1
|
Pettas T, Lachanoudi S, Karageorgos FF, Ziogas IA, Fylaktou A, Papalois V, Katsanos G, Antoniadis N, Tsoulfas G. Immunotherapy and liver transplantation for hepatocellular carcinoma: Current and future challenges. World J Transplant 2025; 15:98509. [DOI: 10.5500/wjt.v15.i2.98509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/03/2024] [Accepted: 11/07/2024] [Indexed: 02/21/2025] Open
Abstract
Despite existing curative options like surgical removal, tissue destruction techniques, and liver transplantation for early-stage hepatocellular carcinoma (HCC), the rising incidence and mortality rates of this global health burden necessitate continuous exploration of novel therapeutic strategies. This review critically assesses the dynamic treatment panorama for HCC, focusing specifically on the burgeoning role of immunotherapy in two key contexts: early-stage HCC and downstaging advanced HCC to facilitate liver transplant candidacy. It delves into the unique immunobiology of the liver and HCC, highlighting tumor-mediated immune evasion mechanisms. Analyzing the diverse immunotherapeutic approaches including checkpoint inhibitors, cytokine modulators, vaccines, oncolytic viruses, antigen-targeting antibodies, and adoptive cell therapy, this review acknowledges the limitations of current diagnostic markers alpha-fetoprotein and glypican-3 and emphasizes the need for novel biomarkers for patient selection and treatment monitoring. Exploring the rationale for neoadjuvant and adjuvant immunotherapy in early-stage HCC, current research is actively exploring the safety and effectiveness of diverse immunotherapeutic approaches through ongoing clinical trials. The review further explores the potential benefits and challenges of combining immunotherapy and liver transplant, highlighting the need for careful patient selection, meticulous monitoring, and novel strategies to mitigate post-transplant complications. Finally, this review delves into the latest findings from the clinical research landscape and future directions in HCC management, paving the way for optimizing treatment strategies and improving long-term survival rates for patients with this challenging malignancy.
Collapse
Affiliation(s)
- Theodoros Pettas
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Sofia Lachanoudi
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Filippos F Karageorgos
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Ioannis A Ziogas
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Asimina Fylaktou
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration General Hospital, Thessaloniki 54642, Greece
| | - Vassilios Papalois
- Department of Transplant Surgery, Imperial College Renal and Transplant Centre, London W12 0HS, United Kingdom
| | - Georgios Katsanos
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University of Thessaloniki, School of Medicine, Thessaloniki 54642, Greece
| | - Nikolaos Antoniadis
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Georgios Tsoulfas
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University of Thessaloniki, School of Medicine, Thessaloniki 54642, Greece
| |
Collapse
|
2
|
Fatima M, Park PG, Hong KJ. Clinical advancements in mRNA vaccines against viral infections. Clin Immunol 2025; 271:110424. [PMID: 39734036 DOI: 10.1016/j.clim.2024.110424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/15/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Over the last decade, mRNA vaccines development has shown significant advancement, particularly during the COVID-19 pandemic. This comprehensive review examines the efficacy of pivotal vaccines against emerging COVID-19 variants and strategies for enhancing vaccine effectiveness. It also explores the versatility of mRNA technology in addressing other infectious diseases such as influenza, respiratory syncytial virus, HIV, cytomegalovirus, Ebola, Zika, Rabies, and Nipah viruses. The analysis includes safety and clinical progress of mRNA vaccines and evaluates their potential in combination vaccine strategies. Additionally, it addresses challenges related to delivery and scalability while highlighting opportunities for future advancements in the field. Recent advances in mRNA optimization, biomaterial-based delivery and thermostable designs offer promising solutions. It is essential to gain insights into the evolving landscape of mRNA vaccine technology to maximize its vital role in addressing diverse viral threats, advancing vaccinology and enhancing public health preparedness for future pandemic.
Collapse
Affiliation(s)
- Munazza Fatima
- Department of Microbiology, Gachon University College of Medicine, Incheon, Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Pil-Gu Park
- Department of Microbiology, Gachon University College of Medicine, Incheon, Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Kee-Jong Hong
- Department of Microbiology, Gachon University College of Medicine, Incheon, Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea; Korea mRNA Vaccine Initiative, Gachon University, Seongnam, Republic of Korea.
| |
Collapse
|
3
|
Mrksich K, Padilla MS, Joseph RA, Han EL, Kim D, Palanki R, Xu J, Mitchell MJ. Influence of ionizable lipid tail length on lipid nanoparticle delivery of mRNA of varying length. J Biomed Mater Res A 2024; 112:1494-1505. [PMID: 38487970 PMCID: PMC11239295 DOI: 10.1002/jbm.a.37705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 07/12/2024]
Abstract
RNA-based therapeutics have gained traction for the prevention and treatment of a variety of diseases. However, their fragility and immunogenicity necessitate a drug carrier. Lipid nanoparticles (LNPs) have emerged as the predominant delivery vehicle for RNA therapeutics. An important component of LNPs is the ionizable lipid (IL), which is protonated in the acidic environment of the endosome, prompting cargo release into the cytosol. Currently, there is growing evidence that the structure of IL lipid tails significantly impacts the efficacy of LNP-mediated mRNA translation. Here, we optimized IL tail length for LNP-mediated delivery of three different mRNA cargos. Using C12-200, a gold standard IL, as a model, we designed a library of ILs with varying tail lengths and evaluated their potency in vivo. We demonstrated that small changes in lipophilicity can drastically increase or decrease mRNA translation. We identified that LNPs formulated with firefly luciferase mRNA (1929 base pairs) and C10-200, an IL with shorter tail lengths than C12-200, enhance liver transfection by over 10-fold. Furthermore, different IL tail lengths were found to be ideal for transfection of LNPs encapsulating mRNA cargos of varying sizes. LNPs formulated with erythropoietin (EPO), responsible for stimulating red blood cell production, mRNA (858 base pairs), and the C13-200 IL led to EPO translation at levels similar to the C12-200 LNP. The LNPs formulated with Cas9 mRNA (4521 base pairs) and the C9-200 IL induced over three times the quantity of indels compared with the C12-200 LNP. Our findings suggest that shorter IL tails may lead to higher transfection of LNPs encapsulating larger mRNAs, and that longer IL tails may be more efficacious for delivering smaller mRNA cargos. We envision that the results of this project can be utilized as future design criteria for the next generation of LNP delivery systems for RNA therapeutics.
Collapse
Affiliation(s)
- Kaitlin Mrksich
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marshall S. Padilla
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryann A. Joseph
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily L. Han
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dongyoon Kim
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rohan Palanki
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Junchao Xu
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J. Mitchell
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Tai Y, Chen M, Wang F, Fan Y, Zhang J, Cai B, Yan L, Luo Y, Li Y. The role of dendritic cells in cancer immunity and therapeutic strategies. Int Immunopharmacol 2024; 128:111548. [PMID: 38244518 DOI: 10.1016/j.intimp.2024.111548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Dendritic cells (DCs) are asserted as the most potent antigen-presenting cells (APCs) that orchestrate both innate and adaptive immunity, being extremely effective in the induction of robust anti-cancer T cell responses. Hence, the modulation of DCs function represents an attractive target for improving cancer immunotherapy efficacy. A better understanding of the immunobiology of DCs, the interaction among DCs, immune effector cells and tumor cells in tumor microenvironment (TME) and the latest advances in biomedical engineering technology would be required for the design of optimal DC-based immunotherapy. In this review, we focus on elaborating the immunobiology of DCs in healthy and cancer environments, the recent advances in the development of enhancing endogenous DCs immunocompetence via immunomodulators as well as DC-based vaccines. The rapidly developing field of applying nanotechnology to improve DC-based immunotherapy is also highlighted.
Collapse
Affiliation(s)
- Yunze Tai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Man Chen
- Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Fang Wang
- Department of Medical Laboratory, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| | - Yu Fan
- Department of Urology, National Clinical Research Center for Geriatrics and Organ Transplantation Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Junlong Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bei Cai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Yan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yao Luo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yi Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Wang Y, Suarez ER, Kastrunes G, de Campos NSP, Abbas R, Pivetta RS, Murugan N, Chalbatani GM, D'Andrea V, Marasco WA. Evolution of cell therapy for renal cell carcinoma. Mol Cancer 2024; 23:8. [PMID: 38195534 PMCID: PMC10775455 DOI: 10.1186/s12943-023-01911-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/05/2023] [Indexed: 01/11/2024] Open
Abstract
Treatment for renal cell carcinoma (RCC) has improved dramatically over the last decade, shifting from high-dose cytokine therapy in combination with surgical resection of tumors to targeted therapy, immunotherapy, and combination therapies. However, curative treatment, particularly for advanced-stage disease, remains rare. Cell therapy as a "living drug" has achieved hematological malignancy cures with a high response rate, and significant research efforts have been made to facilitate its translation to solid tumors. Herein, we overview the cellular therapies for RCC focusing on allogeneic hematopoietic stem cell transplantation, T cell receptor gene-modified T cells, chimeric antigen receptor (CAR) T cells, CAR natural killer (NK) cells, lymphokine-activated killer (LAK) cells, γδ T cells, and dendritic cell vaccination. We have also included perspectives for using other recent approaches, such as CAR macrophages, dendritic cell-cytokine induced killer cells and regulatory CAR-T cells to shed light on preclinical development of cell therapy and advancing cell therapy into clinic to achieve cures for RCC.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02215, USA
| | - Eloah Rabello Suarez
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre, SP, 09210-580, Brazil
- Graduate Program in Medicine - Hematology and Oncology, Federal University of Sao Paulo, São Paulo, SP, 04023-062, Brazil
| | - Gabriella Kastrunes
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Najla Santos Pacheco de Campos
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre, SP, 09210-580, Brazil
- Graduate Program in Medicine - Hematology and Oncology, Federal University of Sao Paulo, São Paulo, SP, 04023-062, Brazil
| | - Rabia Abbas
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Renata Schmieder Pivetta
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre, SP, 09210-580, Brazil
- Graduate Program in Medicine - Hematology and Oncology, Federal University of Sao Paulo, São Paulo, SP, 04023-062, Brazil
| | - Nithyassree Murugan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | | | - Vincent D'Andrea
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02215, USA
| | - Wayne A Marasco
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
6
|
Chan L, Mehrani Y, Minott JA, Bridle BW, Karimi K. Dendritic Cell Vaccines Impact the Type 2 Innate Lymphoid Cell Population and Their Cytokine Generation in Mice. Vaccines (Basel) 2023; 11:1559. [PMID: 37896962 PMCID: PMC10610585 DOI: 10.3390/vaccines11101559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/18/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Dendritic cell (DC) vaccines can stimulate the immune system to target cancer antigens, making them a promising therapy in immunotherapy. Clinical trials have shown limited effectiveness of DC vaccines, highlighting the need to enhance the immune responses they generate. Innate lymphoid cells (ILCs) are a diverse group of innate leukocytes that produce various cytokines and regulate the immune system. These cells have the potential to improve immunotherapies. There is not much research on how group 2 ILCs (ILC2s) communicate with DC vaccines. Therefore, examining the roles of DC vaccination in immune responses is crucial. Our research analyzed the effects of DC vaccination on the ILC2 populations and their cytokine production. By exploring the relationship between ILC2s and DCs, we aimed to understand how this could affect DC-based immunotherapies. The results showed an increase in the number of ILC2s in the local draining lymph node and spleen of tumor-free mice, as well as in the lungs of mice challenged with tumors in a pulmonary metastasis model. This suggests a complex interplay between DC-based vaccines and ILC2s, which is further influenced by the presence of tumors.
Collapse
Affiliation(s)
- Lily Chan
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (Y.M.); (J.A.M.)
| | - Yeganeh Mehrani
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (Y.M.); (J.A.M.)
- Department of Clinical Science, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad P.O. Box 91775-1111, Iran
| | - Jessica A. Minott
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (Y.M.); (J.A.M.)
| | - Byram W. Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (Y.M.); (J.A.M.)
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (Y.M.); (J.A.M.)
| |
Collapse
|
7
|
Ye Z, Harmon J, Ni W, Li Y, Wich D, Xu Q. The mRNA Vaccine Revolution: COVID-19 Has Launched the Future of Vaccinology. ACS NANO 2023; 17:15231-15253. [PMID: 37535899 DOI: 10.1021/acsnano.2c12584] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
During the COVID-19 pandemic, mRNA (mRNA) vaccines emerged as leading vaccine candidates in a record time. Nonreplicating mRNA (NRM) and self-amplifying mRNA (SAM) technologies have been developed into high-performing and clinically viable vaccines against a range of infectious agents, notably SARS-CoV-2. mRNA vaccines demonstrate efficient in vivo delivery, long-lasting stability, and nonexistent risk of infection. The stability and translational efficiency of in vitro transcription (IVT)-mRNA can be further increased by modulating its structural elements. In this review, we present a comprehensive overview of the recent advances, key applications, and future challenges in the field of mRNA-based vaccinology.
Collapse
Affiliation(s)
- Zhongfeng Ye
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Joseph Harmon
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Wei Ni
- Department of Medical Oncology, Dana-Farber Cancer Institute at Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Yamin Li
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York 13210, United States
| | - Douglas Wich
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
8
|
Li D, Liu C, Li Y, Tenchov R, Sasso JM, Zhang D, Li D, Zou L, Wang X, Zhou Q. Messenger RNA-Based Therapeutics and Vaccines: What's beyond COVID-19? ACS Pharmacol Transl Sci 2023; 6:943-969. [PMID: 37470024 PMCID: PMC10353067 DOI: 10.1021/acsptsci.3c00047] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Indexed: 07/21/2023]
Abstract
With the rapid success in the development of mRNA vaccines against COVID-19 and with a number of mRNA-based drugs ahead in the pipelines, mRNA has catapulted to the forefront of drug research, demonstrating its substantial effectiveness against a broad range of diseases. As the recent global pandemic gradually fades, we cannot stop thinking about what the world has gained: the realization and validation of the power of mRNA in modern medicine. A significant amount of research has now been concentrated on developing mRNA drugs and vaccine platforms against infectious and immune diseases, cancer, and other debilitating diseases and has demonstrated encouraging results. Here, based on the CAS Content Collection, we provide a landscape view of the current state, outline trends in the research and development of mRNA therapeutics and vaccines, and highlight some notable patents focusing on mRNA therapeutics, vaccines, and delivery systems. Analysis of diseases disclosed in patents also reveals highly investigated diseases for treatments with these medicines. Finally, we provide information about mRNA therapeutics and vaccines in clinical trials. We hope this Review will be useful for understanding the current knowledge in the field of mRNA medicines and will assist in efforts to solve its remaining challenges and revolutionize the treatment of human diseases.
Collapse
Affiliation(s)
- Dongqiao Li
- Information
Center, National Science Library, Chinese
Academy of Science, Haidan District, Beijing 100190, P.R. China
| | - Cynthia Liu
- CAS, a division of the American Chemical Society 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Yingzhu Li
- CAS, a division of the American Chemical Society 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Rumiana Tenchov
- CAS, a division of the American Chemical Society 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Janet M. Sasso
- CAS, a division of the American Chemical Society 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Di Zhang
- Information
Center, National Science Library, Chinese
Academy of Science, Haidan District, Beijing 100190, P.R. China
| | - Dan Li
- Information
Center, National Science Library, Chinese
Academy of Science, Haidan District, Beijing 100190, P.R. China
| | - Lixue Zou
- Information
Center, National Science Library, Chinese
Academy of Science, Haidan District, Beijing 100190, P.R. China
| | - Xuezhao Wang
- Information
Center, National Science Library, Chinese
Academy of Science, Haidan District, Beijing 100190, P.R. China
| | - Qiongqiong Zhou
- CAS, a division of the American Chemical Society 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| |
Collapse
|
9
|
Wu Y, Feng L. Biomaterials-assisted construction of neoantigen vaccines for personalized cancer immunotherapy. Expert Opin Drug Deliv 2023; 20:323-333. [PMID: 36634017 DOI: 10.1080/17425247.2023.2168640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Cancer vaccine represents a promising strategy toward personalized immunotherapy, and its therapeutic potency highly relies on the specificity of tumor antigens. Among these extensively studied tumor antigens, neoantigens, a type of short synthetic peptides derived from random somatic mutations, have been shown to be able to elicit tumor-specific antitumor immune response for tumor suppression. However, challenges remain in the efficient and safe delivery of neoantigens to antigen-presenting cells inside lymph nodes for eliciting potent and sustained antitumor immune responses. The rapid advance of biomaterials including various nanomaterials, injectable hydrogels, and macroscopic scaffolds has been found to hold great promises to facilitate the construction of efficient cancer vaccines attributing to their high loading and controllable release capacities. AREAS COVERED In this review, we will summarize and discuss the recent advances in the utilization of different types of biomaterials to construct neoantigen-based cancer vaccines, followed by a simple perspective on the future development of such biomaterial-assisted cancer neoantigen vaccination and personalized immunotherapy. EXPERT OPINION These latest progresses in biomaterial-assisted cancer vaccinations have shown great promises in boosting substantially potentiated tumor-specific antitumor immunity to suppress tumor growth, thus preventing tumor metastasis and recurrence.
Collapse
Affiliation(s)
- Yumin Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, PR China
| | - Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, PR China
| |
Collapse
|
10
|
Zhao M, Wang R, Yang K, Jiang Y, Peng Y, Li Y, Zhang Z, Ding J, Shi S. Nucleic acid nanoassembly-enhanced RNA therapeutics and diagnosis. Acta Pharm Sin B 2023; 13:916-941. [PMID: 36970219 PMCID: PMC10031267 DOI: 10.1016/j.apsb.2022.10.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/22/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
RNAs are involved in the crucial processes of disease progression and have emerged as powerful therapeutic targets and diagnostic biomarkers. However, efficient delivery of therapeutic RNA to the targeted location and precise detection of RNA markers remains challenging. Recently, more and more attention has been paid to applying nucleic acid nanoassemblies in diagnosing and treating. Due to the flexibility and deformability of nucleic acids, the nanoassemblies could be fabricated with different shapes and structures. With hybridization, nucleic acid nanoassemblies, including DNA and RNA nanostructures, can be applied to enhance RNA therapeutics and diagnosis. This review briefly introduces the construction and properties of different nucleic acid nanoassemblies and their applications for RNA therapy and diagnosis and makes further prospects for their development.
Collapse
Affiliation(s)
- Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rujing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kunmeng Yang
- The First Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130061, China
| | - Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yachen Peng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yuke Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
11
|
Gilboa E, Boczkowski D, Nair SK. The Quest for mRNA Vaccines. Nucleic Acid Ther 2022; 32:449-456. [PMID: 36346283 DOI: 10.1089/nat.2021.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The success of mRNA vaccines against COVID-19 is nothing short of a medical revolution. Given its chemical lability the use of mRNA as a therapeutic has been counterintuitive and met with skepticism. The development of mRNA-based COVID-19 vaccines was the culmination of long and painstaking efforts by many investigators spanning over 30 years and culminating with the seminal studies of Kariko and Weissman. This review will describe one chapter in this saga, studies that have shown that mRNA can function as a therapeutic. It started with our seminal observation that dendritic cells (DCs) transfected with mRNA in vitro administered to mice inhibits tumor growth, and led to first-in-human clinical trials with mRNA vaccines in cancer patients. The clinical development of this patient-specific DCs-mRNA approach and use on a larger scale was hindered by the challenges associated with personalized cell therapies. Confirmed and extended by many investigators, these studies did serve as impetus and motivation that led scientists to persevere, eventually leading to the development of simple, broadly applicable, and highly effective protocols of directly injecting mRNA into patients, culminating in the COVID-19 mRNA vaccines.
Collapse
Affiliation(s)
- Eli Gilboa
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - David Boczkowski
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Smita K Nair
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Neurosurgery, and Duke University School of Medicine, Durham, North Carolina, USA.,Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA.,Duke Cancer Institute, Duke University, Durham, North Carolina, USA
| |
Collapse
|
12
|
Wang X, Wu DH, Senyo SE. mRNA therapy for myocardial infarction: A review of targets and delivery vehicles. Front Bioeng Biotechnol 2022; 10:1037051. [PMID: 36507276 PMCID: PMC9732118 DOI: 10.3389/fbioe.2022.1037051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death in the world. This is partly due to the low regenerative capacity of adult hearts. mRNA therapy is a promising approach under development for cardiac diseases. In mRNA therapy, expression of the target protein is modulated by delivering synthetic mRNA. mRNA therapy benefits cardiac regeneration by increasing cardiomyocyte proliferation, reducing fibrosis, and promoting angiogenesis. Because mRNA is translated in the cytoplasm, the delivery efficiency of mRNA into the cytoplasm and nucleus significantly affects its therapeutic efficacy. To improve delivery efficiency, non-viral vehicles such as lipid nanoparticles have been developed. Non-viral vehicles can protect mRNA from enzymatic degradation and facilitate the cellular internalization of mRNA. In addition to non-viral vehicles, viral vectors have been designed to deliver mRNA templates into cardiac cells. This article reviews lipid nanoparticles, polymer nanoparticles, and viral vectors that have been utilized to deliver mRNA into the heart. Because of the growing interest in lipid nanoparticles, recent advances in lipid nanoparticles designed for cardiac mRNA delivery are discussed. Besides, potential targets of mRNA therapy for myocardial infarction are discussed. Gene therapies that have been investigated in patients with cardiac diseases are analyzed. Reviewing mRNA therapy from a clinically relevant perspective can reveal needs for future investigations.
Collapse
Affiliation(s)
- Xinming Wang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Douglas H. Wu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Samuel E. Senyo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
13
|
Jeng LB, Liao LY, Shih FY, Teng CF. Dendritic-Cell-Vaccine-Based Immunotherapy for Hepatocellular Carcinoma: Clinical Trials and Recent Preclinical Studies. Cancers (Basel) 2022; 14:cancers14184380. [PMID: 36139542 PMCID: PMC9497058 DOI: 10.3390/cancers14184380] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Although many surgical and nonsurgical therapeutic options have been well-established, hepatocellular carcinoma (HCC) remains the third most common cause of cancer-related death worldwide. Therefore, the discovery of novel potential therapeutic strategies is still urgently required for improving survival and prognosis of HCC patients. As the most potent antigen-presenting cells in the human immune system, dendritic cells (DCs) play an important role in activating not only innate but also adaptive immune responses to specifically destroy tumor cells. As a result, DC-based vaccines, which are prepared by different tumor-antigen-pulsing strategies or maturation-stimulating reagents, either alone or in combination with various anticancer therapies and/or immune effector cells, have been developed as a promising personalized cancer immunotherapy. This review provides a comprehensive summary of the evidence from clinical trials evaluating the safety, feasibility, and efficacy of DC-based vaccines in treating HCC patients and highlights the data from recent preclinical studies regarding the development of promising strategies for optimizing the efficacy of DC-vaccine-based immunotherapy for HCC.
Collapse
Affiliation(s)
- Long-Bin Jeng
- Organ Transplantation Center, China Medical University Hospital, Taichung 404, Taiwan
- Cell Therapy Center, China Medical University Hospital, Taichung 404, Taiwan
| | - Li-Ying Liao
- Development of Plastic and Reconstructive Surgery, China Medical University Hospital, Taichung 404, Taiwan
| | - Fu-Ying Shih
- Ph.D. Program for Biotech Pharmaceutical Industry, School of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Chiao-Fang Teng
- Organ Transplantation Center, China Medical University Hospital, Taichung 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- Program for Cancer Biology and Drug Development, China Medical University, Taichung 404, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 404, Taiwan
- Correspondence: ; Tel.: +886-4-2205-2121
| |
Collapse
|
14
|
Dendritic Cell-Based Immunotherapy in Hot and Cold Tumors. Int J Mol Sci 2022; 23:ijms23137325. [PMID: 35806328 PMCID: PMC9266676 DOI: 10.3390/ijms23137325] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells mediate innate and adaptive immune responses and are directly involved in the activation of cytotoxic T lymphocytes that kill tumor cells. Dendritic cell-based cancer immunotherapy has clinical benefits. Dendritic cell subsets are diverse, and tumors can be hot or cold, depending on their immunogenicity; this heterogeneity affects the success of dendritic cell-based immunotherapy. Here, we review the ontogeny of dendritic cells and dendritic cell subsets. We also review the characteristics of hot and cold tumors and briefly introduce therapeutic trials related to hot and cold tumors. Lastly, we discuss dendritic cell-based cancer immunotherapy in hot and cold tumors.
Collapse
|
15
|
Mokuda S, Watanabe H, Kohno H, Ishitoku M, Araki K, Hirata S, Sugiyama E. N1-methylpseudouridine-incorporated mRNA enhances exogenous protein expression and suppresses immunogenicity in primary human fibroblast-like synoviocytes. Cytotechnology 2022; 74:503-514. [PMID: 35791402 PMCID: PMC9245880 DOI: 10.1007/s10616-022-00540-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/03/2022] [Indexed: 11/25/2022] Open
Abstract
Studies conducted using murine arthritis models have indicated that the use of in vitro-transcribed messenger RNA (IVT mRNA) is an effective therapeutic approach for joint diseases. However, the use of IVT mRNA in human synovial cells has not been widely studied. Recently, the outbreak of the novel coronavirus disease has accelerated the development of innovative mRNA vaccines, such as those containing a modified nucleic acid, N1-methylpseudouridine-5′-triphosphate (m1ψ). IVT mRNA is an attractive tool for biological experiments and drug discovery. To verify the protein expression from IVT mRNA in vitro, primary cultured fibroblast-like synoviocytes (FLS) and MH7A human synovial fibroblast cells were transfected with enhanced green fluorescent protein (EGFP) mRNA with or without m1ψ incorporation. EGFP was detected using western blotting and fluorescence microscopy. A multiplex assay was performed to comprehensively understand IVT mRNA-induced immunogenicity. Gene expression levels were measured using reverse transcription polymerase chain reaction. In both MH7A cells and FLS, cells transfected with EGFP mRNA containing m1ψ generated higher levels of EGFP than those transfected with unmodified EGFP or control mRNAs. The multiplex assay of the FLS culture supernatant and reverse transcription polymerase chain reaction for FLS revealed that both concentration and expression of IL-6, TNF-α, and CXCL10 were upregulated by unmodified EGFP mRNA, whereas they were suppressed by EGFP mRNA with m1ψ. Overall, m1ψ incorporation enhanced protein expression and decreased the expression of cytokines. These findings may contribute to arthritis research.
Collapse
Affiliation(s)
- Sho Mokuda
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima, Japan
| | - Hirofumi Watanabe
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima, Japan
| | - Hiroki Kohno
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima, Japan
| | - Michinori Ishitoku
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima, Japan
| | - Kei Araki
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima, Japan
| | - Shintaro Hirata
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima, Japan
| | - Eiji Sugiyama
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
16
|
Kolostova K, Pospisilova E, Matkowski R, Szelachowska J, Bobek V. Immune activation of the monocyte-derived dendritic cells using patients own circulating tumor cells. Cancer Immunol Immunother 2022; 71:2901-2911. [PMID: 35471603 DOI: 10.1007/s00262-022-03189-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Dendritic cell (DC) therapy counts to the promising strategies how to weaken and eradicate cancer disease. We aimed to develop a good manufacturing practice (GMP) protocol for monocyte-derived DC (Mo-DC) maturation using circulating tumor cells lysates with subsequent experimental T-cell priming in vitro. METHODS DC differentiation was induced from a population of immunomagnetically enriched CD14 + monocytes out of the leukapheresis samples (n = 6). The separation was provided automatically, in a closed bag system, using CliniMACS Prodigy® separation protocols (Miltenyi Biotec). For differentiation and maturation of CD14 + cells, DendriMACs® growing medium with supplements (GM-CSF, IL-4, IL-6, IL-1B, TNFa, PGE) was used. Immature Mo-DCs were loaded with autologous circulating tumor cell (CTCs) lysates. Autologous CTCs were sorted out by size-based filtration (MetaCell®) of the leukapheresis CD14-negative fraction. A mixture of mature Mo-DCs and autologous non-target blood cells (NTBCs) was co-cultured and the activation effect of mature Mo-DCs on T-cell activation was monitored by means of multimarker gene expression profiling. RESULTS New protocols for mMo-DC production using automatization and CTC lysates were introduced including a feasible in vitro assay for mMo-DC efficacy evaluation. Gene expression analysis revealed elevation for following genes in NTBC (T cells) subset primed by mMo-DCs: CD8A, CD4, MKI67, MIF, TNFA, CD86, and CD80 (p ≤ 0.01). CONCLUSION Summarizing the presented data, we might conclude mMo-DCs were generated using CliniMACS Prodigy® machine and CTC lysates in a homogenous manner showing a potential to generate NTBC activation in co-cultures. Identification of the activation signals in T-cell population by simple multimarker-qPCRs could fasten the process of effective mMo-DC production.
Collapse
Affiliation(s)
- Katarina Kolostova
- Laboratory of Personalized Medicine, Oncology Clinic, University Hospital Kralovske Vinohrady, Srobarova 50, 10034, Prague, Czech Republic
| | - Eliska Pospisilova
- Laboratory of Personalized Medicine, Oncology Clinic, University Hospital Kralovske Vinohrady, Srobarova 50, 10034, Prague, Czech Republic
| | - Rafal Matkowski
- Department of Oncology, Wrocław Medical University, Wrocław, Poland.,Breast Cancer Unit, Lower Silesian Oncology, Pulmonology and Hematology Center, Plac Hirszfelda 12, 54-413, Wrocław, Poland
| | - Jolanta Szelachowska
- Department of Oncology, Wrocław Medical University, Wrocław, Poland.,Breast Cancer Unit, Lower Silesian Oncology, Pulmonology and Hematology Center, Plac Hirszfelda 12, 54-413, Wrocław, Poland
| | - Vladimir Bobek
- Laboratory of Personalized Medicine, Oncology Clinic, University Hospital Kralovske Vinohrady, Srobarova 50, 10034, Prague, Czech Republic. .,3rd Department of Surgery University Hospital Motol and 1st Faculty of Medicine, Charles University, V Uvalu 84, 15006, Prague, Czech Republic. .,Department of Thoracic Surgery, Masaryk's Hospital, Krajska Zdravotni a.s., Socialni pece 3316/12A, 40113, Usti nad Labem, Czech Republic. .,Department of Thoracic Surgery, Lower Silesian Oncology, Pulmology and Hematology Center and Medical University Wroclaw, Grabiszynska 105, 53-413, Wrocław, Poland.
| |
Collapse
|
17
|
Rahman MM, Zhou N, Huang J. An Overview on the Development of mRNA-Based Vaccines and Their Formulation Strategies for Improved Antigen Expression In Vivo. Vaccines (Basel) 2021; 9:244. [PMID: 33799516 PMCID: PMC8001631 DOI: 10.3390/vaccines9030244] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 12/25/2022] Open
Abstract
The mRNA-based vaccine approach is a promising alternative to traditional vaccines due to its ability for prompt development, high potency, and potential for secure administration and low-cost production. Nonetheless, the application has still been limited by the instability as well as the ineffective delivery of mRNA in vivo. Current technological improvements have now mostly overcome these concerns, and manifold mRNA vaccine plans against various forms of malignancies and infectious ailments have reported inspiring outcomes in both humans and animal models. This article summarizes recent mRNA-based vaccine developments, advances of in vivo mRNA deliveries, reflects challenges and safety concerns, and future perspectives, in developing the mRNA vaccine platform for extensive therapeutic use.
Collapse
Affiliation(s)
- Md. Motiar Rahman
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China; (N.Z.); (J.H.)
| | - Nan Zhou
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China; (N.Z.); (J.H.)
| | - Jiandong Huang
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China; (N.Z.); (J.H.)
- Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
18
|
Shahnazari M, Samadi P, Pourjafar M, Jalali A. Therapeutic vaccines for colorectal cancer: The progress and future prospect. Int Immunopharmacol 2020; 88:106944. [PMID: 33182032 DOI: 10.1016/j.intimp.2020.106944] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
Cancer vaccines are usually derived from the patient's tumor cells or the antigens found on their surface, which may help the immune system to identify and kill these malignant cells. Current focus of many researches is designing vaccines with the hope of triggering the immune system to attack cancer cells in a more effective, reliable and safe manner. Although colorectal cancer (CRC) is recognized as the third leading cause of death by cancer, but significant advances in therapy strategies have been made in recent years, including cancer vaccine. In this review, we present various vaccine platforms that have been used in the border battle against CRC, some of which have been approved for clinical use and some are in late-stage clinical trials. Until September 2020 there is approximately 1940 clinical trials of cancer vaccines on patients with different cancer types, and also many more trials are in the planning stages, which makes it the most important period of therapeutic cancer vaccines studies in the history of the immunotherapy. In cancer vaccines clinical trials, there are several considerations that must be taken into account including engineering of antigen-presenting cells, potential toxicity of antigenic areas, pharmacokinetics and pharmacodynamics of vaccines, and monitoring of the patients' immune response. Therefore, the need to overcome immunosuppression mechanisms/immune tolerance is a critical step for the success of introducing therapeutic vaccines into the widely used drugs on market. In this way, better understanding of neoantigens, tumor immune surveillance escape mechanisms and host-tumor interactions are required to develop more effective and safe cancer vaccines.
Collapse
Affiliation(s)
- Mina Shahnazari
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pouria Samadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Mona Pourjafar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Jalali
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
19
|
Baldin AV, Savvateeva LV, Bazhin AV, Zamyatnin AA. Dendritic Cells in Anticancer Vaccination: Rationale for Ex Vivo Loading or In Vivo Targeting. Cancers (Basel) 2020; 12:cancers12030590. [PMID: 32150821 PMCID: PMC7139354 DOI: 10.3390/cancers12030590] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs) have shown great potential as a component or target in the landscape of cancer immunotherapy. Different in vivo and ex vivo strategies of DC vaccine generation with different outcomes have been proposed. Numerous clinical trials have demonstrated their efficacy and safety in cancer patients. However, there is no consensus regarding which DC-based vaccine generation method is preferable. A problem of result comparison between trials in which different DC-loading or -targeting approaches have been applied remains. The employment of different DC generation and maturation methods, antigens and administration routes from trial to trial also limits the objective comparison of DC vaccines. In the present review, we discuss different methods of DC vaccine generation. We conclude that standardized trial designs, treatment settings and outcome assessment criteria will help to determine which DC vaccine generation approach should be applied in certain cancer cases. This will result in a reduction in alternatives in the selection of preferable DC-based vaccine tactics in patient. Moreover, it has become clear that the application of a DC vaccine alone is not sufficient and combination immunotherapy with recent advances, such as immune checkpoint inhibitors, should be employed to achieve a better clinical response and outcome.
Collapse
Affiliation(s)
- Alexey V. Baldin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.V.B.); (L.V.S.)
| | - Lyudmila V. Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.V.B.); (L.V.S.)
| | - Alexandr V. Bazhin
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University of Munich, 81377 Munich, Germany;
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.V.B.); (L.V.S.)
- Belozersky Institute of Physico-Chemical Biology, Department of Cell Signaling, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: ; Tel.: +74-956-229-843
| |
Collapse
|
20
|
Irradiated lactic acid-stimulated tumour cells promote the antitumour immunity as a therapeutic vaccine. Cancer Lett 2020; 469:367-379. [DOI: 10.1016/j.canlet.2019.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/28/2019] [Accepted: 11/11/2019] [Indexed: 02/04/2023]
|
21
|
Sprooten J, Ceusters J, Coosemans A, Agostinis P, De Vleeschouwer S, Zitvogel L, Kroemer G, Galluzzi L, Garg AD. Trial watch: dendritic cell vaccination for cancer immunotherapy. Oncoimmunology 2019; 8:e1638212. [PMID: 31646087 PMCID: PMC6791419 DOI: 10.1080/2162402x.2019.1638212] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
Dendritic- cells (DCs) have received considerable attention as potential targets for the development of anticancer vaccines. DC-based anticancer vaccination relies on patient-derived DCs pulsed with a source of tumor-associated antigens (TAAs) in the context of standardized maturation-cocktails, followed by their reinfusion. Extensive evidence has confirmed that DC-based vaccines can generate TAA-specific, cytotoxic T cells. Nonetheless, clinical efficacy of DC-based vaccines remains suboptimal, reflecting the widespread immunosuppression within tumors. Thus, clinical interest is being refocused on DC-based vaccines as combinatorial partners for T cell-targeting immunotherapies. Here, we summarize the most recent preclinical/clinical development of anticancer DC vaccination and discuss future perspectives for DC-based vaccines in immuno-oncology.
Collapse
Affiliation(s)
- Jenny Sprooten
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jolien Ceusters
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, KU Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - An Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, KU Leuven, Leuven Cancer Institute, Leuven, Belgium
- Department of Gynecology and Obstetrics, UZ Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
- Center for Cancer Biology (CCB), VIB, Leuven, Belgium
| | - Steven De Vleeschouwer
- Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, UZ Leuven, Leuven, Belgium
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China
- Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
- Université de Paris Descartes, Paris, France
| | - Abhishek D. Garg
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Koo SL, Wang WW, Toh HC. Cancer Immunotherapy – The Target is Precisely on The Cancer and Also Not. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2018. [DOI: 10.47102/annals-acadmedsg.v47n9p381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In recent years, the impressive number of cancer immunotherapy drugs approved has been unprecedented—building on over a century of understanding on how the immune system combats cancer, and how cancer evades it. Leading the charge are the immune checkpoint inhibitor monoclonal antibodies, and adoptive cell therapy with chimeric-antigen-receptor (CAR)-T cell therapy. These breakthrough therapies have led to improved survival in patients with many advanced cancers. Some of the clinical outcomes have been striking, and may even be potentially curative in some terminal cancer patients. While immune checkpoint inhibitors work by blocking regulatory immune checkpoint signals between cancer and the immune cells to awaken an effective anticancer immunity, CAR-T cell therapy targets specific molecules on cancer cells. Tumour antigens as cancer targets take many forms and may not necessarily be proteins related to known functional cellular mechanisms. The convergence of cutting edge omics, bioinformatics, protein synthesis, immunobiology and immunotherapy have led to novel, potentially highly effective cancer targeting against neoantigens, hence reviving the quest for anticancer vaccines. Early clinical trials of neoantigen vaccines have provided proof-of-principle efficacy, especially in melanoma patients. Combinations of immunotherapies through rational design are underway aiming to further improve clinical outcomes. Moving forward, cancer immunotherapy will gain even more momentum from the discovery of more cancer targets—both on the cancer itself and in the tumour microenvironment as well as the identification of biomarkers of treatment resistance and efficacy.
Key words: Checkpoint inhibitor, Microenvironment, Neoantigens, Vaccine
Collapse
Affiliation(s)
- Si Lin Koo
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Who Whong Wang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| |
Collapse
|
23
|
Guo Y, Lei K, Tang L. Neoantigen Vaccine Delivery for Personalized Anticancer Immunotherapy. Front Immunol 2018; 9:1499. [PMID: 30013560 PMCID: PMC6036114 DOI: 10.3389/fimmu.2018.01499] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/15/2018] [Indexed: 12/22/2022] Open
Abstract
Cancer neoantigens derived from random somatic mutations in tumor tissue represent an attractive type of targets for the cancer immunotherapies including cancer vaccine. Vaccination against the tumor-specific neoantigens minimizes the potential induction of central and peripheral tolerance as well as the risk of autoimmunity. Neoantigen-based cancer vaccines have recently showed marked therapeutic potential in both preclinical and early-phase clinical studies. However, significant challenges remain in the effective and faithful identification of immunogenic neoepitopes and the efficient and safe delivery of the subunit vaccine components for eliciting potent and robust anticancer T cell responses. In this mini review, we provide a brief overview of the recent advances in the development of neoantigen-based cancer vaccines focusing on various vaccine delivery strategies for targeting and modulating antigen-presenting cells. We discuss current delivery approaches, including direct injection, ex vivo-pulsed dendritic cell vaccination, and biomaterial-assisted vaccination for enhancing the efficiency of neoantigen vaccines and present a perspective on future directions.
Collapse
Affiliation(s)
- Yugang Guo
- Institute of Bioengineering, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Kewen Lei
- Institute of Materials Science and Engineering, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Li Tang
- Institute of Bioengineering, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Materials Science and Engineering, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
24
|
Men K, Zhang R, Zhang X, Huang R, Zhu G, Tong R, Yang L, Wei Y, Duan X. Delivery of modified mRNA encoding vesicular stomatitis virus matrix protein for colon cancer gene therapy. RSC Adv 2018; 8:12104-12115. [PMID: 35539419 PMCID: PMC9079296 DOI: 10.1039/c7ra13656k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/17/2018] [Indexed: 02/05/2023] Open
Abstract
Plasmid DNA based gene delivery has been widely utilized among both pre-clinical and clinical gene therapy studies. However, therapeutic efficiency is usually limited by the size and potential immune-stimulation issue of plasmid backbone. As an alternative form of genetic material, chemically modified messenger RNA (mRNA) provides a promising alternative to plasmid DNA. In this work, an in vitro transcription mRNA encoding vesicular stomatitis virus matrix protein (VSVMP) was delivered by a cationic liposome–protamine complex, resulting in high mRNA transporting and expression efficiency. The liposome–protamine complex delivered VSVMP mRNA strongly inhibits the growth of C26 tumor cells through inducing apoptosis, while obvious tumor regressions were achieved on both abdominal cavity metastatic and subcutaneous xenograft models in vivo with high safety. Our results also demonstrated that the liposome–protamine–mRNA complex was as potent as its plasmid DNA counterpart, showing strong potential in further colon cancer therapy. Liposome–protamine complex delivered VSVMP mRNA efficiently inhibits C26 colon carcinoma with safety, providing an alternative strategy for non-viral gene therapy.![]()
Collapse
Affiliation(s)
- Ke Men
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy
- West China Hospital
- Sichuan University
- Chengdu 610041
- People's Republic of China
| | - Rui Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy
- West China Hospital
- Sichuan University
- Chengdu 610041
- People's Republic of China
| | - Xueyan Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy
- West China Hospital
- Sichuan University
- Chengdu 610041
- People's Republic of China
| | - Rong Huang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy
- West China Hospital
- Sichuan University
- Chengdu 610041
- People's Republic of China
| | - Guonian Zhu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy
- West China Hospital
- Sichuan University
- Chengdu 610041
- People's Republic of China
| | - Rongsheng Tong
- Individualized Medication Key Laboratory of Sichuan Province
- Department of Pharmacy
- Sichuan Provincial People's Hospital
- Chengdu
- People's Republic of China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy
- West China Hospital
- Sichuan University
- Chengdu 610041
- People's Republic of China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy
- West China Hospital
- Sichuan University
- Chengdu 610041
- People's Republic of China
| | - Xingmei Duan
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy
- West China Hospital
- Sichuan University
- Chengdu 610041
- People's Republic of China
| |
Collapse
|
25
|
Abstract
BACKGROUND Multiple myeloma (MM) is the second most common hematologic malignancy, affecting approximately 14,000 new patients in the United State per year. The median overall survival is 5 years, and cure is a realistic goal for only a small minority of patients. METHODS A review of the literature was conducted that focused on treatment strategies for MM involving administration of high doses of chemotherapy followed by autologous or allogeneic hematopoietic stem cell transplant. RESULTS For over three decades, the standard treatment for MM has been a regimen of melphalan and prednisone (MP). Complete responses (CRs) have been rare, and 50% of patients have had disease that was resistant to treatment with MP. Attempts have been made to improve the outcome of MM by administering other combinations of standard doses of chemotherapy, but these treatments are equivalent in terms of overall survival. For patients who are candidates, high-dose therapy followed by autologous stem cell transplantation results in higher CR rates and improved long-term survival compared to treatment with standard doses of chemotherapy alone. While this strategy represents an advance in the treatment of MM, evidence-based reviews indicate that there are a number of issues to consider regarding the induction therapy, the collection of stem cells, and the timing, type, and number of high-dose therapies to use in this type of treatment strategy. CONCLUSIONS Advances have been made in autologous transplantation, allogeneic transplantation, anti-MM agents, and immunotherapy for MM. Combining these different strategies to achieve synergistic responses is an exciting possibility.
Collapse
|
26
|
Garg AD, Vara Perez M, Schaaf M, Agostinis P, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Dendritic cell-based anticancer immunotherapy. Oncoimmunology 2017; 6:e1328341. [PMID: 28811970 DOI: 10.1080/2162402x.2017.1328341] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/11/2022] Open
Abstract
Dendritic cell (DC)-based vaccines against cancer have been extensively developed over the past two decades. Typically DC-based cancer immunotherapy entails loading patient-derived DCs with an appropriate source of tumor-associated antigens (TAAs) and efficient DC stimulation through a so-called "maturation cocktail" (typically a combination of pro-inflammatory cytokines and Toll-like receptor agonists), followed by DC reintroduction into patients. DC vaccines have been documented to (re)activate tumor-specific T cells in both preclinical and clinical settings. There is considerable clinical interest in combining DC-based anticancer vaccines with T cell-targeting immunotherapies. This reflects the established capacity of DC-based vaccines to generate a pool of TAA-specific effector T cells and facilitate their infiltration into the tumor bed. In this Trial Watch, we survey the latest trends in the preclinical and clinical development of DC-based anticancer therapeutics. We also highlight how the emergence of immune checkpoint blockers and adoptive T-cell transfer-based approaches has modified the clinical niche for DC-based vaccines within the wide cancer immunotherapy landscape.
Collapse
Affiliation(s)
- Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Monica Vara Perez
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Marco Schaaf
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, U1015, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP, Paris, France
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Paris, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
27
|
Mokarram P, Albokashy M, Zarghooni M, Moosavi MA, Sepehri Z, Chen QM, Hudecki A, Sargazi A, Alizadeh J, Moghadam AR, Hashemi M, Movassagh H, Klonisch T, Owji AA, Łos MJ, Ghavami S. New frontiers in the treatment of colorectal cancer: Autophagy and the unfolded protein response as promising targets. Autophagy 2017; 13:781-819. [PMID: 28358273 PMCID: PMC5446063 DOI: 10.1080/15548627.2017.1290751] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC), despite numerous therapeutic and screening attempts, still remains a major life-threatening malignancy. CRC etiology entails both genetic and environmental factors. Macroautophagy/autophagy and the unfolded protein response (UPR) are fundamental mechanisms involved in the regulation of cellular responses to environmental and genetic stresses. Both pathways are interconnected and regulate cellular responses to apoptotic stimuli. In this review, we address the epidemiology and risk factors of CRC, including genetic mutations leading to the occurrence of the disease. Next, we discuss mutations of genes related to autophagy and the UPR in CRC. Then, we discuss how autophagy and the UPR are involved in the regulation of CRC and how they associate with obesity and inflammatory responses in CRC. Finally, we provide perspectives for the modulation of autophagy and the UPR as new therapeutic options for CRC treatment.
Collapse
Affiliation(s)
- Pooneh Mokarram
- a Colorectal Research Center and Department of Biochemistry , School of Medicine, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Mohammed Albokashy
- b Department of Human Anatomy and Cell Science , Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg , MB , Canada
| | - Maryam Zarghooni
- c Zabol University of Medical Sciences , Zabol , Iran.,d University of Toronto Alumni , Toronto , ON , Canada
| | - Mohammad Amin Moosavi
- e Department of Molecular Medicine , Institute of Medical Biotechnology, National Institute for Genetic Engineering and Biotechnology , Tehran , Iran
| | - Zahra Sepehri
- c Zabol University of Medical Sciences , Zabol , Iran
| | - Qi Min Chen
- b Department of Human Anatomy and Cell Science , Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg , MB , Canada
| | | | | | - Javad Alizadeh
- b Department of Human Anatomy and Cell Science , Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg , MB , Canada
| | - Adel Rezaei Moghadam
- b Department of Human Anatomy and Cell Science , Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg , MB , Canada
| | - Mohammad Hashemi
- g Department of Clinical Biochemistry , School of Medicine, Zahedan University of Medical Sciences , Zahedan , Iran
| | - Hesam Movassagh
- h Department of Immunology , Rady Faculty of Health Sciences, College of Medicine, University of Manitoba , Winnipeg , MB , Canada
| | - Thomas Klonisch
- b Department of Human Anatomy and Cell Science , Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg , MB , Canada
| | - Ali Akbar Owji
- i Department of Clinical Biochemistry , School of Medicine, Shiraz Medical University , Shiraz , Iran
| | - Marek J Łos
- j Małopolska Centre of Biotechnology , Jagiellonian University , Krakow , Poland ; LinkoCare Life Sciences AB , Sweden
| | - Saeid Ghavami
- b Department of Human Anatomy and Cell Science , Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg , MB , Canada.,k Health Policy Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
28
|
Abstract
Immunotherapy using dendritic cell (DC)-based vaccination is an approved approach for harnessing the potential of a patient's own immune system to eliminate tumor cells in metastatic hormone-refractory cancer. Overall, although many DC vaccines have been tested in the clinic and proven to be immunogenic, and in some cases associated with clinical outcome, there remains no consensus on how to manufacture DC vaccines. In this review we will discuss what has been learned thus far about human DC biology from clinical studies, and how current approaches to apply DC vaccines in the clinic could be improved to enhance anti-tumor immunity.
Collapse
|
29
|
Lynch D, Murphy A. The emerging role of immunotherapy in colorectal cancer. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:305. [PMID: 27668225 DOI: 10.21037/atm.2016.08.29] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Modulation of the interaction between the immune system and the tumor microenvironment has long been a target of cancer research, including colorectal cancer (CRC). Approaches explored to date include vaccines (autologous, peptide, dendritic cell, viral and bacterial), cytokine therapy, toll-like receptors (TLRs), autologous cell therapy and checkpoint inhibition. Until recently these approaches have been shown to have only modest efficacy in reducing tumor burden. However, significant breakthroughs have been made, with the use of checkpoint inhibitors targeting programmed cell death protein-1 (PD-1), programmed cell death ligand-1 (PD-L1), and cytotoxic T lymphocyte antigen-4 (CTLA-4). Immunotherapy now represents a possible avenue of curative treatment for those with chemo-otherwise refractory tumors. Success with this approach to immunotherapy has largely been confined to tumors with high mutational burdens such as melanoma, renal cell carcinoma (RCC) and non-small cell lung cancer. This observation led to the exploration and successful use of checkpoint inhibitors in those with mismatch repair colorectal cancer which have a relatively high mutational burden. Ongoing trials are focused on further exploring the use of checkpoint inhibitors in addition to investigating the various combinations of immunotherapeutic drugs.
Collapse
Affiliation(s)
- David Lynch
- Department of Internal Medicine, University of North Carolina Hospitals, Chapel Hill, North Carolina, USA
| | - Adrian Murphy
- Department Medical Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Sanchez-Castañón M, Er TK, Bujanda L, Herreros-Villanueva M. Immunotherapy in colorectal cancer: What have we learned so far? Clin Chim Acta 2016; 460:78-87. [PMID: 27350293 DOI: 10.1016/j.cca.2016.06.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 12/13/2022]
Abstract
After decades of progress based on chemotherapy and targeted agents, patients with metastatic colorectal cancer still have low long-term survival, with more than 500,000 deaths occurring worldwide every year. Recent results showing clinical evidence of efficacy using immunotherapy in other types of tumors, such as melanoma and lung cancer, have also made this a viable therapy for evaluation in colorectal cancer in clinical trials. The development of cancer immunotherapies is progressing quickly, with a variety of technological approaches. This review summarizes the current status of clinical trials testing immunotherapy in colorectal cancer and discusses what has been learned based on previous results. Immunotherapy strategies, such as various models of vaccines, effector-cell therapy and checkpoint inhibitor antibodies, provide protection against progression for a limited subset of patients diagnosed with colorectal cancer. A better understanding of particular immune cell types and pathways in each patient is still needed. These findings will enable the development of novel biomarkers to select the appropriate subset of patients to be treated with a particular immunotherapy, and the tendencies determined from recent results can guide clinical practice for oncologists in this new therapeutic area and in the design of the next round of clinical trials.
Collapse
Affiliation(s)
| | - Tze-Kiong Er
- Department of Health and Nutrition Biotechnology, Asian University, Taichung, Taiwan
| | - Luis Bujanda
- Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Universidad del País Vasco UPV/EHU, San Sebastián, Spain
| | - Marta Herreros-Villanueva
- Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Universidad del País Vasco UPV/EHU, San Sebastián, Spain; Division of Oncology Research, Schulze Center for Novel Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
31
|
Kajihara M, Takakura K, Kanai T, Ito Z, Matsumoto Y, Shimodaira S, Okamoto M, Ohkusa T, Koido S. Advances in inducing adaptive immunity using cell-based cancer vaccines: Clinical applications in pancreatic cancer. World J Gastroenterol 2016; 22:4446-58. [PMID: 27182156 PMCID: PMC4858628 DOI: 10.3748/wjg.v22.i18.4446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/01/2016] [Accepted: 04/15/2016] [Indexed: 02/06/2023] Open
Abstract
The incidence of pancreatic ductal adenocarcinoma (PDA) is on the rise, and the prognosis is extremely poor because PDA is highly aggressive and notoriously difficult to treat. Although gemcitabine- or 5-fluorouracil-based chemotherapy is typically offered as a standard of care, most patients do not survive longer than 1 year. Therefore, the development of alternative therapeutic approaches for patients with PDA is imperative. As PDA cells express numerous tumor-associated antigens that are suitable vaccine targets, one promising treatment approach is cancer vaccines. During the last few decades, cell-based cancer vaccines have offered encouraging results in preclinical studies. Cell-based cancer vaccines are mainly generated by presenting whole tumor cells or dendritic cells to cells of the immune system. In particular, several clinical trials have explored cell-based cancer vaccines as a promising therapeutic approach for patients with PDA. Moreover, chemotherapy and cancer vaccines can synergize to result in increased efficacies in patients with PDA. In this review, we will discuss both the effect of cell-based cancer vaccines and advances in terms of future strategies of cancer vaccines for the treatment of PDA patients.
Collapse
|
32
|
Abstract
Exploitation of the patient's own immune system to induce antitumor immune responses using dendritic cell (DC) immunotherapy has been established in early clinical trials as a safe and promising therapeutic approach for cancer. However, their limited success in larger clinical trials highlights the need to optimize DC vaccine preparations. This chapter describes the methodologies utilized for the preparation of the DC vaccine most commonly used in clinical trials. Optional variations at different stages in DC vaccine preparation, based on the nature of antigen, delivery of antigen, maturation stimuli, and mode of administration for DC vaccines, are also presented for consideration as these are often dependent on the disease setting, desired immune response, and/or resources available.
Collapse
|
33
|
Singh PP, Sharma PK, Krishnan G, Lockhart AC. Immune checkpoints and immunotherapy for colorectal cancer. Gastroenterol Rep (Oxf) 2015; 3:289-97. [PMID: 26510455 PMCID: PMC4650981 DOI: 10.1093/gastro/gov053] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/14/2015] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) remains one of the major causes of death worldwide, despite steady improvement in early detection and overall survival over the past decade. Current treatment paradigms, with chemotherapy and biologics, appear to have reached their maximum benefit. Immunotherapy, especially with checkpoint inhibitors, has shown considerable clinical benefit in various cancers, including mismatch-repair-deficient CRC. This has led to the planning and initiation of several clinical trials evaluating novel immunotherapy agents—as single agents, combinations and in conjunction with chemotherapy—in patients with CRC. This article reviews biological and preclinical data for checkpoint inhibitors and discusses various immunotherapy trials in CRC, as well as current efforts in CRC immunotherapy.
Collapse
Affiliation(s)
- Preet Paul Singh
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA and
| | - Piyush K Sharma
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Gayathri Krishnan
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA and
| | - A Craig Lockhart
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA and
| |
Collapse
|
34
|
Markov OV, Mironova NL, Sennikov SV, Vlassov VV, Zenkova MA. Prophylactic Dendritic Cell-Based Vaccines Efficiently Inhibit Metastases in Murine Metastatic Melanoma. PLoS One 2015; 10:e0136911. [PMID: 26325576 PMCID: PMC4556596 DOI: 10.1371/journal.pone.0136911] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/10/2015] [Indexed: 12/16/2022] Open
Abstract
Recent data on the application of dendritic cells (DCs) as anti-tumor vaccines has shown their great potential in therapy and prophylaxis of cancer. Here we report on a comparison of two treatment schemes with DCs that display the models of prophylactic and therapeutic vaccination using three different experimental tumor models: namely, Krebs-2 adenocarcinoma (primary tumor), melanoma (B16, metastatic tumor without a primary node) and Lewis lung carcinoma (LLC, metastatic tumor with a primary node). Dendritic cells generated from bone marrow-derived DC precursors and loaded with lysate of tumor cells or transfected with the complexes of total tumor RNA with cationic liposomes were used for vaccination. Lipofectamine 2000 and liposomes consisting of helper lipid DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) and cationic lipid 2D3 (1,26-Bis(1,2-de-O-tetradecyl-rac-glycerol)-7,11,16,20-tetraazahexacosan tetrahydrocloride) were used for RNA transfection. It was shown that DCs loaded with tumor lysate were ineffective in contrast to tumor-derived RNA. Therapeutic vaccination with DCs loaded by lipoplexes RNA/Lipofectamine 2000 was the most efficient for treatment of non-metastatic Krebs-2, where a 1.9-fold tumor growth retardation was observed. Single prophylactic vaccination with DCs loaded by lipoplexes RNA/2D3 was the most efficient to treat highly aggressive metastatic tumors LLC and B16, where 4.7- and 10-fold suppression of the number of lung metastases was observed, respectively. Antimetastatic effect of single prophylactic DC vaccination in metastatic melanoma model was accompanied by the reductions in the levels of Th2-specific cytokines however the change of the levels of Th1/Th2/Th17 master regulators was not found. Failure of double prophylactic vaccination is explained by Th17-response polarization associated with autoimmune and pro-inflammatory reactions. In the case of therapeutic DC vaccine the polarization of Th1-response was found nevertheless the antimetastatic effect was less effective in comparison with prophylactic DC vaccine.
Collapse
Affiliation(s)
- Oleg V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Nadezhda L. Mironova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey V. Sennikov
- Federal State Budgetary Institution "Research Institute of Clinical Immunology", Siberian Branch of Russian Academy of Medical Sciences, Novosibirsk, Russia
| | - Valentin V. Vlassov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- * E-mail:
| |
Collapse
|
35
|
Schwab CL, English DP, Roque DM, Pasternak M, Santin AD. Past, present and future targets for immunotherapy in ovarian cancer. Immunotherapy 2015; 6:1279-93. [PMID: 25524384 DOI: 10.2217/imt.14.90] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer is the leading cause of death from gynecologic malignancy in the US. Treatments have improved with conventional cytotoxic chemotherapy and advanced surgical techniques but disease recurrence is common and fatal in nearly all cases. Current evidence suggests that the immune system and its ability to recognize and eliminate microscopic disease is paramount in preventing recurrence. Ovarian cancer immunotherapy is targeting tumors through active, passive and adoptive approaches. The goal of immunotherapy is to balance the activation of the immune system against cancer while preventing the potential for tremendous toxicity elicited by immune modulation. In this paper we will review the different immunotherapies available for ovarian cancer as well as current ongoing studies and potential future directions.
Collapse
Affiliation(s)
- Carlton L Schwab
- Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Gynecologic Oncology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
36
|
Bloy N, Pol J, Aranda F, Eggermont A, Cremer I, Fridman WH, Fučíková J, Galon J, Tartour E, Spisek R, Dhodapkar MV, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Dendritic cell-based anticancer therapy. Oncoimmunology 2014; 3:e963424. [PMID: 25941593 DOI: 10.4161/21624011.2014.963424] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 02/06/2023] Open
Abstract
The use of patient-derived dendritic cells (DCs) as a means to elicit therapeutically relevant immune responses in cancer patients has been extensively investigated throughout the past decade. In this context, DCs are generally expanded, exposed to autologous tumor cell lysates or loaded with specific tumor-associated antigens (TAAs), and then reintroduced into patients, often in combination with one or more immunostimulatory agents. As an alternative, TAAs are targeted to DCs in vivo by means of monoclonal antibodies, carbohydrate moieties or viral vectors specific for DC receptors. All these approaches have been shown to (re)activate tumor-specific immune responses in mice, often mediating robust therapeutic effects. In 2010, the first DC-based preparation (sipuleucel-T, also known as Provenge®) has been approved by the US Food and Drug Administration (FDA) for use in humans. Reflecting the central position occupied by DCs in the regulation of immunological tolerance and adaptive immunity, the interest in harnessing them for the development of novel immunotherapeutic anticancer regimens remains high. Here, we summarize recent advances in the preclinical and clinical development of DC-based anticancer therapeutics.
Collapse
Key Words
- DC, dendritic cell
- DC-based vaccination
- FDA, Food and Drug Administration
- IFN, interferon
- MRC1, mannose receptor, C type 1
- MUC1, mucin 1
- TAA, tumor-associated antigen
- TLR, Toll-like receptor
- Toll-like receptor agonists
- Treg, regulatory T cell
- WT1, Wilms tumor 1
- antigen cross-presentation
- autophagy
- iDC, immature DC
- immunogenic cell death
- mDC, mature DC
- pDC, plasmacytoid DC
- regulatory T cells
Collapse
Affiliation(s)
- Norma Bloy
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France ; Université Paris-Sud/Paris XI ; Orsay, France
| | - Jonathan Pol
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France
| | - Fernando Aranda
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France
| | | | - Isabelle Cremer
- INSERM , U1138; Paris France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris France ; Université Pierre et Marie Curie/Paris VI ; Paris France
| | - Wolf Hervé Fridman
- INSERM , U1138; Paris France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris France ; Université Pierre et Marie Curie/Paris VI ; Paris France
| | - Jitka Fučíková
- Department of Immunology; 2nd Medical School Charles University and University Hospital Motol ; Prague, Czech Republic ; Sotio a.s. ; Prague, Czech Republic
| | - Jérôme Galon
- INSERM , U1138; Paris France ; Université Pierre et Marie Curie/Paris VI ; Paris France ; Laboratory of Integrative Cancer Immunology; Centre de Recherche des Cordeliers ; Paris France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France ; INSERM , U970; Paris France ; Pôle de Biologie; Hôpital Européen Georges Pompidou, AP-HP ; Paris France
| | - Radek Spisek
- Department of Immunology; 2nd Medical School Charles University and University Hospital Motol ; Prague, Czech Republic ; Sotio a.s. ; Prague, Czech Republic
| | - Madhav V Dhodapkar
- Department of Medicine; Immunobiology and Yale Cancer Center; Yale University ; New Haven, CT USA
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1015, CICBT507 ; Villejuif, France
| | - Guido Kroemer
- INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France ; Pôle de Biologie; Hôpital Européen Georges Pompidou, AP-HP ; Paris France ; Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus ; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France
| |
Collapse
|
37
|
Galluzzi L, Senovilla L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2014; 1:1111-1134. [PMID: 23170259 PMCID: PMC3494625 DOI: 10.4161/onci.21494] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) occupy a central position in the immune system, orchestrating a wide repertoire of responses that span from the development of self-tolerance to the elicitation of potent cellular and humoral immunity. Accordingly, DCs are involved in the etiology of conditions as diverse as infectious diseases, allergic and autoimmune disorders, graft rejection and cancer. During the last decade, several methods have been developed to load DCs with tumor-associated antigens, ex vivo or in vivo, in the attempt to use them as therapeutic anticancer vaccines that would elicit clinically relevant immune responses. While this has not always been the case, several clinical studies have demonstrated that DC-based anticancer vaccines are capable of activating tumor-specific immune responses that increase overall survival, at least in a subset of patients. In 2010, this branch of clinical research has culminated with the approval by FDA of a DC-based therapeutic vaccine (sipuleucel-T, Provenge®) for use in patients with asymptomatic or minimally symptomatic metastatic hormone-refractory prostate cancer. Intense research efforts are currently dedicated to the identification of the immunological features of patients that best respond to DC-based anticancer vaccines. This knowledge may indeed lead to personalized combination strategies that would extend the benefit of DC-based immunotherapy to a larger patient population. In addition, widespread enthusiasm has been generated by the results of the first clinical trials based on in vivo DC targeting, an approach that holds great promises for the future of DC-based immunotherapy. In this Trial Watch, we will summarize the results of recently completed clinical trials and discuss the progress of ongoing studies that have evaluated/are evaluating DC-based interventions for cancer therapy.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Institut Gustave Roussy; Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Forghanifard MM, Gholamin M, Moaven O, Farshchian M, Ghahraman M, Aledavood A, Abbaszadegan MR. Neoantigen in esophageal squamous cell carcinoma for dendritic cell-based cancer vaccine development. Med Oncol 2014; 31:191. [PMID: 25178937 DOI: 10.1007/s12032-014-0191-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 08/13/2014] [Indexed: 02/08/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a highly malignant tumor which usually is diagnosed in advanced stages due to its asymptomatic course of tumorigenesis. Current therapeutic modalities are not effective enough and the 5-year survival rate of the disease is still very low which prompts the urgent need for finding novel efficient therapeutic methods. In this study, we evaluated ex vivo immune response of ESCC patients against our newly designed chimeric construct consisting of highly immunogenic cancer-testis antigens. After confirming effective expression of the in vitro transcribed chimeric mRNA in ex vivo electroporated dendritic cells (DCs) of the ESCC patients, the patients' CTLs were primed by DCs and cytotoxicity assay was performed to evaluate how the primed CTLs can recognize and target the chimeric mRNA-loaded cells. The chimeric protein was strongly expressed relative to the housekeeping gene expression in electroporated cells. The cytotoxicity of the CTLs was significantly higher in DCs loaded with chimeric mRNAs compared to mock DCs (p<0.05) in all of the tested ESCC patients. We are introducing a novel construct that our functional study showed can stimulate and induce an effective immune response in ESCC patients. The designed chimeric mRNA-loaded DCs are capable of priming CTLs effectively and induce cytotoxicity against tumor. Therefore, loading DCs with chimeric epitopes of highly immunogenic antigens, such as cancer-testis antigens, are potentially interesting and effective therapeutic modalities for immunotherapy of ESCC.
Collapse
|
39
|
Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics--developing a new class of drugs. Nat Rev Drug Discov 2014; 13:759-80. [PMID: 25233993 DOI: 10.1038/nrd4278] [Citation(s) in RCA: 1516] [Impact Index Per Article: 137.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In vitro transcribed (IVT) mRNA has recently come into focus as a potential new drug class to deliver genetic information. Such synthetic mRNA can be engineered to transiently express proteins by structurally resembling natural mRNA. Advances in addressing the inherent challenges of this drug class, particularly related to controlling the translational efficacy and immunogenicity of the IVTmRNA, provide the basis for a broad range of potential applications. mRNA-based cancer immunotherapies and infectious disease vaccines have entered clinical development. Meanwhile, emerging novel approaches include in vivo delivery of IVT mRNA to replace or supplement proteins, IVT mRNA-based generation of pluripotent stem cells and genome engineering using IVT mRNA-encoded designer nucleases. This Review provides a comprehensive overview of the current state of mRNA-based drug technologies and their applications, and discusses the key challenges and opportunities in developing these into a new class of drugs.
Collapse
Affiliation(s)
- Ugur Sahin
- 1] TRON Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany. [2] BioNTech Corporation, An der Goldgrube 12, 55131 Mainz, Germany
| | - Katalin Karikó
- 1] BioNTech Corporation, An der Goldgrube 12, 55131 Mainz, Germany. [2] Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Özlem Türeci
- TRON Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| |
Collapse
|
40
|
Abstract
Several reports have described the use of tumor-extracted RNA as source of tumor antigen for the preparation of vaccines based on dendritic cells (DC) and its potential use for antigen-specific or polyvalent tumor vaccination. Upon transfection, RNA is transcribed into proteins that enter the cytoplasmic degradation pathway and can be presented by DC through class I major histocompatibility complex (MHC)-I, thus inducing specific T cell cytotoxic responses. In this chapter, we present a protocol to transfect murine dendritic cells with tumor mRNA by means of electroporation.
Collapse
Affiliation(s)
- Fabian Benencia
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, Athens, OH, USA
| |
Collapse
|
41
|
Dendritic cells transfected with hepatocellular carcinoma (HCC) total RNA induce specific immune responses against HCC in vitro and in vivo. Clin Transl Oncol 2013; 16:753-60. [PMID: 24338510 DOI: 10.1007/s12094-013-1145-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 11/20/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Immunotherapy is an effective method for preventing metastasis and recurrence of carcinoma. Hepatocellular carcinoma (HCC) is a common malignancy with a high rate of recurrence, and has not successfully been introduced to immunotherapy. METHODS Peripheral blood mononuclear cells were isolated from whole blood of HCC patients and stimulated to transform into dendritic cells (DCs). These DCs were then transfected with RNA extracted from HepG-2 hepatoma cells to induce expression of specific antigens. RESULTS The transfected DCs stimulated T lymphocytes to produce cytotoxic T lymphocytes, which specifically attacked HepG-2 cells. Injection of T lymphocytes from HCC patients and transfected DCs into severe combined immunodeficiency mice limited the growth of HepG-2 tumors. CONCLUSION A specific immune response against hepatoma can be generated in vivo by administering DCs transfected with RNA from a specific tumor. This method may have therapeutic application in humans to reduce recurrence of HCC.
Collapse
|
42
|
Vacchelli E, Vitale I, Eggermont A, Fridman WH, Fučíková J, Cremer I, Galon J, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2013; 2:e25771. [PMID: 24286020 PMCID: PMC3841205 DOI: 10.4161/onci.25771] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 12/26/2022] Open
Abstract
Dendritic cells (DCs) occupy a privileged position at the interface between innate and adaptive immunity, orchestrating a large panel of responses to both physiological and pathological cues. In particular, whereas the presentation of antigens by immature DCs generally results in the development of immunological tolerance, mature DCs are capable of priming robust, and hence therapeutically relevant, adaptive immune responses. In line with this notion, functional defects in the DC compartment have been shown to etiologically contribute to pathological conditions including (but perhaps not limited to) infectious diseases, allergic and autoimmune disorders, graft rejection and cancer. Thus, the possibility of harnessing the elevated immunological potential of DCs for anticancer therapy has attracted considerable interest from both researchers and clinicians over the last decade. Alongside, several methods have been developed not only to isolate DCs from cancer patients, expand them, load them with tumor-associated antigens and hence generate highly immunogenic clinical grade infusion products, but also to directly target DCs in vivo. This intense experimental effort has culminated in 2010 with the approval by the US FDA of a DC-based preparation (sipuleucel-T, Provenge®) for the treatment of asymptomatic or minimally symptomatic metastatic castration-refractory prostate cancer. As an update to the latest Trial Watch dealing with this exciting field of research (October 2012), here we summarize recent advances in DC-based anticancer regimens, covering both high-impact studies that have been published during the last 13 mo and clinical trials that have been launched in the same period to assess the antineoplastic potential of this variant of cellular immunotherapy.
Collapse
Affiliation(s)
- Erika Vacchelli
- Gustave Roussy; Villejuif, France ; Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France ; INSERM, U848; Villejuif, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Koido S, Homma S, Okamoto M, Namiki Y, Takakura K, Uchiyama K, Kajihara M, Arihiro S, Imazu H, Arakawa H, Kan S, Komita H, Kamata Y, Ito M, Ohkusa T, Gong J, Tajiri H. Strategies to improve the immunogenicity of anticancer vaccines based on dendritic cell/malignant cell fusions. Oncoimmunology 2013; 2:e25994. [PMID: 24228229 PMCID: PMC3820816 DOI: 10.4161/onci.25994] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 07/31/2013] [Indexed: 02/06/2023] Open
Abstract
The rationale for fusing dendritic cells (DCs) with whole tumor cells to generate anticancer vaccines resides in the fact that the former operate as potent antigen-presenting cells, whereas the latter express a constellation of tumor-associated antigens (TAAs). Although the administration of DC/malignant cell fusions to cancer patients is safe and this immunotherapeutic intervention triggers efficient tumor-specific T-cell responses in vitro, a limited number of objective clinical responses to DC/cancer cell fusions has been reported thus far. This review discusses novel approaches to improve the immunogenicity of DC/malignant cell fusions as anticancer vaccines.
Collapse
Affiliation(s)
- Shigeo Koido
- Division of Gastroenterology and Hepatology; Department of Internal Medicine; The Jikei University School of Medicine; Tokyo, Japan ; Institute of Clinical Medicine and Research; The Jikei University School of Medicine; Tokyo, Japan ; Department of Oncology; Institute of DNA Medicine; The Jikei University School of Medicine; Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Koido S, Homma S, Okamoto M, Namiki Y, Takakura K, Takahara A, Odahara S, Tsukinaga S, Yukawa T, Mitobe J, Matsudaira H, Nagatsuma K, Kajihara M, Uchiyama K, Arihiro S, Imazu H, Arakawa H, Kan S, Hayashi K, Komita H, Kamata Y, Ito M, Hara E, Ohkusa T, Gong J, Tajiri H. Augmentation of antitumor immunity by fusions of ethanol-treated tumor cells and dendritic cells stimulated via dual TLRs through TGF-β1 blockade and IL-12p70 production. PLoS One 2013; 8:e63498. [PMID: 23717436 PMCID: PMC3663747 DOI: 10.1371/journal.pone.0063498] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/02/2013] [Indexed: 12/13/2022] Open
Abstract
The therapeutic efficacy of fusion cell (FC)-based cancer vaccine generated with whole tumor cells and dendritic cells (DCs) requires the improved immunogenicity of both cells. Treatment of whole tumor cells with ethanol resulted in blockade of immune-suppressive soluble factors such as transforming growth factor (TGF)-β1, vascular endothelial growth factor, and IL-10 without decreased expression of major histocompatibility complex (MHC) class I and the MUC1 tumor-associated antigen. Moreover, the ethanol-treated tumor cells expressed “eat-me” signals such as calreticulin (CRT) on the cell surface and released immunostimulatory factors such as heat shock protein (HSP)90α and high-mobility group box 1 (HMGB1). A dual stimulation of protein-bound polysaccharides isolated from Coriolus versicolor (TLR2 agonist) and penicillin-inactivated Streptococcus pyogenes (TLR4 agonist) led human monocyte-derived DCs to produce HSP90α and multiple cytokines such as IL-12p70 and IL-10. Interestingly, incorporating ethanol-treated tumor cells and TLRs-stimulated DCs during the fusion process promoted fusion efficiency and up-regulated MHC class II molecules on a per fusion basis. Moreover, fusions of ethanol-treated tumor cells and dual TLRs-stimulated DCs (E-tumor/FCs) inhibited the production of multiple immune-suppressive soluble factors including TGF-β1 and up-regulated the production of IL-12p70 and HSP90α. Most importantly, E-tumor/FCs activated T cells capable of producing high levels of IFN-γ, resulting in augmented MUC1-specific CTL induction. Collectively, our results illustrate the synergy between ethanol-treated whole tumor cells and dual TLRs-stimulated DCs in inducing augmented CTL responses in vitro by FC preparations. The alternative system is simple and may provide a platform for adoptive immunotherapy.
Collapse
Affiliation(s)
- Shigeo Koido
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- Rachel Lubong Sabado
- NYU Langone Medical Center Cancer Institute; New York University School of Medicine, New York; New York
| | - Nina Bhardwaj
- NYU Langone Medical Center Cancer Institute; New York University School of Medicine, New York; New York
| |
Collapse
|
46
|
Immunologic monitoring of cellular responses by dendritic/tumor cell fusion vaccines. J Biomed Biotechnol 2011; 2011:910836. [PMID: 21541197 PMCID: PMC3085507 DOI: 10.1155/2011/910836] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/11/2010] [Accepted: 02/27/2011] [Indexed: 12/22/2022] Open
Abstract
Although dendritic cell (DC)- based cancer vaccines induce effective antitumor activities in murine models, only limited therapeutic results have been obtained in clinical trials. As cancer vaccines induce antitumor activities by eliciting or modifying immune responses in patients with cancer, the Response Evaluation Criteria in Solid Tumors (RECIST) and WHO criteria, designed to detect early effects of cytotoxic chemotherapy in solid tumors, may not provide a complete assessment of cancer vaccines. The problem may, in part, be resolved by carrying out immunologic cellular monitoring, which is one prerequisite for rational development of cancer vaccines. In this review, we will discuss immunologic monitoring of cellular responses for the evaluation of cancer vaccines including fusions of DC and whole tumor cell.
Collapse
|
47
|
Koido S, Hara E, Homma S, Ohkusa T, Gong J, Tajiri H. Cancer immunotherapy by fusions of dendritic cells and tumor cells. Immunotherapy 2011; 1:49-62. [PMID: 20635973 DOI: 10.2217/1750743x.1.1.49] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dendritic cells (DCs) are potent professional antigen-presenting cells and play a critical role in the induction of primary immune responses. DC-based vaccination represents a potentially powerful strategy for cancer immunotherapy. Thus, the use of cancer vaccines to eliminate residual tumor cells is a promising area of investigation. The immunotherapy of tumor antigen-loaded DCs has now been demonstrated in cancer patients and some clinical responses without any significant toxicity. Fusions of DCs and tumor cells represent an alternative but promising approach to overcome the inability of tumor antigens to induce a sustainable T-cell response. This review deals with recent progress in the immunotherapy of cancer with fusions of DCs and tumor cells.
Collapse
Affiliation(s)
- Shigeo Koido
- Department of Internal Medicine, The Jikei University, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Sabado RL, Bhardwaj N. Directing dendritic cell immunotherapy towards successful cancer treatment. Immunotherapy 2010; 2:37-56. [PMID: 20473346 DOI: 10.2217/imt.09.43] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The use of dendritic cells (DCs) for tumor immunotherapy represents a powerful approach for harnessing the patient's own immune system to eliminate tumor cells. However, suboptimal conditions for generating potent immunostimulatory DCs, as well as the induction of tolerance and suppression mediated by the tumors and its microenvironment have contributed to limited success. Combining DC vaccines with new approaches that enhance immunogenicity and overcome the regulatory mechanisms underlying peripheral tolerance may be the key to achieving effective and durable anti-tumor immune responses that translate to better clinical outcomes.
Collapse
Affiliation(s)
- Rachel Lubong Sabado
- New York University School of Medicine, NYU Langone Medical Center Cancer Institute, 550 First Avenue SML 1303, New York, NY 10016, USA.
| | | |
Collapse
|
49
|
Abstract
The overexpression and aberrant glycosylation of MUC1 is associated with a wide variety of cancers, making it an ideal target for immunotherapeutic strategies. This review highlights the main avenues of research in this field, focusing on adenocarcinomas, from the preclinical to clinical; the problems and possible solutions associated with each approach; and speculates on the direction of MUC1 immunotherapeutic research over the next 5-10 years.
Collapse
Affiliation(s)
- Richard E Beatson
- Breast Cancer Biology Group, King's College London, Guy's Hospital, London SE1 9RT, UK
| | | | | |
Collapse
|
50
|
Regulation of tumor immunity by tumor/dendritic cell fusions. Clin Dev Immunol 2010; 2010:516768. [PMID: 21048993 PMCID: PMC2964897 DOI: 10.1155/2010/516768] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 09/22/2010] [Indexed: 02/07/2023]
Abstract
The goal of cancer vaccines is to induce antitumor immunity that ultimately will reduce tumor burden in tumor environment. Several strategies involving dendritic cells- (DCs)- based vaccine incorporating different tumor-associated antigens to induce antitumor immune responses against tumors have been tested in clinical trials worldwide. Although DCs-based vaccine such as fusions of whole tumor cells and DCs has been proven to be clinically safe and is efficient to enhance antitumor immune responses for inducing effective immune response and for breaking T-cell tolerance to tumor-associated antigens (TAAs), only a limited success has occurred in clinical trials. This paper reviews tumor immune escape and current strategies employed in the field of tumor/DC fusions vaccine aimed at enhancing activation of TAAs-specific cytotoxic T cells in tumor microenvironment.
Collapse
|