1
|
Dartois V, Bonfield TL, Boyce JP, Daley CL, Dick T, Gonzalez-Juarrero M, Gupta S, Kramnik I, Lamichhane G, Laughon BE, Lorè NI, Malcolm KC, Olivier KN, Tuggle KL, Jackson M. Preclinical murine models for the testing of antimicrobials against Mycobacterium abscessus pulmonary infections: Current practices and recommendations. Tuberculosis (Edinb) 2024; 147:102503. [PMID: 38729070 PMCID: PMC11168888 DOI: 10.1016/j.tube.2024.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 05/12/2024]
Abstract
Mycobacterium abscessus, a rapidly growing nontuberculous mycobacterium, is increasingly recognized as an important pathogen of the human lung, disproportionally affecting people with cystic fibrosis (CF) and other susceptible individuals with non-CF bronchiectasis and compromised immune functions. M. abscessus infections are extremely difficult to treat due to intrinsic resistance to many antibiotics, including most anti-tuberculous drugs. Current standard-of-care chemotherapy is long, includes multiple oral and parenteral repurposed drugs, and is associated with significant toxicity. The development of more effective oral antibiotics to treat M. abscessus infections has thus emerged as a high priority. While murine models have proven instrumental in predicting the efficacy of therapeutic treatments for M. tuberculosis infections, the preclinical evaluation of drugs against M. abscessus infections has proven more challenging due to the difficulty of establishing a progressive, sustained, pulmonary infection with this pathogen in mice. To address this issue, a series of three workshops were hosted in 2023 by the Cystic Fibrosis Foundation (CFF) and the National Institute of Allergy and Infectious Diseases (NIAID) to review the current murine models of M. abscessus infections, discuss current challenges and identify priorities toward establishing validated and globally harmonized preclinical models. This paper summarizes the key points from these workshops. The hope is that the recommendations that emerged from this exercise will facilitate the implementation of informative murine models of therapeutic efficacy testing across laboratories, improve reproducibility from lab-to-lab and accelerate preclinical-to-clinical translation.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation & Department of Medical Sciences, Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ, USA.
| | - Tracey L Bonfield
- Genetics and Genome Sciences and National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jim P Boyce
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Charles L Daley
- Department of Medicine, National Jewish Health, Denver, CO, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Thomas Dick
- Center for Discovery and Innovation & Department of Medical Sciences, Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ, USA; Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA
| | - Shashank Gupta
- Laboratory of Chronic Airway Infection, Pulmonary Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, USA; Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Igor Kramnik
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02215, USA; Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Gyanu Lamichhane
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Barbara E Laughon
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicola I Lorè
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Kenneth C Malcolm
- Department of Medicine, National Jewish Health, Denver, CO, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kenneth N Olivier
- Department of Medicine, Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, USA; Marsico Lung Institute, Chapel Hill, 27599-7248, NC, USA
| | | | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA.
| |
Collapse
|
2
|
Bonfield TL, Sutton MT, Fletcher DR, Reese-Koc J, Roesch EA, Lazarus HM, Chmiel JF, Caplan AI. Human Mesenchymal Stem Cell (hMSC) Donor Potency Selection for the "First in Cystic Fibrosis" Phase I Clinical Trial (CEASE-CF). Pharmaceuticals (Basel) 2023; 16:220. [PMID: 37259368 PMCID: PMC9960767 DOI: 10.3390/ph16020220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 08/27/2023] Open
Abstract
Human Mesenchymal Stem Cell (hMSC) immunotherapy has been shown to provide both anti-inflammatory and anti-microbial effectiveness in a variety of diseases. The clinical potency of hMSCs is based upon an initial direct hMSC effect on the pro-inflammatory and anti-microbial pathophysiology as well as sustained potency through orchestrating the host immunity to optimize the resolution of infection and tissue damage. Cystic fibrosis (CF) patients suffer from a lung disease characterized by excessive inflammation and chronic infection as well as a variety of other systemic anomalies associated with the consequences of abnormal cystic fibrosis transmembrane conductance regulator (CFTR) function. The application of hMSC immunotherapy to the CF clinical armamentarium is important even in the era of modulators when patients with an established disease still need anti-inflammatory and anti-microbial therapies. Additionally, people with CF mutations not addressed by current modulator resources need anti-inflammation and anti-infection management. Furthermore, hMSCs possess dynamic therapeutic properties, but the potency of their products is highly variable with respect to their anti-inflammatory and anti-microbial effects. Due to the variability of hMSC products, we utilized standardized in vitro and in vivo models to select hMSC donor preparations with the greatest potential for clinical efficacy. The models that were used recapitulate many of the pathophysiologic outcomes associated with CF. We applied this strategy in pursuit of identifying the optimal donor to utilize for the "First in CF" Phase I clinical trial of hMSCs as an immunotherapy and anti-microbial therapy for people with cystic fibrosis. The hMSCs screened in this study demonstrated significant diversity in antimicrobial and anti-inflammatory function using models which mimic some aspects of CF infection and inflammation. However, the variability in activity between in vitro potency and in vivo effectiveness continues to be refined. Future studies require and in-depth pursuit of hMSC molecular signatures that ultimately predict the capacity of hMSCs to function in the clinical setting.
Collapse
Affiliation(s)
- Tracey L. Bonfield
- Department of Genetics and Genome Sciences, National Center Regenerative Medicine and Pediatrics, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, BRB 822, Cleveland, OH 444106, USA
- National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 444106, USA
- Department of Pediatric Pulmonary, Rainbow Babies and Children’s Hospital, Cleveland, OH 44106, USA
| | - Morgan T. Sutton
- Department of Genetics and Genome Sciences, National Center Regenerative Medicine and Pediatrics, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, BRB 822, Cleveland, OH 444106, USA
- National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 444106, USA
- Department of Pediatric Pulmonary, Rainbow Babies and Children’s Hospital, Cleveland, OH 44106, USA
- Saint Jude Children’s Research Hospital, Graduate School of Biomedical Sciences, Memphis, TN 38105, USA
| | - David R. Fletcher
- Department of Genetics and Genome Sciences, National Center Regenerative Medicine and Pediatrics, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, BRB 822, Cleveland, OH 444106, USA
- Department of Pediatric Pulmonary, Rainbow Babies and Children’s Hospital, Cleveland, OH 44106, USA
| | - Jane Reese-Koc
- National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 444106, USA
- University Hospitals Seidman Cancer Center, Cleveland, OH 44106, USA
| | - Erica A. Roesch
- Department of Pediatric Pulmonary, Rainbow Babies and Children’s Hospital, Cleveland, OH 44106, USA
| | - Hillard M. Lazarus
- National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 444106, USA
- University Hospitals Seidman Cancer Center, Cleveland, OH 44106, USA
| | - James F. Chmiel
- Department of Pediatrics, Riley Hospital for Children at IU Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Arnold I. Caplan
- National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 444106, USA
- Skeletal Research Center, Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
3
|
Martín-Vicente P, López-Martínez C, Albaiceta GM. The last-minute redemption of inflammatory cells in lung repair. Eur Respir J 2022; 59:59/4/2103000. [DOI: 10.1183/13993003.03000-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/10/2022] [Indexed: 11/05/2022]
|
4
|
Alshammary AF, Al-Sulaiman AM. The journey of SARS-CoV-2 in human hosts: a review of immune responses, immunosuppression, and their consequences. Virulence 2021; 12:1771-1794. [PMID: 34251989 PMCID: PMC8276660 DOI: 10.1080/21505594.2021.1929800] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly infectious viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Laboratory findings from a significant number of patients with COVID-19 indicate the occurrence of leukocytopenia, specifically lymphocytopenia. Moreover, infected patients can experience contrasting outcomes depending on lymphocytopenia status. Patients with resolved lymphocytopenia are more likely to recover, whereas critically ill patients with signs of unresolved lymphocytopenia develop severe complications, sometimes culminating in death. Why immunodepression manifests in patients with COVID-19 remains unclear. Therefore, the evaluation of clinical symptoms and laboratory findings from infected patients is critical for understanding the disease course and its consequences. In this review, we take a logical approach to unravel the reasons for immunodepression in patients with COVID-19. Following the footprints of the virus within host tissues, from entry to exit, we extrapolate the mechanisms underlying the phenomenon of immunodepression.
Collapse
Affiliation(s)
- Amal F. Alshammary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
5
|
Tofacitinib Suppresses IL-10/IL-10R Signaling and Modulates Host Defense Responses in Human Macrophages. J Invest Dermatol 2021; 142:559-570.e6. [PMID: 34536483 DOI: 10.1016/j.jid.2021.07.180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022]
Abstract
Jak inhibitors are increasingly used in dermatology. Despite broad inhibitory effects on cytokine signaling cascades, they only modestly increase the risk for infectious diseases. To address the molecular mechanisms underlying this unexpected clinical observation, we investigated how tofacintib (tofa), a first-in-class Jak inhibitor, regulates host defense responses in toll-like receptor 4-activated human macrophages. Specifically, we asked whether tofa inhibits anti-inflammatory IL-10 signaling, thereby counteracting the downregulation of inflammatory, host-protective pathways. We found that tofa blocked macrophage responses to IL-10 at the level of signal transducer and activator of transcription 3 phosphorylation. Furthermore, toll-like receptor 4-induced, autocrine/paracrine IL-10/IL-10R activation promoted the expression of hepcidin, the master regulator of iron metabolism, resulting in intracellular iron sequestration. In contrast, autocrine/paracrine IL-10/IL-10R activation repressed the expression of cathelicidin antimicrobial peptide as well as antigen-presenting molecules, thus together, inducing a pathogen-favoring environment. Although tofa further repressed cathelicidin, it prevented the induction of intracellular HAMP and restored the expression of antigen-presentation molecules in toll-like receptor 4-activated macrophages. Our study supports the concept that induction of IL-10/IL-10R signaling drives a complex immune evasion strategy of intracellular microbes. Moreover, we conclude that tofa has diverging effects on macrophage host response pathways, and we identify the toll-like receptor 4-IL-10-signal transducer and activator of transcription 3-HAMP axis as a potential therapeutic target to counteract immune evasion.
Collapse
|
6
|
Wang S, Xu S, Zhou J, Zhang L, Mao X, Yao X, Liu C. Luteolin transforms the polarity of bone marrow-derived macrophages to regulate the cytokine storm. JOURNAL OF INFLAMMATION-LONDON 2021; 18:21. [PMID: 34059076 PMCID: PMC8165957 DOI: 10.1186/s12950-021-00285-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
Background Macrophages are indispensable regulators of inflammatory responses. Macrophage polarisation and their secreted inflammatory factors have an association with the outcome of inflammation. Luteolin, a flavonoid abundant in plants, has anti-inflammatory activity, but whether luteolin can manipulate M1/M2 polarisation of bone marrow-derived macrophages (BMDMs) to suppress inflammation is still unclear. This study aimed to observe the effects of luteolin on the polarity of BMDMs derived from C57BL/6 mice and the expression of inflammatory factors, to explore the mechanism by which luteolin regulates the BMDM polarity. Methods M1-polarised BMDMs were induced by lipopolysaccharide (LPS) + interferon (IFN)-γ and M2-polarisation were stimulated with interleukin (IL)-4. BMDM morphology and phagocytosis were observed by laser confocal microscopy; levels of BMDM differentiation and cluster of differentiation (CD)11c or CD206 on the membrane surface were assessed by flow cytometry (FCM); mRNA and protein levels of M1/M2-type inflammatory factors were performed by qPCR and ELISA, respectively; and the expression of p-STAT1 and p-STAT6 protein pathways was detected by Western-blotting. Results The isolated mouse bone marrow cells were successfully differentiated into BMDMs, LPS + IFN-γ induced BMDM M1-phenotype polarisation, and IL-4 induced M2-phenotype polarisation. After M1-polarised BMDMs were treated with luteolin, the phagocytosis of M1-polarized BMDMs was reduced, and the M1-type pro-inflammatory factors including IL-6, tumour necrosis factor (TNF)-α, inducible nitric oxide synthase (iNOS), and CD86 were downregulated while the M2-type anti-inflammatory factors including IL-10, IL-13, found in inflammatory zone (FIZZ)1, Arginase (Arg)1 and CD206 were upregulated. Additionally, the expression of M1-type surface marker CD11c decreased. Nevertheless, the M2-type marker CD206 increased; and the levels of inflammatory signalling proteins phosphorylated signal transducer and activator of transcription (p-STAT)1 and p-STAT6 were attenuated and enhanced, respectively. Conclusions Our study suggests that luteolin may transform BMDM polarity through p-STAT1/6 to regulate the expression of inflammatory mediators, thereby inhibiting inflammation. Naturally occurring luteolin holds promise as an anti-inflammatory and immunomodulatory agent.
Collapse
Affiliation(s)
- Shuxia Wang
- Clinical Laboratory, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 100 Hongshan Road, Nanjing, 210028, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Shuhang Xu
- Research Center of Endocrine and Metabolic Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 100 Hongshan Road, Nanjing, 210028, China
| | - Jing Zhou
- Department of Pharmaceutical Analysis and Metabolomics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Li Zhang
- Clinical Laboratory, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 100 Hongshan Road, Nanjing, 210028, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Xiaodong Mao
- Research Center of Endocrine and Metabolic Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 100 Hongshan Road, Nanjing, 210028, China
| | - Xiaoming Yao
- Clinical Laboratory, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 100 Hongshan Road, Nanjing, 210028, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China.
| | - Chao Liu
- Research Center of Endocrine and Metabolic Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 100 Hongshan Road, Nanjing, 210028, China.
| |
Collapse
|
7
|
van Heeckeren AM, Sutton MT, Fletcher DR, Hodges CA, Caplan AI, Bonfield TL. Enhancing Cystic Fibrosis Immune Regulation. Front Pharmacol 2021; 12:573065. [PMID: 34054509 PMCID: PMC8155373 DOI: 10.3389/fphar.2021.573065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/29/2021] [Indexed: 01/08/2023] Open
Abstract
In cystic fibrosis (CF), sustained infection and exuberant inflammation results in debilitating and often fatal lung disease. Advancement in CF therapeutics has provided successful treatment regimens for a variety of clinical consequences in CF; however effective means to treat the pulmonary infection and inflammation continues to be problematic. Even with the successful development of small molecule cystic fibrosis transmembrane conductance regulator (CFTR) correctors and potentiators, there is only a modest effect on established infection and inflammation in CF patients. In the pursuit of therapeutics to treat inflammation, the conundrum to address is how to overcome the inflammatory response without jeopardizing the required immunity to manage pathogens and prevent infection. The key therapeutic would have the capacity to dull the inflammatory response, while sustaining the ability to manage infections. Advances in cell-based therapy have opened up the avenue for dynamic and versatile immune interventions that may support this requirement. Cell based therapy has the capacity to augment the patient’s own ability to manage their inflammatory status while at the same time sustaining anti-pathogen immunity. The studies highlighted in this manuscript outline the potential use of cell-based therapy for CF. The data demonstrate that 1) total bone marrow aspirates containing Cftr sufficient hematopoietic and mesenchymal stem cells (hMSCs) provide Cftr deficient mice >50% improvement in survival and improved management of infection and inflammation; 2) myeloid cells can provide sufficient Cftr to provide pre-clinical anti-inflammatory and antimicrobial benefit; 3) hMSCs provide significant improvement in survival and management of infection and inflammation in CF; 4) the combined interaction between macrophages and hMSCs can potentially enhance anti-inflammatory and antimicrobial support through manipulating PPARγ. These data support the development of optimized cell-based therapeutics to enhance CF patient’s own immune repertoire and capacity to maintain the balance between inflammation and pathogen management.
Collapse
Affiliation(s)
- Anna M van Heeckeren
- Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Morgan T Sutton
- Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Skeletal Research Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Departments of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,St. Jude Children's Research Hospital Graduate School of Biomedical Sciences, Memphis, TN, United States
| | - David R Fletcher
- Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Departments of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Craig A Hodges
- Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Departments of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Arnold I Caplan
- Department of Biology, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Skeletal Research Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Tracey L Bonfield
- Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Skeletal Research Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Departments of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
8
|
Bonfield TL, Sutton MT, Fletcher DR, Folz MA, Ragavapuram V, Somoza RA, Caplan AI. Donor-defined mesenchymal stem cell antimicrobial potency against nontuberculous mycobacterium. Stem Cells Transl Med 2021; 10:1202-1216. [PMID: 33943038 PMCID: PMC8284776 DOI: 10.1002/sctm.20-0521] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/02/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic nontuberculous mycobacterial infections with Mycobacterium avium and Mycobacterium intracellulare complicate bronchiectasis, chronic obstructive airway disease, and the health of aging individuals. These insidious intracellular pathogens cause considerable morbidity and eventual mortality in individuals colonized with these bacteria. Current treatment regimens with antibiotic macrolides are both toxic and often inefficient at providing infection resolution. In this article, we demonstrate that human marrow‐derived mesenchymal stem cells are antimicrobial and anti‐inflammatory in vitro and in the context of an in vivo sustained infection of either M. avium and/or M. intracellulare.
Collapse
Affiliation(s)
- Tracey L Bonfield
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA.,National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Morgan T Sutton
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA.,National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA.,St. Jude Children's Research Hospital Graduate School of Biomedical Sciences, Memphis, Tennessee, USA
| | - David R Fletcher
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA.,National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michael A Folz
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA.,National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Vaishnavi Ragavapuram
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA.,National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Rodrigo A Somoza
- Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Arnold I Caplan
- Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
9
|
Künzi L, Easter M, Hirsch MJ, Krick S. Cystic Fibrosis Lung Disease in the Aging Population. Front Pharmacol 2021; 12:601438. [PMID: 33935699 PMCID: PMC8082404 DOI: 10.3389/fphar.2021.601438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/15/2021] [Indexed: 01/02/2023] Open
Abstract
The demographics of the population with cystic fibrosis (CF) is continuously changing, with nowadays adults outnumbering children and a median predicted survival of over 40 years. This leads to the challenge of treating an aging CF population, while previous research has largely focused on pediatric and adolescent patients. Chronic inflammation is not only a hallmark of CF lung disease, but also of the aging process. However, very little is known about the effects of an accelerated aging pathology in CF lungs. Several chronic lung disease pathologies show signs of chronic inflammation with accelerated aging, also termed “inflammaging”; the most notable being chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). In these disease entities, accelerated aging has been implicated in the pathogenesis via interference with tissue repair mechanisms, alterations of the immune system leading to impaired defense against pulmonary infections and induction of a chronic pro-inflammatory state. In addition, CF lungs have been shown to exhibit increased expression of senescence markers. Sustained airway inflammation also leads to the degradation and increased turnover of cystic fibrosis transmembrane regulator (CFTR). This further reduces CFTR function and may prevent the novel CFTR modulator therapies from developing their full efficacy. Therefore, novel therapies targeting aging processes in CF lungs could be promising. This review summarizes the current research on CF in an aging population focusing on accelerated aging in the context of chronic airway inflammation and therapy implications.
Collapse
Affiliation(s)
- Lisa Künzi
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.,Epidemiology, Biostatistics and Prevention Institute, Department of Public and Global Health, University of Zürich, Zürich, Switzerland
| | - Molly Easter
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Meghan June Hirsch
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.,Gregory Fleming Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States.,Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
10
|
Wong JJM, Leong JY, Lee JH, Albani S, Yeo JG. Insights into the immuno-pathogenesis of acute respiratory distress syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:504. [PMID: 31728357 DOI: 10.21037/atm.2019.09.28] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a clinical syndrome associated with oxygenation failure resulting from a direct pulmonary or indirect systemic insult. It is a complex etiological phenomenon involving an array of immune cells acting in a delicate balance between pathogen clearance and immunopathology. There is emerging evidence of the involvement of different immune cell types in ARDS pathogenesis. This includes polarization of alveolar macrophages (AMs), neutrophil netosis, the pro-inflammatory response of T helper 17 subsets, and the anti-inflammatory and regenerative role of T regulatory cell subsets. Knowledge of these pathogenic mechanisms has led to translational opportunities, for example, research in the use of methylprednisolone, DNAse, aspirin, keratinocyte growth factor and in the development of stem cell therapy for ARDS. Discovering subgroups of patients with ARDS afflicted with homogenous pathologic mechanisms can provide prognostic and/or predictive insight that will enable precision medicine. Lastly, new high dimensional immunomic technologies are promising tools in evaluating the host immune response in ARDS and will be discussed in this review.
Collapse
Affiliation(s)
- Judith Ju Ming Wong
- Children's Intensive Care Unit, Department of Pediatric Subspecialty, KK Women's and Children's Hospital, Singapore.,Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore
| | - Jing Yao Leong
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore
| | - Jan Hau Lee
- Children's Intensive Care Unit, Department of Pediatric Subspecialty, KK Women's and Children's Hospital, Singapore
| | - Salvatore Albani
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore.,Division of Medicine, KK Women's and Children's Hospital, Singapore
| | - Joo Guan Yeo
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore.,Division of Medicine, KK Women's and Children's Hospital, Singapore
| |
Collapse
|
11
|
Garić D, Tao S, Ahmed E, Youssef M, Kanagaratham C, Shah J, Mazer B, Radzioch D. Depletion of BAFF cytokine exacerbates infection in Pseudomonas aeruginosa infected mice. J Cyst Fibros 2019; 18:349-356. [DOI: 10.1016/j.jcf.2018.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/22/2018] [Accepted: 11/28/2018] [Indexed: 12/14/2022]
|
12
|
Affiliation(s)
- Tracey Bonfield
- Rainbow Babies and Children's Hospital, 11100 Euclid Avenue, Cleveland, OH 44106, USA; Case Western Reserve University School of Medicine, 2109 Adelbert Road, Cleveland, OH 44106, USA
| | - James F Chmiel
- Rainbow Babies and Children's Hospital, 11100 Euclid Avenue, Cleveland, OH 44106, USA; Case Western Reserve University School of Medicine, 2109 Adelbert Road, Cleveland, OH 44106, USA.
| |
Collapse
|
13
|
Esteves CZ, de Aguiar Dias L, de Oliveira Lima E, de Oliveira DN, Rodrigues Melo CFO, Delafiori J, Souza Gomez CC, Ribeiro JD, Ribeiro AF, Levy CE, Catharino RR. Skin Biomarkers for Cystic Fibrosis: A Potential Non-Invasive Approach for Patient Screening. Front Pediatr 2017; 5:290. [PMID: 29376041 PMCID: PMC5767587 DOI: 10.3389/fped.2017.00290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/18/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cystic fibrosis (CF) is a disabling genetic disease with an increased prevalence in European heritage populations. Currently, the most used technique for collection of CF samples and diagnosis is provided through uncomfortable tests, with uncertain results, mostly based on chloride concentration in sweat. Since CF mutation induces many metabolic changes in patients, exploring these alterations might be an alternative to visualize potential biomarkers that could be used as interesting tools for further diagnostic upgrade, prioritizing simplicity, low cost, and quickness. METHODS This contribution describes an accurate strategy to provide potential biomarkers related to CF, which may be understood as a potential tool for new diagnostic approaches and/or for monitoring disease evolution. Therefore, the present proposal consists of using skin imprints on silica plates as a way of sample collection, followed by direct-infusion high-resolution mass spectrometry and multivariate data analysis, intending to identify metabolic changes in skin composition of CF patients. RESULTS Metabolomics analysis allowed identifying chemical markers that can be traced back to CF in patients' skin imprints, differently from control subjects. Seven chemical markers from several molecular classes were elected, represented by bile acids, a glutaric acid derivative, thyrotropin-releasing hormone, an inflammatory mediator, a phosphatidic acid, and diacylglycerol isomers, all reflecting metabolic disturbances that occur due to of CF. CONCLUSION The comfortable method of sample collection combined with the identified set of biomarkers represent potential tools that open the range of possibilities to manage CF and follow the disease evolution. This exploratory approach points to new perspectives about the development of diagnostic assay using biomarkers and the management CF.
Collapse
Affiliation(s)
- Cibele Zanardi Esteves
- Innovare Biomarkers Laboratory, Medicine and Experimental Surgery Nucleus, University of Campinas, Campinas, Brazil
| | - Letícia de Aguiar Dias
- Innovare Biomarkers Laboratory, Medicine and Experimental Surgery Nucleus, University of Campinas, Campinas, Brazil
| | - Estela de Oliveira Lima
- Innovare Biomarkers Laboratory, Medicine and Experimental Surgery Nucleus, University of Campinas, Campinas, Brazil
| | - Diogo Noin de Oliveira
- Innovare Biomarkers Laboratory, Medicine and Experimental Surgery Nucleus, University of Campinas, Campinas, Brazil
| | | | - Jeany Delafiori
- Innovare Biomarkers Laboratory, Medicine and Experimental Surgery Nucleus, University of Campinas, Campinas, Brazil
| | | | | | | | | | - Rodrigo Ramos Catharino
- Innovare Biomarkers Laboratory, Medicine and Experimental Surgery Nucleus, University of Campinas, Campinas, Brazil
| |
Collapse
|
14
|
The impact of impaired macrophage functions in cystic fibrosis disease progression. J Cyst Fibros 2016; 16:443-453. [PMID: 27856165 DOI: 10.1016/j.jcf.2016.10.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/21/2016] [Accepted: 10/23/2016] [Indexed: 01/29/2023]
Abstract
The underlying cause of morbidity in cystic fibrosis (CF) is the decline in lung function, which results in part from chronic inflammation. Inflammation and infection occur early in infancy in CF and the role of innate immune defense in CF has been highlighted in the last years. Once thought simply to be consumers of bacteria, macrophages have emerged as highly sensitive immune cells that are located at the balance point between inflammation and resolution of this inflammation in CF pathophysiology. In order to assess the potential role of macrophage in CF, we review the evidence that: (1) CF macrophage has a dysregulated inflammatory phenotype; (2) CF macrophage presents altered phagocytosis capacity and bacterial killing; and (3) lipid disorders in CF macrophage affect its function. These alterations of macrophage weaken innate defense of CF patients and may be involved in CF disease progression and lung damage.
Collapse
|
15
|
Bruscia EM, Bonfield TL. Cystic Fibrosis Lung Immunity: The Role of the Macrophage. J Innate Immun 2016; 8:550-563. [PMID: 27336915 DOI: 10.1159/000446825] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/16/2016] [Indexed: 01/04/2023] Open
Abstract
Cystic fibrosis (CF) pathophysiology is hallmarked by excessive inflammation and the inability to efficiently resolve lung infections, contributing to major morbidity and eventually the mortality of patients with this disease. Macrophages (MΦs) are major players in lung homeostasis through their diverse contributions to both the innate and adaptive immune networks. The setting of MΦ function and activity in CF is multifaceted, encompassing the response to the unique environmental cues in the CF lung as well as the intrinsic changes resulting from CFTR dysfunction. The complexity is further enhanced with the identification of modifier genes, which modulate the CFTR contribution to disease, resulting in epigenetic and transcriptional shifts in MΦ phenotype. This review focuses on the contribution of MΦ to lung homeostasis, providing an overview of the diverse literature and various perspectives on the role of these immune guardians in CF.
Collapse
Affiliation(s)
- Emanuela M Bruscia
- Section of Respiratory Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, Conn., USA
| | | |
Collapse
|
16
|
Kawano H, Kayama H, Nakama T, Hashimoto T, Umemoto E, Takeda K. IL-10-producing lung interstitial macrophages prevent neutrophilic asthma. Int Immunol 2016; 28:489-501. [PMID: 26976823 DOI: 10.1093/intimm/dxw012] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/09/2016] [Indexed: 12/15/2022] Open
Abstract
Inflammatory responses contribute to host defense against harmful organisms and allergens, whereas a failure of immune tolerance can cause chronic inflammation including asthma. The lung has several innate myeloid cell subsets. Among these subsets, there are two types of macrophages: alveolar macrophages (AMs) and interstitial macrophages (IMs). However, compared with AMs, the role of IMs in lung homeostasis remains poorly understood. In this study, we characterized AMs and IMs in healthy and inflammatory conditions. Pulmonary IMs constitutively produce the anti-inflammatory cytokine IL-10 through activation of the TLR4/MyD88 pathway in a microbiota-independent manner. In addition to IMs, Foxp3+ Treg cells show persistent IL-10 expression in the lung, with IL-10-producing IMs more prevalent than Foxp3+ Treg cells. IMs, but not Foxp3+ Treg cells, increased IL-10 production in house dust mite (HDM)-challenged mice, a model of human asthma. HDM-challenged Il10 -/- mice exhibited severe lung pathology characterized by neutrophilia compared with that of wild-type mice. In addition, transplantation of wild-type IMs reduced neutrophilic inflammation, goblet cell mucus production and decreased expression of lung IL-13 and Th17-related neutrophil-activating cytokines such as IL-17, GM-CSF, and TNF-α. Together these results demonstrate that IL-10-producing IMs negatively regulate Th2- and Th17-mediated inflammatory responses, helping prevent neutrophilic asthma.
Collapse
Affiliation(s)
- Hideo Kawano
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine and Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan Department of Dermatology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine and Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Takekuni Nakama
- Department of Dermatology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Takashi Hashimoto
- Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka 830-0011, Japan
| | - Eiji Umemoto
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine and Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine and Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| |
Collapse
|
17
|
Abstract
Cystic fibrosis (CF) lung disease is characterized by persistent and unresolved inflammation, with elevated proinflammatory and decreased anti-inflammatory cytokines, and greater numbers of immune cells. Hyperinflammation is recognized as a leading cause of lung tissue destruction in CF. Hyper-inflammation is not solely observed in the lungs of CF patients, since it may contribute to destruction of exocrine pancreas and, likely, to defects in gastrointestinal tract tissue integrity. Paradoxically, despite the robust inflammatory response, and elevated number of immune cells (such as neutrophils and macrophages), CF lungs fail to clear bacteria and are more susceptible to infections. Here, we have summarized the current understanding of immune dysregulation in CF, which may drive hyperinflammation and impaired host defense.
Collapse
Affiliation(s)
- Emanuela M Bruscia
- Section of Respiratory Medicine, Department of Pediatrics, Yale University School of Medicine, 330 Cedar Street, FMP, Room#524, New Haven, CT 06520, USA.
| | - Tracey L Bonfield
- Division of Pulmonology, Allergy and Immunology, Department of Pediatrics, Case Western Reserve University School of Medicine, 0900 Euclid Avenue, Cleveland, OH 44106-4948, USA.
| |
Collapse
|
18
|
Bruscia EM, Zhang PX, Barone C, Scholte BJ, Homer R, Krause DS, Egan ME. Increased susceptibility of Cftr-/- mice to LPS-induced lung remodeling. Am J Physiol Lung Cell Mol Physiol 2016; 310:L711-9. [PMID: 26851259 DOI: 10.1152/ajplung.00284.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/29/2016] [Indexed: 01/05/2023] Open
Abstract
Cystic fibrosis (CF) is caused by homozygous mutations of the CF transmembrane conductance regulator (CFTR) Cl(-) channel, which result in chronic pulmonary infection and inflammation, the major cause of morbidity and mortality. Although these processes are clearly related to each other, each is likely to contribute to the pathology differently. Understanding the contribution of each of these processes to the overall pathology has been difficult, because they are usually so intimately connected. Various CF mouse models have demonstrated abnormal immune responses compared with wild-type (WT) littermates when challenged with live bacteria or bacterial products acutely. However, these studies have not investigated the consequences of persistent inflammation on lung tissue in CF mice, which may better model the lung pathology in patients. We characterized the lung pathology and immune response of Cftr(-/-) (CF) and Cftr(+/+) (WT) mice to chronic administration of Pseudomonas aeruginosa lipopolysaccharide (LPS). We show that, after long-term repeated LPS exposure, CF mice develop an abnormal and persistent immune response, which is associated with more robust structural changes in the lung than those observed in WT mice. Although CF mice and their WT littermates develop lung pathology after chronic exposure to LPS, the inflammation and damage resolve in WT mice. However, CF mice do not recover efficiently, and, as a consequence of their chronic inflammation, CF mice are more susceptible to morphological changes and lung remodeling. This study shows that chronic inflammation alone contributes significantly to aspects of CF lung pathology.
Collapse
Affiliation(s)
- Emanuela M Bruscia
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
| | - Ping-Xia Zhang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Christina Barone
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
| | - Bob J Scholte
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Robert Homer
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Diane S Krause
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut; Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Marie E Egan
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut; and
| |
Collapse
|
19
|
Abstract
BACKGROUND Mutation of cystic fibrosis transmembrane conductance regulator (CFTR) in the airway epithelial cells can lead to recurrent airway inflammation in cystic fibrosis (CF). Dysfunction of CFTR in neutrophils could contribute to LPS-induced acute lung inflammation. Deficiency of CFTR could also facilitate platelet aggregation and neutrophil-platelet interaction and promote inflammation. AIM To study whether inhibition or mutation of CFTR in alveolar macrophages (AMs) or peritoneal macrophages (PMs) would promote their proinflammatory responses and whether dysfunction of CFTR would deteriorate acute E. coli-induced lung or peritoneal inflammation. DESIGN Laboratory study. METHODS ELISA was used to determine production of proinflammatory cytokines in the CFTR inhibited or mutated macrophages under LPS challenge. Lung or peritoneum lavage was used to analyze proinflammatory parameters and cell differentiation. Excess lung water and lung vascular permeability were measured for evaluating severity of acute lung inflammation. RESULTS Escherichia coli LPS simulation in AMs increased CFTR expression. Inhibition or mutation of CFTR in both AMs and PMs enhanced production of tumor necrosis factor alpha (TNF-α) and macrophage inflammatory protein-2 (MIP-2). Mutation of CFTR in macrophages exaggerated production of cytokines through NF-kB and p38 MAPK. Inhibition of CFTR by MalH2 or CFTRinh-172 deteriorates E. coli-induced acute lung inflammation. Deficiency of CFTR promotes migration of monocytes and neutrophils in E. coli pneumonia and peritonitis mouse models. CONCLUSIONS CFTR expressed by alveolar or peritoneal macrophages regulates acute proinflammatory responses.
Collapse
Affiliation(s)
- Z Gao
- From the Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - X Su
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China and Cardiovascular Research Institute, University of California, San Francisco, CA 94143-0130, USA
| |
Collapse
|
20
|
Crites KSM, Morin G, Orlando V, Patey N, Cantin C, Martel J, Brochiero E, Mailhot G. CFTR Knockdown induces proinflammatory changes in intestinal epithelial cells. JOURNAL OF INFLAMMATION-LONDON 2015; 12:62. [PMID: 26549988 PMCID: PMC4636765 DOI: 10.1186/s12950-015-0107-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 11/05/2015] [Indexed: 12/20/2022]
Abstract
Background Hyperinflammation is a hallmark feature of cystic fibrosis (CF) airways. However, inflammation has also been documented systemically and, more recently, in extrapulmonary CF-affected tissues such as the pancreas and intestine. The pathogenesis of CF-related inflammation and more specifically the role of the cystic fibrosis transmembrane conductance regulator (CFTR) in that respect are not entirely understood. We have tested the hypothesis that genetic depletion of CFTR will affect the inflammatory status of human intestinal epithelial cell lines. Methods CFTR expression was genetically depleted from Caco-2/15 and HT-29 cells using short hairpin RNA interference (shRNAi). Inflammatory conditions were induced by the addition of human recombinant tumor necrosis factor (TNF) or Interleukin-1β (IL-1β) for various periods of time. Gene expression, mRNA stability and secreted levels of interleukin (IL)-6, −8 and 10 were assessed. Analysis of pro- and anti-inflammatory signaling pathways including mitogen-activated protein kinases (p38, ERK 1/2 and JNK), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha (IκBα), and nuclear factor-kappa B (NF-κB) was also performed. Eosinophils were counted in the jejunal mucosa of Cftr−/− and Cftr+/+ mice. Results CFTR gene and protein knockdown caused a significant increase in basal secretion of IL-8 as well as in IL-1β-induced secretion of IL-6 and −8. Release of the anti-inflammatory cytokine, IL-10, remained unaffected by CFTR depletion. The enhanced secretion of IL-8 stems in part from increased IL8 mRNA levels and greater activation of ERK1/2 MAPK, IκBα and NF-κB in the CFTR knockdown cells. By contrast, phosphorylation levels of p38 and JNK MAPK did not differ between control and knockdown cells. We also found a higher number of infiltrating eosinophils in the jejunal mucosa of Cftr −/− females, but not males, compared to Cftr +/+ mice, thus providing in vivo support to our in vitro findings. Conclusion Collectively, these data underscore the role played by CFTR in regulating the intestinal inflammatory responses. Such findings lend support to the theory that CFTR exerts functions that may go beyond its role as a chloride channel whereby its disruption may prevent cells to optimally respond to exogenous or endogenous challenges. These observations are of particular interest to CF patients who were found to display alterations in their intestinal microbiota, thus predisposing them to pathogens that may elicit exaggerated inflammatory responses. Electronic supplementary material The online version of this article (doi:10.1186/s12950-015-0107-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Geneviève Morin
- Research Centre, CHU Sainte-Justine, 3175 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1C5 Canada
| | - Valérie Orlando
- Research Centre, CHU Sainte-Justine, 3175 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1C5 Canada
| | - Natacha Patey
- Research Centre, CHU Sainte-Justine, 3175 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1C5 Canada
| | - Catherine Cantin
- Research Centre, CHU Sainte-Justine, 3175 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1C5 Canada
| | - Judith Martel
- Research Centre, CHU Sainte-Justine, 3175 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1C5 Canada
| | - Emmanuelle Brochiero
- Research Center, CHUM, 900 Saint-Denis Street, Montreal, Quebec H2X 0A9 Canada ; Department of Medicine, Université de Montreal, 2900, Édouard-Montpetit Blvd, Montreal, Quebec H3T 1J4 Canada
| | - Geneviève Mailhot
- Research Centre, CHU Sainte-Justine, 3175 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1C5 Canada ; Department of Nutrition, Université de Montreal, 2405 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1A8 Canada
| |
Collapse
|
21
|
Nichols DP, Chmiel JF. Inflammation and its genesis in cystic fibrosis. Pediatr Pulmonol 2015; 50 Suppl 40:S39-56. [PMID: 26335954 DOI: 10.1002/ppul.23242] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 06/07/2015] [Accepted: 06/16/2015] [Indexed: 12/17/2022]
Abstract
The host inflammatory response in cystic fibrosis (CF) lung disease has long been recognized as a central pathological feature and an important therapeutic target. Indeed, many believe that bronchiectasis results largely from the oxidative and proteolytic damage comprised within an exuberant airway inflammatory response that is dominated by neutrophils. In this review, we address the longstanding argument of whether or not the inflammatory response is directly attributable to impairment of the cystic fibrosis transmembrane conductance regulator or only secondary to airway obstruction and chronic bacterial infection and challenge the importance of this distinction in the context of therapy. We also review the centrality of neutrophils in CF lung pathophysiology and highlight more recent data that suggest the importance of other cell types and signaling beyond NF-κB activation. We discuss how protease and redox imbalance are critical factors in CF airway inflammation and end by reviewing some of the more promising therapeutic approaches now under development.
Collapse
Affiliation(s)
- David P Nichols
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado.,Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.,National Jewish Health, Denver, Colorado
| | - James F Chmiel
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, Ohio
| |
Collapse
|
22
|
Spence S, Fitzsimons A, Boyd C, Kessler J, Fitzgerald D, Elliott J, Gabhann J, Smith S, Sica A, Hams E, Saunders S, Jefferies C, Fallon P, McAuley D, Kissenpfennig A, Johnston J. RETRACTED: Suppressors of Cytokine Signaling 2 and 3 Diametrically Control Macrophage Polarization. Immunity 2013. [DOI: 10.1016/j.immuni.2012.09.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Xu Y, Krause A, Limberis M, Worgall TS, Worgall S. Low sphingosine-1-phosphate impairs lung dendritic cells in cystic fibrosis. Am J Respir Cell Mol Biol 2012; 48:250-7. [PMID: 23239501 DOI: 10.1165/rcmb.2012-0021oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Dysfunction of the cystic fibrosis transmembrane regulator (CFTR) leads to chronic inflammation and infection of the respiratory tract. The role of CFTR for cells of the pulmonary immune system is only partly understood. The present study analyzes the phenotype and immune stimulatory capacity of lung dendritic cells (DCs) from CFTR knockout (CF) mice. Total numbers of conventional DCs, plasmacytoid DCs, and CD103-positive DCs were lower in CF mice compared with wild-type (WT) control mice, as was the expression of major histocompatibility complex class II molecules (MHCII), CD40, and CD86. After pulmonary infection with respiratory syncytial virus, DC numbers increased in WT mice but not in CF mice, and the T cell-stimulatory capacity of CF DCs was impaired. The culture of CF lung DCs with bronchoalveolar lavage fluid (BALF) from WT mice increased the expression of MHCII, CD40, and CD86. The supplementation of CF BALF with sphingosine-1-phosphate (S1P), a mediator of immune cell migration and activation that is decreased in CF BALF, rescued the reduced expression of MHCII and CD40 in WT lung DCs and human blood DCs. These findings suggest that DCs are impaired in the CF lung, and that altered S1P affects lung DC function. These findings provide a novel link between defective CFTR and pulmonary innate immune dysfunction in CF.
Collapse
Affiliation(s)
- Yaqin Xu
- Department of Pediatrics, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
24
|
Macrophage-mediated inflammation and disease: a focus on the lung. Mediators Inflamm 2012; 2012:140937. [PMID: 23304058 PMCID: PMC3530802 DOI: 10.1155/2012/140937] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 10/30/2012] [Indexed: 12/24/2022] Open
Abstract
The lung is exposed to a vast array of inhaled antigens, particulate matter, and pollution. Cells present in the airways must therefore be maintained in a generally suppressive phenotype so that excessive responses to nonserious irritants do not occur; these result in bystander damage to lung architecture, influx of immune cells to the airways, and consequent impairment of gas exchange. To this end, the resident cells of the lung, which are predominantly macrophages, are kept in a dampened state. However, on occasion the suppression fails and these macrophages overreact to antigenic challenge, resulting in release of inflammatory mediators, induction of death of lung epithelial cells, deposition of extracellular matrix, and development of immunopathology. In this paper, we discuss the mechanisms behind this macrophage-mediated pathology, in the context of a number of inflammatory pulmonary disorders.
Collapse
|
25
|
Alveolar macrophages in neonatal mice are inherently unresponsive to Pneumocystis murina infection. Infect Immun 2012; 80:2835-46. [PMID: 22665378 DOI: 10.1128/iai.05707-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pneumocystis pneumonia was first diagnosed in malnourished children and has more recently been found in children with upper respiratory symptoms. We previously reported that there is a significant delay in the immune response in newborn mice infected with Pneumocystis compared to adults (Garvy BA, Harmsen AG, Infect. Immun. 64:3987-3992, 1996, and Garvy BA, Qureshi M, J. Immunol. 165:6480-6486, 2000). This delay is characterized by the failure of neonatal lungs to upregulate proinflammatory cytokines and attract T cells into the alveoli. Here, we report that regardless of the age at which we infected the mice, they failed to mount an inflammatory response in the alveolar spaces until they were 21 days of age or older. Anti-inflammatory cytokines had some role in dampening inflammation, since interleukin-10 (IL-10)-deficient pups cleared Pneumocystis faster than wild-type pups and the neutralization of transforming growth factor beta (TGF-β) with specific antibody enhanced T cell migration into the lungs at later time points. However, the clearance kinetics were similar to those of control pups, suggesting that there is an intrinsic deficiency in the ability of innate immunity to control Pneumocystis. We found, using an adoptive transfer strategy, that the lung environment contributes to association of Pneumocystis organisms with alveolar macrophages, implying no intrinsic deficiency in the binding of Pneumocystis by neonatal macrophages. Using both in vivo and in vitro assays, we found that Pneumocystis organisms were less able to stimulate translocation of NF-κB to the nucleus of alveolar macrophages from neonatal mice. These data indicate that there is an early unresponsiveness of neonatal alveolar macrophages to Pneumocystis infection that is both intrinsic and related to the immunosuppressive environment found in neonatal lungs.
Collapse
|
26
|
mGluR1 interacts with cystic fibrosis transmembrane conductance regulator and modulates the secretion of IL-10 in cystic fibrosis peripheral lymphocytes. Mol Immunol 2012; 51:310-5. [PMID: 22520513 DOI: 10.1016/j.molimm.2012.03.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 01/02/2023]
Abstract
Cystic fibrosis (CF) is caused by the mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. CFTR dysfunction in T cells could lead directly to aberrant immune responses. The action of glutamate on the secretion of IL-8 and IL-10 by lymphocytes derived from healthy subjects and cystic CF patients, as well as the expression of metabotropic glutamate receptor subtype 1 (mGluR1) in the membrane fractions of lymphocytes was investigated. Our results have shown that CF-derived T-cells in the presence of IL-2 produce more IL-8 and IL-10, than T-cell from healthy control. However, only in normal lymphocytes a significant increase (144%) in the IL-10 secretion during exposure to high concentration of glutamate (10(-4)M) was detected. Glutamate-dependent secretion of IL-10 was not inhibited either by NMDA-receptor (NMDAR), or by AMPA-receptor (AMPAR) antagonist. Only mGluR1 antagonist, LY367385, strongly decreases the production of IL-10. Furthermore, the content of mGluR1, as well as cystic fibrosis transmembrane conductance regulator-associated ligand (CAL), Na(+)/H(+) exchanger regulatory factor 1 (NHERF-1), was analyzed in plasma membrane of lymphocytes after immunoprecipitation of CFTR. We have found that normal, non-mutated CFTR, as well as mutated forms of CFTR were associated with metabotropic mGluR1, but the level of surface exposed mGluR1 in CF-lymphocytes was much lower than in normal cells. Besides, our results have shown that normal, non-mutated CFTR, as well as mutated forms of CFTR were associated with NHERF-1 and CAL; however in lymphocytes with CFTR mutation the amount of cell-surface expressed CFTR-CAL complex was greatly decreased. We have concluded that CFTR and mGluR1 could compete for binding to CAL, which in turn downregulates the post-synthetic trafficking of mGluR1 and decreases the synthesis of IL-10.
Collapse
|
27
|
Drumm ML, Ziady AG, Davis PB. Genetic variation and clinical heterogeneity in cystic fibrosis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2011; 7:267-82. [PMID: 22017581 DOI: 10.1146/annurev-pathol-011811-120900] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cystic fibrosis (CF), a lethal genetic disease, is characterized by substantial clinical heterogeneity. Work over the past decade has established that much of the variation is genetically conferred, and recent studies have begun to identify chromosomal locations that identify specific genes as contributing to this variation. Transcriptomic and proteomic data, sampling hundreds and thousands of genes and their products, point to pathways that are altered in the cells and tissues of CF patients. Genetic studies have examined more than half a million polymorphic sites and have identified regions, and probably genes, that contribute to the clinical heterogeneity. The combination of these approaches has great potential because genetic profiling identifies putative disease-modifying processes, and transcript and protein profiling is shedding light on the biology involved. Such studies are providing new insights into the disease, such as altered apoptotic responses, oxidative stress dysregulation, and neuronal involvement, all of which may open new therapeutic avenues to exploration.
Collapse
Affiliation(s)
- Mitchell L Drumm
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.
| | | | | |
Collapse
|
28
|
Abstract
Cystic fibrosis is characterized by excessive pulmonary inflammation, which presents early in life and becomes self-sustaining, eventually leading to the destruction of the lung. Treating inflammation is one of the most pressing needs in CF therapy and has been shown to slow lung function deterioration. However, it remains unclear whether excessive inflammation is a direct result of CFTR dysfunction, and thus innate, or develops in response to early stimulation of inflammatory pathways. Here, we will discuss clinically relevant studies and the methods employed by them. We will focus on investigations in cell and animal models as well as patients. Our discussion will describe the character of pulmonary inflammation in CF and present potential therapeutic approaches that can ameliorate excessive responses and improve disease prognosis.
Collapse
|
29
|
Backus GS, Howden R, Fostel J, Bauer AK, Cho HY, Marzec J, Peden DB, Kleeberger SR. Protective role of interleukin-10 in ozone-induced pulmonary inflammation. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:1721-7. [PMID: 20826374 PMCID: PMC3002191 DOI: 10.1289/ehp.1002182] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 09/08/2010] [Indexed: 05/09/2023]
Abstract
BACKGROUND The mechanisms underlying ozone (O₃)-induced pulmonary inflammation remain unclear. Interleukin-10 (IL-10) is an anti-inflammatory cytokine that is known to inhibit inflammatory mediators. OBJECTIVES We investigated the molecular mechanisms underlying interleuken-10 (IL-10)-mediated attenuation of O₃-induced pulmonary inflammation in mice. METHODS Il10-deficient (Il10(-/-)) and wild-type (Il10(+/+)) mice were exposed to 0.3 ppm O₃ or filtered air for 24, 48, or 72 hr. Immediately after exposure, differential cell counts and total protein (a marker of lung permeability) were assessed from bronchoalveolar lavage fluid (BALF). mRNA and protein levels of cellular mediators were determined from lung homogenates. We also used global mRNA expression analyses of lung tissue with Ingenuity Pathway Analysis to identify patterns of gene expression through which IL-10 modifies O₃-induced inflammation. RESULTS Mean numbers of BALF polymorphonuclear leukocytes (PMNs) were significantly greater in Il10(-/-) mice than in Il10(+/+) mice after exposure to O₃ at all time points tested. O₃-enhanced nuclear NF-κB translocation was elevated in the lungs of Il10(-/-) compared with Il10(+/+) mice. Gene expression analyses revealed several IL-10-dependent and O₃-dependent mediators, including macrophage inflammatory protein 2, cathepsin E, and serum amyloid A3. CONCLUSIONS Results indicate that IL-10 protects against O₃-induced pulmonary neutrophilic inflammation and cell proliferation. Moreover, gene expression analyses identified three response pathways and several genetic targets through which IL-10 may modulate the innate and adaptive immune response. These novel mechanisms of protection against the pathogenesis of O₃-induced pulmonary inflammation may also provide potential therapeutic targets to protect susceptible individuals.
Collapse
Affiliation(s)
- Gillian S. Backus
- National Institute of Environmental Health Sciences, Laboratory of Respiratory Biology, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Reuben Howden
- University of North Carolina–Charlotte, Department of Kinesiology, Charlotte, North Carolina, USA
| | - Jennifer Fostel
- National Institute of Environmental Health Sciences, Laboratory of Respiratory Biology, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Alison K. Bauer
- Michigan State University, Department of Pathobiology and Diagnostic Investigation, Center for Integrative Toxicology, East Lansing, Michigan, USA
| | - Hye-Youn Cho
- National Institute of Environmental Health Sciences, Laboratory of Respiratory Biology, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Jacqui Marzec
- National Institute of Environmental Health Sciences, Laboratory of Respiratory Biology, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - David B. Peden
- Center for Environmental Medicine, Asthma and Lung Biology, Department of Pediatrics, and Division of Immunology and Infectious Disease, University of North Carolina–Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Steven R. Kleeberger
- National Institute of Environmental Health Sciences, Laboratory of Respiratory Biology, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
30
|
Myerburg MM, King JD, Oyster NM, Fitch AC, Magill A, Baty CJ, Watkins SC, Kolls JK, Pilewski JM, Hallows KR. AMPK agonists ameliorate sodium and fluid transport and inflammation in cystic fibrosis airway epithelial cells. Am J Respir Cell Mol Biol 2010; 42:676-84. [PMID: 19617399 PMCID: PMC2891496 DOI: 10.1165/2009-0147oc] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 06/05/2009] [Indexed: 12/13/2022] Open
Abstract
The metabolic sensor AMP-activated kinase (AMPK) inhibits both the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) Cl(-) channel and epithelial Na(+) channel (ENaC), and may inhibit secretion of proinflammatory cytokines in epithelia. Here we have tested in primary polarized CF and non-CF human bronchial epithelial (HBE) cells the effects of AMPK activators, metformin and 5-aminoimidazole-4-carboxamide-1-beta-D-riboside (AICAR), on various parameters that contribute to CF lung disease: ENaC-dependent short-circuit currents (I(sc)), airway surface liquid (ASL) height, and proinflammatory cytokine secretion. AMPK activation after overnight treatment with either metformin (2-5 mM) or AICAR (1 mM) substantially inhibited ENaC-dependent I(sc) in both CF and non-CF airway cultures. Live-cell confocal images acquired 60 minutes after apical addition of Texas Red-dextran-containing fluid revealed significantly greater ASL heights after AICAR and metformin treatment relative to controls, suggesting that AMPK-dependent ENaC inhibition slows apical fluid reabsorption. Both metformin and AICAR decreased secretion of various proinflammatory cytokines, both with and without prior LPS stimulation. Finally, prolonged exposure to more physiologically relevant concentrations of metformin (0.03-1 mM) inhibited ENaC currents and decreased proinflammatory cytokine levels in CF HBE cells in a dose-dependent manner. These findings suggest that novel therapies to activate AMPK in the CF airway may be beneficial by blunting excessive sodium and ASL absorption and by reducing excessive airway inflammation, which are major contributors to CF lung disease.
Collapse
Affiliation(s)
- Michael M. Myerburg
- Departments of Medicine, Pediatrics, and Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - J Darwin King
- Departments of Medicine, Pediatrics, and Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nicholas M. Oyster
- Departments of Medicine, Pediatrics, and Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Adam C. Fitch
- Departments of Medicine, Pediatrics, and Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Amy Magill
- Departments of Medicine, Pediatrics, and Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Catherine J. Baty
- Departments of Medicine, Pediatrics, and Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Simon C. Watkins
- Departments of Medicine, Pediatrics, and Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jay K. Kolls
- Departments of Medicine, Pediatrics, and Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Joseph M. Pilewski
- Departments of Medicine, Pediatrics, and Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kenneth R. Hallows
- Departments of Medicine, Pediatrics, and Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
31
|
Dalli J, Rosignoli G, Hayhoe RPG, Edelman A, Perretti M. CFTR inhibition provokes an inflammatory response associated with an imbalance of the annexin A1 pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:176-86. [PMID: 20489160 DOI: 10.2353/ajpath.2010.091149] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cystic fibrosis (CF), a disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, is characterized by chronic bacterial infections and inflammation in the lung. Having previously shown that deletion of CFTR is associated with lower expression of the endogenous anti-inflammatory protein Annexin A1 (AnxA1), we investigated further this possible functional connection using a validated CFTR inhibitor. Treatment of mice with the CFTR inhibitor-172 (CFTR(172)) augmented the acute peritonitis promoted by zymosan, an effect associated with lower AnxA1 levels in peritoneal cells. Similar results were obtained with another, chemically distinct, CFTR inhibitor. The pro-inflammatory effect of CFTR(172) was lost in AnxA1(-/-), as well as CFTR(-/-) mice. Importantly, administration of hrAnxA1 and its peptido-mimetic to CFTR(-/-) animals or to animals treated with CFTR(172) corrected the exaggerated leukocyte migration seen in these animals. In vitro assays with human Polymorphonuclear leukocyte (PMN) demonstrated that CFTR(172) reduced cell-associated AnxA1 by promoting release of the protein in microparticles. We propose that the reduced impact of the counterregulatory properties of AnxA1 in CF cells contributes to the inflammatory phenotype characteristic of this disease. Thus, these findings provide an important insight into the mechanism underlying the inflammatory disease associated with CFTR inhibition while, at the same time, providing a novel pharmacological target for controlling the inflammatory phenotype of CF.
Collapse
Affiliation(s)
- Jesmond Dalli
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | | | | | | | | |
Collapse
|
32
|
IL-10 delivery by AAV5 vector attenuates inflammation in mice with Pseudomonas pneumonia. Gene Ther 2010; 17:567-76. [PMID: 20357828 DOI: 10.1038/gt.2010.28] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lung infections with Pseudomonas aeruginosa and other pathogens in cystic fibrosis (CF) cause progressive airway obstruction and tissue damage, the predominant cause of morbidity and mortality in CF. We investigated whether a recombinant adeno-associated virus type 5 (AAV5) vector expressing murine interleukin (IL)-10 (AAV5.Cbeta-mIL-10), a regulatory/anti-inflammatory cytokine, could decrease airway inflammation in IL-10 knockout mice chronically infected with mucoid P. aeruginosa. Mice that received AAV5.Cbeta-mIL10 through intratracheal inoculation produced IL-10 at an average of 25 000 pg/ml in the epithelial lining fluid (ELF) and 12 000 pg/g-lung tissue 6 weeks post-vector delivery, significantly higher levels than in placebo-treated mice. At 3 days post-infection, proinflammatory cytokines (IL-1beta, tumor necrosis factor (TNF)-alpha, macrophage inhibitory protein (MIP)-1alpha and (KC) in the ELF and lung homogenate were decreased (1-9 folds) in the AAV5.Cbeta-mIL10-treated mice accompanied by less pronounced and more localized neutrophil infiltration in lung sections, when compared with placebo-treated mice. These results suggest that AAV5.Cbeta-mIL10 induces IL-10 levels in the lungs mediating a significant anti-inflammatory response and making AAV-IL-10 gene transfer a potentially useful therapy in the treatment of CF lung disease.
Collapse
|
33
|
Azithromycin alters macrophage phenotype and pulmonary compartmentalization during lung infection with Pseudomonas. Antimicrob Agents Chemother 2010; 54:2437-47. [PMID: 20231397 DOI: 10.1128/aac.01424-09] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Infection with mucoid strains of Pseudomonas aeruginosa in chronic inflammatory diseases of the airway is difficult to eradicate and can cause excessive inflammation. The roles of alternatively activated and regulatory subsets of macrophages in this pathophysiological process are not well characterized. We previously demonstrated that azithromycin induces an alternatively activated macrophage-like phenotype in vitro. In the present study, we tested whether azithromycin affects the macrophage activation status and migration in the lungs of P. aeruginosa-infected mice. C57BL/6 mice received daily doses of oral azithromycin and were infected intratracheally with a mucoid strain of P. aeruginosa. The properties of macrophage activation, immune cell infiltration, and markers of pulmonary inflammation in the lung interstitial and alveolar compartments were evaluated postinfection. Markers of alternative macrophage activation were induced by azithromycin treatment, including the surface expression of the mannose receptor, the upregulation of arginase 1, and a decrease in the production of proinflammatory cytokines. Additionally, azithromycin increased the number of CD11b(+) monocytes and CD4(+) T cells that infiltrated the alveolar compartment. A predominant subset of CD11b(+) cells was Gr-1 positive (Gr-1(+)), indicative of a subset of cells that has been shown to be immunoregulatory. These differences corresponded to decreases in neutrophil influx into the lung parenchyma and alteration of the characteristics of peribronchiolar inflammation without any change in the clearance of the organism. These results suggest that the immunomodulatory effects of azithromycin are associated with the induction of alternative and regulatory macrophage activation characteristics and alteration of cellular compartmentalization during infection.
Collapse
|
34
|
Lymphocytic leiomyositis and myenteric ganglionitis are intrinsic features of cystic fibrosis: studies in distal intestinal obstruction syndrome and meconium ileus. J Pediatr Gastroenterol Nutr 2009; 49:42-51. [PMID: 19710558 DOI: 10.1097/mpg.0b013e318186d35a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) is a multisystem disorder intrinsically associated with inflammation of mucosal surfaces. Because inflammation can result in enteric neuromuscular dysfunction we hypothesized that terminal ileitis in patients with CF may predispose to distal ileal obstruction syndrome (DIOS). METHODS AND PATIENTS Full-thickness terminal ileal tissues from 6 children with CF and severe DIOS, 6 infants with complicated meconium ileus (MI), and 6 children with non-CF intestinal atresia were studied. RESULTS Lymphocyte-predominant mucosal and transmural ileal inflammation was present in 6 of 6 patients with DIOS. Lymphocytic ganglionitis was present in 4 of 6 although numbers of myenteric neurons were not decreased (5/5). Myocyte proteins were preserved (6/6). Mild submucosal fibrosis was common in DIOS (5/6) and transformation of submucosal fibroblasts to a myofibroblastic phenotype was noted in 4 of 6. Inflammatory changes were distinct from those described in fibrosing colonopathy. Antroduodenal manometry in an individual who had experienced MI/DIOS was consistent with a neuropathic pseudo-obstructive process. Submucosal or transmural lymphocyte predominant inflammation was also present in 6 of 6 infants with complicated MI, which, when coupled with submucosal myofibroblast proliferation (5/6), appeared highly predictive of CF rather than non-CF atresia. Histological findings at birth were similar, although milder, than those seen in DIOS, suggesting that these changes are a primary abnormality in CF. CONCLUSIONS Submucosal or transmural inflammation of the ileum is common in newborns with CF and MI and older children with DIOS. Severe recurrent DIOS should be investigated with seromuscular and mucosal biopsy of the ileum to seek a transmural ileitis potentially amenable to anti-inflammatory therapies.
Collapse
|
35
|
Jose P, Avdiushko MG, Akira S, Kaplan AM, Cohen DA. Inhibition of interleukin-10 signaling in lung dendritic cells by toll-like receptor 4 ligands. Exp Lung Res 2009; 35:1-28. [PMID: 19191102 DOI: 10.1080/01902140802389727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The homeostatic microenvironment in lung is immunosuppressive and interleukin-10 (IL-10) helps maintain this microenvironment. Despite constitutive production of IL-10 in normal lung, macrophages (MØs) and dentritic cells (DCs) remain capable of responding to microorganisms, suggesting that these innate immune cells have a mechanism to override the immunosuppressive effects of IL-10. Prior studies by the authors revealed that Toll-like receptor (TLR) ligands inhibit IL-10 receptor signaling in alveolar macrophages (AMØs), thereby obviating the immunosuppressive activity of IL-10. This report compares the immunologic phenotypes of AMØs and lung DCs and their ability to respond to IL-10 following exposure to microbial stimuli. IL-10 was constitutively produced by normal lung epithelium and exposure to lipopolysaccharide (LPS) in vivo increased the expression of IL-10 during the first 24 hours. AMØs constitutively produced IL-10 mRNA, whereas both AMØs and LDCs constitutively expressed IL-12 mRNA. AMØs and LDCs, as well as bone marrow-derived MØs and DCs, had reduced capacity to activate STAT3 in response to IL-10 if pretreated with LPS. Inhibition was not associated with decreased expression of IL-10 receptor (IL-10R) and was dependent on the MyD88 signaling pathway. These results demonstrate a common underlying regulatory mechanism in both DCs and MØs by which microbial stimuli can override the immunosuppressive effect of constitutive IL-10 production in the lung.
Collapse
Affiliation(s)
- Purnima Jose
- Graduate Center for Toxicology, University of Kentucky Medical Center, Lexington, Kentucky, USA
| | | | | | | | | |
Collapse
|
36
|
The pros and cons of immunomodulatory IL-10 gene therapy with recombinant AAV in a Cftr-/- -dependent allergy mouse model. Gene Ther 2008; 16:172-83. [PMID: 18818669 DOI: 10.1038/gt.2008.156] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cystic fibrosis (CF) patients have decreased levels of lung epithelial interleukin (IL)-10 and increased levels of proinflammatory cytokines (tumor necrosis factor-alpha, IL-4, IL-8 and IL-6). This has also been documented in Cftr (cystic fibrosis transmembrane conductance regulator)-deficient mice (Cftr 489X(-/-), FABP-hCFTR(+/+)). Our laboratory has recently characterized a peculiar hyper-IgE phenotype in these mice, in response to Aspergillus fumigatus crude protein extract (Af-cpe). Thus, we hypothesized that sustained systemic circulating IL-10 levels achieved through skeletal muscle transduction with recombinant adeno-associated vectors expressing IL-10 (rAAV1-IL-10) would serve to downregulate Th1 and Th2 cytokine production. This in turn would dampen the allergic response in the Cftr(-/-)-dependent mouse model of allergic bronchopulmonary aspergillosis. After Af-cpe sensitization and airway challenge, mice treated with rAAV1-IL-10 had markedly lower IgE levels when compared to the control-treated rAAV1-GFP group. This was accompanied by a significant reduction in the levels of IL-5, IL-4 and IL-13 in the lung compartment. The lower lung cytokine profiles resulted in a near absence of eosinophil recruitment in the lung and a lower inflammatory response in the lung tissue of mice receiving rAAV1-IL-10. Unfortunately, sustained secretion of IL-10 from transduced muscle did lead to thrombocytopenia and splenomegaly in mice injected with rAAV1-IL-10. These results highlight that while IL-10 gene therapy is very effective for treating allergic responses caution must be taken with the prolonged secretion of IL-10.
Collapse
|
37
|
Nichols D, Chmiel J, Berger M. Chronic inflammation in the cystic fibrosis lung: alterations in inter- and intracellular signaling. Clin Rev Allergy Immunol 2008; 34:146-62. [PMID: 17960347 DOI: 10.1007/s12016-007-8039-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A vicious cycle of airway obstruction, infection, and inflammation continues to cause most of the morbidity and mortality in cystic fibrosis (CF). Mutations that result in decreased expression or function of the membrane Cl(-) channel, cystic fibrosis transmembrane regulator (CFTR), result in a decrease in the volume (and hence the depth) of liquid on the airway surface, impaired ciliary function, and dehydrated glandular secretions. In turn, these abnormalities contribute to a milieu, which promotes chronic infection with a limited but unique spectrum of microorganisms. Defects in CFTR also perturb regulation of several intracellular signaling pathways including signal transducers and activator of transcription, I-kappaB and nuclear factor-kappa B, and low molecular weight GTPases. Together, these abnormalities result in excessive production of NF-kappaB dependent cytokines such as interleukin (IL)-1, tumor necrosis factor (TNF), IL-6, and IL-8. There are decreased responses to interferon gamma and transforming growth factor beta leading to decreased production of iNOS and NO. Abnormalities of lipid mediators and decreased secretion of counter/regulatory cytokines have also been reported. Together, these effects combine to create a chronic inflammatory process, which damages and obstructs the airways, and eventually claims the life of the patient.
Collapse
Affiliation(s)
- David Nichols
- Pulmonology and Allergy-Immunology Divisions, Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow, Babies and Children's Hospital, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
38
|
Arimilli S, Palmer EM, Alexander-Miller MA. Loss of function in virus-specific lung effector T cells is independent of infection. J Leukoc Biol 2008; 83:564-74. [PMID: 18079210 PMCID: PMC11650726 DOI: 10.1189/jlb.0407215] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Recently, several studies, including those with respiratory syncytial virus, mouse pneumovirus, and simian virus 5, have reported that virus-specific CD8+ effector cells entering the lung as a result of respiratory infection undergo significant loss of function. The impaired function in these cells has been proposed to be the result of infection-induced changes in the lung. Although virus-specific effects may contribute to regulation of T cells in the lung, the findings from this study provide evidence that the basal lung environment is sufficient to promote loss of function in effector cells. Loss of function occurs within 48 h of entry into the lung and is most evident in cells residing in the lung parenchyma. These findings suggest an additional paradigm for the immunoregulation of effector cells that enter the lung as a result of virus infection.
Collapse
Affiliation(s)
- Subhashini Arimilli
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Ellen M. Palmer
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Martha A. Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
39
|
Haase MG, Klawitter A, Geyer P, Baretton GB. Expression of the immunomodulator IL-10 in type I pneumocytes of the rat: alterations of IL-10 expression in radiation-induced lung damage. J Histochem Cytochem 2007; 55:1167-72. [PMID: 17679732 PMCID: PMC3957526 DOI: 10.1369/jhc.7a7173.2007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fibrosing alveolitis is a disease with inflammatory, proliferative, and fibrotic components. In different models, it has been shown that the cytokine interleukin-10 (IL-10) plays a conflicting role in inflammation-associated fibrotic processes, inasmuch as it is an anti-inflammatory cytokine but also a TH2 cytokine with inherent pro-fibrotic effects. IL-10 is produced primarily by inflammatory cells. In this report, we show in a rat model of radiation-induced fibrosing alveolitis that IL-10 is also produced by type I alveolar epithelial cells in both normal and fibrotic lungs. The total amount of IL-10 in the lung is increased after irradiation, but type I pneumoyctes contain less IL-10. The R3/1 permanent type I pneumocyte cell line also contains IL-10, which is reduced after irradiation. Whereas in the normal lung, the entire alveolar surface is covered by IL-10-producing pneumocytes, this continuity is interrupted in fibrotic lungs, because type I pneumocytes lack full differentiation and thus full spreading over the alveolar surface. The exposure of the IL-10-negative epithelial basal membrane may allow for an easier attachment of inflammatory cells such as alveolar macrophages. These cells have the potential to act in a pro-inflammatory way by tumor necrosis factor alpha and also in a pro-fibrotic way by activating TH2 cytokines.
Collapse
Affiliation(s)
- Michael G Haase
- OncoRay Center for Radiation Research in Oncology, Medical Faculty, Dresden University of Technology, Dresden, Germany.
| | | | | | | |
Collapse
|
40
|
Sagel SD, Chmiel JF, Konstan MW. Sputum biomarkers of inflammation in cystic fibrosis lung disease. PROCEEDINGS OF THE AMERICAN THORACIC SOCIETY 2007; 4:406-17. [PMID: 17652508 PMCID: PMC2647605 DOI: 10.1513/pats.200703-044br] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 05/11/2007] [Indexed: 11/20/2022]
Abstract
Pulmonary biomarkers are being used more frequently to monitor disease activity and evaluate response to treatment in individuals with cystic fibrosis (CF). This article summarizes the current state of knowledge of biomarkers of inflammation relevant to CF lung disease, and the tools to measure inflammation, with specific emphasis on sputum. Sputum is a rich, noninvasive source of biomarkers of inflammation and infection. Sputum induction, through the inhalation of hypertonic saline, has expanded the possibilities for monitoring airway inflammation and infection, especially in individuals who do not routinely expectorate sputum. We critically examine the existing data supporting the validity of sputum biomarkers in CF, with an eye toward their application as surrogate endpoints or outcome measures in CF clinical trials. Further validation studies are needed regarding the variability of inflammatory biomarker measurements, and to evaluate how these biomarkers relate to disease severity, and to longitudinal changes in lung function and other clinical endpoints. We highlight the need to incorporate sputum collection, by induction if necessary, and measurement of sputum biomarkers into routine CF clinical care. In the future, pulmonary biomarkers will likely be useful in predicting disease progression, indicating the onset and resolution of a pulmonary exacerbation, and assessing response to current therapies or candidate therapeutics.
Collapse
Affiliation(s)
- Scott D Sagel
- Department of Pediatrics, The Children's Hospital and University of Colorado at Denver and Health Sciences Center, Denver, Colorado 80218, USA.
| | | | | |
Collapse
|
41
|
Fainaru O, Shay T, Hantisteanu S, Goldenberg D, Domany E, Groner Y. TGFbeta-dependent gene expression profile during maturation of dendritic cells. Genes Immun 2007; 8:239-44. [PMID: 17330136 DOI: 10.1038/sj.gene.6364380] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Primary immune response to pathogens involves the maturation of antigen-presenting dendritic cells (DC). Bacterial lipopolysacharride (LPS) is a potent inducer of DC maturation, whereas the transforming growth factor beta (TGFbeta) attenuates much of this process. Here, we analyzed the global gene expression pattern in LPS-treated bone marrow derived DC during inhibition of their maturation process by TGFbeta. Exposure of DC to LPS induces a pronounced cell response, manifested in altered expression of a large number of genes. Interestingly, TGFbeta did not affect most of the LPS responding genes. Nevertheless, analysis identified a subset of genes that did respond to TGFbeta, among them the two inflammatory cytokines interleukin (IL)-12 and IL-18. Expression of IL-12, the major proinflammatory cytokine secreted by mature DC, was downregulated by TGFbeta, whereas the expression level of the proinflammatory cytokine IL-18, known to potentiate the IL-12 effect, was upregulated. Expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) increased in response to TGFbeta, concomitantly with reduced expression of chemokine receptor 7 (CCR7). This finding supports the possibility that TGFbeta-dependent inhibition of CCR7 expression in DC is mediated by PPARgamma.
Collapse
Affiliation(s)
- O Fainaru
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
42
|
Garantziotis S, Brass DM, Savov J, Hollingsworth JW, McElvania-TeKippe E, Berman K, Walker JKL, Schwartz DA. Leukocyte-derived IL-10 reduces subepithelial fibrosis associated with chronically inhaled endotoxin. Am J Respir Cell Mol Biol 2006; 35:662-7. [PMID: 16809636 PMCID: PMC2643294 DOI: 10.1165/rcmb.2006-0055oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Endotoxin (LPS), a Gram-negative cell wall component, has potent proinflammatory properties. Acute LPS exposure causes airway inflammation; chronic exposure causes airway hyperreactivity and remodeling. IL-10 is an important antiinflammatory cytokine, which is decreased in patients with airway disease, such as asthma and cystic fibrosis. To examine the physiologic and therapeutic role of IL-10 in acute and chronic LPS-induced airway disease. Mice were exposed to aerosolized LPS once or daily for 4 wk. Endpoints were airway inflammation, airway reactivity to methacholine, extracellular matrix protein expression, and histologic analysis. IL-10-deficient mice developed significantly enhanced airway cellularity and remodeling when compared with C57BL/6 mice after chronic LPS inhalation. However they demonstrated less airway hyperreactivity associated with higher inducible nitric oxide synthase (iNOS), endothelial NOS (eNOS), and lung lavage fluid nitrite levels. In a bone marrow transplantation model, the IL-10 antiinflammatory effect was dependent on the hematopoietic but not on the parenchymal IL-10 expression. Induced epithelial human IL-10 expression protected from the LPS effects and led to decreased collagen production. IL-10 attenuates chronic LPS-induced airway inflammation and remodeling. Physiologically, the antiinflammatory effect of IL-10 is mediated by hematopoietic cells. Therapeutically, adenovirus-driven expression of human IL-10 in airway epithelia is sufficient for its protective effect on inflammation and remodeling. The role of IL-10 on airway hyperreactivity is complex: IL-10 deficiency protects against LPS-induced hyperreactivity, and is associated with higher eNOS, iNOS, and airway nitrate levels.
Collapse
Affiliation(s)
- Stavros Garantziotis
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Box 3683, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Saadane A, Soltys J, Berger M. Acute Pseudomonas challenge in cystic fibrosis mice causes prolonged nuclear factor-kappa B activation, cytokine secretion, and persistent lung inflammation. J Allergy Clin Immunol 2006; 117:1163-9. [PMID: 16675347 DOI: 10.1016/j.jaci.2006.01.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 01/09/2006] [Accepted: 01/12/2006] [Indexed: 11/20/2022]
Abstract
BACKGROUND Cystic fibrosis (CF) is characterized by an excessive and prolonged inflammatory response to Pseudomonas aeruginosa in the lung. There are high levels of cytokines and chemokines and an exaggerated PMN influx causing significant morbidity and mortality. OBJECTIVE To compare the kinetics of the inflammatory response with the kinetics of clearance of acute bacterial challenge in the lungs of CF and wild-type (WT) mice. METHODS We challenged CF knockout (KO) and WT mice intratracheally with P aeruginosa in suspension and evaluated bacteria counts, nuclear factor-kappaB (NF-kappaB), and inhibitor of NF-kappaB alpha protein (I-kappaBalpha) in lung tissue, cytokines, and PMN in bronchoalveolar lavage (BAL). RESULTS Both groups of mice cleared the infection with the same kinetics. CF-KO mice had more PMN in BAL than WT mice. CF-KO mice had high concentrations of proinflammatory cytokines in BAL on days 2 and 4, whereas cytokines in BAL from WT mice were only slightly elevated. CF-KO mice failed to regenerate I-kappaBalpha once it was degraded, and consequently had prolonged and excessive activation of NF-kappaB for the entire 6-day duration of the study. In contrast, WT mice showed only slight NF-kappaB activation, which plateaued at day 4. CONCLUSION These data suggest that NF-kappaB is dysregulated in CF lung infection and could be a good target for therapy. Prolonged responses to initial acute infections may contribute to the eventual establishment of chronic persistent inflammation. CLINICAL IMPLICATIONS Dysregulation of the I-kappaB/NF-kappaB pathway in cystic fibrosis leads to prolonged cytokine secretion and persistent inflammation in response to acute challenges and may be important in the development of chronic lung inflammation and infection.
Collapse
Affiliation(s)
- Aicha Saadane
- Department of Pediatrics, Rainbow Babies and Childrens' Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
44
|
Hallows KR, Fitch AC, Richardson CA, Reynolds PR, Clancy JP, Dagher PC, Witters LA, Kolls JK, Pilewski JM. Up-regulation of AMP-activated kinase by dysfunctional cystic fibrosis transmembrane conductance regulator in cystic fibrosis airway epithelial cells mitigates excessive inflammation. J Biol Chem 2006; 281:4231-41. [PMID: 16361706 DOI: 10.1074/jbc.m511029200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AMP-activated kinase (AMPK) is a ubiquitous metabolic sensor that inhibits the cystic fibrosis (CF) transmembrane conductance regulator (CFTR). To determine whether CFTR reciprocally regulates AMPK function in airway epithelia and whether such regulation is involved in lung inflammation, AMPK localization, expression, and activity and cellular metabolic profiles were compared as a function of CFTR status in CF and non-CF primary human bronchial epithelial (HBE) cells. As compared with non-CF HBE cells, CF cells had greater and more diffuse AMPK staining and had greater AMPK activity than their morphologically matched non-CF counterparts. The cellular [AMP]/[ATP] ratio was higher in undifferentiated than in differentiated non-CF cells, which correlated with AMPK activity under these conditions. However, this nucleotide ratio did not predict AMPK activity in differentiating CF cells. Inhibiting channel activity in non-CF cells did not affect AMPK activity or metabolic status, but expressing functional CFTR in CF cells reduced AMPK activity without affecting cellular [AMP]/[ATP]. Therefore, lack of functional CFTR expression and not loss of channel activity in CF cells appears to up-regulate AMPK activity in CF HBE cells, presumably through non-metabolic effects on upstream regulatory pathways. Compared with wild-type CFTR-expressing immortalized CF bronchial epithelial (CFBE) cells, DeltaF508-CFTR-expressing CFBE cells had greater AMPK activity and greater secretion of tumor necrosis factor-alpha and the interleukins IL-6 and IL-8. Further pharmacologic AMPK activation inhibited inflammatory mediator secretion in both wild type- and DeltaF508-expressing cells, suggesting that AMPK activation in CF airway cells is an adaptive response that reduces inflammation. We propose that therapies to activate AMPK in the CF airway may be beneficial in reducing excessive airway inflammation, a major cause of CF morbidity.
Collapse
Affiliation(s)
- Kenneth R Hallows
- Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Alexis NE, Muhlebach MS, Peden DB, Noah TL. Attenuation of host defense function of lung phagocytes in young cystic fibrosis patients. J Cyst Fibros 2005; 5:17-25. [PMID: 16356787 PMCID: PMC1764441 DOI: 10.1016/j.jcf.2005.11.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 11/07/2005] [Accepted: 11/07/2005] [Indexed: 11/22/2022]
Abstract
BACKGROUND Recent reports suggest that endotoxin exposure can blunt phagocyte functions. The aim of this study was to examine whether lung phagocytic cells have altered host defense function in young cystic fibrosis (CF) patients, and to explore the contribution of neutrophil elastase (NE) and surfactant proteins to these effects. METHODS BALF cells from CF children (N=12) and disease controls (N=12) were analyzed by flow cytometry for mCD14 and HLA-DR expression and phagocytosis. The effects of exogenous surfactant protein A and D (SP-A,D) and proteases on BALF cells in short term culture were assessed experimentally. RESULTS Expression of the surface markers mCD14 and HLA-DR, and phagocytosis, were all blunted on CF phagocytes compared to disease controls (p<0.05). In CF phagocytes, SP-A enhanced both phagocytosis and mCD14 expression (p<0.05). Both CF BALF and NE reduced phagocytosis and expression of mCD14 and HLA-DR (p<0.05) by non-CF phagocytes; the latter effect was attenuated by protease inhibitor. CONCLUSION CF airway phagocytes appear to have altered host defense functions that could contribute to poor bacterial clearance. These impairments can be reproduced by incubation of non-CF cells with NE, while SP-A can partially reverse them. Decreasing protease activity and increasing collectin activity may be beneficial in early CF.
Collapse
Affiliation(s)
- Neil E. Alexis
- Center for Environmental Medicine Asthma and Lung Biology; Department of Pediatrics, Divisions of
- Immunology and Infectious Disease, and
| | - Marianne S. Muhlebach
- Center for Environmental Medicine Asthma and Lung Biology; Department of Pediatrics, Divisions of
- Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill NC 27599 USA
- Corresponding Author: Marianne Muhlebach M.D., Department Pediatrics, Div. Pulmonology, Bioinformatics Building, CB 7220, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7220, , 919-966-1055 (tel), 919-966-6179 (fax)
| | - David B Peden
- Center for Environmental Medicine Asthma and Lung Biology; Department of Pediatrics, Divisions of
- Immunology and Infectious Disease, and
| | - Terry L. Noah
- Center for Environmental Medicine Asthma and Lung Biology; Department of Pediatrics, Divisions of
- Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill NC 27599 USA
| |
Collapse
|
46
|
Wu JM, Bensen-Kennedy D, Miura Y, Thoburn CJ, Armstrong D, Vogelsang GB, Hess AD. The effects of interleukin 10 and interferon gamma cytokine gene polymorphisms on survival after autologous bone marrow transplantation for patients with breast cancer. Biol Blood Marrow Transplant 2005; 11:455-64. [PMID: 15931634 DOI: 10.1016/j.bbmt.2005.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Several clinical trials evaluating the induction of autoimmune graft-versus-host disease (GVHD) after autologous bone marrow transplantation (BMT) as antitumor immunotherapy have shown that autologous GVHD is associated with increased production of interleukin (IL)-10. The induction of autologous GVHD also segregated with single nucleotide polymorphisms in the IL-10 promoter region (IL-10 -592 and IL-10 -1082 ) and with CA repeats in the first intron of the interferon (IFN)-gamma gene. Polymorphisms within these promoter regions can significantly modify the cytokine response because of differential transcription factor efficiency. This study evaluated the relationship between inheritance of polymorphisms within the IL-10 promoter and in the IFN-gamma gene and the overall survival of patients who received autologous BMT for metastatic breast cancer. Peripheral mononuclear cells from 87 women enrolled in 3 autologous BMT (plus induction of autologous GVHD) clinical trials were examined. By using a Cox proportional hazard model, trends in survival after autologous BMT were analyzed. The model included inheritance polymorphisms of IL-10 -592 , IL-10 -1082 , CA repeats within the first intron of the IFN-gamma gene, estrogen and progesterone receptor status, and stage of disease. Increased survival was significantly associated with patients having the IL-10 -592 promoter allele associated with high IL-10 production (hazard ratio, 0.23; 95% confidence interval, 0.09-0.55; P = .001). The effect of the strong IL-10 promoter allele on survival seems to be independent of the development of clinical autologous GVHD. However, decreased survival was significantly associated with patients having CA repeats associated with higher IFN-gamma transcription (hazard ratio, 2.34; 95% confidence interval, 1.21-4.54; P = .011). Inheritance of specific alleles that modify IL-10 and IFN-gamma production may have unexpected effects on the efficacy of immune-based strategies after autologous BMT. Additional studies are necessary to further define the influence of IL-10 and IFN-gamma on the immune response after BMT.
Collapse
Affiliation(s)
- Julie M Wu
- The School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Fainaru O, Shseyov D, Hantisteanu S, Groner Y. Accelerated chemokine receptor 7-mediated dendritic cell migration in Runx3 knockout mice and the spontaneous development of asthma-like disease. Proc Natl Acad Sci U S A 2005; 102:10598-603. [PMID: 16027362 PMCID: PMC1180803 DOI: 10.1073/pnas.0504787102] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Runx3 transcription factor is a key regulator of lineage-specific gene expression in several developmental pathways and could also be involved in autoimmunity. We report that, in dendritic cells (DC), Runx3 regulates TGFbeta-mediated transcriptional attenuation of the chemokine receptor CCR7. When Runx3 is lost, i.e., in Runx3 knockout mice, expression of CCR7 is enhanced, resulting in increased migration of alveolar DC to the lung-draining lymph nodes. This increased DC migration and the consequent accumulation of activated DC in draining lymph nodes is associated with the development of asthma-like features, including increased serum IgE, hypersensitivity to inhaled bacterial lipopolysaccharide, and methacholine-induced airway hyperresponsiveness. The enhanced migration of DC in the knockout mice could be blocked in vivo by anti-CCR7 antibodies and by the drug Ciglitazone, known to inhibit CCR7 expression. The data indicate that Runx3 transcriptionally regulates CCR7 and that, when absent, the dysregulated expression of CCR7 in DC plays a role in the etiology of asthmatic conditions that recapitulate clinical symptoms of the human disease. Interestingly, human RUNX3 resides in a region of chromosome 1p36 that contains susceptibility genes for asthma and hypersensitivity against environmental antigens. Thus, mutations in RUNX3 may be associated with increased sensitivity to asthma development.
Collapse
Affiliation(s)
- Ofer Fainaru
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
48
|
Bensalem N, Ventura AP, Vallée B, Lipecka J, Tondelier D, Davezac N, Dos Santos A, Perretti M, Fajac A, Sermet-Gaudelus I, Renouil M, Lesure JF, Halgand F, Laprévote O, Edelman A. Down-regulation of the anti-inflammatory protein annexin A1 in cystic fibrosis knock-out mice and patients. Mol Cell Proteomics 2005; 4:1591-601. [PMID: 16014420 DOI: 10.1074/mcp.m500019-mcp200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cystic fibrosis is a fatal human genetic disease caused by mutations in the CFTR gene encoding a cAMP-activated chloride channel. It is characterized by abnormal fluid transport across secretory epithelia and chronic inflammation in lung, pancreas, and intestine. Because cystic fibrosis (CF) pathophysiology cannot be explained solely by dysfunction of cystic fibrosis transmembrane conductance regulator (CFTR), we applied a proteomic approach (bidimensional electrophoresis and mass spectrometry) to search for differentially expressed proteins between mice lacking cftr (cftr(tm1Unc), cftr-/-) and controls using colonic crypts from young animals, i.e. prior to the development of intestinal inflammation. By analyzing total proteins separated in the range of pH 6-11, we detected 24 differentially expressed proteins (>2-fold). In this work, we focused on one of these proteins that was absent in two-dimensional gels from cftr-/- mice. This protein spot (molecular mass, 37 kDa; pI 7) was identified by mass spectrometry as annexin A1, an anti-inflammatory protein. Interestingly, annexin A1 was also undetectable in lungs and pancreas of cftr-/- mice, tissues known to express CFTR. Absence of this inhibitory mediator of the host inflammatory response was associated with colonic up-regulation of the proinflammatory cytosolic phospholipase A2. More importantly, annexin A1 was down-regulated in nasal epithelial cells from CF patients bearing homozygous nonsense mutations in the CFTR gene (Y122X, 489delC) and differentially expressed in F508del patients. These results suggest that annexin A1 may be a key protein involved in CF pathogenesis especially in relation to the not well defined field of inflammation in CF. We suggest that decreased expression of annexin A1 contributes to the worsening of the CF phenotype.
Collapse
MESH Headings
- Adolescent
- Adult
- Amino Acid Sequence
- Animals
- Annexin A1/chemistry
- Annexin A1/metabolism
- Case-Control Studies
- Child
- Child, Preschool
- Codon, Nonsense/genetics
- Colon/cytology
- Colon/metabolism
- Colon/pathology
- Cystic Fibrosis/genetics
- Cystic Fibrosis/metabolism
- Cystic Fibrosis Transmembrane Conductance Regulator/deficiency
- Cystic Fibrosis Transmembrane Conductance Regulator/genetics
- Down-Regulation/genetics
- Electrophoresis, Gel, Two-Dimensional
- Homozygote
- Humans
- Lung/cytology
- Lung/metabolism
- Lung/pathology
- Mice
- Mice, Knockout
- Molecular Sequence Data
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Nasal Mucosa/cytology
- Nasal Mucosa/metabolism
- Nasal Mucosa/pathology
- Pancreas/cytology
- Pancreas/metabolism
- Pancreas/pathology
- Protein Transport
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Noura Bensalem
- INSERM U467, Faculté de médecine Necker, Université Paris-Descartes, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hoffman JA, Weinberg KI, Azen CG, Horn MV, Dukes L, Starnes VA, Woo MS. Human leukocyte antigen-DR expression on peripheral blood monocytes and the risk of pneumonia in pediatric lung transplant recipients. Transpl Infect Dis 2005; 6:147-55. [PMID: 15762932 DOI: 10.1111/j.1399-3062.2004.00069.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Pneumonia is the leading cause of morbidity and mortality after living lobar lung transplantation (LT). Low levels of human leukocyte antigen-DR (HLA-DR) expression on peripheral blood monocytes, have been demonstrated to correlate with risk of infection in surgical, trauma, and adult transplant patients. In addition, interleukin (IL)-10 has been shown to be a negative regulator of HLA-DR expression. This study investigates whether HLA-DR expression and serum IL-10 levels correlate with the development of pneumonia after pediatric LT. METHODS Thirteen LT recipients were prospectively monitored with blood samples obtained pre-LT (baseline) and post-LT weeks 1-4. Mean fluorescence intensity (MFI) of HLA-DR on CD14+ monocytes was measured by flow cytometry. IL-10 levels were determined by ELISA from frozen serum collected at the same time points as monocyte HLA-DR expression. Correlates of pneumonia were abstracted from the medical record. RESULTS Monocyte HLA-DR expression declined in 11 of 13 patients in the first week post-LT. Two patients without an initial decline and four others whose HLA-DR expression recovered by week 2 post-LT, did not develop pneumonia or other infection or rejection. Pneumonia was observed in seven patients, six of whom failed to recover their monocyte HLA-DR expression by 2 weeks post-LT. Six of seven patients with pneumonia recovered, and one patient died of aspergillosis. During weeks 1-4, a statistically significant difference was seen in the profile of mean monocyte HLA-DR expression levels, analyzed as percent of baseline, between the patients with and without pneumonia (P=0.002). The greatest difference between groups over time was seen from post-LT weeks 1-2 (P=0.003). In addition, when comparing the values at each week, a significant difference was seen between the two groups at post-LT week 2 (P=0.006) and week 4 (P=0.05). Analysis of IL-10 concentrations revealed that the overall difference between the groups (patients with and without pneumonia) was statistically significant (P=0.014), with a paradoxical positive correlation between HLA-DR expression at post-LT week 4 and IL-10 concentrations. CONCLUSIONS Persistent low monocyte HLA-DR expression was associated with the risk of post-LT pneumonia in these patients. This measurement may be useful for monitoring risk of infection and stratifying patients into higher and lower risk groups. Increased IL-10 levels may be protective for infection in this group of patients. At present it is unknown whether the predictive power of HLA-DR expression is indicative of a global defect in monocytic function or a specific abnormality.
Collapse
Affiliation(s)
- J A Hoffman
- Department of Pediatrics, Division of Infectious Diseases, Childrens Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Hussell T, Snelgrove R, Humphreys IR, Williams AE. Co-stimulation: novel methods for preventing viral-induced lung inflammation. Trends Mol Med 2005; 10:379-86. [PMID: 15310458 PMCID: PMC7185809 DOI: 10.1016/j.molmed.2004.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Respiratory infections cause significant morbidity and mortality worldwide. Although an immune response is required to eliminate respiratory pathogens, if unchecked, it can damage surrounding tissues and block primary lung function. Based on our knowledge of immune T-cell activation, there are several pathways to which immune intervention could be applied. However, relatively few interventions target only those immune cells that are responding to antigens. OX40 and 4-1BB are members of the tumour necrosis factor receptor family and are expressed on the surface of T cells in several inflammatory conditions. Recently, the inhibition of OX40 has proved beneficial during influenza virus infection. This review highlights the recent advances in the manipulation of such molecules and how they have been applied to inflammatory conditions that are caused by viruses in the lung.
Collapse
Affiliation(s)
- Tracy Hussell
- Centre for Molecular Microbiology and Infection, Lord Flowers Building, Imperial College of Science, Technology and Medicine, Exhibition Road, London SW7 2AZ, UK.
| | | | | | | |
Collapse
|