis factor-like ligand 1A (TL1A) molecule in humans. Results from the phase 2a TUSCANY trial highlighted the safety and efficacy of PF-06480605 in ulcerative colitis. Preclinical and in vitro models have identified a role for TL1A in both innate and adaptive immune responses, but the mechanisms underlying the efficacy of anti-TL1A treatment in inflammatory bowel disease (IBD) are not known. METHODS Here, we provide analysis of tissue transcriptomic, peripheral blood proteomic, and fecal metagenomic data from the recently completed phase 2a TUSCANY trial and demonstrate endoscopic improvement post-treatment with PF-06480605 in participants with ulcerative colitis. RESULTS Our results revealed robust TL1A target engagement in colonic tissue and a distinct colonic transcriptional response reflecting a reduction in inflammatory T helper 17 cell, macrophage, and fibrosis pathways in patients with endoscopic improvement. Proteomic analysis of peripheral blood revealed a corresponding decrease in inflammatory T-cell cytokines. Finally, microbiome analysis showed significant changes in IBD-associated pathobionts, Streptococcus salivarius, S. parasanguinis, and Haemophilus parainfluenzae post-therapy. CONCLUSIONS The ability of PF-06480605 to engage and inhibit colonic TL1A, targeting inflammatory T cell and fibrosis pathways, provides the first-in-human mechanistic data to guide anti-TL1A therapy for the treatment of IBD.
Collapse
Affiliation(s)
| | - Zhan Ye
- Pfizer Inc, Cambridge, MA, USA
| | - Li Xi
- Pfizer Inc, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | | - Jessica R Allegretti
- Brigham and Women’s Hospital, Harvard Medical School, Division of Gastroenterology, Boston, MA, USA
| | - Jacek Romatowski
- J. Sniadecki’s Regional Hospital, Internal Medicine and Gastroenterology Department, Białystok, Poland
| | - Ellen J Scherl
- Jill Roberts Center for IBD, Weill Cornell Medicine, Division of Gastroenterology and Hepatology, New York, NY, USA
| | - Maria Klopocka
- Nicolaus Copernicus University in Toruń, Collegium Medicum, Department of Gastroenterology and Nutrition, Bydgoszcz, Poland
| | - Silvio Danese
- IBD Center, Humanitas Research Hospital, Department of Gastroenterology, Milan, Italy
- Humanitas University, Department of Biomedical Sciences, Milan, Italy
| | | | | | | | - Randy Longman
- Jill Roberts Center for IBD, Weill Cornell Medicine, Division of Gastroenterology and Hepatology, New York, NY, USA
| | | |
Collapse
|
8
|
Oriol-Tordera B, Olvera A, Duran-Castells C, Llano A, Mothe B, Massanella M, Dalmau J, Ganoza C, Sanchez J, Calle ML, Clotet B, Martinez-Picado J, Negredo E, Blanco J, Hartigan-O'Connor D, Brander C, Ruiz-Riol M. TL1A-DR3 Plasma Levels Are Predictive of HIV-1 Disease Control, and DR3 Costimulation Boosts HIV-1-Specific T Cell Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:3348-3357. [PMID: 33177161 PMCID: PMC7725879 DOI: 10.4049/jimmunol.2000933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022]
Abstract
Relative control of HIV-1 infection has been linked to genetic and immune host factors. In this study, we analyzed 96 plasma proteome arrays from chronic untreated HIV-1-infected individuals using the classificatory random forest approach to discriminate between uncontrolled disease (plasma viral load [pVL] >50,000 RNA copies/ml; CD4 counts 283 cells/mm3, n = 47) and relatively controlled disease (pVL <10,000 RNA copies/ml; CD4 counts 657 cells/mm3, n = 49). Our analysis highlighted the TNF molecule's relevance, in particular, TL1A (TNFSF15) and its cognate DR3 (TNFSRF25), both of which increased in the relative virus control phenotype. DR3 levels (in plasma and PBMCs) were validated in unrelated cohorts (including long-term nonprogressors), thus confirming their independence from CD4 counts and pVL. Further analysis in combined antiretroviral treatment (cART)-treated individuals with a wide range of CD4 counts (137-1835 cells/mm3) indicated that neither TL1A nor DR3 levels reflected recovery of CD4 counts with cART. Interestingly, in cART-treated individuals, plasma TL1A levels correlated with regulatory T cell frequencies, whereas soluble DR3 was strongly associated with the abundance of effector HLA-DR+CD8+ T cells. A positive correlation was also observed between plasma DR3 levels and the HIV-1-specific T cell responses. In vitro, costimulation of PBMC with DR3-specific mAb increased the magnitude of HIV-1-specific responses. Finally, in splenocytes of DNA.HTI-vaccinated mice, costimulation of HTI peptides and a DR3 agonist (4C12) intensified the magnitude of T cell responses by 27%. These data describe the role of the TL1A-DR3 axis in the natural control of HIV-1 infection and point to the use of DR3 agonists in HIV-1 vaccine regimens.
Collapse
Affiliation(s)
- Bruna Oriol-Tordera
- Institut de Recerca de la Sida IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
- Departament de Biologia Cellular, de Fisiologia i d'Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Alex Olvera
- Institut de Recerca de la Sida IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
- Universitat de Vic - Universitat Central de Catalunya, Vic, 08500 Barcelona, Spain
| | - Clara Duran-Castells
- Institut de Recerca de la Sida IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
- Departament de Biologia Cellular, de Fisiologia i d'Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Anuska Llano
- Institut de Recerca de la Sida IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
| | - Beatriz Mothe
- Institut de Recerca de la Sida IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
- Universitat de Vic - Universitat Central de Catalunya, Vic, 08500 Barcelona, Spain
- Fundació Lluita contra la Sida i les Malalties Infeccioses, Servei de Malalties Infecciones Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
| | - Marta Massanella
- Institut de Recerca de la Sida IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
| | - Judith Dalmau
- Institut de Recerca de la Sida IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
| | - Carmela Ganoza
- Asociación Civil Impacta Salud y Educacion, Lima 15063, Peru
- Facultad de Medicina Alberto Hurtado de la Universidad Peruana Cayetano Heredia, San Martín de Porres, Lima 15102, Peru
| | - Jorge Sanchez
- Asociación Civil Impacta Salud y Educacion, Lima 15063, Peru
- Department of Global Health, University of Washington, Seattle, WA 98195
- Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Bellavista, Lima 07006, Peru
| | - Maria Luz Calle
- Universitat de Vic - Universitat Central de Catalunya, Vic, 08500 Barcelona, Spain
| | - Bonaventura Clotet
- Institut de Recerca de la Sida IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
- Universitat de Vic - Universitat Central de Catalunya, Vic, 08500 Barcelona, Spain
- Fundació Lluita contra la Sida i les Malalties Infeccioses, Servei de Malalties Infecciones Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
| | - Javier Martinez-Picado
- Institut de Recerca de la Sida IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
- Universitat de Vic - Universitat Central de Catalunya, Vic, 08500 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Eugènia Negredo
- Universitat de Vic - Universitat Central de Catalunya, Vic, 08500 Barcelona, Spain
- Fundació Lluita contra la Sida i les Malalties Infeccioses, Servei de Malalties Infecciones Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
| | - Julià Blanco
- Institut de Recerca de la Sida IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
- Universitat de Vic - Universitat Central de Catalunya, Vic, 08500 Barcelona, Spain
| | - Dennis Hartigan-O'Connor
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616
- California National Primate Research Center, University of California, Davis, Davis, CA 95616; and
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA 94110
| | - Christian Brander
- Institut de Recerca de la Sida IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
- Universitat de Vic - Universitat Central de Catalunya, Vic, 08500 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Marta Ruiz-Riol
- Institut de Recerca de la Sida IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain;
| |
Collapse
|
9
|
Han F, Song J, Jia W, Yang M, Wang D, Zhang H, Shih DQ, Targan SR, Zhang X. TL1A primed dendritic cells activation exacerbated chronic murine colitis. Life Sci 2020; 262:118220. [PMID: 32781075 DOI: 10.1016/j.lfs.2020.118220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
AIMS Tumor necrosis factor-like ligand 1A (TL1A) has been proved to activate adaptive immunity in inflammatory bowel disease (IBD). However, its role in the regulation of intestinal dendritic cells (DCs) has not been fully characterized. This study aims to investigate the modulation of TL1A in DCs activation in murine colitis. MATERIALS AND METHODS Myeloid TL1A-Transgenic C57BL/6 mice and wild-type (WT) mice were administrated with dextran sulfate sodium (DSS) to explore the effects of TL1A in murine colitis. Bone marrow-derived DCs (BMDCs) were isolated to detect the ability of antigen phagocytosis and presentation. The expression of nuclear factor-κB (NF-κB) pathway and chemokines receptors (CCRs) was assessed by real-time PCR and Western blot. KEY FINDINGS Myeloid cells with constitutive TL1A expression developed worsened murine colitis with exacerbated TH1/TH17 cytokine responses. Intestinal DCs from TL1A transgenic mice expressed high levels of costimulatory molecules (CD80 and CD86) with increased pro-inflammatory cytokines of IL-1β, TNF-α and IL-12/23 p40. Mechanistic studies showed that TL1A enhanced the phagocytotic ability of BMDCs. Moreover, TL1A enhanced the capacity of antigen process and presentation in BMDCs. Besides, TL1A induced the phosphorylation of NF-κB(p65) and IκBα. Meanwhile, higher expression of CCR2, CCR5, CCR7, and CX3CR1 was observed both in vivo and in vitro. SIGNIFICANCE TL1A exacerbated DSS-induced chronic experimental colitis, probably through activation and migration of dendritic cells, and therefore increasing the secretion of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Fei Han
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei 050000, China
| | - Jia Song
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei 050000, China
| | - Wenxiu Jia
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei 050000, China
| | - Mingyue Yang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei 050000, China
| | - Dong Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei 050000, China
| | - Hong Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei 050000, China
| | - David Q Shih
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles CA90048, USA
| | - Stephan R Targan
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles CA90048, USA
| | - Xiaolan Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
10
|
Abstract
Innate lymphoid cells (ILCs) are a large family of cells of the immune system that performs various functions in immune defense, inflammation, and tissue remodeling. As a part of the innate immune system, ILCs are a distinct form of lymphocytes different from T and B cells. ILCs can provide host defense against the source of infection and initiate the repair and remodeling processes to restore and maintain host body homeostasis. The number of patients with Crohn’s disease (CD) worldwide has continued to increase in recent years and this disease has brought sickness and death to many families. Numerous studies have found that ILCs also undergo a series of alternations during the development of CD and contribute to this disease. Despite this, the pathogenesis of CD is still not fully explained. So, we keep researching and exploring. In this review, we have closely linked the latest progress on ILCs and CD, and introduced, in detail, the specific roles of four different types of ILCs in CD. We also describe new progress in the pathogenesis of CD, with particular emphasis on the plasticity of ILC3s in this disease. These new studies and findings may provide new insights and breakthrough points for the treatment of CD.
Collapse
Affiliation(s)
- Ying Wu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Jacob N, Kumagai K, Abraham JP, Shimodaira Y, Ye Y, Luu J, Blackwood AY, Castanon SL, Stamps DT, Thomas LS, Gonsky R, Shih DQ, Michelsen KS, Targan SR. Direct signaling of TL1A-DR3 on fibroblasts induces intestinal fibrosis in vivo. Sci Rep 2020; 10:18189. [PMID: 33097818 PMCID: PMC7584589 DOI: 10.1038/s41598-020-75168-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor necrosis factor-like cytokine 1A (TL1A, TNFSF15) is implicated in inflammatory bowel disease, modulating the location and severity of inflammation and fibrosis. TL1A expression is increased in inflamed mucosa and associated with fibrostenosing Crohn's disease. Tl1a-overexpression in mice causes spontaneous ileitis, and exacerbates induced proximal colitis and fibrosis. Intestinal fibroblasts express Death-receptor 3 (DR3; the only know receptor for TL1A) and stimulation with TL1A induces activation in vitro. However, the contribution of direct TL1A-DR3 activation on fibroblasts to fibrosis in vivo remains unknown. TL1A overexpressing naïve T cells were transferred into Rag-/- , Rag-/- mice lacking DR3 in all cell types (Rag-/-Dr3-/-), or Rag-/- mice lacking DR3 only on fibroblasts (Rag-/-Dr3∆Col1a2) to induce colitis and fibrosis, assessed by clinical disease activity index, intestinal inflammation, and collagen deposition. Rag-/- mice developed overt colitis with intestinal fibrostenosis. In contrast, Rag-/-Dr3-/- demonstrated decreased inflammation and fibrosis. Despite similar clinical disease and inflammation as Rag-/-, Rag-/-Dr3∆Col1a2 exhibited reduced intestinal fibrosis and attenuated fibroblast activation and migration. RNA-Sequencing of TL1A-stimulated fibroblasts identified Rho signal transduction as a major pathway activated by TL1A and inhibition of this pathway modulated TL1A-mediated fibroblast functions. Thus, direct TL1A signaling on fibroblasts promotes intestinal fibrosis in vivo. These results provide novel insight into profibrotic pathways mediated by TL1A paralleling its pro-inflammatory effects.
Collapse
Affiliation(s)
- Noam Jacob
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, 10945 Le Conte Ave., Suite 2114, Los Angeles, CA, 90095, USA.
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA.
| | - Kotaro Kumagai
- F. Widjaja Foundation, Cedars-Sinai Medical Center, Inflammatory Bowel & Immunobiology Research Institute, Los Angeles, CA, 90048, USA
| | - Jay P Abraham
- F. Widjaja Foundation, Cedars-Sinai Medical Center, Inflammatory Bowel & Immunobiology Research Institute, Los Angeles, CA, 90048, USA
| | - Yosuke Shimodaira
- F. Widjaja Foundation, Cedars-Sinai Medical Center, Inflammatory Bowel & Immunobiology Research Institute, Los Angeles, CA, 90048, USA
| | - Yuefang Ye
- F. Widjaja Foundation, Cedars-Sinai Medical Center, Inflammatory Bowel & Immunobiology Research Institute, Los Angeles, CA, 90048, USA
| | - Justin Luu
- F. Widjaja Foundation, Cedars-Sinai Medical Center, Inflammatory Bowel & Immunobiology Research Institute, Los Angeles, CA, 90048, USA
| | - Anna Y Blackwood
- F. Widjaja Foundation, Cedars-Sinai Medical Center, Inflammatory Bowel & Immunobiology Research Institute, Los Angeles, CA, 90048, USA
| | - Sofi L Castanon
- F. Widjaja Foundation, Cedars-Sinai Medical Center, Inflammatory Bowel & Immunobiology Research Institute, Los Angeles, CA, 90048, USA
| | - Dalton T Stamps
- F. Widjaja Foundation, Cedars-Sinai Medical Center, Inflammatory Bowel & Immunobiology Research Institute, Los Angeles, CA, 90048, USA
| | - Lisa S Thomas
- F. Widjaja Foundation, Cedars-Sinai Medical Center, Inflammatory Bowel & Immunobiology Research Institute, Los Angeles, CA, 90048, USA
| | - Rivkah Gonsky
- F. Widjaja Foundation, Cedars-Sinai Medical Center, Inflammatory Bowel & Immunobiology Research Institute, Los Angeles, CA, 90048, USA
| | - David Q Shih
- F. Widjaja Foundation, Cedars-Sinai Medical Center, Inflammatory Bowel & Immunobiology Research Institute, Los Angeles, CA, 90048, USA
| | - Kathrin S Michelsen
- F. Widjaja Foundation, Cedars-Sinai Medical Center, Inflammatory Bowel & Immunobiology Research Institute, Los Angeles, CA, 90048, USA
| | - Stephan R Targan
- F. Widjaja Foundation, Cedars-Sinai Medical Center, Inflammatory Bowel & Immunobiology Research Institute, Los Angeles, CA, 90048, USA
| |
Collapse
|
12
|
Li Z, Yuan W, Lin Z. Functional roles in cell signaling of adaptor protein TRADD from a structural perspective. Comput Struct Biotechnol J 2020; 18:2867-2876. [PMID: 33163147 PMCID: PMC7593343 DOI: 10.1016/j.csbj.2020.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
TRADD participates in various receptor signaling pathways and plays vital roles in many biological activities, including cell survival and apoptosis, in different cellular contexts. TRADD has two distinct functional domains, a TRAF-binding domain at the N-terminus and a death domain (DD) at the C-terminus. The TRAF binding domain of TRADD folds into an α-β plait topology and is mainly responsible for binding TRAF2, while the TRADD-DD can interact with a variety of DD-containing proteins, including receptors and intracellular signaling molecules. After activation of specific receptors such as TNFR1 and DR3, TRADD can bind to the receptor through DD-DD interaction, creating a membrane-proximal platform for the recruitment of downstream molecules to propagate cellular signals. In this review, we highlight recent advances in the studies of the structural mechanism of TRADD adaptor functions for NF-κB activation and apoptosis induction. We also provide suggestions for future structure research related to TRADD-mediated signaling pathways.
Collapse
Affiliation(s)
- Zhen Li
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China.,Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, PR China
| | - Wensu Yuan
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China.,Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, PR China
| | - Zhi Lin
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China.,Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, PR China.,Department of Physiology, National University of Singapore, 117456, Singapore.,Life Sciences Institute, National University of Singapore, 117456, Singapore
| |
Collapse
|
13
|
Sun R, Hedl M, Abraham C. TNFSF15 Promotes Antimicrobial Pathways in Human Macrophages and These Are Modulated by TNFSF15 Disease-Risk Variants. Cell Mol Gastroenterol Hepatol 2020; 11:249-272. [PMID: 32827707 PMCID: PMC7689184 DOI: 10.1016/j.jcmgh.2020.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS TNFSF15 genetic variants leading to increased TNF superfamily member 15 (TNFSF15) expression confer risk for inflammatory bowel disease (IBD), and TNFSF15 is being explored as a therapeutic target in IBD patients. Although the focus for TNFSF15-mediated inflammatory outcomes has been predominantly on its action on T cells, TNFSF15 also promotes inflammatory outcomes in human macrophages. Given the critical role for macrophages in bacterial clearance, we hypothesized that TNFSF15 promotes antimicrobial pathways in human macrophages and that macrophages from TNFSF15 IBD risk carriers with higher TNFSF15 expression have an advantage in these antimicrobial outcomes. METHODS We analyzed protein expression, signaling, bacterial uptake, and intracellular bacterial clearance in human monocyte-derived macrophages through flow cytometry, enzyme-linked immunosorbent assay, and gentamicin protection. RESULTS Autocrine/paracrine TNFSF15 interactions with death receptor 3 (DR3) were required for optimal levels of pattern-recognition-receptor (PRR)-induced bacterial clearance in human macrophages. TNFSF15 induced pyruvate dehydrogenase kinase 1-dependent bacterial uptake and promoted intracellular bacterial clearance through reactive oxygen species, nitric oxide synthase 2, and autophagy up-regulation. The TNFSF15-initiated TNF receptor-associated factor 2/receptor-interacting protein kinase 1/RIP3 pathway was required for mitogen-activated protein kinase and nuclear factor-κB activation, and, in turn, induction of each of the antimicrobial pathways; the TNFSF15-initiated Fas-associated protein with death domain/mucosa-associated lymphoid tissue lymphoma translocation protein 1/caspase-8 pathway played a less prominent role in antimicrobial functions, despite its key role in TNFSF15-induced cytokine secretion. Complementation of signaling pathways or antimicrobial pathways restored bacterial uptake and clearance in PRR-stimulated macrophages where TNFSF15:DR3 interactions were inhibited. Monocyte-derived macrophages from high TNFSF15-expressing rs6478108 TT IBD risk carriers in the TNFSF15 region showed increased levels of the identified antimicrobial pathways. CONCLUSIONS We identify that autocrine/paracrine TNFSF15 is required for optimal PRR-enhanced antimicrobial pathways in macrophages, define mechanisms regulating TNFSF15-dependent bacterial clearance, and determine how the TNFSF15 IBD risk genotype modulates these outcomes.
Collapse
Affiliation(s)
- Rui Sun
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Matija Hedl
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Clara Abraham
- Department of Internal Medicine, Yale University, New Haven, Connecticut.
| |
Collapse
|
14
|
Leppkes M, Neurath MF. Cytokines in inflammatory bowel diseases - Update 2020. Pharmacol Res 2020; 158:104835. [PMID: 32416212 DOI: 10.1016/j.phrs.2020.104835] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
Inflammatory Bowel Diseases (IBD), namely Crohn's Disease and Ulcerative Colitis, cause a significant disease burden in modern civilization. Ever since the introduction of anti-TNF-directed therapies 20 years ago, cytokines have attracted a lot of research attention and several cytokine-directed therapies have been implemented in the clinical treatment of these diseases. The research progress in these past years has underlined the importance of both myeloid and lymphoid elements of the immune system in the pathogenesis of IBD and their cytokine-mediated interplay. The conceptual framework of the mucosal cytokine network has shifted during these years from a T helper (Th) dichotomy (Th1/Th2) to the effector/regulatory T cell balance, while nowadays, the importance of myeloid cell instruction of lymphocytes, namely by IL-12 and IL-23, is increasingly recognized. Anti-IL-12p40 agents, like ustekinumab, groundbreakingly changed patient care, and anti-IL23p19-directed approaches are on the verge of grand success. In this review we present a modular approach to understand the cytokine network and put it into the context of the pathogenesis of IBD with a special focus on publications since 2014.
Collapse
Affiliation(s)
- M Leppkes
- Department of Medicine, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany.
| | - M F Neurath
- Department of Medicine, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
15
|
Sattler A, Thiel LG, Ruhm AH, Souidi N, Seifert M, Herberth G, Kotsch K. The TL1A-DR3 Axis Selectively Drives Effector Functions in Human MAIT Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:2970-2978. [PMID: 31628153 DOI: 10.4049/jimmunol.1900465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/20/2019] [Indexed: 12/27/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are semi-invariant T cells specifically recognizing riboflavin derivatives that are synthesized by many bacteria and fungi presented by MHC class I-related MR1 molecules. Accumulating evidence, however, indicates that MAIT cell functions are inducible by cytokine stimuli in the absence of TCR ligation, identifying MAIT cells as innate sentinels in inflammatory environments. In this study, we demonstrate that death receptor 3 (DR3), a member of the TNFR superfamily, is ex vivo expressed and predominantly upregulated on the surface of human MAIT cells by innate cytokine stimulation. In turn, the DR3 ligand TNF-like protein 1A (TL1A) licenses innate TNF-α production in the absence of cognate triggers, being sufficient to promote activation of primary endothelial cells in vitro. TL1A further amplifies synthesis of IFN-γ and granzyme B in the presence of otherwise weak innate stimuli and strongly augments polyfunctionality. Mechanistically, TL1A potentiates T-bet expression, early NF-κB, and late p38 MAP kinase phosphorylation, with the latter being indispensable for TNF-α production by MAIT cells. Of note, endogenous TL1A is also rapidly released from PBMC cultures in response to bacterial triggering, thereby equally augmenting Ag-specific MAIT cell effector functions. In summary, to our knowledge, we identify a new inflammatory mechanism in MAIT cells linking the DR3/TL1A axis with amplification of TCR-dependent and -independent effector functions, particularly inducing excessive innate TNF-α production. Given that both TL1A and TNF-α are abundantly present at sites of chronic inflammation, the contribution of MAIT cells in such scenarios needs to be determined.
Collapse
Affiliation(s)
- Arne Sattler
- Department for General, Visceral and Vascular Surgery, Charité University Medicine Berlin, 12200 Berlin, Germany;
| | - Lion Gabriel Thiel
- Department for General, Visceral and Vascular Surgery, Charité University Medicine Berlin, 12200 Berlin, Germany
| | - Annkathrin Helena Ruhm
- Department for General, Visceral and Vascular Surgery, Charité University Medicine Berlin, 12200 Berlin, Germany
| | - Naima Souidi
- BIH Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin, and Berlin Institute of Health, 10178 Berlin, Germany.,Institute of Medical Immunology, Charité University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin, and Berlin Institute of Health, 13353 Berlin, Germany; and
| | - Martina Seifert
- BIH Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin, and Berlin Institute of Health, 10178 Berlin, Germany.,Institute of Medical Immunology, Charité University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin, and Berlin Institute of Health, 13353 Berlin, Germany; and
| | - Gunda Herberth
- Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Katja Kotsch
- Department for General, Visceral and Vascular Surgery, Charité University Medicine Berlin, 12200 Berlin, Germany
| |
Collapse
|
16
|
Wang D, Li H, Duan YY, Han F, Luo YX, Wu MY, Yang MY, Zhan RR, Song J, Zhang H, Zhang XL. TL1A modulates the severity of colitis by promoting Th9 differentiation and IL-9 secretion. Life Sci 2019; 231:116536. [PMID: 31176785 DOI: 10.1016/j.lfs.2019.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 02/08/2023]
Abstract
AIMS TL1A was reported to contribute to the susceptibility to ulcerative colitis (UC). However, the molecular mechanisms of TL1A in UC development are poorly understood. We aimed to investigate the role of TL1A in colitis, and reveal the regulatory mechanism of TL1A in chronic colitis development. MAIN METHODS Wild-type mice and transgenic mice with overexpressing TL1A in lymphocytes were used to construct chronic DSS colitis models. To investigate the molecular mechanism in vitro, CD4+ T cells were sorted from spleens and mesenteric lymph node cells to induce Th9 cells. Biopsy specimens from ulcerative colitis patients were collected for in vivo validation. KEY FINDINGS The elevated TL1A expression in chronic DSS colitis models exacerbated intestinal inflammation. The differentiation of Th9 cells, IL-9 secretion and production of TGF-β, IL-4 and PU.1 was significantly enhanced in transgenic mice with TL1A overexpression. In vitro results showed that TL1A enhanced the Th9 cells, IL-9 and PU.1 production, while TL1A antibodies inhibited their production. In human translational studies, patients with ulcerative colitis with elevated TL1A expression also exhibited more serious inflammation with higher levels of Th9 cells, IL-9 and PU.1 expression. SIGNIFICANCE We presented a possible mechanism of TL1A in UC development that TL1A may promote the differentiation of Th9 cells and enhanced IL-9 secretion by up-regulating the expression of TGF-β, IL-4 and PU.1, which provided a novel perspective to study the UC pathogenesis, and indicated that targeting of TL1A signal pathway may by a likely strategy for the treatment of chronic colitis.
Collapse
Affiliation(s)
- Dong Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050035, Hebei Province, China
| | - Hui Li
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050035, Hebei Province, China
| | - Yang-Yang Duan
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050035, Hebei Province, China
| | - Fei Han
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050035, Hebei Province, China
| | - Yu-Xin Luo
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050035, Hebei Province, China
| | - Meng-Yao Wu
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050035, Hebei Province, China
| | - Ming-Yue Yang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050035, Hebei Province, China
| | - Rong-Rong Zhan
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050035, Hebei Province, China
| | - Jia Song
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050035, Hebei Province, China
| | - Hong Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050035, Hebei Province, China
| | - Xiao-Lan Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050035, Hebei Province, China.
| |
Collapse
|
17
|
Li J, Shi W, Sun H, Ji Y, Chen Y, Guo X, Sheng H, Shu J, Zhou L, Cai T, Qiu J. Activation of DR3 signaling causes loss of ILC3s and exacerbates intestinal inflammation. Nat Commun 2019; 10:3371. [PMID: 31358760 PMCID: PMC6662828 DOI: 10.1038/s41467-019-11304-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 07/01/2019] [Indexed: 12/15/2022] Open
Abstract
TNF-like ligand 1 A (TL1A) and death receptor 3 (DR3) are a ligand-receptor pair involved in the pathogenesis of inflammatory bowel disease. Group 3 innate lymphoid cells (ILC3s) regulate intestinal immunity and highly express DR3. Here, we report that activation of DR3 signaling by an agonistic anti-DR3 antibody increases GM-CSF production from ILC3s through the p38 MAPK pathway. GM-CSF causes accumulation of eosinophils, neutrophils and CD11b+CD11c+ myeloid cells, resulting in loss of ILC3s from the intestine in an IL-23-dependent manner and exacerbating colitis. Blockade of GM-CSF or IL-23 reverses anti-DR3 antibody-driven ILC3 loss, whereas overexpression of IL-23 induces loss of ILC3s in the absence of GM-CSF. Neutralization of TL1A by soluble DR3 ameliorates both DSS and anti-CD40 antibody-induced colitis. Moreover, ILC3s are required for the deleterious effect of anti-DR3 antibodies on innate colitis. These findings clarify the process and consequences of DR3 signaling-induced intestinal inflammation through regulation of ILC3s.
Collapse
Affiliation(s)
- Jingyu Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenli Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hanxiao Sun
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yan Ji
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuqin Chen
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xiaohuan Guo
- Institute for Immunology, Tsinghua University, Beijing, 100084, China.,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.,Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, 100084, China
| | - Huiming Sheng
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Jie Shu
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, The University of Florida, Gainesville, FL, 32608, USA
| | - Ting Cai
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
18
|
Valatas V, Kolios G, Bamias G. TL1A (TNFSF15) and DR3 (TNFRSF25): A Co-stimulatory System of Cytokines With Diverse Functions in Gut Mucosal Immunity. Front Immunol 2019; 10:583. [PMID: 30972074 PMCID: PMC6445966 DOI: 10.3389/fimmu.2019.00583] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/04/2019] [Indexed: 12/11/2022] Open
Abstract
TL1A and its functional receptor DR3 are members of the TNF/TNFR superfamilies of proteins. Binding of APC-derived TL1A to lymphocytic DR3 provides co-stimulatory signals for activated lymphocytes. DR3 signaling affects the proliferative activity of and cytokine production by effector lymphocytes, but also critically influences the development and suppressive function of regulatory T-cells. DR3 was also found to be highly expressed by innate lymphoid cells (ILCS), which respond to stimulation by TL1A. Several recent studies with transgenic and knockout mice as well as neutralizing or agonistic antibodies for these two proteins, have clearly shown that TL1A/DR3 are important mediators of several chronic immunological disorders, including Inflammatory Bowel Disease (IBD). TL1A and DR3 are abundantly localized at inflamed intestinal areas of patients with IBD and mice with experimental ileitis or colitis and actively participate in the immunological pathways that underlie mucosal homeostasis and intestinal inflammation. DR3 signaling has demonstrated a dichotomous role in mucosal immunity. On the one hand, during acute mucosal injury it exerts protective functions by ameliorating the severity of acute inflammatory responses and facilitating tissue repair. On the other hand, it critically participates in the pro-inflammatory pathways that underlie chronic inflammatory responses, such as those that take place in IBD. These effects are mediated through modulation of the relative mucosal abundance and function of Th1, Th2, Th17, Th9, and Treg lymphocytes, but also of all types of ILCs. Recently, an important role was demonstrated for TL1A/DR3 as potential mediators of intestinal fibrosis that is associated with the presence of gut inflammation. These accumulating data have raised the possibility that TL1A/DR3 pathways may represent a valid therapeutic target for chronic immunological diseases. Nevertheless, applicability of such a therapeutic approach will greatly rely on the net result of TL1A/DR3 manipulation on the various cell populations that will be affected by this approach.
Collapse
Affiliation(s)
- Vassilis Valatas
- Gastroenterology and Hepatology Research Laboratory, Medical School, University of Crete, Heraklion, Greece
| | - George Kolios
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Giorgos Bamias
- GI-unit, National & Kapodistrian University of Athens, Third Department of Internal Medicine, Sotiria Hospital, Athens, Greece
| |
Collapse
|
19
|
Li B, Wang Y, Yin L, Huang G, Xu Y, Su J, Ma L, Lu J. Glucocorticoids promote the development of azoxymethane and dextran sulfate sodium-induced colorectal carcinoma in mice. BMC Cancer 2019; 19:94. [PMID: 30665389 PMCID: PMC6341596 DOI: 10.1186/s12885-019-5299-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 01/09/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Stress has been suggested as a promoter of tumor growth and development. Glucocorticoids (GCs) are the main stress hormones and widely prescribed as drugs. However, the effect of GCs on the development and progression of colorectal carcinoma (CRC) is unclear. METHODS We evaluated the effect of corticosterone (CORT) on azoxymethane and dextran sulfate sodium (AOM/DSS)-induced carcinogenesis in the colorectum of C57BL/6 strain mice. Plasma level of CORT was detected by radioimmunoassay. The expression of proliferation markers (Ki-67 and PCNA), nuclear factor (NF)-κB p65 and phosphoto-p65 (P-p65), as well as cyclooxygenase (COX)-2 were determined by immunohistochemistry. Inflammation in colorectum was evaluated by histopathology. RESULTS CORT feeding in drinking water of mice not only significantly elevated plasma CORT concentration, but also significantly increased the incidence and neoplasms burden (number and size of neoplasms) in colorectum. CORT also significant enhanced the expression of cell proliferation marker (Ki-67 and PCNA), NF-κB p65 and P-p65 as well as COX-2 in colorectal neoplasm of AOM/DSS-treated mice. CONCLUSION In this study, we have found for the first time that CORT at stress level potentially promotes the growth and development of AOM/DSS-induced colorectal adenoma and carcinoma in mice. Up-regulation of NF-κB and COX-2 may be involved in the promoting effect of CORT.
Collapse
Affiliation(s)
- Bo Li
- Department of pathophysiology, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433, People's Republic of China.,Department of general surgery, Changhai hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Yan Wang
- Department of pathophysiology, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433, People's Republic of China
| | - Lijuan Yin
- Department of pathology, Changhai hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Gaoxiang Huang
- Department of pathophysiology, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433, People's Republic of China
| | - Yi Xu
- Department of pathology, Changhai hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Jie Su
- Department of pathophysiology, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433, People's Republic of China
| | - Liye Ma
- Department of general surgery, Changhai hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Jian Lu
- Department of pathophysiology, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
20
|
Buttó LF, Jia LG, Arseneau KO, Tamagawa H, Rodriguez-Palacios A, Li Z, De Salvo C, Pizarro TT, Bamias G, Cominelli F. Death-Domain-Receptor 3 Deletion Normalizes Inflammatory Gene Expression and Prevents Ileitis in Experimental Crohn's Disease. Inflamm Bowel Dis 2019; 25:14-26. [PMID: 30295722 PMCID: PMC6290789 DOI: 10.1093/ibd/izy305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND TNF-like cytokine 1A (TL1A) and its functional receptor, death-domain-receptor-3 (DR3), are multifunctional mediators of effector and regulatory immunity. We aimed to evaluate the functional role and therapeutic potential of TL1A/DR3 signaling in Crohn's disease-like ileitis. METHODS Ileitis-prone SAMP1/YitFc (SAMP) and TNFΔARE/+ mice were rendered deficient for DR3 or TL1A by microsatellite marker-assisted backcrossing. Pathological and immunological characteristics were compared between control and knockout mice, and mucosal immunophenotype was analyzed by Nanostring microarray assay. The therapeutic effect of pharmacological TL1A neutralization was also investigated. RESULTS DR3 deficiency was associated with restoration of a homeostatic mucosal immunostat in SAMP mice through the regulation of several pro- and anti-inflammatory genes. This led to suppression of effector immunity, amelioration of ileitis severity, and compromised ability of either unfractionated CD4+ or CD4+CD45RBhi mucosal lymphocytes to transfer ileitis to severe combined immunodeficient mice recipients. TNF-driven ileitis was also prevented in TNFΔARE/+xDR3-/- mice, in association with decreased expression of the pro-inflammatory cytokines TNF and IFN-γ. In contrast to DR3, TL1A was dispensable for the development of ileitis although it affected the kinetics of inflammation, as TNFΔARE/+xTL1A-/- demonstrated delayed onset of inflammation, whereas administration of a neutralizing, anti-TL1A antibody ameliorated early but not late TNFΔARE/+ ileitis. CONCLUSION We found a prominent pro-inflammatory role of DR3 in chronic ileitis, which is only partially mediated via interaction with TL1A, raising the possibility for additional DR3 ligands. Death-domain-receptor-3 appears to be a master regulator of mucosal homeostasis and inflammation and may represent a candidate therapeutic target for chronic inflammatory conditions of the bowel.
Collapse
Affiliation(s)
- Ludovica F Buttó
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Li-Guo Jia
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Kristen O Arseneau
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | - Alex Rodriguez-Palacios
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Zhaodong Li
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Carlo De Salvo
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Giorgos Bamias
- GI-Unit, 3rd Academic Department of Internal Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece
| | - Fabio Cominelli
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
21
|
Castellanos JG, Woo V, Viladomiu M, Putzel G, Lima S, Diehl GE, Marderstein AR, Gandara J, Perez AR, Withers DR, Targan SR, Shih DQ, Scherl EJ, Longman RS. Microbiota-Induced TNF-like Ligand 1A Drives Group 3 Innate Lymphoid Cell-Mediated Barrier Protection and Intestinal T Cell Activation during Colitis. Immunity 2018; 49:1077-1089.e5. [PMID: 30552020 PMCID: PMC6301104 DOI: 10.1016/j.immuni.2018.10.014] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/08/2018] [Accepted: 10/17/2018] [Indexed: 12/27/2022]
Abstract
Inflammatory bowel disease (IBD) results from a dysregulated interaction between the microbiota and a genetically susceptible host. Genetic studies have linked TNFSF15 polymorphisms and its protein TNF-like ligand 1A (TL1A) with IBD, but the functional role of TL1A is not known. Here, we found that adherent IBD-associated microbiota induced TL1A release from CX3CR1+ mononuclear phagocytes (MNPs). Using cell-specific genetic deletion models, we identified an essential role for CX3CR1+MNP-derived TL1A in driving group 3 innate lymphoid cell (ILC3) production of interleukin-22 and mucosal healing during acute colitis. In contrast to this protective role in acute colitis, TL1A-dependent expression of co-stimulatory molecule OX40L in MHCII+ ILC3s during colitis led to co-stimulation of antigen-specific T cells that was required for chronic T cell colitis. These results identify a role for ILC3s in activating intestinal T cells and reveal a central role for TL1A in promoting ILC3 barrier immunity during colitis.
Collapse
Affiliation(s)
- Jim G Castellanos
- Jill Roberts Institute for Research in IBD, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Viola Woo
- Jill Roberts Institute for Research in IBD, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Monica Viladomiu
- Jill Roberts Institute for Research in IBD, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Gregory Putzel
- Jill Roberts Institute for Research in IBD, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Svetlana Lima
- Jill Roberts Institute for Research in IBD, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Gretchen E Diehl
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Andrew R Marderstein
- Jill Roberts Institute for Research in IBD, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jorge Gandara
- Jill Roberts Institute for Research in IBD, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Alexendar R Perez
- Jill Roberts Institute for Research in IBD, Weill Cornell Medicine, New York, NY, 10021, USA
| | - David R Withers
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Stephan R Targan
- F. Widjaja Foundation, Inflammatory Bowel and Immunology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, 90048, USA
| | - David Q Shih
- F. Widjaja Foundation, Inflammatory Bowel and Immunology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, 90048, USA
| | - Ellen J Scherl
- Jill Roberts Center for IBD, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Randy S Longman
- Jill Roberts Institute for Research in IBD, Weill Cornell Medicine, New York, NY, 10021, USA; Jill Roberts Center for IBD, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
22
|
Li L, Lu Y, Fu L, Zhou P, Zhang L, Wang W, Nie J, Zhang D, Liu Y, Wu B, Zhou Y, Chen T. Expression of death receptor 3 (DR3) on peripheral blood mononuclear cells of patients with psoriasis vulgaris. Postgrad Med J 2018; 94:551-555. [PMID: 30341229 DOI: 10.1136/postgradmedj-2018-136040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/08/2018] [Accepted: 09/15/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND A series of previous reports indicated that tumour necrosis factor-like ligand 1A (TL1A) and its receptor death receptor 3 (DR3) are involved in the pathogenesis of psoriasis vulgaris (PV), which is a common chronic skin disease accompanied by a number of comorbidities, although their exact roles remain unclear. Our previous studies demonstrated that serum TL1A levels were substantially elevated in patients with PV, but the detection of DR3 expression in peripheral blood mononuclear cells (PBMCs) of patients with PV had not been reported. Therefore, we detected DR3 expression on CD4+, CD8+, CD14+ and CD19+ PBMCs of patients with PV, atopic dermatitis (AD) and healthy volunteers. METHODS Blood samples were collected from participants with PV before and after treatment. Then, PBMCs from patients with PV were isolated. The Psoriasis Area Severity Index (PASI) was used to assess severity in patients with PV. The DR3 on CD4+, CD8+, CD14+ and CD19+ PBMCs were detected by flow cytometry analysis. Pearson's correlation analysis was then used to investigate the relationship between DR3 expression and PASI scores in patients with PV. RESULTS Comparing with the healthy volunteers and patients with AD, the percentage of DR3-expressing on CD8+ and CD14+ PBMCs in patients with PV was elevated, but the percentage of DR3-expressing on CD8+ and CD14+ cells decreased after anti-inflammatory treatment, which was correlated with PASI scores. CONCLUSIONS Taken together, these findings suggest that DR3 may play a key role in the pathogenesis of PV.
Collapse
Affiliation(s)
- Lin Li
- Department of Dermatology, Chengdu Second People's Hospital, Chengdu, China
| | - Yonghong Lu
- Department of Dermatology, Chengdu Second People's Hospital, Chengdu, China
| | - Lixin Fu
- Department of Dermatology, Chengdu Second People's Hospital, Chengdu, China
| | - Peimei Zhou
- Department of Dermatology, Chengdu Second People's Hospital, Chengdu, China
| | - Liwen Zhang
- Department of Dermatology, Chengdu Second People's Hospital, Chengdu, China
| | - Wenju Wang
- Department of Dermatology, Chengdu Second People's Hospital, Chengdu, China
| | - Jianjun Nie
- Department of Dermatology, Chengdu Second People's Hospital, Chengdu, China
| | - Dawei Zhang
- Department of Dermatology, Chengdu Second People's Hospital, Chengdu, China
| | - Yan Liu
- Department of Dermatology, Chengdu Second People's Hospital, Chengdu, China
| | - Bo Wu
- Department of Dermatology, Chengdu Second People's Hospital, Chengdu, China
| | | | - Tao Chen
- Department of Dermatology, Chengdu Second People's Hospital, Chengdu, China
| |
Collapse
|
23
|
Richard AC, Peters JE, Savinykh N, Lee JC, Hawley ET, Meylan F, Siegel RM, Lyons PA, Smith KGC. Reduced monocyte and macrophage TNFSF15/TL1A expression is associated with susceptibility to inflammatory bowel disease. PLoS Genet 2018; 14:e1007458. [PMID: 30199539 PMCID: PMC6130856 DOI: 10.1371/journal.pgen.1007458] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 06/01/2018] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammation in inflammatory bowel disease (IBD) results from a breakdown of intestinal immune homeostasis and compromise of the intestinal barrier. Genome-wide association studies have identified over 200 genetic loci associated with risk for IBD, but the functional mechanisms of most of these genetic variants remain unknown. Polymorphisms at the TNFSF15 locus, which encodes the TNF superfamily cytokine commonly known as TL1A, are associated with susceptibility to IBD in multiple ethnic groups. In a wide variety of murine models of inflammation including models of IBD, TNFSF15 promotes immunopathology by signaling through its receptor DR3. Such evidence has led to the hypothesis that expression of this lymphocyte costimulatory cytokine increases risk for IBD. In contrast, here we show that the IBD-risk haplotype at TNFSF15 is associated with decreased expression of the gene by peripheral blood monocytes in both healthy volunteers and IBD patients. This association persists under various stimulation conditions at both the RNA and protein levels and is maintained after macrophage differentiation. Utilizing a "recall-by-genotype" bioresource for allele-specific expression measurements in a functional fine-mapping assay, we localize the polymorphism controlling TNFSF15 expression to the regulatory region upstream of the gene. Through a T cell costimulation assay, we demonstrate that genetically regulated TNFSF15 has functional relevance. These findings indicate that genetically enhanced expression of TNFSF15 in specific cell types may confer protection against the development of IBD.
Collapse
Affiliation(s)
- Arianne C. Richard
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States of America
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - James E. Peters
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Natalia Savinykh
- NIHR Cambridge BRC Cell Phenotyping Hub, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - James C. Lee
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Eric T. Hawley
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Françoise Meylan
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Richard M. Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Paul A. Lyons
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Kenneth G. C. Smith
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
24
|
Mikami Y, Takada Y, Hagihara Y, Kanai T. Innate lymphoid cells in organ fibrosis. Cytokine Growth Factor Rev 2018; 42:27-36. [PMID: 30104153 DOI: 10.1016/j.cytogfr.2018.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 02/06/2023]
Abstract
Innate lymphoid cells (ILCs) are a recently identified family of lymphoid effector cells. ILCs are mainly clustered into 3 groups based on their unique cytokine profiles and transcription factors typically attributed to the subsets of T helper cells. ILCs have a critical role in the mucosal immune response through promptly responding to pathogens and producing large amount of effector cytokines of type 1, 2, or 3 responses. In addition to the role of early immune responses against infections, ILCs, particularly group 2 ILCs (ILC2), have recently gained attention for modulating remodeling and fibrosis especially in the mucosal tissues. Herein, we overview the current knowledge in this area, highlighting roles of ILCs on fibrosis in the mucosal tissues, especially focusing on the gut and lung. We also discuss some new directions for future research by extrapolating from knowledge derived from studies on Th cells.
Collapse
Affiliation(s)
- Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan.
| | - Yoshiaki Takada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan
| | - Yuya Hagihara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| |
Collapse
|
25
|
Li Z, Buttó LF, Buela KA, Jia LG, Lam M, Ward JD, Pizarro TT, Cominelli F. Death Receptor 3 Signaling Controls the Balance between Regulatory and Effector Lymphocytes in SAMP1/YitFc Mice with Crohn's Disease-Like Ileitis. Front Immunol 2018; 9:362. [PMID: 29545797 PMCID: PMC5837992 DOI: 10.3389/fimmu.2018.00362] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/08/2018] [Indexed: 12/17/2022] Open
Abstract
Death receptor 3 (DR3), a member of the tumor necrosis factor receptor (TNFR) superfamily, has been implicated in regulating T-helper type-1 (TH1), type-2 (TH2), and type-17 (TH17) responses as well as regulatory T cell (Treg) and innate lymphoid cell (ILC) functions during immune-mediated diseases. However, the role of DR3 in controlling lymphocyte functions in inflammatory bowel disease (IBD) is not fully understood. Recent studies have shown that activation of DR3 signaling modulates Treg expansion suggesting that stimulation of DR3 represents a potential therapeutic target in human inflammatory diseases, including Crohn's disease (CD). In this study, we tested a specific DR3 agonistic antibody (4C12) in SAMP1/YitFc (SAMP) mice with CD-like ileitis. Interestingly, treatment with 4C12 prior to disease manifestation markedly worsened the severity of ileitis in SAMP mice despite an increase in FoxP3+ lymphocytes in mesenteric lymph node (MLN) and small-intestinal lamina propria (LP) cells. Disease exacerbation was dominated by overproduction of both TH1 and TH2 cytokines and associated with expansion of dysfunctional CD25-FoxP3+ and ILC group 1 (ILC1) cells. These effects were accompanied by a reduction in CD25+FoxP3+ and ILC group 3 (ILC3) cells. By comparison, genetic deletion of DR3 effectively reversed the inflammatory phenotype in SAMP mice by promoting the expansion of CD25+FoxP3+ over CD25-FoxP3+ cells and the production of IL-10 protein. Collectively, our data demonstrate that DR3 signaling modulates a multicellular network, encompassing Tregs, T effectors, and ILCs, governing disease development and progression in SAMP mice with CD-like ileitis. Manipulating DR3 signaling toward the restoration of the balance between protective and inflammatory lymphocytes may represent a novel and targeted therapeutic modality for patients with CD.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/metabolism
- Cells, Cultured
- Crohn Disease/immunology
- Cytokines/metabolism
- Disease Models, Animal
- Female
- Forkhead Transcription Factors/metabolism
- Humans
- Ileitis/genetics
- Ileitis/immunology
- Male
- Membrane Proteins/genetics
- Mice
- Mice, Inbred AKR
- Mice, Knockout
- Mice, Transgenic
- Nuclear Proteins/genetics
- Receptors, Tumor Necrosis Factor, Member 25/agonists
- Receptors, Tumor Necrosis Factor, Member 25/genetics
- Receptors, Tumor Necrosis Factor, Member 25/immunology
- Signal Transduction
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Zhaodong Li
- BRB-5, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, United States
| | - Ludovica F. Buttó
- BRB-5, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, United States
| | - Kristine-Anne Buela
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Li-Guo Jia
- BRB-5, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, United States
| | - Minh Lam
- BRB-5, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, United States
| | - John D. Ward
- BRB-5, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, United States
| | - Theresa T. Pizarro
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Fabio Cominelli
- BRB-5, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
26
|
Bamias G, Arseneau KO, Cominelli F. Mouse models of inflammatory bowel disease for investigating mucosal immunity in the intestine. Curr Opin Gastroenterol 2017; 33:411-416. [PMID: 28901966 DOI: 10.1097/mog.0000000000000402] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Currently several mouse models are considered representative of inflammatory bowel disease (IBD). This review presents recent developments regarding the role of animal models of intestinal inflammation as research tools in IBD. RECENT FINDINGS Preclinical studies in animal models of intestinal inflammation have generated novel findings in several areas of IBD research. The combination of chemical and genetically engineered models have revealed protective or harmful roles for various components of the innate immune system in response to acute injury and repair mechanisms for the intestinal mucosa. Advances in the use of endoscopic and radiologic techniques have allowed identification of inflammatory biomarkers and in-vivo monitoring of cell trafficking towards inflammatory sites. Translational research has shed light on pathogenic mechanisms through which recent biological treatments may exert their beneficial effects in patients with IBD. Finally, novel therapies are continuously tested in animal models of IBD as part of preclinical drug development programs. SUMMARY Animal models of intestinal inflammation continue to be important research tools with high significance for understanding the pathogenesis of IBD and exploring novel therapeutic options. Development of additional experimental models that address existing limitations, and more closely resemble the characteristics of Crohn's disease and ulcerative colitis are greatly needed.
Collapse
Affiliation(s)
- Giorgos Bamias
- aAcademic Department of Gastroenterology, Kapodistrian University of Athens, Laikon Hospital, Athens, Greece bDivision of Gastrointestinal and Liver Disease, Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | | |
Collapse
|
27
|
Anderson G, Vaillancourt C, Maes M, Reiter RJ. Breastfeeding and the gut-brain axis: is there a role for melatonin? Biomol Concepts 2017; 8:185-195. [DOI: 10.1515/bmc-2017-0009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022] Open
Abstract
AbstractThe benefits of breastfeeding over formula feed are widely appreciated. However, for many mothers breastfeeding is not possible, highlighting the need for a significant improvement in the contents of formula feed. In this article, the overlooked role of melatonin and the melatonergic pathways in breast milk and in the regulation of wider breast milk components are reviewed. There is a growing appreciation that the benefits of breastfeeding are mediated by its effects in the infant gut, with consequences for the development of the gut-brain axis and the immune system. The melatonergic pathways are intimately associated with highly researched processes in the gut, gut microbiome and gut-brain axis. As the melatonergic pathways are dependent on the levels of serotonin availability as a necessary precursor, decreased melatonin is linked to depression and depression-associated disorders. The association of breastfeeding and the gut-brain axis with a host of medical conditions may be mediated by their regulation of processes that modulate depression susceptibility. The biological underpinnings of depression include increased levels of pro-inflammatory cytokines, oxidative stress, kynurenine pathway activity and dysregulation of the hypothalamic-pituitary adrenal axis, all of which can decrease melatonergic pathway activity. The inclusion of the melatonergic pathways in the biological interactions of breast milk and gut development has significant theoretical and treatment implications, as well as being important to the prevention of a host of infant-, child- and adult-onset medical conditions.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London SWIV 1PG, UK
| | - Cathy Vaillancourt
- INRS-Armand-Frappier Institute and Center for Interdisciplinary Research on Well-Being, Health, Society and Environment (CINBIOSE), Laval, QC, Canada
| | - Michael Maes
- Deakin University, Department of Psychiatry, Geelong, Australia
| | | |
Collapse
|
28
|
Pham OH, O’Donnell H, Al-Shamkhani A, Kerrinnes T, Tsolis RM, McSorley SJ. T cell expression of IL-18R and DR3 is essential for non-cognate stimulation of Th1 cells and optimal clearance of intracellular bacteria. PLoS Pathog 2017; 13:e1006566. [PMID: 28817719 PMCID: PMC5574617 DOI: 10.1371/journal.ppat.1006566] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/29/2017] [Accepted: 08/01/2017] [Indexed: 02/06/2023] Open
Abstract
Th1 cells can be activated by TCR-independent stimuli, but the importance of this pathway in vivo and the precise mechanisms involved require further investigation. Here, we used a simple model of non-cognate Th1 cell stimulation in Salmonella-infected mice to examine these issues. CD4 Th1 cell expression of both IL-18R and DR3 was required for optimal IFN-γ induction in response to non-cognate stimulation, while IL-15R expression was dispensable. Interestingly, effector Th1 cells generated by immunization rather than live infection had lower non-cognate activity despite comparable IL-18R and DR3 expression. Mice lacking T cell intrinsic expression of MyD88, an important adapter molecule in non-cognate T cell stimulation, exhibited higher bacterial burdens upon infection with Salmonella, Chlamydia or Brucella, suggesting that non-cognate Th1 stimulation is a critical element of efficient bacterial clearance. Thus, IL-18R and DR3 are critical players in non-cognate stimulation of Th1 cells and this response plays an important role in protection against intracellular bacteria.
Collapse
Affiliation(s)
- Oanh H. Pham
- Center for Comparative Medicine and Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Hope O’Donnell
- Center for Comparative Medicine and Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Aymen Al-Shamkhani
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Tobias Kerrinnes
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, United States of America
| | - Renée M. Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, United States of America
| | - Stephen J. McSorley
- Center for Comparative Medicine and Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| |
Collapse
|
29
|
Bittner S, Ehrenschwender M. Multifaceted death receptor 3 signaling-promoting survival and triggering death. FEBS Lett 2017; 591:2543-2555. [DOI: 10.1002/1873-3468.12747] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/24/2017] [Accepted: 07/03/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Sebastian Bittner
- Institute of Clinical Microbiology and Hygiene; University Hospital Regensburg; Germany
| | - Martin Ehrenschwender
- Institute of Clinical Microbiology and Hygiene; University Hospital Regensburg; Germany
| |
Collapse
|
30
|
Menghini P, Di Martino L, Lopetuso LR, Corridoni D, Webster JC, Xin W, Arseneau KO, Lam M, Pizarro TT, Cominelli F. A novel model of colitis-associated cancer in SAMP1/YitFc mice with Crohn's disease-like ileitis. PLoS One 2017; 12:e0174121. [PMID: 28301579 PMCID: PMC5354461 DOI: 10.1371/journal.pone.0174121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 03/04/2017] [Indexed: 12/19/2022] Open
Abstract
Patients with inflammatory bowel disease (IBD) are at increased risk for developing colorectal cancer. Evidence suggests that colonic dysplasia and colitis-associated cancer (CAC) are often linked to repeated cycles of epithelial cell injury and repair in the context of chronic production of inflammatory cytokines. Several mouse models of CAC have been proposed, including chemical induction through exposure to dextran sulfate sodium (DSS) with the genotoxic agents azoxymethane (AOM), 1,2-dymethylhydrazine (DHM) or targeted genetic mutations. However, such models are usually performed on healthy animals that usually lack the underlying genetic predisposition, immunological dysfunction and dysbiosis characteristic of IBD. We have previously shown that inbred SAMP1/YitFc (SAMP) mice develop a progressive Crohn’s disease (CD)-like ileitis in the absence of spontaneous colitis. We hypothesize that SAMP mice may be more susceptible to colonic tumorigenesis due to their predisposition to IBD. To test this hypothesis, we administered AOM/DSS to IBD-prone SAMP and their non-inflamed parental control strain, AKR mice. Our results showed that AOM/DSS treatment enhanced the susceptibility of colitis in SAMP compared to AKR mice, as assessed by endoscopic and histologic inflammatory scores, daily weight loss and disease activity index (DAI), during and after DSS administration. SAMP mice also showed increased colonic tumorigenesis, resulting in the occurrence of intramucosal carcinoma and a higher incidence of high-grade dysplasia and tumor burden. These phenomena occurred even in the absence of AOM and only upon repeated cycles of DSS. Taken together, our data demonstrate a heightened susceptibility to colonic inflammation and tumorigenesis in AOM/DSS-treated SAMP mice with CD-like ileitis. This novel model represents a useful tool to investigate relevant mechanisms of CAC, as well as for pre-clinical testing of potential IBD and colon cancer therapeutics.
Collapse
Affiliation(s)
- Paola Menghini
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Luca Di Martino
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Loris R. Lopetuso
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Daniele Corridoni
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Joshua C. Webster
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Wei Xin
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Kristen O. Arseneau
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Minh Lam
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Theresa T. Pizarro
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Fabio Cominelli
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
31
|
Di Martino L, Dave M, Menghini P, Xin W, Arseneau KO, Pizarro TT, Cominelli F. Protective Role for TWEAK/Fn14 in Regulating Acute Intestinal Inflammation and Colitis-Associated Tumorigenesis. Cancer Res 2016; 76:6533-6542. [PMID: 27634763 PMCID: PMC5290134 DOI: 10.1158/0008-5472.can-16-0400] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease causes chronic, relapsing intestinal inflammation that can lead to the development of colorectal cancer. Members of the TNF superfamily are key regulators of intestinal inflammation. In particular, TNF-like weak inducer of apoptosis (TWEAK) and its receptor, Fn14, are involved in normal and pathologic intestinal tissue remodeling. In this study, we show that the TWEAK/Fn14 signaling complex plays a protective role during the acute stage of intestinal inflammation and contributes to the prevention of colitis-associated cancer during chronic inflammation through its proapoptotic effects. Colitis was induced in Fn14-/- and Fn14+/+ wild-type littermates by administering 3% dextran sodium sulfate (DSS) for 7 days followed by 2-week recovery; azoxymethane (AOM) administration followed by two cycles of DSS/recovery was used to induce tumors. Reciprocal bone marrow chimeric mice were generated to compare hematopoietic and nonhematopoietic-specific effector tissues. Fn14-/- mice had enhanced susceptibility to colitis compared with Fn14+/+ controls as assessed by endoscopic and histologic inflammatory scores, daily weight loss, and mortality rates during recovery after DSS administration. Bone marrow transfer experiments showed that both hematopoietic and nonhematopoietic components are involved in protection against colitis. Tumor lesions were found in the colons of most Fn14-/- mice, but not Fn14+/+ controls. AOM/DSS administration enhanced susceptibility to tumorigenesis in Fn14-/- mice. Overall, these findings show that Fn14 plays a protective role during the acute stages of intestinal inflammation, and its absence promotes the development of colitis-associated cancer. Cancer Res; 76(22); 6533-42. ©2016 AACR.
Collapse
Affiliation(s)
- Luca Di Martino
- Case Digestive Health Research Institute, Case Western University School of Medicine, Cleveland, Ohio
- Department of Medicine, Case Western University School of Medicine, Cleveland, Ohio
| | - Maneesh Dave
- Case Digestive Health Research Institute, Case Western University School of Medicine, Cleveland, Ohio
- Department of Medicine, Case Western University School of Medicine, Cleveland, Ohio
| | - Paola Menghini
- Case Digestive Health Research Institute, Case Western University School of Medicine, Cleveland, Ohio
- Case Digestive Health Research Institute, Case Western University School of Medicine, Cleveland, Ohio
| | - Wei Xin
- Case Digestive Health Research Institute, Case Western University School of Medicine, Cleveland, Ohio
- Department of Pathology, Case Western University School of Medicine, Cleveland, Ohio
| | - Kristen O Arseneau
- Case Digestive Health Research Institute, Case Western University School of Medicine, Cleveland, Ohio
- Department of Medicine, Case Western University School of Medicine, Cleveland, Ohio
| | - Theresa T Pizarro
- Case Digestive Health Research Institute, Case Western University School of Medicine, Cleveland, Ohio
- Department of Pathology, Case Western University School of Medicine, Cleveland, Ohio
| | - Fabio Cominelli
- Case Digestive Health Research Institute, Case Western University School of Medicine, Cleveland, Ohio.
- Department of Medicine, Case Western University School of Medicine, Cleveland, Ohio
- Department of Pathology, Case Western University School of Medicine, Cleveland, Ohio
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Cytokines of the intestinal microenvironment largely dictate immunological responses after mucosal insults and the dominance of homeostatic or proinflammatory pathways. This review presents important recent studies on the role of specific cytokines in the pathogenesis of intestinal inflammation. RECENT FINDINGS The particular mucosal effects of cytokines depend on their inherent properties but also the cellular origin, type of stimulatory antigens, intermolecular interactions, and the particular immunological milieu. Novel cytokines of the interleukin-1 (IL-1) family, including IL-33 and IL-36, have dominant roles in mucosal immunity, whereas more established ones such as IL-18 are constantly enriched with unique properties. Th17 cells are important mucosal constituents, although their profound plasticity, makes the specific set of cytokines they secrete more important than their mere numbers. Finally, various cytokines, such as tumor necrosis factor-α, IL-6, tumor necrosis factor-like cytokine 1A, and death receptor, 3 demonstrate dichotomous roles with mucosa-protective function in acute injury but proinflammatory effects during chronic inflammation. SUMMARY The role of cytokines in mucosal health and disease is increasingly revealed. Such information not only will advance our understanding of the pathogenesis of gut inflammation, but also set the background for development of reliable diagnostic and prognostic biomarkers and cytokine-specific therapies.
Collapse
Affiliation(s)
- Giorgos Bamias
- aAcademic Department of Gastroenterology, Kapodistrian University of Athens, Laikon Hospital, Athens, Greece bDivision of Gastrointestinal and Liver Disease, Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA
| | | |
Collapse
|