1
|
Leenheer D, ten Dijke P, Hipolito CJ. A current perspective on applications of macrocyclic-peptide-based high-affinity ligands. Biopolymers 2016; 106:889-900. [PMID: 27352774 PMCID: PMC5132055 DOI: 10.1002/bip.22900] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 05/24/2016] [Accepted: 05/31/2016] [Indexed: 01/05/2023]
Abstract
Monoclonal antibodies can bind with high affinity and high selectivity to their targets. As a tool in therapeutics or diagnostics, however, their large size (∼150 kDa) reduces penetration into tissue and prevents passive cellular uptake. To overcome these and other problems, minimized protein scaffolds have been chosen or engineered, with care taken to not compromise binding affinity or specificity. An alternate approach is to begin with a minimal non-antibody scaffold and select functional ligands from a de novo library. We will discuss the structure, production, applications, strengths, and weaknesses of several classes of antibody-derived ligands, that is, antibodies, intrabodies, and nanobodies, and nonantibody-derived ligands, that is, monobodies, affibodies, and macrocyclic peptides. In particular, this review is focussed on macrocyclic peptides produced by the Random non-standard Peptides Integrated Discovery (RaPID) system that are small in size (typically ∼2 kDa), but are able to perform tasks typically handled by larger proteinaceous ligands.
Collapse
Affiliation(s)
- Daniël Leenheer
- Ph.D. Program in Human Biology, School of Integrative and Global MajorsUniversity of TsukubaTsukubaIbarakiJapan
| | - Peter ten Dijke
- Leiden University Medical Center, Department of Molecular Cell BiologyLeidenSouth HollandThe Netherlands
- Cancer Signaling, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of TsukubaTsukubaIbarakiJapan
| | - Christopher John Hipolito
- Cancer Signaling, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of TsukubaTsukubaIbarakiJapan
| |
Collapse
|
2
|
Marschall ALJ, Dübel S, Böldicke T. Specific in vivo knockdown of protein function by intrabodies. MAbs 2015; 7:1010-35. [PMID: 26252565 PMCID: PMC4966517 DOI: 10.1080/19420862.2015.1076601] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 01/02/2023] Open
Abstract
Intracellular antibodies (intrabodies) are recombinant antibody fragments that bind to target proteins expressed inside of the same living cell producing the antibodies. The molecules are commonly used to study the function of the target proteins (i.e., their antigens). The intrabody technology is an attractive alternative to the generation of gene-targeted knockout animals, and complements knockdown techniques such as RNAi, miRNA and small molecule inhibitors, by-passing various limitations and disadvantages of these methods. The advantages of intrabodies include very high specificity for the target, the possibility to knock down several protein isoforms by one intrabody and targeting of specific splice variants or even post-translational modifications. Different types of intrabodies must be designed to target proteins at different locations, typically either in the cytoplasm, in the nucleus or in the endoplasmic reticulum (ER). Most straightforward is the use of intrabodies retained in the ER (ER intrabodies) to knock down the function of proteins passing the ER, which disturbs the function of members of the membrane or plasma proteomes. More effort is needed to functionally knock down cytoplasmic or nuclear proteins because in this case antibodies need to provide an inhibitory effect and must be able to fold in the reducing milieu of the cytoplasm. In this review, we present a broad overview of intrabody technology, as well as applications both of ER and cytoplasmic intrabodies, which have yielded valuable insights in the biology of many targets relevant for drug development, including α-synuclein, TAU, BCR-ABL, ErbB-2, EGFR, HIV gp120, CCR5, IL-2, IL-6, β-amyloid protein and p75NTR. Strategies for the generation of intrabodies and various designs of their applications are also reviewed.
Collapse
Affiliation(s)
- Andrea LJ Marschall
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics; Braunschweig, Germany
| | - Stefan Dübel
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics; Braunschweig, Germany
| | - Thomas Böldicke
- Helmholtz Centre for Infection Research, Recombinant Protein Expression/Intrabody Unit, Helmholtz Centre for Infection Research; Braunschweig, Germany
| |
Collapse
|
3
|
Mazuc E, Guglielmi L, Bec N, Parez V, Hahn CS, Mollevi C, Parrinello H, Desvignes JP, Larroque C, Jupp R, Dariavach P, Martineau P. In-cell intrabody selection from a diverse human library identifies C12orf4 protein as a new player in rodent mast cell degranulation. PLoS One 2014; 9:e104998. [PMID: 25122211 PMCID: PMC4133367 DOI: 10.1371/journal.pone.0104998] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 07/14/2014] [Indexed: 01/04/2023] Open
Abstract
The high specificity of antibodies for their antigen allows a fine discrimination of target conformations and post-translational modifications, making antibodies the first choice tool to interrogate the proteome. We describe here an approach based on a large-scale intracellular expression and selection of antibody fragments in eukaryotic cells, so-called intrabodies, and the subsequent identification of their natural target within living cell. Starting from a phenotypic trait, this integrated system allows the identification of new therapeutic targets together with their companion inhibitory intrabody. We applied this system in a model of allergy and inflammation. We first cloned a large and highly diverse intrabody library both in a plasmid and a retroviral eukaryotic expression vector. After transfection in the RBL-2H3 rat basophilic leukemia cell line, we performed seven rounds of selection to isolate cells displaying a defect in FcεRI-induced degranulation. We used high throughput sequencing to identify intrabody sequences enriched during the course of selection. Only one intrabody was common to both plasmid and retroviral selections, and was used to capture and identify its target from cell extracts. Mass spectrometry analysis identified protein RGD1311164 (C12orf4), with no previously described function. Our data demonstrate that RGD1311164 is a cytoplasmic protein implicated in the early signaling events following FcεRI-induced cell activation. This work illustrates the strength of the intrabody-based in-cell selection, which allowed the identification of a new player in mast cell activation together with its specific inhibitor intrabody.
Collapse
Affiliation(s)
- Elsa Mazuc
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U896, Montpellier, France
- Université Montpellier1, Montpellier, France
- ICM, Institut régional du Cancer Montpellier, Montpellier, France
| | - Laurence Guglielmi
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U896, Montpellier, France
- Université Montpellier1, Montpellier, France
- ICM, Institut régional du Cancer Montpellier, Montpellier, France
| | - Nicole Bec
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U896, Montpellier, France
- Université Montpellier1, Montpellier, France
- ICM, Institut régional du Cancer Montpellier, Montpellier, France
| | - Vincent Parez
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U896, Montpellier, France
- Université Montpellier1, Montpellier, France
- ICM, Institut régional du Cancer Montpellier, Montpellier, France
| | - Chang S. Hahn
- Sanofi-Aventis, Bridgewater, New Jersey, United States of America
| | - Caroline Mollevi
- ICM, Institut régional du Cancer Montpellier, Montpellier, France
| | - Hugues Parrinello
- MGX-Montpellier GenomiX, Institut de Génomique Fonctionnelle, Montpellier, France
| | | | - Christian Larroque
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U896, Montpellier, France
- Université Montpellier1, Montpellier, France
- ICM, Institut régional du Cancer Montpellier, Montpellier, France
| | - Ray Jupp
- Sanofi-Aventis, Bridgewater, New Jersey, United States of America
| | - Piona Dariavach
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U896, Montpellier, France
- Université Montpellier1, Montpellier, France
- ICM, Institut régional du Cancer Montpellier, Montpellier, France
- Université Montpellier2, Montpellier, France
- * E-mail: (PD); (PM)
| | - Pierre Martineau
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U896, Montpellier, France
- Université Montpellier1, Montpellier, France
- ICM, Institut régional du Cancer Montpellier, Montpellier, France
- * E-mail: (PD); (PM)
| |
Collapse
|
4
|
Villoutreix BO, Laconde G, Lagorce D, Martineau P, Miteva MA, Dariavach P. Tyrosine kinase syk non-enzymatic inhibitors and potential anti-allergic drug-like compounds discovered by virtual and in vitro screening. PLoS One 2011; 6:e21117. [PMID: 21701581 PMCID: PMC3118801 DOI: 10.1371/journal.pone.0021117] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 05/19/2011] [Indexed: 01/12/2023] Open
Abstract
In the past decade, the spleen tyrosine kinase (Syk) has shown a high potential for the discovery of new treatments for inflammatory and autoimmune disorders. Pharmacological inhibitors of Syk catalytic site bearing therapeutic potential have been developed, with however limited specificity towards Syk. To address this topic, we opted for the design of drug-like compounds that could impede the interaction of Syk with its cellular partners while maintaining an active kinase protein. To achieve this challenging task, we used the powerful potential of intracellular antibodies for the modulation of cellular functions in vivo, combined to structure-based in silico screening. In our previous studies, we reported the anti-allergic properties of the intracellular antibody G4G11. With the aim of finding functional mimics of G4G11, we developed an Antibody Displacement Assay and we isolated the drug-like compound C-13, with promising in vivo anti-allergic activity. The likely binding cavity of this compound is located at the close vicinity of G4G11 epitope, far away from the catalytic site of Syk. Here we report the virtual screen of a collection of 500,000 molecules against this new cavity, which led to the isolation of 1000 compounds subsequently evaluated for their in vitro inhibitory effects using the Antibody Displacement Assay. Eighty five compounds were selected and evaluated for their ability to inhibit the liberation of allergic mediators from mast cells. Among them, 10 compounds inhibited degranulation with IC₅₀ values ≤ 10 µM. The most bioactive compounds combine biological activity, significant inhibition of antibody binding and strong affinity for Syk. Moreover, these molecules show a good potential for oral bioavailability and are not kinase catalytic site inhibitors. These bioactive compounds could be used as starting points for the development of new classes of non-enzymatic inhibitors of Syk and for drug discovery endeavour in the field of inflammation related disorders.
Collapse
Affiliation(s)
| | | | - David Lagorce
- INSERM, U973, (MTi Unit), Université Paris Diderot, Paris, France
| | - Pierre Martineau
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U896, Montpellier, France
- Université Montpellier1, Montpellier, France
- Université Montpellier2, Montpellier, France
- CRLC Val d'Aurelle Paul Lamarque, Montpellier, France
| | - Maria A. Miteva
- INSERM, U973, (MTi Unit), Université Paris Diderot, Paris, France
| | - Piona Dariavach
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U896, Montpellier, France
- Université Montpellier1, Montpellier, France
- Université Montpellier2, Montpellier, France
- CRLC Val d'Aurelle Paul Lamarque, Montpellier, France
- * E-mail:
| |
Collapse
|
5
|
Kvam E, Sierks MR, Shoemaker CB, Messer A. Physico-chemical determinants of soluble intrabody expression in mammalian cell cytoplasm. Protein Eng Des Sel 2010; 23:489-98. [PMID: 20378699 PMCID: PMC2865363 DOI: 10.1093/protein/gzq022] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 03/02/2010] [Accepted: 03/12/2010] [Indexed: 12/25/2022] Open
Abstract
Soluble antibody fragments are desirable not only as potential therapeutic and diagnostic agents for extracellular targets but also as 'intrabodies' for functional genomics, proteomics and gene therapy inside cells. However, antibody fragments are notoriously aggregation-prone when expressed intracellularly, due in part to unfavorable redox potential and macromolecular crowding in cell cytoplasm. Only a small proportion of intrabodies are soluble in cytoplasm and little is known about the sequence determinants that confer such stability. By comparing the cytoplasmic expression of several related human single-chain variable fragments and camelid V(HH)s in mammalian cells, we report that intrabody solubility is highly influenced by CDR content and is improved by an overall negative charge at cytoplasmic pH and reduced hydrophilicity. We hypothesize that ionic repulsion and weak hydrophobic interactions compensate, to different extents, for impaired disulfide bond formation in cytoplasm, thereby decreasing the risk for intrabody aggregation. As proof of principle, we demonstrate that the soluble expression of an aggregation-prone positively charged intrabody is modestly enhanced via cis or trans acidification using highly charged peptide tags (3XFLAG tag, SV40 NLS). These findings suggest that simple sequence analysis and electrostatic manipulation may aid in predicting and engineering solubility-enhanced intrabodies from antibody libraries for intracellular use.
Collapse
Affiliation(s)
- Erik Kvam
- New York State Department of Health, Wadsworth Center/ David Axelrod Institute, 120 New Scotland Ave., PO Box 22002, Albany, NY 12201-2002, USA
- Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Michael R. Sierks
- Department of Chemical Engineering, Arizona State University, Tempe, AZ, USA
| | - Charles B. Shoemaker
- Department of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Anne Messer
- New York State Department of Health, Wadsworth Center/ David Axelrod Institute, 120 New Scotland Ave., PO Box 22002, Albany, NY 12201-2002, USA
- Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| |
Collapse
|
6
|
Boyce JA, Broide D, Matsumoto K, Bochner BS. Advances in mechanisms of asthma, allergy, and immunology in 2008. J Allergy Clin Immunol 2009; 123:569-74. [PMID: 19281904 DOI: 10.1016/j.jaci.2009.01.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 01/07/2009] [Indexed: 12/13/2022]
Abstract
This review summarizes selected articles appearing in 2008 in the Journal. Articles chosen include those improving our understanding of mechanisms of allergic diseases by focusing on human basophil, mast cell, and eosinophil biology; IgE and its high-affinity receptor on various cells; novel properties of omalizumab; airways remodeling; and genetics. Articles from other journals have been included to supplement the topics presented.
Collapse
Affiliation(s)
- Joshua A Boyce
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, and Harvard Medical School, Boston, Mass, USA
| | | | | | | |
Collapse
|
7
|
Xie HZ, Li LL, Ren JX, Zou J, Yang L, Wei YQ, Yang SY. Pharmacophore modeling study based on known spleen tyrosine kinase inhibitors together with virtual screening for identifying novel inhibitors. Bioorg Med Chem Lett 2009; 19:1944-9. [PMID: 19254842 DOI: 10.1016/j.bmcl.2009.02.049] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Revised: 01/20/2009] [Accepted: 02/12/2009] [Indexed: 02/05/2023]
Abstract
In this investigation, chemical features based 3D pharmacophore models were developed based on the known inhibitors of Spleen tyrosine kinase (Syk) with the aid of hiphop and hyporefine modules within catalyst. The best quantitative pharmacophore model, Hypo1, was used as a 3D structural query for retrieving potential inhibitors from chemical databases including Specs, NCI, MayBridge, and Chinese Nature Product Database (CNPD). The hit compounds were subsequently subjected to filtering by Lipinski's rule of five and docking studies to refine the retrieved hits. Finally 30 compounds were selected from the top ranked hit compounds and conducted an in vitro kinase inhibitory assay. Six compounds showed a good inhibitory potency against Syk, which have been selected for further investigation.
Collapse
Affiliation(s)
- Huan-Zhang Xie
- State Key Laboratory of Biotherapy, West China Hospital, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Ng SW, di Capite J, Singaravelu K, Parekh AB. Sustained activation of the tyrosine kinase Syk by antigen in mast cells requires local Ca2+ influx through Ca2+ release-activated Ca2+ channels. J Biol Chem 2008; 283:31348-55. [PMID: 18806259 DOI: 10.1074/jbc.m804942200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mast cell activation involves cross-linking of IgE receptors followed by phosphorylation of the non-receptor tyrosine kinase Syk. This results in activation of the plasma membrane-bound enzyme phospholipase Cgamma1, which hydrolyzes the minor membrane phospholipid phosphatidylinositol 4,5-bisphosphate to generate diacylglycerol and inositol trisphosphate. Inositol trisphosphate raises cytoplasmic Ca2+ concentration by releasing Ca2+ from intracellular stores. This Ca2+ release phase is accompanied by sustained Ca2+ influx through store-operated Ca2+ release-activated Ca2+ (CRAC) channels. Here, we find that engagement of IgE receptors activates Syk, and this leads to Ca2+ release from stores followed by Ca2+ influx. The Ca2+ influx phase then sustains Syk activity. The Ca2+ influx pathway activated by these receptors was identified as the CRAC channel, because pharmacological block of the channels with either a low concentration of Gd3+ or exposure to the novel CRAC channel blocker 3-fluoropyridine-4-carboxylic acid (2',5'-dimethoxybiphenyl-4-yl)amide or RNA interference knockdown of Orai1, which encodes the CRAC channel pore, all prevented the increase in Syk activity triggered by Ca2+ entry. CRAC channels and Syk are spatially close together, because increasing cytoplasmic Ca2+ buffering with the fast Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis failed to prevent activation of Syk by Ca2+ entry. Our results reveal a positive feedback step in mast cell activation where receptor-triggered Syk activation and subsequent Ca2+ release opens CRAC channels, and the ensuing local Ca2+ entry then maintains Syk activity. Ca2+ entry through CRAC channels therefore provides a means whereby the Ca2+ and tyrosine kinase signaling pathways can interact with one another.
Collapse
Affiliation(s)
- Siaw Wei Ng
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Sherrington Bldg., Parks Road, Oxford OX1 3PT, United Kingdom
| | | | | | | |
Collapse
|
9
|
Mazuc E, Villoutreix BO, Malbec O, Roumier T, Fleury S, Leonetti JP, Dombrowicz D, Daëron M, Martineau P, Dariavach P. A novel druglike spleen tyrosine kinase binder prevents anaphylactic shock when administered orally. J Allergy Clin Immunol 2008; 122:188-94, 194.e1-3. [PMID: 18539317 DOI: 10.1016/j.jaci.2008.04.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 04/23/2008] [Accepted: 04/24/2008] [Indexed: 12/18/2022]
Abstract
BACKGROUND The spleen tyrosine kinase (Syk) is recognized as a potential pharmaceutical target for the treatment of type I hypersensitivity reactions including allergic rhinitis, urticaria, asthma, and anaphylaxis because of its critical position upstream of immunoreceptor signaling complexes that regulate inflammatory responses in leukocytes. OBJECTIVE Our aim was to improve the selectivity of anti-Syk therapies by impeding the interaction of Syk with its cellular partners, instead of targeting its catalytic site. METHODS We have previously studied the inhibitory effects of the anti-Syk intracellular antibody G4G11 on Fc epsilonRI-induced release of allergic mediators. A compound collection was screened by using an antibody displacement assay to identify functional mimics of G4G11 that act as potential inhibitors of the allergic response. The effects of the selected druglike compounds on mast cell activation were evaluated in vitro and in vivo. RESULTS We discovered compound 13, a small molecule that inhibits Fc epsilonRI-induced mast cell degranulation in vitro and anaphylactic shock in vivo. Importantly, compound 13 was efficient when administered orally to mice. Structural analysis, docking, and site-directed mutagenesis allowed us to identify the binding cavity of this compound, located at the interface between the 2 Src homology 2 domains and the interdomain A of Syk. CONCLUSION We have isolated a new class of druglike compounds that modulate the interaction of Syk with some of its macromolecular substrates implicated in the degranulation pathway in mast cells.
Collapse
Affiliation(s)
- Elsa Mazuc
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé et de la Recherche Médicale U896, Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Philibert P, Stoessel A, Wang W, Sibler AP, Bec N, Larroque C, Saven JG, Courtête J, Weiss E, Martineau P. A focused antibody library for selecting scFvs expressed at high levels in the cytoplasm. BMC Biotechnol 2007; 7:81. [PMID: 18034894 PMCID: PMC2241821 DOI: 10.1186/1472-6750-7-81] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 11/22/2007] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Intrabodies are defined as antibody molecules which are ectopically expressed inside the cell. Such intrabodies can be used to visualize or inhibit the targeted antigen in living cells. However, most antibody fragments cannot be used as intrabodies because they do not fold under the reducing conditions of the cell cytosol and nucleus. RESULTS We describe the construction and validation of a large synthetic human single chain antibody fragment library based on a unique framework and optimized for cytoplasmic expression. Focusing the library by mimicking the natural diversity of CDR3 loops ensured that the scFvs were fully human and functional. We show that the library is highly diverse and functional since it has been possible to isolate by phage-display several strong binders against the five proteins tested in this study, the Syk and Aurora-A protein kinases, the alphabeta tubulin dimer, the papillomavirus E6 protein and the core histones. Some of the selected scFvs are expressed at an exceptional high level in the bacterial cytoplasm, allowing the purification of 1 mg of active scFv from only 20 ml of culture. Finally, we show that after three rounds of selection against core histones, more than half of the selected scFvs were active when expressed in vivo in human cells since they were essentially localized in the nucleus. CONCLUSION This new library is a promising tool not only for an easy and large-scale selection of functional intrabodies but also for the isolation of highly expressed scFvs that could be used in numerous biotechnological and therapeutic applications.
Collapse
Affiliation(s)
- Pascal Philibert
- CNRS, UMR5160, CRLC, 15, av, Charles Flahault, BP14491, 34093, Montpellier Cedex 5, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Vascotto F, Visintin M, Cattaneo A, Burrone OR. Design and selection of an intrabody library produced de-novo for the non-structural protein NSP5 of rotavirus. J Immunol Methods 2005; 301:31-40. [PMID: 15907924 DOI: 10.1016/j.jim.2005.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 02/24/2005] [Accepted: 03/10/2005] [Indexed: 11/22/2022]
Abstract
Intracellular antibodies or intrabodies have great potential in protein knockout strategies for intracellular antigens. We applied the Intracellular Antibody Capture Technology for the direct selection in yeast of a mouse scFv library (V(L)-V(H) format) constructed from animals immunised with recombinant non-structural protein NSP5 of Rotavirus. We selected five different intracellular antibodies (ICAbs), which specifically recognize Delta2, an NSP5 deletion mutant used as bait. The anti-NSP5 ICAbs were well expressed both in yeast and mammalian cells as cytoplasmic or nuclear-tagged forms. By immunofluorescence and co-immunoprecipitation assays we characterised the intracellular interaction of the five anti-NSP5 ICAbs with the co-expressed antigens.
Collapse
Affiliation(s)
- Fulvia Vascotto
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34012 Trieste, Italy
| | | | | | | |
Collapse
|
12
|
Philibert P, Martineau P. Directed evolution of single-chain Fv for cytoplasmic expression using the beta-galactosidase complementation assay results in proteins highly susceptible to protease degradation and aggregation. Microb Cell Fact 2004; 3:16. [PMID: 15606918 PMCID: PMC544847 DOI: 10.1186/1475-2859-3-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Accepted: 12/17/2004] [Indexed: 12/20/2022] Open
Abstract
Background Antibody fragments are molecules widely used for diagnosis and therapy. A large amount of protein is frequently required for such applications. New approaches using folding reporter enzymes have recently been proposed to increase soluble expression of foreign proteins in Escherichia coli. To date, these methods have only been used to screen for proteins with better folding properties but have never been used to select from a large library of mutants. In this paper we apply one of these methods to select mutations that increase the soluble expression of two antibody fragments in the cytoplasm of E. coli. Results We used the β-galactosidase α-complementation system to monitor and evolve two antibody fragments for high expression levels in E. coli cytoplasm. After four rounds of mutagenesis and selection from large library repertoires (>107 clones), clones exhibiting high levels of β-galactosidase activity were isolated. These clones expressed a higher amount of soluble fusion protein than the wild type in the cytoplasm, particularly in a strain deficient in the cytoplasmic Lon protease. The increase in the soluble expression level of the unfused scFv was, however, much less pronounced, and the unfused proteins proved to be more aggregation prone than the wild type. In addition, the soluble expression levels were not correlated with the β-galactosidase activity present in the cells. Conclusion This is the first report of a selection for soluble protein expression using a fusion reporter method. Contrary to anticipated results, high enzymatic activity did not correlate with the soluble protein expression level. This was presumably due to free α-peptide released from the protein fusion by the host proteases. This means that the α-complementation assay does not sense the fusion expression level, as hypothesized, but rather the amount of free released α-peptide. Thus, the system does not select, in our case, for higher soluble protein expression level but rather for higher protease susceptibility of the fusion protein.
Collapse
Affiliation(s)
- Pascal Philibert
- CNRS UMR 5160, Faculté de Pharmacie, 15, av. Charles Flahault, BP14491, 34093. Montpellier Cedex 5, France
| | - Pierre Martineau
- CNRS UMR 5160, Faculté de Pharmacie, 15, av. Charles Flahault, BP14491, 34093. Montpellier Cedex 5, France
| |
Collapse
|
13
|
Rich RL, Myszka DG. A survey of the year 2002 commercial optical biosensor literature. J Mol Recognit 2004; 16:351-82. [PMID: 14732928 DOI: 10.1002/jmr.649] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have compiled 819 articles published in the year 2002 that involved commercial optical biosensor technology. The literature demonstrates that the technology's application continues to increase as biosensors are contributing to diverse scientific fields and are used to examine interactions ranging in size from small molecules to whole cells. Also, the variety of available commercial biosensor platforms is increasing and the expertise of users is improving. In this review, we use the literature to focus on the basic types of biosensor experiments, including kinetics, equilibrium analysis, solution competition, active concentration determination and screening. In addition, using examples of particularly well-performed analyses, we illustrate the high information content available in the primary response data and emphasize the impact of including figures in publications to support the results of biosensor analyses.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
14
|
Secco P, Ferretti M, Gioia D, Cesaro P, Bozzo C, Marks JD, Santoro C. Characterization of a single-chain intrabody directed against the human receptor tyrosine kinase Ron. J Immunol Methods 2004; 285:99-109. [PMID: 14871539 DOI: 10.1016/j.jim.2003.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2003] [Revised: 10/27/2003] [Accepted: 11/03/2003] [Indexed: 10/26/2022]
Abstract
A large human nonimmune phage antibody library was screened by affinity chromatography to select single-chain antibodies directed against the human receptor tyrosine kinase (RTK) Ron. As antigen, we used a GST fusion protein (GST-IRP(-)) containing the whole intracellular portion of Ron except for the carboxyl-terminal arginine-proline-rich motif. One selected phage was highly specific for Ron when tested in an enzyme-linked immunosorbent assay (ELISA). We report here the immunological characterization of this anti-Ron single-chain antibody (sc7) and show that it recognizes both denatured and native forms of the receptor. The epitope bound by sc7 maps within the first 50 amino acid residues of the juxtamembrane domain of Ron. This monoclonal fragment does not cross-react with other receptor tyrosine kinases including the closely related human proto-oncogene Met. We demonstrate that the isolated antibody fragment interacts in vivo with the intracellular domain of Ron in mammalian cells.
Collapse
Affiliation(s)
- Paola Secco
- Department of Medical Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont A. Avogadro, via Solaroli 17, 28100 Novara, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Sanz L, Blanco B, Alvarez-Vallina L. Antibodies and gene therapy: teaching old ‘magic bullets’ new tricks. Trends Immunol 2004; 25:85-91. [PMID: 15102367 DOI: 10.1016/j.it.2003.12.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The emergence of recombinant technologies has revolutionized the selection and production of monoclonal antibodies, allowing the design of fully human antibodies of any specificity and for diverse purposes. Recombinant antibodies can be engineered with optimized properties, such as antigen-binding affinity, molecular architecture and dimerization state, and fused with a vast array of effector moieties to enhance their tumor-targeting ability and potency. The use of gene therapy methods offers additional benefits by achieving sustained and effective concentrations of therapeutic antibodies directly at points of target intervention. This compensates for the rapid blood clearance of antibody fragments and could make the antibody less immunogenic and better tolerated. Furthermore, genetic approaches provide antibody molecules with new functions in unexpected scenarios: expression of antibody domains in precise intracellular locations and grafting of new binding activities to engineered cells. The relevance of these and other emerging concepts for antibody-based cancer therapy is discussed.
Collapse
Affiliation(s)
- Laura Sanz
- Molecular Medicine Program, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | | | | |
Collapse
|
16
|
Expression of Recombinant Antibodies by Tumour Cells: On Road to Anti-Tumour Therapy. Antibodies (Basel) 2004. [DOI: 10.1007/978-1-4419-8877-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
17
|
Sibler AP, Nordhammer A, Masson M, Martineau P, Travé G, Weiss E. Nucleocytoplasmic shuttling of antigen in mammalian cells conferred by a soluble versus insoluble single-chain antibody fragment equipped with import/export signals. Exp Cell Res 2003; 286:276-87. [PMID: 12749856 DOI: 10.1016/s0014-4827(03)00093-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ectopic expression of antibody fragments within mammalian cells is a challenging approach for interfering with or even blocking the biological function of the intracellular target. For this purpose, single-chain Fv (scFv) fragments are generally preferred. Here, by transfecting several mammalian cell lines, we compared the intracellular behavior of two scFvs (13R4 and 1F4) that strongly differ in their requirement of disulphide bonding for the formation of active molecules in bacteria. The scFv 13R4, which is correctly folded in the bacterial cytoplasm, was solubly expressed in all cell lines tested and was distributed in their cytoplasm and nucleus, as well. In addition, by appending to the 13R4 molecules the SV40 T-antigen nuclear localisation signal (NLS) tag, cytoplasmic-coexpressed antigen was efficiently retargeted to the nucleus. Compared to the scFv 13R4, the scFv 1F4, which needs to be secreted in bacteria for activity, accumulated, even with the NLS tag, as insoluble aggregates within the cytoplasm of the transfected cells, thereby severely disturbing fundamental functions of cell physiology. Furthermore, by replacing the NLS tag with a leucine-rich nuclear export signal (NES), the scFv 13R4 was exclusively located in the cytoplasm, whereas the similarly modified scFv 1F4 still promoted cell death. Coexpression of NES-tagged 13R4 fragments with nuclear antigen promoted its efficient retargeting to the cytoplasm. This dominant effect of the NES tag was also observed after exchange of the nuclear signals between the scFv 13R4 and its antigen. Taken together, the results indicate that scFvs that are active in the cytoplasm of bacteria may behave similarly in mammalian cells and that the requirement of their conserved disulphide bridges for activity is a limiting factor for mediating the nuclear import/export of target in a mammalian cell context. The described shuttling effect of antigen conferred by a soluble scFv may represent the basis of a reliable in vivo assay of effective protein- protein interactions.
Collapse
Affiliation(s)
- Annie-Paule Sibler
- Biotechnologie des Interactions Macromoléculaires, UMR 7100, Ecole Supérieure de Biotechnologie de Strasbourg, boulevard Sébastien Brant, 67400 Illkirch, France
| | | | | | | | | | | |
Collapse
|