1
|
Kolland D, Kuhlmann M, de Almeida GP, Köhler A, Arifovic A, von Strempel A, Pourjam M, Bolsega S, Wurmser C, Steiger K, Basic M, Neuhaus K, Schmidt-Weber CB, Stecher B, Zehn D, Ohnmacht C. A specific microbial consortium enhances Th1 immunity, improves LCMV viral clearance but aggravates LCMV disease pathology in mice. Nat Commun 2025; 16:3902. [PMID: 40274773 PMCID: PMC12022176 DOI: 10.1038/s41467-025-59073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
Anti-viral immunity can vary tremendously from individual to individual but mechanistic understanding is still scarce. Here, we show that a defined, low complex bacterial community (OMM12) but not the general absence of microbes in germ-free mice leads to a more potent immune response compared to the microbiome of specific-pathogen-free (SPF) mice after a systemic viral infection with LCMV Clone-13. Consequently, gnotobiotic mice colonized with OMM12 have more severe LCMV-induced disease pathology but also enhance viral clearance in the intestinal tract. Mechanistically, single-cell RNA sequencing analysis of adoptively transferred virus-specific T helper cells and endogenous T helper cells in the intestinal tract reveal a stronger pro-inflammatory Th1 profile and a more vigorous expansion in OMM12 than SPF mice. Altogether, our work highlights the causative function of the intestinal microbiome for shaping adaptive anti-viral immunity with implications for vaccination strategies and anti-cancer treatment regimens.
Collapse
Affiliation(s)
- Daphne Kolland
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center, Munich, Germany
| | - Miriam Kuhlmann
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Gustavo P de Almeida
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Center for Infection Prevention (ZIP), School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Amelie Köhler
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center, Munich, Germany
| | - Anela Arifovic
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center, Munich, Germany
| | - Alexandra von Strempel
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU, Munich, Germany
| | - Mohsen Pourjam
- Core Facility Microbiome ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Silvia Bolsega
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Christine Wurmser
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Center for Infection Prevention (ZIP), School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine and Health, Technical University Munich, Munich, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Klaus Neuhaus
- Core Facility Microbiome ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Carsten B Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center, Munich, Germany
- Member of the German Center of Lung Research (DZL), Partner Site Munich, Munich, Germany
| | - Bärbel Stecher
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU, Munich, Germany
- German Center for Infection Research (DZIF), partner site LMU, Munich, Germany
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
- Center for Infection Prevention (ZIP), School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center, Munich, Germany.
| |
Collapse
|
2
|
Hou Y, Sun L, LaFleur MW, Huang L, Lambden C, Thakore PI, Geiger-Schuller K, Kimura K, Yan L, Zang Y, Tang R, Shi J, Barilla R, Deng L, Subramanian A, Wallrapp A, Choi HS, Kye YC, Ashenberg O, Schiebinger G, Doench JG, Chiu IM, Regev A, Sharpe AH, Kuchroo VK. Neuropeptide signalling orchestrates T cell differentiation. Nature 2024; 635:444-452. [PMID: 39415015 PMCID: PMC11951087 DOI: 10.1038/s41586-024-08049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/13/2024] [Indexed: 10/18/2024]
Abstract
The balance between T helper type 1 (TH1) cells and other TH cells is critical for antiviral and anti-tumour responses1-3, but how this balance is achieved remains poorly understood. Here we dissected the dynamic regulation of TH1 cell differentiation during in vitro polarization, and during in vivo differentiation after acute viral infection. We identified regulators modulating T helper cell differentiation using a unique TH1-TH2 cell dichotomous culture system and systematically validated their regulatory functions through multiple in vitro and in vivo CRISPR screens. We found that RAMP3, a component of the receptor for the neuropeptide CGRP (calcitonin gene-related peptide), has a cell-intrinsic role in TH1 cell fate determination. Extracellular CGRP signalling through the receptor RAMP3-CALCRL restricted the differentiation of TH2 cells, but promoted TH1 cell differentiation through the activation of downstream cAMP response element-binding protein (CREB) and activating transcription factor 3 (ATF3). ATF3 promoted TH1 cell differentiation by inducing the expression of Stat1, a key regulator of TH1 cell differentiation. After viral infection, an interaction between CGRP produced by neurons and RAMP3 expressed on T cells enhanced the anti-viral IFNγ-producing TH1 and CD8+ T cell response, and timely control of acute viral infection. Our research identifies a neuroimmune circuit in which neurons participate in T cell fate determination by producing the neuropeptide CGRP during acute viral infection, which acts on RAMP3-expressing T cells to induce an effective anti-viral TH1 cell response.
Collapse
Affiliation(s)
- Yu Hou
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Liangzhu Laboratory of Zhejiang University, Zhejiang University School of Medicine, Hangzhou, China
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Linyu Sun
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Martin W LaFleur
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Linglin Huang
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Conner Lambden
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | - Kimitoshi Kimura
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Longjun Yan
- Liangzhu Laboratory of Zhejiang University, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Zang
- Liangzhu Laboratory of Zhejiang University, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruihan Tang
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jingwen Shi
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Rocky Barilla
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Liwen Deng
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Ayshwarya Subramanian
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Antonia Wallrapp
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Hee Sun Choi
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Yoon-Chul Kye
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Orr Ashenberg
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Geoffrey Schiebinger
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
| | - John G Doench
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Isaac M Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Genentech, South San Francisco, CA, USA.
| | - Arlene H Sharpe
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Vijay K Kuchroo
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA.
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Uribe FR, González VPI, Kalergis AM, Soto JA, Bohmwald K. Understanding the Neurotrophic Virus Mechanisms and Their Potential Effect on Systemic Lupus Erythematosus Development. Brain Sci 2024; 14:59. [PMID: 38248274 PMCID: PMC10813552 DOI: 10.3390/brainsci14010059] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/24/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Central nervous system (CNS) pathologies are a public health concern, with viral infections one of their principal causes. These viruses are known as neurotropic pathogens, characterized by their ability to infiltrate the CNS and thus interact with various cell populations, inducing several diseases. The immune response elicited by neurotropic viruses in the CNS is commanded mainly by microglia, which, together with other local cells, can secrete inflammatory cytokines to fight the infection. The most relevant neurotropic viruses are adenovirus (AdV), cytomegalovirus (CMV), enterovirus (EV), Epstein-Barr Virus (EBV), herpes simplex virus type 1 (HSV-1), and herpes simplex virus type 2 (HSV-2), lymphocytic choriomeningitis virus (LCMV), and the newly discovered SARS-CoV-2. Several studies have associated a viral infection with systemic lupus erythematosus (SLE) and neuropsychiatric lupus (NPSLE) manifestations. This article will review the knowledge about viral infections, CNS pathologies, and the immune response against them. Also, it allows us to understand the relevance of the different viral proteins in developing neuronal pathologies, SLE and NPSLE.
Collapse
Affiliation(s)
- Felipe R. Uribe
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile; (F.R.U.); (V.P.I.G.)
| | - Valentina P. I. González
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile; (F.R.U.); (V.P.I.G.)
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile;
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Jorge A. Soto
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile; (F.R.U.); (V.P.I.G.)
| | - Karen Bohmwald
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma, Santiago 8910060, Chile
| |
Collapse
|
4
|
Redford SE, Varanasi SK, Sanchez KK, Thorup NR, Ayres JS. CD4+ T cells regulate sickness-induced anorexia and fat wasting during a chronic parasitic infection. Cell Rep 2023; 42:112814. [PMID: 37490905 DOI: 10.1016/j.celrep.2023.112814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/14/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023] Open
Abstract
Infections cause catabolism of fat and muscle stores. Traditionally, studies have focused on understanding how the innate immune system contributes to energy stores wasting, while the role of the adaptive immune system remains elusive. In the present study, we examine the role of the adaptive immune response in adipose tissue wasting and cachexia using a murine model of the chronic parasitic infection Trypanosoma brucei, the causative agent of sleeping sickness. We find that the wasting response occurs in two phases, with the first stage involving fat wasting caused by CD4+ T cell-induced anorexia and a second anorexia-independent cachectic stage that is dependent on CD8+ T cells. Fat wasting has no impact on host antibody-mediated resistance defenses or survival, while later-stage muscle wasting contributes to disease-tolerance defenses. Our work reveals a decoupling of adaptive immune-mediated resistance from the catabolic response during infection.
Collapse
Affiliation(s)
- Samuel E Redford
- Molecular and Systems Physiology Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA; NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA; Gene Expression Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Siva Karthik Varanasi
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Karina K Sanchez
- Molecular and Systems Physiology Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA; NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA; Gene Expression Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Natalia R Thorup
- Molecular and Systems Physiology Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA; NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA; Gene Expression Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Janelle S Ayres
- Molecular and Systems Physiology Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA; NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA; Gene Expression Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
5
|
Salem ML, Eltoukhy MM, Shalaby RE, Okasha KM, El-Shanshoury MR, Attia MA, Hantera MS, Hilal A, Eid MA. COVID-19 Severity Shifts the Cytokine Milieu Toward a Proinflammatory State in Egyptian Patients: A Cross-Sectional Study. J Interferon Cytokine Res 2023; 43:257-268. [PMID: 37252793 DOI: 10.1089/jir.2023.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023] Open
Abstract
Despite extensive research to decipher the immunological basis of coronavirus disease (COVID-19), limited evidence on immunological correlates of COVID-19 severity from MENA region and Egypt was reported. In a single-center cross-sectional study, we have analyzed 25 cytokines that are related to immunopathologic lung injury, cytokine storm, and coagulopathy in plasma samples from 78 hospitalized Egyptian COVID-19 patients in Tanta University Quarantine Hospital and 21 healthy control volunteers between April 2020 and September 2020. The enrolled patients were divided into 4 categories based on disease severity, namely mild, moderate, severe, and critically ill. Interestingly, interleukin (IL)-1-α, IL-2Rα, IL-6, IL-8, IL-18, tumor necrosis factor-alpha (TNF-α), FGF1, CCL2, and CXC10 levels were significantly altered in severe and/or critically ill patients. Moreover, principal component analysis (PCA) demonstrated that severe and critically ill COVID-19 patients cluster based on specific cytokine signatures that distinguish them from mild and moderate COVID-19 patients. Specifically, levels of IL-2Rα, IL-6, IL-10, IL-18, TNF-α, FGF1, and CXCL10 largely contribute to the observed differences between early and late stages of COVID-19 disease. Our PCA showed that the described immunological markers positively correlate with high D-dimer and C-reactive protein levels and inversely correlate with lymphocyte counts in severe and critically ill patients. These data suggest a disordered immune regulation, particularly in severe and critically ill Egyptian COVID-19 patients, manifested as overactivated innate immune and dysregulated T-helper1 responses. Additionally, our study emphasizes the importance of cytokine profiling to identify potentially predictive immunological signatures of COVID-19 disease severity.
Collapse
Affiliation(s)
- Mohamed L Salem
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
- Center of Excellence in Cancer Research, Teaching Hospital, Tanta University, Tanta, Egypt
| | - Madonna M Eltoukhy
- Department of Clinical Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rasha E Shalaby
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Suez, Egypt
- Department of Microbiology, and Immunology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Kamal M Okasha
- Department of Internal Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Mohamed A Attia
- Department of Clinical Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed S Hantera
- Department of Chest, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Asmaa Hilal
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohammed A Eid
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
6
|
Gil-Etayo FJ, Suàrez-Fernández P, Cabrera-Marante O, Arroyo D, Garcinuño S, Naranjo L, Pleguezuelo DE, Allende LM, Mancebo E, Lalueza A, Díaz-Simón R, Paz-Artal E, Serrano A. T-Helper Cell Subset Response Is a Determining Factor in COVID-19 Progression. Front Cell Infect Microbiol 2021; 11:624483. [PMID: 33718270 PMCID: PMC7952877 DOI: 10.3389/fcimb.2021.624483] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
The immune response type organized against viral infection is determinant in the prognosis of some infections. This work has aimed to study Th polarization in acute COVID-19 and its possible association with the outcome through an observational prospective study. Fifty-eight COVID-19 patients were recruited in the Medicine Department of the hospital “12 de Octubre,” 55 patients remaining after losses to follow-up. Four groups were established according to maximum degree of disease progression. T-helper cell percentages and phenotypes, analyzed by flow cytometer, and serum cytokines levels, analyzed by Luminex, were evaluated when the microbiological diagnosis (acute phase) of the disease was obtained. Our study found a significant reduction of %Th1 and %Th17 cells with higher activated %Th2 cells in the COVID-19 patients compared with reference population. A higher percent of senescent Th2 cells was found in the patients who died than in those who survived. Senescent Th2 cell percentage was an independent risk factor for death (OR: 13.88) accompanied by the numbers of total lymphocytes (OR: 0.15) with an AUC of 0.879. COVID-19 patients showed a profile of pro-inflammatory serum cytokines compared to controls, with higher levels of IL-2, IL-6, IL-15, and IP-10. IL-10 and IL-13 were also elevated in patients compared to controls. Patients who did not survive presented significantly higher levels of IL-15 than those who recovered. No significant differences were observed according to disease progression groups. The study has shown that increased levels of IL-15 and a high Th2 response are associated with a fatal outcome of the disease.
Collapse
Affiliation(s)
| | - Patricia Suàrez-Fernández
- Departamento de Inmunologá, Instituto de Investigación, Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Daniel Arroyo
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Sara Garcinuño
- Departamento de Inmunologá, Instituto de Investigación, Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Laura Naranjo
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Luis M Allende
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Inmunologá, Instituto de Investigación, Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Esther Mancebo
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Inmunologá, Instituto de Investigación, Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Antonio Lalueza
- Departamento de Inmunologá, Instituto de Investigación, Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Department of Internal Medicine, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Raquel Díaz-Simón
- Department of Internal Medicine, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Estela Paz-Artal
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Inmunologá, Instituto de Investigación, Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Departamento de Inmunología, Oftalmología y Otorrinolaringología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Antonio Serrano
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Inmunologá, Instituto de Investigación, Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Department of Epidemiology, Biomedical Research Centre Network for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
7
|
Perro M, Iannacone M, von Andrian UH, Peixoto A. Role of LFA-1 integrin in the control of a lymphocytic choriomeningitis virus (LCMV) infection. Virulence 2020; 11:1640-1655. [PMID: 33251934 PMCID: PMC7714442 DOI: 10.1080/21505594.2020.1845506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Leukocyte function-associated antigen 1 (LFA-1) is the most widely expressed member of the β2 integrin family of cell-cell adhesion molecules. Although LFA-1 is thought to regulate multiple aspects of T cell immunity, its role in the response of CD8+ T cells to viral infections remains unclear. Indeed, compelling clinical evidence shows that loss of LFA-1 function predisposes to infection in humans but animal models show limited to no susceptibility to infection. Here, we addressed this conundrum in a mouse model of infection with lymphocytic choriomeningitis virus (LCMV), where CD8+ T cells are necessary and sufficient to confer protection. To this end, we followed the fate and function of wild-type and LFA-1 deficient virus-specific CD8+ T cells and assessed the effect of blocking anti-LFA-1 monoclonal antibody in the outcome of infection. Our analysis of viral clearance and T cell responses using transcriptome profiling reveals a role for LFA-1 as a gatekeeper of effector T cell survival and dysfunction that when defective can predispose to LCMV infection.
Collapse
Affiliation(s)
- Mario Perro
- Harvard Medical School , Department of Microbiology and Immunobiology, Boston, Massachusetts, USA
| | - Matteo Iannacone
- Harvard Medical School , Department of Microbiology and Immunobiology, Boston, Massachusetts, USA
| | - Ulrich H von Andrian
- Harvard Medical School , Department of Microbiology and Immunobiology, Boston, Massachusetts, USA
| | - Antonio Peixoto
- Harvard Medical School , Department of Microbiology and Immunobiology, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Lawrence DW, Shornick LP, Kornbluth J. Mice deficient in NKLAM have attenuated inflammatory cytokine production in a Sendai virus pneumonia model. PLoS One 2019; 14:e0222802. [PMID: 31539400 PMCID: PMC6754162 DOI: 10.1371/journal.pone.0222802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 09/07/2019] [Indexed: 12/21/2022] Open
Abstract
Recent studies have begun to elucidate a role for E3 ubiquitin ligases as important mediators of the innate immune response. Our previous work defined a role for the ubiquitin ligase natural killer lytic-associated molecule (NKLAM/RNF19b) in mouse and human innate immunity. Here, we present novel data describing a role for NKLAM in regulating the immune response to Sendai virus (SeV), a murine model of paramyxoviral pneumonia. NKLAM expression was significantly upregulated by SeV infection. SeV-infected mice that are deficient in NKLAM demonstrated significantly less weight loss than wild type mice. In vivo, Sendai virus replication was attenuated in NKLAM-/- mice. Autophagic flux and the expression of autophagy markers LC3 and p62/SQSTM1 were also less in NKLAM-/- mice. Using flow cytometry, we observed less neutrophils and macrophages in the lungs of NKLAM-/- mice during SeV infection. Additionally, phosphorylation of STAT1 and NFκB p65 was lower in NKLAM-/- than wild type mice. The dysregulated phosphorylation profile of STAT1 and NFκB in NKLAM-/- mice correlated with decreased expression of numerous proinflammatory cytokines that are regulated by STAT1 and/or NFκB. The lack of NKLAM and the resulting attenuated immune response is favorable to NKLAM-/- mice receiving a low dose of SeV; however, at a high dose of virus, NKLAM-/- mice succumbed to the infection faster than wild type mice. In conclusion, our novel results indicate that NKLAM plays a role in regulating the production of pro-inflammatory cytokines during viral infection.
Collapse
Affiliation(s)
- Donald W. Lawrence
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Laurie P. Shornick
- Department of Biology, Saint Louis University, Saint Louis, Missouri, United States of America
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Jacki Kornbluth
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
- Veterans Affairs Saint Louis Health Care System, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
9
|
CD8 + T cells induce cachexia during chronic viral infection. Nat Immunol 2019; 20:701-710. [PMID: 31110314 PMCID: PMC6531346 DOI: 10.1038/s41590-019-0397-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/08/2019] [Indexed: 12/19/2022]
Abstract
Cachexia represents a leading cause of morbidity and mortality in various cancers, chronic inflammation and infections. Understanding of the mechanisms that drive cachexia has remained limited, especially for infection-associated cachexia (IAC). Here we describe a model of reversible cachexia in mice with chronic viral infection and identify an essential role for CD8+ T cells in IAC. Cytokines linked to cancer-associated cachexia did not contribute to IAC. Instead, virus-specific CD8+ T cells caused morphological and molecular changes in the adipose tissue, which led to depletion of lipid stores. These changes occurred at a time point that preceded the peak of the CD8+ T cell response and required T cell–intrinsic type 1 interferon signaling and antigen-specific priming. Our results link systemic antiviral immune responses to adipose-tissue remodeling and reveal an underappreciated role of CD8+ T cells in IAC.
Collapse
|
10
|
Abstract
Purpose of Review Interferon-gamma (IFN-γ) is a pro-inflammatory cytokine that participates in the regulation of hematopoietic stem cells (HSC) during development and under homeostatic conditions. IFN-γ also plays a key pathogenic role in several diseases that affect hematopoiesis including aplastic anemia, hemophagocytic lymphohistiocytosis, and cirrhosis of the liver. Recent Findings Studies have shown that increased IFN-γ negatively affects HSC homeostasis, skewing HSC towards differentiation over self-renewal and eventually causing exhaustion of the HSC compartment. Summary Here, we explore the mechanisms by which IFN-γ regulates HSC in both normal and pathological conditions. We focus on the role of IFN-γ signaling in HSC fate decisions, and the transcriptional changes it elicits. Elucidating the mechanisms through which IFN-γ regulates HSCs may lead to new therapeutic options to prevent or treat adverse hematologic effects of the many diseases to which IFN-γ contributes.
Collapse
|
11
|
Host genetics play a critical role in controlling CD8 T cell function and lethal immunopathology during chronic viral infection. PLoS Pathog 2017; 13:e1006498. [PMID: 28715493 PMCID: PMC5531689 DOI: 10.1371/journal.ppat.1006498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/27/2017] [Accepted: 06/28/2017] [Indexed: 11/19/2022] Open
Abstract
Effective CD8 T cell responses are vital for the control of chronic viral infections. Many factors of the host immune response contribute to the maintenance of effector CD8 T cell responses versus CD8 T cell exhaustion during chronic infection. Specific MHC alleles and the degree of MHC heterogeneity are associated with enhanced CD8 T cell function and viral control during human chronic infection. However, it is currently unclear to what extent host genetics influences the establishment of chronic viral infection. In order to examine the impact of MHC heterogeneity versus non-MHC host genetics on the development of chronic viral infection, an F1 cross of B10.D2 x B6 (D2B6F1) and BALB.B x BALB/c (BCF1) mice were infected with the clone-13 (Cl-13) strain of lymphocytic choriomeningitis virus (LCMV). Following chronic Cl-13 infection both H-2bxd D2B6F1 and BCF1 mice demonstrated increased viral control compared to homozygous mice. Strikingly, H-2bxd D2B6F1 mice on a C57BL genetic background exhibited mortality following Cl-13 infection. CD8 T cell depletion prevented mortality in Cl-13-infected D2B6F1 mice indicating that mortality was CD8 T-cell-dependent. D2B6F1 mice maintained more CD8 T cell effector cytokine production and exhibited reduced expression of the T cell exhaustion marker PD-1. In addition, D2B6F1 mice also induced a larger Th1 response than BCF1 mice and Cl-13-induced mortality in D2B6F1 mice was also dependent on CD4 T-cell-mediated IFN-γ production. Thus, following a chronic viral infection, increased functionality of the CD8 T cell response allowed for more rapid viral clearance at the cost of enhanced immunopathology dependent on both MHC diversity and the genetic background of the host. Chronic viral infections pose a serious healthcare concern resulting in substantial mortality worldwide. Chronic viral infections result from the inability of the immune system to eliminate the virus from the infected individual. The immune system’s inability to eradicate the invading pathogen is partially due to excessive regulation of the T cell response. However, host genetics have been associated with enhanced T cell function and viral control during chronic infection. Therefore, we sought to investigate the role of host genetic diversity on the T cell response during chronic viral infection in a murine model. We found that increasing MHC heterogeneity resulted in an increased T cell response and enhanced viral control. In addition, host genetic background differences allowed for induction of a distinct CD4 T cell subset, which was associated with reduced suppression of the CD8 T cell response and enhanced viral control. Thus, specific features of the host genetic background contribute to the size and quality of the T cell response and resulting viral control. This study identifies components of the T cell response that may provide a therapeutic target to enhance T-cell-mediated viral control during chronic infection.
Collapse
|
12
|
Mayer-Barber KD, Yan B. Clash of the Cytokine Titans: counter-regulation of interleukin-1 and type I interferon-mediated inflammatory responses. Cell Mol Immunol 2017; 14:22-35. [PMID: 27264686 PMCID: PMC5214938 DOI: 10.1038/cmi.2016.25] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 02/07/2023] Open
Abstract
Over the past decades the notion of 'inflammation' has been extended beyond the original hallmarks of rubor (redness), calor (heat), tumor (swelling) and dolor (pain) described by Celsus. We have gained a more detailed understanding of the cellular players and molecular mediators of inflammation which is now being applied and extended to areas of biomedical research such as cancer, obesity, heart disease, metabolism, auto-inflammatory disorders, autoimmunity and infectious diseases. Innate cytokines are often central components of inflammatory responses. Here, we discuss how the type I interferon and interleukin-1 cytokine pathways represent distinct and specialized categories of inflammatory responses and how these key mediators of inflammation counter-regulate each other.
Collapse
Affiliation(s)
- Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bo Yan
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
CD4 and CD8 T cells mediate distinct lethal meningoencephalitis in mice challenged with Tacaribe arenavirus. Cell Mol Immunol 2016; 14:90-107. [PMID: 27569560 PMCID: PMC5214944 DOI: 10.1038/cmi.2016.41] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 01/25/2023] Open
Abstract
Neonates are at increased risk of viral encephalopathies that can result in neurological dysfunction, seizures, permanent disability and even death. The neurological damage results from the combined effect of the virus and the immune response it elicits, thus finding tools to facilitate viral clearance from central nervous system (CNS) while minimizing neuron damage remains a critical challenge. Neonatal mice inoculated intraperitoneally with Tacaribe virus (TCRV) develop seizures, hindlimb paralysis and death within 15 days of inoculation. TCRV localizes to the CNS within days of challenge, primarily infecting astrocytes in the cerebellum and brain stem. We show that infection leads to inflammation, T cell and monocyte infiltration into the cerebellar parenchyma, apoptosis of astrocytes, neuronal degeneration and loss of Purkinje cells. Infiltrating antigen-specific T cells fail to clear the virus but drive the disease, as T-cell-deficient CD3ɛ KO mice survive TCRV infection with minimal inflammation or clinical manifestations despite no difference in CNS viral loads in comparison with T-cell sufficient mice. CD8+ T cells drive the pathology, which even in the absence of CD4+ T-cell help, infiltrate the parenchyma and mediate the apoptotic loss of cerebellar astrocytes, neurodegeneration and loss of Purkinje cells resulting in loss of balance, paralysis and death. CD4+ T cells are also pathogenic inducing gliosis and inflammation in the cerebellum and cerebrum that are associated with wasting and death several weeks after CD4+ T-cell transfer. These data demonstrate distinct pathogenic effects of CD4+ and CD8+ T cells and identify them as possible therapeutic targets.
Collapse
|
14
|
Zhu X, Levasseur PR, Michaelis KA, Burfeind KG, Marks DL. A distinct brain pathway links viral RNA exposure to sickness behavior. Sci Rep 2016; 6:29885. [PMID: 27435819 PMCID: PMC4951726 DOI: 10.1038/srep29885] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/23/2016] [Indexed: 11/14/2022] Open
Abstract
Sickness behaviors and metabolic responses to invading pathogens are common to nearly all types of infection. These responses evolved to provide short-term benefit to the host to ward off infection, but impact on quality of life, and when prolonged lead to neurodegeneration, depression, and cachexia. Among the major infectious agents, viruses most frequently enter the brain, resulting in profound neuroinflammation. We sought to define the unique features of the inflammatory response in the brain to these infections. We demonstrate that the molecular pathway defining the central response to dsRNA is distinct from that found in the periphery. The behavioral and physical response to the dsRNA mimetic poly I:C is dependent on signaling via MyD88 when it is delivered centrally, whereas this response is mediated via the TRIF pathway when delivered peripherally. We also define the likely cellular candidates for this MyD88-dependent step. These findings suggest that symptom management is possible without ameliorating protective antiviral immune responses.
Collapse
Affiliation(s)
- Xinxia Zhu
- Papé Family Pediatric Research Institute, Oregon Health &Science University, Portland, OR 97239, USA
| | - Pete R Levasseur
- Papé Family Pediatric Research Institute, Oregon Health &Science University, Portland, OR 97239, USA
| | - Katherine A Michaelis
- Papé Family Pediatric Research Institute, Oregon Health &Science University, Portland, OR 97239, USA.,MD/PhD Program, Oregon Health &Science University, Portland, OR 97239, USA
| | - Kevin G Burfeind
- Papé Family Pediatric Research Institute, Oregon Health &Science University, Portland, OR 97239, USA.,MD/PhD Program, Oregon Health &Science University, Portland, OR 97239, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health &Science University, Portland, OR 97239, USA
| |
Collapse
|
15
|
Endogenous Il10 alleviates the systemic antiviral cellular immune response and T cell-mediated immunopathology in select organs of acutely LCMV-infected mice. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 185:3025-38. [PMID: 26506472 DOI: 10.1016/j.ajpath.2015.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/10/2015] [Accepted: 07/14/2015] [Indexed: 12/22/2022]
Abstract
The immunoregulatory cytokine IL-10 suppresses T-cell immunity. The complementary question, whether IL-10 is also involved in limiting the collateral damage of vigorous T cell responses, has not been addressed in detail. Here, we report that the particularly strong virus-specific immune response during acute primary infection with the lymphocytic choriomeningitis virus (LCMV) in mice is significantly further increased in Il10-deficient mice, particularly regarding frequencies and cytotoxic activity of CD8(+) T cells. This increase results in exacerbating immunopathology in select organs, ranging from transient local swelling to an increased risk for mortality. Remarkably, LCMV-induced, T cell-mediated hepatitis is not affected by endogenous Il10. The alleviating effect of Il10 on LCMV-induced immunopathology was found to be operative in delayed-type hypersensitivity footpad-swelling reaction and in debilitating meningitis in mice of both the C57BL/6 and BALB/c strains. These strains are prototypic counterpoles for genetically imprinted type 1-biased versus type 2-biased T cell-mediated immune responses against various infectious pathogens. However, during acute LCMV infection, neither systemic cytokine patterns nor the impact of Il10 on LCMV-induced immunopathology differed conspicuously between these two strains of mice. This study documents a physiological role of Il10 in the regulation of a balanced T-cell response limiting immunopathological damage.
Collapse
|
16
|
Burfeind KG, Michaelis KA, Marks DL. The central role of hypothalamic inflammation in the acute illness response and cachexia. Semin Cell Dev Biol 2015; 54:42-52. [PMID: 26541482 DOI: 10.1016/j.semcdb.2015.10.038] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/26/2015] [Indexed: 12/19/2022]
Abstract
When challenged with a variety of inflammatory threats, multiple systems across the body undergo physiological responses to promote defense and survival. The constellation of fever, anorexia, and fatigue is known as the acute illness response, and represents an adaptive behavioral and physiological reaction to stimuli such as infection. On the other end of the spectrum, cachexia is a deadly and clinically challenging syndrome involving anorexia, fatigue, and muscle wasting. Both of these processes are governed by inflammatory mediators including cytokines, chemokines, and immune cells. Though the effects of cachexia can be partially explained by direct effects of disease processes on wasting tissues, a growing body of evidence shows the central nervous system (CNS) also plays an essential mechanistic role in cachexia. In the context of inflammatory stress, the hypothalamus integrates signals from peripheral systems, which it translates into neuroendocrine perturbations, altered neuronal signaling, and global metabolic derangements. Therefore, we will discuss how hypothalamic inflammation is an essential driver of both the acute illness response and cachexia, and why this organ is uniquely equipped to generate and maintain chronic inflammation. First, we will focus on the role of the hypothalamus in acute responses to dietary and infectious stimuli. Next, we will discuss the role of cytokines in driving homeostatic disequilibrium, resulting in muscle wasting, anorexia, and weight loss. Finally, we will address mechanisms and mediators of chronic hypothalamic inflammation, including endothelial cells, chemokines, and peripheral leukocytes.
Collapse
Affiliation(s)
- Kevin G Burfeind
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
- MD/PhD Program, Oregon Health & Science University, Portland, OR, USA
| | - Katherine A Michaelis
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
- MD/PhD Program, Oregon Health & Science University, Portland, OR, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
17
|
T-bet- and STAT4-dependent IL-33 receptor expression directly promotes antiviral Th1 cell responses. Proc Natl Acad Sci U S A 2015; 112:4056-61. [PMID: 25829541 DOI: 10.1073/pnas.1418549112] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
During infection, the release of damage-associated molecular patterns, so-called "alarmins," orchestrates the immune response. The alarmin IL-33 plays a role in a wide range of pathologies. Upon release, IL-33 signals through its receptor ST2, which reportedly is expressed only on CD4(+) T cells of the Th2 and regulatory subsets. Here we show that Th1 effector cells also express ST2 upon differentiation in vitro and in vivo during lymphocytic choriomeningitis virus (LCMV) infection. The expression of ST2 on Th1 cells was transient, in contrast to constitutive ST2 expression on Th2 cells, and marked highly activated effector cells. ST2 expression on virus-specific Th1 cells depended on the Th1-associated transcription factors T-bet and STAT4. ST2 deficiency resulted in a T-cell-intrinsic impairment of LCMV-specific Th1 effector responses in both mixed bone marrow-chimeric mice and adoptive cell transfer experiments. ST2-deficient virus-specific CD4(+) T cells showed impaired expansion, Th1 effector differentiation, and antiviral cytokine production. Consequently, these cells mediated little virus-induced immunopathology. Thus, IL-33 acts as a critical and direct cofactor to drive antiviral Th1 effector cell activation, with implications for vaccination strategies and immunotherapeutic approaches.
Collapse
|
18
|
Role of interferon regulatory factor 7 in T cell responses during acute lymphocytic choriomeningitis virus infection. J Virol 2012; 86:11254-65. [PMID: 22875973 DOI: 10.1128/jvi.00576-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type I interferons (IFNs), predominantly IFN-α and -β, play critical roles in both innate and adaptive immune responses against viral infections. Interferon regulatory factor 7 (IRF7), a key innate immune molecule in the type I IFN signaling pathway, is essential for the type I IFN response to many viruses, including lymphocytic choriomeningitis virus (LCMV). Here, we show that although IRF7 knockout (KO) mice failed to control the replication of LCMV in the early stages of infection, they were capable of clearing LCMV infection. Despite the lack of type I IFN production, IRF7 KO mice generated normal CD4(+) T cell responses, and the expansion of naïve CD8(+) T cells into primary CD8(+) T cells specific for LCMV GP(33-41) was relatively normal. In contrast, the expansion of the LCMV NP(396)-specific CD8(+) T cells was severely impaired in IRF7 KO mice. We demonstrated that this defective CD8(+) T cell response is due neither to an impaired antigen-presenting system nor to any intrinsic role of IRF7 in CD8(+) T cells. The lack of a type I IFN response in IRF7 KO mice did not affect the formation of memory CD8(+) T cells. Thus, the present study provides new insight into the impact of the innate immune system on viral pathogenesis and demonstrates the critical contribution of innate immunity in controlling virus replication in the early stages of infection, which may shape the quality of CD8(+) T cell responses.
Collapse
|
19
|
Kramer K, Schaudien D, Eisel ULM, Herzog S, Richt JA, Baumgärtner W, Herden C. TNF-overexpression in Borna disease virus-infected mouse brains triggers inflammatory reaction and epileptic seizures. PLoS One 2012; 7:e41476. [PMID: 22848506 PMCID: PMC3405098 DOI: 10.1371/journal.pone.0041476] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 06/26/2012] [Indexed: 11/19/2022] Open
Abstract
Proinflammatory state of the brain increases the risk for seizure development. Neonatal Borna disease virus (BDV)-infection of mice with neuronal overexpression of tumor necrosis factor-α (TNF) was used to investigate the complex relationship between enhanced cytokine levels, neurotropic virus infection and reaction pattern of brain cells focusing on its role for seizure induction. Viral antigen and glial markers were visualized by immunohistochemistry. Different levels of TNF in the CNS were provided by the use of heterozygous and homozygous TNF overexpressing mice. Transgenic TNF, total TNF (native and transgenic), TNF-receptor (TNFR1, TNFR2), IL-1 and N-methyl-D-aspartate (NMDA)-receptor subunit 2B (NR2B) mRNA values were measured by real time RT-PCR. BDV-infection of TNF-transgenic mice resulted in non-purulent meningoencephalitis accompanied by epileptic seizures with a higher frequency in homozygous animals. This correlated with lower weight gain, stronger degree and progression of encephalitis and early, strong microglia activation in the TNF-transgenic mice, most obviously in homozygous animals. Activation of astroglia could be more intense and associated with an unusual hypertrophy in the transgenic mice. BDV-antigen distribution and infectivity in the CNS was comparable in TNF-transgenic and wild-type animals. Transgenic TNF mRNA-expression was restricted to forebrain regions as the transgene construct comprised the promoter of NMDA-receptor subunit2B and induced up-regulation of native TNF mRNA. Total TNF mRNA levels did not increase significantly after BDV-infection in the brain of transgenic mice but TNFR1, TNFR2 and IL-1 mRNA values, mainly in the TNF overexpressing brain areas. NR2B mRNA levels were not influenced by transgene expression or BDV-infection. Neuronal TNF-overexpression combined with BDV-infection leads to cytokine up-regulation, CNS inflammation and glial cell activation and confirmed the presensitizing effect of elevated cytokine levels for the development of spontaneous epileptic seizures when exposed to additional infectious noxi.
Collapse
MESH Headings
- Animals
- Borna Disease/genetics
- Borna Disease/metabolism
- Borna Disease/pathology
- Borna disease virus/genetics
- Borna disease virus/metabolism
- Epilepsy/genetics
- Epilepsy/metabolism
- Epilepsy/pathology
- Epilepsy/virology
- Interleukin-18 Receptor alpha Subunit/biosynthesis
- Interleukin-18 Receptor alpha Subunit/genetics
- Mice
- Mice, Transgenic
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neuroglia/metabolism
- Neuroglia/pathology
- Neuroglia/virology
- Prosencephalon/metabolism
- Prosencephalon/pathology
- Prosencephalon/virology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, N-Methyl-D-Aspartate/biosynthesis
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, Tumor Necrosis Factor, Type I/biosynthesis
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type II/biosynthesis
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/genetics
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Katharina Kramer
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Dirk Schaudien
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Ulrich L. M. Eisel
- Department of Molecular Neurobiology, University of Groningen, Groningen, The Netherlands
| | - Sibylle Herzog
- Institute of Virology, Justus-Liebig-University, Gießen, Germany
| | - Jürgen A. Richt
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| | | | - Christiane Herden
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
- * E-mail:
| |
Collapse
|
20
|
Mice deficient in STAT1 but not STAT2 or IRF9 develop a lethal CD4+ T-cell-mediated disease following infection with lymphocytic choriomeningitis virus. J Virol 2012; 86:6932-46. [PMID: 22496215 DOI: 10.1128/jvi.07147-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Interferon (IFN) signaling is crucial for antiviral immunity. While type I IFN signaling is mediated by STAT1, STAT2, and IRF9, type II IFN signaling requires only STAT1. Here, we studied the roles of these signaling factors in the host response to systemic infection with lymphocytic choriomeningitis virus (LCMV). In wild-type (WT) mice and mice lacking either STAT2 or IRF9, LCMV infection was nonlethal, and the virus either was cleared (WT) or established persistence (STAT2 knockout [KO] and IRF9 KO). However, in the case of STAT1 KO mice, LCMV infection was lethal and accompanied by severe multiorgan immune pathology, elevated expression of various cytokine genes in tissues, and cytokines in the serum. This lethal phenotype was unaltered by the coabsence of the gamma interferon (IFN-γ) receptor and hence was not dependent on IFN-γ. Equally, the disease was not due to a combined defect in type I and type II IFN signaling, as IRF9 KO mice lacking the IFN-γ receptor survived infection with LCMV. Clearance of LCMV is mediated normally by CD8(+) T cells. However, the depletion of these cells in LCMV-infected STAT1 KO mice was delayed, but did not prevent, lethality. In contrast, depletion of CD4(+) T cells prevented lethality in LCMV-infected STAT1 KO mice and was associated with a reduction in tissue immune pathology. These studies highlight a fundamental difference in the role of STAT1 versus STAT2 and IRF9. While all three factors are required to limit viral replication and spread, only STAT1 has the unique function of preventing the emergence of a lethal antiviral CD4(+) T-cell response.
Collapse
|
21
|
Stamm A, Valentine L, Potts R, Premenko-Lanier M. An intermediate dose of LCMV clone 13 causes prolonged morbidity that is maintained by CD4+ T cells. Virology 2012; 425:122-32. [PMID: 22305620 DOI: 10.1016/j.virol.2012.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 11/21/2011] [Accepted: 01/09/2012] [Indexed: 11/19/2022]
Abstract
Wasting is a sign of various underlying disorders and is a common feature of cancer, sepsis, and AIDS. We have developed an in vivo model to study the various stages of wasting following infection of mice with lymphocytic choriomeningitis virus cl-13. Using this model we have identified four distinct stages of wasting and have discovered that all stages occur in the different groups of mice regardless of whether the virus is cleared or persists. However, the degree and extent of wasting vary between groups of mice, depending upon the dose of virus administered. Blocking IFNγ or TNFα, which are believed to take part in the wasting process, did not affect the wasting state. Finally, we found that CD4+ T cells control the maintenance stage of wasting. We believe this model will be useful in studying the regulation of wasting during a persistent viral infection, hopefully leading to improved therapies to ameliorate the disorder.
Collapse
Affiliation(s)
- Andrew Stamm
- University of California San Francisco, Division of Experimental Medicine, San Francisco, CA 94110, USA
| | | | | | | |
Collapse
|
22
|
Hardenberg G, Yao Y, Piccirillo CA, Levings MK, Steiner TS. Toll-like receptor 5 deficiency protects from wasting disease in a T cell transfer colitis model in T cell receptor-β-deficient mice. Inflamm Bowel Dis 2012; 18:85-93. [PMID: 22038840 DOI: 10.1002/ibd.21738] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 03/19/2011] [Indexed: 12/13/2022]
Abstract
BACKGROUND Toll-like receptor 5 (TLR5) is implicated in the innate and adaptive immune responses that are associated with inflammatory bowel disease (IBD). In humans TLR5 is expressed on CD4(+) T cells and costimulation with flagellin potentiates effector and regulatory T cell responses. The aim of this study was to determine the role of TLR5 in CD4(+) T cell subsets versus other cells in induction of disease in a model of T cell-dependent colitis. METHODS TLR5 expression on CD4(+) T cells was assessed by real-time reverse-transcriptase polymerase chain reaction (RT-PCR). Wildtype (WT) or TLR5-deficient (5-/-) CD4(+) T conventional cells (Tconv) and T regulatory cells (Treg) were compared for their ability to induce and suppress T cell transfer colitis, respectively. In addition, the role of TLR5 expression in recipient mice was analyzed. RESULTS TLR5 is preferentially expressed on mouse Treg compared to Tconv, although expression levels were low. The colitogenic capacity of WT and 5-/- Tconv was found to be similar and Treg from WT or 5-/- donor animals both prevented T cell transfer colitis in TLR-competent hosts. TLR5 deficiency in recipient mice, however, did affect the disease process, as T cell receptor-β (TCRβ) 5-/- recipients had decreased weight loss compared to TCRβ recipient mice when WT Tconv were used. CONCLUSIONS TLR5 expression on T cells is not required for induction of or protection from T cell-dependent colitis. Expression of TLR5 in non-T cells has a pathogenic role, since TLR5 deficiency in recipient mice protects against weight loss induced by WT T cells.
Collapse
Affiliation(s)
- Gijs Hardenberg
- Department of Surgery, University of British Columbia and Immunity in Health & Disease, Child and Family Research Institute, British Columbia Children's Hospital, Vancouver, Canada
| | | | | | | | | |
Collapse
|
23
|
Lin AA, Wojciechowski SE, Hildeman DA. Androgens suppress antigen-specific T cell responses and IFN-γ production during intracranial LCMV infection. J Neuroimmunol 2010; 226:8-19. [PMID: 20619904 DOI: 10.1016/j.jneuroim.2010.05.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 05/06/2010] [Accepted: 05/06/2010] [Indexed: 10/19/2022]
Abstract
Intracranial (i.c.) lymphocytic choriomeningitis virus (LCMV) infection of mice results in T cell-driven anorexia and weight loss, which is diminished in males compared to females. We investigated sex-specific effects on antigen-presenting cells (APCs) and T cells after i.c. LCMV infection. Numbers of LCMV-specific T cells, APC activation, and levels of inflammatory cytokines and chemokines in CSF were decreased in males compared to females. Orchidectomy enhanced these immune parameters in males, while dihydrotestosterone treatment of orchidectomized males and intact females decreased some of these parameters. These data suggest that qualitative and quantitative effects of androgens on APCs and T cells may contribute to the well-known, but poorly understood sex differences in immunity and autoimmunity.
Collapse
Affiliation(s)
- Adora A Lin
- Division of Immunobiology, Cincinnati Children's Hospital, 3333 Burnet Ave., MLC 7038, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
24
|
Gamma interferon signaling in macrophage lineage cells regulates central nervous system inflammation and chemokine production. J Virol 2009; 83:8604-15. [PMID: 19515766 DOI: 10.1128/jvi.02477-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Intracranial (i.c.) infection of mice with lymphocytic choriomeningitis virus (LCMV) results in anorexic weight loss, mediated by T cells and gamma interferon (IFN-gamma). Here, we assessed the role of CD4(+) T cells and IFN-gamma on immune cell recruitment and proinflammatory cytokine/chemokine production in the central nervous system (CNS) after i.c. LCMV infection. We found that T-cell-depleted mice had decreased recruitment of hematopoietic cells to the CNS and diminished levels of IFN-gamma, CCL2 (MCP-1), CCL3 (MIP-1alpha), and CCL5 (RANTES) in the cerebrospinal fluid (CSF). Mice deficient in IFN-gamma had decreased CSF levels of CCL3, CCL5, and CXCL10 (IP-10), and decreased activation of both resident CNS and infiltrating antigen-presenting cells (APCs). The effects of IFN-gamma signaling on macrophage lineage cells was assessed using transgenic mice, called "macrophages insensitive to interferon gamma" (MIIG) mice, that express a dominant-negative IFN-gamma receptor under the control of the CD68 promoter. MIIG mice had decreased levels of CCL2, CCL3, CCL5, and CXCL10 compared to controls despite having normal numbers of LCMV-specific CD4(+) T cells in the CNS. MIIG mice also had decreased recruitment of infiltrating macrophages and decreased activation of both resident CNS and infiltrating APCs. Finally, MIIG mice were significantly protected from LCMV-induced anorexia and weight loss. Thus, these data suggest that CD4(+) T-cell production of IFN-gamma promotes signaling in macrophage lineage cells, which control (i) the production of proinflammatory cytokines and chemokines, (ii) the recruitment of macrophages to the CNS, (iii) the activation of resident CNS and infiltrating APC populations, and (iv) anorexic weight loss.
Collapse
|
25
|
Abstract
Myeloid differentiation factor 88 (MyD88) is an essential adaptor protein in the Toll-like receptor-mediated innate signaling pathway, as well as in interleukin-1 receptor (IL-1R) and IL-18R signaling. The importance of MyD88 in the regulation of innate immunity to microbial pathogens has been well demonstrated. However, its role in regulating acquired immunity to viral pathogens and neuropathogenesis is not entirely clear. In the present study, we examine the role of MyD88 in the CD4(+) T-cell response following lymphocytic choriomeningitis virus (LCMV) infection. We demonstrate that wild-type (WT) mice developed a CD4(+) T-cell-mediated wasting disease after intracranial infection with LCMV. In contrast, MyD88 knockout (KO) mice did not develop wasting disease in response to the same infection. This effect was not the result of MyD88 regulation of IL-1 or IL-18 responses since IL-1R1 KO and IL-18R KO mice were not protected from weight loss. In the absence of MyD88, naïve CD4(+) T cells failed to differentiate to LCMV-specific CD4 T cells. We demonstrated that MyD88 KO antigen-presenting cells are capable of activating WT CD4(+) T cells. Importantly, when MyD88 KO CD4(+) T cells were reconstituted with an MyD88-expressing lentivirus, the rescued CD4(+) T cells were able to respond to LCMV infection and support IgG2a antibody production. Overall, these studies reveal a previously unknown role of MyD88-dependent signaling in CD4(+) T cells in the regulation of the virus-specific CD4(+) T-cell response and in viral infection-induced immunopathology in the central nervous system.
Collapse
|
26
|
Pedras-Vasconcelos JA, Puig M, Sauder C, Wolbert C, Ovanesov M, Goucher D, Verthelyi D. Immunotherapy with CpG oligonucleotides and antibodies to TNF-alpha rescues neonatal mice from lethal arenavirus-induced meningoencephalitis. THE JOURNAL OF IMMUNOLOGY 2008; 180:8231-40. [PMID: 18523289 DOI: 10.4049/jimmunol.180.12.8231] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Viral encephalitides are life-threatening diseases in neonates partly due to the irreversible damage inflammation causes to the CNS. This study explored the role of proinflammatory cytokines in the balance between controlling viral replication and eliciting pathologic immune responses in nonlytic viral encephalitis. We show that neonatal mice challenged with arenavirus Tacaribe (TCRV) develop a meningoencephalitis characterized by high IFN-gamma and TNF-alpha levels and mild T cell infiltration. Neutralization of the TNF-alpha using mAb was associated with lower chemokine expression, reduced T cell infiltration, and lower levels of IFN-gamma, and TNF-alpha in the CNS and led to 100% survival. Moreover, treatment with Abs to TNF-alpha improved mobility and increased survival even after the mice developed bilateral hind limb paralysis. Of note, animals treated with anti-TNF-alpha Abs alone did not clear the virus despite generating Abs to TCRV. Direct activation of the innate immune response using CpG oligodeoxynucleotides in combination with anti-TNF-alpha Abs resulted in 100% survival and complete viral clearance. To our knowledge, this is the first demonstration of the use of innate immune modulators plus Abs to TNF-alpha as therapeutics for a lethal neurotropic viral infection.
Collapse
Affiliation(s)
- João A Pedras-Vasconcelos
- Laboratory of Immunology, Division of Therapeutic Proteins, Office of Biotechnology, Center for Drug Evaluation and Review, FDA, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Zhou S, Halle A, Kurt-Jones EA, Cerny AM, Porpiglia E, Rogers M, Golenbock DT, Finberg RW. Lymphocytic choriomeningitis virus (LCMV) infection of CNS glial cells results in TLR2-MyD88/Mal-dependent inflammatory responses. J Neuroimmunol 2008; 194:70-82. [PMID: 18295350 DOI: 10.1016/j.jneuroim.2007.11.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 10/12/2007] [Accepted: 11/21/2007] [Indexed: 01/12/2023]
Abstract
In response to invading pathogens, Toll-like receptors (TLR) play a critical role in the initiation of the innate immune response, which can be either beneficial or detrimental to the host. In the present study, we demonstrated that central nervous system (CNS) glial cells are activated by Lymphocytic Choriomeningitis Virus (LCMV) in a TLR2-MyD88/Mal-dependent manner. Specifically, in response to LCMV, both astrocytes and microglial cells isolated from wild-type (WT) mice produced chemokines, such as MCP-1, RANTES and TNF-alpha. Similar responses occurred in TLR3 KO and TLR4 KO glial cells. In striking contrast, both astrocytes and microglial cells isolated from mice deficient in TLR2, MyD88, and Mal did not produce any of these chemokines. In addition, LCMV infection of glial cells induced up-regulation of TLR2, MHC class-I and II, CD40, CD86 in a MyD88-dependent manner. These results define a functional role for TLR signaling in viral infection-induced activation of CNS glial cells as well as for the immunopathology in the CNS.
Collapse
Affiliation(s)
- Shenghua Zhou
- Department of Medicine, University of Massachusetts Medical Center, 364 Plantation Street, Lazare Research Building, Worcester, MA 01605, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Jupelli M, Guentzel MN, Meier PA, Zhong G, Murthy AK, Arulanandam BP. Endogenous IFN-gamma production is induced and required for protective immunity against pulmonary chlamydial infection in neonatal mice. THE JOURNAL OF IMMUNOLOGY 2008; 180:4148-55. [PMID: 18322226 DOI: 10.4049/jimmunol.180.6.4148] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chlamydia trachomatis infection in neonates, not adults, has been associated with the development of chronic respiratory sequelae. Adult chlamydial infections induce Th1-type responses that subsequently clear the infection, whereas the neonatal immune milieu in general has been reported to be biased toward Th2-type responses. We examined the protective immune responses against intranasal Chlamydia muridarum challenge in 1-day-old C57BL/6 and BALB/c mice. Infected C57BL/6 pups displayed earlier chlamydial clearance (day 14) compared with BALB/c pups (day 21). However, challenged C57BL/6 pups exhibited prolonged deficits in body weight gain (days 12-30) compared with BALB/c pups (days 9-12), which correlated with continual pulmonary cellular infiltration. Both strains exhibited a robust Th1-type response, including elevated titers of serum antichlamydial IgG2a and IgG2b, not IgG1, and elevated levels of splenic C. muridarum-specific IFN-gamma, not IL-4, production. Additionally, elevated IFN-gamma, not IL-4 expression, was observed locally in the infected lungs of both mouse strains. The immune responses in C57BL/6 pups were significantly greater compared with BALB/c pups after chlamydial challenge. Importantly, infected mice deficient in IFN-gamma or IFN-gamma receptor demonstrated enhanced chlamydial dissemination, and 100% of animals died by 2 wk postchallenge. Collectively, these results indicate that neonatal pulmonary chlamydial infection induces a robust Th1-type response, with elevated pulmonary IFN-gamma production, and that endogenous IFN-gamma is important in protection against this infection. The enhanced IFN-gamma induction in the immature neonatal lung also may be relevant to the development of respiratory sequelae in adult life.
Collapse
Affiliation(s)
- Madhulika Jupelli
- South Texas Center for Emerging Infectious Diseases, Department of Biology, University of Texas, San Antonio, TX 78249, USA
| | | | | | | | | | | |
Collapse
|
29
|
Masocha W, Rottenberg ME, Kristensson K. Minocycline impedes African trypanosome invasion of the brain in a murine model. Antimicrob Agents Chemother 2006; 50:1798-804. [PMID: 16641452 PMCID: PMC1472198 DOI: 10.1128/aac.50.5.1798-1804.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Passage of Trypanosoma brucei across the blood-brain barrier (BBB) is a hallmark of late-stage human African trypanosomiasis. In the present study we found that daily administration of minocycline, a tetracycline antibiotic, impedes the penetration of leukocytes and trypanosomes into the brain parenchyma of T. brucei brucei-infected C57BL/6 mice. The trypanosome-induced astrocytic and microglial reactions were reduced in the minocycline-treated mice, as were the levels in the brain of transcripts encoding adhesion molecules intercellular adhesion molecule 1 (ICAM-1) and endothelial-leukocyte adhesion molecule 1 (E-selectin); the inflammatory cytokines tumor necrosis factor alpha, interleukin-1alpha (IL-1alpha), IL-1beta, IL-6, and gamma interferon; and matrix metalloprotease 3 (MMP-3), MMP-8, and MMP-12. Loss of weight occurring during infection with T. b. brucei was not observed after treatment of the mice with minocycline; these mice also survived longer than nontreated mice. Invasion of trypanosomes and leukocytes into the brain parenchyma most likely triggered the loss of weight and death of infected animals, since minocycline did not affect the growth of T. b. brucei either in vitro or in vivo or the levels of the transcripts encoding the cytokines and MMPs in the spleen. In conclusion, our data show that T. b. brucei invasion of the brain is related to that of leukocytes and that minocycline can ameliorate the disease in trypanosome-infected mice.
Collapse
Affiliation(s)
- Willias Masocha
- Department of Neuroscience, Retzius väg 8, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | | | |
Collapse
|
30
|
Kikuchi S, Santiago-Raber ML, Amano H, Amano E, Fossati-Jimack L, Moll T, Kotzin BL, Izui S. Contribution of NZB Autoimmunity 2 to Y-Linked Autoimmune Acceleration-Induced Monocytosis in Association with Murine Systemic Lupus. THE JOURNAL OF IMMUNOLOGY 2006; 176:3240-7. [PMID: 16493085 DOI: 10.4049/jimmunol.176.5.3240] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The accelerated development of systemic lupus erythematosus (SLE) in BXSB male mice is associated with the presence of the Y-linked autoimmune acceleration (Yaa) mutation, which induces an age-dependent monocytosis. Using a cohort of C57BL/6 (B6) x (NZB x B6)F1 backcross male mice bearing the Yaa mutation, we defined the pathogenic role and genetic basis for Yaa-associated monocytosis. We observed a remarkable correlation of monocytosis with autoantibody production and subsequent development of lethal lupus nephritis, indicating that monocytosis is an additional useful indicator for severe SLE. In addition, we identified an NZB-derived locus on chromosome 1 predisposing to the development of monocytosis, which peaked at Fcgr2b encoding FcgammaRIIB and directly overlapped with the previously identified NZB autoimmunity 2 (Nba2) locus. The contribution of Nba2 to monocytosis was confirmed by the analysis of Yaa-bearing B6 mice congenic for the NZB-Nba2 locus. Finally, we observed a very low-level expression of FcgammaRIIB on macrophages bearing the NZB-type Fcgr2b allele, compared with those bearing the B6-type allele, and the development of monocytosis in FcgammaRIIB haploinsufficient B6 mice carrying the Yaa mutation. These data suggest that the Nba2 locus may play a supplementary role in the pathogenesis of SLE by promoting the development of monocytosis and the activation of effector cells bearing stimulatory FcgammaR, in addition to its implication in the dysregulated activation of autoreactive B cells.
Collapse
MESH Headings
- Alleles
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Autoimmunity/genetics
- Female
- Genes, Y-Linked/genetics
- Genes, Y-Linked/immunology
- Leukocytosis/genetics
- Leukocytosis/immunology
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lupus Nephritis/genetics
- Lupus Nephritis/immunology
- Macrophages/immunology
- Macrophages/metabolism
- Male
- Mice
- Mice, Congenic
- Mice, Inbred C57BL
- Mice, Inbred NZB
- Mice, Knockout
- Monocytes/immunology
- Monocytes/pathology
- Mutation
- Receptors, IgG/biosynthesis
- Receptors, IgG/genetics
Collapse
Affiliation(s)
- Shuichi Kikuchi
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kielian T, Bearden ED, Baldwin AC, Esen N. IL-1 and TNF-α Play a Pivotal Role in the Host Immune Response in a Mouse Model ofStaphylococcus aureus-Induced Experimental Brain Abscess. J Neuropathol Exp Neurol 2004; 63:381-96. [PMID: 15099027 DOI: 10.1093/jnen/63.4.381] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Brain abscesses represent a significant medical problem despite recent advances made in detection and therapy. Using an established Staphylococcus aureus-induced brain abscess model, we have sought to define the functional importance of interleukin-1 (IL-1), tumor necrosis factor-alpha (TNF-alpha), and IL-6 in the host anti-bacterial immune response using cytokine gene knockout (KO) mice. Previous studies from our laboratory revealed that these cytokines are among the main proinflammatory mediators produced during the acute stage of brain abscess development. The results presented here demonstrate that although they share many redundant activities, IL-1 and TNF-alpha are important for containing bacterial infection in evolving brain abscesses as evident by increased mortality and bacterial burdens in IL-1 and TNF-alpha KO mice compared to wild type (WT) animals. In contrast, IL-6 was not found to be a major contributor to the host anti-bacterial immune response. Microarray analysis was used to evaluate the downstream consequences originating from the lack of IL-1 on subsequent proinflammatory mediator expression in brain abscesses from IL-1 KO and WT animals. Although numerous genes were significantly induced following S. aureus infection, only IL-1beta and 2 chemokines, CCL9 (macrophage inflammatory protein-1 gamma/MIP-1gamma) and CXCL13 (B lymphocyte chemoattractant/BLC), were differentially regulated in IL-1 KO versus WT animals. These results suggest that IL-1 and TNF-alpha play a pivotal role during the acute stage of brain abscess development through regulating the ensuing anti-bacterial inflammatory response.
Collapse
Affiliation(s)
- Tammy Kielian
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| | | | | | | |
Collapse
|
32
|
Fuller MJ, Zajac AJ. Ablation of CD8 and CD4 T cell responses by high viral loads. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:477-86. [PMID: 12496434 DOI: 10.4049/jimmunol.170.1.477] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To evaluate the impact of sustained viral loads on anti-viral T cell responses we compared responses that cleared acute lymphocytic choriomeningitis virus infection with those that were elicited but could not resolve chronic infection. During acute infection, as replicating virus was cleared, CD8 T cell responses were down-regulated, and a pool of resting memory cells developed. In chronically infected hosts, the failure to control the infection was associated with pronounced and prolonged activation of virus-specific CD8 T cells. Nevertheless, there was a progressive diminution of their effector activities as their capacity to produce first IL-2, then TNF-alpha, and finally IFN-gamma was lost. Chronic lymphocytic choriomeningitis virus infection was also associated with differential contraction of certain CD8 T cell responses, resulting in altered immunodominance. However, this altered immunodominance was not due to selective expansion of T cells expressing particular TCR Vbeta segments during chronic infection. High viral loads were not only associated with the ablation of CD8 T cell responses, but also with impaired production of IL-2 by virus-specific CD4 T cells. Taken together, our data show that sustained exposure to high viral loads results in the progressive functional inactivation of virus-specific T cell responses, which may further promote virus persistence.
Collapse
Affiliation(s)
- Michael J Fuller
- Department of Microbiology, University of Alabama, Birmingham, AL 35294-2170, USA
| | | |
Collapse
|
33
|
Hunziker L, Recher M, Ciurea A, Martinic MMA, Odermatt B, Hengartner H, Zinkernagel RM. Antagonistic variant virus prevents wild-type virus-induced lethal immunopathology. J Exp Med 2002; 196:1039-46. [PMID: 12391015 PMCID: PMC2194044 DOI: 10.1084/jem.20012045] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Altered peptide ligands (APLs) and their antagonistic or partial agonistic character-influencing T cell activation have mainly been studied in vitro Some studies have shown APLs as a viral escape mechanism from cytotoxic CD8(+) T cell responses in vivo. However, whether infection or superinfection with a virus displaying an antagonistic T cell epitope can alter virus-host relationships via inhibiting T cell-mediated immunopathology is unclear. Here, we evaluated a recently described CD4(+) T cell escape lymphocytic choriomeningitis virus (LCMV) variant that in vitro displayed antagonistic characteristics for the major histocompatibility complex class II-restricted mutated epitope. Mice transgenic for the immunodominant LCMV-specific T helper epitope that usually succumb to wild-type LCMV-induced immunopathology, survived if they were simultaneously coinfected with antagonistic variant but not with control virus. The results illustrate that a coinfecting APL-expressing virus can shift an immunopathological virus-host relationships in favor of host survival. This may play a role in poorly cytopathic long-lasting virus carrier states in humans.
Collapse
Affiliation(s)
- Lukas Hunziker
- Institute for Experimental Immunology, University Hospital, CH-8091 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|