1
|
Kaur G, Bae E, Zhang Y, Ciacciofera N, Jung KM, Barreda H, Paleti C, Oh JY, Lee RH. Biopotency and surrogate assays to validate the immunomodulatory potency of extracellular vesicles derived from mesenchymal stem/stromal cells for the treatment of experimental autoimmune uveitis. J Extracell Vesicles 2024; 13:e12497. [PMID: 39140452 PMCID: PMC11322862 DOI: 10.1002/jev2.12497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
Extracellular vesicles (EVs) derived from mesenchymal stem/stromal cells (MSCs) have been recognized as promising cytotherapeutics due to their demonstrated immunomodulatory effects in various preclinical models. The immunomodulatory capabilities of EVs stem from the proteins and genetic materials they carry from parent cells, but the cargo contents of EVs are significantly influenced by MSC tissues and donors, cellular age and culture conditions, resulting in functional variations. However, there are no surrogate assays available to validate the immunomodulatory potency of MSC-EVs before in vivo administration. In previous work, we discovered that microcarrier culture conditions enhance the immunomodulatory function of MSC-EVs, as well as the levels of immunosuppressive molecules such as TGF-β1 and let-7b in MSC-EVs. Building on these findings, we investigated whether TGF-β1 levels in MSC-EVs could serve as a surrogate biomarker for predicting their potency in vivo. Our studies revealed a strong correlation between TGF-β1 and let-7b levels in MSC-EVs, as well as their capacity to suppress IFN-γ secretion in stimulated splenocytes, establishing biopotency and surrogate assays for MSC-EVs. Subsequently, we validated MSC-EVs generated from monolayer cultures (ML-EVs) or microcarrier cultures (MC-EVs) using murine models of experimental autoimmune uveoretinitis (EAU) and additional in vitro assays reflecting the Mode of Action of MSC-EVs in vivo. Our findings demonstrated that MC-EVs carrying high levels of TGF-β1 exhibited greater efficacy than ML-EVs in halting disease progression in mice with EAU as well as inducing apoptosis and inhibiting the chemotaxis of retina-reactive T cells. Additionally, MSC-EVs suppressed the MAPK/ERK pathway in activated T cells, with treatment using TGF-β1 or let-7b showing similar effects on the MAPK/ERK pathway. Collectively, our data suggest that MSC-EVs directly inhibit the infiltration of retina-reactive T cells toward the eyes, thereby halting the disease progression in EAU mice, and their immunomodulatory potency in vivo can be predicted by their TGF-β1 levels.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Department of Cell Biology and Genetics, Institute for Regenerative MedicineTexas A&M University School of MedicineCollege StationTexasUSA
| | - Eun‐Hye Bae
- Department of Cell Biology and Genetics, Institute for Regenerative MedicineTexas A&M University School of MedicineCollege StationTexasUSA
| | - Yu Zhang
- Department of Cell Biology and Genetics, Institute for Regenerative MedicineTexas A&M University School of MedicineCollege StationTexasUSA
| | - Nicole Ciacciofera
- Department of Cell Biology and Genetics, Institute for Regenerative MedicineTexas A&M University School of MedicineCollege StationTexasUSA
| | - Kyung Min Jung
- Department of Cell Biology and Genetics, Institute for Regenerative MedicineTexas A&M University School of MedicineCollege StationTexasUSA
| | - Heather Barreda
- Department of Cell Biology and Genetics, Institute for Regenerative MedicineTexas A&M University School of MedicineCollege StationTexasUSA
| | - Carol Paleti
- Department of Cell Biology and Genetics, Institute for Regenerative MedicineTexas A&M University School of MedicineCollege StationTexasUSA
| | - Joo Youn Oh
- Department of OphthalmologySeoul National University College of MedicineSeoulSouth Korea
| | - Ryang Hwa Lee
- Department of Cell Biology and Genetics, Institute for Regenerative MedicineTexas A&M University School of MedicineCollege StationTexasUSA
| |
Collapse
|
2
|
Zhang L, Zhang W, Li Z, Lin S, Zheng T, Hao B, Hou Y, Zhang Y, Wang K, Qin C, Yue L, Jin J, Li M, Fan L. Mitochondria dysfunction in CD8+ T cells as an important contributing factor for cancer development and a potential target for cancer treatment: a review. J Exp Clin Cancer Res 2022; 41:227. [PMID: 35864520 PMCID: PMC9306053 DOI: 10.1186/s13046-022-02439-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022] Open
Abstract
CD8+ T cells play a central role in anti-tumor immunity. Naïve CD8+ T cells are active upon tumor antigen stimulation, and then differentiate into functional cells and migrate towards the tumor sites. Activated CD8+ T cells can directly destroy tumor cells by releasing perforin and granzymes and inducing apoptosis mediated by the death ligand/death receptor. They also secrete cytokines to regulate the immune system against tumor cells. Mitochondria are the central hub of metabolism and signaling, required for polarization, and migration of CD8+ T cells. Many studies have demonstrated that mitochondrial dysfunction impairs the anti-tumor activity of CD8+ T cells through various pathways. Mitochondrial energy metabolism maladjustment will cause a cellular energy crisis in CD8+ T cells. Abnormally high levels of mitochondrial reactive oxygen species will damage the integrity and architecture of biofilms of CD8+ T cells. Disordered mitochondrial dynamics will affect the mitochondrial number and localization within cells, further affecting the function of CD8+ T cells. Increased mitochondria-mediated intrinsic apoptosis will decrease the lifespan and quantity of CD8+ T cells. Excessively low mitochondrial membrane potential will cause the release of cytochrome c and apoptosis of CD8+ T cells, while excessively high will exacerbate oxidative stress. Dysregulation of mitochondrial Ca2+ signaling will affect various physiological pathways in CD8+ T cells. To some extent, mitochondrial abnormality in CD8+ T cells contributes to cancer development. So far, targeting mitochondrial energy metabolism, mitochondrial dynamics, mitochondria-mediated cell apoptosis, and other mitochondrial physiological processes to rebuild the anti-tumor function of CD8+ T cells has proved effective in some cancer models. Thus, mitochondria in CD8+ T cells may be a potential and powerful target for cancer treatment in the future.
Collapse
|
3
|
Yao Z, Wang L, Cai D, Jiang X, Sun J, Wang Y, Bai W. Warangalone Induces Apoptosis in HeLa Cells via Mitochondria-Mediated Endogenous Pathway. EFOOD 2022. [DOI: 10.53365/efood.k/145663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Cervical cancer as one of the major malignant tumors seriously threatens women's health. More than 270,000 women die of cervical cancer each year. Warangalone is an isoflavone compound isolated from Cudrania tricuspidata with excellent antitumor activity. In this research, we investigated the molecular mechanism of warangalone-induced apoptosis in HeLa cells. The results show that warangalone can selectively and effectively inhibit HeLa cells proliferation. Warangalone can effectively inhibit the invasion and migration of HeLa cells. Furthermore, warangalone was confirmed to activate p53 and mitogen-activated protein kinase (MAPK) family signaling pathways to cause apoptosis. In this case, the expression of the B-cell lymphoma-2 (Bcl-2) family is regulated, and caspase-3 is eventually cleaved, finally triggering the mitochondrial apoptosis. In conclusion, warangalone can induce HeLa cells apoptosis via a mitochondria-mediated endogenous pathway, which represented the potential therapeutic effect of warangalone on cervical cancer.
Collapse
|
4
|
Polydeoxyribonucleotide Exerts Therapeutic Effect by Increasing VEGF and Inhibiting Inflammatory Cytokines in Ischemic Colitis Rats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2169083. [PMID: 32149087 PMCID: PMC7056995 DOI: 10.1155/2020/2169083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 12/11/2022]
Abstract
Ischemic colitis is resulted from an inadequate blood supply to a segment or entire colon. Polydeoxyribonucleotide (PDRN), extracted from salmon sperm, has been reported to exert anti-inflammatory and anti-ischemic effects through the adenosine A2A receptor (A2AR). We investigated whether PDRN possesses therapeutic effectiveness on ischemic colitis rats. Ischemic colitis was induced by selective devascularization. The skin temperature on the ischemic colitis-induced region was determined. To assess the colonic damage score and collagen deposition, colonic tissue sections were stained with hematoxylin and eosin (H&E), and Masson trichrome staining was performed. Western blot analysis for A2AR, vascular endothelial growth factor (VEGF), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6, Bax, Bcl-2, and extracellular signal-regulated kinase 1/2 (ERK1/2) was performed. Skin temperature was increased and mucosal damage and collagen deposition were observed in the affected colonic tissues in the ischemic colitis rats. Expressions of inflammatory cytokines (TNF-α, IL-1β, and IL-6) and inflammatory mediator (COX-2) were upregulated in the ischemic colitis rats. Apoptosis was increased by decreasing the ratio of Bcl-2 to Bax and by suppressing the phosphorylated form of ERK1/2 expression in the ischemic colitis rats. Treatment with PDRN alleviated mucosal damage reduced the expressions of inflammatory cytokines and COX-2 and inhibited apoptosis in the ischemic colitis rats. PDRN treatment more enhanced the expressions of A2AR and VEGF in the ischemic colitis rats. PDRN showed therapeutic effectiveness on ischemic colitis by increasing VEGF expression and inhibiting inflammatory cytokines and COX-2 through enhancing A2AR expression.
Collapse
|
5
|
Gabriela-Freitas M, Pinheiro J, Raquel-Cunha A, Cardoso-Carneiro D, Martinho O. RKIP as an Inflammatory and Immune System Modulator: Implications in Cancer. Biomolecules 2019; 9:biom9120769. [PMID: 31766768 PMCID: PMC6995551 DOI: 10.3390/biom9120769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Raf kinase inhibitor protein (RKIP), an important modulator of intracellular signalling pathways, is commonly downregulated in multiple cancers. This reduction, or loss of expression, is correlated not only with the presence of metastasis, contributing to RKIP’s classification as a metastasis suppressor, but also with tumour aggressiveness and poor prognosis. Recent findings suggest a strong involvement of RKIP in the modulation of tumour microenvironment components, particularly by controlling the infiltration of specific immune cells and secretion of pro-metastatic factors. Additionally, RKIP interaction with multiple signalling molecules seems to potentiate its function as a regulator of inflammatory processes, mainly through stimulation of anti- or pro-inflammatory cytokines. Furthermore, RKIP is involved in the modulation of immunotherapeutic drugs response, through diverse mechanisms that sensitize cells to apoptosis. In the present review, we will provide updated information about the role of RKIP as an inflammatory and immune modulator and its potential implications in cancer will be addressed.
Collapse
Affiliation(s)
- Maria Gabriela-Freitas
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.G.-F.); (J.P.); (A.R.-C.); (D.C.-C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Joana Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.G.-F.); (J.P.); (A.R.-C.); (D.C.-C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Ana Raquel-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.G.-F.); (J.P.); (A.R.-C.); (D.C.-C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Diana Cardoso-Carneiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.G.-F.); (J.P.); (A.R.-C.); (D.C.-C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Olga Martinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.G.-F.); (J.P.); (A.R.-C.); (D.C.-C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784 400, Brazil
- Correspondence: ; Tel.: +351-253604868
| |
Collapse
|
6
|
Yang X, He C, Zhu L, Zhao W, Li S, Xia C, Xu C. Comparative Analysis of Regulatory Role of Notch Signaling Pathway in 8 Types Liver Cell During Liver Regeneration. Biochem Genet 2018; 57:1-19. [PMID: 29961162 DOI: 10.1007/s10528-018-9869-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 06/16/2018] [Indexed: 12/18/2022]
Abstract
Notch signaling is closely related to cell proliferation, cell apoptosis, cell fate decisions, DNA damage repair, and so on. However, the exactly regulatory mechanism of Notch signaling pathway in liver regeneration (LR) remains unclear. To reveal the role of Notch signaling pathway in rat liver regeneration, Ingenuity Pathway Analysis (IPA) software and related pathway database were firstly used to construct the Notch signaling pathway in this study. Next, eight type cells with high purity were obtained by Percoll density centrifugation and immunomagnetic beads sorting. Then, the expression profiles of Notch signaling pathway-related genes in eight type cells were checked by using Rat Genome 230 2.0 Array, and the results showed that the expression of 42 genes were significantly regulated. H-cluster results showed that the hepatic stellate cells are attributed to one cluster; hepatocyte cell, oval cell, sinusoidal endothelial cell, and Kupffer cell are clustered together; and biliary epithelial cell, pit cell, and dendritic cell are one cluster. IPA software and Expression analysis systematic explorer analysis indicated that Notch signaling pathway-related genes were involved in cell proliferation, apoptosis, cell cycle, DNA damage repair, etc. In conclusion, Notch signaling pathway might regulate various physiological activities of LR through multiple pathways.
Collapse
Affiliation(s)
- Xianguang Yang
- College of Life Science, Henan Normal University, No. 46, Constrution East Road, Xinxiang, 453007, Henan, China.,Co-constructing Key Laboratory for Cell Differentiation Regulation, Xinxiang, 453007, China
| | - Chuncui He
- College of Life Science, Henan Normal University, No. 46, Constrution East Road, Xinxiang, 453007, Henan, China.,Co-constructing Key Laboratory for Cell Differentiation Regulation, Xinxiang, 453007, China
| | - Lin Zhu
- College of Life Science, Henan Normal University, No. 46, Constrution East Road, Xinxiang, 453007, Henan, China.,Co-constructing Key Laboratory for Cell Differentiation Regulation, Xinxiang, 453007, China
| | - Weiming Zhao
- College of Life Science, Henan Normal University, No. 46, Constrution East Road, Xinxiang, 453007, Henan, China.,Co-constructing Key Laboratory for Cell Differentiation Regulation, Xinxiang, 453007, China
| | - Shuaihong Li
- College of Life Science, Henan Normal University, No. 46, Constrution East Road, Xinxiang, 453007, Henan, China.,Co-constructing Key Laboratory for Cell Differentiation Regulation, Xinxiang, 453007, China
| | - Cong Xia
- College of Life Science, Henan Normal University, No. 46, Constrution East Road, Xinxiang, 453007, Henan, China.,Co-constructing Key Laboratory for Cell Differentiation Regulation, Xinxiang, 453007, China
| | - Cunshuan Xu
- College of Life Science, Henan Normal University, No. 46, Constrution East Road, Xinxiang, 453007, Henan, China. .,Co-constructing Key Laboratory for Cell Differentiation Regulation, Xinxiang, 453007, China.
| |
Collapse
|
7
|
Liu Y, Bao Z, Xu X, Chao H, Lin C, Li Z, Liu Y, Wang X, You Y, Liu N, Ji J. Extracellular Signal-Regulated Kinase/Nuclear Factor-Erythroid2-like2/Heme Oxygenase-1 Pathway-Mediated Mitophagy Alleviates Traumatic Brain Injury-Induced Intestinal Mucosa Damage and Epithelial Barrier Dysfunction. J Neurotrauma 2017; 34:2119-2131. [PMID: 28093052 DOI: 10.1089/neu.2016.4764] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Yinlong Liu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhongyuan Bao
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiupeng Xu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Honglu Chao
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chao Lin
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zheng Li
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yan Liu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaoming Wang
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yongping You
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ning Liu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jing Ji
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
8
|
Song XF, Tian H, Zhang P, Zhang ZX. Expression of Cyt-c-Mediated Mitochondrial Apoptosis-Related Proteins in Rat Renal Proximal Tubules during Development. Nephron Clin Pract 2016; 135:77-86. [PMID: 27665619 DOI: 10.1159/000450585] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 09/01/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Apoptosis regulates embryogenesis, organ metamorphosis and tissue homeostasis. Mitochondrial signaling is an apoptotic pathway, in which Cyt-c and Apaf-1 are transformed into an apoptosome, which activates procaspase-9 and triggers apoptosis. This study evaluated Cyt-c, Apaf-1 and caspase-9 expression during renal development. METHODS Kidneys from embryonic (E) 16-, 18-, and 20-day-old fetuses and postnatal (P) 1-, 3-, 5-, 7-, 14-, and 21-day-old pups were obtained. Immunohistochemical analysis, dual-labeled immunofluorescence, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) technique assay and Western blot were performed in addition to histological analysis. RESULTS Immunohistochemistry showed that Cyt-c was strongly expressed in proximal and distal tubules (DTs) at all time points. Caspase-9 and Apaf-1 were strongly expressed in proximal tubules (PTs) but only weakly expressed in DTs. Dual-labeled immunofluorescence showed that most tubules expressed both Cyt-c and Apaf-1, except for some tubules that only expressed Cyt-c. The TUNEL assay showed a greater percentage of apoptotic cells in PTs compared to DTs. Apaf-1 and cleaved caspase-9 protein expression gradually increased during the embryonic period and peaked during the early postnatal period but apparently declined from P7. Cyt-c protein expression was weak during the embryonic period but obviously increased after P1. CONCLUSION This study showed that PTs are more sensitive to apoptosis than DTs during rat renal development, even though both tubule segments contain a large number of mitochondria. Furthermore, Cyt-c-mediated mitochondrial apoptosis-related proteins play an important role in PTs during the early postnatal kidney development.
Collapse
Affiliation(s)
- Xiao-Feng Song
- Department of Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | | | | | | |
Collapse
|
9
|
Aherne ST, Smyth P, Freeley M, Smith L, Spillane C, O'Leary J, Sheils O. Altered expression of mir-222 and mir-25 influences diverse gene expression changes in transformed normal and anaplastic thyroid cells, and impacts on MEK and TRAIL protein expression. Int J Mol Med 2016; 38:433-45. [PMID: 27353001 PMCID: PMC4935456 DOI: 10.3892/ijmm.2016.2653] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/21/2016] [Indexed: 12/25/2022] Open
Abstract
Thyroid cancer is the most common endocrine malignancy and accounts for the majority of endocrine cancer-related deaths each year. Our group and others have previously demonstrated dysfunctional microRNA (miRNA or miR) expression in the context of thyroid cancer. The objective of the present study was to investigate the impact of synthetic manipulation of expression of miR-25 and miR-222 in benign and malignant thyroid cells. miR-25 and miR-222 expression was upregulated in 8505C (an anaplastic thyroid cell line) and Nthy-ori (a SV40-immortalised thyroid cell line) cells, respectively. A transcriptomics-based approach was utilised to identify targets of the two miRNAs and real-time PCR and western blotting were used to validate a subset of the targets. Almost 100 mRNAs of diverse functions were found to be either directly or indirectly targeted by both miR-222 and miR-25 [fold change ≥2, false discovery rate (FDR) ≤0.05]. Gene ontology analysis showed the miR-25 gene target list to be significantly enriched for genes involved in cell adhesion. Fluidigm real-time PCR technologies were used to validate the downregulation of 23 and 22 genes in response to miR-25 and miR-222 overexpression, respectively. The reduction of the expression of two miR-25 protein targets, TNF-related apoptosis-inducing ligand (TRAIL) and mitogen-activated protein kinase kinase 4 (MEK4), was also validated. Manipulating the expression of both miR-222 and miR-25 influenced diverse gene expression changes in thyroid cells. Increased expression of miR-25 reduced MEK4 and TRAIL protein expression, and cell adhesion and apoptosis are important aspects of miR-25 functioning in thyroid cells.
Collapse
Affiliation(s)
- Sinéad T Aherne
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Republic of Ireland
| | - Paul Smyth
- Department of Histopathology, Trinity College Dublin, Dublin 8, Republic of Ireland
| | - Michael Freeley
- Department of Clinical Medicine and Trinity Translational Medicine Institute, Trinity College Dublin, Dublin 8, Republic of Ireland
| | - Leila Smith
- Fluidigm Corporation, Suite 100, South San Francisco, CA 94080, USA
| | - Cathy Spillane
- Department of Histopathology, Trinity College Dublin, Dublin 8, Republic of Ireland
| | - John O'Leary
- Department of Histopathology, Trinity College Dublin, Dublin 8, Republic of Ireland
| | - Orla Sheils
- Department of Histopathology, Trinity College Dublin, Dublin 8, Republic of Ireland
| |
Collapse
|
10
|
Li L, Wen XZ, Bu ZD, Cheng XJ, Xing XF, Wang XH, Zhang LH, Guo T, Du H, Hu Y, Fan B, Ji JF. Paclitaxel enhances tumoricidal potential of TRAIL via inhibition of MAPK in resistant gastric cancer cells. Oncol Rep 2016; 35:3009-17. [PMID: 26986870 DOI: 10.3892/or.2016.4666] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 01/07/2016] [Indexed: 11/05/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) holds promise for cancer therapy due to its unique capacity to selectively trigger apoptosis in cancer cells. However, TRAIL therapy is greatly hampered by its resistance. A preclinical successful strategy is to identify combination treatments that sensitize resistant cancers to TRAIL. In the present study, we fully assessed TRAIL sensitivity in 9 gastric cancer cell lines. We found combined administration of paclitaxel (PTX) markedly enhanced TRAIL-induced apoptosis in resistant cancer cells both in vitro and in vivo. The sensitization to TRAIL was accompanied by activation of mitochondrial apoptotic pathway, upregulation of TRAIL receptors and downregulation of anti-apoptotic proteins including C-IAP1, C-IAP2, Livin and Mcl-1. Noticeably, we found PTX could suppress the activation of mitogen-activated protein kinases (MAPKs). Inhibition of MAPKs using specific inhibitors (ERK inhibitor U0126, JNK inhibitor SP600125 and P38 inhibitor SB202190) facilitated TRAIL-mediated apoptosis and cytotoxicity. Additionally, SP600125 upregulated TRAL receptors as well as downregulated C-IAP2 and Mcl-1 suggesting the anti-apoptotic role of JNK. Thus, PTX-induced suppression of MAPKs may contribute to restoring TRAIL senstitivity. Collectively, our comprehensive analyses gave new insight into the role of PTX on enhancing TRAIL sensitivity, and provided theoretical references on the development of combination treatment in TRAIL-resistant gastric cancer.
Collapse
Affiliation(s)
- Lin Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Xian-Zi Wen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Zhao-De Bu
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Xiao-Jing Cheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Xiao-Fang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Xiao-Hong Wang
- Department of Tissue Bank, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Lian-Hai Zhang
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Ting Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Hong Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Ying Hu
- Department of Tissue Bank, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Biao Fan
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Jia-Fu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| |
Collapse
|
11
|
Sun Y, Liu WZ, Liu T, Feng X, Yang N, Zhou HF. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res 2015; 35:600-4. [DOI: 10.3109/10799893.2015.1030412] [Citation(s) in RCA: 902] [Impact Index Per Article: 90.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Msi1 confers resistance to TRAIL by activating ERK in liver cancer cells. FEBS Lett 2015; 589:897-903. [DOI: 10.1016/j.febslet.2015.02.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/03/2015] [Accepted: 02/23/2015] [Indexed: 01/06/2023]
|
13
|
Bonavida B. RKIP-mediated chemo-immunosensitization of resistant cancer cells via disruption of the NF-κB/Snail/YY1/RKIP resistance-driver loop. Crit Rev Oncog 2015; 19:431-45. [PMID: 25597353 DOI: 10.1615/critrevoncog.2014011929] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cancer remains one of the most dreadful diseases. Whereas most treatment regimens for various cancers have resulted in improved clinical responses and sometimes cures, unfortunately, subsets of cancer patients are either pretreatment resistant or develop resistance following therapy. These subsets of patients develop cross-resistance to unrelated therapeutics and usually succumb to death. Thus, delineating the underlying molecular mechanisms of resistance of various cancers and identifying molecular targets for intervention are the current main focus of research investigations. One approach to investigate cancer resistance has been to identify pathways that regulate resistance and develop means to disrupt these pathways in order to override resistance and sensitize the resistant cells to cell death. Hence, we have identified one pathway that is dysregulated in cancer, namely, the NF-κB/Snail/YY1/RKIP loop, that has been shown to regulate, in large part, tumor cell resistance to apoptosis by chemotherapeutic and immunotherapeutic cytotoxic drugs. The dysregulated resistant loop is manifested by the overexpression of NF-κB, Snail, and YY1 activities and the underexpression of RKIP. The induction of RKIP expression results in the downregulation of NF-κB, Snail, and YY1 and the sensitization of resistant cells to drug-induced apoptosis. These findings identified RKIP, in addition to its antiproliferative and metastatic suppressor functions, as an anti-resistance factor. This brief review describes the role of RKIP in the regulation of drug sensitivity via disruption of the NF-κB/Snail/ YY1/RKIP loop that regulates resistance in cancer cells.
Collapse
Affiliation(s)
- Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, USA
| |
Collapse
|
14
|
Medicarpin, a legume phytoalexin sensitizes myeloid leukemia cells to TRAIL-induced apoptosis through the induction of DR5 and activation of the ROS-JNK-CHOP pathway. Cell Death Dis 2014; 5:e1465. [PMID: 25321472 PMCID: PMC4237253 DOI: 10.1038/cddis.2014.429] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/14/2014] [Accepted: 09/01/2014] [Indexed: 12/15/2022]
Abstract
Tumor necrosis factor α-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent with cancer cell-selective cell death inducing effect. However, the major limitation in the usage of TRAIL as a chemotherapeutic agent is the development of TRAIL resistance in many cancer types including myeloid leukemia. In this study, we report for the first time that Medicarpin (Med), a naturally occurring phytoalexin sensitizes myeloid leukemia cells to TRAIL-induced apoptosis. Combination of Med and TRAIL induced significantly higher apoptosis compared with that of the individual treatments of either agent alone through activation of both the extrinsic and the intrinsic cell death pathways characterized by the activation of caspases 8, 9, 3, and 7. Med treatment downregulated antiapoptotic proteins (Survivin, Bcl2, Bcl-xL, XIAP, and c-FLIP), upregulated pro-apoptotic proteins (Bax, Cytochrome C, Smac/Diablo, Bid, truncated Bid (tBid), p-eIF2α, Bip, and CHOP (CCAAT-enhancer binding protein homologous protein)), induced G2/M cell-cycle arrest, and increased the expression of the functional TRAIL receptor DR5 through activation of the ROS-JNK-CHOP pathway. Gain and loss of function studies clearly indicated that DR5 expression was critical for Med-induced TRAIL sensitization. The Med-induced TRAIL sensitization did not involve the NFkB signaling pathway or redistribution of DR5 in lipid rafts. The concomitant treatment with Med and TRAIL showed robust apoptotic effects in primary myeloid leukemia cells but had no toxic effects in primary human peripheral blood mononuclear cells (PBMCs). In conclusion, our results suggest that Med sensitizes myeloid leukemia cells to TRAIL-induced apoptosis through the upregulation of DR5 through activation of the ROS-JNK-CHOP pathway.
Collapse
|
15
|
Chen HM, Zhu BZ, Chen RJ, Wang BJ, Wang YJ. The pentachlorophenol metabolite tetrachlorohydroquinone induces massive ROS and prolonged p-ERK expression in splenocytes, leading to inhibition of apoptosis and necrotic cell death. PLoS One 2014; 9:e89483. [PMID: 24586814 PMCID: PMC3935892 DOI: 10.1371/journal.pone.0089483] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/20/2014] [Indexed: 12/01/2022] Open
Abstract
Pentachlorophenol (PCP) has been used extensively as a biocide and a wood preservative and has been reported to be immunosuppressive in rodents and humans. Tetrachlorohydroquinone (TCHQ) is a major metabolite of PCP. TCHQ has been identified as the main cause of PCP-induced genotoxicity due to reactive oxidant stress (ROS). However, the precise mechanisms associated with the immunotoxic effects of PCP and TCHQ remain unclear. The aim of this study was to examine the effects of PCP and TCHQ on the induction of ROS and injury to primary mouse splenocytes. Our results shown that TCHQ was more toxic than PCP and that a high dose of TCHQ led to necrotic cell death of the splenocytes through induction of massive and sudden ROS and prolonged ROS-triggered ERK activation. Inhibition of ROS production by N-acetyl-cysteine (NAC) partially restored the mitochondrial membrane potential, inhibited ERK activity, elevated caspase-3 activity and PARP cleavage, and, eventually, switched the TCHQ-induced necrosis to apoptosis. We suggest that prolonged ERK activation is essential for TCHQ-induced necrosis, and that ROS play a pivotal role in the different TCHQ-induced cell death mechanisms.
Collapse
Affiliation(s)
- Hsiu-Min Chen
- Department of Environmental and Occupational Health, National Cheng Kung University, Medical College, Tainan, Taiwan
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Rong-Jane Chen
- Department of Environmental and Occupational Health, National Cheng Kung University, Medical College, Tainan, Taiwan
| | - Bour-Jr. Wang
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- * E-mail: (Y-JW); (B-JW)
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, National Cheng Kung University, Medical College, Tainan, Taiwan
- * E-mail: (Y-JW); (B-JW)
| |
Collapse
|
16
|
Suzuki T, Yang J. Hydrogen peroxide activation of ERK5 confers resistance to Jurkat cells against apoptosis induced by the extrinsic pathway. Biochem Biophys Res Commun 2014; 444:248-53. [PMID: 24462874 DOI: 10.1016/j.bbrc.2014.01.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 01/15/2014] [Indexed: 01/13/2023]
Abstract
Reactive oxygen species (ROS) including hydrogen peroxide (H₂O₂) exhibit both pro-survival and pro-death signaling in leukemic cells. We examined the effect of exogenous H₂O₂ on Fas ligand (FasL) -induced apoptosis in Jurkat cells. H₂O₂ applied prior to (pre-conditioning) and during (post-conditioning) FasL stimulation attenuated early apoptosis through activation of EKR5. H₂O₂ increased the activated caspase-8 sequestered in the mitochondria thereby decreasing cell death through the extrinsic apoptotic pathway. In addition, inhibition of a protein tyrosine phosphatase likely explains the post-conditioning requirement for H₂O₂. Given that chemotherapeutic agents used for the treatment of acute lymphoblastic leukemia are thought to work partly through production of ROS, a simultaneous inhibition of the ERK5 pathway may abrogate the ROS-initiated pro-survival signaling for an enhanced cell kill.
Collapse
Affiliation(s)
- Takeshi Suzuki
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53711, USA; Department of Anesthesiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jay Yang
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53711, USA.
| |
Collapse
|
17
|
Mazumdar M, Adhikary A, Chakraborty S, Mukherjee S, Manna A, Saha S, Mohanty S, Dutta A, Bhattacharjee P, Ray P, Chattopadhyay S, Banerjee S, Chakraborty J, Ray AK, Sa G, Das T. Targeting RET to induce medullary thyroid cancer cell apoptosis: an antagonistic interplay between PI3K/Akt and p38MAPK/caspase-8 pathways. Apoptosis 2013; 18:589-604. [PMID: 23329180 DOI: 10.1007/s10495-013-0803-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mutations in REarranged during Transfection (RET) receptor tyrosine, followed by the oncogenic activation of RET kinase is responsible for the development of medullary thyroid carcinoma (MTC) that responds poorly to conventional chemotherapy. Targeting RET, therefore, might be useful in tailoring surveillance of MTC patients. Here we showed that theaflavins, the bioactive components of black tea, successfully induced apoptosis in human MTC cell line, TT, by inversely modulating two molecular pathways: (i) stalling PI3K/Akt/Bad pathway that resulted in mitochondrial transmembrane potential (MTP) loss, cytochrome-c release and activation of the executioner caspases-9 and -3, and (ii) upholding p38MAPK/caspase-8/caspase-3 pathway via inhibition of Ras/Raf/ERK. Over-expression of either constitutively active myristoylated-Akt-cDNA (Myr-Akt-cDNA) or dominant-negative-caspase-8-cDNA (Dn-caspase-8-cDNA) partially blocked theaflavin-induced apoptosis, while co-transfection of Myr-Akt-cDNA and Dn-caspase-8-cDNA completely eradicated the effect of theaflavins thereby negating the possibility of existence of other pathways. A search for the upstream signaling revealed that theaflavin-induced disruption of lipid raft caused interference in anchorage of RET in lipid raft that in turn stalled phosphorylation of Ras and PI3Kinase. In such anti-survival cellular micro-environment, pro-apoptotic signals were triggered to culminate into programmed death of MTC cell. These findings not only unveil a hitherto unexplained mechanism underlying theaflavin-induced MTC death, but also validate RET as a promising and potential target for MTC therapy.
Collapse
Affiliation(s)
- Minakshi Mazumdar
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Road, Scheme VII M, Kolkata, West Bengal, 700 054, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chen L, Zhang F, Kong D, Zhu X, Chen W, Wang A, Zheng S. Saikosaponin D disrupts platelet-derived growth factor-β receptor/p38 pathway leading to mitochondrial apoptosis in human LO2 hepatocyte cells: A potential mechanism of hepatotoxicity. Chem Biol Interact 2013; 206:76-82. [DOI: 10.1016/j.cbi.2013.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/29/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022]
|
19
|
Park S, Cho DH, Andera L, Suh N, Kim I. Curcumin enhances TRAIL-induced apoptosis of breast cancer cells by regulating apoptosis-related proteins. Mol Cell Biochem 2013; 383:39-48. [DOI: 10.1007/s11010-013-1752-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 07/03/2013] [Indexed: 10/26/2022]
|
20
|
Lee HH, Jeong JW, Lee JH, Kim GY, Cheong J, Jeong YK, Yoo YH, Choi YH. Cordycepin increases sensitivity of Hep3B human hepatocellular carcinoma cells to TRAIL-mediated apoptosis by inactivating the JNK signaling pathway. Oncol Rep 2013; 30:1257-64. [PMID: 23828231 DOI: 10.3892/or.2013.2589] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/05/2013] [Indexed: 11/06/2022] Open
Abstract
Resistance to tumor necrosis factor-related apoptosis‑inducing ligand (TRAIL)-induced apoptosis has been reported in various cancer cells. Cordycepin, a specific polyadenylation inhibitor, is the main functional component in Cordyceps militaris, which possesses many pharmacological activities including antitumor and anti-inflammation. In the present study, we demonstrated that treatment of cordycepin sensitized TRAIL-resistant Hep3B human hepatocellular carcinoma cells to TRAIL-mediated apoptosis as evidenced by formation of apoptotic bodies, chromatin condensation and accumulation of cells in the sub-G1 phase. The induction of apoptosis following co-treatment with cordycepin and TRAIL in Hep3B cells appeared to be correlated with modulation of Bcl-2 family protein expression and activation of the caspase cascade, which resulted in the cleavage of poly(ADP-ribose) polymerase and β-catenin. In addition, cordycepin treatment also inhibited activation of c-Jun N-terminal kinase (JNK). Pretreatment with SP600125, a JNK inhibitor, resulted in a significantly increased sub-G1 population and caspase activity in cordycepin plus TRAIL-mediated apoptosis. Taken together, these results indicate that JNK acts as a key regulator of apoptosis in response to combined treatment with cordycepin and TRAIL in human hepatocellular carcinoma Hep3B cells.
Collapse
Affiliation(s)
- Hye Hyeon Lee
- Department of Biotechnology and Medi-Farm Industrialization Research Center, Dong-A University, Busan 604‑714, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
21
|
OUYANG WEN, YANG CHUNXU, ZHANG SIMIN, LIU YU, YANG BO, ZHANG JUNHONG, ZHOU FUXIANG, ZHOU YUNFENG, XIE CONGHUA. Absence of death receptor translocation into lipid rafts in acquired TRAIL-resistant NSCLC cells. Int J Oncol 2012; 42:699-711. [DOI: 10.3892/ijo.2012.1748] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 11/30/2012] [Indexed: 11/05/2022] Open
|
22
|
Hellwig CT, Rehm M. TRAIL signaling and synergy mechanisms used in TRAIL-based combination therapies. Mol Cancer Ther 2012; 11:3-13. [PMID: 22234808 DOI: 10.1158/1535-7163.mct-11-0434] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
TRAIL and agonistic antibodies raised against TRAIL death receptors are highly promising new anticancer agents. In this brief review, we describe the recent advances in the molecular understanding of TRAIL signaling and the progress made in using TRAIL or agonistic antibodies clinically in mono- and combination therapies. Synergies have been reported in various scenarios of TRAIL-based multidrug treatments, and these can be used to potentiate the efficacy of therapies targeting TRAIL death receptors. We pay particular attention to structure the current knowledge on the diverse molecular mechanisms that are thought to give rise to these synergies and describe how different signaling features evoking synergies can be associated with distinct classes of drugs used in TRAIL-based combination treatments.
Collapse
Affiliation(s)
- Christian T Hellwig
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | | |
Collapse
|
23
|
Yang S, Ma J, Xiao J, Lv X, Li X, Yang H, Liu Y, Feng S, Zhang Y. Arctigenin anti-tumor activity in bladder cancer T24 cell line through induction of cell-cycle arrest and apoptosis. Anat Rec (Hoboken) 2012; 295:1260-6. [PMID: 22619087 DOI: 10.1002/ar.22497] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 03/26/2012] [Accepted: 04/16/2012] [Indexed: 01/15/2023]
Abstract
Bladder cancer is the most common neoplasm in the urinary system. This study assesses arctigenin anti-tumor activity in human bladder cancer T24 cells in vitro and the underlying molecular events. The flow cytometry analysis was used to detect cell-cycle distribution and apoptosis. Western blotting was used to detect changes in protein expression. The data showed that arctigenin treatment reduced viability of bladder cancer T24 cells in a dose- and time-dependent manner after treatment with arctigenin (10, 20, 40, 80, and 100 μmol/L) for 24 hr and 48 hr. Arctigenin treatment clearly arrested tumor cells in the G1 phase of the cell cycle. Apoptosis was detected by hoechst stain and flow cytometry after Annexin-V-FITC/PI double staining. Early and late apoptotic cells were accounted for 2.32-7.01% and 3.07-7.35%, respectively. At the molecular level, arctigenin treatment decreased cyclin D1 expression, whereas CDK4 and CDK6 expression levels were unaffected. Moreover, arctigenin selectively altered the phosphorylation of members of the MAPK superfamily, decreasing phosphorylation of ERK1/2 and activated phosphorylation of p38 significantly in a dose-dependent manner. These results suggest that arctigenin may inhibit cell viability and induce apoptosis by direct activation of the mitochondrial pathway, and the mitogen-activated protein kinase pathway may play an important role in the anti-tumor effect of arctigenin. The data from the current study demonstrate the usefulness of arctigenin in bladder cancer T24 cells, which should further be evaluated in vivo before translation into clinical trials for the chemoprevention of bladder cancer.
Collapse
Affiliation(s)
- Shucai Yang
- Department of Anatomy, Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Laussmann MA, Passante E, Hellwig CT, Tomiczek B, Flanagan L, Prehn JHM, Huber HJ, Rehm M. Proteasome inhibition can impair caspase-8 activation upon submaximal stimulation of apoptotic tumor necrosis factor-related apoptosis inducing ligand (TRAIL) signaling. J Biol Chem 2012; 287:14402-11. [PMID: 22408249 DOI: 10.1074/jbc.m111.304378] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) can induce extrinsic apoptosis, resulting in caspase-8 activation, but may also initiate transcription-dependent prosurvival signaling. Proteasome inhibitors were suggested to promote TRAIL signal transduction through the death-inducing signaling complex (DISC) by modulating the relative abundance of core DISC components, thereby enhancing caspase-8 activation and apoptosis. To test this hypothesis, we quantified the changes in DISC protein levels as an early consequence of proteasome inhibition in HeLa cervical cancer cells and, based on these data, mathematically modeled the proapoptotic TRAIL signaling toward caspase-8 activation. Modeling results surprisingly suggested that caspase-8 activation might be delayed in presence of proteasome inhibitors, in particular at submaximal TRAIL doses. Subsequent FRET-based single cell time-lapse imaging at conditions where transcription dependent prosurvival signaling was blocked confirmed this hypothesis: caspase-8 activity was delayed by hours in the presence of proteasome inhibitors epoxomicin or bortezomib. Corresponding delays were detected for effector caspase processing and cell death. Contrary to current models, we therefore provide evidence that synergies between TRAIL and proteasome inhibitors do not result from changes in the levels of core DISC signaling proteins.
Collapse
Affiliation(s)
- Maike A Laussmann
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Taaffe JE, Bosinger SE, Del Prete GQ, Else JG, Ratcliffe S, Ward CD, Migone T, Paiardini M, Silvestri G. CCR5 blockade is well tolerated and induces changes in the tissue distribution of CCR5+ and CD25+ T cells in healthy, SIV-uninfected rhesus macaques. J Med Primatol 2011; 41:24-42. [PMID: 22077380 DOI: 10.1111/j.1600-0684.2011.00521.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND CCR5 is a main co-receptor for HIV, but also homes lymphocytes to sites of inflammation. We hypothesized that inhibition of CCR5 signaling would reduce HIV-associated chronic immune activation. METHODS To test this hypothesis, we administered an antagonistic anti-CCR5 monoclonal antibody (HGS101) to five uninfected rhesus macaques (RMs) and monitored lymphocyte dynamics in blood and tissue. RESULTS CCR5 blockade resulted in decreased levels of CCR5+ T cells in blood and, at later timepoints, in lymph nodes. Additionally, the levels of CD25+ T cells increased in lymph nodes, but decreased in blood, bone marrow, and rectal mucosa. Finally, a profile of gene expression from HGS101-treated RMs revealed a subtle, but consistent, in vivo signature of CCR5 blockade that suggests a mild immune-modulatory effect. CONCLUSIONS Treatment with anti-CCR5 antibody induces changes in the tissue distribution of CCR5+ and CD25+ T cells that may impact on the overall levels of immune activation during HIV and SIV infection.
Collapse
Affiliation(s)
- Jessica E Taaffe
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yu X, Li L, Li Q, Zang X, Liu Z. TRAIL and DR5 promote thyroid follicular cell apoptosis in iodine excess-induced experimental autoimmune thyroiditis in NOD mice. Biol Trace Elem Res 2011; 143:1064-76. [PMID: 21225479 DOI: 10.1007/s12011-010-8941-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 12/20/2010] [Indexed: 11/25/2022]
Abstract
Death receptor-mediated apoptosis has been implicated in target organ destruction in patients with chronic autoimmune thyroiditis. Several apoptosis signaling pathways, such as Fas ligand and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), have been shown to be active in thyroid cells and may be involved in destructive thyroiditis. Thyroid toxicity of iodide excess has been demonstrated in animals fed with an iodide-rich diet, but its pathogenic role remains unclear. The effects of excessive iodine on TRAIL and its death receptor expression in thyroid were investigated. Experimental autoimmune thyroiditis (EAT) was induced by excessive iodine and thyroglobulin (Tg) in non-obese diabetic mice. The expression of TRAIL and its death receptor DR5 was detected by immunofluorescence staining. Following administration of excessive iodine alone, Tg, and excessive iodine combined with Tg, TRAIL-positive cells appear not only in follicular cells but also in lymphocytes infiltrated in the thyroid, whereas DR5-positive cells appear only in follicular cells. Large numbers of CD3-positive cells and a few CD22-positive cells were detected in thyroid. A great amount of follicular cells were labeled specifically by terminal deoxynucleotide transferase-mediated deoxynucleotide triphosphate nick-end labeling assay. Taken together, our results suggest that excessive iodine could induce TRAIL and DR5 abnormal expression in thyroid. TRAIL band with DR5 to promote follicular cells apoptosis thus mediate thyroid destruction in EAT.
Collapse
Affiliation(s)
- Xiujie Yu
- Key Lab of Hormone and Institute of Endocrinology, Metabolic Disease Hospital, Tianjin Medical University of Tianjin, 127#, Tianjin Medical University of Tianjin, 300070, Tianjin, China
| | | | | | | | | |
Collapse
|
27
|
Shirley S, Morizot A, Micheau O. Regulating TRAIL receptor-induced cell death at the membrane : a deadly discussion. Recent Pat Anticancer Drug Discov 2011; 6:311-23. [PMID: 21756247 PMCID: PMC3204462 DOI: 10.2174/157489211796957757] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 02/20/2011] [Accepted: 02/20/2011] [Indexed: 12/20/2022]
Abstract
The use of TRAIL/APO2L and monoclonal antibodies targeting TRAIL receptors for cancer therapy holds great promise, due to their ability to restore cancer cell sensitivity to apoptosis in association with conventional chemotherapeutic drugs in a large variety of tumors. TRAIL-induced cell death is tightly regulated right from the membrane and at the DISC (Death-Inducing Signaling Complex) level. The following patent and literature review aims to present and highlight recent findings of the deadly discussion that determines tumor cell fate upon TRAIL engagement.
Collapse
Affiliation(s)
- Sarah Shirley
- INSERM, U866, Dijon, F-21079 France; Faculty of Medicine and Pharmacy, University of Bourgogne, Dijon, F-21079 France.
| | | | | |
Collapse
|
28
|
Cao X, Pobezinskaya YL, Morgan MJ, Liu ZG. The role of TRADD in TRAIL-induced apoptosis and signaling. FASEB J 2010; 25:1353-8. [PMID: 21187341 DOI: 10.1096/fj.10-170480] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily. TRAIL is promising for anticancer therapy because it induces apoptosis in cancer cells with little or no toxicity to normal cells; hence, TRAIL-receptor agonists are currently undergoing clinical trials for cancer treatment. However, many molecular signaling mechanisms in TRAIL signaling are not completely characterized. The functions of adaptor proteins, including TNF-receptor-associated death domain protein (TRADD) and receptor-interacting protein-1 (RIP1) in TRAIL signaling have been controversial. We demonstrate that while wild-type mouse embryonic fibroblasts (MEFs) are completely resistant to TRAIL-induced apoptosis, MEFs derived from Tradd(-/-) mice are hypersensitive to TRAIL (IC(50)~0.5 nM rmTRAIL, 24 h), an effect also seen in primary keratinocytes treated with TRAIL/CHX. Restoration of TRADD in Tradd(-/-) MEFs restores TRAIL resistance, indicating that TRADD plays a survival role in TRAIL signaling. We show that TRADD is recruited to the TRAIL-receptor complex, and RIP1 recruitment is mediated by TRADD. While early activation of the MAP kinase ERK is deficient in Tradd(-/-) cells, the main mechanism for enhanced TRAIL sensitivity is likely due to increased recruitment of FADD to the receptor complex, indicating that TRADD may limit FADD binding within the receptor complex and also mediate RIP1-dependent nonapoptotic signaling events, thus reducing caspase activation and subsequent apoptosis. These novel findings have potential implications for cancer therapy using TRAIL-receptor agonists.
Collapse
Affiliation(s)
- Xiumei Cao
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
29
|
Nabissi M, Morelli MB, Amantini C, Farfariello V, Ricci-Vitiani L, Caprodossi S, Arcella A, Santoni M, Giangaspero F, De Maria R, Santoni G. TRPV2 channel negatively controls glioma cell proliferation and resistance to Fas-induced apoptosis in ERK-dependent manner. Carcinogenesis 2010; 31:794-803. [DOI: 10.1093/carcin/bgq019] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Mellier G, Huang S, Shenoy K, Pervaiz S. TRAILing death in cancer. Mol Aspects Med 2009; 31:93-112. [PMID: 19995571 DOI: 10.1016/j.mam.2009.12.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 12/02/2009] [Indexed: 12/13/2022]
Abstract
The observation that certain types of cancer express death receptors on their cell surface has triggered heightened interest in exploring the potential of receptor ligation as a novel anti-cancer modality, and since the expression is somewhat restricted to cancer cells the therapeutic implications are very promising. One such death receptor ligand belonging to the tumor necrosis receptor (TNF) superfamily, TNF-related apoptosis-inducing ligand (TRAIL), has been in the limelight as a tumor selective molecule that transmits death signal via ligation to its receptors (TRAIL-R1 and TRAIL-R2 or death receptors 4 and 5; DR4 and DR5). Interestingly, TRAIL-induced apoptosis exhibits hallmarks of extrinsic as well as intrinsic death pathways, and, therefore, is subject to regulation both at the cell surface receptor level as well as more downstream at the post-mitochondrial level. Despite the remarkable selectivity of DR expression on cancer cell surface, development of resistance to TRAIL-induced apoptosis remains a major challenge. Therefore, unraveling the cellular and molecular mechanisms of TRAIL resistance as well as identifying strategies to overcome this problem for an effective therapeutic response remains the cornerstone of many research endeavors. This review aims at presenting an overview of the biology, function and translational relevance of TRAIL with a specific view to discussing the various regulatory mechanisms and the current trends in reverting TRAIL resistance of cancer cells with the obvious implication of an improved clinical outcome.
Collapse
Affiliation(s)
- Gregory Mellier
- Department of Physiology, Yong Loo Lin School of Medicine, Singapore
| | | | | | | |
Collapse
|
31
|
Corazza N, Kassahn D, Jakob S, Badmann A, Brunner T. TRAIL-induced apoptosis: between tumor therapy and immunopathology. Ann N Y Acad Sci 2009; 1171:50-8. [PMID: 19723037 DOI: 10.1111/j.1749-6632.2009.04905.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The death ligand members of the tumor necrosis factor (TNF) family are potent inducers of apoptosis in a variety of cell types. In particular, TNF-related apoptosis-inducing ligand (TRAIL) has recently received much scientific and commercial attention because of its potent tumor cell-killing activity while leaving normal untransformed cells mostly unaffected. Furthermore, TRAIL strongly synergizes with conventional chemotherapeutic drugs in inducing tumor cell apoptosis, making it a most promising candidate for future cancer therapy. Increasing evidence indicates, however, that TRAIL may also induce or modulate apoptosis in primary cells. A particular concern is the potential side effect of TRAIL-based tumor therapies in the liver. In this review we summarize some of the recent findings on the role of TRAIL in tumor cell and hepatocyte apoptosis.
Collapse
Affiliation(s)
- Nadia Corazza
- Division of Immunopathology, Institute of Pathology, University of Bern, Bern, Switzerland.
| | | | | | | | | |
Collapse
|
32
|
Chiron D, Pellat-Deceunynck C, Maillasson M, Bataille R, Jego G. Phosphorothioate-modified TLR9 ligands protect cancer cells against TRAIL-induced apoptosis. THE JOURNAL OF IMMUNOLOGY 2009; 183:4371-7. [PMID: 19734228 DOI: 10.4049/jimmunol.0901436] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hypomethylated CpG oligodeoxynucleotides (CpG ODNs) target TLR9 expressed by immune cells and are currently being evaluated as adjuvants in clinical trials. However, TLR signaling can promote some tumor growth and immune evasion, such as in multiple myeloma (MM). Therefore, deciphering the effects of CpG ODNs on cancer cells will help in preventing these adverse effects and in designing future clinical trials. TLR activation induces multiple signaling pathways, notably NF-kappaB that has been involved in the resistance to TRAIL. Thus, we wondered if CpG ODNs could modulate TRAIL-induced apoptosis in different models of tumors. Here, we show that TLR9+ (NCI-H929, NAN6, KMM1) and TLR9- MM cells (MM1S) were protected by CpG ODNs against recombinant TRAIL-induced apoptosis. By using two fully human, agonist mAbs directed against TRAIL receptors DR4 and DR5 (mapatumumab and lexatumumab, respectively), we show that the protection was restricted to DR5-induced apoptosis. Similar results were observed for two colon cancer (C45 and Colo205) and two breast cancer cell lines (HCC1569 and Cal51). The protection of CpG ODNs was mediated by its nuclease-resistant phosphorothioate backbone independent of TLR9. We next demonstrated by surface plasmon resonance that phosphorothioate-modified CpG ODNs directly bound to either TRAIL or lexatumumab and then decreased their binding to DR5. Finally, NK cell lysis of a DR5-sensitive MM cell line (NCI-H929) through TRAIL was partially inhibited by phosphorothioate-modified CpG ODNs. In conclusion, our results suggest that the phosphorothioate modification of CpG ODNs could dampen the clinical efficacy of CpG ODN-based adjuvants by altering TRAIL/TRAIL receptor interaction.
Collapse
Affiliation(s)
- David Chiron
- Institut de Recherche Thérapeutique de l'Université de Nantes, Institut National de la Santé et dela Recherche Médicale, Unité 892, Centre de Recherches en Cancérologie Nantes Angers, 8, Quai Moncousu, BP 70721, 44007 Nantes Cedex 01, France.
| | | | | | | | | |
Collapse
|
33
|
Hoffmann O, Zipp F, Weber JR. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) in central nervous system inflammation. J Mol Med (Berl) 2009; 87:753-63. [DOI: 10.1007/s00109-009-0484-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 05/05/2009] [Accepted: 05/08/2009] [Indexed: 12/17/2022]
|
34
|
Nguyen V, Cudrici C, Zernetkina V, Niculescu F, Rus H, Drachenberg C, Rus V. TRAIL, DR4 and DR5 are upregulated in kidneys from patients with lupus nephritis and exert proliferative and proinflammatory effects. Clin Immunol 2009; 132:32-42. [PMID: 19349211 DOI: 10.1016/j.clim.2009.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 02/24/2009] [Accepted: 02/25/2009] [Indexed: 11/30/2022]
Abstract
We have previously reported that TRAIL is upregulated on T cells from patients with lupus and that T cell associated TRAIL enhances autoimmune parameters in a murine model of lupus. Whether TRAIL/TRAIL-R interaction plays a role in organ involvement such as lupus nephritis has not yet been assessed. We demonstrate here that TRAIL, DR4 and DR5 are upregulated in proximal and distal tubules of patients with proliferative lupus nephritis. In vitro, expression of TRAIL, DR4 and DR5 on primary proximal tubular epithelial cells (PTEC) was induced by TNFalpha and IFNgamma. Functionally, TRAIL did not induce apoptosis but rather enhanced the proliferation of PTEC through activation of PI3 kinase/AKT and ERK1/2, increased IL-8 production and upregulated ICAM-1 expression. These data demonstrate that cytokine induced upregulation of TRAIL, DR4 and DR5 in tubules from patients with proliferative lupus nephritis may play a protective role by enhancing PTEC survival while also exerting a proinflammatory effect that may contribute to local inflammation and injury.
Collapse
Affiliation(s)
- Vinh Nguyen
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Yoon CH, Kim MJ, Park MT, Byun JY, Choi YH, Yoo HS, Lee YM, Hyun JW, Lee SJ. Activation of p38 Mitogen-Activated Protein Kinase Is Required for Death Receptor–Independent Caspase-8 Activation and Cell Death in Response to Sphingosine. Mol Cancer Res 2009; 7:361-70. [DOI: 10.1158/1541-7786.mcr-08-0069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Procházková J, Stixová L, Soucek K, Hofmanová J, Kozubík A. Monocytic differentiation of leukemic HL-60 cells induced by co-treatment with TNF-alpha and MK886 requires activation of pro-apoptotic machinery. Eur J Haematol 2009; 83:35-47. [PMID: 19220423 DOI: 10.1111/j.1600-0609.2009.01240.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The block of hematopoietic differentiation program in acute myeloid leukemia cells can be overcome by differentiating agent like retinoic acid, but it has several side effects. A study of other differentiation signaling pathways is therefore useful to predict potential targets of anti-leukemic therapy. We demonstrated previously that the co-treatment of HL-60 cells with Tumor necrosis factor-alpha (TNF-alpha) (1 ng/mL) and inhibitor of 5-lipoxygenase MK886 (5 microm) potentiated both monocytic differentiation and apoptosis. In this study, we detected enhanced activation of three main types of mitogen-activated protein kinases (MAPKs) (p38, c-Jun amino-terminal kinase [JNK], extracellular signal-regulated kinase [ERK]), so we assessed their role in differentiation using appropriate pharmacologic inhibitors. The inhibition of pro-apoptotic MAPKs (p38 and JNK) suppressed the effect of MK886 + TNF-alpha co-treatment. On the other hand, down-regulation of pro-survival ERK pathway led to increased differentiation. Those effects were accompanied by increased activation of caspases in cells treated by MK886 + TNF-alpha. Pan-caspase inhibitor ZVAD-fmk significantly decreased both number of apoptotic and differentiated cells. The same effect was observed after inhibition of caspase 9, but not caspase 3 and 8. To conclude, we evidenced that the activation of apoptotic processes and pathways supporting apoptosis (p38 and JNK MAPKs) is required for the monocytic differentiation of HL-60 cells.
Collapse
Affiliation(s)
- Jirina Procházková
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of Czech Republic, vvi, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
37
|
Huerta-Yepez S, Vega M, Escoto-Chavez SE, Murdock B, Sakai T, Baritaki S, Bonavida B. Nitric oxide sensitizes tumor cells to TRAIL-induced apoptosis via inhibition of the DR5 transcription repressor Yin Yang 1. Nitric Oxide 2009; 20:39-52. [PMID: 18778787 DOI: 10.1016/j.niox.2008.08.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 08/07/2008] [Accepted: 08/08/2008] [Indexed: 11/26/2022]
Abstract
Treatment of TRAIL-resistant tumor cells with the nitric oxide donor DETANONOate sensitizes the tumor cells to TRAIL-induced apoptosis concomitantly with DR5 upregulation. The mechanism of sensitization was examined based on the hypothesis that DETANONOate inhibits a transcription repressor Yin Yang 1 (YY1) that negatively regulates DR5 transcription. Treatment of the prostate carcinoma cell lines with DETANONOate inhibited both NF-kappaB and YY1 DNA-binding activities concomitantly with upregulation of DR5 expression. The direct role of YY1 in the regulation of TRAIL resistance was demonstrated in cells treated with YY1 siRNA resulting in TRAIL-induced apoptosis. The role of YY1 in the transcriptional regulation of DR5 was examined in cells treated with a DR5 luciferase reporter system (pDR5) and two constructs, namely, the pDR5/-605 construct with a deletion of the putative YY1 DNA-binding region (-1224 to -605) and a construct pDR5-YY1 with a mutation of the YY1 DNA-binding site. A significant (3-fold) augmentation of luciferase activity over baseline transfection with pDR5 was observed in cells transfected with the modified constructs. ChIP analysis corroborated the YY1 binding to the DR5 promoter. In vivo, tissues from nude mice bearing the PC-3 xenograft and treated with DETANONOate showed inhibition of YY1 and upregulation of DR5. The present findings demonstrate that YY1 negatively regulates DR5 transcription and expression and these correlated with resistance to TRAIL-induced apoptosis. DETANONOate inhibits both NF-kappaB and YY1 and in combination with TRAIL reverses tumor cell resistance to TRAIL apoptosis.
Collapse
Affiliation(s)
- Sara Huerta-Yepez
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, A2-060, Los Angeles, CA 90095-73622, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Death receptors are members of the tumor necrosis factor receptor superfamily characterized by a cytoplasmic region known as the "death domain" that enables the receptors to initiate cytotoxic signals when engaged by cognate ligands. Binding to the ligand results in receptor aggregation and recruitment of adaptor proteins, which, in turn, initiates a proteolytic cascade by recruiting and activating initiator caspases 8 and 10. Death receptors were once thought to primarily induce cytotoxic signaling cascades. However, recent data indicate that they initiate multiple signaling pathways, unveiling a number of nonapoptosis-related functions, including regulation of cell proliferation and differentiation, chemokine production, inflammatory responses, and tumor-promoting activities. These noncytotoxic cascades are not simply a manifestation of inhibiting proapoptotic pathways but are intrinsically regulated by adaptor protein and receptor internalization processes. Insights into these various death receptor signaling pathways provide new therapeutic strategies targeting these receptors in pathophysiological processes.
Collapse
Affiliation(s)
- Maria Eugenia Guicciardi
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905, USA
| | | |
Collapse
|
39
|
Wnt-expressing rat embryonic fibroblasts suppress Apo2L/TRAIL-induced apoptosis of human leukemia cells. Apoptosis 2008; 13:573-87. [PMID: 18347988 DOI: 10.1007/s10495-008-0191-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Accepted: 02/18/2008] [Indexed: 12/27/2022]
Abstract
Wnt signaling enhances cell proliferation and the maintenance of hematopoietic cells. In contrast, cytotoxic ligand Apo2L/TRAIL induces the apoptosis of various transformed cells. We observed that co-culture of human pre-B leukemia cells KM3 and REH with Wnt1- or Wnt3a-producing rat embryonic fibroblasts efficiently suppressed Apo2L/TRAIL-induced apoptosis of the lymphoid cells. This suppression occurs at the early stages of the Apo2L/TRAIL apoptotic cascade and, interestingly, the activation of the Wnt pathway alone in human leukemia cells is not sufficient for their full anti-apoptotic protection. We hypothesize that a stimulus emanating specifically from Wnt1- or Wnt3a-expressing rat fibroblasts is responsible for the observed resistance to Apo2L/TRAIL. This anti-apoptotic signaling was significantly hampered by the inhibition of the MEK1/ERK1/2 or NFkappaB pathways in KM3 and REH cells. Our results imply that paracrine Wnt-related signals could be important for the survival of pre-B cell-derived malignancies.
Collapse
|
40
|
Voisin T, Firar AE, Rouyer‐Fessard C, Gratio V, Laburthe M. A hallmark of immunoreceptor, the tyrosine‐based inhibitory motif ITIM, is present in the G protein‐coupled receptor OX1R for orexins and drives apoptosis: a novel mechanism. FASEB J 2008; 22:1993-2002. [DOI: 10.1096/fj.07-098723] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Thierry Voisin
- INSERMU773Centre de Recherche Biomédicale Bichat Beaujon CRB3Université Paris DiderotUMR S 773ParisFrance
| | - Aadil El Firar
- INSERMU773Centre de Recherche Biomédicale Bichat Beaujon CRB3Université Paris DiderotUMR S 773ParisFrance
| | - Christiane Rouyer‐Fessard
- INSERMU773Centre de Recherche Biomédicale Bichat Beaujon CRB3Université Paris DiderotUMR S 773ParisFrance
| | - Valérie Gratio
- INSERMU773Centre de Recherche Biomédicale Bichat Beaujon CRB3Université Paris DiderotUMR S 773ParisFrance
| | - Marc Laburthe
- INSERMU773Centre de Recherche Biomédicale Bichat Beaujon CRB3Université Paris DiderotUMR S 773ParisFrance
| |
Collapse
|
41
|
Liao YH, Hsu SM, Huang PH. ARMS Depletion Facilitates UV Irradiation Induced Apoptotic Cell Death in Melanoma. Cancer Res 2007; 67:11547-56. [DOI: 10.1158/0008-5472.can-07-1930] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Activated Protein C Decreases Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand by an EPCR- Independent Mechanism Involving Egr-1/Erk-1/2 Activation. Arterioscler Thromb Vasc Biol 2007; 27:2634-41. [DOI: 10.1161/atvbaha.107.153734] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
APC is an antithrombotic and antiinflammatory serine protease that plays an important role in vascular function. We report that APC can suppress the proapoptotic mediator TRAIL in human umbilical vein endothelial cells, and we have investigated the signaling mechanism.
Methods and Results—
APC inhibited endothelial TRAIL expression and secretion and its induction by cell activation. To explore the mechanism, we examined factors associated with TRAIL regulation and demonstrated that APC increased the level of EGR-1, a transcriptional factor known to suppress the TRAIL promoter. APC also induced a significant increase in phosphorylation of ERK-1/2, required to activate EGR-1 expression. Activation of ERK-1/2 was dependent on the protease activated receptor-1 (PAR-1), but independent of the endothelial protein C receptor (EPCR). Using siRNA, we found that the effect of APC on the EGR-1/ERK signaling required for TRAIL inhibition was dependent on the S1P1 receptor and S1P1 kinase.
Conclusions—
Our data suggest that APC may provide cytoprotective activity by activating the ERK pathway, which upregulates EGR-1 thereby suppressing the expression of TRAIL. Moreover, we provide evidence that APC can induce a cell signaling response through a PAR-1/S1P1-dependent but EPCR-independent mechanism.
Collapse
|
43
|
Baritaki S, Katsman A, Chatterjee D, Yeung KC, Spandidos DA, Bonavida B. Regulation of tumor cell sensitivity to TRAIL-induced apoptosis by the metastatic suppressor Raf kinase inhibitor protein via Yin Yang 1 inhibition and death receptor 5 up-regulation. THE JOURNAL OF IMMUNOLOGY 2007; 179:5441-53. [PMID: 17911631 DOI: 10.4049/jimmunol.179.8.5441] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Raf-1 kinase inhibitor protein (RKIP) has been implicated in the regulation of cell survival pathways and metastases, and is poorly expressed in tumors. We have reported that the NF-kappaB pathway regulates tumor resistance to apoptosis by the TNF-alpha family via inactivation of the transcription repressor Yin Yang 1 (YY1). We hypothesized that RKIP overexpression may regulate tumor sensitivity to death ligands via inhibition of YY1 and up-regulation of death receptors (DRs). The TRAIL-resistant prostate carcinoma PC-3 and melanoma M202 cell lines were examined. Transfection with CMV-RKIP, but not with control CMV-EV, sensitized the cells to TRAIL-mediated apoptosis. Treatment with RKIP small interfering RNA (siRNA) inhibited TRAIL-induced apoptosis. RKIP overexpression was paralleled with up-regulation of DR5 transcription and expression; no change in DR4, decoy receptor 1, and decoy receptor 2 expression; and inhibition of YY1 transcription and expression. Inhibition of YY1 by YY1 siRNA sensitized the cells to TRAIL apoptosis concomitantly with DR5 up-regulation. RKIP overexpression inhibited several antiapoptotic gene products such as X-linked inhibitor of apoptosis (XIAP), c-FLIP long, and Bcl-x(L) that were accompanied with mitochondrial membrane depolarization. RKIP overexpression in combination with TRAIL resulted in the potentiation of these above effects and activation of caspases 8, 9, and 3, resulting in apoptosis. These findings demonstrate that RKIP overexpression regulates tumor cell sensitivity to TRAIL via inhibition of YY1, up-regulation of DR5, and modulation of apoptotic pathways. We suggest that RKIP may serve as an immune surveillance cancer gene, and its low expression or absence in tumors allows the tumor to escape host immune cytotoxic effector cells.
Collapse
Affiliation(s)
- Stavroula Baritaki
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
44
|
Richter MV, Topham DJ. The alpha1beta1 integrin and TNF receptor II protect airway CD8+ effector T cells from apoptosis during influenza infection. THE JOURNAL OF IMMUNOLOGY 2007; 179:5054-63. [PMID: 17911590 DOI: 10.4049/jimmunol.179.8.5054] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Primary viral infections of the lung induce potent effector CD8 T cell responses. To function in the influenza-infected airways, CD8 T cells must be able to resist cell death. The majority of the CD8 T cells in the airways and lung parenchyma expressed CD49a, the alpha-chain of the type IV collagen receptor VLA-1, and these cells were highly activated, producing both IFN-gamma and TNF-alpha. In the airways, where type IV collagen is abundant, but not the spleen, the CD49a(+) CD8 cells had reduced proportions of annexin V and caspase 8, and >80% expressed the TNF-alpha receptor II, while Fas, TNFR-I, and CD27 expression were similar to CD49a(-) cells. Furthermore, the CD49a(+), but not CD49a(-), CD8 T cells from the airways were resistant to active induction of apoptosis in the presence of type IV collagen and TNF-alpha in vitro. We propose that TNFR-II and the VLA-1 synergize to protect effector CD8 T cells in the infected airways from apoptosis during the acute infection.
Collapse
Affiliation(s)
- Martin V Richter
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | | |
Collapse
|
45
|
Meinander A, Söderström TS, Kaunisto A, Poukkula M, Sistonen L, Eriksson JE. Fever-like hyperthermia controls T Lymphocyte persistence by inducing degradation of cellular FLIPshort. THE JOURNAL OF IMMUNOLOGY 2007; 178:3944-53. [PMID: 17339495 DOI: 10.4049/jimmunol.178.6.3944] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fever has a major impact on immune responses by modulating survival, proliferation, and endurance of lymphocytes. Lymphocyte persistence in turn is determined by the equilibrium between death and survival-promoting factors that regulate death receptor signaling in these cells. A potential integrator of death receptor signaling is the caspase-8 inhibitor c-FLIP, the expression of which is dynamically regulated, either rapidly induced or down-regulated. In this study, we show in activated primary human T lymphocytes that hyperthermia corresponding to fever triggered down-regulation of both c-FLIP-splicing variants, c-FLIPshort (c-FLIP(S)) and c-FLIPlong, with consequent sensitization to apoptosis mediated by CD95 (Fas/APO-1). The c-FLIP down-regulation and subsequent sensitization was specific for hyperthermic stress. Additionally, we show that the hyperthermia-mediated down-regulation was due to increased ubiquitination and proteasomal degradation of c-FLIP(S), the stability of which we have shown to be regulated by its C-terminal splicing tail. Furthermore, the induced sensitivity to CD95 ligation was independent of heat shock protein 70, as thermotolerant cells, expressing substantially elevated levels of heat shock protein 70, were not rescued from the effect of hyperthermia-mediated c-FLIP down-regulation. Our findings indicate that fever significantly influences the rate of lymphocyte elimination through depletion of c-FLIP(S). Such a general regulatory mechanism for lymphocyte removal has broad ramifications for fever-mediated regulation of immune responses.
Collapse
Affiliation(s)
- Annika Meinander
- Turku Centre for Biotechnology, Abo Akademi University and University of Turku, FI-20521 Turku, Finland
| | | | | | | | | | | |
Collapse
|
46
|
Guicciardi ME, Bronk SF, Werneburg NW, Gores GJ. cFLIPL prevents TRAIL-induced apoptosis of hepatocellular carcinoma cells by inhibiting the lysosomal pathway of apoptosis. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1337-46. [PMID: 17272514 DOI: 10.1152/ajpgi.00497.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sensitivity to TNF-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis and the lysosomal pathway of cell death are features of cancer cells. However, it is unknown if TRAIL cytotoxic signaling engages the lysosomal pathway of cell death. Our aim, therefore, was to ascertain if TRAIL killing involves lysosomal permeabilization. TRAIL-induced apoptosis of hepatocellular carcinoma cells (HuH-7, Hep3B) was associated with lysosomal permeabilization, as demonstrated by redistribution of the lysosomal protease cathepsin B into the cytosol. Pharmacological and short hairpin RNA-targeted inhibition of cathepsin B reduced apoptosis. Because cellular FLICE-inhibitory protein (cFLIP) inhibits TRAIL-induced cell death and is frequently overexpressed by human cancers, the ability of cFLIP to prevent lysosomal permeabilization during TRAIL treatment was examined. Enforced long-form cFLIP (cFLIP(L)) expression reduced release of cathepsin B from lysosomes and attenuated apoptosis. cFLIP(L) overexpression was also associated with robust p42/44 MAPK activation following exposure to TRAIL. In contrast, cFLIP(L) overexpression attenuated p38 MAPK activation and had no significant effect on JNK and NF-kappaB activation. Inhibition of p42/44 MAPK by PD98059 restored TRAIL-mediated lysosomal permeabilization and apoptosis in cFLIP-overexpressing cells. In conclusion, these results demonstrate that lysosomal permeabilization contributes to TRAIL-induced apoptosis of hepatocellular carcinoma cells and suggest that cFLIP(L) cytoprotection is, in part, due to p42/44 MAPK-dependent inhibition of lysosomal breakdown.
Collapse
Affiliation(s)
- Maria Eugenia Guicciardi
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
47
|
Falschlehner C, Emmerich CH, Gerlach B, Walczak H. TRAIL signalling: decisions between life and death. Int J Biochem Cell Biol 2007; 39:1462-75. [PMID: 17403612 DOI: 10.1016/j.biocel.2007.02.007] [Citation(s) in RCA: 340] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 02/02/2007] [Accepted: 02/05/2007] [Indexed: 12/20/2022]
Abstract
The TNF-related apoptosis-inducing ligand, TRAIL, has been shown to selectively kill tumour cells. This property has made TRAIL and agonistic antibodies against its death inducing receptors (TRAIL-R1 and TRAIL-R2) to some of the most promising novel biotherapeutic agents for cancer therapy. Here we review the signalling pathways initiated by the apoptosis- as well as the non-apoptosis-inducing receptors, TRAIL-R3 and TRAIL-R4. The TRAIL "death-inducing signalling complex" (DISC) transmits the apoptotic signal. DISC formation leads to activation of a protease cascade, finally resulting in cell death. The TRAIL death receptor-mediated "extrinsic" pathway and the "intrinsic" pathway, which is controlled by the interaction of members of the Bcl-2 family, interact with each other in the decision about life or death of a cell. Apoptotic and non-apoptotic signalling is influenced by the NF-kappaB, PKB/Akt and the MAPK signalling pathways. In this review we intend to summarise the most important findings on the TRAIL signalling network and the interplay in the decisions between life and death of a tumor cell.
Collapse
Affiliation(s)
- Christina Falschlehner
- Division of Apoptosis Regulation (D040), Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
48
|
Abstract
Apoptosis has been recognized as a central component in the pathogenesis of atherosclerosis, in addition to the other human pathologies such as cancer and diabetes. The pathophysiology of atherosclerosis is complex, involving both apoptosis and proliferation at different phases of its progression. Oxidative modification of lipids and inflammation differentially regulate the apoptotic and proliferative responses of vascular cells during progression of the atherosclerotic lesion. Bcl-2 proteins act as the major regulators of extrinsic and intrinsic apoptosis signalling pathways and more recently it has become evident that they mediate the apoptotic response of vascular cells in response to oxidation and inflammation either in a provocative or an inhibitory mode of action. Here we address Bcl-2 proteins as major therapeutic targets for the treatment of atherosclerosis and underscore the need for the novel preventive and therapeutic interventions against atherosclerosis, which should be designed in the light of molecular mechanisms regulating apoptosis of vascular cells in atherosclerotic lesions.
Collapse
Affiliation(s)
- Ozgur Kutuk
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Orhanli, Tuzla, Istanbul, Turkey
| | | |
Collapse
|
49
|
Lee TJ, Lee JT, Park JW, Kwon TK. Acquired TRAIL resistance in human breast cancer cells are caused by the sustained cFLIP(L) and XIAP protein levels and ERK activation. Biochem Biophys Res Commun 2006; 351:1024-30. [PMID: 17097066 DOI: 10.1016/j.bbrc.2006.10.163] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Accepted: 10/27/2006] [Indexed: 11/21/2022]
Abstract
We established TRAIL-resistant MDA-231/TR cells from MDA-231 parent cells to understand the mechanism of TRAIL resistance in breast cancer cells. The selected TRAIL-resistant cells were cross-resistant to TNF-alpha/cycloheximide but remained sensitive to DNA-damage drugs such as oxaliplatin and etoposide. The expression levels of death receptors (DR4 and DR5), FADD, cIAP1, cIAP2, and Bcl-2 family were not changed in TRAIL-treated both cells. Significant down-regulation of XIAP and cFLIP was occurred after TRAIL treatment in MDA-231 cells whereas their levels were sustained in MDA-231/TR cells. TRAIL-mediated activation of ERK and JNK were also observed in parent MDA-231 cells but not in MDA-231/TR cells. However, TRAIL-resistant cells showed constitutive activation state after treatment with TRAIL. Pretreatment with PD98059 or transfection of MKK1-DN (dominant negative) expression vector attenuated TRAIL resistance in MDA-231/TR cells. Our findings provide the evidence that the sustained expression level of cFLIP(L) and XIAP protein and constitutive ERK activation may lead to acquired TRAIL resistance in breast cancer cells.
Collapse
Affiliation(s)
- Tae-Jin Lee
- Department of Immunology, School of Medicine, Keimyung University, 194 DongSan-Dong Jung-Gu, Taegu 700-712, Republic of Korea
| | | | | | | |
Collapse
|
50
|
Liu Y, Borchert GL, Surazynski A, Hu CA, Phang JM. Proline oxidase activates both intrinsic and extrinsic pathways for apoptosis: the role of ROS/superoxides, NFAT and MEK/ERK signaling. Oncogene 2006; 25:5640-7. [PMID: 16619034 DOI: 10.1038/sj.onc.1209564] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Proline oxidase (POX), often considered a 'housekeeping enzyme' might play an important role in apoptosis. We have shown that POX generated proline-dependent reactive oxygen species (ROS), specifically superoxide radicals, and induced apoptosis through the mitochondrial (intrinsic) pathway. In our current report, we used DLD-1 colorectal cancer cells stably transfected with the POX gene under the control of a tetracycline-inducible promoter and found POX-stimulated expression of tumor necrosis factor-related apoptosis inducing ligand (TRAIL), DR5 and cleavage of caspase-8. Importantly, apoptosis measured by flow cytometry was partially inhibited by Z-IETD-FMK, a specific inhibitor of caspase-8. These findings suggest that the extrinsic (death receptor) pathway also is activated by POX. Furthermore, the mechanism of this effect on the extrinsic pathway, specifically, the induction of TRAIL by POX, may be mediated by NFAT transcription factors. Additionally, POX expression also dramatically decreased phosphorylation of MEK and ERK, and the decrease was partially reversed by expression of manganese superoxide dismutase (MnSOD). Overexpression of constitutively active form of MEK, acMEK, partially blocked POX-induced apoptosis. These findings suggest the involvement of MEK/ERK signaling and further confirm the role of ROS/superoxides in POX-induced apoptosis. Combined with previously published data, we conclude that POX may induce apoptosis through both intrinsic and extrinsic pathways and is involved in nuclear factor of activated T cells (NFAT) signaling and regulation of the MEK/ERK pathway. It is suggested that, as a nutrition factor, POX may modulate apoptosis signals induced by p53 or other anti-cancer agents and enhance apoptosis in stress situations.
Collapse
Affiliation(s)
- Y Liu
- Metabolism and Cancer Susceptibility Section, Laboratory of Comparative Carcinogenesis, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | |
Collapse
|