1
|
Wu GS, Culberson EJ, Allyn BM, Bassing CH. Poor-Quality Vβ Recombination Signal Sequences and the DNA Damage Response ATM Kinase Collaborate to Establish TCRβ Gene Repertoire and Allelic Exclusion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2583-2592. [PMID: 35534211 PMCID: PMC9133172 DOI: 10.4049/jimmunol.2100489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 03/23/2022] [Indexed: 06/03/2023]
Abstract
The monoallelic expression (allelic exclusion) of diverse lymphocyte Ag receptor genes enables specific immune responses. Allelic exclusion is achieved by asynchronous initiation of V(D)J recombination between alleles and protein encoded by successful rearrangement on the first allele signaling permanent inhibition of V rearrangement on the other allele. The ATM kinase that guides DNA repair and transiently suppresses V(D)J recombination also helps impose allelic exclusion through undetermined mechanisms. At the TCRβ locus, one Vβ gene segment (V31) rearranges only by inversion, whereas all other Vβ segments rearrange by deletion except for rare cases in which they rearrange through inversion following V31 rearrangement. The poor-quality recombination signal sequences (RSSs) of V31 and V2 help establish TCRβ gene repertoire and allelic exclusion by stochastically limiting initiation of Vβ rearrangements before TCRβ protein-signaled permanent silencing of Vβ recombination. We show in this study in mice that ATM functions with these RSSs and the weak V1 RSS to shape TCRβ gene repertoire by restricting their Vβ segments from initiating recombination and hindering aberrant nonfunctional Vβ recombination products, especially during inversional V31 rearrangements. We find that ATM collaborates with the V1 and V2 RSSs to help enforce allelic exclusion by facilitating competition between alleles for initiation and functional completion of rearrangements of these Vβ segments. Our data demonstrate that the fundamental genetic DNA elements that underlie inefficient Vβ recombination cooperate with ATM-mediated rapid DNA damage responses to help establish diversity and allelic exclusion of TCRβ genes.
Collapse
Affiliation(s)
- Glendon S Wu
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Erica J Culberson
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Brittney M Allyn
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Craig H Bassing
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
2
|
Perez H, Abdallah MF, Chavira JI, Norris AS, Egeland MT, Vo KL, Buechsenschuetz CL, Sanghez V, Kim JL, Pind M, Nakamura K, Hicks GG, Gatti RA, Madrenas J, Iacovino M, McKinnon PJ, Mathews PJ. A novel, ataxic mouse model of ataxia telangiectasia caused by a clinically relevant nonsense mutation. eLife 2021; 10:e64695. [PMID: 34723800 PMCID: PMC8601662 DOI: 10.7554/elife.64695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
Ataxia Telangiectasia (A-T) and Ataxia with Ocular Apraxia Type 1 (AOA1) are devastating neurological disorders caused by null mutations in the genome stability genes, A-T mutated (ATM) and Aprataxin (APTX), respectively. Our mechanistic understanding and therapeutic repertoire for treating these disorders are severely lacking, in large part due to the failure of prior animal models with similar null mutations to recapitulate the characteristic loss of motor coordination (i.e., ataxia) and associated cerebellar defects. By increasing genotoxic stress through the insertion of null mutations in both the Atm (nonsense) and Aptx (knockout) genes in the same animal, we have generated a novel mouse model that for the first time develops a progressively severe ataxic phenotype associated with atrophy of the cerebellar molecular layer. We find biophysical properties of cerebellar Purkinje neurons (PNs) are significantly perturbed (e.g., reduced membrane capacitance, lower action potential [AP] thresholds, etc.), while properties of synaptic inputs remain largely unchanged. These perturbations significantly alter PN neural activity, including a progressive reduction in spontaneous AP firing frequency that correlates with both cerebellar atrophy and ataxia over the animal's first year of life. Double mutant mice also exhibit a high predisposition to developing cancer (thymomas) and immune abnormalities (impaired early thymocyte development and T-cell maturation), symptoms characteristic of A-T. Finally, by inserting a clinically relevant nonsense-type null mutation in Atm, we demonstrate that Small Molecule Read-Through (SMRT) compounds can restore ATM production, indicating their potential as a future A-T therapeutic.
Collapse
Affiliation(s)
- Harvey Perez
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - May F Abdallah
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Jose I Chavira
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Angelina S Norris
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Martin T Egeland
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Karen L Vo
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Callan L Buechsenschuetz
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Valentina Sanghez
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Jeannie L Kim
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Molly Pind
- Department of Biochemistry and Medical Genetics,Max Rady College of Medicine, University of ManitobaManitobaCanada
| | - Kotoka Nakamura
- Department of Pathology & Laboratory Medicine, David Geffen School of MedicineLos AngelesUnited States
| | - Geoffrey G Hicks
- Department of Biochemistry and Medical Genetics,Max Rady College of Medicine, University of ManitobaManitobaCanada
| | - Richard A Gatti
- Department of Pathology & Laboratory Medicine, David Geffen School of MedicineLos AngelesUnited States
| | - Joaquin Madrenas
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
- Department of Medicine, Harbor-UCLA Medical CenterTorranceUnited States
| | - Michelina Iacovino
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
- Department of Pediatrics, Harbor-UCLA Medical CenterTorranceUnited States
| | - Peter J McKinnon
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, St. Jude Children’s Research HospitalMemphisUnited States
| | - Paul J Mathews
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
- Department of Neurology, Harbor-UCLA Medical CenterTorranceUnited States
| |
Collapse
|
3
|
Moeini Shad T, Yousefi B, Amirifar P, Delavari S, Rae W, Kokhaei P, Abolhassani H, Aghamohammadi A, Yazdani R. Variable Abnormalities in T and B Cell Subsets in Ataxia Telangiectasia. J Clin Immunol 2020; 41:76-88. [PMID: 33052516 DOI: 10.1007/s10875-020-00881-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/29/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Ataxia-telangiectasia (AT) is a rare genetic condition, caused by biallelic deleterious variants in the ATM gene, and has variable immunological abnormalities. This study aimed to examine immunologic parameters reflecting cell development, activation, proliferation, and class switch recombination (CSR) and determine their relationship to the clinical phenotype in AT patients. METHODS In this study, 40 patients with a confirmed diagnosis of AT from the Iranian immunodeficiency registry center and 28 age-sex matched healthy controls were enrolled. We compared peripheral B and T cell subsets and T cell proliferation response to CD3/CD28 stimulation in AT patients with and without CSR defects using flow cytometry. RESULTS A significant decrease in naïve, transitional, switched memory, and IgM only memory B cells, along with a sharp increase in the marginal zone-like and CD21low B cells was observed in the patients. We also found CD4+ and CD8+ naïve, central memory, and terminally differentiated effector memory CD4+ (TEMRA) T cells were decreased. CD4+ and CD8+ effector memory, CD8+ TEMRA, and CD4+ regulatory T cells were significantly elevated in our patients. CD4+ T cell proliferation was markedly impaired compared to the healthy controls. Moreover, immunological investigations of 15 AT patients with CSR defect revealed a significant reduction in the marginal zone, switched memory, and more intense defects in IgM only memory B cells, CD4+ naïve and central memory T cells. CONCLUSION The present study revealed that patients with AT have a broad spectrum of cellular and humoral deficiencies. Therefore, a detailed evaluation of T and B cell subsets increases understanding of the disease in patients and the risk of infection.
Collapse
Affiliation(s)
- Tannaz Moeini Shad
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Parisa Amirifar
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - William Rae
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Parviz Kokhaei
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.,Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Primary Immunodeficiencies, Iran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Kim J, Lee SK, Jeon Y, Kim Y, Lee C, Jeon SH, Shim J, Kim IH, Hong S, Kim N, Lee H, Seong RH. TopBP1 deficiency impairs V(D)J recombination during lymphocyte development. EMBO J 2014; 33:217-28. [PMID: 24442639 DOI: 10.1002/embj.201284316] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
TopBP1 was initially identified as a topoisomerase II-β-binding protein and it plays roles in DNA replication and repair. We found that TopBP1 is expressed at high levels in lymphoid tissues and is essential for early lymphocyte development. Specific abrogation of TopBP1 expression resulted in transitional blocks during early lymphocyte development. These defects were, in major part, due to aberrant V(D)J rearrangements in pro-B cells, double-negative and double-positive thymocytes. We also show that TopBP1 was located at sites of V(D)J rearrangement. In TopBP1-deficient cells, γ-H2AX foci were found to be increased. In addition, greater amount of γ-H2AX product was precipitated from the regions where TopBP1 was localized than from controls, indicating that TopBP1 deficiency results in inefficient DNA double-strand break repair. The developmental defects were rescued by introducing functional TCR αβ transgenes. Our data demonstrate a novel role for TopBP1 as a crucial factor in V(D)J rearrangement during the development of B, T and iNKT cells.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Biological Sciences, Institute of Molecular Biology and Genetics Research Center for Functional Cellulomics Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
ATM influences the efficiency of TCRβ rearrangement, subsequent TCRβ-dependent T cell development, and generation of the pre-selection TCRβ CDR3 repertoire. PLoS One 2013; 8:e62188. [PMID: 23626787 PMCID: PMC3633875 DOI: 10.1371/journal.pone.0062188] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 03/19/2013] [Indexed: 11/26/2022] Open
Abstract
Generation and resolution of DNA double-strand breaks is required to assemble antigen-specific receptors from the genes encoding V, D, and J gene segments during recombination. The present report investigates the requirement for ataxia telangiectasia-mutated (ATM) kinase, a component of DNA double-strand break repair, during TCRβ recombination and in subsequent TCRβ-dependent repertoire generation and thymocyte development. CD4−CD8− double negative stage 2/3 thymocytes from ATM-deficient mice have both an increased frequency of cells with DNA break foci at TCRβ loci and reduced Vβ-DJβ rearrangement. Sequencing of TCRβ complementarity-determining region 3 demonstrates that ATM-deficient CD4+CD8+ double positive thymocytes and peripheral T cells have altered processing of coding ends for both in-frame and out-of-frame TCRβ rearrangements, providing the unique demonstration that ATM deficiency alters the expressed TCRβ repertoire by a selection-independent mechanism. ATMKO thymi exhibit a partial developmental block in DN cells as they negotiate the β-selection checkpoint to become double negative stage 4 and CD4+CD8+ thymocytes, resulting in reduced numbers of CD4+CD8+ cells. Importantly, expression of a rearranged TCRβ transgene substantially reverses this defect in CD4+CD8+ cells, directly linking a requirement for ATM during endogenous TCRβ rearrangement to subsequent TCRβ-dependent stages of development. These results demonstrate that ATM plays an important role in TCRβ rearrangement, generation of the TCRβ CDR3 repertoire, and efficient TCRβ-dependent T cell development.
Collapse
|
6
|
D'Souza AD, Parish IA, McKay SE, Kaech SM, Shadel GS. Aberrant CD8+ T-cell responses and memory differentiation upon viral infection of an ataxia-telangiectasia mouse model driven by hyper-activated Akt and mTORC1 signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2740-51. [PMID: 21641396 DOI: 10.1016/j.ajpath.2011.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 01/13/2011] [Accepted: 02/17/2011] [Indexed: 12/18/2022]
Abstract
Immune system-related pathology is common in ataxia-telangiectasia (A-T) patients and mice that lack the protein kinase, A-T mutated (ATM). However, it has not been studied how ATM influences immune responses to a viral infection. Using the lymphocytic choriomeningitis virus (LCMV) infection model, we show that ATM(-/-) mice, despite having fewer naïve CD8⁺ T cells, effectively clear the virus. However, aberrant CD8⁺ T-cell responses are observed, including defective expansion and contraction, effector-to-memory differentiation, and a switch in viral-epitope immunodominance. T-cell receptor-activated, but not naïve, ATM(-/-) splenic CD8⁺ T cells have increased ribosomal protein S6 and Akt phosphorylation and do not proliferate well in response to IL-15, a cytokine important for memory T-cell development. Accordingly, pharmacological Akt or mammalian target of rapamycin complex 1 (mTORC1) inhibition during T-cell receptor activation alone rescues the IL-15 proliferation defect. Finally, rapamycin treatment during LCMV infection in vivo increases the number of memory T cells in ATM(-/-) mice. Altogether, these results show that CD8⁺T cells lacking ATM have hyperactive Akt and mTORC1 signaling in response to T-cell receptor activation, which results in aberrant cytokine responses and memory T-cell development. We speculate that similar signaling defects contribute to the immune system pathology of A-T, and that inhibition of Akt and/or mTORC1 may be of therapeutic value.
Collapse
Affiliation(s)
- Anthony D D'Souza
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | |
Collapse
|
7
|
Dual functions of Nbs1 in the repair of DNA breaks and proliferation ensure proper V(D)J recombination and T-cell development. Mol Cell Biol 2010; 30:5572-81. [PMID: 20921278 DOI: 10.1128/mcb.00917-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunodeficiency and lymphoid malignancy are hallmarks of the human disease Nijmegen breakage syndrome (NBS; OMIM 251260), which is caused by NBS1 mutations. Although NBS1 has been shown to bind to the T-cell receptor alpha (TCRα) locus, its role in TCRβ rearrangement is unclear. Hypomorphic mutations of Nbs1 in mice and patients result in relatively mild T-cell deficiencies, raising the question of whether the truncated Nbs1 protein might have clouded a certain function of NBS1 in T-cell development. Here we show that the deletion of the entire Nbs1 protein in T-cell precursors (Nbs1(T-del)) results in severe lymphopenia and a hindrance to the double-negative 3 (DN3)-to-DN4 transition in early T-cell development, due to abnormal TCRβ coding and signal joints as well as the functions of Nbs1 in T-cell expansion. Chromatin immunoprecipitation (ChIP) analysis of the TCR loci reveals that Nbs1 depletion compromises the loading of Mre11/Rad50 to V(D)J-generated DNA double-strand breaks (DSBs) and thereby affects resection of DNA termini and chromatin conformation of the postcleavage complex. Although a p53 deficiency relieves the DN3→DN4 transition block, neither a p53 deficiency nor ectopic expression of TCRαβ rescues the major T-cell loss in Nbs1(T-del) mice. All together, these results demonstrate that Nbs1's functions in both repair of V(D)J-generated DSBs and proliferation are essential for T-cell development.
Collapse
|
8
|
Kim HS, Eom JH, Cho HY, Cho YJ, Kim JY, Lee JK, Kim SH, Park KL. Evaluation of immunotoxicity induced by pirimiphos-methyl in male Balb/c mice following exposure to for 28 days. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:1278-87. [PMID: 17654245 DOI: 10.1080/15287390701434372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Pirimiphos-methyl (O-2-diethylamino-6-methylpyrimidin-4-yl O,O-dimethyl phosphorothioate: POM) is widely used organophosphorous (OP) insecticide as a grain protectant to control insects during storage. This study was carried out to assess the immunologic effects of POM in Balb/c mice after 28-day oral exposure. Three dose levels of POM (10, 60, or 120 mg/kg/day) were administered orally to mice for 4 weeks. At autopsy after 28-day exposure, there were significant decreases in relative spleen weight and splenic cellularity found at 120 mg POM, but body weight, relative thymic weight, thymic cellularity, and splenic and thymic subsets were not affected. T cell proliferation response induced by Con A was significantly decreased at all dosages though no statistical differences were observed in splenic B cell proliferation. Significant increases in the production of cytokines (IL-2, IL-4, IL-6, IFN-gamma, and IL-10) were evident on the whole, but the increase in production of inflammatory cytokines overwhelmed that of the T(H)1 cell suppressive cytokine (IL-10). The relative levels of three types of autoantibodies, anti-dsDNA, anti-histone, and antinuclear antibody (ANA) were dose-dependently decreased in serum. Oral exposure to POM induced a significant decrease in Immunoglobulin M production capability in Balb/c mice. This decrease in antibody production capability may result from disturbances in cytokine balance produced by splenic immune cells. These results show that POM may induce allergic responses by relatively enhancing T(H)2 development and additionally contribute to chronic inflammation by attracting macrophage by IFN-gamma.
Collapse
Affiliation(s)
- Hyung Soo Kim
- Immunotoxicology Division, National Institute of Toxicological Research, Korea Food and Drug Administration, Seoul, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Huang CY, Sharma GG, Walker LM, Bassing CH, Pandita TK, Sleckman BP. Defects in coding joint formation in vivo in developing ATM-deficient B and T lymphocytes. ACTA ACUST UNITED AC 2007; 204:1371-81. [PMID: 17502661 PMCID: PMC2118620 DOI: 10.1084/jem.20061460] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ataxia-telangiectasia mutated (ATM)–deficient lymphocytes exhibit defects in coding joint formation during V(D)J recombination in vitro. Similar defects in vivo should affect both T and B cell development, yet the lymphoid phenotypes of ATM deficiency are more pronounced in the T cell compartment. In this regard, ATM-deficient mice exhibit a preferential T lymphopenia and have an increased incidence of nontransformed and transformed T cells with T cell receptor α/δ locus translocations. We demonstrate that there is an increase in the accumulation of unrepaired coding ends during different steps of antigen receptor gene assembly at both the immunoglobulin and T cell receptor loci in developing ATM-deficient B and T lymphocytes. Furthermore, we show that the frequency of ATM-deficient αβ T cells with translocations involving the T cell receptor α/δ locus is directly related to the number of T cell receptor α rearrangements that these cells can make during development. Collectively, these findings demonstrate that ATM deficiency leads to broad defects in coding joint formation in developing B and T lymphocytes in vivo, and they provide a potential molecular explanation as to why the developmental impact of these defects could be more pronounced in the T cell compartment.
Collapse
Affiliation(s)
- Ching-Yu Huang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
10
|
Vacchio MS, Olaru A, Livak F, Hodes RJ. ATM deficiency impairs thymocyte maturation because of defective resolution of T cell receptor alpha locus coding end breaks. Proc Natl Acad Sci U S A 2007; 104:6323-8. [PMID: 17405860 PMCID: PMC1851038 DOI: 10.1073/pnas.0611222104] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ATM (ataxia telangiectasia mutated) protein plays a central role in sensing and responding to DNA double-strand breaks. Lymphoid cells are unique in undergoing physiologic double-strand breaks in the processes of Ig class switch recombination and T or B cell receptor V(D)J recombination, and a role for ATM in these processes has been suggested by clinical observations in ataxia telangiectasia patients as well as in engineered mice with mutations in the Atm gene. We demonstrate here a defect in thymocyte maturation in ATM-deficient mice that is associated with decreased efficiency in V-J rearrangement of the endogenous T cell receptor (TCR)alpha locus, accompanied by increased frequency of unresolved TCR Jalpha coding end breaks. We also demonstrate that a functionally rearranged TCRalphabeta transgene is sufficient to restore thymocyte maturation, whereas increased thymocyte survival by bcl-2 cannot improve TCRalpha recombination and T cell development. These data indicate a direct role for ATM in TCR gene recombination in vivo that is critical for surface TCR expression in CD4(+)CD8(+) cells and for efficient thymocyte selection. We propose a unified model for the two major clinical characteristics of ATM deficiency, defective T cell maturation and increased genomic instability, frequently affecting the TCRalpha locus. In the absence of ATM, delayed TCRalpha coding joint formation results both in a reduction of alphabeta TCR-expressing immature cells, leading to inefficient thymocyte selection, and in accumulation of unstable open chromosomal DNA breaks, predisposing to TCRalpha locus-associated chromosomal abnormalities.
Collapse
Affiliation(s)
- Melanie S. Vacchio
- *Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Alexandru Olaru
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Ferenc Livak
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Richard J. Hodes
- *Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
- To whom correspondence should be addressed at:
Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Building 10, Room 4B36, Bethesda, MD 20892. E-mail:
| |
Collapse
|
11
|
Ito K, Takubo K, Arai F, Satoh H, Matsuoka S, Ohmura M, Naka K, Azuma M, Miyamoto K, Hosokawa K, Ikeda Y, Mak TW, Suda T, Hirao A. Regulation of reactive oxygen species by Atm is essential for proper response to DNA double-strand breaks in lymphocytes. THE JOURNAL OF IMMUNOLOGY 2007; 178:103-10. [PMID: 17182545 DOI: 10.4049/jimmunol.178.1.103] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ataxia telangiectasia-mutated (ATM) gene plays a pivotal role in the maintenance of genomic stability. Although it has been recently shown that antioxidative agents inhibited lymphomagenesis in Atm(-/-) mice, the mechanisms remain unclear. In this study, we intensively investigated the roles of reactive oxygen species (ROS) in phenotypes of Atm(-/-) mice. Reduction of ROS by the antioxidant N-acetyl-l-cysteine (NAC) prevented the emergence of senescent phenotypes in Atm(-/-) mouse embryonic fibroblasts, hypersensitivity to total body irradiation, and thymic lymphomagenesis in Atm(-/-) mice. To understand the mechanisms for prevention of lymphomagenesis, we analyzed development of pretumor lymphocytes in Atm(-/-) mice. Impairment of Ig class switch recombination seen in Atm(-/-) mice was mitigated by NAC, indicating that ROS elevation leads to abnormal response to programmed double-strand breaks in vivo. Significantly, in vivo administration of NAC to Atm(-/-) mice restored normal T cell development and inhibited aberrant V(D)J recombination. We conclude that Atm-mediated ROS regulation is essential for proper DNA recombination, preventing immunodeficiency, and lymphomagenesis.
Collapse
Affiliation(s)
- Keisuke Ito
- Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Matei IR, Guidos CJ, Danska JS. ATM-dependent DNA damage surveillance in T-cell development and leukemogenesis: the DSB connection. Immunol Rev 2006; 209:142-58. [PMID: 16448540 DOI: 10.1111/j.0105-2896.2006.00361.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The immune system is capable of recognizing and eliminating an enormous array of pathogens due to the extremely diverse antigen receptor repertoire of T and B lymphocytes. However, the development of lymphocytes bearing receptors with unique specificities requires the generation of programmed double strand breaks (DSBs) coupled with bursts of proliferation, rendering lymphocytes susceptible to mutations contributing to oncogenic transformation. Consequently, mechanisms responsible for monitoring global genomic integrity must be activated during lymphocyte development to limit the oncogenic potential of antigen receptor locus recombination. Mutations in ATM (ataxia-telangiectasia mutated), a kinase that coordinates DSB monitoring and the response to DNA damage, result in impaired T-cell development and predispose to T-cell leukemia. Here, we review recent evidence providing insight into the mechanisms by which ATM promotes normal lymphocyte development and protects from neoplastic transformation.
Collapse
Affiliation(s)
- Irina R Matei
- Program in Developmental Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | | | | |
Collapse
|
13
|
Chao C, Herr D, Chun J, Xu Y. Ser18 and 23 phosphorylation is required for p53-dependent apoptosis and tumor suppression. EMBO J 2006; 25:2615-22. [PMID: 16757976 PMCID: PMC1478190 DOI: 10.1038/sj.emboj.7601167] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 04/18/2006] [Indexed: 12/30/2022] Open
Abstract
Mouse p53 is phosphorylated at Ser18 and Ser23 after DNA damage. To determine whether these two phosphorylation events have synergistic functions in activating p53 responses, we simultaneously introduced Ser18/23 to Ala mutations into the endogenous p53 locus in mice. While partial defects in apoptosis are observed in p53S18A and p53S23A thymocytes exposed to IR, p53-dependent apoptosis is essentially abolished in p53S18/23A thymocytes, indicating that these two events have critical and synergistic roles in activating p53-dependent apoptosis. In addition, p53S18/23A, but not p53S18A, could completely rescue embryonic lethality of Xrcc4(-/-) mice that is caused by massive p53-dependent neuronal apoptosis. However, certain p53-dependent functions, including G1/S checkpoint and cellular senescence, are partially retained in p53(S18/23A) cells. While p53(S18A) mice are not cancer prone, p53S18/23A mice developed a spectrum of malignancies distinct from p53S23A and p53(-/-) mice. Interestingly, Xrcc4(-/-)p53S18/23A mice fail to develop tumors like the pro-B cell lymphomas uniformly developed in Xrcc4(-/-) p53(-/-) animals, but exhibit developmental defects typical of accelerated ageing. Therefore, Ser18 and Ser23 phosphorylation is important for p53-dependent suppression of tumorigenesis in certain physiological context.
Collapse
Affiliation(s)
- Connie Chao
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Deron Herr
- Department of Molecular Biology, Helen L. Dorris Child and Adolescent Neuropsychiastric Disorder Institute, The Scripps Research Institute, La Jolla, CA, USA
| | - Jerold Chun
- Department of Molecular Biology, Helen L. Dorris Child and Adolescent Neuropsychiastric Disorder Institute, The Scripps Research Institute, La Jolla, CA, USA
| | - Yang Xu
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0322, USA. Tel.: +1 858 822 1084; Fax: +1 858 534 0053; E-mail:
| |
Collapse
|
14
|
Xu Y. DNA damage: a trigger of innate immunity but a requirement for adaptive immune homeostasis. Nat Rev Immunol 2006; 6:261-70. [PMID: 16498454 DOI: 10.1038/nri1804] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chromosome breakage is frequently associated with viral infection and cellular transformation, but it is also required for two processes that are crucial for the development and function of adaptive immunity: V(D)J recombination and class-switch recombination. The cellular responses that result from this type of DNA damage, which are mostly activated by the protein kinase ataxia-telangiectasia mutated (ATM), lead to cell-cycle arrest at several checkpoints and efficient DNA repair. This Review focuses on the important roles of these DNA-damage responses in the activation of innate immunity and the targeting of the innate immune response to infected or transformed cells, as well as in the development and function of adaptive immunity.
Collapse
Affiliation(s)
- Yang Xu
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0322, USA.
| |
Collapse
|
15
|
Byun JA, Ryu MH, Lee JK. The immunomodulatory effects of 3-monochloro-1,2-propanediol on murine splenocyte and peritoneal macrophage function in vitro. Toxicol In Vitro 2006; 20:272-8. [PMID: 16122900 DOI: 10.1016/j.tiv.2005.06.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 05/24/2005] [Accepted: 06/27/2005] [Indexed: 11/22/2022]
Abstract
3-Monochloro-1,2-propanediol (MCPD) is a well-known by-product of acid-hydrolyzed soy sauce during its manufacturing process. MCPD has been reported genotoxic in vitro, and reproductive toxicity and carcinogenicity in rats. To evaluate the immunomodulatory effect of MCPD on murine splenocyte and macrophage in vitro, we investigated splenocyte blastogenesis by concanavalin A (Con A), anti-CD3, and lipopolyssacharide (LPS), the production of cytokines from splenocyte, and the activity of mouse peritoneal macrophages. There was a significant decrease in lymphocyte blastogenesis to Con A or anti-CD3 at subtoxic dose of MCPD. A significant decrease in splenocyte blastogenesis to LPS was also observed. The production level of interferon (IFN)-gamma on splenocyte culture with Con A was significantly reduced at the higher concentration than 1.0mM of MCPD. The levels of interleukin (IL)-4 and IL-10 were also decreased at high concentrations of MCPD. There was a significant decrease in production of nitric oxide (NO) by peritoneal macrophages treated with MCPD. MCPD also inhibits tumor necrosis factor (TNF)-alpha production of stimulated macrophages. These results indicate that MCPD might be able to reduce the functionality of lymphocytes and peritoneal macrophages in vitro.
Collapse
Affiliation(s)
- Jung A Byun
- Division of Immunotoxicology, National Institute of Toxicological Research, KFDA, 122-704 Seoul, Korea
| | | | | |
Collapse
|
16
|
Hasegawa M, Yamaguchi S, Aizawa S, Ikeda H, Tatsumi K, Noda Y, Hirokawa K, Kitagawa M. Resistance against Friend leukemia virus-induced leukemogenesis in DNA-dependent protein kinase (DNA-PK)-deficient scid mice associated with defective viral integration at the Spi-1 and Fli-1 site. Leuk Res 2005; 29:933-42. [PMID: 15978944 DOI: 10.1016/j.leukres.2005.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Accepted: 01/22/2005] [Indexed: 11/23/2022]
Abstract
Retroviral DNA integration is mediated by the viral protein integrase. However, elements of the host DNA repair machinery such as the phosphatidylinositol 3-kinase (PI-3K)-related protein kinase family system would play a role in the integration of viral DNA into the host DNA. Here, we show that a host PI-3K-related protein kinase, DNA-dependent protein kinase (DNA-PK), plays a role in the specific integration of retroviral DNA and induction of retroviral diseases in vivo. DNA-PK-deficient scid mice inoculated with Friend leukemia virus (FLV) exhibited a random integration into their genomic DNA and expressed the viral envelope protein gp70. However, the specific integration of FLV at Spi-1 or Fli-1 sites did not occur in association with the significant resistance of scid mice to FLV-induced leukemogenesis. In contrast, the knockout of another member of the PI-3K-related protein kinase family, encoded by the ataxia telangiectasia mutated (ATM) gene, resulted in mice as sensitive to FLV-induced leukemogenesis as the wild type mice. FLV was specifically integrated into the DNA at Spi-1 and Fli-1 sites with significant expression of these transcription factors. These findings indicated that DNA-PK would be essential for controlling the in vivo integration of FLV at specific sites as well as the susceptibility to FLV-induced leukemogenesis.
Collapse
MESH Headings
- Animals
- Apoptosis/immunology
- Bone Marrow Transplantation
- DNA, Viral/genetics
- DNA-Activated Protein Kinase
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Drug Resistance, Viral
- Friend murine leukemia virus/genetics
- Friend murine leukemia virus/immunology
- Genes, p53/immunology
- Leukemia, Experimental/genetics
- Leukemia, Experimental/immunology
- Leukemia, Experimental/virology
- Lymphocytes/immunology
- Lymphocytes/virology
- Male
- Mice
- Mice, Inbred C3H
- Mice, Knockout
- Mice, SCID
- Protein Serine-Threonine Kinases/deficiency
- Protein Serine-Threonine Kinases/genetics
- Proto-Oncogene Protein c-fli-1
- Proto-Oncogene Proteins/metabolism
- Retroviridae Infections/genetics
- Retroviridae Proteins, Oncogenic/genetics
- Retroviridae Proteins, Oncogenic/immunology
- Sp1 Transcription Factor/metabolism
- Spleen/chemistry
- Spleen/immunology
- Spleen/virology
- Survival Analysis
- Trans-Activators/metabolism
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Virus Integration
Collapse
Affiliation(s)
- Maki Hasegawa
- Department of Comprehensive Pathology, Aging and Developmental Sciences, Tokyo Medical and Dental University, Graduate School, 1-5-45 Yushima, Bunkyo-ku, Tokyo 13-8519, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Lee JK, Ryu MH, Byun JA. Immunotoxic effect of β-chlorolactic acid on murine splenocyte and peritoneal macrophage function in vitro. Toxicology 2005; 210:175-87. [PMID: 15840431 DOI: 10.1016/j.tox.2005.01.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Revised: 01/24/2005] [Accepted: 01/30/2005] [Indexed: 11/24/2022]
Abstract
Beta-chlorolactic acid is a major intermediate of 3-monochloro-1,2-propanediol (MCPD) in mammalian species, which a well-known by-product of acid-hydrolyzed soy sauce during its manufacturing process. beta-Chlorolactic acid has not been studied on immunotoxicity. To evaluate the immunomodulatory effect of beta-chlorolactic acid on murine splenocyte and macrophage in vitro, we investigated splenocyte blastogenesis by concanavalin A (Con A), anti-CD3 and lipopolysaccharide (LPS), the production of cytokines from splenocyte, and the activity of mouse peritoneal macrophages. beta-Chlorolactic acid suppressed significantly splenic blastogenesis to Con A or anti-CD3 from 8.5 to 54.7% at doses comprised between 200 and 800 microM. beta-Chlorolactic acid also suppressed significantly splenic blastogeneis to LPS from 8.5 to 71.5% at doses comprised between 200 and 800 microM. The production level of interferon (IFN)-g on splenocyte culture with Con A was significantly reduced from 21.5 to 51.4% at the higher concentration than 100 microM of beta-chlorolactic acid. The levels of interleukin (IL)-2 and IL-4 were also decreased 22.6-58.4 and 10.2-36.6%, respectively, at high concentrations of beta-chlorolactic acid. There was a significant decrease from 6.1 to 40.8% in the production of nitric oxide (NO) by peritoneal macrophages treated with 400-1000 microuM beta-chlorolactic acid. These results indicate that beta-chlorolactic acid might be able to induce immunotoxic effect on immune response of lymphocytes and peritoneal macrophages in vitro.
Collapse
Affiliation(s)
- Jong Kwon Lee
- Division of Immunotoxicology, National Institute of Toxicological Research, Korea Food and Drug Administration, 122-704 Seoul, South Korea.
| | | | | |
Collapse
|
18
|
Abstract
DNA double strand breaks (DSBs) are among the most dangerous lesions that can occur in the genome of eukaryotic cells. Proper repair of chromosomal DSBs is critical for maintaining cellular viability and genomic integrity and, in multi-cellular organisms, for suppression of tumorigenesis. Thus, eukaryotic cells have evolved specialized and redundant molecular mechanisms to sense, respond to, and repair DSBs. In this chapter, we provide an overview of the progress that has been made over the last decade in elucidating the identity and function of components that participate in the cellular response to chromosomal DSBs. Then, we discuss, in more depth, the response to DSBs that occur in the context of the V(D)J recombination and IgH class switch recombination reactions that occur in cells of the lymphocyte lineage.
Collapse
Affiliation(s)
- Craig H Bassing
- Department of Genetics, The CBR Institute for Biomedical Research, The Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
19
|
Lee JK, Byun JA, Park SH, Kim HS, Park JH, Eom JH, Oh HY. Evaluation of the potential immunotoxicity of 3-monochloro-1,2-propanediol in Balb/c mice. Toxicology 2004; 204:1-11. [PMID: 15369844 DOI: 10.1016/j.tox.2004.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2003] [Accepted: 04/04/2004] [Indexed: 10/26/2022]
Abstract
3-Monochloro-1,2-propanediol (MCPD) is a well-known by-product of acid-hydrolyzed soy sauce during its manufacturing process. MCPD has been reported genotoxic in vitro, and reproductive toxicity and carcinogenicity in rats. However, no previous studies have investigated MCPD-induced alterations in the immune system. In the present study, MCPD was administered by gavage for 14 days at 0, 25, 50, and 100 mg/kg per day to female Balb/c mice. The antibody-mediated immune response to sheep red blood cells (SRBC) was assessed using the antibody-forming cell (AFC) assay, and splenic cell phenotypes were quantified by flow cytometry. Hematological and histopathological changes were assessed. Mitogen-stimulated spleen lymphocyte proliferation and natural killer (NK) cell activity were evaluated. The T-lymphocyte blastogenesis by concanavalin A (Con A) or anti-CD3 and B-lymphocyte blastogenesis by lipopolysaccharide (LPS) were not significantly changed. There were no significant changes in the hematological and histopathological findings of MCPD-treated mice. However, the significant decrease in thymus weight was observed in 100 mg dose group, even though that did not change body weight gain. The cellularities of spleen and thymus were significantly reduced in high-dose group. Exposure to high dose of MCPD decreased the AFC response to SRBC in mice. There was a significant decrease in NK cell activity of mice treated with high dose of MCPD. These results indicate that MCPD could modulate the immune function in Balb/c mice.
Collapse
Affiliation(s)
- Jong Kwon Lee
- Division of Immunotoxicology, National Institute of Toxicological Korea Food and Drug Administration, 122-704 Seoul, South Korea.
| | | | | | | | | | | | | |
Collapse
|
20
|
Giovannetti A, Mazzetta F, Caprini E, Aiuti A, Marziali M, Pierdominici M, Cossarizza A, Chessa L, Scala E, Quinti I, Russo G, Fiorilli M. Skewed T-cell receptor repertoire, decreased thymic output, and predominance of terminally differentiated T cells in ataxia telangiectasia. Blood 2002; 100:4082-9. [PMID: 12393664 DOI: 10.1182/blood-2002-03-0976] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Ataxia telangiectasia (A-T), a genetic disorder caused by the homozygous mutation of the ATM gene, frequently associates with variable degrees of cellular and humoral immunodeficiency. However, the immune defects occurring in patients with A-T are still poorly characterized. Here we show that the T-cell receptor (TCR) variable beta (BV)-chain repertoire of 9 A-T patients was restricted by diffuse expansions of some variable genes prevalently occurring within the CD4 subset and clustering to certain TCRBV genes (eg, 5.1, 11, 14, and 23). In addition, the study of the third complementarity-determining region (CDR3) showed, in all patients, significantly altered profiles in most BV genes examined suggesting diffuse oligoclonal expansions. The sequencing of TCR CDR3 regions revealed completely normal V(D)J coding joints and confirmed a reduced diversity of the antigen-receptor repertoire. The B-cell repertoire was similarly restricted and skewed by diffuse oligoclonal expansions with normal V(D)J joints. Thymic output, evaluated by measuring TCR rearrangement excision circles, was extremely low. The majority of peripheral T cells had the phenotype and the function of effector memory cells, indicating that in vivo they are able to respond normally by terminal differentiation to antigenic stimulation. These results indicate that ATM mutation limits the generation of a wide repertoire of normally functioning T and B cells.
Collapse
|
21
|
Schubert R, Reichenbach J, Zielen S. Deficiencies in CD4+ and CD8+ T cell subsets in ataxia telangiectasia. Clin Exp Immunol 2002; 129:125-32. [PMID: 12100032 PMCID: PMC1906431 DOI: 10.1046/j.1365-2249.2002.01830.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2002] [Indexed: 12/29/2022] Open
Abstract
Chronic sinopulmonary infections that are associated with immunodeficiency are one of the leading causes of death in the multi-systemic disease ataxia telangiectasia (AT). Immunological investigations of AT patients revealed a broad spectrum of defects in the humoral and the cellular immune system. Based on their important role in host defence the aim of our study was an extensive analysis of cell distribution and function of CD4+ and CD8+ T lymphocytes and NK cells. We found that naive (CD45RA+) CD4+ lymphocytes, as well as CD8+/CD45RA+ lymphocytes, are decreased, whereas NK cells (CD3-/CD16+CD56+) are significantly elevated in AT patients. In our culture system proliferation and cytokine production was normal in purified memory (CD45RO+) lymphocytes after stimulation with phorbol-12,13-dibutyrate (PBu2) and after PHA activation, indicating that differences in proliferation and cytokine production are due solely to reduced numbers of CD45RA+ lymphocytes. However, activation, and especially intracellular interferon production of AT lymphocytes, seem to follow different kinetics compared to controls. In contrast to polyclonal activation, stimulation via the T cell receptor results consistently in a reduced immune response. Taken together, our results suggest that deficiency of immunocompetent cells and an intrinsic immune activation defect are responsible for the immunodeficiency in AT.
Collapse
Affiliation(s)
- R Schubert
- Department of Paediatrics, Rheinische Friedrich-Wilhelms Universität, Bonn, Germany.
| | | | | |
Collapse
|
22
|
Kang J, Bronson RT, Xu Y. Targeted disruption of NBS1 reveals its roles in mouse development and DNA repair. EMBO J 2002; 21:1447-55. [PMID: 11889050 PMCID: PMC125926 DOI: 10.1093/emboj/21.6.1447] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nijmegen breakage syndrome (NBS) is an autosomal recessive hereditary disease that shares some common defects with ataxia-telangiectasia. The gene product mutated in NBS, named NBS1, is a component of the Mre11 complex that is involved in DNA strand-break repair. To elucidate the physiological roles of NBS1, we disrupted the N-terminal exons of the NBS1 gene in mice. NBS1(m/m) mice are viable, growth retarded and hypersensitive to ionizing radiation (IR). NBS1(m/m) mice exhibit multiple lymphoid developmental defects, and rapidly develop thymic lymphoma. In addition, female NBS1(m/m) mice are sterile due to oogenesis failure. NBS1(m/m) cells are impaired in cellular responses to IR and defective in cellular proliferation. Most systematic and cellular defects identified in NBS1(m/m) mice recapitulate those in NBS patients, and are essentially identical to those observed in Atm(-/-) mice. In contrast to Atm(-/-) mice, spermatogenesis is normal in NBS1(m/m) mice, indicating that distinct roles of ATM have differential requirement for NBS1 activity. Thus, NBS1 and ATM have overlapping and distinct functions in animal development and DNA repair.
Collapse
Affiliation(s)
| | - Roderick T. Bronson
- Section of Molecular Biology, Division of Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0322 and
Department of Pathology, Tufts University School of Medicine, Boston, MA 02111, USA Corresponding author e-mail:
| | - Yang Xu
- Section of Molecular Biology, Division of Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0322 and
Department of Pathology, Tufts University School of Medicine, Boston, MA 02111, USA Corresponding author e-mail:
| |
Collapse
|
23
|
Abstract
One of the cornerstones of the web of signaling pathways governing cellular life and differentiation is the DNA damage response. It spans a complex network of pathways, ranging from DNA repair to modulation of numerous processes in the cell. DNA double-strand breaks (DSBs), which are formed as a result of genotoxic stress or normal recombinational processes, are extremely lethal lesions that rapidly mobilize this intricate defense system. The master controller that pilots cellular responses to DSBs is the ATM protein kinase, which turns on this network by phosphorylating key players in its various branches. ATM is the protein product of the gene mutated in the human genetic disorder ataxia-telangiectasia (A-T), which is characterized by neuronal degeneration, immunodeficiency, sterility, genomic instability, cancer predisposition, and radiation sensitivity. The clinical and cellular phenotype of A-T attests to the numerous roles of ATM, on the one hand, and to the link between the DNA damage response and developmental processes on the other hand. Recent studies of this protein and its effectors, combined with a thorough investigation of animal models of A-T, have led to new insights into the mode of action of this master controller of the DNA damage response. The evidence that ATM is involved in signaling pathways other than those related to damage response, particularly ones relating to cellular growth and differentiation, reinforces the multifaceted nature of this protein, in which genome stability, developmental processes, and cancer cross paths.
Collapse
Affiliation(s)
- Y Shiloh
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Israel
| | | |
Collapse
|
24
|
Khanna KK, Lavin MF, Jackson SP, Mulhern TD. ATM, a central controller of cellular responses to DNA damage. Cell Death Differ 2001; 8:1052-65. [PMID: 11687884 DOI: 10.1038/sj.cdd.4400874] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2001] [Accepted: 03/02/2001] [Indexed: 11/09/2022] Open
Abstract
Mutations in the ATM gene lead to the genetic disorder ataxia-telangiectasia. ATM encodes a protein kinase that is mainly distributed in the nucleus of proliferating cells. Recent studies reveal that ATM regulates multiple cell cycle checkpoints by phosphorylating different targets at different stages of the cell cycle. ATM also functions in the regulation of DNA repair and apoptosis, suggesting that it is a central regulator of responses to DNA double-strand breaks.
Collapse
Affiliation(s)
- K K Khanna
- The Queensland Institute of Medical Research, and Department of Pathology and Surgery, University of Queensland, PO Royal Brisbane Hospital, Brisbane, Qld4029, Australia
| | | | | | | |
Collapse
|
25
|
Rivero-Carmena M, Porras O, Pelaez B, Pacheco-Castro A, Gatti RA, Regueiro JR. Membrane and transmembrane signaling in Herpesvirus saimiri-transformed human CD4(+) and CD8(+) T lymphocytes is ATM-independent. Int Immunol 2000; 12:927-35. [PMID: 10837420 DOI: 10.1093/intimm/12.6.927] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the genetic disorder ataxia telangiectasia (AT), humoral (B) and cellular (T) immunological abnormalities are frequently observed. As a consequence, AT patients are predisposed to life-threatening sinopulmonary infections. The pathogenic mechanisms remain unknown, but a role for ATM in signal transduction from membrane receptors has been proposed. We have explored the effects of a defective ATMgene on isolated human T-lineage cells from 13 AT patients with proven T cell dysfunction by transforming their CD4(+) and CD8(+) T lymphocytes with Herpesvirus saimiri, and analyzing their signaling behavior as compared to normal controls. Several functional parameters were assayed in response to both membrane (anti-CD3 and IL-2) and transmembrane (phorbol myristate acetate plus the calcium ionophore ionomycin) stimuli: (i) calcium mobilization, (ii) induction of activation molecules (CD25, CD40 ligand, CD69 and CD71), (iii) cytokine synthesis (IL-2 and tumor necrosis factor-alpha) and (iv) proliferation. All these early and late activation events were found to be normal in the transformed ATM-/-T cells, indicating that ATM is not necessary for their induction. As expected, ATM-/- transformed T cells showed an increased radiosensitivity by both radioresistant DNA synthesis and cell survival assays. In contrast to an earlier report testing transformed B lymphocytes, our results indicate that transformed mature peripheral T lymphocytes from AT patients do not have intrinsic immune function defects. Rather, the described T-lineage signaling impairments observed in patients may be secondary in vivo to extrinsic ATM-dependent suppressive factors and/or to a developmental defect. These transformed T cells may help to understand the distinct biological role of ATM in different cell types and to develop rational therapies for the immunological dysfunction of AT patients.
Collapse
Affiliation(s)
- M Rivero-Carmena
- Inmunología, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Borghesani PR, Alt FW, Bottaro A, Davidson L, Aksoy S, Rathbun GA, Roberts TM, Swat W, Segal RA, Gu Y. Abnormal development of Purkinje cells and lymphocytes in Atm mutant mice. Proc Natl Acad Sci U S A 2000; 97:3336-41. [PMID: 10716718 PMCID: PMC16240 DOI: 10.1073/pnas.97.7.3336] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Motor incoordination, immune deficiencies, and an increased risk of cancer are the characteristic features of the hereditary disease ataxia-telangiectasia (A-T), which is caused by mutations in the ATM gene. Through gene targeting, we have generated a line of Atm mutant mice, Atm(y/y) mice. In contrast to other Atm mutant mice, Atm(y/y) mice show a lower incidence of thymic lymphoma and survive beyond a few months of age. Atm(y/y) mice exhibit deficits in motor learning indicative of cerebellar dysfunction. Even though we found no gross cerebellar degeneration in older Atm(y/y) animals, ectopic and abnormally differentiated Purkinje cells were apparent in mutant mice of all ages. These findings establish that some neuropathological abnormalities seen in A-T patients also are present in Atm mutant mice. In addition, we report a previously unrecognized effect of Atm deficiency on development or maintenance of CD4(+)8(+) thymocytes. We discuss these findings in the context of the hypothesis that abnormal development of Purkinje cells and lymphocytes contributes to the pathogenesis of A-T.
Collapse
Affiliation(s)
- P R Borghesani
- Department of Pediatric Oncology and Division of Cellular and Molecular Biology, Dana-Farber Cancer Institute, Boston, MA 00115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abnormal development of Purkinje cells and lymphocytes in Atm mutant mice. Proc Natl Acad Sci U S A 2000. [PMID: 10716718 PMCID: PMC16240 DOI: 10.1073/pnas.050584897] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Motor incoordination, immune deficiencies, and an increased risk of cancer are the characteristic features of the hereditary disease ataxia-telangiectasia (A-T), which is caused by mutations in the ATM gene. Through gene targeting, we have generated a line of Atm mutant mice, Atm(y/y) mice. In contrast to other Atm mutant mice, Atm(y/y) mice show a lower incidence of thymic lymphoma and survive beyond a few months of age. Atm(y/y) mice exhibit deficits in motor learning indicative of cerebellar dysfunction. Even though we found no gross cerebellar degeneration in older Atm(y/y) animals, ectopic and abnormally differentiated Purkinje cells were apparent in mutant mice of all ages. These findings establish that some neuropathological abnormalities seen in A-T patients also are present in Atm mutant mice. In addition, we report a previously unrecognized effect of Atm deficiency on development or maintenance of CD4(+)8(+) thymocytes. We discuss these findings in the context of the hypothesis that abnormal development of Purkinje cells and lymphocytes contributes to the pathogenesis of A-T.
Collapse
|