1
|
Marzella DF, Crocioni G, Radusinović T, Lepikhov D, Severin H, Bodor DL, Rademaker DT, Lin C, Georgievska S, Renaud N, Kessler AL, Lopez-Tarifa P, Buschow SI, Bekkers E, Xue LC. Geometric deep learning improves generalizability of MHC-bound peptide predictions. Commun Biol 2024; 7:1661. [PMID: 39702482 DOI: 10.1038/s42003-024-07292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
The interaction between peptides and major histocompatibility complex (MHC) molecules is pivotal in autoimmunity, pathogen recognition and tumor immunity. Recent advances in cancer immunotherapies demand for more accurate computational prediction of MHC-bound peptides. We address the generalizability challenge of MHC-bound peptide predictions, revealing limitations in current sequence-based approaches. Our structure-based methods leveraging geometric deep learning (GDL) demonstrate promising improvement in generalizability across unseen MHC alleles. Further, we tackle data efficiency by introducing a self-supervised learning approach on structures (3D-SSL). Without being exposed to any binding affinity data, our 3D-SSL outperforms sequence-based methods trained on ~90 times more data points. Finally, we demonstrate the resilience of structure-based GDL methods to biases in binding data on an Hepatitis B virus vaccine immunopeptidomics case study. This proof-of-concept study highlights structure-based methods' potential to enhance generalizability and data efficiency, with possible implications for data-intensive fields like T-cell receptor specificity predictions.
Collapse
Affiliation(s)
- Dario F Marzella
- Medical BioSciences department, Radboudumc, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | | | | | - Daniil Lepikhov
- Medical BioSciences department, Radboudumc, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Heleen Severin
- Medical BioSciences department, Radboudumc, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Dani L Bodor
- Netherlands eScience Center, Amsterdam, The Netherlands
| | - Daniel T Rademaker
- Medical BioSciences department, Radboudumc, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - ChiaYu Lin
- Netherlands eScience Center, Amsterdam, The Netherlands
| | | | | | - Amy L Kessler
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, 3015 GD, Rotterdam, The Netherlands
| | | | - Sonja I Buschow
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, 3015 GD, Rotterdam, The Netherlands
| | - Erik Bekkers
- University of Amsterdam, Amsterdam, The Netherlands
| | - Li C Xue
- Medical BioSciences department, Radboudumc, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Collesano L, Łuksza M, Lässig M. Energy landscapes of peptide-MHC binding. PLoS Comput Biol 2024; 20:e1012380. [PMID: 39226310 PMCID: PMC11398667 DOI: 10.1371/journal.pcbi.1012380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/13/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024] Open
Abstract
Molecules of the Major Histocompatibility Complex (MHC) present short protein fragments on the cell surface, an important step in T cell immune recognition. MHC-I molecules process peptides from intracellular proteins; MHC-II molecules act in antigen-presenting cells and present peptides derived from extracellular proteins. Here we show that the sequence-dependent energy landscapes of MHC-peptide binding encode class-specific nonlinearities (epistasis). MHC-I has a smooth landscape with global epistasis; the binding energy is a simple deformation of an underlying linear trait. This form of epistasis enhances the discrimination between strong-binding peptides. In contrast, MHC-II has a rugged landscape with idiosyncratic epistasis: binding depends on detailed amino acid combinations at multiple positions of the peptide sequence. The form of epistasis affects the learning of energy landscapes from training data. For MHC-I, a low-complexity problem, we derive a simple matrix model of binding energies that outperforms current models trained by machine learning. For MHC-II, higher complexity prevents learning by simple regression methods. Epistasis also affects the energy and fitness effects of mutations in antigen-derived peptides (epitopes). In MHC-I, large-effect mutations occur predominantly in anchor positions of strong-binding epitopes. In MHC-II, large effects depend on the background epitope sequence but are broadly distributed over the epitope, generating a bigger target for escape mutations due to loss of presentation. Together, our analysis shows how an energy landscape of protein-protein binding constrains the target of escape mutations from T cell immunity, linking the complexity of the molecular interactions to the dynamics of adaptive immune response.
Collapse
Affiliation(s)
- Laura Collesano
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - Marta Łuksza
- Tisch Cancer Institute, Departments of Oncological Sciences and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Michael Lässig
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Hulin-Curtis S, Geary JK, MacLachlan BJ, Altmann DM, Baillon L, Cole DK, Greenshields-Watson A, Hesketh SJ, Humphreys IR, Jones IM, Lauder SN, Mason GH, Smart K, Scourfield DO, Scott J, Sukhova K, Stanton RJ, Wall A, Rizkallah PJ, Barclay WS, Gallimore A, Godkin A. A targeted single mutation in influenza A virus universal epitope transforms immunogenicity and protective immunity via CD4 + T cell activation. Cell Rep 2024; 43:114259. [PMID: 38819988 DOI: 10.1016/j.celrep.2024.114259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/22/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024] Open
Abstract
CD4+ T cells are central to adaptive immunity. Their role in cross-protection in viral infections such as influenza and severe acute respiratory syndrome (SARS) is well documented; however, molecular rules governing T cell receptor (TCR) engagement of peptide-human leukocyte antigen (pHLA) class II are less understood. Here, we exploit an aspect of HLA class II presentation, the peptide-flanking residues (PFRs), to "tune" CD4+ T cell responses within an in vivo model system of influenza. Using a recombinant virus containing targeted substitutions at immunodominant HLA-DR1 epitopes, we demonstrate limited weight loss and improved clinical scores after heterosubtypic re-challenge. We observe enhanced protection linked to lung-derived influenza-specific CD4+ and CD8+ T cells prior to re-infection. Structural analysis of the ternary TCR:pHLA complex identifies that flanking amino acids influence side chains in the core 9-mer peptide, increasing TCR affinity. Augmentation of CD4+ T cell immunity is achievable with a single mutation, representing a strategy to enhance adaptive immunity that is decoupled from vaccine modality.
Collapse
Affiliation(s)
- Sarah Hulin-Curtis
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - James K Geary
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| | - Bruce J MacLachlan
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Danny M Altmann
- Faculty of Medicine, Imperial College, Hammersmith Hospital, London W12 0NN, UK
| | - Laury Baillon
- Faculty of Medicine, Imperial College, Hammersmith Hospital, London W12 0NN, UK
| | - David K Cole
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Alex Greenshields-Watson
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Department of Statistics, University of Oxford, Oxford OX1 3LB, UK
| | - Sophie J Hesketh
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Ian R Humphreys
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Ian M Jones
- School of Biological Sciences, University of Reading, Reading RG6 6AH, UK
| | - Sarah N Lauder
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Georgina H Mason
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Kathryn Smart
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - D Oliver Scourfield
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Jake Scott
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Ksenia Sukhova
- Faculty of Medicine, Imperial College, Hammersmith Hospital, London W12 0NN, UK
| | - Richard J Stanton
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Aaron Wall
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Pierre J Rizkallah
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Wendy S Barclay
- Faculty of Medicine, Imperial College, Hammersmith Hospital, London W12 0NN, UK
| | - Awen Gallimore
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Andrew Godkin
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| |
Collapse
|
4
|
Lin Y, Sakuraba S, Massilamany C, Reddy J, Tanaka Y, Miyake S, Yamamura T. Harnessing autoimmunity with dominant self-peptide: Modulating the sustainability of tissue-preferential antigen-specific Tregs by governing the binding stability via peptide flanking residues. J Autoimmun 2023; 140:103094. [PMID: 37716077 DOI: 10.1016/j.jaut.2023.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 09/18/2023]
Abstract
Sensitization to self-peptides induces various immunological responses, from autoimmunity to tumor immunity, depending on the peptide sequence; however, the underlying mechanisms remain unclear, and thus, curative therapeutic options considering immunity balance are limited. Herein, two overlapping dominant peptides of myelin proteolipid protein, PLP136-150 and PLP139-151, which induce different forms of experimental autoimmune encephalomyelitis (EAE), monophasic and relapsing EAE, respectively, were investigated. Mice with monophasic EAE exhibited highly resistant to EAE re-induction with any encephalitogenic peptides, whereas mice with relapsing EAE were susceptible, and progressed, to EAE re-induction. This resistance to relapse and re-induction in monophasic EAE mice was associated with the maintenance of potent CD69+CD103+CD4+CD25high regulatory T-cells (Tregs) enriched with antigen specificity, which expanded preferentially in the central nervous system with sustained suppressive activity. This tissue-preferential sustainability of potent antigen-specific Tregs was correlated with the antigenicity of PLP136-150, depending on its flanking residues. That is, the flanking residues of PLP136-150 enable to form pivotally arranged strong hydrogen bonds that secured its binding stability to MHC-class II. These potent Tregs acting tissue-preferentially were induced only by sensitization of PLP136-150, not by its tolerance induction, independent of EAE development. These findings suggest that, for optimal therapy, "benign autoimmunity" can be critically achieved through inverse vaccination with self-peptides by manipulating their flanking residues.
Collapse
Affiliation(s)
- Youwei Lin
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan; Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan.
| | - Shun Sakuraba
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Chiba, 263-0024, Japan.
| | | | - Jayagopala Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, Nagasaki, 852-8588, Japan.
| | - Sachiko Miyake
- Department of Immunology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan.
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan.
| |
Collapse
|
5
|
Hartman K, Steiner G, Siegel M, Looney CM, Hickling TP, Bray-French K, Springer S, Marban-Doran C, Ducret A. Expanding the MAPPs Assay to Accommodate MHC-II Pan Receptors for Improved Predictability of Potential T Cell Epitopes. BIOLOGY 2023; 12:1265. [PMID: 37759665 PMCID: PMC10525474 DOI: 10.3390/biology12091265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
A critical step in the immunogenicity cascade is attributed to human leukocyte antigen (HLA) II presentation triggering T cell immune responses. The liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based major histocompatibility complex (MHC) II-associated peptide proteomics (MAPPs) assay is implemented during preclinical risk assessments to identify biotherapeutic-derived T cell epitopes. Although studies indicate that HLA-DP and HLA-DQ alleles are linked to immunogenicity, most MAPPs studies are restricted to using HLA-DR as the dominant HLA II genotype due to the lack of well-characterized immunoprecipitating antibodies. Here, we address this issue by testing various commercially available clones of MHC-II pan (CR3/43, WR18, and Tü39), HLA-DP (B7/21), and HLA-DQ (SPV-L3 and 1a3) antibodies in the MAPPs assay, and characterizing identified peptides according to binding specificity. Our results reveal that HLA II receptor-precipitating reagents with similar reported specificities differ based on clonality and that MHC-II pan antibodies do not entirely exhibit pan-specific tendencies. Since no individual antibody clone is able to recover the complete HLA II peptide repertoire, we recommend a mixed strategy of clones L243, WR18, and SPV-L3 in a single immunoprecipitation step for more robust compound-specific peptide detection. Ultimately, our optimized MAPPs strategy improves the predictability and additional identification of T cell epitopes in immunogenicity risk assessments.
Collapse
Affiliation(s)
- Katharina Hartman
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland (C.M.L.)
| | - Guido Steiner
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland (C.M.L.)
| | - Michel Siegel
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland (C.M.L.)
| | - Cary M. Looney
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland (C.M.L.)
| | - Timothy P. Hickling
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland (C.M.L.)
| | - Katharine Bray-French
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland (C.M.L.)
| | - Sebastian Springer
- School of Science, Department of Biochemistry and Cell Biology, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Céline Marban-Doran
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland (C.M.L.)
| | - Axel Ducret
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland (C.M.L.)
| |
Collapse
|
6
|
Panni UY, Chen MY, Zhang F, Cullinan DR, Li L, James CA, Zhang X, Rogers S, Alarcon A, Baer JM, Zhang D, Gao F, Miller CA, Gong Q, Lim KH, DeNardo DG, Goedegebuure SP, Gillanders WE, Hawkins WG. Induction of cancer neoantigens facilitates development of clinically relevant models for the study of pancreatic cancer immunobiology. Cancer Immunol Immunother 2023; 72:2813-2827. [PMID: 37179276 PMCID: PMC10361914 DOI: 10.1007/s00262-023-03463-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Neoantigen burden and CD8 T cell infiltrate are associated with clinical outcome in pancreatic ductal adenocarcinoma (PDAC). A shortcoming of many genetic models of PDAC is the lack of neoantigen burden and limited T cell infiltrate. The goal of the present study was to develop clinically relevant models of PDAC by inducing cancer neoantigens in KP2, a cell line derived from the KPC model of PDAC. KP2 was treated with oxaliplatin and olaparib (OXPARPi), and a resistant cell line was subsequently cloned to generate multiple genetically distinct cell lines (KP2-OXPARPi clones). Clones A and E are sensitive to immune checkpoint inhibition (ICI), exhibit relatively high T cell infiltration, and have significant upregulation of genes involved in antigen presentation, T cell differentiation, and chemokine signaling pathways. Clone B is resistant to ICI and is similar to the parental KP2 cell line in terms of relatively low T cell infiltration and no upregulation of genes involved in the pathways noted above. Tumor/normal exome sequencing and in silico neoantigen prediction confirms successful generation of cancer neoantigens in the KP2-OXPARPi clones and the relative lack of cancer neoantigens in the parental KP2 cell line. Neoantigen vaccine experiments demonstrate that a subset of candidate neoantigens are immunogenic and neoantigen synthetic long peptide vaccines can restrain Clone E tumor growth. Compared to existing models, the KP2-OXPARPi clones better capture the diverse immunobiology of human PDAC and may serve as models for future investigations in cancer immunotherapies and strategies targeting cancer neoantigens in PDAC.
Collapse
Affiliation(s)
- Usman Y Panni
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Michael Y Chen
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Felicia Zhang
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Darren R Cullinan
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Lijin Li
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - C Alston James
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Xiuli Zhang
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - S Rogers
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - A Alarcon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - John M Baer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Daoxiang Zhang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| | - Feng Gao
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Christopher A Miller
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| | - Qingqing Gong
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Kian-Huat Lim
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| | - David G DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| | - S Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| | - William E Gillanders
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| | - William G Hawkins
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA.
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
7
|
Wen M, Li Y, Qin X, Qin B, Wang Q. Insight into Cancer Immunity: MHCs, Immune Cells and Commensal Microbiota. Cells 2023; 12:1882. [PMID: 37508545 PMCID: PMC10378520 DOI: 10.3390/cells12141882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer cells circumvent immune surveillance via diverse strategies. In accordance, a large number of complex studies of the immune system focusing on tumor cell recognition have revealed new insights and strategies developed, largely through major histocompatibility complexes (MHCs). As one of them, tumor-specific MHC-II expression (tsMHC-II) can facilitate immune surveillance to detect tumor antigens, and thereby has been used in immunotherapy, including superior cancer prognosis, clinical sensitivity to immune checkpoint inhibition (ICI) therapy and tumor-bearing rejection in mice. NK cells play a unique role in enhancing innate immune responses, accounting for part of the response including immunosurveillance and immunoregulation. NK cells are also capable of initiating the response of the adaptive immune system to cancer immunotherapy independent of cytotoxic T cells, clearly demonstrating a link between NK cell function and the efficacy of cancer immunotherapies. Eosinophils were shown to feature pleiotropic activities against a variety of solid tumor types, including direct interactions with tumor cells, and accessorily affect immunotherapeutic response through intricating cross-talk with lymphocytes. Additionally, microbial sequencing and reconstitution revealed that commensal microbiota might be involved in the modulation of cancer progression, including positive and negative regulatory bacteria. They may play functional roles in not only mucosal modulation, but also systemic immune responses. Here, we present a panorama of the cancer immune network mediated by MHCI/II molecules, immune cells and commensal microbiota and a discussion of prospective relevant intervening mechanisms involved in cancer immunotherapies.
Collapse
Affiliation(s)
- Minting Wen
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Yingjing Li
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Xiaonan Qin
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Bing Qin
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Qiong Wang
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
8
|
Shao XM, Huang J, Niknafs N, Balan A, Cherry C, White J, Velculescu VE, Anagnostou V, Karchin R. HLA class II immunogenic mutation burden predicts response to immune checkpoint blockade. Ann Oncol 2022; 33:728-738. [PMID: 35339648 PMCID: PMC10621650 DOI: 10.1016/j.annonc.2022.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Whereas human leukocyte antigen (HLA) class I mutation-associated neoantigen burden has been linked with response to immune checkpoint blockade (ICB), the role of HLA class II-restricted neoantigens in clinical responses to ICB is less studied. We used computational approaches to assess HLA class II immunogenic mutation (IMM) burden in patients with melanoma and lung cancer treated with ICB. PATIENTS AND METHODS We analyzed whole-exome sequence data from four cohorts of ICB-treated patients with melanoma (n = 110) and non-small-cell lung cancer (NSCLC) (n = 123). MHCnuggets, a neural network-based model, was applied to estimate HLA class II IMM burdens and cellular fractions of IMMs were calculated to assess mutation clonality. We evaluated the combined impact of HLA class II germline genetic variation and class II IMM burden on clinical outcomes. Correlations between HLA class II IMM burden and density of tumor-infiltrating lymphocytes were computed from expression data. RESULTS Responding tumors harbored a significantly higher HLA class II IMM burden for both melanoma and NSCLC (P ≤ 9.6e-3). HLA class II IMM burden was correlated with longer survival, particularly in the NSCLC cohort and in the context of low intratumoral IMM heterogeneity (P < 0.001). HLA class I and II IMM landscapes were largely distinct suggesting a complementary role for class II IMMs in tumor rejection. A higher HLA class II IMM burden was associated with CD4+ T-cell infiltration and programmed death-ligand 1 expression. Transcriptomic analyses revealed an inflamed tumor microenvironment for tumors harboring a high HLA class II IMM burden. CONCLUSIONS HLA class II IMM burden identified patients with NSCLC and melanoma that attained longer survival after ICB treatment. Our findings suggest that HLA class II IMMs may impact responses to ICB in a manner that is distinct and complementary to HLA class I-mediated responses.
Collapse
Affiliation(s)
- X M Shao
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA
| | - J Huang
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, USA
| | - N Niknafs
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - A Balan
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - C Cherry
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - J White
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - V E Velculescu
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - V Anagnostou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA.
| | - R Karchin
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
9
|
Obermair FJ, Renoux F, Heer S, Lee CH, Cereghetti N, Loi M, Maestri G, Haldner Y, Wuigk R, Iosefson O, Patel P, Triebel K, Kopf M, Swain J, Kisielow J. High-resolution profiling of MHC II peptide presentation capacity reveals SARS-CoV-2 CD4 T cell targets and mechanisms of immune escape. SCIENCE ADVANCES 2022; 8:eabl5394. [PMID: 35486722 PMCID: PMC9054008 DOI: 10.1126/sciadv.abl5394] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 03/09/2022] [Indexed: 05/22/2023]
Abstract
Understanding peptide presentation by specific MHC alleles is fundamental for controlling physiological functions of T cells and harnessing them for therapeutic use. However, commonly used in silico predictions and mass spectroscopy have their limitations in precision, sensitivity, and throughput, particularly for MHC class II. Here, we present MEDi, a novel mammalian epitope display that allows an unbiased, affordable, high-resolution mapping of MHC peptide presentation capacity. Our platform provides a detailed picture by testing every antigen-derived peptide and is scalable to all the MHC II alleles. Given the urgent need to understand immune evasion for formulating effective responses to threats such as SARS-CoV-2, we provide a comprehensive analysis of the presentability of all SARS-CoV-2 peptides in the context of several HLA class II alleles. We show that several mutations arising in viral strains expanding globally resulted in reduced peptide presentability by multiple HLA class II alleles, while some increased it, suggesting alteration of MHC II presentation landscapes as a possible immune escape mechanism.
Collapse
Affiliation(s)
- Franz-Josef Obermair
- Repertoire Immune Medicines, Cambridge, MA, USA
- Repertoire Immune Medicines, Schlieren, Switzerland
| | | | | | - Chloe H. Lee
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | | | - Marisa Loi
- Repertoire Immune Medicines, Schlieren, Switzerland
| | | | | | - Robin Wuigk
- Repertoire Immune Medicines, Schlieren, Switzerland
| | | | - Pooja Patel
- Repertoire Immune Medicines, Cambridge, MA, USA
| | | | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | | | - Jan Kisielow
- Repertoire Immune Medicines, Cambridge, MA, USA
- Repertoire Immune Medicines, Schlieren, Switzerland
- Corresponding author.
| |
Collapse
|
10
|
Lang F, Schrörs B, Löwer M, Türeci Ö, Sahin U. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat Rev Drug Discov 2022; 21:261-282. [PMID: 35105974 PMCID: PMC7612664 DOI: 10.1038/s41573-021-00387-y] [Citation(s) in RCA: 260] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 02/07/2023]
Abstract
Somatic mutations in cancer cells can generate tumour-specific neoepitopes, which are recognized by autologous T cells in the host. As neoepitopes are not subject to central immune tolerance and are not expressed in healthy tissues, they are attractive targets for therapeutic cancer vaccines. Because the vast majority of cancer mutations are unique to the individual patient, harnessing the full potential of this rich source of targets requires individualized treatment approaches. Many computational algorithms and machine-learning tools have been developed to identify mutations in sequence data, to prioritize those that are more likely to be recognized by T cells and to design tailored vaccines for every patient. In this Review, we fill the gaps between the understanding of basic mechanisms of T cell recognition of neoantigens and the computational approaches for discovery of somatic mutations and neoantigen prediction for cancer immunotherapy. We present a new classification of neoantigens, distinguishing between guarding, restrained and ignored neoantigens, based on how they confer proficient antitumour immunity in a given clinical context. Such context-based differentiation will contribute to a framework that connects neoantigen biology to the clinical setting and medical peculiarities of cancer, and will enable future neoantigen-based therapies to provide greater clinical benefit.
Collapse
Affiliation(s)
- Franziska Lang
- TRON Translational Oncology, Mainz, Germany
- Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | - Ugur Sahin
- BioNTech, Mainz, Germany.
- University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
11
|
Olsson N, Jiang W, Adler LN, Mellins ED, Elias JE. Tuning DO:DM ratios modulates MHC class II immunopeptidomes. Mol Cell Proteomics 2022; 21:100204. [DOI: 10.1016/j.mcpro.2022.100204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 01/07/2022] [Accepted: 01/16/2022] [Indexed: 10/19/2022] Open
|
12
|
Abstract
Motivation Computationally predicting major histocompatibility complex (MHC)-peptide binding affinity is an important problem in immunological bioinformatics. Recent cutting-edge deep learning-based methods for this problem are unable to achieve satisfactory performance for MHC class II molecules. This is because such methods generate the input by simply concatenating the two given sequences: (the estimated binding core of) a peptide and (the pseudo sequence of) an MHC class II molecule, ignoring biological knowledge behind the interactions of the two molecules. We thus propose a binding core-aware deep learning-based model, DeepMHCII, with a binding interaction convolution layer, which allows to integrate all potential binding cores (in a given peptide) with the MHC pseudo (binding) sequence, through modeling the interaction with multiple convolutional kernels. Results Extensive empirical experiments with four large-scale datasets demonstrate that DeepMHCII significantly outperformed four state-of-the-art methods under numerous settings, such as 5-fold cross-validation, leave one molecule out, validation with independent testing sets and binding core prediction. All these results and visualization of the predicted binding cores indicate the effectiveness of our model, DeepMHCII, and the importance of properly modeling biological facts in deep learning for high predictive performance and efficient knowledge discovery. Availability and implementation DeepMHCII is publicly available at https://github.com/yourh/DeepMHCII. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ronghui You
- Institute of Science and Technology for Brain-Inspired Intelligence and MOE Frontiers Center for Brain Sciences, Fudan University, Shanghai 200433, China
| | - Wei Qu
- Institute of Science and Technology for Brain-Inspired Intelligence and MOE Frontiers Center for Brain Sciences, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
| | - Hiroshi Mamitsuka
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto Prefecture, Japan
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Shanfeng Zhu
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
13
|
Yeung MY. Histocompatibility Assessment in Precision Medicine for Transplantation: Towards a Better Match. Semin Nephrol 2022; 42:44-62. [DOI: 10.1016/j.semnephrol.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Ohigashi I, Matsuda-Lennikov M, Takahama Y. Peptides for T cell selection in the thymus. Peptides 2021; 146:170671. [PMID: 34624431 DOI: 10.1016/j.peptides.2021.170671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022]
Abstract
Major histocompatibility complex (MHC)-associated peptides generated and displayed by antigen-presenting cells in the thymus are essential for the generation of functional and self-tolerant T cells that protect our body from various pathogens. The peptides displayed by cortical thymic epithelial cells (cTECs) are generated by unique enzymatic machineries including the thymoproteasomes, and are involved in the positive selection of self-protective T cells. On the other hand, the peptides displayed by medullary thymic epithelial cells (mTECs) and thymic dendritic cells (DCs) are involved in further selection to establish self-tolerance in T cells. Although the biochemical nature of the peptide repertoire displayed in the thymus remains unclear, many studies have suggested a thymus-specific mechanism for the generation of MHC-associated peptides in the thymus. In this review, we summarize basic knowledge and recent advances in MHC-associated thymic peptides, focusing on the generation and function of thymoproteasome-dependent peptides specifically displayed by cTECs.
Collapse
Affiliation(s)
- Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, 770-8503, Japan.
| | - Mami Matsuda-Lennikov
- Thymus Biology Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yousuke Takahama
- Thymus Biology Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
15
|
Tran MT, Faridi P, Lim JJ, Ting YT, Onwukwe G, Bhattacharjee P, Jones CM, Tresoldi E, Cameron FJ, La Gruta NL, Purcell AW, Mannering SI, Rossjohn J, Reid HH. T cell receptor recognition of hybrid insulin peptides bound to HLA-DQ8. Nat Commun 2021; 12:5110. [PMID: 34433824 PMCID: PMC8387461 DOI: 10.1038/s41467-021-25404-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/05/2021] [Indexed: 12/20/2022] Open
Abstract
HLA-DQ8, a genetic risk factor in type I diabetes (T1D), presents hybrid insulin peptides (HIPs) to autoreactive CD4+ T cells. The abundance of spliced peptides binding to HLA-DQ8 and how they are subsequently recognised by the autoreactive T cell repertoire is unknown. Here we report, the HIP (GQVELGGGNAVEVLK), derived from splicing of insulin and islet amyloid polypeptides, generates a preferred peptide-binding motif for HLA-DQ8. HLA-DQ8-HIP tetramer+ T cells from the peripheral blood of a T1D patient are characterised by repeated TRBV5 usage, which matches the TCR bias of CD4+ T cells reactive to the HIP peptide isolated from the pancreatic islets of a patient with T1D. The crystal structure of three TRBV5+ TCR-HLA-DQ8-HIP complexes shows that the TRBV5-encoded TCR β-chain forms a common landing pad on the HLA-DQ8 molecule. The N- and C-termini of the HIP is recognised predominantly by the TCR α-chain and TCR β-chain, respectively, in all three TCR ternary complexes. Accordingly, TRBV5 + TCR recognition of HIP peptides might occur via a 'polarised' mechanism, whereby each chain within the αβTCR heterodimer recognises distinct origins of the spliced peptide presented by HLA-DQ8.
Collapse
Affiliation(s)
- Mai T Tran
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Pouya Faridi
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jia Jia Lim
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Yi Tian Ting
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Goodluck Onwukwe
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Pushpak Bhattacharjee
- Immunology and Diabetes Unit, St Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Claerwen M Jones
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Eleonora Tresoldi
- Immunology and Diabetes Unit, St Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Fergus J Cameron
- Department of Endocrinology and Diabetes, Royal Children's Hospital, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Nicole L La Gruta
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Anthony W Purcell
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Stuart I Mannering
- Immunology and Diabetes Unit, St Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia. .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia. .,Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK.
| | - Hugh H Reid
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia. .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
16
|
Algarra I, Garrido F, Garcia-Lora AM. MHC heterogeneity and response of metastases to immunotherapy. Cancer Metastasis Rev 2021; 40:501-517. [PMID: 33860434 DOI: 10.1007/s10555-021-09964-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/06/2021] [Indexed: 01/05/2023]
Abstract
In recent years, immunotherapy has proven to be an effective treatment against cancer. Cytotoxic T lymphocytes perform an important role in this anti-tumor immune response, recognizing cancer cells as foreign, through the presentation of tumor antigens by MHC class I molecules. However, tumors and metastases develop escape mechanisms for evading this immunosurveillance and may lose the expression of these polymorphic molecules to become invisible to cytotoxic T lymphocytes. In other situations, they may maintain MHC class I expression and promote immunosuppression of cytotoxic T lymphocytes. Therefore, the analysis of the expression of MHC class I molecules in tumors and metastases is important to elucidate these escape mechanisms. Moreover, it is necessary to determine the molecular mechanisms involved in these alterations to reverse them and recover the expression of MHC class I molecules on tumor cells. This review discusses the role and regulation of MHC class I expression in tumor progression. We focus on altered MHC class I phenotypes present in tumors and metastases, as well as the molecular mechanisms responsible for MHC-I alterations, emphasizing the mechanisms of recovery of the MHC class I molecules expression on cancer cells. The individualized study of the HLA class I phenotype of the tumor and the metastases of each patient will allow choosing the most appropriate immunotherapy treatment based on a personalized medicine.
Collapse
Affiliation(s)
- Ignacio Algarra
- Departamento de Ciencias de la Salud, Universidad de Jaén, Jaén, Spain
| | - Federico Garrido
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico, Hospital Universitario Virgen de las Nieves, Av. de las Fuerzas Armadas 2, 18014, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain.,Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Angel M Garcia-Lora
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico, Hospital Universitario Virgen de las Nieves, Av. de las Fuerzas Armadas 2, 18014, Granada, Spain. .,Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain. .,Unidad de Biobanco, Hospital Universitario Virgen de las Nieves, Granada, Spain.
| |
Collapse
|
17
|
De Souza CP, Baleotti W, Moritz E, Sanches S, Lopes LB, Chiba AK, Donadi EA, Bordin JO. HLA-DRB1 molecules and the presentation of anchor peptides from RhD, RhCE, and KEL proteins. Transfusion 2021; 61:1617-1630. [PMID: 33675036 DOI: 10.1111/trf.16313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/29/2020] [Accepted: 01/13/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Antigens from the Rh and Kell systems are recognized as the most immunogenic in clinical practice. This study evaluated the possible molecular mechanisms involved in the interaction of antigenic peptides with the DRB1 molecules, which help to explain the high frequency of anti-K and association of D + C antibodies in transfusion and incompatible pregnancy. STUDY DESIGN AND METHODS We included 201 patients with antibodies against antigens from the Rh and Kell systems and compare them with 174,015 controls. HLA-DRB1 genotyping and in silico analysis were performed. The NetMHCIIpan software was used to identify RhD-, RhCE-, and KEL-derived anchor peptides that bind to DRB1 molecules. RESULTS HLA-DRB1*15 is associated with an increased risk of D, C, E, and K alloimmunization, while the HLA-DRB1*01 and *12 alleles are overrepresented in patients with anti-C and anti-D, respectively. In silico analysis showed that three polymorphic points (60I, 68S, and 103S) common to C and D antigens can be presented by several DRB1 molecules, including DRB1*15:01. The DRB1*09:01 molecule, although not showing statistical significance, was able to interact strongly with almost all five anchor peptides from the sequence containing the polymorphic determinants of E antigen, except 217-WMFWPSVNS-225. CONCLUSION The DRB1*15 molecule has specific physicochemical characteristics in residues 11P and 13R in the P4 pocket that can favor the response to various antigenic peptides. Anti-K alloimmunization is unrestricted for interaction with specific DRB1 molecules, which suggests that almost all individuals in our population have DRB1 molecules capable of binding to KEL-derived anchor peptides and produce anti-K when stimulated.
Collapse
Affiliation(s)
- Conceição Pinheiro De Souza
- Department of Clinical and Experimental Oncology, Hematology and Hemotherapy Discipline, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Elyse Moritz
- Department of Clinical and Experimental Oncology, Hematology and Hemotherapy Discipline, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Sidneia Sanches
- Department of Clinical and Experimental Oncology, Hematology and Hemotherapy Discipline, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Larissa Barbosa Lopes
- Department of Clinical and Experimental Oncology, Hematology and Hemotherapy Discipline, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Akemi Kuroda Chiba
- Department of Clinical and Experimental Oncology, Hematology and Hemotherapy Discipline, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Eduardo Antônio Donadi
- Department of Medicine, Division of Clinical Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| | - José Orlando Bordin
- Department of Clinical and Experimental Oncology, Hematology and Hemotherapy Discipline, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
18
|
MHCII3D-Robust Structure Based Prediction of MHC II Binding Peptides. Int J Mol Sci 2020; 22:ijms22010012. [PMID: 33374958 PMCID: PMC7792572 DOI: 10.3390/ijms22010012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 02/02/2023] Open
Abstract
Knowledge of MHC II binding peptides is highly desired in immunological research, particularly in the context of cancer, autoimmune diseases, or allergies. The most successful prediction methods are based on machine learning methods trained on sequences of experimentally characterized binding peptides. Here, we describe a complementary approach called MHCII3D, which is based on structural scaffolds of MHC II-peptide complexes and statistical scoring functions (SSFs). The MHC II alleles reported in the Immuno Polymorphism Database are processed in a dedicated 3D-modeling pipeline providing a set of scaffold complexes for each distinct allotype sequence. Antigen protein sequences are threaded through the scaffolds and evaluated by optimized SSFs. We compared the predictive power of MHCII3D with different sequence-based machine learning methods. The Pearson correlation to experimentally determine IC50 values for MHC II Automated Server Benchmarks data sets from IEDB (Immune Epitope Database) is 0.42, which is in the competitor methods range. We show that MHCII3D is quite robust in leaving one molecule out tests and is therefore not prone to overfitting. Finally, we provide evidence that MHCII3D can complement the current sequence-based methods and help to identify problematic entries in IEDB. Scaffolds and MHCII3D executables can be freely downloaded from our web pages.
Collapse
|
19
|
Sabbatino F, Liguori L, Polcaro G, Salvato I, Caramori G, Salzano FA, Casolaro V, Stellato C, Dal Col J, Pepe S. Role of Human Leukocyte Antigen System as A Predictive Biomarker for Checkpoint-Based Immunotherapy in Cancer Patients. Int J Mol Sci 2020; 21:ijms21197295. [PMID: 33023239 PMCID: PMC7582904 DOI: 10.3390/ijms21197295] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Recent advances in cancer immunotherapy have clearly shown that checkpoint-based immunotherapy is effective in a small subgroup of cancer patients. However, no effective predictive biomarker has been identified so far. The major histocompatibility complex, better known in humans as human leukocyte antigen (HLA), is a very polymorphic gene complex consisting of more than 200 genes. It has a crucial role in activating an appropriate host immune response against pathogens and tumor cells by discriminating self and non-self peptides. Several lines of evidence have shown that down-regulation of expression of HLA class I antigen derived peptide complexes by cancer cells is a mechanism of tumor immune escape and is often associated to poor prognosis in cancer patients. In addition, it has also been shown that HLA class I and II antigen expression, as well as defects in the antigen processing machinery complex, may predict tumor responses in cancer immunotherapy. Nevertheless, the role of HLA in predicting tumor responses to checkpoint-based immunotherapy is still debated. In this review, firstly, we will describe the structure and function of the HLA system. Secondly, we will summarize the HLA defects and their clinical significance in cancer patients. Thirdly, we will review the potential role of the HLA as a predictive biomarker for checkpoint-based immunotherapy in cancer patients. Lastly, we will discuss the potential strategies that may restore HLA function to implement novel therapeutic strategies in cancer patients.
Collapse
Affiliation(s)
- Francesco Sabbatino
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
- Oncology Unit, AOU San Giovanni di Dio e Ruggi D’Aragona, 84131 Salerno, Italy
| | - Luigi Liguori
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Giovanna Polcaro
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
| | - Ilaria Salvato
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
- Pulmonary Unit, Department of Biomedical Sciences, Dentistry, Morphological and Functional Imaging (BIOMORF), University of Messina, 98125 Messina, Italy;
| | - Gaetano Caramori
- Pulmonary Unit, Department of Biomedical Sciences, Dentistry, Morphological and Functional Imaging (BIOMORF), University of Messina, 98125 Messina, Italy;
| | - Francesco A. Salzano
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
- Correspondence: ; Tel.: +39-08996-5210
| | - Stefano Pepe
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
- Oncology Unit, AOU San Giovanni di Dio e Ruggi D’Aragona, 84131 Salerno, Italy
| |
Collapse
|
20
|
Peng P, Hu H, Liu P, Xu LX. Neoantigen-specific CD4 + T-cell response is critical for the therapeutic efficacy of cryo-thermal therapy. J Immunother Cancer 2020; 8:jitc-2019-000421. [PMID: 32938627 PMCID: PMC7497524 DOI: 10.1136/jitc-2019-000421] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2020] [Indexed: 12/14/2022] Open
Abstract
Background Traditional tumor thermal ablations, such as radiofrequency ablation (RFA) and cryoablation, can result in good local control of tumor, but traditional tumor thermal ablations are limited by poor long-term survival due to the failure of control of distal metastasis. Our previous studies developed a novel cryo-thermal therapy to treat the B16F10 melanoma mouse model. Long-term survival and T-cell-mediated durable antitumor immunity were achieved after cryo-thermal therapy, but whether tumor antigen-specific T-cells were augmented by cryo-thermal therapy was not determined. Methods The long-term antitumor therapeutic efficacy of cryo-thermal therapy was performed in B16F10 murine melanoma models. Splenocytes derived from mice treated with RFA or cryo-thermal therapy were coincubated with tumor antigen peptides to detect the frequency of antigen specific CD4+ and CD8+ T-cells by flow cytometry. Splenocytes were then stimulated and expanded by αCD3 or peptides and adoptive T-cell therapy experiments were performed to identify the antitumor efficacy of T-cells induced by RFA and cryo-thermal therapy. Naïve mice and tumor-bearing mice were used as control groups. Results Local cryo-thermal therapy generated a stronger systematic antitumor immune response than RFA and a long-lasting antitumor immunity that protected against tumor rechallenge. In vitro studies showed that the antigen-specific CD8+ T-cell response was induced by both cryo-thermal therapy and RFA, but the strong neoantigen-specific CD4+ T-cell response was only induced by cryo-thermal therapy. Cryo-thermal therapy-induced strong antitumor immune response was mainly mediated by CD4+ T-cells, particularly neoantigen-specific CD4+ T-cells. Conclusion Cryo-thermal therapy induced a stronger and broader antigen-specific memory T-cells. Specifically, cryo-thermal therapy, but not RFA, led to a strong neoantigen-specific CD4+ T-cell response that mediated the resistance to tumor challenge.
Collapse
Affiliation(s)
- Peng Peng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hongming Hu
- Providence Portland Medical Center, Earle A Chiles Research Institute, Portland, Oregon, USA
| | - Ping Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lisa X Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
Pham TV, Boichard A, Goodman A, Riviere P, Yeerna H, Tamayo P, Kurzrock R. Role of ultraviolet mutational signature versus tumor mutation burden in predicting response to immunotherapy. Mol Oncol 2020; 14:1680-1694. [PMID: 32530570 PMCID: PMC7400787 DOI: 10.1002/1878-0261.12748] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/27/2020] [Accepted: 06/05/2020] [Indexed: 01/19/2023] Open
Abstract
Hydrophobic neoantigens are more immunogenic because they are better presented by the major histocompatibility complex and better recognized by T cells. Tumor cells can evade the immune response by expressing checkpoints such as programmed death ligand 1. Checkpoint blockade reactivates immune recognition and can be effective in diseases such as melanoma, which harbors a high tumor mutational burden (TMB). Cancers presenting low or intermediate TMB can also respond to checkpoint blockade, albeit less frequently, suggesting the need for biological markers predicting response. We calculated the hydrophobicity of neopeptides produced by probabilistic in silico simulation of the genomic UV exposure mutational signature. We also computed the hydrophobicity of potential neopeptides and extent of UV exposure based on the UV mutational signature enrichment (UVMSE) score in The Cancer Genome Atlas (TCGA; N = 3543 tumors), and in our cohort of 151 immunotherapy‐treated patients. In silico simulation showed that UV exposure significantly increased hydrophobicity of neopeptides, especially over multiple mutagenic cycles. There was also a strong correlation (R2 = 0.953) between weighted UVMSE and hydrophobicity of neopeptides in TCGA melanoma patients. Importantly, UVMSE was able to predict better response (P = 0.0026), progression‐free survival (P = 0.036), and overall survival (P = 0.052) after immunotherapy in patients with low/intermediate TMB, but not in patients with high TMB. We show that higher UVMSE scores could be a useful predictor of better immunotherapy outcome, especially in patients with low/intermediate TMB, likely due to increased hydrophobicity (and hence immunogenicity) of neopeptides.
Collapse
Affiliation(s)
- Timothy V Pham
- Center for Personalized Cancer Therapy, Moores Cancer Center, UCSD, San Diego, CA, USA
| | - Amélie Boichard
- Center for Personalized Cancer Therapy, Moores Cancer Center, UCSD, San Diego, CA, USA
| | - Aaron Goodman
- Center for Personalized Cancer Therapy, Moores Cancer Center, UCSD, San Diego, CA, USA.,Division of Blood and Marrow Transplantation, Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Paul Riviere
- Center for Personalized Cancer Therapy, Moores Cancer Center, UCSD, San Diego, CA, USA
| | - Huwate Yeerna
- Center for Personalized Cancer Therapy, Moores Cancer Center, UCSD, San Diego, CA, USA
| | - Pablo Tamayo
- Center for Personalized Cancer Therapy, Moores Cancer Center, UCSD, San Diego, CA, USA.,Division of Medical Genetics, Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy, Moores Cancer Center, UCSD, San Diego, CA, USA.,Division of Hematology/Oncology, Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
22
|
Dijkstra JM, Hashimoto K. Expected immune recognition of COVID-19 virus by memory from earlier infections with common coronaviruses in a large part of the world population. F1000Res 2020; 9:285. [PMID: 32595955 PMCID: PMC7309412 DOI: 10.12688/f1000research.23458.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/16/2020] [Indexed: 01/11/2024] Open
Abstract
SARS-CoV-2 is the coronavirus agent of the COVID-19 pandemic causing high mortalities. In contrast, the widely spread human coronaviruses OC43, HKU1, 229E, and NL63 tend to cause only mild symptoms. The present study shows, by in silico analysis, that these common human viruses are expected to induce immune memory against SARS-CoV-2 by sharing protein fragments (antigen epitopes) for presentation to the immune system by MHC class I. A list of such epitopes is provided. The number of these epitopes and the prevalence of the common coronaviruses suggest that a large part of the world population has some degree of specific immunity against SARS-CoV-2 already, even without having been infected by that virus. For inducing protection, booster vaccinations enhancing existing immunity are less demanding than primary vaccinations against new antigens. Therefore, for the discussion on vaccination strategies against COVID-19, the available immune memory against related viruses should be part of the consideration.
Collapse
Affiliation(s)
- Johannes M. Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Keiichiro Hashimoto
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
23
|
Dijkstra JM, Hashimoto K. Expected immune recognition of COVID-19 virus by memory from earlier infections with common coronaviruses in a large part of the world population. F1000Res 2020; 9:285. [PMID: 32595955 PMCID: PMC7309412 DOI: 10.12688/f1000research.23458.2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/08/2020] [Indexed: 01/14/2023] Open
Abstract
SARS-CoV-2 is the coronavirus agent of the COVID-19 pandemic causing high mortalities. In contrast, the widely spread human coronaviruses OC43, HKU1, 229E, and NL63 tend to cause only mild symptoms. The present study shows, by in silico analysis, that these common human viruses are expected to induce immune memory against SARS-CoV-2 by sharing protein fragments (antigen epitopes) for presentation to the immune system by MHC class I. A list of such epitopes is provided. The number of these epitopes and the prevalence of the common coronaviruses suggest that a large part of the world population has some degree of specific immunity against SARS-CoV-2 already, even without having been infected by that virus. For inducing protection, booster vaccinations enhancing existing immunity are less demanding than primary vaccinations against new antigens. Therefore, for the discussion on vaccination strategies against COVID-19, the available immune memory against related viruses should be part of the consideration.
Collapse
Affiliation(s)
- Johannes M. Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Keiichiro Hashimoto
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
24
|
Johnson AM, Bullock BL, Neuwelt AJ, Poczobutt JM, Kaspar RE, Li HY, Kwak JW, Hopp K, Weiser-Evans MCM, Heasley LE, Schenk EL, Clambey ET, Nemenoff RA. Cancer Cell-Intrinsic Expression of MHC Class II Regulates the Immune Microenvironment and Response to Anti-PD-1 Therapy in Lung Adenocarcinoma. THE JOURNAL OF IMMUNOLOGY 2020; 204:2295-2307. [PMID: 32179637 DOI: 10.4049/jimmunol.1900778] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 02/07/2020] [Indexed: 11/19/2022]
Abstract
MHC class II (MHCII) expression is usually restricted to APC but can be expressed by cancer cells. We examined the effect of cancer cell-specific MHCII (csMHCII) expression in lung adenocarcinoma on T cell recruitment to tumors and response to anti-PD-1 therapy using two orthotopic immunocompetent murine models of non-small cell lung cancer: CMT167 (CMT) and Lewis lung carcinoma (LLC). We previously showed that CMT167 tumors are eradicated by anti-PD1 therapy, whereas LLC tumors are resistant. RNA sequencing analysis of cancer cells recovered from tumors revealed that csMHCII correlated with response to anti-PD1 therapy, with immunotherapy-sensitive CMT167 cells being csMHCII positive, whereas resistant LLC cells were csMHCII negative. To test the functional effects of csMHCII, MHCII expression was altered on the cancer cells through loss- and gain-of-function of CIITA, a master regulator of the MHCII pathway. Loss of CIITA in CMT167 decreased csMHCII and converted tumors from anti-PD-1 sensitive to anti-PD-1 resistant. This was associated with lower levels of Th1 cytokines, decreased T cell infiltration, increased B cell numbers, and decreased macrophage recruitment. Conversely, overexpression of CIITA in LLC cells resulted in csMHCII in vitro and in vivo. Enforced expression of CIITA increased T cell infiltration and sensitized tumors to anti-PD-1 therapy. csMHCII expression was also examined in a subset of surgically resected human lung adenocarcinomas by multispectral imaging, which provided a survival benefit and positively correlated with T cell infiltration. These studies demonstrate a functional role for csMHCII in regulating T cell infiltration and sensitivity to anti-PD-1.
Collapse
Affiliation(s)
- Amber M Johnson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Bonnie L Bullock
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Alexander J Neuwelt
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Joanna M Poczobutt
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Rachael E Kaspar
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Howard Y Li
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Veterans Affairs Medical Center, Denver, CO 80220
| | - Jeff W Kwak
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Katharina Hopp
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Mary C M Weiser-Evans
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Lynn E Heasley
- Department of Veterans Affairs Medical Center, Denver, CO 80220.,Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and
| | - Erin L Schenk
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Eric T Clambey
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Raphael A Nemenoff
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045;
| |
Collapse
|
25
|
Sun J, Bai H, Wang Z, Duan J, Li J, Guo R, Wang J. Pegylated recombinant human granulocyte colony-stimulating factor regulates the immune status of patients with small cell lung cancer. Thorac Cancer 2020; 11:713-722. [PMID: 32020764 PMCID: PMC7049512 DOI: 10.1111/1759-7714.13322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/31/2019] [Accepted: 01/04/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) is an aggressive disease involving immunodeficiency for which chemotherapy is the standard treatment. Pegylated recombinant human granulocyte colony-stimulating factor (PEG-rhG-CSF) is widely used for primary or secondary prophylaxis of febrile neutropenia (FN) in chemotherapy. However, whether PEG-rhG-CSF influences immune cells, such as lymphocytes, remains unclear. METHODS A total of 17 treatment-naïve SCLC patients were prospectively enrolled and divided into the PEG-rhG-CSF and control groups according to their FN risk. Longitudinal sampling of peripheral blood was performed before, after and 4-6 days after the first cycle of chemotherapy. Flow cytometry was used to assess lymphocyte subsets, including CD3+ T, CD4+ T, CD8+ T, NK, and B cells. The diversity and clonality of the T-cell receptor (TCR) repertoire was analyzed by next-generation sequencing. RESULTS In the PEG-rhG-CSF group, the proportions of CD3+ T and CD4+ T cells had increased significantly (P = 0.002, P = 0.020, respectively), whereas there was no increase in CD8+ T cells. Further, TCR diversity increased (P = 0.009) and clonality decreased (P = 0.004) significantly after PEG-rhG-CSF treatment. However, these factors showed opposite trends before and after chemotherapy. Vβ and Jβ gene fragment types, which determine TCR diversity, were significantly amplified in the PEG-rhG-CSF group. The change in TCR diversity was significantly correlated with changes in the CD3+ T or CD4+ T cell proportions, but not the CD8+ T cell proportion. CONCLUSIONS PEG-rhG-CSF regulates the immune status of SCLC patients; CD4+ T cells may be the main effector cells involved in this process. These findings may optimize the treatment of SCLC. KEY POINTS PEG-rhG-CSF regulates SCLC immunity. PEG-rhG-CSF increased CD3+ T and CD4+ T cell proportions. PEG-rhG-CSF increased TCR diversity and decreased clonality in peripheral blood. Change in TCR diversity were correlated with CD3+ T or CD4+ T changes.
Collapse
Affiliation(s)
- Jing Sun
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua Bai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhijie Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianchun Duan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jin Li
- Department of Research and Development, Geneplus-Beijing, Beijing, China
| | - Ruimin Guo
- Medical Department, China Shijiazhuang Pharmaceutical Group Co., Ltd. (CSPC), Shijiazhuang, China
| | - Jie Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
26
|
Abstract
After more than a century of efforts to establish cancer immunotherapy in clinical practice, the advent of checkpoint inhibition (CPI) therapy was a critical breakthrough toward this direction (Hodi et al. in Cell Rep 13(2):412-424, 2010; Wolchok et al. in N Engl J Med 369(2):122-133, 2013; Herbst et al. in Nature 515(7528):563-567, 2014; Tumeh et al. in Nature 515(7528):568-571, 2014). Further, CPIs shifted the focus from long studied shared tumor-associated antigens to mutated ones. As cancer is caused by mutations in somatic cells, the concept to utilize these correlates of 'foreignness' to enable recognition and lysis of the cancer cell by T cell immunity seems an obvious thing to do.
Collapse
|
27
|
MacLachlan BJ, Dolton G, Papakyriakou A, Greenshields-Watson A, Mason GH, Schauenburg A, Besneux M, Szomolay B, Elliott T, Sewell AK, Gallimore A, Rizkallah P, Cole DK, Godkin A. Human leukocyte antigen (HLA) class II peptide flanking residues tune the immunogenicity of a human tumor-derived epitope. J Biol Chem 2019; 294:20246-20258. [PMID: 31619516 PMCID: PMC6937582 DOI: 10.1074/jbc.ra119.009437] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/18/2019] [Indexed: 01/03/2023] Open
Abstract
CD4+ T-cells recognize peptide antigens, in the context of human leukocyte antigen (HLA) class II molecules (HLA-II), which through peptide-flanking residues (PFRs) can extend beyond the limits of the HLA binding. The role of the PFRs during antigen recognition is not fully understood; however, recent studies have indicated that these regions can influence T-cell receptor (TCR) affinity and pHLA-II stability. Here, using various biochemical approaches including peptide sensitivity ELISA and ELISpot assays, peptide-binding assays and HLA-II tetramer staining, we focused on CD4+ T-cell responses against a tumor antigen, 5T4 oncofetal trophoblast glycoprotein (5T4), which have been associated with improved control of colorectal cancer. Despite their weak TCR-binding affinity, we found that anti-5T4 CD4+ T-cells are polyfunctional and that their PFRs are essential for TCR recognition of the core bound nonamer. The high-resolution (1.95 Å) crystal structure of HLA-DR1 presenting the immunodominant 20-mer peptide 5T4111-130, combined with molecular dynamic simulations, revealed how PFRs explore the HLA-proximal space to contribute to antigen reactivity. These findings advance our understanding of what constitutes an HLA-II epitope and indicate that PFRs can tune weak affinity TCR-pHLA-II interactions.
Collapse
Affiliation(s)
- Bruce J MacLachlan
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Garry Dolton
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Athanasios Papakyriakou
- Institute of Biosciences and Applications, NCSR "Demokritos," Agia Paraskevi, 15341 Athens, Greece
| | - Alexander Greenshields-Watson
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Georgina H Mason
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Andrea Schauenburg
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Matthieu Besneux
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Barbara Szomolay
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Tim Elliott
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Centre for Cancer Immunology, University of Southampton, Faculty of Medicine, University Hospital, Southampton SO16 6YD, United Kingdom
| | - Andrew K Sewell
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Awen Gallimore
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Pierre Rizkallah
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - David K Cole
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Andrew Godkin
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, United Kingdom
- Department of Gastroenterology and Hepatology, University Hospital of Wales, CF14 4XN Cardiff, United Kingdom
| |
Collapse
|
28
|
Abstract
T cells are key effectors of anticancer immunity. They are capable of distinguishing tumor cells from normal ones by recognizing major histocompatibility complex-bound cancer-specific peptides. Accumulating evidence suggests that peptides associated with T cell-mediated tumor rejection arise predominantly from somatically mutated proteins and are unique to every patient's tumor. Knowledge of an individual's cancer mutanome (the entirety of cancer mutations) allows harnessing this enormous tumor cell-specific repertoire of highly immunogenic antigens for individualized cancer vaccines. This review outlines the preclinical and clinical state of individualized cancer vaccine development and the challenges ahead.
Collapse
Affiliation(s)
- Mathias Vormehr
- Biopharmaceutical New Technologies (BioNTech) Corporation, 55131 Mainz, Germany; , .,University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Özlem Türeci
- Biopharmaceutical New Technologies (BioNTech) Corporation, 55131 Mainz, Germany; ,
| | - Ugur Sahin
- Biopharmaceutical New Technologies (BioNTech) Corporation, 55131 Mainz, Germany; , .,University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; .,TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University gGmbH, 55131 Mainz, Germany
| |
Collapse
|
29
|
Kampstra ASB, van Heemst J, Janssen GM, de Ru AH, van Lummel M, van Veelen PA, Toes REM. Ligandomes obtained from different HLA-class II-molecules are homologous for N- and C-terminal residues outside the peptide-binding cleft. Immunogenetics 2019; 71:519-530. [PMID: 31520135 PMCID: PMC6790208 DOI: 10.1007/s00251-019-01129-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/23/2019] [Indexed: 12/31/2022]
Abstract
Human CD4+ T lymphocytes play an important role in inducing potent immune responses. T cells are activated and stimulated by peptides presented in human leucocyte antigen (HLA)-class II molecules. These HLA-class II molecules typically present peptides of between 12 and 20 amino acids in length. The region that interacts with the HLA molecule, designated as the peptide-binding core, is highly conserved in the residues which anchor the peptide to the molecule. In addition, as these peptides are the product of proteolytic cleavages, certain conserved residues may be expected at the N- and C-termini outside the binding core. To study whether similar conserved residues are present in different cell types, potentially harbouring different proteolytic enzymes, the ligandomes of HLA-DRB1*03:01/HLA-DRB > 1 derived from two different cell types (dendritic cells and EBV-transformed B cells) were identified with mass spectrometry and the binding core and N- and C-terminal residues of a total of 16,568 peptides were analysed using the frequencies of the amino acids in the human proteome. Similar binding motifs were found as well as comparable conservations in the N- and C-terminal residues. Furthermore, the terminal conservations of these ligandomes were compared to the N- and C-terminal conservations of the ligandome acquired from dendritic cells homozygous for HLA-DRB1*04:01. Again, comparable conservations were evident with only minor differences. Taken together, these data show that there are conservations in the terminal residues of peptides, presumably the result of the activity of proteases involved in antigen processing.
Collapse
Affiliation(s)
- Arieke S B Kampstra
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Jurgen van Heemst
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - George M Janssen
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Arnoud H de Ru
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Menno van Lummel
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A van Veelen
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
30
|
Zeng H, Gifford DK. Quantification of Uncertainty in Peptide-MHC Binding Prediction Improves High-Affinity Peptide Selection for Therapeutic Design. Cell Syst 2019; 9:159-166.e3. [PMID: 31176619 DOI: 10.1016/j.cels.2019.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/25/2019] [Accepted: 05/07/2019] [Indexed: 12/30/2022]
Abstract
The computational identification of peptides that can bind the major histocompatibility complex (MHC) with high affinity is an essential step in developing personal immunotherapies and vaccines. We introduce PUFFIN, a deep residual network-based computational approach that quantifies uncertainty in peptide-MHC affinity prediction that arises from observational noise and the lack of relevant training examples. With PUFFIN's uncertainty metrics, we define binding likelihood, the probability a peptide binds to a given MHC allele at a specified affinity threshold. Compared to affinity point estimates, we find that binding likelihood correlates better with the observed affinity and reduces false positives in high-affinity peptide design. When applied to examine an existing peptide vaccine, PUFFIN identifies an alternative vaccine formulation with higher binding likelihood. PUFFIN is freely available for download at http://github.com/gifford-lab/PUFFIN.
Collapse
Affiliation(s)
- Haoyang Zeng
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David K Gifford
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
31
|
Dingman R, Balu-Iyer SV. Immunogenicity of Protein Pharmaceuticals. J Pharm Sci 2019; 108:1637-1654. [PMID: 30599169 PMCID: PMC6720129 DOI: 10.1016/j.xphs.2018.12.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Abstract
Protein therapeutics have drastically changed the landscape of treatment for many diseases by providing a regimen that is highly specific and lacks many off-target toxicities. The clinical utility of many therapeutic proteins has been undermined by the potential development of unwanted immune responses against the protein, limiting their efficacy and negatively impacting its safety profile. This review attempts to provide an overview of immunogenicity of therapeutic proteins, including immune mechanisms and factors influencing immunogenicity, impact of immunogenicity, preclinical screening methods, and strategies to mitigate immunogenicity.
Collapse
Affiliation(s)
- Robert Dingman
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214.
| |
Collapse
|
32
|
Axelrod ML, Cook RS, Johnson DB, Balko JM. Biological Consequences of MHC-II Expression by Tumor Cells in Cancer. Clin Cancer Res 2019; 25:2392-2402. [PMID: 30463850 PMCID: PMC6467754 DOI: 10.1158/1078-0432.ccr-18-3200] [Citation(s) in RCA: 324] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/02/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022]
Abstract
Immunotherapy has emerged as a key pillar of cancer treatment. To build upon the recent successes of immunotherapy, intense research efforts are aimed at a molecular understanding of antitumor immune responses, identification of biomarkers of immunotherapy response and resistance, and novel strategies to circumvent resistance. These studies are revealing new insight into the intricacies of tumor cell recognition by the immune system, in large part through MHCs. Although tumor cells widely express MHC-I, a subset of tumors originating from a variety of tissues also express MHC-II, an antigen-presenting complex traditionally associated with professional antigen-presenting cells. MHC-II is critical for antigen presentation to CD4+ T lymphocytes, whose role in antitumor immunity is becoming increasingly appreciated. Accumulating evidence demonstrates that tumor-specific MHC-II associates with favorable outcomes in patients with cancer, including those treated with immunotherapies, and with tumor rejection in murine models. Herein, we will review current research regarding tumor-enriched MHC-II expression and regulation in a range of human tumors and murine models, and the possible therapeutic applications of tumor-specific MHC-II.
Collapse
Affiliation(s)
- Margaret L Axelrod
- Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee
- Cancer Biology Graduate Program, Vanderbilt University, Nashville, Tennessee
| | - Rebecca S Cook
- Cancer Biology Graduate Program, Vanderbilt University, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Justin M Balko
- Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee.
- Cancer Biology Graduate Program, Vanderbilt University, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| |
Collapse
|
33
|
Footprints of antigen processing boost MHC class II natural ligand predictions. Genome Med 2018; 10:84. [PMID: 30446001 PMCID: PMC6240193 DOI: 10.1186/s13073-018-0594-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022] Open
Abstract
Background Major histocompatibility complex class II (MHC-II) molecules present peptide fragments to T cells for immune recognition. Current predictors for peptide to MHC-II binding are trained on binding affinity data, generated in vitro and therefore lacking information about antigen processing. Methods We generate prediction models of peptide to MHC-II binding trained with naturally eluted ligands derived from mass spectrometry in addition to peptide binding affinity data sets. Results We show that integrated prediction models incorporate identifiable rules of antigen processing. In fact, we observed detectable signals of protease cleavage at defined positions of the ligands. We also hypothesize a role of the length of the terminal ligand protrusions for trimming the peptide to the MHC presented ligand. Conclusions The results of integrating binding affinity and eluted ligand data in a combined model demonstrate improved performance for the prediction of MHC-II ligands and T cell epitopes and foreshadow a new generation of improved peptide to MHC-II prediction tools accounting for the plurality of factors that determine natural presentation of antigens. Electronic supplementary material The online version of this article (10.1186/s13073-018-0594-6) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
Jensen KK, Andreatta M, Marcatili P, Buus S, Greenbaum JA, Yan Z, Sette A, Peters B, Nielsen M. Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology 2018; 154:394-406. [PMID: 29315598 PMCID: PMC6002223 DOI: 10.1111/imm.12889] [Citation(s) in RCA: 529] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 02/06/2023] Open
Abstract
Major histocompatibility complex class II (MHC-II) molecules are expressed on the surface of professional antigen-presenting cells where they display peptides to T helper cells, which orchestrate the onset and outcome of many host immune responses. Understanding which peptides will be presented by the MHC-II molecule is therefore important for understanding the activation of T helper cells and can be used to identify T-cell epitopes. We here present updated versions of two MHC-II-peptide binding affinity prediction methods, NetMHCII and NetMHCIIpan. These were constructed using an extended data set of quantitative MHC-peptide binding affinity data obtained from the Immune Epitope Database covering HLA-DR, HLA-DQ, HLA-DP and H-2 mouse molecules. We show that training with this extended data set improved the performance for peptide binding predictions for both methods. Both methods are publicly available at www.cbs.dtu.dk/services/NetMHCII-2.3 and www.cbs.dtu.dk/services/NetMHCIIpan-3.2.
Collapse
Affiliation(s)
| | - Massimo Andreatta
- Instituto de Investigaciones BiotecnológicasUniversidad Nacional de San MartínBuenos AiresArgentina
| | - Paolo Marcatili
- Department of Bio and Health InformaticsTechnical University of DenmarkLyngbyDenmark
| | - Søren Buus
- Department of Immunology and MicrobiologyFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Jason A. Greenbaum
- Bioinformatics Core FacilityLa Jolla Institute for Allergy and ImmunologyLa JollaCAUSA
| | - Zhen Yan
- Bioinformatics Core FacilityLa Jolla Institute for Allergy and ImmunologyLa JollaCAUSA
| | - Alessandro Sette
- Division of Vaccine DiscoveryLa Jolla Institute for Allergy and ImmunologyLa JollaCAUSA
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Bjoern Peters
- Division of Vaccine DiscoveryLa Jolla Institute for Allergy and ImmunologyLa JollaCAUSA
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Morten Nielsen
- Department of Bio and Health InformaticsTechnical University of DenmarkLyngbyDenmark
- Instituto de Investigaciones BiotecnológicasUniversidad Nacional de San MartínBuenos AiresArgentina
| |
Collapse
|
35
|
Álvaro-Benito M, Morrison E, Abualrous ET, Kuropka B, Freund C. Quantification of HLA-DM-Dependent Major Histocompatibility Complex of Class II Immunopeptidomes by the Peptide Landscape Antigenic Epitope Alignment Utility. Front Immunol 2018; 9:872. [PMID: 29774024 PMCID: PMC5943503 DOI: 10.3389/fimmu.2018.00872] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/09/2018] [Indexed: 01/19/2023] Open
Abstract
The major histocompatibility complex of class II (MHCII) immunopeptidome represents the repertoire of antigenic peptides with the potential to activate CD4+ T cells. An understanding of how the relative abundance of specific antigenic epitopes affects the outcome of T cell responses is an important aspect of adaptive immunity and offers a venue to more rationally tailor T cell activation in the context of disease. Recent advances in mass spectrometric instrumentation, computational power, labeling strategies, and software analysis have enabled an increasing number of stratified studies on HLA ligandomes, in the context of both basic and translational research. A key challenge in the case of MHCII immunopeptidomes, often determined for different samples at distinct conditions, is to derive quantitative information on consensus epitopes from antigenic peptides of variable lengths. Here, we present the design and benchmarking of a new algorithm [peptide landscape antigenic epitope alignment utility (PLAtEAU)] allowing the identification and label-free quantification (LFQ) of shared consensus epitopes arising from series of nested peptides. The algorithm simplifies the complexity of the dataset while allowing the identification of nested peptides within relatively short segments of protein sequences. Moreover, we apply this algorithm to the comparison of the ligandomes of cell lines with two different expression levels of the peptide-exchange catalyst HLA-DM. Direct comparison of LFQ intensities determined at the peptide level is inconclusive, as most of the peptides are not significantly enriched due to poor sampling. Applying the PLAtEAU algorithm for grouping of the peptides into consensus epitopes shows that more than half of the total number of epitopes is preferentially and significantly enriched for each condition. This simplification and deconvolution of the complex and ambiguous peptide-level dataset highlights the value of the PLAtEAU algorithm in facilitating robust and accessible quantitative analysis of immunopeptidomes across cellular contexts. In silico analysis of the peptides enriched for each HLA-DM expression conditions suggests a higher affinity of the pool of peptides isolated from the high DM expression samples. Interestingly, our analysis reveals that while for certain autoimmune-relevant epitopes their presentation increases upon DM expression others are clearly edited out from the peptidome.
Collapse
Affiliation(s)
- Miguel Álvaro-Benito
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Eliot Morrison
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Esam T Abualrous
- Computational Molecular Biology Group, Institute for Mathematics, Freie Universität Berlin, Berlin, Germany
| | - Benno Kuropka
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Christian Freund
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
36
|
Tian L, Hou L, Wang L, Xu H, Xiao J, Ying B. HLA-DRB1*09:01
allele is associated with anti-E immunization in a Chinese population. Transfusion 2018. [DOI: 10.1111/trf.14568] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Li Tian
- Department of Laboratory Medicine; Chengdu P.R. China
- Department of Blood Immunology; Institute of Blood Transfusion, Chinese Academy of Medical Sciences; Chengdu P.R. China
| | - Li Hou
- Department of Hematology; West China Hospital, Sichuan University; Chengdu P.R. China
| | - Lixin Wang
- Department of Laboratory Medicine; Chengdu P.R. China
| | - Hong Xu
- Department of Transfusion; Chengdu Military General Hospital; Chengdu P.R. China
| | - Jie Xiao
- Department of Transfusion; Chengdu Military General Hospital; Chengdu P.R. China
| | - Binwu Ying
- Department of Laboratory Medicine; Chengdu P.R. China
| |
Collapse
|
37
|
Curtidor H, Reyes C, Bermúdez A, Vanegas M, Varela Y, Patarroyo ME. Conserved Binding Regions Provide the Clue for Peptide-Based Vaccine Development: A Chemical Perspective. Molecules 2017; 22:molecules22122199. [PMID: 29231862 PMCID: PMC6149789 DOI: 10.3390/molecules22122199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 12/17/2022] Open
Abstract
Synthetic peptides have become invaluable biomedical research and medicinal chemistry tools for studying functional roles, i.e., binding or proteolytic activity, naturally-occurring regions’ immunogenicity in proteins and developing therapeutic agents and vaccines. Synthetic peptides can mimic protein sites; their structure and function can be easily modulated by specific amino acid replacement. They have major advantages, i.e., they are cheap, easily-produced and chemically stable, lack infectious and secondary adverse reactions and can induce immune responses via T- and B-cell epitopes. Our group has previously shown that using synthetic peptides and adopting a functional approach has led to identifying Plasmodium falciparumconserved regions binding to host cells. Conserved high activity binding peptides’ (cHABPs) physicochemical, structural and immunological characteristics have been taken into account for properly modifying and converting them into highly immunogenic, protection-inducing peptides (mHABPs) in the experimental Aotus monkey model. This article describes stereo–electron and topochemical characteristics regarding major histocompatibility complex (MHC)-mHABP-T-cell receptor (TCR) complex formation. Some mHABPs in this complex inducing long-lasting, protective immunity have been named immune protection-inducing protein structures (IMPIPS), forming the subunit components in chemically synthesized vaccines. This manuscript summarizes this particular field and adds our recent findings concerning intramolecular interactions (H-bonds or π-interactions) enabling proper IMPIPS structure as well as the peripheral flanking residues (PFR) to stabilize the MHCII-IMPIPS-TCR interaction, aimed at inducing long-lasting, protective immunological memory.
Collapse
Affiliation(s)
- Hernando Curtidor
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- School of Medicine and Health Sciences, University of Rosario, Bogotá 111321, Colombia.
| | - César Reyes
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
| | - Adriana Bermúdez
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- School of Medicine and Health Sciences, University of Rosario, Bogotá 111321, Colombia.
| | - Magnolia Vanegas
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- School of Medicine and Health Sciences, University of Rosario, Bogotá 111321, Colombia.
| | - Yahson Varela
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- Faculty of Health Sciences, Applied and Environmental Sciences University (UDCA), Bogotá 111321, Colombia.
| | - Manuel E Patarroyo
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- Faculty of Medicine, National University of Colombia, Bogotá 111321, Colombia.
| |
Collapse
|
38
|
Ostroumov D, Fekete-Drimusz N, Saborowski M, Kühnel F, Woller N. CD4 and CD8 T lymphocyte interplay in controlling tumor growth. Cell Mol Life Sci 2017; 75:689-713. [PMID: 29032503 PMCID: PMC5769828 DOI: 10.1007/s00018-017-2686-7] [Citation(s) in RCA: 364] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 02/08/2023]
Abstract
The outstanding clinical success of immune checkpoint blockade has revived the interest in underlying mechanisms of the immune system that are capable of eliminating tumors even in advanced stages. In this scenario, CD4 and CD8 T cell responses are part of the cancer immune cycle and both populations significantly influence the clinical outcome. In general, the immune system has evolved several mechanisms to protect the host against cancer. Each of them has to be undermined or evaded during cancer development to enable tumor outgrowth. In this review, we give an overview of T lymphocyte-driven control of tumor growth and discuss the involved tumor-suppressive mechanisms of the immune system, such as senescence surveillance, cancer immunosurveillance, and cancer immunoediting with respect to recent clinical developments of immunotherapies. The main focus is on the currently existing knowledge about the CD4 and CD8 T lymphocyte interplay that mediates the control of tumor growth.
Collapse
Affiliation(s)
- Dmitrij Ostroumov
- Clinic for Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Nora Fekete-Drimusz
- Clinic for Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Michael Saborowski
- Clinic for Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Florian Kühnel
- Clinic for Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Norman Woller
- Clinic for Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Carl Neuberg Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
39
|
Hossain MS, Azad AK, Chowdhury PA, Wakayama M. Computational Identification and Characterization of a Promiscuous T-Cell Epitope on the Extracellular Protein 85B of Mycobacterium spp. for Peptide-Based Subunit Vaccine Design. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4826030. [PMID: 28401156 PMCID: PMC5376426 DOI: 10.1155/2017/4826030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/25/2017] [Accepted: 02/26/2017] [Indexed: 12/20/2022]
Abstract
Tuberculosis (TB) is a reemerging disease that remains as a leading cause of morbidity and mortality in humans. To identify and characterize a T-cell epitope suitable for vaccine design, we have utilized the Vaxign server to assess all antigenic proteins of Mycobacterium spp. recorded to date in the Protegen database. We found that the extracellular protein 85B displayed the most robust antigenicity among the proteins identified. Computational tools for identifying T-cell epitopes predicted an epitope, 181-QQFIYAGSLSALLDP-195, that could bind to at least 13 major histocompatibility complexes, revealing the promiscuous nature of the epitope. Molecular docking simulation demonstrated that the epitope could bind to the binding groove of MHC II and MHC I molecules by several hydrogen bonds. Molecular docking analysis further revealed that the epitope had a distinctive binding pattern to all DRB1 and A and B series of MHC molecules and presented almost no polymorphism in its binding site. Moreover, using "Allele Frequency Database," we checked the frequency of HLA alleles in the worldwide population and found a higher frequency of both class I and II HLA alleles in individuals living in TB-endemic regions. Our results indicate that the identified peptide might be a universal candidate to produce an efficient epitope-based vaccine for TB.
Collapse
Affiliation(s)
- Md. Saddam Hossain
- Department of Biotechnology, Faculty of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
- Department of Genetic Engineering & Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Abul Kalam Azad
- Department of Genetic Engineering & Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | | | - Mamoru Wakayama
- Department of Biotechnology, Faculty of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
40
|
Jones TD, Hearn AR, Holgate RGE, Kozub D, Fogg MH, Carr FJ, Baker MP, Lacadena J, Gehlsen KR. A deimmunised form of the ribotoxin, α-sarcin, lacking CD4+ T cell epitopes and its use as an immunotoxin warhead. Protein Eng Des Sel 2016; 29:531-540. [PMID: 27578884 PMCID: PMC5081043 DOI: 10.1093/protein/gzw045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/30/2016] [Accepted: 07/25/2016] [Indexed: 12/30/2022] Open
Abstract
Fungal ribotoxins that block protein synthesis can be useful warheads in the context of a targeted immunotoxin. α-Sarcin is a small (17 kDa) fungal ribonuclease produced by Aspergillus giganteus that functions by catalytically cleaving a single phosphodiester bond in the sarcin–ricin loop of the large ribosomal subunit, thus making the ribosome unrecognisable to elongation factors and leading to inhibition of protein synthesis. Peptide mapping using an ex vivo human T cell assay determined that α-sarcin contained two T cell epitopes; one in the N-terminal 20 amino acids and the other in the C-terminal 20 amino acids. Various mutations were tested individually within each epitope and then in combination to isolate deimmunised α-sarcin variants that had the desired properties of silencing T cell epitopes and retention of the ability to inhibit protein synthesis (equivalent to wild-type, WT α-sarcin). A deimmunised variant (D9T/Q142T) demonstrated a complete lack of T cell activation in in vitro whole protein human T cell assays using peripheral blood mononuclear cells from donors with diverse HLA allotypes. Generation of an immunotoxin by fusion of the D9T/Q142T variant to a single-chain Fv targeting Her2 demonstrated potent cell killing equivalent to a fusion protein comprising the WT α-sarcin. These results represent the first fungal ribotoxin to be deimmunised with the potential to construct a new generation of deimmunised immunotoxin therapeutics.
Collapse
Affiliation(s)
- Tim D Jones
- Abzena plc., Babraham Research Campus, Babraham, CambridgeCB22 3AT, UK
| | - Arron R Hearn
- Abzena plc., Babraham Research Campus, Babraham, CambridgeCB22 3AT, UK
| | | | - Dorota Kozub
- Abzena plc., Babraham Research Campus, Babraham, CambridgeCB22 3AT, UK
| | - Mark H Fogg
- Abzena plc., Babraham Research Campus, Babraham, CambridgeCB22 3AT, UK
| | - Francis J Carr
- Abtelum Biomedical, Inc. 175 Briar Lane, Westwood, MA 02090, USA
| | - Matthew P Baker
- Abzena plc., Babraham Research Campus, Babraham, CambridgeCB22 3AT, UK
| | - Javier Lacadena
- Departamento de Bioquimica y Biologia Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avenida Complutense s/n, Madrid 28040, Spain
| | - Kurt R Gehlsen
- Research Corporation Technologies Inc., 5210 E. Williams Circle #240, Tucson, AZ 85711, USA
| |
Collapse
|
41
|
Kozono H, Matsushita Y, Ogawa N, Kozono Y, Miyabe T, Sekiguchi H, Ichiyanagi K, Okimoto N, Taiji M, Kanagawa O, Sasaki YC. Single-molecule motions of MHC class II rely on bound peptides. Biophys J 2015; 108:350-9. [PMID: 25606683 DOI: 10.1016/j.bpj.2014.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 11/26/2014] [Accepted: 12/02/2014] [Indexed: 11/28/2022] Open
Abstract
The major histocompatibility complex (MHC) class II protein can bind peptides of different lengths in the region outside the peptide-binding groove. Peptide-flanking residues (PFRs) contribute to the binding affinity of the peptide for MHC and change the immunogenicity of the peptide/MHC complex with regard to T cell receptor (TCR). The mechanisms underlying these phenomena are currently unknown. The molecular flexibility of the peptide/MHC complex may be an important determinant of the structures recognized by certain T cells. We used single-molecule x-ray analysis (diffracted x-ray tracking (DXT)) and fluorescence anisotropy to investigate these mechanisms. DXT enabled us to monitor the real-time Brownian motion of the peptide/MHC complex and revealed that peptides without PFRs undergo larger rotational motions than peptides with PFRs. Fluorescence anisotropy further revealed that peptides without PFRs exhibit slightly larger motions on the nanosecond timescale. These results demonstrate that peptides without PFRs undergo dynamic motions in the groove of MHC and consequently are able to assume diverse structures that can be recognized by T cells.
Collapse
Affiliation(s)
- Haruo Kozono
- CREST Sasaki Team, Japan Science and Technology Agency, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan; Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan.
| | - Yufuku Matsushita
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Naoki Ogawa
- CREST Sasaki Team, Japan Science and Technology Agency, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan; Graduate School for Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yuko Kozono
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Toshihiro Miyabe
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Hiroshi Sekiguchi
- CREST Sasaki Team, Japan Science and Technology Agency, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan; Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Kouhei Ichiyanagi
- CREST Sasaki Team, Japan Science and Technology Agency, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan; Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Noriaki Okimoto
- Computational Biology Research Core, Quantitative Biology Center, RIKEN, Hyogo, Japan
| | - Makoto Taiji
- Computational Biology Research Core, Quantitative Biology Center, RIKEN, Hyogo, Japan
| | - Osami Kanagawa
- CREST Sasaki Team, Japan Science and Technology Agency, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan; Centre International de Recherche en Infectiologie, INSERM U1111, Lyon, France
| | - Yuji C Sasaki
- CREST Sasaki Team, Japan Science and Technology Agency, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan; Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.
| |
Collapse
|
42
|
Andreatta M, Karosiene E, Rasmussen M, Stryhn A, Buus S, Nielsen M. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification. Immunogenetics 2015; 67:641-50. [PMID: 26416257 DOI: 10.1007/s00251-015-0873-y] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/15/2015] [Indexed: 01/17/2023]
Abstract
A key event in the generation of a cellular response against malicious organisms through the endocytic pathway is binding of peptidic antigens by major histocompatibility complex class II (MHC class II) molecules. The bound peptide is then presented on the cell surface where it can be recognized by T helper lymphocytes. NetMHCIIpan is a state-of-the-art method for the quantitative prediction of peptide binding to any human or mouse MHC class II molecule of known sequence. In this paper, we describe an updated version of the method with improved peptide binding register identification. Binding register prediction is concerned with determining the minimal core region of nine residues directly in contact with the MHC binding cleft, a crucial piece of information both for the identification and design of CD4(+) T cell antigens. When applied to a set of 51 crystal structures of peptide-MHC complexes with known binding registers, the new method NetMHCIIpan-3.1 significantly outperformed the earlier 3.0 version. We illustrate the impact of accurate binding core identification for the interpretation of T cell cross-reactivity using tetramer double staining with a CMV epitope and its variants mapped to the epitope binding core. NetMHCIIpan is publicly available at http://www.cbs.dtu.dk/services/NetMHCIIpan-3.1 .
Collapse
Affiliation(s)
- Massimo Andreatta
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, CP(1650), San Martín, Buenos Aires, Argentina
| | - Edita Karosiene
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Michael Rasmussen
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Anette Stryhn
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Søren Buus
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Morten Nielsen
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, CP(1650), San Martín, Buenos Aires, Argentina.
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800, Lyngby, Denmark.
| |
Collapse
|
43
|
Kreiter S, Vormehr M, van de Roemer N, Diken M, Löwer M, Diekmann J, Boegel S, Schrörs B, Vascotto F, Castle JC, Tadmor AD, Schoenberger SP, Huber C, Türeci Ö, Sahin U. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 2015; 520:692-6. [PMID: 25901682 DOI: 10.1038/nature14426] [Citation(s) in RCA: 962] [Impact Index Per Article: 96.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/30/2015] [Indexed: 12/23/2022]
Abstract
Tumour-specific mutations are ideal targets for cancer immunotherapy as they lack expression in healthy tissues and can potentially be recognized as neo-antigens by the mature T-cell repertoire. Their systematic targeting by vaccine approaches, however, has been hampered by the fact that every patient's tumour possesses a unique set of mutations ('the mutanome') that must first be identified. Recently, we proposed a personalized immunotherapy approach to target the full spectrum of a patient's individual tumour-specific mutations. Here we show in three independent murine tumour models that a considerable fraction of non-synonymous cancer mutations is immunogenic and that, unexpectedly, the majority of the immunogenic mutanome is recognized by CD4(+) T cells. Vaccination with such CD4(+) immunogenic mutations confers strong antitumour activity. Encouraged by these findings, we established a process by which mutations identified by exome sequencing could be selected as vaccine targets solely through bioinformatic prioritization on the basis of their expression levels and major histocompatibility complex (MHC) class II-binding capacity for rapid production as synthetic poly-neo-epitope messenger RNA vaccines. We show that vaccination with such polytope mRNA vaccines induces potent tumour control and complete rejection of established aggressively growing tumours in mice. Moreover, we demonstrate that CD4(+) T cell neo-epitope vaccination reshapes the tumour microenvironment and induces cytotoxic T lymphocyte responses against an independent immunodominant antigen in mice, indicating orchestration of antigen spread. Finally, we demonstrate an abundance of mutations predicted to bind to MHC class II in human cancers as well by employing the same predictive algorithm on corresponding human cancer types. Thus, the tailored immunotherapy approach introduced here may be regarded as a universally applicable blueprint for comprehensive exploitation of the substantial neo-epitope target repertoire of cancers, enabling the effective targeting of every patient's tumour with vaccines produced 'just in time'.
Collapse
Affiliation(s)
- Sebastian Kreiter
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Mathias Vormehr
- Research Center for Immunotherapy (FZI), Langenbeckstrasse 1, Building 708, 55131 Mainz, Germany
| | - Niels van de Roemer
- Research Center for Immunotherapy (FZI), Langenbeckstrasse 1, Building 708, 55131 Mainz, Germany
| | - Mustafa Diken
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Martin Löwer
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Jan Diekmann
- 1] TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany [2] Biopharmaceutical New Technologies (BioNTech) Corporation, An der Goldgrube 12, 55131 Mainz, Germany
| | - Sebastian Boegel
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Barbara Schrörs
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Fulvia Vascotto
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - John C Castle
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Arbel D Tadmor
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Stephen P Schoenberger
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA
| | - Christoph Huber
- Research Center for Immunotherapy (FZI), Langenbeckstrasse 1, Building 708, 55131 Mainz, Germany
| | - Özlem Türeci
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Ugur Sahin
- 1] TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany [2] Research Center for Immunotherapy (FZI), Langenbeckstrasse 1, Building 708, 55131 Mainz, Germany [3] Biopharmaceutical New Technologies (BioNTech) Corporation, An der Goldgrube 12, 55131 Mainz, Germany
| |
Collapse
|
44
|
Baleotti W, Ruiz MO, Fabron A, Castilho L, Giuliatti S, Donadi EA. HLA-DRB1*07:01 allele is primarily associated with the Diego a alloimmunization in a Brazilian population. Transfusion 2014; 54:2468-76. [PMID: 24724911 DOI: 10.1111/trf.12652] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/12/2014] [Accepted: 02/14/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND The Diego blood group presents a major polymorphic site at Residue 854, causing a proline (Di(b) antigen) to leucine (Di(a) antigen) substitution. Di(a) alloimmunization has been observed among Asian and Native South American populations. Considering that Brazilians represent a genetically diverse population, and considering that we have observed a high incidence of Di(a) alloimmunization, we typed HLA-DRB1 alleles in these patients and performed in silico studies to investigate the possible associated mechanisms. STUDY DESIGN AND METHODS We studied 212 alloimmunized patients, of whom 24 presented immunoglobulin G anti-Di(a) , 15 received Di(a+) red blood cells and were not immunized, and 1008 were healthy donors. HLA typing was performed using commercial kits. In silico analyses were performed using the TEPITOPEpan software to identify Diego-derived anchor peptide binding to HLA-DRB1 molecules. Residue alignment was performed using the IMGT/HLA for amino acid identity and homology analyses. RESULTS HLA-DRB1*07:01 allele was overrepresented in Di(a) -alloimmunized patients compared to nonimmunized patients and to healthy donors. Two motifs were predicted to be potential epitopes for Di(a) alloimmunization, the WVVKSTLAS motif was predicted to bind several HLA-DR molecules, and the FVLILTVPL motif exhibited highest affinity for the HLA-DRB1*07:01 molecule. Pocket 4 of the DRB1*07:01 molecule contained specific residues not found in other HLA-DRB1 molecules, particularly those at Positions 13(Y), 74(Q), and 78(V). CONCLUSION Individuals carrying the HLA-DRB1*07:01 allele present an increased risk for Di(a) alloimmunization. The identification of susceptible individuals and the knowledge of potential sensitization peptides are relevant approaches for transfusion care, diagnostic purposes, and desensitization therapies.
Collapse
Affiliation(s)
- Wilson Baleotti
- Faculty of Medicine of Marília (FAMEMA), Marília, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
45
|
Mushtaq K, Chodisetti SB, Rai PK, Maurya SK, Amir M, Sheikh JA, Agrewala JN. Decision-making critical amino acids: role in designing peptide vaccines for eliciting Th1 and Th2 immune response. Amino Acids 2014; 46:1265-74. [DOI: 10.1007/s00726-014-1692-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/31/2014] [Indexed: 11/28/2022]
|
46
|
Determining the breadth of the respiratory syncytial virus-specific T cell response. J Virol 2013; 88:3135-43. [PMID: 24371055 DOI: 10.1128/jvi.02139-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Respiratory syncytial virus (RSV) is the most common cause of viral lower respiratory tract infections in infants and children under the age of 5. Studies examining RSV infection in susceptible BALB/c mice indicate that both CD4 and CD8 T cells not only contribute to viral clearance but also facilitate RSV-induced disease. However, efforts to understand the mechanisms by which RSV-specific T cells mediate disease following acute RSV infection have been hampered by the lack of defined RSV-specific T cell epitopes. Using an overlapping peptide library spanning each of the RSV-derived proteins, intracellular cytokine staining for gamma interferon was utilized to identify novel RSV-specific CD4 and CD8 T cell epitopes. Five novel CD8 T cell epitopes were revealed within the RSV fusion (F) protein and glycoprotein (G). In addition, five previously unidentified CD4 T cell epitopes were discovered, including epitopes in the phosphoprotein (P), polymerase protein (L), M2-1 protein, and nucleoprotein (N). Though the initial CD4 T cell epitopes were 15 amino acids in length, synthesis of longer peptides increased the frequency of responding CD4 T cells. Our results indicate that CD4 T cell epitopes that are 17 amino acids in length result in more optimal CD4 T cell stimulation than the commonly used 15-mer peptides. IMPORTANCE Respiratory syncytial virus (RSV) is the leading cause of hospitalization for lower respiratory tract infection in children. T cells play a critical role in clearing an acute RSV infection, as well as contributing to RSV-induced disease. Here we examined the breadth of the RSV-specific T cell response, using for the first time an overlapping peptide library spanning the entire viral genome. We identified 5 new CD4 and 5 new CD8 T cell epitopes, including a CD8 T cell epitope within the G protein that was previously believed not to elicit a CD8 T cell response. Importantly, we also demonstrated that the use of longer, 17-mer peptides elicits a higher frequency of responding CD4 T cells than the more commonly used 15-mer peptides. Our results demonstrate the breadth of the CD4 and CD8 T cell response to RSV and demonstrate the importance of using longer peptides when stimulating CD4 T cell responses.
Collapse
|
47
|
Rudraraju R, Jones BG, Sealy R, Surman SL, Hurwitz JL. Respiratory syncytial virus: current progress in vaccine development. Viruses 2013; 5:577-94. [PMID: 23385470 PMCID: PMC3640515 DOI: 10.3390/v5020577] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/01/2013] [Accepted: 02/04/2013] [Indexed: 12/18/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the etiological agent for a serious lower respiratory tract disease responsible for close to 200,000 annual deaths worldwide. The first infection is generally most severe, while re-infections usually associate with a milder disease. This observation and the finding that re-infection risks are inversely associated with neutralizing antibody titers suggest that immune responses generated toward a first RSV exposure can significantly reduce morbidity and mortality throughout life. For more than half a century, researchers have endeavored to design a vaccine for RSV that can mimic or improve upon natural protective immunity without adverse events. The virus is herein described together with the hurdles that must be overcome to develop a vaccine and some current vaccine development approaches.
Collapse
Affiliation(s)
- Rajeev Rudraraju
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; E-Mails: (R.R.); (B.J.); (R.S.); (S.S.)
| | - Bart G. Jones
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; E-Mails: (R.R.); (B.J.); (R.S.); (S.S.)
| | - Robert Sealy
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; E-Mails: (R.R.); (B.J.); (R.S.); (S.S.)
| | - Sherri L. Surman
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; E-Mails: (R.R.); (B.J.); (R.S.); (S.S.)
| | - Julia L. Hurwitz
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; E-Mails: (R.R.); (B.J.); (R.S.); (S.S.)
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN 38163, USA
| |
Collapse
|
48
|
Yin L, Calvo-Calle JM, Dominguez-Amorocho O, Stern LJ. HLA-DM constrains epitope selection in the human CD4 T cell response to vaccinia virus by favoring the presentation of peptides with longer HLA-DM-mediated half-lives. THE JOURNAL OF IMMUNOLOGY 2012; 189:3983-94. [PMID: 22966084 DOI: 10.4049/jimmunol.1200626] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
HLA-DM (DM) is a nonclassical MHC class II (MHC II) protein that acts as a peptide editor to mediate the exchange of peptides loaded onto MHC II during Ag presentation. Although the ability of DM to promote peptide exchange in vitro and in vivo is well established, the role of DM in epitope selection is still unclear, especially in human response to infectious disease. In this study, we addressed this question in the context of the human CD4 T cell response to vaccinia virus. We measured the IC(50), intrinsic dissociation t(1/2), and DM-mediated dissociation t(1/2) for a large set of peptides derived from the major core protein A10L and other known vaccinia epitopes bound to HLA-DR1 and compared these properties to the presence and magnitude of peptide-specific CD4(+) T cell responses. We found that MHC II-peptide complex kinetic stability in the presence of DM distinguishes T cell epitopes from nonrecognized peptides in A10L peptides and also in a set of predicted tight binders from the entire vaccinia genome. Taken together, these analyses demonstrate that DM-mediated dissociation t(1/2) is a strong and independent factor governing peptide immunogenicity by favoring the presentation of peptides with greater kinetic stability in the presence of DM.
Collapse
Affiliation(s)
- Liusong Yin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | |
Collapse
|
49
|
Cole DK, Gallagher K, Lemercier B, Holland CJ, Junaid S, Hindley JP, Wynn KK, Gostick E, Sewell AK, Gallimore AM, Ladell K, Price DA, Gougeon ML, Godkin A. Modification of the carboxy-terminal flanking region of a universal influenza epitope alters CD4⁺ T-cell repertoire selection. Nat Commun 2012; 3:665. [PMID: 22314361 PMCID: PMC3293629 DOI: 10.1038/ncomms1665] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/05/2012] [Indexed: 02/01/2023] Open
Abstract
Human CD4(+) αβ T cells are activated via T-cell receptor recognition of peptide epitopes presented by major histocompatibility complex (MHC) class II (MHC-II). The open ends of the MHC-II binding groove allow peptide epitopes to extend beyond a central nonamer core region at both the amino- and carboxy-terminus. We have previously found that these non-bound C-terminal residues can alter T cell activation in an MHC allele-transcending fashion, although the mechanism for this effect remained unclear. Here we show that modification of the C-terminal peptide-flanking region of an influenza hemagglutinin (HA(305-320)) epitope can alter T-cell receptor binding affinity, T-cell activation and repertoire selection of influenza-specific CD4(+) T cells expanded from peripheral blood. These data provide the first demonstration that changes in the C-terminus of the peptide-flanking region can substantially alter T-cell receptor binding affinity, and indicate a mechanism through which peptide flanking residues could influence repertoire selection.
Collapse
Affiliation(s)
- David K. Cole
- Institute of Infection and Immunity, Cardiff University School of Medicine, The Henry Wellcome Building, Cardiff CF14 4XN, Wales, UK
- These authors contributed equally to this work
| | - Kathleen Gallagher
- Institute of Infection and Immunity, Cardiff University School of Medicine, The Henry Wellcome Building, Cardiff CF14 4XN, Wales, UK
- These authors contributed equally to this work
| | - Brigitte Lemercier
- Institut Pasteur, Antiviral Immunity, Biotherapy and Vaccine Unit, Department of Infection and Epidemiology, rue du Dr. Roux, 75015 Paris, France
- These authors contributed equally to this work
| | - Christopher J. Holland
- Institute of Infection and Immunity, Cardiff University School of Medicine, The Henry Wellcome Building, Cardiff CF14 4XN, Wales, UK
| | - Sayed Junaid
- Institute of Infection and Immunity, Cardiff University School of Medicine, The Henry Wellcome Building, Cardiff CF14 4XN, Wales, UK
| | - James P. Hindley
- Institute of Infection and Immunity, Cardiff University School of Medicine, The Henry Wellcome Building, Cardiff CF14 4XN, Wales, UK
| | - Katherine K. Wynn
- Institute of Infection and Immunity, Cardiff University School of Medicine, The Henry Wellcome Building, Cardiff CF14 4XN, Wales, UK
| | - Emma Gostick
- Institute of Infection and Immunity, Cardiff University School of Medicine, The Henry Wellcome Building, Cardiff CF14 4XN, Wales, UK
| | - Andrew K. Sewell
- Institute of Infection and Immunity, Cardiff University School of Medicine, The Henry Wellcome Building, Cardiff CF14 4XN, Wales, UK
| | - Awen M. Gallimore
- Institute of Infection and Immunity, Cardiff University School of Medicine, The Henry Wellcome Building, Cardiff CF14 4XN, Wales, UK
| | - Kristin Ladell
- Institute of Infection and Immunity, Cardiff University School of Medicine, The Henry Wellcome Building, Cardiff CF14 4XN, Wales, UK
| | - David A. Price
- Institute of Infection and Immunity, Cardiff University School of Medicine, The Henry Wellcome Building, Cardiff CF14 4XN, Wales, UK
| | - Marie-Lise Gougeon
- Institut Pasteur, Antiviral Immunity, Biotherapy and Vaccine Unit, Department of Infection and Epidemiology, rue du Dr. Roux, 75015 Paris, France
| | - Andrew Godkin
- Institute of Infection and Immunity, Cardiff University School of Medicine, The Henry Wellcome Building, Cardiff CF14 4XN, Wales, UK
- Department of Medicine, University Hospital of Wales, Cardiff CF14 4XW, Wales, UK
| |
Collapse
|
50
|
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract viral disease in infants and young children. Presently, there are no explicit recommendations for RSV treatment apart from supportive care. The virus is therefore responsible for an estimated 160,000 deaths per year worldwide. Despite half a century of dedicated research, there remains no licensed vaccine product. Herein are described past and current efforts to harness innate and adaptive immune potentials to combat RSV. A plethora of candidate vaccine products and strategies are reviewed. The development of a successful RSV vaccine may ultimately stem from attention to historical lessons, in concert with an integral partnering of immunology and virology research fields.
Collapse
Affiliation(s)
- Julia L Hurwitz
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|