1
|
Abbey JL, Karsunky H, Serwold T, Papathanasiou P, Weissman IL, O'Neill HC. Expression of TCR-Vβ peptides by murine bone marrow cells does not identify T-cell progenitors. J Cell Mol Med 2015; 19:1956-64. [PMID: 25754612 PMCID: PMC4549046 DOI: 10.1111/jcmm.12572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/29/2015] [Indexed: 11/30/2022] Open
Abstract
Germline transcription has been described for both immunoglobulin and T-cell receptor (TCR) genes, raising questions of their functional significance during haematopoiesis. Previously, an immature murine T-cell line was shown to bind antibody to TCR-Vβ8.2 in absence of anti-Cβ antibody binding, and an equivalent cell subset was also identified in the mesenteric lymph node. Here, we investigate whether germline transcription and cell surface Vβ8.2 expression could therefore represent a potential marker of T-cell progenitors. Cells with the TCR phenotype of Vβ8.2+Cβ− are found in several lymphoid sites, and among the lineage-negative (Lin−) fraction of hematopoietic progenitors in bone marrow (BM). Cell surface marker analysis of these cells identified subsets reflecting common lymphoid progenitors, common myeloid progenitors and multipotential progenitors. To assess whether the Lin−Vβ8.2+Cβ− BM subset contains hematopoietic progenitors, cells were sorted and adoptively transferred into sub-lethally irradiated recipients. No T-cell or myeloid progeny were detected following introduction of cells via the intrathymic or intravenous routes. However, B-cell development was detected in spleen. This pattern of restricted in vivo reconstitution disputes Lin−Vβ8.2+Cβ− BM cells as committed T-cell progenitors, but raises the possibility of progenitors with potential for B-cell development.
Collapse
Affiliation(s)
- Janice L Abbey
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Holger Karsunky
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas Serwold
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter Papathanasiou
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Helen C O'Neill
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
2
|
Marquis M, Boulet S, Mathien S, Rousseau J, Thébault P, Daudelin JF, Rooney J, Turgeon B, Beauchamp C, Meloche S, Labrecque N. The non-classical MAP kinase ERK3 controls T cell activation. PLoS One 2014; 9:e86681. [PMID: 24475167 PMCID: PMC3903551 DOI: 10.1371/journal.pone.0086681] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/13/2013] [Indexed: 11/19/2022] Open
Abstract
The classical mitogen-activated protein kinases (MAPKs) ERK1 and ERK2 are activated upon stimulation of cells with a broad range of extracellular signals (including antigens) allowing cellular responses to occur. ERK3 is an atypical member of the MAPK family with highest homology to ERK1/2. Therefore, we evaluated the role of ERK3 in mature T cell response. Mouse resting T cells do not transcribe ERK3 but its expression is induced in both CD4⁺ and CD8⁺ T cells following T cell receptor (TCR)-induced T cell activation. This induction of ERK3 expression in T lymphocytes requires activation of the classical MAPK ERK1 and ERK2. Moreover, ERK3 protein is phosphorylated and associates with MK5 in activated primary T cells. We show that ERK3-deficient T cells have a decreased proliferation rate and are impaired in cytokine secretion following in vitro stimulation with low dose of anti-CD3 antibodies. Our findings identify the atypical MAPK ERK3 as a new and important regulator of TCR-induced T cell activation.
Collapse
Affiliation(s)
- Miriam Marquis
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Quebec, Canada
| | - Salix Boulet
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | - Simon Mathien
- Institute of Research in Immunology and Cancer, University of Montreal, Quebec, Canada
| | - Justine Rousseau
- Department of Pharmacology and Molecular Biology, University of Montreal, Quebec, Canada
- Institute of Research in Immunology and Cancer, University of Montreal, Quebec, Canada
| | - Paméla Thébault
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | | | - Julie Rooney
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | - Benjamin Turgeon
- Department of Pharmacology and Molecular Biology, University of Montreal, Quebec, Canada
- Institute of Research in Immunology and Cancer, University of Montreal, Quebec, Canada
| | | | - Sylvain Meloche
- Department of Pharmacology and Molecular Biology, University of Montreal, Quebec, Canada
- Institute of Research in Immunology and Cancer, University of Montreal, Quebec, Canada
| | - Nathalie Labrecque
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Quebec, Canada
| |
Collapse
|
3
|
Hakim FT, Gress RE. Immunosenescence: immune deficits in the elderly and therapeutic strategies to enhance immune competence. Expert Rev Clin Immunol 2014; 1:443-58. [DOI: 10.1586/1744666x.1.3.443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
4
|
Coles M, Veiga-Fernandes H. Insight into lymphoid tissue morphogenesis. Immunol Lett 2013; 156:46-53. [PMID: 23954810 DOI: 10.1016/j.imlet.2013.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/25/2013] [Accepted: 08/05/2013] [Indexed: 11/17/2022]
Abstract
Secondary lymphoid organs (SLO) are crucial structures for immune-surveillance and rapid immune responses allowing resident lymphocytes to encounter antigen-presenting cells that carry antigens from peripheral tissues. These structures develop during embryonic life through a tightly regulated process that involves interactions between haematopoietic and mesenchymal cells. Importantly, this morphogenesis potential is maintained throughout life since in chronic inflammatory conditions novel "tertiary lymphoid organs" can be generated by processes that are reminiscent of embryonic SLO development. In this review we will discuss early events in SLO morphogenesis, focusing on haematopoietic and mesenchymal cell subsets implicated on the development of lymphoid organs.
Collapse
Affiliation(s)
- Mark Coles
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York YO10 5DD, UK.
| | | |
Collapse
|
5
|
Holland AM, Zakrzewski JL, Tsai JJ, Hanash AM, Dudakov JA, Smith OM, West ML, Singer NV, Brill J, Sun JC, van den Brink MRM. Extrathymic development of murine T cells after bone marrow transplantation. J Clin Invest 2012; 122:4716-26. [PMID: 23160195 DOI: 10.1172/jci60630] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 09/27/2012] [Indexed: 11/17/2022] Open
Abstract
Restoring T cell competence is a significant clinical challenge in patients whose thymic function is severely compromised due to age or cytoreductive conditioning. Here, we demonstrate in mice that mesenteric LNs (MLNs) support extrathymic T cell development in euthymic and athymic recipients of bone marrow transplantation (BMT). Furthermore, in aged murine BMT recipients, the contribution of the MLNs to the generation of T cells was maintained, while the contribution of the thymus was significantly impaired. Thymic impairment resulted in a proportional increase in extrathymic-derived T cell progenitors. Extrathymic development in athymic recipients generated conventional naive TCRαβ T cells with a broad Vβ repertoire and intact functional and proliferative potential. Moreover, in the absence of a functional thymus, immunity against known pathogens could be augmented using engineered precursor T cells with viral specificity. These findings demonstrate the potential of extrathymic T cell development for T cell reconstitution in patients with limited thymic function.
Collapse
Affiliation(s)
- Amanda M Holland
- Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Warner K, Luther C, Takei F. Lymphoid progenitors in normal mouse lymph nodes develop into NK cells and T cells in vitro and in vivo. Exp Hematol 2012; 40:401-6. [PMID: 22269116 DOI: 10.1016/j.exphem.2012.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/12/2012] [Accepted: 01/13/2012] [Indexed: 12/13/2022]
Abstract
We have identified a population of normal mouse LN cells, termed LN lymphoid progenitor (LNLP), resembling common lymphoid progenitor (CLP) in the bone marrow. LNLPs lack lineage markers and express CD127, low levels of CD117 (c-Kit), and Sca-1, but lack fms-related tyrosine kinase 3. They efficiently differentiate in vitro into natural killer (NK) cells and T cells, but not mature B cells. LNLPs injected into nonirradiated lymphopenic mice that have no LN develop into mostly splenic T cells with low numbers of NK cells and B cells. When injected into irradiated mice, they generate NK cells and T cells, but not B cells, in the LN. By contrast, bone marrow CLPs develop into mostly B cells with very small numbers of T and NK cells in recipients' spleen and LN. LNLPs have NK and T-cell potentials, but little B-cell potential, and they can develop into NK cells within the LN of normal mice, but their contribution to the T-cell lineage is unknown.
Collapse
Affiliation(s)
- Kathrin Warner
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
7
|
Rafei M, Hardy MP, Williams P, Vanegas JR, Forner KA, Dulude G, Labrecque N, Galipeau J, Perreault C. Development and function of innate polyclonal TCRalphabeta+ CD8+ thymocytes. THE JOURNAL OF IMMUNOLOGY 2011; 187:3133-44. [PMID: 21844388 DOI: 10.4049/jimmunol.1101097] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Innate CD8 T cells are found in mutant mouse models, but whether they are produced in a normal thymus remains controversial. Using the RAG2p-GFP mouse model, we found that ∼10% of TCRαβ(+) CD4(-)CD8(+) thymocytes were innate polyclonal T cells (GFP(+)CD44(hi)). Relative to conventional T cells, innate CD8 thymocytes displayed increased cell surface amounts of B7-H1, CD2, CD5, CD38, IL-2Rβ, and IL-4Rα and downmodulation of TCRβ. Moreover, they overexpressed several transcripts, including T-bet, Id3, Klf2, and, most of all, Eomes. Innate CD8 thymocytes were positively selected, mainly by nonhematopoietic MHCIa(+) cells. They rapidly produced high levels of IFN-γ upon stimulation and readily proliferated in response to IL-2 and IL-4. Furthermore, low numbers of innate CD8 thymocytes were sufficient to help conventional CD8 T cells expand and secrete cytokine following Ag recognition. This helper effect depended on CD44-mediated interactions between innate and conventional CD8 T cells. We concluded that innate TCRαβ(+) CD8 T cells represent a sizeable proportion of normal thymocytes whose development and function differ in many ways from those of conventional CD8 T cells.
Collapse
Affiliation(s)
- Moutih Rafei
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Perreault C. The Origin and Role of MHC Class I-Associated Self-Peptides. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 92:41-60. [DOI: 10.1016/s1877-1173(10)92003-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Bosco N, Kirberg J, Ceredig R, Agenès F. Peripheral T cells in the thymus: have they just lost their way or do they do something? Immunol Cell Biol 2009; 87:50-7. [DOI: 10.1038/icb.2008.83] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nabil Bosco
- Developmental and Molecular Immunology Laboratory, Department of Biomedicine, University of Basel Basel Switzerland
| | - Jörg Kirberg
- Department of Biochemistry, University of Lausanne Epalinges Switzerland
| | - Rod Ceredig
- Developmental and Molecular Immunology Laboratory, Department of Biomedicine, University of Basel Basel Switzerland
| | - Fabien Agenès
- INSERM U743, Département de microbiologie et immunologie de l'Université de Montréal, CR‐CHUM Montréal Quebec Canada
| |
Collapse
|
10
|
Blais MÈ, Brochu S, Giroux M, Bélanger MP, Dulude G, Sékaly RP, Perreault C. Why T Cells of Thymic Versus Extrathymic Origin Are Functionally Different. THE JOURNAL OF IMMUNOLOGY 2008; 180:2299-312. [DOI: 10.4049/jimmunol.180.4.2299] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Abstract
Natural killer (NK) cells have been thought to develop from committed progenitors in the bone marrow. However, a novel pathway of thymus-dependent NK-cell development that produces a unique subset of NK cells expressing CD127 has recently been reported. We now have identified 2 populations of NK progenitors, one in the thymus and the other in the lymph node (LN). Immature double-negative 2 (CD4(-)CD8(-)CD44(+)CD25(+)) thymocytes have potential to produce NK cells with rearranged T-cell receptor gamma genes (Tcrgamma(+)) in vitro. Tcrgamma(+) NK cells are rare in spleen but relatively abundant in the thymus and LN. Approximately 20% of LN NK cells are Tcrgamma(+), and they are found at similar levels in both CD127(+) and CD127(-) subsets. Moreover, a subpopulation of LN cells resembling immature thymocytes differentiates into Tcrgamma(+) NK cells in vitro and also repopulates the NK compartment in lymphopenic mice. Athymic mice lack the LN NK progenitors expressing CD127 as well as Tcrgamma(+) NK cells. These results suggest that Tcrgamma(+) NK cells may be generated from unique progenitors in the thymus as well as in the LN.
Collapse
|
12
|
Abstract
The lymph nodes (LNs) harbor a cryptic T-lymphopoietic pathway that is dramatically amplified by oncostatin M (OM). OM-transgenic mice generate massive amounts of T lymphocytes in the absence of Lin(-)c-Kit(hi)IL-7Ralpha- lymphoid progenitors and of reticular epithelial cells. Extrathymic T cells that develop along the OM-dependent LN pathway originate from Lin(-)c-Kit(lo)IL-7Ralpha+ lymphoid progenitors and are different from classic T cells in terms of turnover kinetics and function. Positive selection does not obey the same rules in the thymus and the LNs, where positive selection of developing T cells is supported primarily by epithelial and hematopoietic cells, respectively. Extrathymic T cells undergo enhanced homeostatic proliferation and thereby acquire some properties of memory T cells. Following antigen encounter, extrathymic T-cells initiate proliferation and cytokine secretion more readily than classic T cells, but their accumulation is limited by an exquisite susceptibility to apoptosis. Studies on in vitro and in vivo extrathymic T-cell development have yielded novel insights into the essence of a primary T-lymphoid organ. Furthermore, comparison of the thymic and OM-dependent extrathymic pathways shows how the division of labor between primary and secondary lymphoid organs influences the repertoire and homeostasis of T lymphocytes.
Collapse
Affiliation(s)
- Marie-Eve Blais
- Institute of Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
| | | | | |
Collapse
|
13
|
Maillard I, Schwarz BA, Sambandam A, Fang T, Shestova O, Xu L, Bhandoola A, Pear WS. Notch-dependent T-lineage commitment occurs at extrathymic sites following bone marrow transplantation. Blood 2006; 107:3511-9. [PMID: 16397133 PMCID: PMC1895767 DOI: 10.1182/blood-2005-08-3454] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Early T-lineage progenitors (ETPs) arise after colonization of the thymus by multipotent bone marrow progenitors. ETPs likely serve as physiologic progenitors of T-cell development in adult mice, although alternative T-cell differentiation pathways may exist. While we were investigating mechanisms of T-cell reconstitution after bone marrow transplantation (BMT), we found that efficient donor-derived thymopoiesis occurred before the pool of ETPs had been replenished. Simultaneously, T lineage-restricted progenitors were generated at extrathymic sites, both in the spleen and in peripheral lymph nodes, but not in the bone marrow or liver. The generation of these T lineage-committed cells occurred through a Notch-dependent differentiation process. Multipotent bone marrow progenitors efficiently gave rise to extrathymic T lineage-committed cells, whereas common lymphoid progenitors did not. Our data show plasticity of T-lineage commitment sites in the post-BMT environment and indicate that Notch-driven extrathymic Tlineage commitment from multipotent progenitors may contribute to early T-lineage reconstitution after BMT.
Collapse
Affiliation(s)
- Ivan Maillard
- 611 BRB II/III, 421 Curie Blvd, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Terra R, Louis I, Le Blanc R, Ouellet S, Zúñiga-Pflücker JC, Perreault C. T-cell generation by lymph node resident progenitor cells. Blood 2005; 106:193-200. [PMID: 15746078 DOI: 10.1182/blood-2004-12-4886] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the thymus, 2 types of Lin–Sca-1+ (lineage-negative stem cell antigen-1–positive) progenitors can generate T-lineage cells: c-Kithi interleukin-7 receptor α–negative (c-KithiIL-7Rα–) and c-KitloIL-7Rα+. While c-KithiIL-7Rα– progenitors are absent, c-KitloIL-7Rα+ progenitors are abundant in the lymph nodes (LNs). c-KitloIL-7Rα+ progenitors undergo abortive T-cell commitment in the LNs and become arrested in the G1 phase of the cell cycle because they fail both to up-regulate c-myb, c-myc, and cyclin D2 and to repress junB, p16INK4a, and p21Cip1/WAF. As a result, development of LN c-KitloIL-7Rα+ progenitors is blocked at an intermediate CD44+CD25lo development stage in vivo, and LN-derived progenitors fail to generate mature T cells when cultured with OP9-DL1 stromal cells. LN stroma can provide key signals for T-cell development including IL-7, Kit ligand, and Delta-like–1 but lacks Wnt4 and Wnt7b transcripts. LN c-KitloIL-7Rα+ progenitors are able to generate mature T cells when cultured with stromal cells producing wingless-related MMTV integration site 4 (Wnt4) or upon in vivo exposure to oncostatin M whose signaling pathway intersects with Wnt. Thus, supplying Wnt signals to c-KitloIL-7Rα+ progenitors may be sufficient to transform the LN into a primary T-lymphoid organ. These data provide unique insights into the essence of a primary T-lymphoid organ and into how a cryptic extrathymic T-cell development pathway can be amplified.
Collapse
Affiliation(s)
- Rafik Terra
- Institute of Research in Immunology and Cancer, University of Montreal, QC, Canada
| | | | | | | | | | | |
Collapse
|
15
|
Uryuhara K, Ambiru S, Dehoux JP, Oike F, Talpe S, Gianello P. Thymectomy impairs but does not uniformly abrogate long-term acceptance of semi-identical liver allograft in inbred miniature Swine temporarily treated with FK506. Transplantation 2004; 77:1172-80. [PMID: 15114080 DOI: 10.1097/01.tp.0000121762.47432.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Long-term acceptance of semi-identical orthotopic liver transplants (OLTs) in inbred swine is induced by a 12-day course of FK506. To study whether acceptance is attributable to central or peripheral immune mechanisms, the effect of complete thymectomy was determined. METHODS Total thymectomy was performed in 15 swine 3 to 4 weeks before OLT. Twelve of these animals received a 12-day course of FK506 after OLT, and three animals did not receive immunosuppression. Five additional nonthymectomized pigs received OLT and a FK506 regimen. Graft survival, liver function, histology, and cellular and humoral responses were assessed. RESULTS Nonthymectomized, FK506-treated animals uniformly showed long-term acceptance of OLT and developed stable donor unresponsiveness. Of the 12 thymectomized, FK506-treated pigs, seven died of non-immunologic causes within 3 postoperative months, and five maintained their OLT for more than 6 months (range 180-450 days). Among these survivors, two developed a complete anti-donor response (mixed lymphocyte reaction [MLR], cell-mediated lymphocytotoxicity [CML], and immunoglobulin [IgG] antibodies) and eventually rejected their OLT at postoperative day 180. The three remaining pigs kept their liver allografts up to 450 days and developed a donor-specific unresponsiveness (a transient anti-donor MLR was observed during the follow-up but never an anti-donor CML or IgG antibodies). All three thymectomized, untreated animals rejected their allografts acutely and displayed a complete anti-donor response (MLR, CML, and IgG antibodies). CONCLUSIONS Complete thymectomy before OLT impaired but did not uniformly abrogate long-term acceptance of semi-identical OLT, suggesting that peripheral immune mechanisms may be sufficient to induce long-term acceptance of liver allografts in some recipients.
Collapse
Affiliation(s)
- Kenji Uryuhara
- Laboratory of Experimental Surgery, Faculté de Médecine, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
16
|
Barreto CB, Azeredo RB, Fucs R. Extrathymic T cells expand in nude mice following different allogeneic stimuli. Immunobiology 2004; 207:339-49. [PMID: 14575149 DOI: 10.1078/0171-2985-00248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We studied extrathymic lymphocyte populations expanded in nude mice after allogeneic stimuli. These were either cells from different tissues or Immunoglobulin (Ig). Although the cells transferred, obtained from Thy-1.1+ donors, were able to induce similar increase in the nude host Thy-1.2+ population, the expanded populations could be qualitatively distinguished from each other by their different expression of mature T cell molecules and by their functional profile. The extrathymic lymphocytes expanded in animals receiving allogeneic fetal thymocytes (FT) were preferentially CD4+ cells and could confer a functional immunocompetent system to the nude host, able to reject allogeneic skin grafts. In contrast, allogeneic adult red blood cells (RBC) led to the expansion of a CD8+ population and to an auto-reactive profile, resulting in the rejection of syngeneic skin grafts by most of the nude hosts. Neither of these profiles was achieved with the other stimuli. These findings support the view that different activation pathways and/or regulatory interactions may lead to the development of distinct extrathymic populations.
Collapse
|
17
|
Nakagawa R, Inui T, Nagafune I, Tazunoki Y, Motoki K, Yamauchi A, Hirashima M, Habu Y, Nakashima H, Seki S. Essential Role of Bystander Cytotoxic CD122+CD8+ T Cells for the Antitumor Immunity Induced in the Liver of Mice by α-Galactosylceramide. THE JOURNAL OF IMMUNOLOGY 2004; 172:6550-7. [PMID: 15153469 DOI: 10.4049/jimmunol.172.11.6550] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We recently reported that NK cells and CD8(+) T cells contribute to the antimetastatic effect in the liver induced by alpha-galactosylceramide (alpha-GalCer). In the present study, we further investigated how CD8(+) T cells contribute to the antimetastatic effect induced by alpha-GalCer. The injection of anti-CD8 Ab into mice 3 days before alpha-GalCer injection (2 days before intrasplenic injection of B16 tumors) did not inhibit IFN-gamma production nor did it reduce the NK activity of liver mononuclear cells after alpha-GalCer stimulation. However, it did cause a reduction in the proliferation of liver mononuclear cells and mouse survival time. Furthermore, although the depletion of NK and NKT cells (by anti-NK1.1 Ab) 2 days after alpha-GalCer injection no longer decreased the survival rate of B16 tumor-injected mice, the depletion of CD8(+) T cells did. CD122(+)CD8(+) T cells in the liver increased after alpha-GalCer injection, and antitumor cytotoxicity of CD8(+) T cells in the liver gradually increased until day 6. These CD8(+) T cells exhibited an antitumor cytotoxicity toward not only B16 cells, but also EL-4 cells, and their cytotoxicity significantly decreased by the depletion of CD122(+)CD8(+) T cells. The critical, but bystander role of CD122(+)CD8(+) T cells was further confirmed by adoptive transfer experiments into CD8(+) T cell-depleted mice. Furthermore, it took 14 days after the first intrasplenic B16/alpha-GalCer injection for the mice to generate CD8(+) T cells that can reject s.c. rechallenged B16 cells. These findings suggest that alpha-GalCer activates bystander antitumor CD122(+)CD8(+) T cells following NK cells and further induces an adaptive antitumor immunity due to tumor-specific memory CD8(+) CTLs.
Collapse
Affiliation(s)
- Ryusuke Nakagawa
- Department of Cell Regulation, Kagawa Medical University, Kagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Dhanji S, Teh HS. IL-2-activated CD8+CD44high cells express both adaptive and innate immune system receptors and demonstrate specificity for syngeneic tumor cells. THE JOURNAL OF IMMUNOLOGY 2004; 171:3442-50. [PMID: 14500639 DOI: 10.4049/jimmunol.171.7.3442] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD8(+) T cells depend on the alphabeta TCR for Ag recognition and function. However, Ag-activated CD8(+) T cells can also express receptors of the innate immune system. In this study, we examined the expression of NK receptors on a population of CD8(+) T cells expressing high levels of CD44 (CD8(+)CD44(high) cells) from normal mice. These cells are distinct from conventional memory CD8(+) T cells and they proliferate and become activated in response to IL 2 via a CD48/CD2-dependent mechanism. Before activation, they express low or undetectable levels of NK receptors but upon activation with IL-2 they expressed significant levels of activating NK receptors including 2B4 and NKG2D. Interestingly, the IL-2-activated cells demonstrate a preference in the killing of syngeneic tumor cells. This killing of syngeneic tumor cells was greatly enhanced by the expression of the NKG2D ligand Rae-1 on the target cell. In contrast to conventional CD8(+) T cells, IL-2-activated CD8(+)CD44(high) cells express DAP12, an adaptor molecule that is normally expressed in activated NK cells. These observations indicate that activated CD8(+)CD44(high) cells express receptors of both the adaptive and innate immune system and may play a unique role in the surveillance of host cells that have been altered by infection or transformation.
Collapse
MESH Headings
- Animals
- Antigens, CD/physiology
- CD2 Antigens/physiology
- CD48 Antigen
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Death/genetics
- Cell Death/immunology
- Cell Division/genetics
- Cell Division/immunology
- Cell Line, Tumor/immunology
- Cell Line, Tumor/metabolism
- Cell Line, Tumor/pathology
- Cell Line, Tumor/transplantation
- Cells, Cultured
- Cytotoxicity, Immunologic/genetics
- Epitopes, T-Lymphocyte/biosynthesis
- Hyaluronan Receptors/biosynthesis
- Immunity, Active/genetics
- Immunity, Innate/genetics
- Immunophenotyping
- Interleukin-2/pharmacology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphocyte Activation/genetics
- Lymphoma, T-Cell/immunology
- Lymphoma, T-Cell/pathology
- Lymphoma, T-Cell/prevention & control
- Membrane Proteins/biosynthesis
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Receptors, Immunologic/biosynthesis
- Receptors, KIR
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Salim Dhanji
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
19
|
Blais ME, Gérard G, Martinic MM, Roy-Proulx G, Zinkernagel RM, Perreault C. Do thymically and strictly extrathymically developing T cells generate similar immune responses? Blood 2003; 103:3102-10. [PMID: 15070691 DOI: 10.1182/blood-2003-09-3311] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
If present in sufficient numbers, could extrathymic T cells substitute for thymus-derived T cells? To address this issue, we studied extrathymic T cells that develop in athymic mice under the influence of oncostatin M (OM). In this model, extensive T-cell development is probably due to amplification of a minor pathway of T-cell differentiation taking place only in the lymph nodes. Extrathymic CD4 T cells expanded poorly and were deficient in providing B-cell help after infection with vesicular stomatitis virus (VSV) and lymphocytic choriomeningitis virus (LCMV). Compared with classic T cells, stimulated extrathymic CD8 T cells produced copious amounts of interferon gamma (IFN-gamma), and their expansion was precocious but of limited amplitude because of a high apoptosis rate. Consequently, although extrathymic cytotoxic T lymphocytes (CTLs) responded to LCMV infection, as evidenced by the expansion of GP33-41 tetramer-positive CD8 T cells, they were unable to eradicate the virus. Our data indicate that the site of development impinges on T-cell quality and function and that extrathymic T cells functionally cannot substitute for classical thymic T cells.
Collapse
Affiliation(s)
- Marie-Eve Blais
- Guy-Bernier Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Louis I, Dulude G, Corneau S, Brochu S, Boileau C, Meunier C, Côté C, Labrecque N, Perreault C. Changes in the lymph node microenvironment induced by oncostatin M. Blood 2003; 102:1397-404. [PMID: 12702501 DOI: 10.1182/blood-2003-01-0316] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oncostatin M (OM) transforms the lymph node (LN) into a "super lymphoid organ" with 2 striking features: massive thymus-independent T-cell development and major expansion of the memory T-cell pool. We report that T-cell development in the LckOM LN is regulated by a cyclooxygenase-2 (COX-2)-dependent neoangiogenesis involving high endothelial venules (HEVs). That LN HEVs are particularlyrich in OM-receptor beta-chain provides aplausible explanation for the fact that extrathymic T-cell development in LckOM mice is limited to the LN. Moreover, we found that increased production of the CCL20 chemokine by LN stromal cells was instrumental in the expansion of the memory phenotype CD4 T-cell pool in LckOM mice. The generality of the latter finding was demonstrated by the fact that CCL20/CCR6 interactions increase the basal proliferation rate of CD62L(lo) CD4 T cells irrespective of their thymic (in non-OM-transgenic mice) or extrathymic (in LckOM mice) origin. To our knowledge, CCL20 is the first molecule found to increase the proliferation of memory phenotype CD4 T cells. These findings identify potential targets for the creation of thymic substitutes (LN HEVs) and for expansion of the CD4 memory T-cell compartment (CCL20).
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- Chemokine CCL20
- Chemokines/biosynthesis
- Chemokines/genetics
- Chemokines/metabolism
- Chemokines, CC/biosynthesis
- Chemokines, CC/genetics
- Chemokines, CC/immunology
- Cyclooxygenase 2
- Cytokines/pharmacology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Immunologic Memory/physiology
- Interleukin-7/biosynthesis
- Interleukin-7/genetics
- Isoenzymes/metabolism
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Macrophage Inflammatory Proteins/biosynthesis
- Macrophage Inflammatory Proteins/genetics
- Macrophage Inflammatory Proteins/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neovascularization, Physiologic/physiology
- Oncostatin M
- Peptides/deficiency
- Peptides/genetics
- Peptides/immunology
- Prostaglandin-Endoperoxide Synthases/metabolism
- Receptors, CCR6
- Receptors, Chemokine
- Receptors, Cytokine/biosynthesis
- Receptors, Cytokine/genetics
- Receptors, Cytokine/metabolism
- Stromal Cells/immunology
- Stromal Cells/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Isabelle Louis
- Guy-Bernier Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Blais ME, Louis I, Corneau S, Gérard G, Terra R, Perreault C. Extrathymic T-lymphocyte development. Exp Hematol 2003; 31:349-54. [PMID: 12763132 DOI: 10.1016/s0301-472x(03)00026-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Marie-Eve Blais
- Guy-Bernier Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Guy-Grand D, Azogui O, Celli S, Darche S, Nussenzweig MC, Kourilsky P, Vassalli P. Extrathymic T cell lymphopoiesis: ontogeny and contribution to gut intraepithelial lymphocytes in athymic and euthymic mice. J Exp Med 2003; 197:333-41. [PMID: 12566417 PMCID: PMC2193840 DOI: 10.1084/jem.20021639] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the absence of thymopoiesis, T lymphocytes are nevertheless present, mainly in the gut epithelium. Ontogeny of the extrathymic pathway and the extent of its involvement in euthymic mice are controversial. These questions have been addressed by assessing the expression of recombinase activating gene (RAG) through the use of green fluorescent protein RAG2 transgenic mouse models. In athymic mice, T lymphopoiesis occurs mainly in the mesenteric lymph node and less in the Peyer's patches. Ontogenic steps of this lymphopoiesis resemble those of thymopoiesis, but with an apparent bias toward gamma delta T cell production and with a paucity of oligoclonal alpha beta T cells possibly resulting from a deficit in positive selection. Whether in athymic or euthymic mice, neither T intraepithelial lymphocytes (IEL) nor cryptopatch cells (reported to contain precursors of IEL) displayed fluorescence indicating recent RAG protein synthesis. Newly made T cells migrate from the mesenteric node into the thoracic duct lymph to reach the gut mucosa. In euthymic mice, this extrathymic pathway is totally repressed, except in conditions of severe lymphocytic depletion. Thus, in normal animals, all gut T IEL, including CD8 alpha alpha(+) cells, are of thymic origin, CD8 alpha alpha(+) TCR alpha beta(+) IEL being the likely progeny of double negative NK1-1(-) thymocytes, which show polyclonal V alpha and V beta repertoires.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Genes, RAG-1
- Green Fluorescent Proteins
- Luminescent Proteins/genetics
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Lymphocyte Depletion
- Lymphopoiesis
- Mice
- Mice, Knockout
- Mice, Nude
- Mice, Transgenic
- Peyer's Patches/cytology
- Peyer's Patches/immunology
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/deficiency
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Interleukin-2/metabolism
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Delphine Guy-Grand
- Unité de Biologie Moléculaire du Gène, INSERM U277 and Institut Pasteur, 75724 Paris Cedex 15, France.
| | | | | | | | | | | | | |
Collapse
|