1
|
Debnath K, Qayoom I, O'Donnell S, Ekiert J, Wang C, Sanborn MA, Liu C, Rivera A, Cho IS, Saichellappa S, Toth PT, Mehta D, Rehman J, Du X, Gao Y, Shin JW. Matrimeres are systemic nanoscale mediators of tissue integrity and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586585. [PMID: 38585943 PMCID: PMC10996590 DOI: 10.1101/2024.03.25.586585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Tissue barriers must be rapidly restored after injury to promote regeneration. However, the mechanism behind this process is unclear, particularly in cases where the underlying extracellular matrix is still compromised. Here, we report the discovery of matrimeres as constitutive nanoscale mediators of tissue integrity and function. We define matrimeres as non-vesicular nanoparticles secreted by cells, distinguished by a primary composition comprising at least one matrix protein and DNA molecules serving as scaffolds. Mesenchymal stromal cells assemble matrimeres from fibronectin and DNA within acidic intracellular compartments. Drawing inspiration from this biological process, we have achieved the successful reconstitution of matrimeres without cells. This was accomplished by using purified matrix proteins, including fibronectin and vitronectin, and DNA molecules under optimal acidic pH conditions, guided by the heparin-binding domain and phosphate backbone, respectively. Plasma fibronectin matrimeres circulate in the blood at homeostasis but exhibit a 10-fold decrease during systemic inflammatory injury in vivo . Exogenous matrimeres rapidly restore vascular integrity by actively reannealing endothelial cells post-injury and remain persistent in the host tissue matrix. The scalable production of matrimeres holds promise as a biologically inspired platform for regenerative nanomedicine.
Collapse
|
2
|
Vargas A, Simon SI. Platelet Plugs Prevent Vascular Hemorrhage at Sites of Neutrophil Diapedesis. J Invest Dermatol 2022; 142:2558-2560. [PMID: 35987718 DOI: 10.1016/j.jid.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 10/15/2022]
Affiliation(s)
- Alex Vargas
- Department of Biomedical Engineering, University of California, Davis, California, USA
| | - Scott I Simon
- Department of Biomedical Engineering, University of California, Davis, California, USA; Department of Dermatology, University of California, Davis, California, USA.
| |
Collapse
|
3
|
Gavriilaki E, Papakonstantinou A, Agrios KA. Novel Insights into Factor D Inhibition. Int J Mol Sci 2022; 23:7216. [PMID: 35806224 PMCID: PMC9267021 DOI: 10.3390/ijms23137216] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 01/15/2023] Open
Abstract
Complement-mediated diseases or complementopathies, such as Paroxysmal nocturnal hemoglobinuria (PNH), cold agglutinin disease (CAD), and transplant-associated thrombotic microangiopathy (TA-TMA), demand advanced complement diagnostics and therapeutics be adopted in a vast field of medical specialties, such as hematology, transplantation, rheumatology, and nephrology. The miracle of complement inhibitors as "orphan drugs" has dramatically improved morbidity and mortality in patients with otherwise life-threatening complementopathies. Efficacy has been significantly improved by upstream inhibition in patients with PNH. Different molecules may exert diverse characteristics in vitro and in vivo. Further studies remain to show safety and efficacy of upstream inhibition in other complementopathies. In addition, cost and availability issues are major drawbacks of current treatments. Therefore, further developments are warranted to address the unmet clinical needs in the field of complementopathies. This state-of-the-art narrative review aims to delineate novel insights into factor D inhibition as a promising target for complementopathies.
Collapse
Affiliation(s)
- Eleni Gavriilaki
- Hematology Department, G Papanicolaou Hospital, 57010 Thessaloniki, Greece
| | - Anna Papakonstantinou
- Department of Urology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Konstantinos A. Agrios
- Department of Chemistry, Villanova University, 800 Lancaster Ave., Villanova, PA 19085, USA
| |
Collapse
|
4
|
Wiles JA, Galvan MD, Podos SD, Geffner M, Huang M. Discovery and Development of the Oral Complement Factor D Inhibitor Danicopan (ACH-4471). Curr Med Chem 2020; 27:4165-4180. [PMID: 31573880 DOI: 10.2174/0929867326666191001130342] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 03/28/2019] [Accepted: 04/04/2019] [Indexed: 12/29/2022]
Abstract
Complement plays a vital role in our innate immune defense against invasive microorganisms. Excessive complement activation or insufficient control of activation on host cells, however, is associated with several chronic disorders. Essential to the activation and amplification of the Alternative Pathway (AP) of complement, Complement Factor D (CFD) is a specific serine protease that cleaves its unique substrate, Complement Factor B (CFB) in complex with an activated form of complement component 3 (C3), to generate the AP C3 convertases C3(H2O)Bb and C3bBb. These convertases comprise a central component in eliciting effector responses following AP activation, and they also enable a powerful amplification loop for both the Classical Pathway (CP) and Lectin Pathway (LP) of complement. Because CFD is not required for the activation of either the CP or LP, selective CFD inhibition presents a favorable therapeutic approach to modulating complement activity that leaves intact the effector functions following CP and LP activation and thus poses a lower risk of bacterial infection than other complement-directed approaches. This review provides an update on inhibitors of CFD, which have evolved from irreversible small molecules that demonstrate poor selectivity to reversible small molecules and monoclonal antibodies that demonstrate exceptional selectivity and potency. The reversible small-molecule inhibitor danicopan.
Collapse
Affiliation(s)
- Jason A Wiles
- Drug Discovery, Achillion Pharmaceuticals, New Haven, CT 06511, United States
| | - Manuel D Galvan
- Drug Discovery, Achillion Pharmaceuticals, New Haven, CT 06511, United States
| | - Steven D Podos
- Drug Discovery, Achillion Pharmaceuticals, New Haven, CT 06511, United States
| | - Michael Geffner
- Drug Development, Achillion Pharmaceuticals, New Haven, CT 06511, United States
| | - Mingjun Huang
- Drug Discovery, Achillion Pharmaceuticals, New Haven, CT 06511, United States
| |
Collapse
|
5
|
Chen JJ, Schmucker LN, Visco DP. Pharmaceutical Machine Learning: Virtual High-Throughput Screens Identifying Promising and Economical Small Molecule Inhibitors of Complement Factor C1s. Biomolecules 2018; 8:E24. [PMID: 29735903 PMCID: PMC6023033 DOI: 10.3390/biom8020024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/17/2022] Open
Abstract
When excessively activated, C1 is insufficiently regulated, which results in tissue damage. Such tissue damage causes the complement system to become further activated to remove the resulting tissue damage, and a vicious cycle of activation/tissue damage occurs. Current Food and Drug Administration approved treatments include supplemental recombinant C1 inhibitor, but these are extremely costly and a more economical solution is desired. In our work, we have utilized an existing data set of 136 compounds that have been previously tested for activity against C1. Using these compounds and the activity data, we have created models using principal component analysis, genetic algorithm, and support vector machine approaches to characterize activity. The models were then utilized to virtually screen the 72 million compound PubChem repository. This first round of virtual high-throughput screening identified many economical and promising inhibitor candidates, a subset of which was tested to validate their biological activity. These results were used to retrain the models and rescreen PubChem in a second round vHTS. Hit rates for the first round vHTS were 57%, while hit rates for the second round vHTS were 50%. Additional structure⁻property analysis was performed on the active and inactive compounds to identify interesting scaffolds for further investigation.
Collapse
Affiliation(s)
- Jonathan J Chen
- Department of Biology, The University of Akron, 302 Buchtel Common, Akron, OH 44325, USA.
| | - Lyndsey N Schmucker
- Department of Chemical and Biomolecular Engineering, The University of Akron, 302 Buchtel Common, Akron, OH 44325, USA.
| | - Donald P Visco
- Department of Chemical and Biomolecular Engineering, The University of Akron, 302 Buchtel Common, Akron, OH 44325, USA.
| |
Collapse
|
6
|
Iyer A, Xu W, Reid RC, Fairlie DP. Chemical Approaches to Modulating Complement-Mediated Diseases. J Med Chem 2017; 61:3253-3276. [DOI: 10.1021/acs.jmedchem.7b00882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Abishek Iyer
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Weijun Xu
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert C. Reid
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David P. Fairlie
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
7
|
Vulpetti A, Randl S, Rüdisser S, Ostermann N, Erbel P, Mac Sweeney A, Zoller T, Salem B, Gerhartz B, Cumin F, Hommel U, Dalvit C, Lorthiois E, Maibaum J. Structure-Based Library Design and Fragment Screening for the Identification of Reversible Complement Factor D Protease Inhibitors. J Med Chem 2017; 60:1946-1958. [PMID: 28157311 DOI: 10.1021/acs.jmedchem.6b01684] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chronic dysregulation of alternative complement pathway activation has been associated with diverse clinical disorders including age-related macular degeneration and paroxysmal nocturnal hemoglobinurea. Factor D is a trypsin-like serine protease with a narrow specificity for arginine in the P1 position, which catalyzes the first enzymatic reaction of the amplification loop of the alternative pathway. In this article, we describe two hit finding approaches leading to the discovery of new chemical matter for this pivotal protease of the complement system: in silico active site mapping for hot spot identification to guide rational structure-based design and NMR screening of focused and diverse fragment libraries. The wealth of information gathered by these complementary approaches enabled the identification of ligands binding to different subpockets of the latent Factor D conformation and was instrumental for understanding the binding requirements for the generation of the first known potent noncovalent reversible Factor D inhibitors.
Collapse
Affiliation(s)
- Anna Vulpetti
- Novartis Institutes for BioMedical Research, Novartis Pharma AG , Novartis Campus, CH-4056 Basel, Switzerland
| | - Stefan Randl
- Novartis Institutes for BioMedical Research, Novartis Pharma AG , Novartis Campus, CH-4056 Basel, Switzerland
| | - Simon Rüdisser
- Novartis Institutes for BioMedical Research, Novartis Pharma AG , Novartis Campus, CH-4056 Basel, Switzerland
| | - Nils Ostermann
- Novartis Institutes for BioMedical Research, Novartis Pharma AG , Novartis Campus, CH-4056 Basel, Switzerland
| | - Paul Erbel
- Novartis Institutes for BioMedical Research, Novartis Pharma AG , Novartis Campus, CH-4056 Basel, Switzerland
| | - Aengus Mac Sweeney
- Novartis Institutes for BioMedical Research, Novartis Pharma AG , Novartis Campus, CH-4056 Basel, Switzerland
| | - Thomas Zoller
- Novartis Institutes for BioMedical Research, Novartis Pharma AG , Novartis Campus, CH-4056 Basel, Switzerland
| | - Bahaa Salem
- Novartis Institutes for BioMedical Research, Novartis Pharma AG , Novartis Campus, CH-4056 Basel, Switzerland
| | - Bernd Gerhartz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG , Novartis Campus, CH-4056 Basel, Switzerland
| | - Frederic Cumin
- Novartis Institutes for BioMedical Research, Novartis Pharma AG , Novartis Campus, CH-4056 Basel, Switzerland
| | - Ulrich Hommel
- Novartis Institutes for BioMedical Research, Novartis Pharma AG , Novartis Campus, CH-4056 Basel, Switzerland
| | - Claudio Dalvit
- Novartis Institutes for BioMedical Research, Novartis Pharma AG , Novartis Campus, CH-4056 Basel, Switzerland
| | - Edwige Lorthiois
- Novartis Institutes for BioMedical Research, Novartis Pharma AG , Novartis Campus, CH-4056 Basel, Switzerland
| | - Jürgen Maibaum
- Novartis Institutes for BioMedical Research, Novartis Pharma AG , Novartis Campus, CH-4056 Basel, Switzerland
| |
Collapse
|
8
|
Paniagua-Pérez R, Flores-Mondragón G, Reyes-Legorreta C, Herrera-López B, Cervantes-Hernández I, Madrigal-Santillán O, Morales-González JA, Álvarez-González I, Madrigal-Bujaidar E. EVALUATION OF THE ANTI-INFLAMMATORY CAPACITY OF BETA-SITOSTEROL IN RODENT ASSAYS. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES : AJTCAM 2016; 14:123-130. [PMID: 28480389 PMCID: PMC5411862 DOI: 10.21010/ajtcam.v14i1.13] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Beta-sitosterol (BS) is a compound discovered to be present in numerous plants. A number of interesting biomedical properties have been attributed to BS, including immuno-modulating and anti-inflammatory activities. Therefore, the aim of this report was to evaluate its anti-inflammatory capacity by applying various rodent experimental tests. METHODS To carry out the objective of the study we applied the methods indicated here. Two of the adopted methods were based on the passive reverse Arthus reaction: the rat paw edema test and the rat pleurisy assay. We also applied two methods related with the non-specific acute inflammation: the mouse ear edema test, and the mouse mieloperoxidase activity assay. RESULTS The results obtained in all tests established a significant anti-inflammatory potential of BS. In the rat paw edema test we found an inhibitory effect which goes from 50-70%; in the rat pleurisy assay our findings with respect to the volume of pleural exuded showed a reduction of 46%, as well as a 20% low amount of neutrophils in comparison with the level of the control group. In the mouse ear edema test we found a mean inflammatory inhibition of 75%, and with respect to mieloproxidase activity the results showed a significant inhibition induced by the three doses of BS. CONCLUSIONS In the present study we determined a potent anti-inflammatory capacity of BS in specific and non-specific types of acute inflammation in rodents.
Collapse
Affiliation(s)
- Rogelio Paniagua-Pérez
- Instituto Nacional de Rehabilitación, Servicio de Bioquímica. Av. México-Xochimilco 289, Ciudad de México, 14389. MÉXICO
| | - Gabriela Flores-Mondragón
- Instituto Nacional de Rehabilitación, Servicio de Bioquímica. Av. México-Xochimilco 289, Ciudad de México, 14389. MÉXICO
| | - Celia Reyes-Legorreta
- Instituto Nacional de Rehabilitación, Servicio de Bioquímica. Av. México-Xochimilco 289, Ciudad de México, 14389. MÉXICO
| | - Brígida Herrera-López
- Instituto Nacional de Rehabilitación, Servicio de Bioquímica. Av. México-Xochimilco 289, Ciudad de México, 14389. MÉXICO
| | - Isabel Cervantes-Hernández
- Instituto Nacional de Rehabilitación, Servicio de Bioquímica. Av. México-Xochimilco 289, Ciudad de México, 14389. MÉXICO
| | - Osiris Madrigal-Santillán
- Laboratorio de Medicina de la Conservación. Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del Miguel Hidalgo, Ciudad de México, 11340. MÉXICO
| | - José Antonio Morales-González
- Laboratorio de Medicina de la Conservación. Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del Miguel Hidalgo, Ciudad de México, 11340. MÉXICO
| | - Isela Álvarez-González
- Laboratorio de Genética. Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Av. Wilfredo Massieu, Col Lindavista, Zacatenco, Ciudad de México, 07738, MÉXICO
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética. Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Av. Wilfredo Massieu, Col Lindavista, Zacatenco, Ciudad de México, 07738, MÉXICO
| |
Collapse
|
9
|
Talmale S, Bhujade A, Patil M. Anti-allergic and anti-inflammatory properties of Zizyphus mauritiana root bark. Food Funct 2015; 6:2975-83. [DOI: 10.1039/c5fo00270b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The MAF, a fraction with potent anti-allergic and anti-inflammatory compounds, is isolated fromZizyphus mauritianaroot bark. The MAF has an excellent ability to inhibit the complement system, COX-1, COX-2 and 5-LOX and has the potential to prevent anaphylactic shock and the Arthus reaction.
Collapse
Affiliation(s)
- Suhas Talmale
- University Department of Biochemistry
- RTM Nagpur University
- Nagpur 440033
- India
| | - Arti Bhujade
- University Department of Biochemistry
- RTM Nagpur University
- Nagpur 440033
- India
| | - Mandakini Patil
- University Department of Biochemistry
- RTM Nagpur University
- Nagpur 440033
- India
| |
Collapse
|
10
|
Khoobdel M, NikbakhtBoroujeni G, ZahraeiSalehi T, Khosravi M, Sasani F, Bokaei S, Koochakzadeh A, Zamani-Ahmadmahmudi M, Akbari A. Diagnosis of Mesobuthus eupeus envenomation by skin test: reverse passive Arthus reaction. Toxicon 2013; 77:133-40. [PMID: 24269785 DOI: 10.1016/j.toxicon.2013.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/07/2013] [Accepted: 11/12/2013] [Indexed: 11/30/2022]
Abstract
While being stung by two large families of scorpions, Buthidae and Scorpionidae have different symptoms and complications, a similar maintenance treatment usually considers as the scorpion species could not be identified easily. Therefore, this study was an attempt to develop an immunologic response for designing a skin sensitivity test that can be used to determine the poisoning. The sensitivity and the specificity of RPA reaction for detecting experimental envenomated mice were evaluated. The inflammatory response for detection of envenomation was obtained by the injection of a solution containing complement, polyelectrolytes and purified monovalent antibodies. As the result, 84.44% sensitivity and 100% specificity recorded 15 min after challenge. Macroscopic findings were also confirmed histologically. No cross-reactions were observed with other species of scorpions and snake venoms. Designed Skin test induced obvious inflammatory reaction without any histological lesions. Besides adding the complement components and polyelectrolyte to the monovalent antibody leads to an increased susceptibility of inflammatory cells in this reaction, resulting in forming a visible inflammation in a short time. According to satisfactory specificity and sensitivity and visible results in about 15 min, non-harmful and cost benefity of reverse passive Arthus test can be used for diagnosis of scorpion envenomation.
Collapse
Affiliation(s)
- M Khoobdel
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Gh NikbakhtBoroujeni
- Department of Microbiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - T ZahraeiSalehi
- Department of Microbiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - M Khosravi
- Department of Microbiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - F Sasani
- Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - S Bokaei
- Department of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - A Koochakzadeh
- Department of Microbiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - M Zamani-Ahmadmahmudi
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - A Akbari
- Razi Vaccine and Serum Research Institute-Karaj Branch, Karaj, Iran
| |
Collapse
|
11
|
León G, Herrera M, Segura Á, Villalta M, Vargas M, Gutiérrez JM. Pathogenic mechanisms underlying adverse reactions induced by intravenous administration of snake antivenoms. Toxicon 2013; 76:63-76. [PMID: 24055551 DOI: 10.1016/j.toxicon.2013.09.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 09/01/2013] [Accepted: 09/11/2013] [Indexed: 11/28/2022]
Abstract
Snake antivenoms are formulations of immunoglobulins, or immunoglobulin fragments, purified from the plasma of animals immunized with snake venoms. Their therapeutic success lies in their ability to mitigate the progress of toxic effects induced by snake venom components, when administered intravenously. However, due to diverse factors, such as deficient manufacturing practices, physicochemical characteristics of formulations, or inherent properties of heterologous immunoglobulins, antivenoms can induce undesirable adverse reactions. Based on the time lapse between antivenom administration and the onset of clinical manifestations, the World Health Organization has classified these adverse reactions as: 1 - Early reactions, if they occur within the first hours after antivenom infusion, or 2 - late reactions, when occurring between 5 and 20 days after treatment. While all late reactions are mediated by IgM or IgG antibodies raised in the patient against antivenom proteins, and the consequent formation of immune complexes, several mechanisms may be responsible for the early reactions, such as pyrogenic reactions, IgE-mediated reactions, or non IgE-mediated reactions. This work reviews the hypotheses that have been proposed to explain the mechanisms involved in these adverse reactions to antivenoms. The understanding of these pathogenic mechanisms is necessary for the development of safer products and for the improvement of snakebite envenomation treatment.
Collapse
Affiliation(s)
- Guillermo León
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| | | | | | | | | | | |
Collapse
|
12
|
Gál P, Dobó J, Beinrohr L, Pál G, Závodszky P. Inhibition of the Serine Proteases of the Complement System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 735:23-40. [DOI: 10.1007/978-1-4614-4118-2_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Progress and Trends in Complement Therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 735:1-22. [PMID: 22990692 DOI: 10.1007/978-1-4614-4118-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past few years have proven to be a highly successful and exciting period for the field of complement-directed drug discovery and development. Driven by promising experiences with the first marketed complement drugs, increased knowledge about the involvement of complement in health and disease, and improvements in structural and analytical techniques as well as animal models of disease, the field has seen a surge in creative approaches to therapeutically intervene at various stages of the cascade. An impressive panel of compounds that show promise in clinical trials is meanwhile being lined up in the pipelines of both small biotechnology and big pharmaceutical companies. Yet with this new focus on complement-targeted therapeutics, important questions concerning target selection, point and length of intervention, safety, and drug delivery emerge. In view of the diversity of the clinical disorders involving abnormal complement activity or regulation, which include both acute and chronic diseases and affect a wide range of organs, diverse yet specifically tailored therapeutic approaches may be needed to shift complement back into balance. This chapter highlights the key changes in the field that shape our current perception of complement-targeted drugs and provides a brief overview of recent strategies and emerging trends. Selected examples of complement-related diseases and inhibitor classes are highlighted to illustrate the diversity and creativity in field.
Collapse
|
14
|
Teeling JL, Carare RO, Glennie MJ, Perry VH. Intracerebral immune complex formation induces inflammation in the brain that depends on Fc receptor interaction. Acta Neuropathol 2012; 124:479-90. [PMID: 22618994 PMCID: PMC3444701 DOI: 10.1007/s00401-012-0995-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 05/06/2012] [Indexed: 12/28/2022]
Abstract
In this study, we investigate the underlying mechanisms of antibody-mediated inflammation in the brain. We show that immune complexes formed in the brain parenchyma generate a robust and long-lasting inflammatory response, characterized by increased expression of the microglia markers CD11b, CD68 and FcRII/III, but no neutrophil recruitment. In addition to these histological changes, we observed transient behavioural changes that coincided with the inflammatory response in the brain. The inflammatory and behavioural changes were absent in Fc-gamma chain (Fcγ)-deficient mice, while C1q-deficient mice were not different from wild-type mice. We conclude that, in the presence of antigen, antibodies can lead to a local immune complex-mediated inflammatory reaction in the brain parenchyma and indirectly induce neuronal tissue damage through recruitment and activation of microglia via Fcγ receptors. These observations may have important implications for the development of therapeutic antibodies directed against neuronal antigens used for therapeutic intervention in neurological diseases.
Collapse
Affiliation(s)
- Jessica L Teeling
- Centre for of Biological Sciences, University of Southampton, Southampton General Hospital, UK.
| | | | | | | |
Collapse
|
15
|
Zhang M, Yang XY, Tang W, Groeneveld TWL, He PL, Zhu FH, Li J, Lu W, Blom AM, Zuo JP, Nan FJ. Discovery and Structural Modification of 1-Phenyl-3-(1-phenylethyl)urea Derivatives as Inhibitors of Complement. ACS Med Chem Lett 2012; 3:317-21. [PMID: 24900471 PMCID: PMC4025749 DOI: 10.1021/ml300005w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/26/2012] [Indexed: 11/30/2022] Open
Abstract
A series of 1-phenyl-3-(1-phenylethyl)urea derivatives were identified as novel and potent complement inhibitors through structural modification of the original compound from high-throughput screening. Various analogues (7 and 13-15) were synthesized and identified as complement inhibitors, with the introduction of a five- or six-carbon chain (7c, 7d, 7k, 7l, and 7o) greatly improving their activity. Optimized compound 7l has an excellent inhibition activity with IC50 values as low as 13 nM. We demonstrated that the compound 7l inhibited C9 deposition through the classical, the lectin, and the alternative pathways but had no influence on C3 and C4 depositions.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Chemistry and Institute of Medicinal
Chemistry, East China Normal University, 3663 North Zhong Shan Road, Shanghai 200062, People's Republic
of China
- Chinese National
Center for Drug Screening, State Key Laboratory of Drug Research,
Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, 189 Guoshoujing Road, Zhangjiang Hi-Tech
Park, Shanghai 201203, People's Republic of China
| | - Xiao-Ying Yang
- Laboratory of Immunopharmacology, State Key
Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai
201203, People's Republic of China
| | - Wei Tang
- Laboratory of Immunopharmacology, State Key
Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai
201203, People's Republic of China
| | - Tom W. L. Groeneveld
- Department of Laboratory Medicine, Section of Medical Protein Chemistry, Lund University, S-205 02 Malmö, Sweden
| | - Pei-Lan He
- Laboratory of Immunopharmacology, State Key
Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai
201203, People's Republic of China
| | - Feng-Hua Zhu
- Laboratory of Immunopharmacology, State Key
Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai
201203, People's Republic of China
| | - Jia Li
- Chinese National
Center for Drug Screening, State Key Laboratory of Drug Research,
Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, 189 Guoshoujing Road, Zhangjiang Hi-Tech
Park, Shanghai 201203, People's Republic of China
| | - Wei Lu
- Department of Chemistry and Institute of Medicinal
Chemistry, East China Normal University, 3663 North Zhong Shan Road, Shanghai 200062, People's Republic
of China
| | - Anna M. Blom
- Department of Laboratory Medicine, Section of Medical Protein Chemistry, Lund University, S-205 02 Malmö, Sweden
| | - Jian-Ping Zuo
- Laboratory of Immunopharmacology, State Key
Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai
201203, People's Republic of China
| | - Fa-Jun Nan
- Chinese National
Center for Drug Screening, State Key Laboratory of Drug Research,
Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, 189 Guoshoujing Road, Zhangjiang Hi-Tech
Park, Shanghai 201203, People's Republic of China
| |
Collapse
|
16
|
Chang BY, Huang MM, Francesco M, Chen J, Sokolove J, Magadala P, Robinson WH, Buggy JJ. The Bruton tyrosine kinase inhibitor PCI-32765 ameliorates autoimmune arthritis by inhibition of multiple effector cells. Arthritis Res Ther 2011; 13:R115. [PMID: 21752263 PMCID: PMC3239353 DOI: 10.1186/ar3400] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 06/01/2011] [Accepted: 07/13/2011] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION The aim was to determine the effect of the Bruton tyrosine kinase (Btk)-selective inhibitor PCI-32765, currently in Phase I/II studies in lymphoma trials, in arthritis and immune-complex (IC) based animal models and describe the underlying cellular mechanisms. METHODS PCI-32765 was administered in a series of murine IC disease models including collagen-induced arthritis (CIA), collagen antibody-induced arthritis (CAIA), reversed passive anaphylactic reaction (RPA), and passive cutaneous anaphylaxis (PCA). Clinical and pathologic features characteristic of each model were examined following treatment. PCI-32765 was then examined in assays using immune cells relevant to the pathogenesis of arthritis, and where Btk is thought to play a functional role. These included proliferation and calcium mobilization in B cells, cytokine and chemokine production in monocytes/macrophages, degranulation of mast cells and its subsequent cytokine/chemokine production. RESULTS PCI-32765 dose-dependently and potently reversed arthritic inflammation in a therapeutic CIA model with an ED(50) of 2.6 mg/kg/day. PCI-32765 also prevented clinical arthritis in CAIA models. In both models, infiltration of monocytes and macrophages into the synovium was completely inhibited and importantly, the bone and cartilage integrity of the joints were preserved. PCI-32765 reduced inflammation in the Arthus and PCA assays. In vitro, PCI-32765 inhibited BCR-activated primary B cell proliferation (IC(50) = 8 nM). Following FcγR stimulation, PCI-32765 inhibited TNFα, IL-1β and IL-6 production in primary monocytes (IC(50) = 2.6, 0.5, 3.9 nM, respectively). Following FcεRI stimulation of cultured human mast cells, PCI-32765 inhibited release of histamine, PGD(2), TNF-α, IL-8 and MCP-1. CONCLUSIONS PCI-32765 is efficacious in CIA, and in IC models that do not depend upon autoantibody production from B cells. Thus PCI-32765 targets not only B lymphocytes but also monocytes, macrophages and mast cells, which are important Btk-expressing effector cells in arthritis.
Collapse
Affiliation(s)
- Betty Y Chang
- Pharmacyclics, Inc, Research Department, Sunnyvale, CA 94085-4521, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Ehrnthaller C, Ignatius A, Gebhard F, Huber-Lang M. New insights of an old defense system: structure, function, and clinical relevance of the complement system. Mol Med 2010; 17:317-29. [PMID: 21046060 PMCID: PMC3060978 DOI: 10.2119/molmed.2010.00149] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 10/28/2010] [Indexed: 12/14/2022] Open
Abstract
The complement system was discovered a century ago as a potent defense cascade of innate immunity. After its first description, continuous experimental and clinical research was performed, and three canonical pathways of activation were established. Upon activation by traumatic or surgical tissue damage, complement reveals beneficial functions of pathogen and danger defense by sensing and clearing injured cells. However, the latest research efforts have provided a more distinct insight into the complement system and its clinical subsequences. Complement has been shown to play a significant role in the pathogenesis of various inflammatory processes such as sepsis, multiorgan dysfunction, ischemia/reperfusion, cardiovascular diseases and many others. The three well-known activation pathways of the complement system have been challenged by newer findings that demonstrate direct production of central complement effectors (for example, C5a) by serine proteases of the coagulation cascade. In particular, thrombin is capable of producing C5a, which not only plays a decisive role on pathogens and infected/damaged tissues, but also acts systemically. In the case of uncontrolled complement activation, “friendly fire” is generated, resulting in the destruction of healthy host tissue. Therefore, the traditional research that focuses on a mainly positive-acting cascade has now shifted to the negative effects and how tissue damage originated by the activation of the complement can be contained. In a translational approach including structure-function relations of this ancient defense system, this review provides new insights of complement-mediated clinical relevant diseases and the development of complement modulation strategies and current research aspects.
Collapse
Affiliation(s)
- Christian Ehrnthaller
- Department of Traumatology, Hand, Plastic, and Reconstructive Surgery, Center of Surgery, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany.
| | | | | | | |
Collapse
|
18
|
Role for complement in the development of seizures following acute viral infection. J Virol 2010; 84:6452-60. [PMID: 20427530 DOI: 10.1128/jvi.00422-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Complement, part of the innate immune system, acts to remove pathogens and unwanted host material. Complement is known to function in all tissues, including the central nervous system (CNS). In this study, we demonstrated the importance of the complement system within the CNS in the development of behavioral seizures following Theiler's murine encephalomyelitis virus (TMEV) infection. C57BL/6 mice, deficient in complement component C3, developed significantly fewer behavioral seizures following TMEV infection, whereas mice depleted of complement component C3 in the periphery through treatment with cobra venom factor had a seizure rate comparable to that of control mice. These studies indicate that C3 participates in the induction of acute seizures during viral encephalitis.
Collapse
|
19
|
Vogel CW, Fritzinger DC. Cobra venom factor: Structure, function, and humanization for therapeutic complement depletion. Toxicon 2010; 56:1198-222. [PMID: 20417224 DOI: 10.1016/j.toxicon.2010.04.007] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Revised: 04/07/2010] [Accepted: 04/08/2010] [Indexed: 11/29/2022]
Abstract
Cobra venom factor (CVF) is the complement-activating protein in cobra venom. This manuscript reviews the structure and function of CVF, how it interacts with the complement system, the structural and functional homology to complement component C3, and the use of CVF as an experimental tool to decomplement laboratory animals to study the functions of complement in host defense and immune response as well as in the pathogenesis of diseases. This manuscript also reviews the recent progress in using the homology between CVF and C3 to study C3 structure and function, and to develop human C3 derivatives with the complement-depleting function of CVF. These human C3 derivatives represent humanized CVF, and are a conceptually different concept for pharmacological intervention of the complement system, therapeutic complement depletion. The use of humanized CVF for therapeutic complement depletion in several pre-clinical models of human diseases is also reviewed.
Collapse
Affiliation(s)
- Carl-Wilhelm Vogel
- Cancer Research Center of Hawaii, University of Hawaii at Manoa, 1236 Lauhala Street, Honolulu, HI 96813, USA.
| | | |
Collapse
|
20
|
Bogaert D, Thompson CM, Trzcinski K, Malley R, Lipsitch M. The role of complement in innate and adaptive immunity to pneumococcal colonization and sepsis in a murine model. Vaccine 2009; 28:681-5. [PMID: 19892042 DOI: 10.1016/j.vaccine.2009.10.085] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/31/2009] [Accepted: 10/16/2009] [Indexed: 11/28/2022]
Abstract
Streptococcus pneumoniae is an important bacterial cause of sepsis, meningitis, pneumonia and otitis media. Pneumococcal disease is generally preceded by mucosal colonization with the homologous strain; hence, resistance to colonization may be an important aspect of resistance to disease. In humans, complement deficiency is a risk factor for the development of pneumococcal disease. Although many studies have shown protective effects of complement during pneumonia and meningitis, there have been no studies reported that evaluate the role of complement in containment of pneumococcal colonization. To this end, we studied the role of complement in preventing the progression of pneumococcal mucosal colonization to sepsis in a mouse model. Sepsis developed in 60% of complement-depleted mice following intranasal pneumococcal challenge, but not in control or neutrophil-depleted mice. Colonization density in the nasopharynx and local mucosal tissue was similar between complement-depleted and control mice before onset of sepsis. Immunization of complement-depleted mice with an intranasally administered whole cell pneumococcal vaccine (WCV) reduced progression towards sepsis and protected surviving mice against colonization comparably to complement-sufficient mice. We therefore conclude that complement prevents sepsis following pneumococcal colonization in a neutrophil-independent fashion, but and WCV-induced adaptive immunity is complement-independent.
Collapse
Affiliation(s)
- D Bogaert
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA.
| | | | | | | | | |
Collapse
|
21
|
Qu H, Ricklin D, Lambris JD. Recent developments in low molecular weight complement inhibitors. Mol Immunol 2009; 47:185-95. [PMID: 19800693 DOI: 10.1016/j.molimm.2009.08.032] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 08/28/2009] [Indexed: 11/18/2022]
Abstract
As a key part of the innate immune system, complement plays an important role not only in defending against invading pathogens but also in many other biological processes. Inappropriate or excessive activation of complement has been linked to many autoimmune, inflammatory, and neurodegenerative diseases, as well as ischemia-reperfusion injury and cancer. A wide array of low molecular weight complement inhibitors has been developed to target various components of the complement cascade. Their efficacy has been demonstrated in numerous in vitro and in vivo experiments. Though none of these inhibitors has reached the market so far, some of them have entered clinical trials and displayed promising results. This review provides a brief overview of the currently developed low molecular weight complement inhibitors, including short peptides and synthetic small molecules, with an emphasis on those targeting components C1 and C3, and the anaphylatoxin receptors.
Collapse
Affiliation(s)
- Hongchang Qu
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, 401 Stellar Chance, 422 Curie Blvd., Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
22
|
Zola TA, Lysenko ES, Weiser JN. Mucosal clearance of capsule-expressing bacteria requires both TLR and nucleotide-binding oligomerization domain 1 signaling. THE JOURNAL OF IMMUNOLOGY 2008; 181:7909-16. [PMID: 19017981 DOI: 10.4049/jimmunol.181.11.7909] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Expression of capsular polysaccharide by bacterial pathogens is associated with increased resistance to host clearance mechanisms, in particular by evading opsonization and uptake by professional phagocytes. The potential for rapid progression of disease caused by encapsulated bacteria points to the importance of innate immunity at the mucosal surface where infection is initiated. Using a murine model of nasopharyngeal colonization, host immune components that contribute to the mucosal clearance of capsule-expressing bacteria were investigated. Clearance of encapsulated Haemophilus influenzae (Hi) required both TLR and nucleotide-binding oligomerization domain (NOD) signaling pathways, whereas individual deficiencies in each of these signaling cascades did not affect clearance of nonencapsulated strains. Moreover, clearance of Hi-expressing capsular polysaccharide required the recruitment of neutrophils to the site of infection, and ex vivo phagocytic bacterial killing required expression of the NOD1 signaling pathway. Conversely, redundancies within these innate immune pathways of non-neutrophil cells were sufficient to promote mucosal clearance of nonencapsulated Hi. Our findings reveal a role for NOD1 in protection from encapsulated pathogens. In addition, this study provides an example of a microbial virulence determinant that alters the requirements for host signaling to provide effective protection.
Collapse
Affiliation(s)
- Tracey A Zola
- Department of Microbiology, University of Pennsylvania,Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
23
|
Oda Y, Tokita K, Ota Y, Li Y, Taniguchi K, Nishino N, Takagi K, Yamamoto T, Nishiura H. Agonistic and Antagonistic Effects of C5a-Chimera Bearing S19 Ribosomal Protein Tail Portion on the C5a Receptor of Monocytes and Neutrophils, Respectively. J Biochem 2008; 144:371-81. [DOI: 10.1093/jb/mvn077] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Abstract
The complement system is a central component of innate immunity and bridges the innate to the adaptive immune response. However, it can also turn its destructive capabilities against host cells and is involved in numerous diseases and pathological conditions. Modulation of the complement system has been recognized as a promising strategy in drug discovery, and a large number of therapeutic modalities have been developed. However, successful marketing of complement-targeted drugs has proved to be more difficult than initially expected, and many strategies have been discontinued. The US Food and Drug Administration's approval of the first complement-specific drug, an antibody against complement component C5 (eculizumab; Soliris), in March 2007, was a long-awaited breakthrough in the field. Approval of eculizumab validates the complement system as therapeutic target and might facilitate clinical development of other promising drug candidates.
Collapse
Affiliation(s)
- Daniel Ricklin
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
25
|
Extravasations and emigration of neutrophils to the inflammatory site depend on the interaction of immune-complex with Fcgamma receptors and can be effectively blocked by decoy Fcgamma receptors. Blood 2007; 111:894-904. [PMID: 17962513 DOI: 10.1182/blood-2007-04-085944] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Extravasation and emigration of neutrophils to the site of inflammation are essential early steps in the initiation of many antibody-mediated autoimmune diseases. The Fc domains of cell bound autoantibodies or immune-complexes (IC) are capable of triggering the neutrophil emigration via complement and FcgammaRs-mediated mechanisms. To define the clinical relevance and the relative contribution of these 2 pathways in IC-mediated neutrophil emigration, we have neutralized the FcgammaR-binding activity of IC with a recombinant dimeric Fc receptor, CD16A-Ig, and investigated the early events of IC-induced inflammation in mice. Systemic administration of purified CD16A-Ig blocked IC-induced inflammation, mast- cell degranulation, and extravasation of neutrophils in a reversed Arthus reaction. Although the binding of CD16A-Ig to IC did not alter the complement-activating properties of IC, no evidence for complement-dependent neutrophil emigration was observed. These results suggest that interaction of IC with cells expressing FcgammaRs at the inflammatory site results in the secretion of chemoattractants, which mediate complement-independent emigration of neutrophils in this cutaneous acute inflammation model. Furthermore, blocking the interaction of IC to FcgammaRs expressed on inflammatory cells by administering high-avidity Fc fusion dimers of low-affinity FcgammaRs is an effective way of preventing IC-induced acute inflammation in autoimmune diseases.
Collapse
|
26
|
Kozlov LV, Burdelev OO, Bureeva SV, Kaplun AP. Artificial inhibition of the complement system. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2007; 33:485-510. [DOI: 10.1134/s1068162007050020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Nelson AL, Roche AM, Gould JM, Chim K, Ratner AJ, Weiser JN. Capsule enhances pneumococcal colonization by limiting mucus-mediated clearance. Infect Immun 2007; 75:83-90. [PMID: 17088346 PMCID: PMC1828419 DOI: 10.1128/iai.01475-06] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 10/14/2006] [Accepted: 10/29/2006] [Indexed: 11/20/2022] Open
Abstract
Expression of a polysaccharide capsule is required for the full pathogenicity of many mucosal pathogens such as Streptococcus pneumoniae. Although capsule allows for evasion of opsonization and subsequent phagocytosis during invasive infection, its role during mucosal colonization, the organism's commensal state, remains unknown. Using a mouse model, we demonstrate that unencapsulated mutants remain capable of nasal colonization but at a reduced density and duration compared to those of their encapsulated parent strains. This deficit in colonization was not due to increased susceptibility to opsonophagocytic clearance involving complement, antibody, or the influx of Ly-6G-positive cells, including neutrophils seen during carriage. Rather, unencapsulated mutants remain agglutinated within lumenal mucus and, thus, are less likely to transit to the epithelial surface where stable colonization occurs. Studies of in vitro binding to immobilized human airway mucus confirmed the inhibitory effect of encapsulation. Likewise, pneumococcal variants expressing larger amounts of negatively charged capsule per cell were less likely to adhere to surfaces coated with human mucus and more likely to evade initial clearance in vivo. Removal of negatively charged sialic acid residues by pretreatment of mucus with neuraminidase diminished the antiadhesive effect of encapsulation. This suggests that the inhibitory effect of encapsulation on mucus binding may be mediated by electrostatic repulsion and offers an explanation for the predominance of anionic polysaccharides among the diverse array of unique capsule types. In conclusion, our findings demonstrate that capsule confers an advantage to mucosal pathogens distinct from its role in inhibition of opsonophagocytosis--escape from entrapment in lumenal mucus.
Collapse
Affiliation(s)
- Aaron L Nelson
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6076, USA
| | | | | | | | | | | |
Collapse
|
28
|
Lysenko ES, Ratner AJ, Nelson AL, Weiser JN. The role of innate immune responses in the outcome of interspecies competition for colonization of mucosal surfaces. PLoS Pathog 2005; 1:e1. [PMID: 16201010 PMCID: PMC1238736 DOI: 10.1371/journal.ppat.0010001] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 05/10/2005] [Indexed: 11/20/2022] Open
Abstract
Since mucosal surfaces may be simultaneously colonized by multiple species, the success of an organism may be determined by its ability to compete with co-inhabitants of its niche. To explore the contribution of host factors to polymicrobial competition, a murine model was used to study the initiation of colonization by Haemophilus influenzae and Streptococcus pneumoniae. Both bacterial species, which occupy a similar microenvironment within the nasopharynx, persisted during colonization when given individually. Co-colonization, however, resulted in rapid clearance of S. pneumoniae from the upper respiratory tract, associated with increased recruitment of neutrophils into paranasal spaces. Systemic depletion of either neutrophil-like cells or complement was sufficient to eliminate this competitive effect, indicating that clearance was likely due to enhanced opsonophagocytic killing. The hypothesis that modulation of opsonophagocytic activity was responsible for host-mediated competition was tested using in vitro killing assays with elicited neutrophil-like cells. Components of H. influenzae (but not S. pneumoniae) stimulated complement-dependent phagocytic killing of S. pneumoniae. Thus, the recruitment and activation of neutrophils through selective microbial pattern recognition may underlie the H. influenzae-induced clearance of S. pneumoniae. This study demonstrates how innate immune responses may mediate competitive interactions between species and dictate the composition of the colonizing flora.
Collapse
Affiliation(s)
- Elena S Lysenko
- Departments of Microbiology and Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Adam J Ratner
- Departments of Microbiology and Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Aaron L Nelson
- Departments of Microbiology and Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jeffrey N Weiser
- Departments of Microbiology and Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
29
|
Liu R, Martuza RL, Rabkin SD. Intracarotid delivery of oncolytic HSV vector G47Δ to metastatic breast cancer in the brain. Gene Ther 2005; 12:647-54. [PMID: 15647762 DOI: 10.1038/sj.gt.3302445] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Delivery of viral vectors to tumors in the brain is a challenge, especially via systemic administration, which is key to targeting the invasive margins of malignant glioma and the multiple foci of metastatic disease. Like for other cancer therapeutics, the blood-brain barrier or even the blood-tumor barrier significantly limits delivery and efficacy. Blood-brain barrier disruption (BBBD) is one strategy for transiting the cerebrovasculature. G47Delta is a third-generation oncolytic replication-competent herpes simplex virus (HSV) vector, containing deletions of the gamma34.5 and alpha47 genes and an inactivating LacZ insertion in UL39 (ICP6). Intracarotid artery delivery of G47Delta after BBBD with 25% mannitol significantly extended the life of nude mice bearing intracerebral human MDA-MB-435 breast tumors, whereas, G47Delta injection contralateral to the tumor, in the absence of mannitol or mannitol alone had no effect on survival. G47Delta replication was extensive after BBBD, as visualized by X-gal staining. Staining of peripheral organs, lung and liver, was minimal and not altered by BBBD. This is the first demonstration of intracarotid arterial delivery of oncolytic HSV vectors and antitumor efficacy in a mouse model and opens the door to the use of mouse syngenic tumor models and transgenic/knockout animals.
Collapse
Affiliation(s)
- R Liu
- Molecular Neurosurgery Laboratory, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
30
|
Subasinghe NL, Ali F, Illig CR, Jonathan Rudolph M, Klein S, Khalil E, Soll RM, Bone RF, Spurlino JC, DesJarlais RL, Crysler CS, Cummings MD, Morris PE, Kilpatrick JM, Sudhakara Babu Y. A novel series of potent and selective small molecule inhibitors of the complement component C1s. Bioorg Med Chem Lett 2004; 14:3043-7. [PMID: 15149641 DOI: 10.1016/j.bmcl.2004.04.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Revised: 04/13/2004] [Accepted: 04/13/2004] [Indexed: 11/27/2022]
Abstract
Activation of the classical pathway of complement has been implicated in disease states such as hereditary angioedema, ischemia-reperfusion injury and acute transplant rejection. The trypsin-like serine protease C1s represents a pivotal upstream point of control in the classical pathway of complement activation and is therefore likely to be a useful target in the therapeutic intervention of these disease states. A series of thiopheneamidine-based inhibitors of C1s has been optimized to give a 70 nM inhibitor that inhibits the classical pathway of complement activation in vitro.
Collapse
Affiliation(s)
- Nalin L Subasinghe
- 3-Dimensional Pharmaceuticals Inc, 665 Stockton Drive, Exton, PA 19341, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Norman MU, Van De Velde NC, Timoshanko JR, Issekutz A, Hickey MJ. Overlapping roles of endothelial selectins and vascular cell adhesion molecule-1 in immune complex-induced leukocyte recruitment in the cremasteric microvasculature. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1491-503. [PMID: 14507656 PMCID: PMC1868283 DOI: 10.1016/s0002-9440(10)63506-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/27/2003] [Indexed: 12/15/2022]
Abstract
Many adhesion molecule pathways have been invoked as mediating leukocyte recruitment during immune complex-induced inflammation. However the individual roles of these molecules have not been identified via direct visualization of an affected microvasculature. Therefore, to identify the specific adhesion molecules responsible for leukocyte rolling and adhesion in immune complex-dependent inflammation we used intravital microscopy to examine postcapillary venules in the mouse cremaster muscle. Wild-type mice underwent an intrascrotal reverse-passive Arthus model of immune complex-dependent inflammation and subsequently, leukocyte-endothelial cell interactions and P- and E-selectin expression were assessed in cremasteric postcapillary venules. At 4 hours, the reverse-passive Arthus response induced a significant reduction in leukocyte rolling velocity and significant increases in adhesion and emigration. P-selectin expression was increased above constitutive levels whereas E-selectin showed a transient induction of expression peaking between 2.5 to 4 hours and declining thereafter. While E-selectin was expressed, rolling could only be eliminated by combined blockade of P- and E-selectin. However, by 8 hours, all rolling was P-selectin-dependent. In contrast, inhibition of vascular cell adhesion molecule-1 had a minimal effect on leukocyte rolling, but significantly reduced both adhesion and emigration. These observations demonstrate that immune complex-mediated leukocyte recruitment in the cremaster muscle involves overlapping roles for the endothelial selectins and vascular cell adhesion molecule-1.
Collapse
Affiliation(s)
- M Ursula Norman
- Centre for Inflammatory Diseases, Monash University, Victoria, Australia
| | | | | | | | | |
Collapse
|
32
|
Inal JM, Schneider B, Armanini M, Schifferli JA. A peptide derived from the parasite receptor, complement C2 receptor inhibitor trispanning, suppresses immune complex-mediated inflammation in mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:4310-7. [PMID: 12682267 DOI: 10.4049/jimmunol.170.8.4310] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Complement C2 receptor inhibitor trispanning (CRIT) is a Schistosoma protein that binds the human complement protein, C2. We recently showed that peptides based on the ligand binding region of CRIT inhibit the classical pathway (CP) of complement activation in human serum, using hemolytic assays and so speculated that on the parasite surface CRIT has the function of evading human complement. We now show that in vitro the C2-binding 11-aa C terminus of the first extracellular domain of CRIT, a 1.3-kDa peptide termed CRIT-H17, inhibits CP activation in a species-specific manner, inhibiting mouse and rat complement but not that from guinea pig. Hitherto, the ability of CRIT to regulate complement in vivo has not been assessed. In this study we show that by inhibiting the CP, CRIT-H17 is able to reduce immune complex-mediated inflammation (dermal reversed passive Arthus reaction) in BALB/c mice. Upon intradermal injection of CRIT-H17, and similarly with recombinant soluble complement receptor type 1, there was a 41% reduction in edema and hemorrhage, a 72% reduction in neutrophil influx, and a reduced C3 deposition. Furthermore, when H17 was administered i.v. at a 1 mg/kg dose, inflammation was reduced by 31%. We propose that CRIT-H17 is a potential therapeutic agent against CP complement-mediated inflammatory tissue destruction.
Collapse
Affiliation(s)
- Jameel M Inal
- Department of Research, University Hospital Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
33
|
Walport MJ. Complement and systemic lupus erythematosus. ARTHRITIS RESEARCH 2002; 4 Suppl 3:S279-93. [PMID: 12110148 PMCID: PMC3240161 DOI: 10.1186/ar586] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2002] [Accepted: 03/04/2002] [Indexed: 12/13/2022]
Abstract
Complement is implicated in the pathogenesis of systemic lupus erythematosus (SLE) in several ways and may act as both friend and foe. Homozygous deficiency of any of the proteins of the classical pathway is causally associated with susceptibility to the development of SLE, especially deficiency of the earliest proteins of the activation pathway. However, complement is also implicated in the effector inflammatory phase of the autoimmune response that characterizes the disease. Complement proteins are deposited in inflamed tissues and, in experimental models, inhibition of C5 ameliorates disease in a murine model. As a further twist to the associations between the complement system and SLE, autoantibodies to some complement proteins, especially to C1q, develop as part of the autoantibody response. The presence of anti-C1q autoantibodies is associated with severe illness, including glomerulonephritis. In this chapter the role of the complement system in SLE is reviewed and hypotheses are advanced to explain the complex relationships between complement and lupus.
Collapse
Affiliation(s)
- Mark J Walport
- Division of Medicine, Imperial College of Science, Technology and Medicine, London, UK.
| |
Collapse
|
34
|
Sunderkötter C, Seeliger S, Schönlau F, Roth J, Hallmann R, Luger TA, Sorg C, Kolde G. Different pathways leading to cutaneous leukocytoclastic vasculitis in mice. Exp Dermatol 2001; 10:391-404. [PMID: 11737258 DOI: 10.1034/j.1600-0625.2001.100602.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To investigate the pathomechanisms of leukocytoclastic vasculitis (LcV) we compared mouse models of LcV with non-vasculitic irritant contact dermatitis (ICD). Criteria for LcV as met by the immune complex-mediated Arthus reaction (Art-r) were also fulfilled by the localized Shwartzman reaction (Shw-r) and by cutaneous Loxoscelism (Lox) (injection of venom from Loxosceles reclusa containing sphingomyelinase D). After depletion of PMN (by gamma-irradiation) vessel damage could not be elicited in these models, distinguishing them from models of direct endothelial insult (necrotizing ICD). Depletion of complement could only delay, but not inhibit the Art-r, and did not change ICD, Lox or the Shw-r. The Shw-r exclusively revealed a sustained local expression of vascular adhesion molecules for 24 h in the preparatory phase (LPS s.c.), not observed in the Art-r, in Lox or ICD. Subsequent challenge with LPS i.p. was associated with upregulation of Mac-1 and ICAM-1 on PMN, but not of VLA-4 or LFA-1 (FACS analysis). Cytokines which were able to replace LPS in priming for LcV in the Shw-r (TNF-alpha and IL-1beta) also induced sustained expression of adhesion molecules, whereas IL-12 and IFN-gamma did neither. Neutralizing IL-12 or IFN-gamma also inhibited neither LcV nor sustained expression of adhesion molecules, whereas anti-TNF-alpha inhibited both. Anti-TNF-alpha had no marked inhibitory effects in the Art-r, in Lox or ICD. Combined (but not separate) neutralization of both E-selectin and VCAM-1 by antibodies suppressed LcV independent from reducing influx of PMN, proving that their sustained expression is decisive for the Shw-r and interferes with normal diapedesis. Since Loxosceles venom is known to dysregulate diapedesis and degranulation of PMN in vitro, since adherent immune complexes activate PMN at the vessel wall, and since adhesion molecules are dysregulated in the Shw-r, we suggest that LcV develops when activation of PMN coincides with vascular alterations which interfere with normal diapedesis.
Collapse
Affiliation(s)
- C Sunderkötter
- Institute of Experimental Dermatology, Department of Dermatology, University of Münster, von Esmarch Strasse 56, D-48149 Münster, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
DURÁN WALTER, PAPPAS PETERJ, SCHMID-SCHÖNBEIN GEERTW. Microcirculatory Inflammation in Chronic Venous Insufficiency: Current Status and Future Directions. Microcirculation 2000. [DOI: 10.1111/j.1549-8719.2000.tb00151.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Sahu A, Lambris JD. Complement inhibitors: a resurgent concept in anti-inflammatory therapeutics. IMMUNOPHARMACOLOGY 2000; 49:133-48. [PMID: 10904113 DOI: 10.1016/s0162-3109(00)80299-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In addition to its essential role in immune defense, the complement system contributes to tissue damage in many clinical conditions. Thus, there is a pressing need to develop therapeutically effective complement inhibitors to prevent these adverse effects. This concept, though old, received little scientific attention until recently. Data from animal models of diseases that have been produced using complement-deficient, knockout, and transgenic animals, as well as data demonstrating that complement proteins are produced in many important tissue sites (including the brain) have attracted the interest of many basic research scientists and applied scientists from the biotechnology field and larger pharmaceutical firms. This resurgence of interest has generated a wealth of new information in the field of complement inhibition. In this article, we comprehensively review up-to-date information in the field of complement inhibitors.
Collapse
Affiliation(s)
- A Sahu
- Protein Chemistry Laboratory, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | |
Collapse
|
37
|
Marino M, Ruvo M, De Falco S, Fassina G. Prevention of systemic lupus erythematosus in MRL/lpr mice by administration of an immunoglobulin-binding peptide. Nat Biotechnol 2000; 18:735-9. [PMID: 10888840 DOI: 10.1038/77296] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Systemic lupus erythematosus (SLE) is a multisystem chronic inflammatory disease of unknown etiology that affects many organs, including the kidney. The presence of multiple autoantibodies and other immunological abnormalities point to basic defects in immunoregulatory controls that normally maintain self-tolerance. The deposition on kidney tissue of autoantibodies as immune complexes (ICs) through the interaction with Fc-receptor gamma-chains is thought to trigger an inflammatory response typical of SLE, leading to glomerulonephritis. Using combinatorial chemistry approaches, we have identified a peptide able to bind to immunoglobulins and to interfere with Fcgamma-receptor recognition. Administration of this peptide to MRL/lpr mice, an animal model used to study SLE, resulted in a remarkable enhancement of the survival rate (80%) compared to placebo-treated animals (10%). Consistent with this was a significant reduction of proteinuria, a clinical sign of SLE. Kidney histological examination of treated animals confirmed the preservation of tissue integrity and a remarkable reduction in IC deposition. These results support the role of Fcgamma receptors in SLE pathogenesis and open new avenues for the development of drugs to treat autoimmune disorders.
Collapse
Affiliation(s)
- M Marino
- TECNOGEN S.C.p.A. Biopharmaceuticals, 81015 Piana di Monte Verna (CE), Italy
| | | | | | | |
Collapse
|