1
|
Makandar AI, Jain M, Yuba E, Sethi G, Gupta RK. Canvassing Prospects of Glyco-Nanovaccines for Developing Cross-Presentation Mediated Anti-Tumor Immunotherapy. Vaccines (Basel) 2022; 10:vaccines10122049. [PMID: 36560459 PMCID: PMC9784904 DOI: 10.3390/vaccines10122049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
In view of the severe downsides of conventional cancer therapies, the quest of developing alternative strategies still remains of critical importance. In this regard, antigen cross-presentation, usually employed by dendritic cells (DCs), has been recognized as a potential solution to overcome the present impasse in anti-cancer therapeutic strategies. It has been established that an elevated cytotoxic T lymphocyte (CTL) response against cancer cells can be achieved by targeting receptors expressed on DCs with specific ligands. Glycans are known to serve as ligands for C-type lectin receptors (CLRs) expressed on DCs, and are also known to act as a tumor-associated antigen (TAA), and, thus, can be harnessed as a potential immunotherapeutic target. In this scenario, integrating the knowledge of cross-presentation and glycan-conjugated nanovaccines can help us to develop so called 'glyco-nanovaccines' (GNVs) for targeting DCs. Here, we briefly review and analyze the potential of GNVs as the next-generation anti-tumor immunotherapy. We have compared different antigen-presenting cells (APCs) for their ability to cross-present antigens and described the potential nanocarriers for tumor antigen cross-presentation. Further, we discuss the role of glycans in targeting of DCs, the immune response due to pathogens, and imitative approaches, along with parameters, strategies, and challenges involved in cross-presentation-based GNVs for cancer immunotherapy. It is known that the effectiveness of GNVs in eradicating tumors by inducing strong CTL response in the tumor microenvironment (TME) has been largely hindered by tumor glycosylation and the expression of different lectin receptors (such as galectins) by cancer cells. Tumor glycan signatures can be sensed by a variety of lectins expressed on immune cells and mediate the immune suppression which, in turn, facilitates immune evasion. Therefore, a sound understanding of the glycan language of cancer cells, and glycan-lectin interaction between the cancer cells and immune cells, would help in strategically designing the next-generation GNVs for anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Amina I. Makandar
- Protein Biochemistry Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, Maharashtra, India
| | - Mannat Jain
- Protein Biochemistry Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, Maharashtra, India
| | - Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
- Correspondence: (E.Y.); (G.S.); or (R.K.G.)
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Correspondence: (E.Y.); (G.S.); or (R.K.G.)
| | - Rajesh Kumar Gupta
- Protein Biochemistry Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, Maharashtra, India
- Correspondence: (E.Y.); (G.S.); or (R.K.G.)
| |
Collapse
|
2
|
Shields NJ, Peyroux EM, Campbell K, Mehta S, Woolley AG, Counoupas C, Neumann S, Young SL. Calpains Released from Necrotic Tumor Cells Enhance Antigen Cross-Presentation to Activate CD8 +T Cells In Vitro. THE JOURNAL OF IMMUNOLOGY 2022; 209:1635-1651. [DOI: 10.4049/jimmunol.2100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/19/2022] [Indexed: 11/07/2022]
|
3
|
Nayak DA, Binder RJ. Agents of cancer immunosurveillance: HSPs and dsDNA. Trends Immunol 2022; 43:404-413. [PMID: 35382994 PMCID: PMC9058224 DOI: 10.1016/j.it.2022.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
Abstract
Tumor immunosurveillance requires tumor cell-derived molecules to initiate responses through corresponding receptors on antigen presenting cells (APCs) and a specific effector response designed to eliminate the emerging tumor cells. This is supported by evidence from immunodeficient individuals and experimental animals. Recent discoveries suggest that adjuvanticity of tumor-derived heat shock proteins (HSPs) and double-stranded DNA (dsDNA) are necessary for tumor-specific immunity. There is also the obligatory early transfer of tumor antigens to APCs. We argue that tumor-derived HSPs deliver sufficient chaperoned antigen for cross-priming within the quantitative limits set by nascent tumors. In contrast to late-stage tumors, we are only just beginning to understand the unique interactions of the immune system with precancerous/nascent neoplastic cells, which is important for improved cancer prevention measures.
Collapse
|
4
|
Koo BI, Jin S, Kim H, Lee DJ, Lee E, Nam YS. Conjugation-Free Multilamellar Protein-Lipid Hybrid Vesicles for Multifaceted Immune Responses. Adv Healthc Mater 2021; 10:e2101239. [PMID: 34467659 DOI: 10.1002/adhm.202101239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/04/2021] [Indexed: 12/11/2022]
Abstract
Various lipid-based nanocarriers have been developed for the co-delivery of protein antigens with immunological adjuvants. However, their in vivo potency in vaccine delivery is limited by structural instability, which causes off-target delivery and low cross-presentation efficacies. Recent works employ covalent cross-linking to stabilize the lipid nanostructures, though the immunogenicity and side effects of chemically modified protein antigens and lipids can cause a long-lasting safety issue. Here robust "conjugation-free" multilamellar protein antigen-lipid hybrid nanovesicles (MPLVs) are introduced through the antigen-mediated self-assembly of unilamellar lipid vesicles for the co-delivery of protein antigens and immunologic adjuvants. The nanocarriers coated with monophosphoryl lipid A and hyaluronic acids elicit highly increase antigen-specific immune responses in vitro and in vivo. The MPLVs increase the generation of immunological surface markers and cytokines in mouse-derived bone-marrow dendritic cells compared to soluble antigens with adjuvants. Besides, the vaccination of mice with the MPLVs significantly increase the production of anti-antigen antibody and interferon-gamma via the activation of CD4+ and CD8+ T cells, respectively. These findings suggest that MPLVs can serve as a promising nanovaccine delivery platform for efficient antigen cross-presentation through the efficient co-delivery of protein antigens with adjuvants.
Collapse
Affiliation(s)
- Bon Il Koo
- Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea
| | - Seon‐Mi Jin
- School of Materials Science and Engineering Gwangju Institute of Science and Technology 123 Cheomdan‐gwagiro Gwangju 61005 Republic of Korea
| | - Hayeon Kim
- School of Materials Science and Engineering Gwangju Institute of Science and Technology 123 Cheomdan‐gwagiro Gwangju 61005 Republic of Korea
| | - Dong Jae Lee
- Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea
| | - Eunji Lee
- School of Materials Science and Engineering Gwangju Institute of Science and Technology 123 Cheomdan‐gwagiro Gwangju 61005 Republic of Korea
| | - Yoon Sung Nam
- Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea
- KAIST Institute for NanoCentury Korea Advanced Institute of Science and Technology 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea
- KAIST Institute for Health Science and Technology Korea Advanced Institute of Science and Technology 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea
| |
Collapse
|
5
|
Zhang S, Peng B, Li M, Diao H, Wang X, Zhao W, Lin W, Sun N, Lin S. Immobilization of Active Substances in Food Using Self‐Organized Patterned Porous Film via Breath Figure Approach. ChemistrySelect 2021. [DOI: 10.1002/slct.202004827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Simin Zhang
- National Engineering Research Center of Seafood School of Food Science and Technology Dalian Polytechnic University Dalian 116034 P. R. China
| | - Bo Peng
- National Engineering Research Center of Seafood School of Food Science and Technology Dalian Polytechnic University Dalian 116034 P. R. China
| | - Meng Li
- National Engineering Research Center of Seafood School of Food Science and Technology Dalian Polytechnic University Dalian 116034 P. R. China
| | - Huayu Diao
- National Engineering Research Center of Seafood School of Food Science and Technology Dalian Polytechnic University Dalian 116034 P. R. China
| | - Xingyu Wang
- National Engineering Research Center of Seafood School of Food Science and Technology Dalian Polytechnic University Dalian 116034 P. R. China
| | - Weiping Zhao
- National Engineering Research Center of Seafood School of Food Science and Technology Dalian Polytechnic University Dalian 116034 P. R. China
| | - Wei Lin
- National Engineering Research Center of Seafood School of Food Science and Technology Dalian Polytechnic University Dalian 116034 P. R. China
| | - Na Sun
- National Engineering Research Center of Seafood School of Food Science and Technology Dalian Polytechnic University Dalian 116034 P. R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood School of Food Science and Technology Dalian Polytechnic University Dalian 116034 P. R. China
| |
Collapse
|
6
|
Pifferi C, Ruiz-de-Angulo A, Goyard D, Tiertant C, Sacristán N, Barriales D, Berthet N, Anguita J, Renaudet O, Fernández-Tejada A. Chemical synthesis and immunological evaluation of new generation multivalent anticancer vaccines based on a Tn antigen analogue. Chem Sci 2020; 11:4488-4498. [PMID: 34122907 PMCID: PMC8159477 DOI: 10.1039/d0sc00544d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tumor associated carbohydrate antigens (TACAs), such as the Tn antigen, have emerged as key targets for the development of synthetic anticancer vaccines. However, the induction of potent and functional immune responses has been challenging and, in most cases, unsuccessful. Herein, we report the design, synthesis and immunological evaluation in mice of Tn-based vaccine candidates with multivalent presentation of the Tn antigen (up to 16 copies), both in its native serine-linked display (Tn-Ser) and as an oxime-linked Tn analogue (Tn-oxime). The high valent vaccine prototypes were synthesized through a late-stage convergent assembly (Tn-Ser construct) and a versatile divergent strategy (Tn-oxime analogue), using chemoselective click-type chemistry. The hexadecavalent Tn-oxime construct induced robust, Tn-specific humoral and CD4+/CD8+ cellular responses, with antibodies able to bind the Tn antigen on the MCF7 cancer cell surface. The superior synthetic accessibility and immunological properties of this fully-synthetic vaccine prototype makes it a compelling candidate for further advancement towards safe and effective synthetic anticancer vaccines.
Collapse
Affiliation(s)
- Carlo Pifferi
- Département de Chimie Moléculaire, Université Grenoble Alpes, UMR 5250, CNRS 38000 Grenoble France .,Chemical Immunology Lab, CIC bioGUNE Biscay Science and Technology Park, Building 801A 48160 Derio Spain
| | - Ane Ruiz-de-Angulo
- Chemical Immunology Lab, CIC bioGUNE Biscay Science and Technology Park, Building 801A 48160 Derio Spain
| | - David Goyard
- Département de Chimie Moléculaire, Université Grenoble Alpes, UMR 5250, CNRS 38000 Grenoble France
| | - Claire Tiertant
- Département de Chimie Moléculaire, Université Grenoble Alpes, UMR 5250, CNRS 38000 Grenoble France
| | - Nagore Sacristán
- Chemical Immunology Lab, CIC bioGUNE Biscay Science and Technology Park, Building 801A 48160 Derio Spain
| | - Diego Barriales
- Inflammation and Macrophage Plasticity Lab, CIC bioGUNE Biscay Science and Technology Park, Building 801A 48160 Derio Spain
| | - Nathalie Berthet
- Département de Chimie Moléculaire, Université Grenoble Alpes, UMR 5250, CNRS 38000 Grenoble France
| | - Juan Anguita
- Inflammation and Macrophage Plasticity Lab, CIC bioGUNE Biscay Science and Technology Park, Building 801A 48160 Derio Spain .,Ikerbasque, Basque Foundation for Science Maria Diaz de Haro 13 48009 Bilbao Spain
| | - Olivier Renaudet
- Département de Chimie Moléculaire, Université Grenoble Alpes, UMR 5250, CNRS 38000 Grenoble France
| | - Alberto Fernández-Tejada
- Chemical Immunology Lab, CIC bioGUNE Biscay Science and Technology Park, Building 801A 48160 Derio Spain .,Ikerbasque, Basque Foundation for Science Maria Diaz de Haro 13 48009 Bilbao Spain
| |
Collapse
|
7
|
Yunis J, Redwood AJ, Belz GT, Stevenson PG. Membrane association of a model CD4 + T-cell vaccine antigen confers enhanced yet incomplete protection against murid herpesvirus-4 infection. Immunol Cell Biol 2020; 98:332-343. [PMID: 31997396 DOI: 10.1111/imcb.12319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 12/14/2022]
Abstract
Vaccination against γ-herpesviruses has proved difficult. CD4+ T cells are essential to contain infection, but how best to prime them and whether this can reduce viral loads remain unclear. To address these questions, we used ovalbumin (OVA) as a model antigen, delivering it with murine cytomegalovirus (MCMV) to protect mice against OVA-expressing murine herpesvirus-4 (MuHV-4). Membrane-associated OVA (mOVA) was more effective than soluble OVA, both to prime CD4+ T cells and as an effector target. It was also a better target than an OVA epitope limited to infected cells, suggesting that protective CD4+ T cells recognize infected cell debris rather than infected cells themselves. While MCMV-mOVA protected acutely against MuHV-4-mOVA, long-term protection was incomplete, even when OVA-specific CD8+ T cells and B cells were also primed. Thus, even optimized single-target vaccines may poorly reduce long-term γ-herpesvirus infections.
Collapse
Affiliation(s)
- Joseph Yunis
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | - Alec J Redwood
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - Gabrielle T Belz
- Molecular Immunology, Walter and Eliza Hall Institute, Melbourne, VIC, Australia
| | - Philip G Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
- Royal Children's Hospital, Brisbane, QLD, Australia
| |
Collapse
|
8
|
New Insights into Mechanisms of Long-term Protective Anti-tumor Immunity Induced by Cancer Vaccines Modified by Virus Infection. Biomedicines 2020; 8:biomedicines8030055. [PMID: 32155856 PMCID: PMC7148465 DOI: 10.3390/biomedicines8030055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 12/21/2022] Open
Abstract
The topic is how to achieve long-term protective anti-tumor immunity by anti-cancer vaccination and what are its mechanisms. Cancer vaccines should instruct the immune system regarding relevant cancer targets and contain signals for innate immunity activation. Of central importance is T-cell mediated immunity and thus a detailed understanding of cognate interactions between tumor antigen (TA)-specific T cells and TA-presenting dendritic cells. Microbes and their associated molecular patterns initiate early inflammatory defense reactions that can contribute to the activation of antigen-presenting cells (APCs) and to costimulation of T cells. The concommitant stimulation of naive TA-specific CD4+ and CD8+ T cells with TAs and costimulatory signals occurs in T-APC clusters that generate effectors, such as cytotoxic T lymphocytes and T cell mediated immunological memory. Information about how such memory can be maintained over long times is updated. The role that the bone marrow with its specialized niches plays for the survival of memory T cells is emphasized. Examples are presented that demonstrate long-term protective anti-tumor immunity can be achieved by post-operative vaccination with autologous cancer vaccines that are modified by virus infection.
Collapse
|
9
|
Single-injecting, bioinspired nanocomposite hydrogel that can recruit host immune cells in situ to elicit potent and long-lasting humoral immune responses. Biomaterials 2019; 216:119268. [DOI: 10.1016/j.biomaterials.2019.119268] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 01/08/2023]
|
10
|
IL-10-Dependent Crosstalk between Murine Marginal Zone B Cells, Macrophages, and CD8α + Dendritic Cells Promotes Listeria monocytogenes Infection. Immunity 2019; 51:64-76.e7. [PMID: 31231033 DOI: 10.1016/j.immuni.2019.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 03/20/2019] [Accepted: 05/21/2019] [Indexed: 01/07/2023]
Abstract
Type 1 CD8α+ conventional dendritic cells (cDC1s) are required for CD8+ T cell priming but, paradoxically, promote splenic Listeria monocytogenes infection. Using mice with impaired cDC2 function, we ruled out a role for cDC2s in this process and instead discovered an interleukin-10 (IL-10)-dependent cellular crosstalk in the marginal zone (MZ) that promoted bacterial infection. Mice lacking the guanine nucleotide exchange factor DOCK8 or CD19 lost IL-10-producing MZ B cells and were resistant to Listeria. IL-10 increased intracellular Listeria in cDC1s indirectly by reducing inducible nitric oxide synthase expression early after infection and increasing intracellular Listeria in MZ metallophilic macrophages (MMMs). These MMMs trans-infected cDC1s, which, in turn, transported Listeria into the white pulp to prime CD8+ T cells. However, this also facilitated bacterial expansion. Therefore, IL-10-mediated crosstalk between B cells, macrophages, and cDC1s in the MZ promotes both Listeria infection and CD8+ T cell activation.
Collapse
|
11
|
Koerner J, Horvath D, Groettrup M. Harnessing Dendritic Cells for Poly (D,L-lactide- co-glycolide) Microspheres (PLGA MS)-Mediated Anti-tumor Therapy. Front Immunol 2019; 10:707. [PMID: 31024545 PMCID: PMC6460768 DOI: 10.3389/fimmu.2019.00707] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
With emerging success in fighting off cancer, chronic infections, and autoimmune diseases, immunotherapy has become a promising therapeutic approach compared to conventional therapies such as surgery, chemotherapy, radiation therapy, or immunosuppressive medication. Despite the advancement of monoclonal antibody therapy against immune checkpoints, the development of safe and efficient cancer vaccine formulations still remains a pressing medical need. Anti-tumor immunotherapy requires the induction of antigen-specific CD8+ cytotoxic T lymphocyte (CTL) responses which recognize and specifically destroy tumor cells. Due to the crucial role of dendritic cells (DCs) in initiating anti-tumor immunity, targeting tumor antigens to DCs has become auspicious in modern vaccine research. Over the last two decades, micron- or nanometer-sized particulate delivery systems encapsulating tumor antigens and immunostimulatory molecules into biodegradable polymers have shown great promise for the induction of potent, specific and long-lasting anti-tumor responses in vivo. Enhanced vaccine efficiency of the polymeric micro/nanoparticles has been attributed to controlled and continuous release of encapsulated antigens, efficient targeting of antigen presenting cells (APCs) such as DCs and subsequent induction of CTL immunity. Poly (D, L-lactide-co-glycolide) (PLGA), as one of these polymers, has been extensively studied for the design and development of particulate antigen delivery systems in cancer therapy. This review provides an overview of the current state of research on the application of PLGA microspheres (PLGA MS) as anti-tumor cancer vaccines in activating and potentiating immune responses attempting to highlight their potential in the development of cancer therapeutics.
Collapse
Affiliation(s)
- Julia Koerner
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Dennis Horvath
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| |
Collapse
|
12
|
Sedlacek AL, Younker TP, Zhou YJ, Borghesi L, Shcheglova T, Mandoiu II, Binder RJ. CD91 on dendritic cells governs immunosurveillance of nascent, emerging tumors. JCI Insight 2019; 4:127239. [PMID: 30944251 DOI: 10.1172/jci.insight.127239] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/21/2019] [Indexed: 12/15/2022] Open
Abstract
The immune system detects aberrant, premalignant cells and eliminates them before the development of cancer. Immune cells, including T cells, have been shown to be critical components in eradicating these aberrant cells, and when absent in the host, incidence of cancer increases. Here, we show that CD91, a receptor expressed on antigen-presenting cells, is required for priming immune responses to nascent, emerging tumors. In the absence of CD91, effector immune responses are subdued, and tumor incidence and progression are amplified. We also show that, consequently, tumors that arise in the absence of CD91 express neo-epitopes with indices that are indicative of greater immunogenicity. Polymorphisms in human CD91 that are expected to affect ligand binding are shown to influence antitumor immune responses in cancer patients. This study presents a molecular mechanism for priming immune responses to nascent, emerging tumors that becomes a predictor of cancer susceptibility and progression.
Collapse
Affiliation(s)
- Abigail L Sedlacek
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Theodore P Younker
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, USA
| | - Yu Jerry Zhou
- Targeted Therapeutics Discovery Unit, Pfizer, Pearl River, New York, USA
| | - Lisa Borghesi
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tatiana Shcheglova
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Ion I Mandoiu
- Department of Computer Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Robert J Binder
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Hsu M, Rayasam A, Kijak JA, Choi YH, Harding JS, Marcus SA, Karpus WJ, Sandor M, Fabry Z. Neuroinflammation-induced lymphangiogenesis near the cribriform plate contributes to drainage of CNS-derived antigens and immune cells. Nat Commun 2019; 10:229. [PMID: 30651548 PMCID: PMC6335416 DOI: 10.1038/s41467-018-08163-0] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023] Open
Abstract
There are no conventional lymphatic vessels within the CNS parenchyma, although it has been hypothesized that lymphatics near the cribriform plate or dura maintain fluid homeostasis and immune surveillance during steady-state conditions. However, the role of these lymphatic vessels during neuroinflammation is not well understood. We report that lymphatic vessels near the cribriform plate undergo lymphangiogenesis in a VEGFC – VEGFR3 dependent manner during experimental autoimmune encephalomyelitis (EAE) and drain both CSF and cells that were once in the CNS parenchyma. Lymphangiogenesis also contributes to the drainage of CNS derived antigens that leads to antigen specific T cell proliferation in the draining lymph nodes during EAE. In contrast, meningeal lymphatics do not undergo lymphangiogenesis during EAE, suggesting heterogeneity in CNS lymphatics. We conclude that increased lymphangiogenesis near the cribriform plate can contribute to the management of neuroinflammation-induced fluid accumulation and immune surveillance. Lymphangiogenesis occurs in the context of systemic inflammation and development but has not been reported for the lymphatics that surround the CNS. Here the authors show that in the context of experimental autoimmune encephatlitis, lymphangiogenesis occurs at the cribriform plate, but not the meninges, and contributes to immune cell and antigen drainage.
Collapse
Affiliation(s)
- Martin Hsu
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Aditya Rayasam
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Julie A Kijak
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Yun Hwa Choi
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jeffrey S Harding
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, M5T 3L9, Canada
| | - Sarah A Marcus
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - William J Karpus
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
14
|
Forrest C, Hislop AD, Rickinson AB, Zuo J. Proteome-wide analysis of CD8+ T cell responses to EBV reveals differences between primary and persistent infection. PLoS Pathog 2018; 14:e1007110. [PMID: 30248160 PMCID: PMC6171963 DOI: 10.1371/journal.ppat.1007110] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/04/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023] Open
Abstract
Human herpesviruses are antigenically rich agents that induce strong CD8+T cell responses in primary infection yet persist for life, continually challenging T cell memory through recurrent lytic replication and potentially influencing the spectrum of antigen-specific responses. Here we describe the first lytic proteome-wide analysis of CD8+ T cell responses to a gamma1-herpesvirus, Epstein-Barr virus (EBV), and the first such proteome-wide analysis of primary versus memory CD8+ T cell responses to any human herpesvirus. Primary effector preparations were generated directly from activated CD8+ T cells in the blood of infectious mononucleosis (IM) patients by in vitro mitogenic expansion. For memory preparations, EBV-specific cells in the blood of long-term virus carriers were first re-stimulated in vitro by autologous dendritic cells loaded with a lysate of lytically-infected cells, then expanded as for IM cells. Preparations from 7 donors of each type were screened against each of 70 EBV lytic cycle proteins in combination with the donor's individual HLA class I alleles. Multiple reactivities against immediate early (IE), early (E) and late (L) lytic cycle proteins, including many hitherto unrecognised targets, were detected in both contexts. Interestingly however, the two donor cohorts showed a different balance between IE, E and L reactivities. Primary responses targeted IE and a small group of E proteins preferentially, seemingly in line with their better presentation on the infected cell surface before later-expressed viral evasins take full hold. By contrast, target choice equilibrates in virus carriage with responses to key IE and E antigens still present but with responses to a select subset of L proteins now often prominent. We infer that, for EBV at least, long-term virus carriage with its low level virus replication and lytic antigen release is associated with a re-shaping of the virus-specific response.
Collapse
Affiliation(s)
- Calum Forrest
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrew D. Hislop
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alan B. Rickinson
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jianmin Zuo
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
15
|
Rataj F, Kraus FBT, Chaloupka M, Grassmann S, Heise C, Cadilha BL, Duewell P, Endres S, Kobold S. PD1-CD28 Fusion Protein Enables CD4+ T Cell Help for Adoptive T Cell Therapy in Models of Pancreatic Cancer and Non-hodgkin Lymphoma. Front Immunol 2018; 9:1955. [PMID: 30214445 PMCID: PMC6125378 DOI: 10.3389/fimmu.2018.01955] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/08/2018] [Indexed: 01/22/2023] Open
Abstract
Background: Interaction of the programmed death receptor 1 (PD-1) and its ligand, PD-L1, suppresses T cell activity and permits tumors to evade T cell-mediated immune surveillance. We have recently demonstrated that antigen-specific CD8+ T cells transduced with a PD1-CD28 fusion protein are protected from PD-1-mediated inhibition. We have now investigated the potential of PD1-CD28 fusion protein-transduced CD4+ T cells alone or in combination with CD8+ T cells for immunotherapy of pancreatic cancer and non-Hodgkin lymphoma. Methods: OVA-specific CD4+ and CD8+ were retrovirally transduced with the PD1-CD28 fusion protein. Cytokine release, proliferation, cytotoxic activity, and phenotype of transduced T cells were assessed in the context of Panc02-OVA (murine pancreatic cancer model) and E.G7-PD-L1 (murine T cell lymphoma model) cells. Results: Stimulation of PD1-CD28 fusion protein-transduced CD4+ T cells with anti-CD3 and recombinant PD-L1 induced specific T cell activation, as measured by IFN-y release and T cell proliferation. Coculture with Panc02-OVA or E.G7-PD-L1 tumor cells also led to specific activation of CD4+ T cells. Cytokine release and T cell proliferation was most effective when tumor cells simultaneously encountered genetically engineered CD4+ and CD8+ T cells. Synergy between both cell populations was also observed for specific tumor cell lysis. T cell cytotoxicity was mediated via granzyme B release and mediated enhanced tumor control in vivo. Transduced CD4+ and CD8+ T cells in co-culture with tumor cells developed a predominant central memory phenotype over time. Different ratios of CD4+ and CD8+ transduced T cells led to a significant increase of IFN-y and IL-2 secretion positively correlating with CD4+ T cell numbers used. Mechanistically, IL-2 and MHC-I were central to the synergistic activity of CD4+ and CD8+ T cells, since neutralization of IL-2 prevented the crosstalk between these cell populations. Conclusion: PD1-CD28 fusion protein-transduced CD4+ T cells significantly improved anti-tumoral effect of fusion protein-transduced CD8+ T cells. Thus, our results indicate that PD1-CD28 fusion protein-transduced CD4+ T cells have the potential to overcome the PD-1-PD-L1 immunosuppressive axis in pancreatic cancer and non-Hodgkin lymphoma.
Collapse
Affiliation(s)
- Felicitas Rataj
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Fabian B T Kraus
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Michael Chaloupka
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Simon Grassmann
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Constanze Heise
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Bruno L Cadilha
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Peter Duewell
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Member of the German Center for Lung Research (DZL), Munich, Germany.,German Cancer Research Center (DKTK), Partner Site Munich, Heidelberg, Germany
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Member of the German Center for Lung Research (DZL), Munich, Germany.,German Cancer Research Center (DKTK), Partner Site Munich, Heidelberg, Germany
| |
Collapse
|
16
|
Montanari E, Gennari A, Pelliccia M, Manzi L, Donno R, Oldham NJ, MacDonald A, Tirelli N. Tyrosinase-Mediated Bioconjugation. A Versatile Approach to Chimeric Macromolecules. Bioconjug Chem 2018; 29:2550-2560. [DOI: 10.1021/acs.bioconjchem.8b00227] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Elita Montanari
- NorthWest Centre of Advanced Drug Delivery (NoWCADD), Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PT, Manchester, United Kingdom
- Department of Drug Chemistry and Technologies, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Arianna Gennari
- NorthWest Centre of Advanced Drug Delivery (NoWCADD), Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PT, Manchester, United Kingdom
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Maria Pelliccia
- NorthWest Centre of Advanced Drug Delivery (NoWCADD), Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PT, Manchester, United Kingdom
| | - Lucio Manzi
- School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, United Kingdom
| | - Roberto Donno
- NorthWest Centre of Advanced Drug Delivery (NoWCADD), Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PT, Manchester, United Kingdom
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Neil J. Oldham
- School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, United Kingdom
| | - Andrew MacDonald
- Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity & Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PT, Manchester, United Kingdom
| | - Nicola Tirelli
- NorthWest Centre of Advanced Drug Delivery (NoWCADD), Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PT, Manchester, United Kingdom
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163, Genova, Italy
| |
Collapse
|
17
|
Tsui C, Martinez-Martin N, Gaya M, Maldonado P, Llorian M, Legrave NM, Rossi M, MacRae JI, Cameron AJ, Parker PJ, Leitges M, Bruckbauer A, Batista FD. Protein Kinase C-β Dictates B Cell Fate by Regulating Mitochondrial Remodeling, Metabolic Reprogramming, and Heme Biosynthesis. Immunity 2018; 48:1144-1159.e5. [PMID: 29884460 PMCID: PMC6015119 DOI: 10.1016/j.immuni.2018.04.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/13/2018] [Accepted: 04/27/2018] [Indexed: 12/12/2022]
Abstract
PKCβ-null (Prkcb-/-) mice are severely immunodeficient. Here we show that mice whose B cells lack PKCβ failed to form germinal centers and plasma cells, which undermined affinity maturation and antibody production in response to immunization. Moreover, these mice failed to develop plasma cells in response to viral infection. At the cellular level, we have shown that Prkcb-/- B cells exhibited defective antigen polarization and mTORC1 signaling. While altered antigen polarization impaired antigen presentation and likely restricted the potential of GC development, defective mTORC1 signaling impaired metabolic reprogramming, mitochondrial remodeling, and heme biosynthesis in these cells, which altogether overwhelmingly opposed plasma cell differentiation. Taken together, our study reveals mechanistic insights into the function of PKCβ as a key regulator of B cell polarity and metabolic reprogramming that instructs B cell fate.
Collapse
Affiliation(s)
- Carlson Tsui
- Lymphocyte Interaction Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| | | | - Mauro Gaya
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Paula Maldonado
- Lymphocyte Interaction Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Miriam Llorian
- Bioinformatics, The Francis Crick Institute, London NW1 1AT, UK
| | | | - Merja Rossi
- Metabolomics, The Francis Crick Institute, London NW1 1AT, UK
| | - James I MacRae
- Metabolomics, The Francis Crick Institute, London NW1 1AT, UK
| | - Angus J Cameron
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Peter J Parker
- Protein phosphorylation Laboratory, The Francis Crick Institute, London NW1 1AT, UK; School of Cancer and Pharmaceutical Sciences, King's College, London SE1 1UL, UK
| | - Michael Leitges
- Biotechnology Centre of Oslo, University of Oslo, 0349 Oslo, Norway
| | - Andreas Bruckbauer
- Lymphocyte Interaction Laboratory, The Francis Crick Institute, London NW1 1AT, UK; FILM, Imperial College London, London SW7 2BB, UK
| | - Facundo D Batista
- Lymphocyte Interaction Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
18
|
Marciscano AE, Ghasemzadeh A, Nirschl TR, Theodros D, Kochel CM, Francica BJ, Muroyama Y, Anders RA, Sharabi AB, Velarde E, Mao W, Chaudhary KR, Chaimowitz MG, Wong J, Selby MJ, Thudium KB, Korman AJ, Ulmert D, Thorek DLJ, DeWeese TL, Drake CG. Elective Nodal Irradiation Attenuates the Combinatorial Efficacy of Stereotactic Radiation Therapy and Immunotherapy. Clin Cancer Res 2018; 24:5058-5071. [PMID: 29898992 DOI: 10.1158/1078-0432.ccr-17-3427] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/18/2018] [Accepted: 06/08/2018] [Indexed: 01/18/2023]
Abstract
Purpose: In the proper context, radiotherapy can promote antitumor immunity. It is unknown if elective nodal irradiation (ENI), a strategy that irradiates tumor-associated draining lymph nodes (DLN), affects adaptive immune responses and combinatorial efficacy of radiotherapy with immune checkpoint blockade (ICB).Experimental Design: We developed a preclinical model to compare stereotactic radiotherapy (Tumor RT) with or without ENI to examine immunologic differences between radiotherapy techniques that spare or irradiate the DLN.Results: Tumor RT was associated with upregulation of an intratumoral T-cell chemoattractant chemokine signature (CXCR3, CCR5-related) that resulted in robust infiltration of antigen-specific CD8+ effector T cells as well as FoxP3+ regulatory T cells (Tregs). The addition of ENI attenuated chemokine expression, restrained immune infiltration, and adversely affected survival when combined with ICB, especially with anti-CLTA4 therapy. The combination of stereotactic radiotherapy and ICB led to long-term survival in a subset of mice and was associated with favorable CD8 effector-to-Treg ratios and increased intratumoral density of antigen-specific CD8+ T cells. Although radiotherapy technique (Tumor RT vs. ENI) affected initial tumor control and survival, the ability to reject tumor upon rechallenge was partially dependent upon the mechanism of action of ICB; as radiotherapy/anti-CTLA4 was superior to radiotherapy/anti-PD-1.Conclusions: Our results highlight that irradiation of the DLN restrains adaptive immune responses through altered chemokine expression and CD8+ T-cell trafficking. These data have implications for combining radiotherapy and ICB, long-term survival, and induction of immunologic memory. Clinically, the immunomodulatory effect of the radiotherapy strategy should be considered when combining stereotactic radiotherapy with immunotherapy. Clin Cancer Res; 24(20); 5058-71. ©2018 AACR.
Collapse
Affiliation(s)
- Ariel E Marciscano
- Department of Radiation Oncology & Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ali Ghasemzadeh
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thomas R Nirschl
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Debebe Theodros
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christina M Kochel
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Brian J Francica
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yuki Muroyama
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert A Anders
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew B Sharabi
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, Moores Cancer Center, San Diego, California
| | - Esteban Velarde
- Department of Radiation Oncology & Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wendy Mao
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kunal R Chaudhary
- Department of Radiation Oncology, Columbia University Medical Center, New York, New York
| | - Matthew G Chaimowitz
- Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - John Wong
- Department of Radiation Oncology & Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mark J Selby
- Bristol-Myers Squibb Company, Redwood City, California
| | | | - Alan J Korman
- Bristol-Myers Squibb Company, Redwood City, California
| | - David Ulmert
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniel L J Thorek
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Theodore L DeWeese
- Department of Radiation Oncology & Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Charles G Drake
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| |
Collapse
|
19
|
Binder RJ. Immunosurveillance of cancer and the heat shock protein-CD91 pathway. Cell Immunol 2018; 343:103814. [PMID: 29784128 DOI: 10.1016/j.cellimm.2018.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/03/2018] [Accepted: 05/15/2018] [Indexed: 12/16/2022]
Abstract
The intracellular functions of heat shock proteins (HSPs) as chaperones of macromolecules are well known. Current observations point to a role of these chaperones in initiating and modulating immune responses to tumors via receptor(s) on dendritic cells. In this article we provide an insight into, and a basis for, the importance of these HSP-mediated immune responses in rejecting nascent and emerging tumors.
Collapse
Affiliation(s)
- Robert J Binder
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| |
Collapse
|
20
|
Lauron EJ, Yang L, Elliott JI, Gainey MD, Fremont DH, Yokoyama WM. Cross-priming induces immunodomination in the presence of viral MHC class I inhibition. PLoS Pathog 2018; 14:e1006883. [PMID: 29444189 PMCID: PMC5812664 DOI: 10.1371/journal.ppat.1006883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/17/2018] [Indexed: 01/07/2023] Open
Abstract
Viruses have evolved mechanisms of MHCI inhibition in order to evade recognition by cytotoxic CD8+ T cells (CTLs), which is well-illustrated by our prior studies on cowpox virus (CPXV) that encodes potent MHCI inhibitors. Deletion of CPXV viral MHCI inhibitors markedly attenuated in vivo infection due to effects on CTL effector function, not priming. However, the CTL response to CPXV in C57BL/6 mice is dominated by a single peptide antigen presented by H-2Kb. Here we evaluated the effect of viral MHCI inhibition on immunodominant (IDE) and subdominant epitopes (SDE) as this has not been thoroughly examined. We found that cross-priming, but not cross-dressing, is the main mechanism driving IDE and SDE CTL responses following CPXV infection. Secretion of the immunodominant antigen was not required for immunodominance. Instead, immunodominance was caused by CTL interference, known as immunodomination. Both immunodomination and cross-priming of SDEs were not affected by MHCI inhibition. SDE-specific CTLs were also capable of exerting immunodomination during primary and secondary responses, which was in part dependent on antigen abundance. Furthermore, CTL responses directed solely against SDEs protected against lethal CPXV infection, but only in the absence of the CPXV MHCI inhibitors. Thus, both SDE and IDE responses can contribute to protective immunity against poxviruses, implying that these principles apply to poxvirus-based vaccines. The use of vaccinia virus (VACV) to eradicate smallpox is the arguably the most successful demonstration of vaccination. The VACV vaccine also provides cross-protection against related zoonotic orthopoxviruses, including monkey poxvirus (MXPV) and CPXV, which circulate between various animal hosts and humans. Interestingly, Edward Jenner first demonstrated the concept of vaccination against smallpox in the late 1700s using CPXV. He also made the curious observation that CPXV vaccination did not always protect against recurrent exposure to CPXV. Jenner’s observations may be explained by the ability for CPXV to evade antiviral CD8+ T cell immune responses. To evade CD8+ T cells, CPXV inhibits MHCI antigen presentation, which is required to prime CD8+ T cells. Importantly, CPXV is the only orthopoxvirus that inhibits MHCI and thus provides a unique opportunity to investigate the effects of viral MHCI inhibition on CD8+ T cell priming. Here, we examine the factors that contribute to priming of CPXV-specific CD8+ T cells and show that viral MHCI inhibition does not affect CD8+ T cell priming, but prior CPXV immunization does inhibit priming during subsequent exposure to CPXV. The effects of pre-existing poxvirus immunity are therefore important to consider if poxvirus-based vaccines against various diseases are to be widely used.
Collapse
Affiliation(s)
- Elvin J. Lauron
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Liping Yang
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jabari I. Elliott
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Maria D. Gainey
- Department of Biology, Western Carolina University, Cullowhee, North Carolina, United States of America
| | - Daved H. Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wayne M. Yokoyama
- Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
21
|
Xia H, Luo X, Yin W. Inhibition of prostate cancer growth by immunization with a GM-CSF-modified mouse prostate cancer RM-1 cell vaccine in a novel murine model. Oncol Lett 2017; 15:538-544. [PMID: 29387233 DOI: 10.3892/ol.2017.7332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/01/2017] [Indexed: 01/01/2023] Open
Abstract
Advanced prostate cancer is difficult to treat owing to a lack of effective approaches for disrupting immune tolerance. C57BL/6 male and female mice implanted with viable RM-1 cells represent a novel murine model of advanced prostate cancer for studying antitumor effects following immunization with a granulocyte-macrophage colony-stimulating factor (GM-CSF)-modified RM-1 cell vaccine, which has been described previously. In vitro cytotoxic activity and cytokine secretion experiments were conducted to investigate the antitumor response. The cytotoxicity profile of splenocytes from female mice immunized against RM-1 cells primarily involved cytotoxic T lymphocyte (CTL) lysis and, to a lesser extent, natural killer (NK) cell lysis. NK cell lysis was also observed in males, which exhibited no evidence of CTL lysis. The secretion of interferon-γ in the GM-CSF-modified cell vaccine group was significantly increased compared with the other groups. The level of interleukin-4 was low. To investigate the antitumor immune response further, cluster of differentiation 4 (CD4) T cells and CD8 T cells were analyzed in the spleens and tumors of female mice receiving the GM-CSF-modified RM-1 cell vaccine. Unlike female mice, males exhibited the highest proportion of NK cells in the spleen. NK cells were not detected in the tumor tissue in any of the groups. The difference between the sexes may explain the specificity of the immune response, as females are intolerant to prostate antigens whereas males are. This model is clinically relevant as it translates to human immunology and offers an effective and convenient method for studying immunotherapy for prostate cancer.
Collapse
Affiliation(s)
- Hongmei Xia
- Department of Oncology, The People's Hospital of Yichun Affiliated to Clinical Medicine School of Yichun University in Jiangxi Province, Yichun, Jiangxi 336000, P.R. China
| | - Xiaojing Luo
- Department of Oncology, The People's Hospital of Yichun Affiliated to Clinical Medicine School of Yichun University in Jiangxi Province, Yichun, Jiangxi 336000, P.R. China
| | - Weihua Yin
- Department of Oncology, The People's Hospital of Yichun Affiliated to Clinical Medicine School of Yichun University in Jiangxi Province, Yichun, Jiangxi 336000, P.R. China
| |
Collapse
|
22
|
Gerner MY, Casey KA, Kastenmuller W, Germain RN. Dendritic cell and antigen dispersal landscapes regulate T cell immunity. J Exp Med 2017; 214:3105-3122. [PMID: 28847868 PMCID: PMC5626399 DOI: 10.1084/jem.20170335] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/16/2017] [Accepted: 08/01/2017] [Indexed: 01/01/2023] Open
Abstract
Gerner et al. show that spatial compartmentalization in lymph nodes of DCs specialized for MHC I versus MHC II presentation determines the amount of antigen these cells capture after immunization and regulates the relative generation of CD4+ versus CD8+ T cell responses. Dendritic cell (DC) subsets with biased capacity for CD4+ and CD8+ T cell activation are asymmetrically distributed in lymph nodes (LNs), but how this affects adaptive responses has not been extensively studied. Here we used quantitative imaging to examine the relationships among antigen dispersal, DC positioning, and T cell activation after protein immunization. Antigens rapidly drained into LNs and formed gradients extending from the lymphatic sinuses, with reduced abundance in the deep LN paracortex. Differential localization of DCs specialized for major histocompatibility complex I (MHC I) and MHC II presentation resulted in preferential activation of CD8+ and CD4+ T cells within distinct LN regions. Because MHC I–specialized DCs are positioned in regions with limited antigen delivery, modest reductions in antigen dose led to a substantially greater decline in CD8+ compared with CD4+ T cell activation, expansion, and clonal diversity. Thus, the collective action of antigen dispersal and DC positioning regulates the extent and quality of T cell immunity, with important implications for vaccine design.
Collapse
Affiliation(s)
| | - Kerry A Casey
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, LLC, Gaithersburg, MD
| | | | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
23
|
Saunderson SC, McLellan AD. Role of Lymphocyte Subsets in the Immune Response to Primary B Cell-Derived Exosomes. THE JOURNAL OF IMMUNOLOGY 2017; 199:2225-2235. [PMID: 28842467 DOI: 10.4049/jimmunol.1601537] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 07/26/2017] [Indexed: 12/15/2022]
Abstract
Exosomes are lipid nanovesicles released after fusion of the endosomal limiting membrane with the plasma membrane. In this study, we investigated the requirement for CD4 T cells, B cells, and NK cells to provide help for CD8 T cell-mediated response to B cell-derived exosomes. CTL responses to Ag-loaded exosomes were dependent on host MHC class I, with a critical role for splenic langerin+ CD8α+ dendritic cells (DCs) in exosomal Ag cross-presentation. In addition, there was an absolute dependence on the presence of CD4 T cells, CD8 T cells, and NK cells, where the loss of any one of these subsets led to a complete loss of CTL response. Interestingly, NK cell depletion experiments demonstrated a critical cutoff point for depletion efficacy, with low-level residual NK cells providing sufficient help to allow optimal CD8 T cell proliferative responses to exosomal protein. Despite the potential role for B cells in the response to B cell-derived exosomal proteins, B cell depletion did not alter the exosome-induced CTL response. Similarly, a possible role for the BCR or circulating Ab in mediating CTL responses to B cell-derived exosomes was ruled out using DHLMP2A mice, which lack secreted and membrane-bound Ab, yet harbor marginal zone and follicular B cells. In contrast, CTL responses to DC-derived exosomes were significantly inhibited within Ab-deficient DHLMP2A mice compared with wild-type mice. However, this response was not restored upon serum transfer, implicating a role for the BCR, but not circulating Ab, in DC-derived exosome responses.
Collapse
Affiliation(s)
- Sarah C Saunderson
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, Otago, New Zealand
| | - Alexander D McLellan
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, Otago, New Zealand
| |
Collapse
|
24
|
Guo X, Wu N, Shang Y, Liu X, Wu T, Zhou Y, Liu X, Huang J, Liao X, Wu L. The Novel Toll-Like Receptor 2 Agonist SUP3 Enhances Antigen Presentation and T Cell Activation by Dendritic Cells. Front Immunol 2017; 8:158. [PMID: 28270814 PMCID: PMC5318439 DOI: 10.3389/fimmu.2017.00158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/31/2017] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) are highly specialized antigen-presenting cells that play crucial roles in innate and adaptive immunity. Previous studies suggested that Toll-like receptor (TLR) agonists could be used as potential adjuvants, as activation of TLRs can boost DC-induced immune responses. TLR2 agonists have been shown to enhance DC-mediated immune responses. However, classical TLR2 agonists such as Pam3CSK4 are not stable enough in vivo, which limits their clinical applications. In this study, a novel structurally stable TLR2 agonist named SUP3 was designed. Functional analysis showed that SUP3 induced much stronger antitumor response than Pam3CSK4 by promoting cytotoxic T lymphocytes activation in vivo. This effect was achieved through the following mechanisms: SUP3 strongly enhanced the ability of antigen cross-presentation by DCs and subsequent T cell activation. SUP3 upregulated the expression of costimulatory molecules on DCs and increased antigen deposition in draining lymph nodes. More interestingly, SUP3 induced less amount of pro-inflammatory cytokine production in vivo compared to other TLR agonists such as lipopolysaccharide. Taken together, SUP3 could serve as a novel promising immune adjuvant in vaccine development and immune modulations.
Collapse
Affiliation(s)
- Xueheng Guo
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, Tsinghua University School of Medicine , Beijing , China
| | - Ning Wu
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, Tsinghua University School of Medicine , Beijing , China
| | - Yingli Shang
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, Tsinghua University School of Medicine, Beijing, China; College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xin Liu
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, Tsinghua University School of Medicine , Beijing , China
| | - Tao Wu
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, Tsinghua University School of Medicine , Beijing , China
| | - Yifan Zhou
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, Tsinghua University School of Medicine , Beijing , China
| | - Xin Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University School of Pharmaceutical Sciences , Beijing , China
| | - Jiaoyan Huang
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, Tsinghua University School of Medicine , Beijing , China
| | - Xuebin Liao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University School of Pharmaceutical Sciences , Beijing , China
| | - Li Wu
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, Tsinghua University School of Medicine , Beijing , China
| |
Collapse
|
25
|
Érsek B, Lupsa N, Pócza P, Tóth A, Horváth A, Molnár V, Bagita B, Bencsik A, Hegyesi H, Matolcsy A, Buzás EI, Pós Z. Unique patterns of CD8+ T-cell-mediated organ damage in the Act-mOVA/OT-I model of acute graft-versus-host disease. Cell Mol Life Sci 2016; 73:3935-47. [PMID: 27137185 PMCID: PMC11108436 DOI: 10.1007/s00018-016-2237-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 04/15/2016] [Accepted: 04/21/2016] [Indexed: 11/24/2022]
Abstract
T-cell receptor (TCR)-transgenic models of acute graft-versus-host disease (aGvHD) offer a straightforward and highly controlled approach to study the mechanisms and consequences of T-cell activation following allogeneic hematopoietic stem cell transplantation (aHSCT). Here, we report that aHSCT involving OT-I mice as donors, carrying an ovalbumin-specific CD8+ TCR, and Act-mOVA mice as recipients, expressing membrane-bound ovalbumin driven by the β-actin promoter, induces lethal aGvHD in a CD8+ T-cell-dependent, highly reproducible manner, within 4-7 days. Tracking of UBC-GFP/OT-I graft CD8+ T cells disclosed heavy infiltration of the gastrointestinal tract, liver, and lungs at the onset of the disease, and histology confirmed hallmark features of gastrointestinal aGVHD, hepatic aGvHD, and aGvHD-associated lymphocytic bronchitis in infiltrated organs. However, T-cell infiltration was virtually absent in the skin, a key target organ of human aGvHD, and histology confirmed the absence of cutaneous aGVHD, as well. We show that the model allows studying CD8+ T-cell responses in situ, as selective recovery of graft CD45.1/OT-I CD8+ T cells from target organs is simple and feasible by automated tissue dissociation and subsequent cell sorting. Assessment of interferon-gamma production by flow cytometry, granzyme-B release by ELISA, TREC assay, and whole-genome gene expression profiling confirmed that isolated graft CD8+ T cells remained intact, underwent clonal expansion, and exerted effector functions in all affected tissues. Taken together, these data demonstrate that the OT-I/Act-mOVA model is suitable to study the CD8+ T-cell-mediated effector mechanisms in a disease closely resembling fatal human gastrointestinal and hepatic aGVHD that may develop after aHSCT using HLA-matched unrelated donors.
Collapse
Affiliation(s)
- Barbara Érsek
- Hungarian Academy of Sciences-Semmelweis University, "Lendület" Experimental and Translational Immunomics Research Group, 1089, Budapest, Hungary
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 1089, Budapest, Hungary
| | - Nikolett Lupsa
- Hungarian Academy of Sciences-Semmelweis University, "Lendület" Experimental and Translational Immunomics Research Group, 1089, Budapest, Hungary
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 1089, Budapest, Hungary
| | - Péter Pócza
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085, Budapest, Hungary
| | - Anett Tóth
- Hungarian Academy of Sciences-Semmelweis University, "Lendület" Experimental and Translational Immunomics Research Group, 1089, Budapest, Hungary
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 1089, Budapest, Hungary
| | - Andor Horváth
- Hungarian Academy of Sciences-Semmelweis University, "Lendület" Experimental and Translational Immunomics Research Group, 1089, Budapest, Hungary
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 1089, Budapest, Hungary
| | - Viktor Molnár
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 1089, Budapest, Hungary
- Csertex Research Laboratory, 1037, Budapest, Hungary
| | - Bence Bagita
- Hungarian Academy of Sciences-Semmelweis University, "Lendület" Experimental and Translational Immunomics Research Group, 1089, Budapest, Hungary
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 1089, Budapest, Hungary
| | - András Bencsik
- Hungarian Academy of Sciences-Semmelweis University, "Lendület" Experimental and Translational Immunomics Research Group, 1089, Budapest, Hungary
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 1089, Budapest, Hungary
| | - Hargita Hegyesi
- "Frédéric Joliot-Curie" Institute for Radiobiology and Radiohygiene, 1221, Budapest, Hungary
| | - András Matolcsy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085, Budapest, Hungary
| | - Edit I Buzás
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 1089, Budapest, Hungary
| | - Zoltán Pós
- Hungarian Academy of Sciences-Semmelweis University, "Lendület" Experimental and Translational Immunomics Research Group, 1089, Budapest, Hungary.
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 1089, Budapest, Hungary.
| |
Collapse
|
26
|
Cline-Smith A, Gibbs J, Shashkova E, Buchwald ZS, Novack DV, Aurora R. Pulsed low-dose RANKL as a potential therapeutic for postmenopausal osteoporosis. JCI Insight 2016; 1. [PMID: 27570837 DOI: 10.1172/jci.insight.88839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A number of studies in model animal systems and in the clinic have established that RANKL promotes bone resorption. Paradoxically, we found that pulsing ovariectomized mice with low-dose RANKL suppressed bone resorption, decreased the levels of proinflammatory effector T cells and led to increased bone mass. This effect of RANKL is mediated through the induction of FoxP3+CD25+ regulatory CD8+ T cells (TcREG) by osteoclasts. Here, we show that pulses of low-dose RANKL are needed to induce TcREG, as continuous infusion of identical doses of RANKL by pump did not induce TcREG. We also show that low-dose RANKL can induce TcREG at 2, 3, 6, and 10 weeks after ovariectomy. Our results show that low-dose RANKL treatment in ovariectomized mice is optimal at once-per-month doses to maintain the bone mass. Finally, we found that treatment of ovariectomized mice with the Cathepsin K inhibitor odanacatib also blocked TcREG induction by low-dose RANKL. We interpret this result to indicate that antigens presented to CD8+ T cells by osteoclasts are derived from the bone protein matrix because Cathepsin K degrades collagen in the bone. Taken together, our studies provide a basis for using low-dose RANKL as a potential therapeutic for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Anna Cline-Smith
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | - Jesse Gibbs
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Elena Shashkova
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | - Zachary S Buchwald
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | - Deborah V Novack
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Rajeev Aurora
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
27
|
Cheung AS, Koshy ST, Stafford AG, Bastings MM, Mooney DJ. Adjuvant-Loaded Subcellular Vesicles Derived From Disrupted Cancer Cells for Cancer Vaccination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2321-33. [PMID: 26953489 PMCID: PMC5074529 DOI: 10.1002/smll.201600061] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/11/2016] [Indexed: 04/14/2023]
Abstract
Targeted subunit vaccines for cancer immunotherapy do not capture tumor antigenic complexity, and approaches employing tumor lysate are often limited by inefficient antigen uptake and presentation, and low immunogenicity. Here, whole cancer cells are processed to generate antigen-rich, membrane-enclosed subcellular particles, termed "reduced cancer cells", that reflect the diversity and breadth of the parent cancer cell antigen repertoire, and can be loaded with disparate adjuvant payloads. These vesicular particles enhance the uptake of the adjuvant payload, and potentiate the activation of primary dendritic cells in vitro. Similarly, reduced cancer cell-associated antigens are more efficiently presented by primary dendritic cells in vitro than their soluble counterparts or lysate control. In mice, vaccination using adjuvant-loaded reduced cancer cells facilitates the induction of antigen-specific cellular and humoral immune responses. Taken together, these observations demonstrate that adjuvant-loaded reduced cancer cells could be utilized in cancer vaccines as an alternative to lysate.
Collapse
Affiliation(s)
- Alexander S. Cheung
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA. Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Sandeep T. Koshy
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA. Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA. Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Alexander G. Stafford
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Maartje M.C. Bastings
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA. Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - David J. Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA. Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
28
|
Mintern JD, Macri C, Chin WJ, Panozza SE, Segura E, Patterson NL, Zeller P, Bourges D, Bedoui S, McMillan PJ, Idris A, Nowell CJ, Brown A, Radford KJ, Johnston AP, Villadangos JA. Differential use of autophagy by primary dendritic cells specialized in cross-presentation. Autophagy 2016; 11:906-17. [PMID: 25950899 DOI: 10.1080/15548627.2015.1045178] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Antigen-presenting cells survey their environment and present captured antigens bound to major histocompatibility complex (MHC) molecules. Formation of MHC-antigen complexes occurs in specialized compartments where multiple protein trafficking routes, still incompletely understood, converge. Autophagy is a route that enables the presentation of cytosolic antigen by MHC class II molecules. Some reports also implicate autophagy in the presentation of extracellular, endocytosed antigen by MHC class I molecules, a pathway termed "cross-presentation." The role of autophagy in cross-presentation is controversial. This may be due to studies using different types of antigen presenting cells for which the use of autophagy is not well defined. Here we report that active use of autophagy is evident only in DC subtypes specialized in cross-presentation. However, the contribution of autophagy to cross-presentation varied depending on the form of antigen: it was negligible in the case of cell-associated antigen or antigen delivered via receptor-mediated endocytosis, but more prominent when the antigen was a soluble protein. These findings highlight the differential use of autophagy and its machinery by primary cells equipped with specific immune function, and prompt careful reassessment of the participation of this endocytic pathway in antigen cross-presentation.
Collapse
Key Words
- 3-MA, 3-methyladenine
- Atg7-DC CKO, Atg7 DC conditional knockout
- BafA, bafilomycin A1
- CD, cluster of differentiation
- CTL, cytotoxic T lymphocyte
- DALIS, dendritic cell aggresome-like inducible structures
- DC, dendritic cell
- IFC imaging flow cytometry
- LAP, LC3 associated phagocytosis
- LC3B, microtubule-associated protein 1 light chain 3 β
- MHC I, major histocompatibility complex class I
- MHC II, major histocompatibility complex class II
- OT-I, OVA-specific CD8+ T cell
- OT-II, OVA-specific CD4+ T cell; SIM, structured illumination microscopy.
- OVA, ovalbumin
- antigen presentation
- autophagy
- dendritic cells
- green fluorescent protein, GFP
Collapse
|
29
|
Baz A, Groves P, Buttigieg K, Apte SH, Kienzle N, Kelso A. Quantitative assessment of the functional plasticity of memory CD8(+) T cells. Eur J Immunol 2016; 46:863-73. [PMID: 26799367 DOI: 10.1002/eji.201545726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 11/29/2015] [Accepted: 01/15/2016] [Indexed: 01/28/2023]
Abstract
While the functional plasticity of memory CD4(+) T cells has been studied extensively, less is known about this property in memory CD8(+) T cells. Here, we report the direct measurement of plasticity by paired daughter analysis of effector and memory OT-I CD8(+) T cells primed in vivo with ovalbumin. Naïve, effector, and memory OT-I cells were isolated and activated in single-cell culture; then, after the first division, their daughter cells were transferred to new cultures with and without IL-4; expression of IFN-γ and IL-4 mRNAs was measured 5 days later in the resultant subclones. Approximately 40% of clonogenic memory CD8(+) T cells were bipotential in this assay, giving rise to an IL-4(-) subclone in the absence of IL-4 and an IL-4(+) subclone in the presence of IL-4. The frequency of bipotential cells was lower among memory cells than naïve cells but markedly higher than among 8-day effectors. Separation based on high or low expression of CD62L, CD122, CD127, or Ly6C did not identify a phenotypic marker of the bipotential cells. Functional plasticity in memory CD8(+) T-cell populations can therefore reflect modulation at the level of a single memory cell and its progeny.
Collapse
Affiliation(s)
- Adriana Baz
- Cooperative Research Centre for Vaccine Technology, QIMR Berghofer Medical Research Institute, QLD, Australia
| | - Penny Groves
- Cooperative Research Centre for Vaccine Technology, QIMR Berghofer Medical Research Institute, QLD, Australia
| | - Kathy Buttigieg
- Cooperative Research Centre for Vaccine Technology, QIMR Berghofer Medical Research Institute, QLD, Australia
| | - Simon H Apte
- Cooperative Research Centre for Vaccine Technology, QIMR Berghofer Medical Research Institute, QLD, Australia
| | - Norbert Kienzle
- Cooperative Research Centre for Vaccine Technology, QIMR Berghofer Medical Research Institute, QLD, Australia
| | - Anne Kelso
- Cooperative Research Centre for Vaccine Technology, QIMR Berghofer Medical Research Institute, QLD, Australia
| |
Collapse
|
30
|
Chow KV, Lew AM, Sutherland RM, Zhan Y. Monocyte-Derived Dendritic Cells Promote Th Polarization, whereas Conventional Dendritic Cells Promote Th Proliferation. THE JOURNAL OF IMMUNOLOGY 2015; 196:624-36. [PMID: 26663720 DOI: 10.4049/jimmunol.1501202] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/10/2015] [Indexed: 12/31/2022]
Abstract
Monocyte-derived dendritic cells (moDCs) dramatically increase in numbers upon infection and inflammation; accordingly, we found that this also occurs during allogeneic responses. Despite their prominence, how emergent moDCs and resident conventional DCs (cDCs) divide their labor as APCs remain undefined. Hence, we compared both direct and indirect presentation by murine moDCs versus cDCs. We found that, despite having equivalent MHC class II expression and in vitro survival, moDCs were 20-fold less efficient than cDCs at inducing CD4(+) T cell proliferation through both direct and indirect Ag presentation. Despite this, moDCs were more potent at inducing Th1 and Th17 differentiation (e.g., 8-fold higher IFN-γ and 2-fold higher IL-17A in T cell cocultures), whereas cDCs induced 10-fold higher IL-2 production. Intriguingly, moDCs potently reduced the ability of cDCs to stimulate T cell proliferation in vitro and in vivo, partially through NO production. We surmise that such division of labor between moDCs and cDCs has implications for their respective roles in the immune response.
Collapse
Affiliation(s)
- Kevin V Chow
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Nephrology, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia; and
| | - Andrew M Lew
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robyn M Sutherland
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yifan Zhan
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia;
| |
Collapse
|
31
|
Abstract
Immunotherapy is a promising treatment modality for cancer as it can promote specific and durable anti-cancer responses. However, limitations to current approaches remain. Therapeutics administered as soluble injections often require high doses and frequent re-dosing, which can result in systemic toxicities. Soluble bolus-based vaccine formulations typically elicit weak cellular immune responses, limiting their use for cancer. Current methods for ex vivo T cell expansion for adoptive T cell therapies are suboptimal, and achieving high T cell persistence and sustained functionality with limited systemic toxicity following transfer remains challenging. Biomaterials can play important roles in addressing some of these limitations. For example, nanomaterials can be employed as vehicles to deliver immune modulating payloads to specific tissues, cells, and cellular compartments with minimal off-target toxicity, or to co-deliver antigen and danger signal in therapeutic vaccine formulations. Alternatively, micro-to macroscale materials can be employed as devices for controlled molecular and cellular delivery, or as engineered microenvironments for recruiting and programming immune cells in situ. Recent work has demonstrated the potential for combining cancer immunotherapy and biomaterials, and the application of biomaterials to cancer immunotherapy is likely to enable the development of effective next-generation platforms. This review discusses the application of engineered materials for the delivery of immune modulating agents to the tumor microenvironment, therapeutic cancer vaccination, and adoptive T cell therapy.
Collapse
Affiliation(s)
- Alexander S. Cheung
- School of Engineering and Applied Sciences, and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| | - David J. Mooney
- School of Engineering and Applied Sciences, and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| |
Collapse
|
32
|
Gutiérrez-Martínez E, Planès R, Anselmi G, Reynolds M, Menezes S, Adiko AC, Saveanu L, Guermonprez P. Cross-Presentation of Cell-Associated Antigens by MHC Class I in Dendritic Cell Subsets. Front Immunol 2015; 6:363. [PMID: 26236315 PMCID: PMC4505393 DOI: 10.3389/fimmu.2015.00363] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/05/2015] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) have the unique ability to pick up dead cells carrying antigens in tissue and migrate to the lymph nodes where they can cross-present cell-associated antigens by MHC class I to CD8+ T cells. There is strong in vivo evidence that the mouse XCR1+ DCs subset acts as a key player in this process. The intracellular processes underlying cross-presentation remain controversial and several pathways have been proposed. Indeed, a wide number of studies have addressed the cellular process of cross-presentation in vitro using a variety of sources of antigen and antigen-presenting cells. Here, we review the in vivo and in vitro evidence supporting the current mechanistic models and disscuss their physiological relevance to the cross-presentation of cell-associated antigens by DCs subsets.
Collapse
Affiliation(s)
- Enric Gutiérrez-Martínez
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| | - Remi Planès
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| | - Giorgio Anselmi
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| | - Matthew Reynolds
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| | - Shinelle Menezes
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| | - Aimé Cézaire Adiko
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, Centre for Molecular & Cellular Biology of Inflammation (CMCBI), King's College London , Paris , France ; Sorbonne Paris Cité, Université Paris Diderot , Paris , France
| | - Loredana Saveanu
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, Centre for Molecular & Cellular Biology of Inflammation (CMCBI), King's College London , Paris , France ; Sorbonne Paris Cité, Université Paris Diderot , Paris , France
| | - Pierre Guermonprez
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| |
Collapse
|
33
|
Binder RJ. Functions of heat shock proteins in pathways of the innate and adaptive immune system. THE JOURNAL OF IMMUNOLOGY 2015; 193:5765-71. [PMID: 25480955 DOI: 10.4049/jimmunol.1401417] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
For more than 50 years, heat shock proteins (HSPs) have been studied for their role in protecting cells from elevated temperature and other forms of stress. More recently, several roles have been ascribed to HSPs in the immune system. These include intracellular roles in Ag presentation and expression of innate receptors, as well as extracellular roles in tumor immunosurveillance and autoimmunity. Exogenously administered HSPs can elicit a variety of immune responses that have been used in immunotherapy of cancer, infectious diseases, and autoimmune disease.
Collapse
Affiliation(s)
- Robert Julian Binder
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
34
|
Modulation of antigen presentation by intracellular trafficking. Curr Opin Immunol 2015; 34:16-21. [PMID: 25578446 DOI: 10.1016/j.coi.2014.12.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 12/19/2014] [Indexed: 12/24/2022]
Abstract
Processing and loading of antigen into major histocompatibility complex molecules (MHC) occurs in specific intracellular compartments. Accessing MHC loading compartments requires trafficking via specific pathways, some of which have yet to be fully characterized. For MHC I, cross-presentation involves antigen trafficking to a specialised compartment. We review the features of this compartment and how it is accessed by different mechanisms of antigen capture and internalization. We also summarize advances in understanding how antigen efficiently accesses the MHC II loading compartment, with particular focus on the role of autophagy. Understanding the mechanisms that control how antigen is trafficked to specific compartments for loading and presentation is crucial if these pathways are to be manipulated more effectively in settings of vaccination.
Collapse
|
35
|
Intrinsic transgene immunogenicity gears CD8(+) T-cell priming after rAAV-mediated muscle gene transfer. Mol Ther 2014; 23:697-706. [PMID: 25492560 DOI: 10.1038/mt.2014.235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/02/2014] [Indexed: 01/18/2023] Open
Abstract
Antitransgene CD8(+) T-cell responses are an important hurdle after recombinant adeno-associated virus (rAAV) vector-mediated gene transfer. Indeed, depending on the mutational genotype of the host, transgene amino-acid sequences of foreign origin can elicit deleterious cellular and humoral responses. We compared here two different major histocompatibility complex (MHC) class I epitopes of an engineered ovalbumin transgene delivered in muscle tissue by rAAV1 vector and found very different strength of CD8 responses, muscle destruction being correlated with the course of the immunodominant response. We further demonstrate that robust CD8(+) T-cell priming can occur through the cross-presentation pathway but requires the presence of either a strong MHC class II epitope or antibodies to the transgene product. Finally, manipulating transgene subcellular localization, we found that provided we avoid transgene expression in antigen presenting cells, the poorly accessible cytosolic form of ovalbumin transgene lacking strong MHC II epitope, evades CD8(+) T-cell priming and remains permanently expressed in muscle with no immune cell infiltration. Our results demonstrate that the intrinsic immunogenicity of transgenes delivered with rAAV vector in muscle can be manipulated in a rational manner to avoid adverse immune responses.
Collapse
|
36
|
Gamrekelashvili J, Ormandy LA, Heimesaat MM, Kirschning CJ, Manns MP, Korangy F, Greten TF. Primary sterile necrotic cells fail to cross-prime CD8(+) T cells. Oncoimmunology 2014; 1:1017-1026. [PMID: 23170250 PMCID: PMC3494616 DOI: 10.4161/onci.21098] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Necrotic cells are known to activate the innate immune system and trigger inflammation by releasing damage associated molecular patterns (DAMPs). However, how necrotic cells influence the induction of antigen-specific CD8(+) T cell-mediated adaptive immune responses under sterile conditions, in the absence of pathogen associated molecular patterns (PAMPs), remains poorly understood. Here, we examined antigen-specific CD8(+) T-cell responses to primary sterile necrotic tumor cells both in vitro and in vivo. We found that primary necrotic cells alone fail to generate CD8(+) T cell-dependent immune responses toward cell-associated antigens. We show that necrotic cells trigger CD8(+) T-cell immunity only in the presence of PAMPs or analogs, such as p(dI-dC) and/or unmethylated CpG DNA. The electroporation of tumor cells with these PAMPs prior to necrosis induction triggered antigen-specific CD8(+) T-cell responses through a TLR9/MyD88-dependent pathway. In addition, we found that necrotic cells contain factors that can block the cross-priming of CD8(+) T cells even under non-sterile conditions and can serve as a possible mechanism of immunosuppression. These results suggest that antigen-specific CD8(+) T-cell responses to primary necrotic tumor cells can be induced in the presence of PAMPs and thus have a substantial impact on the development of antitumor vaccination strategies.
Collapse
Affiliation(s)
- Jaba Gamrekelashvili
- Gastrointestinal Malignancy Section; Medical Oncology Branch; National Cancer Institute; National Institutes of Health; Bethesda, MD USA ; Department of Gastroenterology; Hepatology and Endocrinology; Hannover Medical School; Hanover, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Gamrekelashvili J, Greten TF, Korangy F. Immunogenicity of necrotic cell death. Cell Mol Life Sci 2014; 72:273-83. [PMID: 25274062 DOI: 10.1007/s00018-014-1741-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/03/2014] [Accepted: 09/22/2014] [Indexed: 12/20/2022]
Abstract
The mode of tumor cell death has significant effects on anti-tumor immunity. Although, previously it was thought that cell death is an inert effect, different investigators have clearly shown that dying tumors can attract, activate and mature professional antigen presenting cells and dendritic cells. In addition, others and we have shown that the type of tumor cell death not only controls the presence or absence of specific tumor antigens, but also can result in immunological responses ranging from immunosuppression to anti-tumor immunity. More importantly, it is possible to enhance anti-tumor immunity both in vitro and in vivo by targeting specific molecular mechanisms such as oligopeptidases and the proteasome. These studies not only extend our knowledge on basic immunological questions and the induction of anti-tumor immunity, but also have implications for all types of cancer treatments, in which rapid tumor cell death is induced. This review is a comprehensive summary of cell death and particularly necrosis and the pivotal role it plays in anti-tumor immunity.
Collapse
|
38
|
Sedlik C, Vigneron J, Torrieri-Dramard L, Pitoiset F, Denizeau J, Chesneau C, de la Rochere P, Lantz O, Thery C, Bellier B. Different immunogenicity but similar antitumor efficacy of two DNA vaccines coding for an antigen secreted in different membrane vesicle-associated forms. J Extracell Vesicles 2014; 3:24646. [PMID: 25206960 PMCID: PMC4149746 DOI: 10.3402/jev.v3.24646] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/02/2014] [Accepted: 07/17/2014] [Indexed: 01/08/2023] Open
Abstract
The induction of an active immune response to control or eliminate tumours is still an unfulfilled challenge. We focused on plasmid DNA vaccines using an innovative approach whereby the antigen is expressed in association with extracellular vesicles (EVs) to facilitate antigen cross-presentation and improve induced immunity. Our two groups had independently shown previously that DNA vaccines encoding EV-associated antigens are more efficient at inducing cytotoxic T-cell responses than vaccines encoding the non-EV-associated antigen. Here, we compared our two approaches to associate the ovalbumin (OVA) antigen to EVs: (a) by fusion to the lipid-binding domain C1C2 of MFGE8(=lactadherin), which is exposed on the surface of secreted membrane vesicles; and (b) by fusion to retroviral Gag capsid protein, which is incorporated inside membrane-enclosed virus-like particles. Plasmids encoding either form of modified OVA were used as DNA-based vaccines (i.e. injected into mice to allow in vivo expression of the antigen associated to EVs). We show that both DNA vaccines induced, with similar efficiency, OVA-specific CD8(+) T cells and total IgG antibodies. By contrast, each vaccine preferentially stimulated different isotypes of immunoglobulins, and the OVA-C1C2-encoding vaccine favoured antigen-specific CD4(+) T lymphocyte induction as compared to the Gag-OVA vaccine. Nevertheless, both OVA-C1C2 and Gag-OVA vaccines efficiently prevented in vivo outgrowth of OVA-expressing tumours and reduced tumour progression when administered to tumour-bearing mice, although with variable efficacies depending on the tumour models. DNA vaccines encoding EV-associated antigens are thus promising immunotherapy tools in cancer but also potentially other diseases.
Collapse
Affiliation(s)
- Christine Sedlik
- INSERM U932, Paris, France ; Clinical Investigation Center-IGR-Curie 1428 and Institut Curie, Paris, France
| | - James Vigneron
- INSERM U932, Paris, France ; Sorbonne University, Université Pierre et Marie Curie, Paris, UMRS_959, I , Paris, France ; INSERM, UMRS_959, Paris, France ; CNRS, FRE3632, Paris, France
| | - Lea Torrieri-Dramard
- Sorbonne University, Université Pierre et Marie Curie, Paris, UMRS_959, I , Paris, France ; INSERM, UMRS_959, Paris, France ; CNRS, FRE3632, Paris, France
| | - Fabien Pitoiset
- Sorbonne University, Université Pierre et Marie Curie, Paris, UMRS_959, I , Paris, France ; INSERM, UMRS_959, Paris, France ; CNRS, FRE3632, Paris, France
| | - Jordan Denizeau
- Clinical Investigation Center-IGR-Curie 1428 and Institut Curie, Paris, France
| | | | | | - Olivier Lantz
- INSERM U932, Paris, France ; Clinical Investigation Center-IGR-Curie 1428 and Institut Curie, Paris, France
| | - Clotilde Thery
- INSERM U932, Paris, France ; Clinical Investigation Center-IGR-Curie 1428 and Institut Curie, Paris, France
| | - Bertrand Bellier
- Sorbonne University, Université Pierre et Marie Curie, Paris, UMRS_959, I , Paris, France ; INSERM, UMRS_959, Paris, France ; CNRS, FRE3632, Paris, France ; Department of Biotherapies, Clinical Investigation Center in Biotherapy, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| |
Collapse
|
39
|
Zhou YJ, Binder RJ. The heat shock protein-CD91 pathway mediates tumor immunosurveillance. Oncoimmunology 2014; 3:e28222. [PMID: 25050192 PMCID: PMC4091098 DOI: 10.4161/onci.28222] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/14/2014] [Indexed: 11/19/2022] Open
Abstract
Tumor immunosurveillance can be readily observed in mice and humans. Here, we examine how T-cell responses are primed during tumorigenesis, a condition in which immunostimulatory antigens are extraordinarily scarce. We recently demonstrated that the HSP-CD91 pathway is indispensable for antigen cross-presentation, and thus immunosurveillance, in cancer.
Collapse
Affiliation(s)
- Yu Jerry Zhou
- Department of Immunology; University of Pittsburgh; Pittsburgh, PA USA
| | | |
Collapse
|
40
|
Harris MG, Hulseberg P, Ling C, Karman J, Clarkson BD, Harding JS, Zhang M, Sandor A, Christensen K, Nagy A, Sandor M, Fabry Z. Immune privilege of the CNS is not the consequence of limited antigen sampling. Sci Rep 2014; 4:4422. [PMID: 24651727 PMCID: PMC3961746 DOI: 10.1038/srep04422] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/21/2014] [Indexed: 12/25/2022] Open
Abstract
Central nervous system (CNS) immune privilege is complex, and it is still not understood how CNS antigens are sampled by the peripheral immune system under steady state conditions. To compare antigen sampling from immune-privileged or nonprivileged tissues, we created transgenic mice with oligodendrocyte or gut epithelial cell expression of an EGFP-tagged fusion protein containing ovalbumin (OVA) antigenic peptides and tested peripheral anti-OVA peptide-specific sentinel OT-I and OT-II T cell activation. We report that oligodendrocyte or gut antigens are sampled similarly, as determined by comparable levels of OT-I T cell activation. However, activated T cells do not access the CNS under steady state conditions. These data show that afferent immunity is normally intact as there is no barrier at the antigen sampling level, but that efferent immunity is restricted. To understand how this one-sided surveillance contributes to CNS immune privilege will help us define mechanisms of CNS autoimmune disease initiation.
Collapse
Affiliation(s)
- Melissa G Harris
- 1] Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI [2] Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI
| | - Paul Hulseberg
- 1] Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI [2] Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Changying Ling
- 1] Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI [2] Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Jozsef Karman
- 1] Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI [2] Genzyme Corporation, Cambridge, MA
| | - Benjamin D Clarkson
- 1] Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI [2] Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Jeffrey S Harding
- 1] Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI [2] Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Mengxue Zhang
- Department of Pathology, Peking University, Beijing, China
| | - Adam Sandor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Kelsey Christensen
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | | | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
41
|
Bouwer AL, Saunderson SC, Caldwell FJ, Damani TT, Pelham SJ, Dunn AC, Jack RW, Stoitzner P, McLellan AD. NK Cells Are Required for Dendritic Cell–Based Immunotherapy at the Time of Tumor Challenge. THE JOURNAL OF IMMUNOLOGY 2014; 192:2514-21. [DOI: 10.4049/jimmunol.1202797] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Cis-acting pathways selectively enforce the non-immunogenicity of shed placental antigen for maternal CD8 T cells. PLoS One 2013; 8:e84064. [PMID: 24391885 PMCID: PMC3877187 DOI: 10.1371/journal.pone.0084064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/12/2013] [Indexed: 11/19/2022] Open
Abstract
Maternal immune tolerance towards the fetus and placenta is thought to be established in part by pathways that attenuate T cell priming to antigens released from the placenta into maternal blood. These pathways remain largely undefined and their existence, at face value, seems incompatible with a mother's need to maintain a functional immune system during pregnancy. A particular conundrum is evident if we consider that maternal antigen presenting cells, activated in order to prime T cells to pathogen-derived antigens, would also have the capacity to prime T cells to co-ingested placental antigens. Here, we address this paradox using a transgenic system in which placental membranes are tagged with a strong surrogate antigen (ovalbumin). We find that although a remarkably large quantity of acellular ovalbumin-containing placental material is released into maternal blood, splenic CD8 T cells in pregnant mice bearing unmanipulated T cell repertoires are not primed to ovalbumin even if the mice are intravenously injected with adjuvants. This failure was largely independent of regulatory T cells, and instead was linked to the intrinsic characteristics of the released material that rendered it selectively non-immunogenic, potentially by sequestering it from CD8α+ dendritic cells. The release of ovalbumin-containing placental material into maternal blood thus had no discernable impact on CD8 T cell priming to soluble ovalbumin injected intravenously during pregnancy, nor did it induce long-term tolerance to ovalbumin. Together, these results outline a major pathway governing the maternal immune response to the placenta, and suggest how tolerance to placental antigens can be maintained systemically without being detrimental to host defense.
Collapse
|
43
|
Zhou YJ, Messmer MN, Binder RJ. Establishment of tumor-associated immunity requires interaction of heat shock proteins with CD91. Cancer Immunol Res 2013; 2:217-28. [PMID: 24778318 DOI: 10.1158/2326-6066.cir-13-0132] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Host antitumor adaptive immune responses are generated as a result of the body's immunosurveillance mechanisms. How the antitumor immune response is initially primed remains unclear, given that soluble tumor antigens generally are quantitatively insufficient for cross-priming and tumors generally lack the classical pathogen-associated molecular patterns to activate costimulation and initiate cross-priming. We explored the interaction of the tumor-derived heat shock proteins (HSP) with their common receptor (CD91) on antigen-presenting cells (APC) as a mechanism for host-priming of T-cell-mediated antitumor immunity. Using targeted genetic disruption of the interaction between HSPs and CD91, we demonstrated that specific ablation of CD91 in APCs prevented the establishment of antitumor immunity. The antitumor immunity was also inhibited when the transfer of tumor-derived HSPs to APCs was prevented using an endogenous inhibitor of CD91. Inhibition was manifested in a reduction of cross-presentation of tumor-derived antigenic peptides in the lymph nodes, providing a molecular basis for the observed immunity associated with tumor development. Our findings demonstrate that early in tumor development, the HSP-CD91 pathway is critical for the establishment of antitumor immunity.
Collapse
Affiliation(s)
- Yu Jerry Zhou
- Authors' Affiliation: Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
44
|
Mutually exclusive regulation of T cell survival by IL-7R and antigen receptor-induced signals. Nat Commun 2013; 4:1735. [PMID: 23591902 PMCID: PMC3644093 DOI: 10.1038/ncomms2719] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 03/08/2013] [Indexed: 11/08/2022] Open
Abstract
Two major processes govern T cell proliferation and survival: interleukin-7-mediated homeostasis and antigen-induced selection. How cells transit between the two states is unknown. Here we show that T cell receptor ligation actively inhibits homeostatic survival signals while initiating a new, dominant survival programme. This switch is mediated by a change in the expression of pro- and anti-apoptosis proteins through the downregulation of Bcl-2 and the induction of Bim, A1 and Bcl-xL. Calcineurin inhibitors prevent the initiation of the new survival programme, while permitting the dominant repression of Bcl-2. Thus, in the presence of these drugs the response to antigen receptor ligation is cell death. Our results identify a molecular switch that can serve as an attractive target for inducing antigen-specific tolerance in treating autoimmune disease patients and transplant recipients. Before antigen exposure, T cell survival is dependent on signalling stimulated by IL-7. Koenen et al. show that upon encountering specific antigen, T cell receptor signalling initiates a different set of survival pathways, which actively suppress those that sustain naive T cells.
Collapse
|
45
|
Gamvrellis A, Gloster S, Jefferies M, Mottram PL, Smooker P, Plebanski M, Scheerlinck JPY. Characterisation of local immune responses induced by a novel nano-particle based carrier-adjuvant in sheep. Vet Immunol Immunopathol 2013; 155:21-9. [DOI: 10.1016/j.vetimm.2013.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 01/24/2023]
|
46
|
Palmer AL, Dolan BP. MHC class I antigen presentation of DRiP-derived peptides from a model antigen is not dependent on the AAA ATPase p97. PLoS One 2013; 8:e67796. [PMID: 23844095 PMCID: PMC3699533 DOI: 10.1371/journal.pone.0067796] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 05/13/2013] [Indexed: 12/24/2022] Open
Abstract
CD8+ T cells are responsible for killing cells of the body that have become infected or oncogenically transformed. In order to do so, effector CD8+ T cells must recognize their cognate antigenic peptide bound to a MHC class I molecule that has been directly presented by the target cell. Due to the rapid nature of antigen presentation, it is believed that antigenic peptides are derived from a subset of newly synthesized proteins which are degraded almost immediately following synthesis and termed Defective Ribosomal Products or DRiPs. We have recently reported on a bioassay which can distinguish antigen presentation of DRiP substrates from other forms of rapidly degraded proteins and found that poly-ubiquitin chain disassembly may be necessary for efficient DRiP presentation. The AAA ATPase p97 protein is necessary for efficient cross-presentation of antigens on MHC class I molecules and plays an important role in extracting mis-folded proteins from the endoplasmic reticulum. Here, we find that genetic ablation or chemical inhibition of p97 does not diminish DRiP antigen presentation to any great extent nor does it alter the levels of MHC class I molecules on the cell surface, despite our observations that p97 inhibition increased the levels of poly-ubiquitinated proteins in the cell. These data demonstrate that inhibiting poly-ubiquitin chain disassembly alone is insufficient to abolish DRiP presentation.
Collapse
Affiliation(s)
- Amy L. Palmer
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Brian P. Dolan
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
47
|
Abstract
Elevated understanding and respect for the relevance of the immune system in cancer development and therapy has led to increased development of immunotherapeutic regimens that target existing cancer cells and provide long-term immune surveillance and protection from cancer recurrence. This review discusses using particles as immune adjuvants to create vaccines and to augment the anticancer effects of conventional chemotherapeutics. Several particle prototypes are presented, including liposomes, polymer nanoparticles, and porous silicon microparticles, the latter existing as either single- or multiparticle platforms. The benefits of using particles include immune-cell targeting, codelivery of antigens and immunomodulatory agents, and sustained release of the therapeutic payload. Nanotherapeutic-based activation of the immune system is dependent on both intrinsic particle characteristics and on the immunomodulatory cargo, which may include danger signals known as pathogen-associated molecular patterns and cytokines for effector-cell activation.
Collapse
Affiliation(s)
- Rita Elena Serda
- Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX 77030, USA.
| |
Collapse
|
48
|
Topical vaccination with functionalized particles targeting dendritic cells. J Invest Dermatol 2013; 133:1933-41. [PMID: 23426134 DOI: 10.1038/jid.2013.79] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 01/04/2013] [Accepted: 01/23/2013] [Indexed: 01/09/2023]
Abstract
Needle-free vaccination, for reasons of safety, economy, and convenience, is a central goal in vaccine development, but it also needs to meet the immunological requirements for efficient induction of prophylactic and therapeutic immune responses. Combining the principles of noninvasive delivery to dendritic cells (DCs) through skin and the immunological principles of cell-mediated immunity, we developed microparticle-based topical vaccines. We show here that the microparticles are efficient carriers for coordinated delivery of the essential vaccine constituents to DCs for cross-presentation of the antigens and stimulation of T-cell responses. When applied to the skin, the microparticles penetrate into hair follicles and target the resident DCs, the immunologically most potent cells and site for induction of efficient immune responses. The microparticle vaccine principle can be applied to different antigen formats such as peptides and proteins, or nucleic acids coding for the antigens.
Collapse
|
49
|
Gottschalk C, Damuzzo V, Gotot J, Kroczek RA, Yagita H, Murphy KM, Knolle PA, Ludwig-Portugall I, Kurts C. Batf3-dependent dendritic cells in the renal lymph node induce tolerance against circulating antigens. J Am Soc Nephrol 2013; 24:543-9. [PMID: 23411785 DOI: 10.1681/asn.2012101022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Although the spleen is a major site where immune tolerance to circulating innocuous antigens occurs, the kidney also contributes. Circulating antigens smaller than albumin are constitutively filtered and concentrated in the kidney and reach the renal lymph node by lymphatic drainage, where resident dendritic cells (DCs) capture them and induce tolerance of specific cytotoxic T cells through unknown mechanisms. Here, we found that the coinhibitory cell surface receptor programmed death 1 (PD-1) on cytotoxic T cells mediates to their tolerance. Renal lymph node DCs of the CD8(+) XCR1(+) subset, which depend on the transcription factor Batf3, expressed the PD-1 cognate ligand PD-L1. Batf3-dependent DCs in the renal lymph node presented antigen that had been concentrated in the kidney and used PD-L1 to induce apoptosis of cytotoxic T cells. In contrast, T cell tolerance in the spleen was independent of PD-1, PD-L1, and Batf3. In summary, these results clarify how the kidney/renal lymph node system tolerizes the immune system against circulating innocuous antigens.
Collapse
Affiliation(s)
- Catherine Gottschalk
- Institutes of Molecular Medicine and Experimental Immunology, Rheinische Friedrich-Wilhelms-Universität, Sigmund Freud Strasse 25, 53105 Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Rizwan S, McBurney W, Young K, Hanley T, Boyd B, Rades T, Hook S. Cubosomes containing the adjuvants imiquimod and monophosphoryl lipid A stimulate robust cellular and humoral immune responses. J Control Release 2013; 165:16-21. [DOI: 10.1016/j.jconrel.2012.10.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/20/2012] [Accepted: 10/29/2012] [Indexed: 01/28/2023]
|