1
|
Meier RPH, Ben Nasr M, Fife BT, Finger EB, Fiorina P, Luo X, Bromberg JS. Best practices in islet transplantation in mice. Am J Transplant 2025:S1600-6135(25)00137-6. [PMID: 40089068 DOI: 10.1016/j.ajt.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/30/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Islet transplantation in mice serves as a crucial preclinical model for understanding alloimmune and autoimmune mechanisms, optimizing immunosuppressive strategies, and developing novel therapies for diabetes. This review provides a comprehensive overview of best practices in murine islet transplantation, including diabetes induction models, technical aspects of islet transplantation, and criteria for transplant graft and rejection. We discuss the immunological challenges posed by major histocompatibility complex disparities, the impact of various transplantation sites, and the limitations of murine models in translating findings to clinical settings. Special emphasis is placed on emerging strategies such as stem cell-derived insulin-producing cells, immune tolerance induction, and alternative transplantation sites. Although mouse models have significantly advanced our understanding of diabetes and β-cell replacement, their inherent differences from human physiology necessitate careful interpretation of findings. The review also highlights novel imaging modalities, immunosuppressive protocols, and biomarkers for graft monitoring, underscoring the need for further refinement of these models to bridge the gap between experimental research and clinical application. By standardizing methodologies and addressing translational limitations, murine islet transplantation studies remain a key model in transplantation and can continue to shape the future of β-cell replacement therapies for insulin-dependent diabetes.
Collapse
Affiliation(s)
- Raphael P H Meier
- Department of Surgery, University of Maryland, School of Medicine, Baltimore, Maryland, USA.
| | - Moufida Ben Nasr
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy; Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Brian T Fife
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, Minnesota, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Erik B Finger
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Paolo Fiorina
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy; Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xunrong Luo
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland, School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
2
|
Klaus T, Hieber C, Bros M, Grabbe S. Integrins in Health and Disease-Suitable Targets for Treatment? Cells 2024; 13:212. [PMID: 38334604 PMCID: PMC10854705 DOI: 10.3390/cells13030212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Integrin receptors are heterodimeric surface receptors that play multiple roles regarding cell-cell communication, signaling, and migration. The four members of the β2 integrin subfamily are composed of an alternative α (CD11a-d) subunit, which determines the specific receptor properties, and a constant β (CD18) subunit. This review aims to present insight into the multiple immunological roles of integrin receptors, with a focus on β2 integrins that are specifically expressed by leukocytes. The pathophysiological role of β2 integrins is confirmed by the drastic phenotype of patients suffering from leukocyte adhesion deficiencies, most often resulting in severe recurrent infections and, at the same time, a predisposition for autoimmune diseases. So far, studies on the role of β2 integrins in vivo employed mice with a constitutive knockout of all β2 integrins or either family member, respectively, which complicated the differentiation between the direct and indirect effects of β2 integrin deficiency for distinct cell types. The recent generation and characterization of transgenic mice with a cell-type-specific knockdown of β2 integrins by our group has enabled the dissection of cell-specific roles of β2 integrins. Further, integrin receptors have been recognized as target receptors for the treatment of inflammatory diseases as well as tumor therapy. However, whereas both agonistic and antagonistic agents yielded beneficial effects in animal models, the success of clinical trials was limited in most cases and was associated with unwanted side effects. This unfavorable outcome is most probably related to the systemic effects of the used compounds on all leukocytes, thereby emphasizing the need to develop formulations that target distinct types of leukocytes to modulate β2 integrin activity for therapeutic applications.
Collapse
Affiliation(s)
| | | | | | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (T.K.); (C.H.); (M.B.)
| |
Collapse
|
3
|
Pham VT, Ciccaglione M, Ramirez DG, Benninger RKP. Ultrasound Imaging of Pancreatic Perfusion Dynamics Predicts Therapeutic Prevention of Diabetes in Preclinical Models of Type 1 Diabetes. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1336-1347. [PMID: 35473669 PMCID: PMC9149043 DOI: 10.1016/j.ultrasmedbio.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/07/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
In type 1 diabetes (T1D), immune-cell infiltration into islets of Langerhans (insulitis) and β-cell decline occur years before diabetes presents. There is a lack of validated clinical approaches for detecting insulitis and β-cell decline, to diagnose eventual diabetes and monitor the efficacy of therapeutic interventions. We previously determined that contrast-enhanced ultrasound measurements of pancreas perfusion dynamics predict disease progression in T1D pre-clinical models. Here, we test whether these measurements predict therapeutic prevention of T1D. We performed destruction-reperfusion measurements with size-isolated microbubbles in non-obese diabetic (NOD)-severe combined immunodeficiency (SCID) mice receiving an adoptive transfer of diabetogenic splenocytes. Mice received vehicle control or the following treatments: (i) anti-CD3 to block T-cell activation; (ii) anti-CD4 to deplete CD4+ T cells; (iii) verapamil to reduce β-cell apoptosis; or (iv) tauroursodeoxycholic acid (TUDCA) to reduce β-cell endoplasmic reticulum stress. We compared measurements of pancreas perfusion dynamics with subsequent progression to diabetes. Anti-CD3, anti-CD4, and verapamil delayed diabetes development. Blood flow dynamics was significantly altered in treated mice with delayed/absent diabetes development compared with untreated mice. Conversely, blood flow dynamics in treated mice with unchanged diabetes development was similar to that in untreated mice. Thus, measurement of pancreas perfusion dynamics predicts the successful prevention of diabetes. This strategy may provide a clinically deployable predictive marker for therapeutic prevention in asymptomatic T1D.
Collapse
Affiliation(s)
- Vinh T Pham
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mark Ciccaglione
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David G Ramirez
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Richard K P Benninger
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
4
|
Lee SJ, Kim HJ, Byun NR, Park CG. Donor-Specific Regulatory T Cell-Mediated Immune Tolerance in an Intrahepatic Murine Allogeneic Islet Transplantation Model with Short-Term Anti-CD154 mAb Single Treatment. Cell Transplant 2021; 29:963689720913876. [PMID: 32216448 PMCID: PMC7586274 DOI: 10.1177/0963689720913876] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Anti-CD154 blockade-based regimens remain unequaled in prolonging graft survival in various organ transplantation models. Several studies have focused on transplantation tolerance with the anti-CD154 blockade, but none of these studies has investigated the mechanisms associated with its use as the sole treatment in animal models, delaying our understanding of anti-CD154 blockade-mediated immune tolerance. The purpose of this study was to investigate the mechanism underlying the anti-CD154 monoclonal antibody (mAb) blockade in inducing immune tolerance using an intrahepatic murine allogeneic islet transplantation model. Allogeneic BALB/c AnHsd (BALB/c) islets were infused into the liver of diabetic C57BL/6 (B6) mice via the cecal vein. Anti-CD154 mAb (MR1) was administered on -1, 0, 1, 3, 5, and 7 d posttransplantation at 0.5 mg per mouse. We showed that short-term MR1 monotherapy could prolong the allogeneic islet grafts to more than 250 d in the murine intrahepatic islet transplantation model. The second islet grafts transplanted under the kidney capsule of the recipients were protected from rejection. We also found that rejection of same-donor skin grafts transplanted to the tolerant mice was modestly delayed. Using a DEREG mouse model, FoxP3+ regulatory T (Treg) cells were shown to play important roles in transplantation tolerance. In mixed lymphocyte reactions, Treg cells from the tolerant mice showed more potency in suppressing BALB/c splenocyte-stimulated Teff cell proliferation than those from naïve mice. In this study, we demonstrated for the first time that a short-term anti-CD154 mAb single treatment could induce FoxP3+ Treg cell-mediated immune tolerance in the intrahepatic murine allogeneic islet transplantation model.
Collapse
Affiliation(s)
- Seok-Joo Lee
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Science, Seoul National University Graduate School, Seoul, Korea
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Oral Microbiology and Immunology, Seoul National University School of Dentistry, Seoul, Korea
| | - Hyun-Je Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Science, Seoul National University Graduate School, Seoul, Korea
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Dermatology, Samsung Medical Center, Seoul, Korea
| | - Na-ri Byun
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Science, Seoul National University Graduate School, Seoul, Korea
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
- Byun is now with the Hanmi R&D center, Hwaseong-si, Gyeonggi-do18469, Korea
| | - Chung-Gyu Park
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Science, Seoul National University Graduate School, Seoul, Korea
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Dermatology, Samsung Medical Center, Seoul, Korea
- Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Chung-Gyu Park, MD, PhD, 103 Daehak-ro, Jongno-gu, 110-799 Seoul, South Korea. Emails: ;
| |
Collapse
|
5
|
Zhu M, Ma Y, Tan K, Zhang L, Wang Z, Li Y, Chen Y, Guo J, Yan G, Qi Z. Thalidomide with blockade of co-stimulatory molecules prolongs the survival of alloantigen-primed mice with cardiac allografts. BMC Immunol 2020; 21:19. [PMID: 32299357 PMCID: PMC7164359 DOI: 10.1186/s12865-020-00352-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 04/07/2020] [Indexed: 01/20/2023] Open
Abstract
Background Miscellaneous memory cell populations that exist before organ transplantation are crucial barriers to transplantation. In the present study, we used a skin-primed heart transplantation model in mouse to evaluate the abilities of Thalidomide (TD), alone or in combination with co-stimulatory blockade, using monoclonal antibodies (mAbs) against memory T cells and alloantibodies to prolong the second cardiac survival. Results In the skin-primed heart transplantation model, TD combined with mAbs significantly prolonged the second cardiac survival, accompanied by inhibition of memory CD8+ T cells. This combined treatment enhanced the CD4+Foxp3+ regulatory T cells ratio in the spleen, restrained the infiltration of lymphocytes into the allograft, and suppressed the allo-response of spleen T cells in the recipient. The levels of allo-antibodies also decreased in the recipient serum. In addition, we detected low levels of the constitutions of the lytic machinery of cytotoxic cells, which cause allograft damage. Conclusions Our study indicated a potential synergistic action of TD in combination with with mAbs to suppress the function of memory T cells and increase the survival of second allografts in alloantigen-primed mice.
Collapse
Affiliation(s)
- Maoshu Zhu
- Xiang'an Branch, The First Affiliated Hospital of Xiamen University, Xiamen, 361100, Fujian, China.,The Fifth Hospital of Xiamen, Xiamen, 361100, Fujian, China
| | - Yunhan Ma
- Organ Transplantation institute, School of Medicine, Xiamen University, Xiamen, 361100, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, 361100, Fujian, China
| | - Kai Tan
- Grade 2015 Clinical Medicine, Fuzhou Medical College of Nanchang University, Fuzhou, 344000, Jiangxi, China
| | - Liyi Zhang
- Organ Transplantation institute, School of Medicine, Xiamen University, Xiamen, 361100, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, 361100, Fujian, China
| | - Zhaowei Wang
- Xiang'an Branch, The First Affiliated Hospital of Xiamen University, Xiamen, 361100, Fujian, China.,The Fifth Hospital of Xiamen, Xiamen, 361100, Fujian, China
| | - Yongsheng Li
- Xiang'an Branch, The First Affiliated Hospital of Xiamen University, Xiamen, 361100, Fujian, China.,The Fifth Hospital of Xiamen, Xiamen, 361100, Fujian, China
| | - Yingyu Chen
- Organ Transplantation institute, School of Medicine, Xiamen University, Xiamen, 361100, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, 361100, Fujian, China
| | - Junjun Guo
- Organ Transplantation institute, School of Medicine, Xiamen University, Xiamen, 361100, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, 361100, Fujian, China
| | - Guoliang Yan
- Organ Transplantation institute, School of Medicine, Xiamen University, Xiamen, 361100, Fujian, China. .,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, 361100, Fujian, China.
| | - Zhongquan Qi
- Organ Transplantation institute, School of Medicine, Xiamen University, Xiamen, 361100, Fujian, China. .,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, 361100, Fujian, China. .,School of Medicine, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
6
|
Xie B, Ma Y, Xi Y, Di A, Chen X, Chen Y, Zhang L, Xu S, Wang C, Yan G, Qi Z. Combined treatment with vitamin D3 and antibody agents suppresses secondary heart transplant rejection in the early postoperative period. Transpl Immunol 2020; 59:101270. [PMID: 31953155 DOI: 10.1016/j.trim.2020.101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Accelerated transplant rejection mediated by donor reactive memory T cells is another barrier to the induction of graft tolerance. The aim of this study was to investigate the immunosuppressing effects of vitamin D (1,25(OH)2D3), administered alone or in combination with a costimulatory blockade treatment, on rejection of secondary heart allografts in a mouse model. METHODS Circular full-thickness skin grafts from BALB/c mice were cut and grafted onto the lumbar regions of C57BL/6 mice as allo-primed recipients. Four weeks after skin grafting, the vascularized hearts from the BALB/c mice were transplanted heterotopically into the allo-primed recipients using a non-suture cuff technique. The recipients were then randomly divided into four groups and given either intraperitoneal injection of isotype, Ab, 1,25(OH)2D3, or a combination of Ab and 1,25(OH)2D3. Allograft incidence was determined by hematoxylin-eosin staining, and cytokine expression was assessed by the quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assays, and cytometric bead arrays. Spleen cells from the recipient were used to assess mixed lymphocyte reactions. Memory T cells and regulatory T cells (Tregs) in spleen cells were measured by flow cytometry. RESULTS The median allograft survival time was longer with the combined treatment with Ab and 1,25(OH)2D3 than with no treatment or with treatment with Ab or 1,25(OH)2D3 alone. The grafts were protected from infiltration by inflammatory cells and by inhibition of interleukin 2 and interferon gamma expression. Rejection was initially suppressed in the early postoperative period by a reduction in the number of memory T cells and induction of Foxp3+ Tregs, but this effect disappeared by day 15 after transplantation upon withdrawal of the treatment. CONCLUSION Vitamin D3 administered as an immunosuppressive agent, when combined with monoclonal antibody treatment, may protect heart grafts from memory T cell responses in a secondary heart transplant model.
Collapse
Affiliation(s)
- Baiyi Xie
- Organ Transplantation institute, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China; School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yunhan Ma
- Organ Transplantation institute, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China; School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yanfeng Xi
- Organ Transplantation institute, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China; School of Medicine, Xiamen University, Xiamen, Fujian, China; The Tumor Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Anjie Di
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xu Chen
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, Fujian, China
| | - Yingyu Chen
- Organ Transplantation institute, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China; School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Liyi Zhang
- Organ Transplantation institute, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China; School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shuangyue Xu
- Organ Transplantation institute, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China; School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Chenxi Wang
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Guoliang Yan
- Organ Transplantation institute, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China; School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Zhongquan Qi
- Organ Transplantation institute, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China; Medical College, Guangxi University, Nanning, Guangxi, China.
| |
Collapse
|
7
|
Yoon I, Chung H, Kim H, Nam H, Shin J, Kim Y, Park C. Peri‐graft porcine‐specific CD4
+
FoxP3
+
regulatory T cells by CD40‐CD154 blockade prevented the rejection of porcine islet graft in diabetic mice. Xenotransplantation 2019; 26:e12533. [DOI: 10.1111/xen.12533] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 04/24/2019] [Accepted: 05/06/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Il‐Hee Yoon
- VHS Veterans Medical Research Institute VHS Medical Center Seoul Korea
| | - Hyunwoo Chung
- Xenotransplantation Research Center Seoul National University College of Medicine Seoul Korea
- Department of Microbiology and Immunology Seoul National University College of Medicine Seoul Korea
- Department of Biomedical Sciences Seoul National University Graduate School Seoul Korea
| | - Hyun‐Je Kim
- Xenotransplantation Research Center Seoul National University College of Medicine Seoul Korea
- Department of Microbiology and Immunology Seoul National University College of Medicine Seoul Korea
- Department of Biomedical Sciences Seoul National University Graduate School Seoul Korea
| | - Hye‐Young Nam
- Xenotransplantation Research Center Seoul National University College of Medicine Seoul Korea
- Department of Microbiology and Immunology Seoul National University College of Medicine Seoul Korea
| | - Jun‐Seop Shin
- Department of Microbiology and Immunology Seoul National University College of Medicine Seoul Korea
- Cancer Research Institute Seoul National University College of Medicine Seoul Korea
- Institute of Endemic Diseases Seoul National University College of Medicine Seoul Korea
- Biomedical Research Institute Seoul National University Hospital Seoul Korea
| | - Yong‐Hee Kim
- Xenotransplantation Research Center Seoul National University College of Medicine Seoul Korea
- Department of Microbiology and Immunology Seoul National University College of Medicine Seoul Korea
- Department of Biomedical Sciences Seoul National University Graduate School Seoul Korea
| | - Chung‐Gyu Park
- Xenotransplantation Research Center Seoul National University College of Medicine Seoul Korea
- Department of Microbiology and Immunology Seoul National University College of Medicine Seoul Korea
- Department of Biomedical Sciences Seoul National University Graduate School Seoul Korea
- Cancer Research Institute Seoul National University College of Medicine Seoul Korea
- Institute of Endemic Diseases Seoul National University College of Medicine Seoul Korea
| |
Collapse
|
8
|
Iida S, Miyairi S, Su CA, Abe T, Abe R, Tanabe K, Dvorina N, Baldwin WM, Fairchild RL. Peritransplant VLA-4 blockade inhibits endogenous memory CD8 T cell infiltration into high-risk cardiac allografts and CTLA-4Ig resistant rejection. Am J Transplant 2019; 19:998-1010. [PMID: 30372587 PMCID: PMC6433496 DOI: 10.1111/ajt.15147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/05/2018] [Accepted: 10/16/2018] [Indexed: 01/25/2023]
Abstract
Recipient endogenous memory CD8 T cells expressing reactivity to donor class I MHC infiltrate MHC-mismatched cardiac allografts within 24 hours after reperfusion and express effector functions mediating graft injury. The current study tested the efficacy of Very Late Antigen-4 (VLA-4) blockade to inhibit endogenous memory CD8 T cell infiltration into cardiac allografts and attenuate early posttransplant inflammation. Peritransplant anti-VLA-4 mAb given to C57BL6 (H-2b ) recipients of AJ (H-2a ) heart allografts completely inhibited endogenous memory CD4 and CD8 T cell infiltration with significant decrease in macrophage, but not neutrophil, infiltration into allografts subjected to either minimal or prolonged cold ischemic storage (CIS) prior to transplant, reduced intra-allograft IFN-γ-induced gene expression and prolonged survival of allografts subjected to prolonged CIS in CTLA-4Ig treated recipients. Anti-VLA-4 mAb also inhibited priming of donor-specific T cells producing IFN-γ until at least day 7 posttransplant. Peritransplant anti-VLA plus anti-CD154 mAb treatment similarly prolonged survival of allografts subjected to minimal or increased CIS prior to transplant. Overall, these data indicate that peritransplant anti-VLA-4 mAb inhibits early infiltration memory CD8 T cell infiltration into allografts with a marked reduction in early graft inflammation suggesting an effective strategy to attenuate negative effects of heterologous alloimmunity in recipients of higher risk grafts.
Collapse
Affiliation(s)
- Shoichi Iida
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Tokyo Women’s Medical University, Tokyo, Japan
| | - Satoshi Miyairi
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Charles A. Su
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Toyofumi Abe
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Urology, Osaka University School of Medicine, Osaka, Japan
| | - Ryo Abe
- Tokyo Women’s Medical University, Tokyo, Japan
| | | | - Nina Dvorina
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Robert L. Fairchild
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
9
|
Li X, Meng Q, Zhang L. The Fate of Allogeneic Pancreatic Islets following Intraportal Transplantation: Challenges and Solutions. J Immunol Res 2018; 2018:2424586. [PMID: 30345316 PMCID: PMC6174795 DOI: 10.1155/2018/2424586] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/27/2018] [Indexed: 12/26/2022] Open
Abstract
Pancreatic islet transplantation as a therapeutic option for type 1 diabetes mellitus is gaining widespread attention because this approach can restore physiological insulin secretion, minimize the risk of hypoglycemic unawareness, and reduce the risk of death due to severe hypoglycemia. However, there are many obstacles contributing to the early mass loss of the islets and progressive islet loss in the late stages of clinical islet transplantation, including hypoxia injury, instant blood-mediated inflammatory reactions, inflammatory cytokines, immune rejection, metabolic exhaustion, and immunosuppression-related toxicity that is detrimental to the islet allograft. Here, we discuss the fate of intrahepatic islets infused through the portal vein and propose potential interventions to promote islet allograft survival and improve long-term graft function.
Collapse
Affiliation(s)
- Xinyu Li
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086 Heilongjiang Province, China
| | - Qiang Meng
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086 Heilongjiang Province, China
| | - Lei Zhang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086 Heilongjiang Province, China
| |
Collapse
|
10
|
Anti-LFA-1 induces CD8 T-cell dependent allograft tolerance and augments suppressor phenotype CD8 cells. Cell Immunol 2018; 332:101-110. [PMID: 30103941 DOI: 10.1016/j.cellimm.2018.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/30/2018] [Accepted: 08/06/2018] [Indexed: 11/22/2022]
Abstract
The induction of tolerance to transplanted organs is a major objective in transplantation immunology research. Lymphocyte function-associated antigen-1 (LFA-1) interactions have been identified as a key component of the T-cell activation process that may be interrupted to lead to allograft tolerance. In mice, αLFA-1 mAb is a potent monotherapy that leads to the induction of donor-specific transferable tolerance. By interrogating important adaptive and innate immunity pathways, we demonstrate that the induction of tolerance relies on CD8+T-cells. We further demonstrate that αLFA-1 induced tolerance is associated with CD8+CD28-T-cells with a suppressor phenotype, and that while CD8 cells are present, the effector T-cell response is abrogated. A recent publication has shown that CD8+CD28- cells are not diminished by cyclosporine or rapamycin, therefore CD8+CD28- cells represent a clinically relevant population. To our knowledge, this is the first time that a mechanism for αLFA-1 induced tolerance has been described.
Collapse
|
11
|
Burrack AL, Landry LG, Siebert J, Coulombe M, Gill RG, Nakayama M. Simultaneous Recognition of Allogeneic MHC and Cognate Autoantigen by Autoreactive T Cells in Transplant Rejection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:1504-1512. [PMID: 29311365 PMCID: PMC5809255 DOI: 10.4049/jimmunol.1700856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/10/2017] [Indexed: 12/15/2022]
Abstract
The autoimmune condition is a primary obstacle to inducing tolerance in type 1 diabetes patients receiving allogeneic pancreas transplants. It is unknown how autoreactive T cells that recognize self-MHC molecules contribute to MHC-disparate allograft rejection. In this report, we show the presence and accumulation of dual-reactive, that is autoreactive and alloreactive, T cells in C3H islet allografts that were transplanted into autoimmune diabetic NOD mice. Using high-throughput sequencing, we discovered that T cells prevalent in allografts share identical TCRs with autoreactive T cells present in pancreatic islets. T cells expressing TCRs that are enriched in allograft lesions recognized C3H MHC molecules, and five of six cell lines expressing these TCRs were also reactive to NOD islet cells. These results reveal the presence of autoreactive T cells that mediate cross-reactive alloreactivity, and indicate a requirement for regulating such dual-reactive T cells in tissue replacement therapies given to autoimmune individuals.
Collapse
Affiliation(s)
- Adam L Burrack
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Laurie G Landry
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO 80045; and
| | | | - Marilyne Coulombe
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO 80045
| | - Ronald G Gill
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Maki Nakayama
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045;
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO 80045; and
| |
Collapse
|
12
|
Giraldo JA, Molano RD, Rengifo HR, Fotino C, Gattás-Asfura KM, Pileggi A, Stabler CL. The impact of cell surface PEGylation and short-course immunotherapy on islet graft survival in an allogeneic murine model. Acta Biomater 2017; 49:272-283. [PMID: 27915019 DOI: 10.1016/j.actbio.2016.11.060] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 11/22/2016] [Accepted: 11/29/2016] [Indexed: 12/22/2022]
Abstract
Islet transplantation is a promising therapy for Type 1 diabetes mellitus; however, host inflammatory and immune responses lead to islet dysfunction and destruction, despite potent systemic immunosuppression. Grafting of poly(ethylene glycol) (PEG) to the periphery of cells or tissues can mitigate inflammation and immune recognition via generation of a steric barrier. Herein, we sought to evaluate the complementary impact of islet PEGylation with a short-course immunotherapy on the survival of fully-MHC mismatched islet allografts (DBA/2 islets into diabetic C57BL/6J recipients). Anti-Lymphocyte Function-associated Antigen 1 (LFA-1) antibody was selected as a complementary, transient, systemic immune monotherapy. Islets were PEGylated via an optimized protocol, with resulting islets exhibiting robust cell viability and function. Following transplantation, a significant subset of diabetic animals receiving PEGylated islets (60%) or anti-LFA-1 antibody (50%) exhibited long-term (>100d) normoglycemia. The combinatorial approach proved synergistic, with 78% of the grafts exhibiting euglycemia long-term. Additional studies examining graft cellular infiltrates at early time points characterized the local impact of the transplant protocol on graft survival. Results illustrate the capacity of a simple polymer grafting approach to impart significant immunoprotective effects via modulation of the local transplant environment, while short-term immunotherapy serves to complement this effect. STATEMENT OF SIGNIFICANCE We believe this study is important and of interest to the biomaterials and transplant community for several reasons: 1) it provides an optimized protocol for the PEGylation of islets, with minimal impact on the coated islets, which can be easily translated for clinical applications; 2) this optimized protocol demonstrates the benefits of islet PEGylation in providing modest immunosuppression in a murine model; 3) this work demonstrates the combinatory impact of PEGylation with short-course immunotherapy (via LFA-1 blockage), illustrating the capacity of PEGylation to complement existing immunotherapy; and 4) it suggests macrophage phenotype shifting as the potential mechanism for this observed benefit.
Collapse
Affiliation(s)
- Jaime A Giraldo
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - R Damaris Molano
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Surgery, University of Miami, Miami, FL, USA
| | - Hernán R Rengifo
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - Carmen Fotino
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - Kerim M Gattás-Asfura
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Antonello Pileggi
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Miami, Miami, FL, USA; Department of Surgery, University of Miami, Miami, FL, USA; Department of Microbiology & Immunology, University of Miami, Miami, FL, USA
| | - Cherie L Stabler
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Miami, Miami, FL, USA; Department of Surgery, University of Miami, Miami, FL, USA; Department of Microbiology & Immunology, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
13
|
Burrack AL, Martinov T, Fife BT. T Cell-Mediated Beta Cell Destruction: Autoimmunity and Alloimmunity in the Context of Type 1 Diabetes. Front Endocrinol (Lausanne) 2017; 8:343. [PMID: 29259578 PMCID: PMC5723426 DOI: 10.3389/fendo.2017.00343] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022] Open
Abstract
Type 1 diabetes (T1D) results from destruction of pancreatic beta cells by T cells of the immune system. Despite improvements in insulin analogs and continuous blood glucose level monitoring, there is no cure for T1D, and some individuals develop life-threatening complications. Pancreas and islet transplantation have been attractive therapeutic approaches; however, transplants containing insulin-producing cells are vulnerable to both recurrent autoimmunity and conventional allograft rejection. Current immune suppression treatments subdue the immune system, but not without complications. Ideally a successful approach would target only the destructive immune cells and leave the remaining immune system intact to fight foreign pathogens. This review discusses the autoimmune diabetes disease process, diabetic complications that warrant a transplant, and alloimmunity. First, we describe the current understanding of autoimmune destruction of beta cells including the roles of CD4 and CD8 T cells and several possibilities for antigen-specific tolerance induction. Second, we outline diabetic complications necessitating beta cell replacement. Third, we discuss transplant recognition, potential sources for beta cell replacement, and tolerance-promoting therapies under development. We hypothesize that a better understanding of autoreactive T cell targets during disease pathogenesis and alloimmunity following transplant destruction could enhance attempts to re-establish tolerance to beta cells.
Collapse
Affiliation(s)
- Adam L. Burrack
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Tijana Martinov
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Brian T. Fife
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
- *Correspondence: Brian T. Fife,
| |
Collapse
|
14
|
Bishop NH, Beard KS, Gill RG. Resistance of spontaneously diabetic Ins2(akita) mice to allograft tolerance induced by anti-CD154 therapy. Transplant Proc 2015; 46:2007-9. [PMID: 25131095 DOI: 10.1016/j.transproceed.2014.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Despite ongoing advances in the clinical islet transplant field, progressive decline in graft function continues to reduce the long-term success of islet transplantation for restoring euglycemia in type 1 diabetic recipients. To preserve graft function and avoid the use of chronic immunosuppressive drug therapy, a key goal is to induce donor-specific immune tolerance to islet transplants. Preclinical rodent studies of islet transplantation largely utilize models of diabetes either induced experimentally with beta cell toxins or spontaneously occurring in strains genetically prone to autoimmune diabetes. In this study, we sought to determine if chronic, severe hyperglycemia itself, independent of both beta cell toxins and host autoimmunity, influenced acute allograft rejection and/or the capacity to induce allograft tolerance. METHOD To this end, we studied the response to islet allografts in severely diabetic, non-autoimmune C57Bl/6 Ins2(akita) recipients. RESULTS Results indicate that diabetic Ins2(akita) mice display higher levels of blood glucose, show more rapid acute islet allograft rejection, and are resistant to allograft prolongation induced with anti-CD154 therapy relative to wild-type littermates rendered diabetic with streptozotocin. As such, results suggest that severe hyperglycemia may be an independent risk factor impacting the capacity to induce tolerance to islet allografts. Thus, Ins2(akita) mice represent a stringent model for evaluating anti-rejection strategies in the setting of severe metabolic demand on islet transplants.
Collapse
Affiliation(s)
- N H Bishop
- Integrated Department of Immunology, University of Colorado Denver, Aurora, Colorado
| | - K S Beard
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - R G Gill
- Integrated Department of Immunology, University of Colorado Denver, Aurora, Colorado; Department of Surgery, University of Colorado Denver, Aurora, Colorado.
| |
Collapse
|
15
|
Abstract
Generation of an effective immune response against foreign antigens requires two distinct molecular signals: a primary signal provided by the binding of antigen-specific T-cell receptor to peptide-MHC on antigen-presenting cells and a secondary signal delivered via the engagement of costimulatory molecules. Among various costimulatory signaling pathways, the interactions between CD40 and its ligand CD154 have been extensively investigated given their essential roles in the modulation of adaptive immunity. Here, we review current understanding of the role CD40/CD154 costimulation pathway has in alloimmunity, and summarize recent mechanistic and preclinical advances in the evaluation of candidate therapeutic approaches to target this receptor-ligand pair in transplantation.
Collapse
Affiliation(s)
- Tianshu Zhang
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Richard N Pierson
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Baltimore VA Medical Center, Baltimore, MD, USA
| | - Agnes M Azimzadeh
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Dai H, Peng F, Lin M, Xia J, Yu S, Lan G, Wang Y, Xie X, Fang C, Corbascio M, Qi Z, Peng L. Anti-OX40L monoclonal antibody prolongs secondary heart allograft survival based on CD40/CD40L and LFA-1/ICAM-1 blockade. Transpl Immunol 2015; 32:84-91. [PMID: 25613092 DOI: 10.1016/j.trim.2015.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/11/2015] [Accepted: 01/12/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND Memory T cells (Tms) form a barrier against long-term allograft survival; however, CD4(+)Foxp3(+) regulatory T cells (Tregs) can suppress allograft rejection. The OX40/OX40L pathway is critical to the generation of Tms and turns off Treg suppressor function. METHODS B6 mice that rejected BALB/c skin grafts after 4 weeks were used as the secondary heart transplant recipients. The skin recipient mice, termed S0, S2 and S3, were treated with the isotype antibodies, anti-CD40L/LFA-1 or anti-OX40L combined with anti-CD40L/LFA-1 mAbs, respectively. The secondary heart recipients, termed H0 and H2, received anti-CD40L/LFA-1 mAbs or not, respectively (Fig. 1). RESULTS Four weeks after primary skin transplantation, the Tms in the S3 group that received anti-OX40L with anti-CD40L/LFA-1 mAbs were reduced compared to those in the S2 group (CD4(+) Tm: 32.61 ± 2.20% in S2 vs. 25.36 ± 1.16% in S3; CD8(+) Tm: 27.76 ± 1.96% in S2 vs. 20.95 ± 1.30% in S3; P < 0.01). Meanwhile, the proportions of Tregs in S3 increased compared to those in S2 (P < 0.05). The anti-OX40L with anti-CD40L/LFA-1 mAbs group (S3H2) prolonged the mean survival time (MST) following secondary heart transplantation from 9.5 days to 21 days (P < 0.001). Furthermore, allogeneic proliferation of recipient splenic T cells and graft-infiltrating lymphocytes were significantly inhibited in the S3H2 group. Additionally, a higher level of IL-10 was detected in sera and allografts. CONCLUSIONS Anti-OX40L mAb could prolong secondary heart allograft survival based on CD40/CD40L and LFA-1/ICAM-1 blockade. The mechanism of protecting allografts using anti-OX40L mAb involved impairing the generation of Tm and up-regulating IL-10 producing Tregs, inhibiting the function of T cells.
Collapse
Affiliation(s)
- Helong Dai
- Department of Urological Organ Transplantation, Center of Organ Transplantation, Second Xiangya Hospital, Central South University, Hunan Province, PR China
| | - Fenghua Peng
- Department of Urological Organ Transplantation, Center of Organ Transplantation, Second Xiangya Hospital, Central South University, Hunan Province, PR China
| | - Minjie Lin
- Department of Cardiology, Second Xiangya Hospital, Central South University, Hunan Province, PR China
| | - Junjie Xia
- Organ Transplantation Institute, Xiamen University, Fujian Province, PR China
| | - Shaojie Yu
- Department of Urological Organ Transplantation, Center of Organ Transplantation, Second Xiangya Hospital, Central South University, Hunan Province, PR China
| | - Gongbin Lan
- Department of Urological Organ Transplantation, Center of Organ Transplantation, Second Xiangya Hospital, Central South University, Hunan Province, PR China
| | - Yu Wang
- Department of Urological Organ Transplantation, Center of Organ Transplantation, Second Xiangya Hospital, Central South University, Hunan Province, PR China
| | - Xubiao Xie
- Department of Urological Organ Transplantation, Center of Organ Transplantation, Second Xiangya Hospital, Central South University, Hunan Province, PR China
| | - Chunhua Fang
- Department of Urological Organ Transplantation, Center of Organ Transplantation, Second Xiangya Hospital, Central South University, Hunan Province, PR China
| | | | - Zhongquan Qi
- Organ Transplantation Institute, Xiamen University, Fujian Province, PR China
| | - Longkai Peng
- Department of Urological Organ Transplantation, Center of Organ Transplantation, Second Xiangya Hospital, Central South University, Hunan Province, PR China.
| |
Collapse
|
17
|
Alkanani AK, Hara N, Gianani R, Zipris D. Kilham Rat Virus-induced type 1 diabetes involves beta cell infection and intra-islet JAK-STAT activation prior to insulitis. Virology 2014; 468-470:19-27. [PMID: 25129435 DOI: 10.1016/j.virol.2014.07.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 11/24/2022]
Abstract
We used the LEW1.WR1 rat model of Kilham Rat Virus (KRV)-induced type 1 diabetes (T1D) to test the hypothesis that disease mechanisms are linked with beta cell infection and intra-islet immune activation prior to insulitis. KRV induces genes involved in type I and type II interferon pathways in islet cell lines in vitro and in islets from day-5-infected animals in vivo via mechanisms that do not involve insulitis, beta cell apoptosis, or impaired insulin expression. Immunohistochemistry studies indicated that KRV protein is expressed in beta cells 5 days following infection. KRV induces the phosphorylation of Janus Kinase 1/2 (JAK1/2) and signal transducer and activator of transcription 1 (STAT-1) in islet cells via a mechanism that could involve TLR9 and NF-κB pathways. These data demonstrate for the first time that KRV-induced islet destruction is associated with beta cell infection and intra-islet innate immune upregulation early in the disease process.
Collapse
Affiliation(s)
- Aimon K Alkanani
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, 1775 Aurora Ct., Mail Stop B-140, Aurora, CO 80045, United States
| | - Naoko Hara
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, 1775 Aurora Ct., Mail Stop B-140, Aurora, CO 80045, United States
| | - Roberto Gianani
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, 1775 Aurora Ct., Mail Stop B-140, Aurora, CO 80045, United States
| | - Danny Zipris
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, 1775 Aurora Ct., Mail Stop B-140, Aurora, CO 80045, United States.
| |
Collapse
|
18
|
Tezza S, Ben Nasr M, Vergani A, Valderrama Vasquez A, Maestroni A, Abdi R, Secchi A, Fiorina P. Novel immunological strategies for islet transplantation. Pharmacol Res 2014; 98:69-75. [PMID: 25014184 DOI: 10.1016/j.phrs.2014.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 06/27/2014] [Accepted: 06/30/2014] [Indexed: 01/21/2023]
Abstract
Islet transplantation has been demonstrated to improve glycometabolic control, to reduce hypoglycemic episodes and to halt the progression of diabetic complications. However, the exhaustion of islet function and the side effects related to chronic immunosuppression limit the spread of this technique. Consequently, new immunoregulatory protocols have been developed, with the aim to avoid the use of a life-time immunosuppression. Several approaches have been tested in preclinical models, and some are now under clinical evaluation. The development of new small molecules and new monoclonal or polyclonal antibodies is continuous and raises the possibility of targeting new costimulatory pathways or depleting particular cell types. The use of stem cells and regulatory T cells is underway to take advantage of their immunological properties and to induce tolerance. Xenograft islet transplantation, although having severe problems in terms of immunological compatibility, could theoretically provide an unlimited source of donors; using pigs carrying human immune antigens has showed indeed promising results. A completely different approach, the use of encapsulated islets, has been developed; synthetic structures are used to hide islet alloantigen from the immune system, thus preserving islet endocrine function. Once one of these strategies is demonstrated safe and effective, it will be possible to establish clinical islet transplantation as a treatment for patients with type 1 diabetes long before the onset of diabetic-related complications.
Collapse
Affiliation(s)
- Sara Tezza
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Transplant Medicine, IRCCS Ospedale San Raffaele, Milano, Italy; Univerista' degli Studi di Roma "Tor Vergata", Rome, Italy
| | - Moufida Ben Nasr
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Transplant Medicine, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Andrea Vergani
- Transplant Medicine, IRCCS Ospedale San Raffaele, Milano, Italy; Dompé Inc. Research and Development Department, Diabetes and Transplantation Unit, New York, NY, USA
| | | | - Anna Maestroni
- Transplant Medicine, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Reza Abdi
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Antonio Secchi
- Transplant Medicine, IRCCS Ospedale San Raffaele, Milano, Italy; Universita' Vita-Salute San Raffaele, Milan, Italy
| | - Paolo Fiorina
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Transplant Medicine, IRCCS Ospedale San Raffaele, Milano, Italy.
| |
Collapse
|
19
|
Esposito P, Grosjean F, Rampino T, Libetta C, Gregorini M, Fasoli G, Marchi G, Sileno G, Montagna F, Dal Canton A. Costimulatory pathways in kidney transplantation: pathogenetic role, clinical significance and new therapeutic opportunities. Int Rev Immunol 2014; 33:212-233. [PMID: 24127878 DOI: 10.3109/08830185.2013.829470] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2013] [Indexed: 02/05/2023]
Abstract
Costimulatory pathways play a key role in immunity, providing the second signal required for a full activation of adaptive immune response. Different costimulatory families (CD28, TNF-related, adhesion and TIM molecules), characterized by structural and functional analogies, have been described. Costimulatory molecules modulate T cell activation, B cell function, Ig production, cytokine release and many other processes, including atherosclerosis. Patients suffering from renal diseases present significant alterations of the costimulatory pathways, which might make them particularly liable to infections. These alterations are further pronounced in patients undergoing kidney transplantation. In these patients, different costimulatory patterns have been related to distinct clinical features. The importance that costimulation has gained during the last years has led to development of several pharmacological approaches to modulate this critical step in the immune activation. Different drugs, mainly monoclonal antibodies targeting various costimulatory molecules (i.e. anti-CD80, CTLA-4 fusion proteins, anti-CD154, anti-CD40, etc.) were designed and tested in both experimental and clinical studies. The results of these studies highlighted some criticisms, but also some promising findings and now costimulatory blockade is considered a suitable strategy, with belatacept (a CTLA-4 fusion protein) being approved as the first costimulatory blocker for use in renal transplantation. In this review, we summarize the current knowledge on costimulatory pathways in the setting of kidney transplantation. We describe the principal costimulatory molecule families, their role and clinical significance in patients undergoing renal transplantation and the new therapeutic approaches that have been developed to modulate the costimulatory pathways.
Collapse
Affiliation(s)
- Pasquale Esposito
- Unit of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico S. Matteo and University of Pavia , Pavia , Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Long-term allograft survival is a major challenge facing solid organ transplantation. Recent studies have shown a negative correlation between infiltration of memory T cells and allograft survival. Furthermore, blockade of leukocyte activation increases acceptance of transplanted organs, including heart, liver, and kidney. Lung allografts are associated with high rates of rejection, and therapies that increase acceptance of other transplanted organs have not translated into the lung. In this issue of the JCI, Krupnick and colleagues demonstrate in a murine model that lung allograft acceptance requires infiltration of a specific T cell population into the graft. This study highlights the unique immunobiology of the lung and the complexity of lung transplant tolerance.
Collapse
|
21
|
You S, Zuber J, Kuhn C, Baas M, Valette F, Sauvaget V, Sarnacki S, Sawitzki B, Bach JF, Volk HD, Chatenoud L. Induction of allograft tolerance by monoclonal CD3 antibodies: a matter of timing. Am J Transplant 2012; 12:2909-19. [PMID: 22882762 DOI: 10.1111/j.1600-6143.2012.04213.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite remarkable progress in organ transplantation through the development of a wealth of immunosuppressive drugs highly effective at controlling acute rejection, two major problems still remain, the loss of transplants due to chronic rejection and the growing number of sensitized recipients due to previous transplants, transfusions or pregnancies. Induction of immune tolerance appears to be the only way to curb this complex situation. Here we describe that a therapy, already successfully used to restore immune tolerance to self-antigens in overt autoimmunity, is effective at promoting transplant tolerance. We demonstrate that a short low-dose course with CD3 antibodies started after transplantation, at the time of effector T cell priming to alloantigens, induces permanent acceptance of fully mismatched islet allografts. Mechanistic studies revealed that antigen-specific regulatory and effector T cells are differentially affected by the treatment. CD3 antibody treatment preferentially induces apoptosis of activated alloreactive T cells which is mandatory for tolerance induction. In contrast, regulatory T cells are relatively spared from CD3 antibody-induced depletion and can transfer antigen-specific tolerance thus arguing for their prominent role in sustaining long-term graft survival.
Collapse
Affiliation(s)
- S You
- Institut National de la Santé et de la Recherche Médicale, Unité U1013, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zimmerer JM, Horne PH, Fiessinger LA, Fisher MG, Jayashankar K, Garcia SF, Abdel-Rasoul M, van Rooijen N, Bumgardner GL. Inhibition of recall responses through complementary therapies targeting CD8+ T-cell- and alloantibody-dependent allocytotoxicity in sensitized transplant recipients. Cell Transplant 2012; 22:1157-69. [PMID: 23069206 DOI: 10.3727/096368912x657350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Allospecific T memory cell responses in transplant recipients arise from environmental exposure to previous transplantation or cross-reactive heterologous immunity. Unfortunately, these memory responses pose a significant barrier to the survival of transplanted tissue. We have previously reported that concurrent inhibition of CD154 and LFA-1 suppresses primary CD8-dependent rejection responses that are not controlled by conventional immunosuppressive strategies. We hypothesized that CD154- and LFA-1-mediated inhibition, by targeting activation as well as effector functions, may also be efficacious for the control of alloreactive CD8+ T-cell responses in sensitized hosts. We found that treatment with anti-LFA-1 mAb alone enhanced transplant survival and reduced CD8-mediated cytotoxicity in sensitized CD4 KO recipients. However, treatment with anti-CD154 mAb alone did not have an effect. Notably, when both CD4- and CD8-dependent rejection pathways are operative (wild-type sensitized recipients), LFA-1 significantly inhibited CD8-mediated in vivo allocytotoxicity but did not correspond with enhanced hepatocyte survival. We hypothesized that this was due to alloantibody-mediated rejection. When anti-LFA-1 mAb treatment was combined with macrophage depletion, which we have previously reported impairs alloantibody-mediated parenchymal cell damage, in vivo cytotoxic effector function was significantly decreased and was accompanied by significant enhancement of hepatocyte survival in sensitized wild-type recipients. Therefore, LFA-1 is a potent therapeutic target for reduction of CD8-mediated cytotoxicity in sensitized transplant recipients and can be combined with other treatments that target non-CD8-mediated recall alloimmunity.
Collapse
Affiliation(s)
- Jason M Zimmerer
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University Medical Center, Columbus, OH 43210-1250, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Stoermer KA, Burrack A, Oko L, Montgomery SA, Borst LB, Gill RG, Morrison TE. Genetic ablation of arginase 1 in macrophages and neutrophils enhances clearance of an arthritogenic alphavirus. THE JOURNAL OF IMMUNOLOGY 2012; 189:4047-59. [PMID: 22972923 DOI: 10.4049/jimmunol.1201240] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chikungunya virus (CHIKV) and Ross River virus (RRV) cause a debilitating, and often chronic, musculoskeletal inflammatory disease in humans. Macrophages constitute the major inflammatory infiltrates in musculoskeletal tissues during these infections. However, the precise macrophage effector functions that affect the pathogenesis of arthritogenic alphaviruses have not been defined. We hypothesized that the severe damage to musculoskeletal tissues observed in RRV- or CHIKV-infected mice would promote a wound-healing response characterized by M2-like macrophages. Indeed, we found that RRV- and CHIKV-induced musculoskeletal inflammatory lesions, and macrophages present in these lesions, have a unique gene-expression pattern characterized by high expression of arginase 1 and Ym1/Chi3l3 in the absence of FIZZ1/Relmα that is consistent with an M2-like activation phenotype. Strikingly, mice specifically deleted for arginase 1 in neutrophils and macrophages had dramatically reduced viral loads and improved pathology in musculoskeletal tissues at late times post-RRV infection. These findings indicate that arthritogenic alphavirus infection drives a unique myeloid cell activation program in inflamed musculoskeletal tissues that inhibits virus clearance and impedes disease resolution in an arginase 1-dependent manner.
Collapse
Affiliation(s)
- Kristina A Stoermer
- Department of Immunology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Combined costimulatory and leukocyte functional antigen-1 blockade prevents transplant rejection mediated by heterologous immune memory alloresponses. Transplantation 2012; 93:997-1005. [PMID: 22475765 DOI: 10.1097/tp.0b013e31824e75d7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Recent evidence suggests that alloreactive memory T cells are generated by the process of heterologous immunity, whereby memory T cells arising in response to pathogen infection crossreact with donor antigens. Because of their diminished requirements for costimulation during recall, these pathogen-elicited allocrossreactive memory T cells are of particular clinical importance, especially given the emergence of costimulatory blockade as a transplant immunosuppression strategy. METHODS We used an established model of heterologous immunity involving sequential infection of a naïve C57BL/6 recipient with lymphocytic choriomeningitis virus and vaccinia virus, followed by combined skin and bone marrow transplant from a BALB/c donor. RESULTS We demonstrate that coupling the integrin antagonist anti-leukocyte functional antigen (LFA)-1 with costimulatory blockade could surmount the barrier posed by heterologous immunity in a fully allogeneic murine transplant system. The combined costimulatory and integrin blockade regimen suppressed proliferation of alloreactive memory T cells and attenuated their cytokine effector responses. This combined blockade regimen also promoted the retention of FoxP³⁺ Tregs in draining lymph nodes. Finally, we show that in an in vitro mixed lymphocyte reaction system using human T cells, the combination of belatacept and anti-LFA-1 was able to suppress cytokine production by alloreactive memory T cells that was resistant to belatacept alone. CONCLUSIONS As an antagonist against human LFA-1 exists and has been used clinically to treat psoriasis, these findings have significant translational potential for future clinical transplant trials.
Collapse
|
25
|
Nakayama M, Castoe T, Sosinowski T, He X, Johnson K, Haskins K, Vignali DAA, Gapin L, Pollock D, Eisenbarth GS. Germline TRAV5D-4 T-cell receptor sequence targets a primary insulin peptide of NOD mice. Diabetes 2012; 61:857-65. [PMID: 22315318 PMCID: PMC3314349 DOI: 10.2337/db11-1113] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
There is accumulating evidence that autoimmunity to insulin B chain peptide, amino acids 9-23 (insulin B:9-23), is central to development of autoimmune diabetes of the NOD mouse model. We hypothesized that enhanced susceptibility to autoimmune diabetes is the result of targeting of insulin by a T-cell receptor (TCR) sequence commonly encoded in the germline. In this study, we aimed to demonstrate that a particular Vα gene TRAV5D-4 with multiple junction sequences is sufficient to induce anti-islet autoimmunity by studying retrogenic mouse lines expressing α-chains with different Vα TRAV genes. Retrogenic NOD strains expressing Vα TRAV5D-4 α-chains with many different complementarity determining region (CDR) 3 sequences, even those derived from TCRs recognizing islet-irrelevant molecules, developed anti-insulin autoimmunity. Induction of insulin autoantibodies by TRAV5D-4 α-chains was abrogated by the mutation of insulin peptide B:9-23 or that of two amino acid residues in CDR1 and 2 of the TRAV5D-4. TRAV13-1, the human ortholog of murine TRAV5D-4, was also capable of inducing in vivo anti-insulin autoimmunity when combined with different murine CDR3 sequences. Targeting primary autoantigenic peptides by simple germline-encoded TCR motifs may underlie enhanced susceptibility to the development of autoimmune diabetes.
Collapse
Affiliation(s)
- Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of ColoradoSchool of Medicine, Aurora, CO, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kitchens WH, Larsen CP, Ford ML. Integrin antagonists for transplant immunosuppression: panacea or peril? Immunotherapy 2012; 3:305-7. [PMID: 21395371 DOI: 10.2217/imt.10.113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
27
|
Kitchens WH, Haridas D, Wagener ME, Song M, Kirk AD, Larsen CP, Ford ML. Integrin antagonists prevent costimulatory blockade-resistant transplant rejection by CD8(+) memory T cells. Am J Transplant 2012; 12:69-80. [PMID: 21942986 PMCID: PMC3467016 DOI: 10.1111/j.1600-6143.2011.03762.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The success of belatacept in late-stage clinical trials inaugurates the arrival of a new class of immunosuppressants based on costimulatory blockade, an immunosuppression strategy that disrupts essential signals required for alloreactive T-cell activation. Despite having improved renal function, kidney transplant recipients treated with belatacept experienced increased rates of acute rejection. This finding has renewed focus on costimulatory blockade-resistant rejection and specifically the role of alloreactive memory T cells in mediating this resistance. To study the mechanisms of costimulatory blockade-resistant rejection and enhance the clinical efficacy of costimulatory blockade, we developed an experimental transplant system that models a donor-specific memory CD8(+) T-cell response. After confirming that graft-specific memory T cells mediate costimulatory blockade-resistant rejection, we characterized the role of integrins in this rejection. The resistance of memory T cells to costimulatory blockade was abrogated when costimulatory blockade was coupled with either anti-VLA-4 or anti-LFA-1. Mechanistic studies revealed that in the presence of costimulatory blockade, anti-VLA-4 impaired T-cell trafficking to the graft but not memory T-cell recall effector function, whereas anti-LFA-1 attenuated both trafficking and memory recall effector function. As antagonists against these integrins are clinically approved, these findings may have significant translational potential for future clinical transplant trials.
Collapse
Affiliation(s)
| | - D. Haridas
- Emory Transplant Center, Emory University, Atlanta, GA
| | - M. E. Wagener
- Emory Transplant Center, Emory University, Atlanta, GA
| | - M. Song
- Emory Transplant Center, Emory University, Atlanta, GA
| | - A. D. Kirk
- Emory Transplant Center, Emory University, Atlanta, GA
| | - C. P. Larsen
- Emory Transplant Center, Emory University, Atlanta, GA
| | - M. L. Ford
- Emory Transplant Center, Emory University, Atlanta, GA,Corresponding Author: Mandy L. Ford Mailing Address: 101 Woodruff Circle, WMRB 5105; Atlanta, GA 30322 Phone: 404-727-2900 Fax: 404-727-3660
| |
Collapse
|
28
|
Shao W, Yan G, Lin Y, Chen J, Dai H, Wang F, Xi Y, Thorlacius H, Qi Z. CD44/CD70 Blockade and Anti-CD154/LFA-1 Treatment Synergistically Suppress Accelerated Rejection and Prolong Cardiac Allograft Survival in Mice. Scand J Immunol 2011; 74:430-7. [DOI: 10.1111/j.1365-3083.2011.02595.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
29
|
LFA-1 blockade induces effector and regulatory T-cell enrichment in lymph nodes and synergizes with CTLA-4Ig to inhibit effector function. Blood 2011; 118:5851-61. [PMID: 21972294 DOI: 10.1182/blood-2011-04-347252] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Despite encouraging results using lymphocyte function antigen-1 (LFA-1) blockade to inhibit BM and solid organ transplantation rejection in nonhuman primates and humans, the precise mechanisms underlying its therapeutic potential are still poorly understood. Using a fully allogeneic murine transplantation model, we assessed the relative distribution of total lymphocyte subsets in untreated versus anti-LFA-1-treated animals. Our results demonstrated a striking loss of naive T cells from peripheral lymph nodes, a concomitant gain in blood after LFA-1 blockade, and a shift in phenotype of the cells remaining in the node to a CD62LloCD44hi profile. We determined that this change was due to a specific enrichment of activated, graft-specific effectors in the peripheral lymph nodes of anti-LFA-1-treated mice compared with untreated controls, and not to a direct effect of anti-LFA-1 on CD62L expression. LFA-1 blockade also resulted in a dramatic increase in the frequency of CD4+ FoxP3+ regulatory T cells in graft-draining nodes. Our results suggest that the differential impact of LFA-1 blockade on the distribution of naive versus effector and regulatory T cells may underlie its ability to inhibit alloreactive T-cell responses after transplantation.
Collapse
|
30
|
Fotino C, Pileggi A. Blockade of leukocyte function antigen-1 (LFA-1) in clinical islet transplantation. Curr Diab Rep 2011; 11:337-44. [PMID: 21755435 DOI: 10.1007/s11892-011-0214-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Carmen Fotino
- Diabetes Research Institute, University of Miami, Miami, FL 33136, USA.
| | | |
Collapse
|
31
|
Lin Y, Dai H, Su J, Yan G, Xi Y, Ekberg H, Chen J, Qi Z. Arsenic trioxide is a novel agent for combination therapy to prolong heart allograft survival in allo-primed T cells transferred mice. Transpl Immunol 2011; 25:194-201. [PMID: 21856422 DOI: 10.1016/j.trim.2011.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 07/29/2011] [Accepted: 08/05/2011] [Indexed: 02/01/2023]
Abstract
Alloreactive memory T cells are major barriers to transplantation acceptance due to their capacity to accelerate rejection. Here, we investigated the effects of combined treatment with arsenic trioxide (As(2)O(3)) and blocking monoclonal antibodies (mAb) against CD154 and LFA-1 (anti-CD154/LFA-1) on graft survival as well as changes in pathology and immunological responses in mice with adoptively transferred allo-primed T cells. The mean survival time (MST) for the cardiac allografts in recipient mice receiving the combination of As(2)O(3) and anti-CD154/LFA-1 was significantly longer (>113.7days) compared to those receiving anti-CD154/LFA-1 (23.2days), As(2)O(3) (12.5days) alone or no treatment (5.5days). This combined strategy distinctly inhibited lymphocyte infiltration in grafts, proliferation of splenic T cells and the generation of memory T cells in spleens. Moreover, the combined treatment caused the significant down-regulation of IL-2 and IFN-γ accompanied by increased expression of TGF-β and regulatory T cells (Tregs) in spleens, which led to long-term cardiac allograft survival in recipient mice. These results highlight the potential application of As(2)O(3) and its contribution in combination therapy with antibody blockade to delay rejection by memory T cells.
Collapse
Affiliation(s)
- Yingying Lin
- Organ Transplantation Institute, Xiamen University, Fujian Province, PR China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Bach JF, Chatenoud L. A historical view from thirty eventful years of immunotherapy in autoimmune diabetes. Semin Immunol 2011; 23:174-81. [DOI: 10.1016/j.smim.2011.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 07/16/2011] [Indexed: 11/29/2022]
|
33
|
Setoguchi K, Schenk AD, Ishii D, Hattori Y, Baldwin WM, Tanabe K, Fairchild RL. LFA-1 antagonism inhibits early infiltration of endogenous memory CD8 T cells into cardiac allografts and donor-reactive T cell priming. Am J Transplant 2011; 11:923-35. [PMID: 21466654 PMCID: PMC3215941 DOI: 10.1111/j.1600-6143.2011.03492.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alloreactive memory T cells are present in virtually all transplant recipients due to prior sensitization or heterologous immunity and mediate injury undermining graft outcome. In mouse models, endogenous memory CD8 T cells infiltrate MHC-mismatched cardiac allografts and produce IFN-γ in response to donor class I MHC within 24 h posttransplant. The current studies analyzed the efficacy of anti-LFA-1 mAb to inhibit early CD8 T cell cardiac allograft infiltration and activation. Anti-LFA-1 mAb given to C57BL/6 6 (H-2(b)) recipients of A/J (H-2(a)) heart grafts on days -1 and 0 completely inhibited CD8 T cell allograft infiltration, markedly decreased neutrophil infiltration and significantly reduced intragraft expression levels of IFN-γ-induced genes. Donor-specific T cells producing IFN-γ were at low/undetectable numbers in spleens of anti-LFA-1 mAb treated recipients until day 21. These effects combined to promote substantial prolongation (from day 8 to 27) in allograft survival. Delaying anti-LFA-1 mAb treatment until days 3 and 4 posttransplant did not inhibit early memory CD8 T cell infiltration and proliferation within the allograft. These data indicate that peritransplant anti-LFA-1 mAb inhibits early donor-reactive memory CD8 T cell allograft infiltration and inflammation suggesting an effective strategy to attenuate the negative effects of heterologous immunity in transplant recipients.
Collapse
Affiliation(s)
- Kiyoshi Setoguchi
- Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
- Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH 44195
- Department of Urology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Austin D. Schenk
- Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH 44195
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Daisuke Ishii
- Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Yusuke Hattori
- Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
- Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - William M. Baldwin
- Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
- Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH 44195
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Kazunari Tanabe
- Department of Urology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Robert L. Fairchild
- Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
- Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH 44195
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| |
Collapse
|
34
|
Dai H, Chen J, Shao W, Wang F, Xu S, Peng Y, Lin Y, Xia J, Ekberg H, Wang X, Qi Z. Blockade of CD27/CD70 pathway to reduce the generation of memory T cells and markedly prolong the survival of heart allografts in presensitized mice. Transpl Immunol 2011; 24:195-202. [PMID: 21396447 DOI: 10.1016/j.trim.2011.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/25/2011] [Accepted: 02/28/2011] [Indexed: 01/30/2023]
Abstract
BACKGROUND Alloreactive memory T cells are a major obstacle to transplantation acceptance due to their capacity for accelerated rejection. METHODS C57BL/6 mice that had rejected BALB/c skin grafts 4 weeks earlier were used as recipients. The recipient mice were treated with anti-CD154/LFA-1 with or without anti-CD70 during the primary skin transplantation and anti-CD154/LFA-1 or not during the secondary transplantation of BALB/c heart. We evaluated the impact of combinations of antibody-mediated blockade on the generation of memory T cells and graft survival after fully MHC-mismatched transplantations. RESULTS One month after the primary skin transplantation, the proportions of CD4(+) memory T cells/CD4(+) T cells and CD8(+)memory T cells/CD8(+) T cells in the anti-CD154/LFA-1 combination group were 47.32±4.28% and 23.18±2.77%, respectively. In the group that included anti-CD70 treatment, the proportions were reduced to 34.10±2.71% and 12.19±3.52% (P<0.05 when comparing the proportion of memory T cells between the two groups). The addition of anti-CD70 to the treatment regimen prolonged the mean survival time following secondary heart transplantation from 10days to more than 90days (P<0.001). Furthermore, allogenic proliferation of recipient splenic T cells and graft-infiltrating lymphocytes were significantly decreased. Meanwhile, the proportion of regulatory T cells was increased to 9.46±1.48% on day 100 post-transplantation (P<0.05). CONCLUSIONS The addition of anti-CD70 to the anti-CD154/LFA-1 combination given during the primary transplantation reduced the generation of memory T cells. This therapy regimen provided a potential means to alleviate the accelerated rejection mediated by memory T cells during secondary heart transplantation and markedly prolong the survival of heart allografts.
Collapse
Affiliation(s)
- Helong Dai
- Organ Transplantation Institute, Xiamen University, Fujian Province, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Fiorina P, Jurewicz M, Vergani A, Petrelli A, Carvello M, D'Addio F, Godwin JG, Law K, Wu E, Tian Z, Thoma G, Kovarik J, La Rosa S, Capella C, Rodig S, Zerwes HG, Sayegh MH, Abdi R. Targeting the CXCR4-CXCL12 axis mobilizes autologous hematopoietic stem cells and prolongs islet allograft survival via programmed death ligand 1. THE JOURNAL OF IMMUNOLOGY 2010; 186:121-31. [PMID: 21131428 DOI: 10.4049/jimmunol.1000799] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Antagonism of CXCR4 disrupts the interaction between the CXCR4 receptor on hematopoietic stem cells (HSCs) and the CXCL12 expressed by stromal cells in the bone marrow, which subsequently results in the shedding of HSCs to the periphery. Because of their profound immunomodulatory effects, HSCs have emerged as a promising therapeutic strategy for autoimmune disorders. We sought to investigate the immunomodulatory role of mobilized autologous HSCs, via target of the CXCR4-CXL12 axis, to promote engraftment of islet cell transplantation. Islets from BALB/c mice were transplanted beneath the kidney capsule of hyperglycemic C57BL/6 mice, and treatment of recipients with CXCR4 antagonist resulted in mobilization of HSCs and in prolongation of islet graft survival. Addition of rapamycin to anti-CXCR4 therapy further promoted HSC mobilization and islet allograft survival, inducing a robust and transferable host hyporesponsiveness, while administration of an ACK2 (anti-CD117) mAb halted CXCR4 antagonist-mediated HSC release and restored allograft rejection. Mobilized HSCs were shown to express high levels of the negative costimulatory molecule programmed death ligand 1 (PD-L1), and HSCs extracted from wild-type mice, but not from PD-L1 knockout mice, suppressed the in vitro alloimmune response. Moreover, HSC mobilization in PD-L1 knockout mice failed to prolong islet allograft survival. Targeting the CXCR4-CXCL12 axis thus mobilizes autologous HSCs and promotes long-term survival of islet allografts via a PD-L1-mediated mechanism.
Collapse
Affiliation(s)
- Paolo Fiorina
- Transplantation Research Center, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Badell IR, Russell MC, Thompson PW, Turner AP, Weaver TA, Robertson JM, Avila JG, Cano JA, Johnson BE, Song M, Leopardi FV, Swygert S, Strobert EA, Ford ML, Kirk AD, Larsen CP. LFA-1-specific therapy prolongs allograft survival in rhesus macaques. J Clin Invest 2010; 120:4520-31. [PMID: 21099108 PMCID: PMC2994340 DOI: 10.1172/jci43895] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 09/22/2010] [Indexed: 02/02/2023] Open
Abstract
Outcomes in transplantation have been limited by suboptimal long-term graft survival and toxicities associated with current immunosuppressive approaches. T cell costimulation blockade has shown promise as an alternative strategy to avoid the side effects of conventional immunosuppressive therapies, but targeting CD28-mediated costimulation alone has proven insufficient to prevent graft rejection in primates. Donor-specific memory T (TM) cells have been implicated in costimulation blockade-resistant transplant rejection, due to their enhanced effector function and decreased reliance on costimulatory signaling. Thus, we have tested a potential strategy to overcome TM cell-driven rejection by targeting molecules preferentially expressed on these cells, such as the adhesion molecule lymphocyte function-associated antigen 1 (LFA-1). Here, we show that short-term treatment (i.e., induction therapy) with the LFA-1-specific antibody TS-1/22 in combination with either basiliximab (an IL-2Rα-specific mAb) and sirolimus (a mammalian target of rapamycin inhibitor) or belatacept (a high-affinity variant of the CD28 costimulation-blocker CTLA4Ig) prolonged islet allograft survival in nonhuman primates relative to control treatments. Moreover, TS-1/22 masked LFA-1 on TM cells in vivo and inhibited the generation of alloproliferative and cytokine-producing effector T cells that expressed high levels of LFA-1 in vitro. These results support the use of LFA-1-specific induction therapy to neutralize costimulation blockade-resistant populations of T cells and further evaluation of LFA-1-specific therapeutics for use in transplantation.
Collapse
Affiliation(s)
- Idelberto R. Badell
- Emory Transplant Center and
Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Maria C. Russell
- Emory Transplant Center and
Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Peter W. Thompson
- Emory Transplant Center and
Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Alexandra P. Turner
- Emory Transplant Center and
Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Tim A. Weaver
- Emory Transplant Center and
Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Jennifer M. Robertson
- Emory Transplant Center and
Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Jose G. Avila
- Emory Transplant Center and
Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Jose A. Cano
- Emory Transplant Center and
Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Brandi E. Johnson
- Emory Transplant Center and
Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Mingqing Song
- Emory Transplant Center and
Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Frank V. Leopardi
- Emory Transplant Center and
Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Sarah Swygert
- Emory Transplant Center and
Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Elizabeth A. Strobert
- Emory Transplant Center and
Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Mandy L. Ford
- Emory Transplant Center and
Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Allan D. Kirk
- Emory Transplant Center and
Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Christian P. Larsen
- Emory Transplant Center and
Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
37
|
Xu S, Chen J, Wang F, Kang X, Lan T, Wang F, Li Z, Qi Z, Xing J. Arsenic trioxide combined with co-stimulatory molecule blockade prolongs survival of cardiac allografts in alloantigen-primed mice. Transpl Immunol 2010; 24:57-63. [DOI: 10.1016/j.trim.2010.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/23/2010] [Accepted: 07/25/2010] [Indexed: 01/08/2023]
|
38
|
Xie B, Chen J, Wang F, Lan T, Wang Y, Xia J, Li Z, Xie Q, Huang R, Qi Z. Monoclonal antibody treatment to prolong the secondary cardiac allograft survival in alloantigen-primed mice. Scand J Immunol 2010; 71:345-52. [PMID: 20500685 DOI: 10.1111/j.1365-3083.2010.02387.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have previously shown that costimulation blockade using a combination of monoclonal antibodies (mAbs) - CTLA4Ig, antibodies to CD154, LFA-1, and OX40L - can induce tolerance of cardiac allografts in mice with adoptively transferred CD4(+) memory T cells [1]. However, the effect of costimulatory blockade in secondary allograft rejection has not been studied. B6 mice that rejected BALB/c skin grafts for more than 4 weeks (defined as alloantigen-primed mice) were used as recipients. The recipient mice were treated with the mAbs to CD154, LFA-1, OX40L, and CD122 on days 0, 2, 4, and 6 after the secondary transplantation of BALB/c heart. The mean survival time (MST) of secondary cardiac allografts in rats treated with antibodies to CD154 and LFA-1 (2-antibodies approach) and those treated with antibodies to CD154, LFA-1, OX40L, and CD122 (4-antibodies approach) was greater than that of the controls (MST = 6.7 days, 22.2 days, and 3.2 days, respectively). The 4-antibodies approach prevented lymphocytic infiltration in the grafts, inhibited memory T-cells proliferation in the spleen, increased IL-10 secretion in the serum, and enhanced the expression of CD4(+) Foxp3(+) regulatory T cells (Tregs) in spleen. Expression levels of alloreactive antibodies were high in the recipient mice of experimental and control groups. Inhibiting the memory T cells by costimulation blockade extended allograft survival in secondary transplant models but could not induce tolerance of graft. Alloreactive antibodies may participate in alloresponse and play an important role in secondary cardiac allograft rejection.
Collapse
Affiliation(s)
- B Xie
- Organ Transplantation Institute of Xiamen University, Xiamen City, Fujian Province, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Vergani A, Clissi B, Sanvito F, Doglioni C, Fiorina P, Pardi R. Laser capture microdissection as a new tool to assess graft-infiltrating lymphocytes gene profile in islet transplantation. Cell Transplant 2009; 18:827-32. [PMID: 19785935 DOI: 10.3727/096368909x472278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Innovative tolerogenic protocols in transplantation would take advantage of the development of new tools capable of evaluating the impact of these treatments on the immune system. These assays have potential for clinical application. Currently, many of these studies are based on the analysis of peripheral lymph nodes and blood-derived cells, where the percentage of alloantigen-specific cells can be low or even unpredictable. We combined a laser capture microdissection (LCM) technique with real-time PCR (RT-PCR) to evaluate gene profile of islet-infiltrating lymphocytes. Donor Lewis rats islets were transplanted under the kidney capsule in diabetic Brown Norway rats. Administration of anti-LFA1 mAb or anti-CD28 F(Ab)' was able to prolong islet survival, while the combined treatment resulted in indefinite survival. The analysis of gene expression profile for IL-2, IFN-gamma, and IL-10 production of graft-infiltrating cells revealed high IL-2, IFN-gamma, and IL-10 in untreated rats; on the contrary, the combined treatment selectively abrogated IL-2- and IFN-gamma-producing cells infiltrate. The comparison between cytokine profile in periphery (even during an allogenic extra stimulus) and in the graft revealed the dichotomy between graft and peripheral cytokine assessment. We thus propose that direct analysis of graft-infiltrating cells should be used whenever possible to evaluate the effects of a new immunomodulatory protocol.
Collapse
Affiliation(s)
- A Vergani
- Transplantation Research Center(TRC)-Nephrology, Children's Hospital-Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
40
|
Wojtusciszyn A, Andres A, Morel P, Charvier S, Armanet M, Toso C, Choi Y, Bosco D, Berney T. Immunomodulation by blockade of the TRANCE co-stimulatory pathway in murine allogeneic islet transplantation. Transpl Int 2009; 22:931-9. [PMID: 19453995 PMCID: PMC2858391 DOI: 10.1111/j.1432-2277.2009.00892.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We explore herein the effect of TNF-related activation-induced cytokine (TRANCE) co-stimulatory pathway blockade on islet survival after allograft transplantation. Expression of TRANCE on murine C57Bl/6 (B6) CD4+ T cells after allogeneic activation was analyzed by fluorescence-activated cell sorter (FACS). The effect of a TRANCE receptor fusion protein (TR-Fc) and anti-CD154 antibody (MR1) on B6 spleen cell proliferation after allogeneic activation was assessed by mixed lymphocyte reaction (MLR). Three groups of B6 mice were transplanted with allogeneic islets (DBA2): Control; short-term TR-Fc-treatment (days 0-4); and prolonged TR-Fc-treatment (days -1 to 13). Donor-specific transfusion (DST) was performed at the time of islet transplantation in one independent experiment. Transplantectomy samples were analyzed by immunohistochemistry. TRANCE expression was upregulated in stimulated CD4+ T cells in vitro. In MLR experiments, TR-Fc and MR1 both reduced spleen cell proliferation, but less than the combination of both molecules. Short-course TR-Fc treatment did not prolong islet graft survival when compared with controls (10.6 +/- 1.9 vs. 10.7 +/- 1.5 days) in contrast to prolonged treatment (20.7 +/- 3.2 days; P < 0.05). After DST, primary non function (PNF) was observed in half of control mice, but never in TR-Fc-treated mice. Immunofluorescence staining for Mac-1 showed a clear decrease in macrophage recruitment in the treated groups. TRANCE-targeting may be an effective strategy for the prolongation of allogeneic islet graft survival, thanks to its inhibitory effects on co-stimulatory signals and macrophage recruitment.
Collapse
Affiliation(s)
- Anne Wojtusciszyn
- Cell Isolation and Transplantation Center, University of Geneva School of Medicine, Geneva, Switzerland
- Department of Endocrinology, University of Montpellier Medical Center, Montpellier, France
| | - Axel Andres
- Cell Isolation and Transplantation Center, University of Geneva School of Medicine, Geneva, Switzerland
| | - Philippe Morel
- Cell Isolation and Transplantation Center, University of Geneva School of Medicine, Geneva, Switzerland
| | - Solange Charvier
- Cell Isolation and Transplantation Center, University of Geneva School of Medicine, Geneva, Switzerland
| | - Mathieu Armanet
- Cell Isolation and Transplantation Center, University of Geneva School of Medicine, Geneva, Switzerland
| | - Christian Toso
- Cell Isolation and Transplantation Center, University of Geneva School of Medicine, Geneva, Switzerland
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, University of Geneva School of Medicine, Geneva, Switzerland
| | - Thierry Berney
- Cell Isolation and Transplantation Center, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|
41
|
Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev 2009; 229:152-72. [PMID: 19426221 DOI: 10.1111/j.1600-065x.2009.00782.x] [Citation(s) in RCA: 1123] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SUMMARY During the generation of a successful adaptive immune response, multiple molecular signals are required. A primary signal is the binding of cognate antigen to an antigen receptor expressed by T and B lymphocytes. Multiple secondary signals involve the engagement of costimulatory molecules expressed by T and B lymphocytes with their respective ligands. Because of its essential role in immunity, one of the best characterized of the costimulatory molecules is the receptor CD40. This receptor, a member of the tumor necrosis factor receptor family, is expressed by B cells, professional antigen-presenting cells, as well as non-immune cells and tumors. CD40 binds its ligand CD40L, which is transiently expressed on T cells and other non-immune cells under inflammatory conditions. A wide spectrum of molecular and cellular processes is regulated by CD40 engagement including the initiation and progression of cellular and humoral adaptive immunity. In this review, we describe the downstream signaling pathways initiated by CD40 and overview how CD40 engagement or antagonism modulates humoral and cellular immunity. Lastly, we discuss the role of CD40 as a target in harnessing anti-tumor immunity. This review underscores the essential role CD40 plays in adaptive immunity.
Collapse
Affiliation(s)
- Raul Elgueta
- Department of Microbiology and Immunology, Dartmouth Medical School and The Norris Cotton Cancer Center, Lebanon, NH 03756, USA
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
SUMMARY As the recognition that costimulatory signals are critical for optimal T-cell activation, proliferation, and differentiation, there has been an explosion in the study of costimulatory molecules and their roles in enhancing anti-donor T-cell responses following transplantation. Here, we focus on the bench-to-beside translation of blocking agents designed to target three critical costimulatory pathways: the CD28/CD80/CD86 pathway, the CD154/CD40 pathway, and the lymphocyte function associated antigen-1/intercellular adhesion molecule pathway. While blockade of each of these pathways proved promising in inhibiting donor-reactive T-cell responses and promoting long-term graft survival in murine models of transplantation, the progression of development of therapeutic agents to block these pathways has each taken a slightly different course. Both logistical and biological pitfalls have accompanied the translation of blockers of all three pathways into clinically applicable therapies, and the development of costimulatory blockade as a substitute for current standard-of-care calcineurin inhibitors has by no means reached completion. Collaboration between both the basic and clinical arenas will further propel the development of costimulation blockers currently in the pipeline, as well as of novel methods to target these critical pathways during transplantation.
Collapse
Affiliation(s)
- Mandy L Ford
- Department of Surgery, Emory Transplant Center, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
43
|
Tredget EB, Arefanian H, Gill RG, Rajotte RV, Rayat GR. Monotherapy with anti-LFA-1 monoclonal antibody promotes long-term survival of rat islet xenografts. Cell Transplant 2008; 17:599-608. [PMID: 18819248 DOI: 10.3727/096368908786092757] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Previously we demonstrated that anti-LFA-1 monoclonal (mAb) could promote long-term survival of discordant porcine islet xenografts in mice. The aim of this study, therefore, was to determine whether a shortterm administration of anti-LFA-1 mAb would promote long-term survival of concordant rat islet xenografts in mice, and whether combining short-term administration of anti-LFA-1 mAb therapy with an immunosuppressive drug, rapamycin, would facilitate islet xenograft survival. Streptozotocin-induced diabetic BALB/c mice were transplanted with 500 Wistar-Furth rat islets under the kidney capsule and were either left untreated or treated with short-term administration of rapamycin (0.2 mg/kg) alone, anti-LFA-1 mAb (0.2 mg/ dose) alone, or a combination of rapamycin and anti-LFA-1 mAb using the same doses. All untreated mice rejected their grafts by 24 days posttransplantation with a mean graft survival time of 18.8 +/- 2.5 days posttransplantation (n = 5). All mice treated with rapamycin alone had prolonged islet graft survival but eventually rejected their islet grafts by 81 days posttransplantation. In contrast, the majority of the mice (27/ 28) treated with anti-LFA-1 mAb alone maintained long-term normoglycemia (>100 days). Rapamycin in combination with anti-LFA-1 mAb proved equally effective with 29 of 30 mice maintaining normoglycemia for more than 100 days posttransplantation. Low levels of mouse anti-rat antibodies, as well as a decrease in the degree of mononuclear cell infiltration of the islet graft, closely correlated with long-term islet xenograft survival. These results demonstrate that monotherapy with anti-LFA-1 mAb is highly effective in promoting long-term survival of rat islet xenografts and that combination of anti-LFA-1 mAb with rapamycin does not facilitate nor abrogate the induction of long-term xenograft survival by anti-LFA-1 mAb therapy in BALB/c mice. Our study indicates that immunomodulation through mAb therapy could form a significant component of future antirejection therapies in clinical islet xenotransplantation.
Collapse
Affiliation(s)
- Eric B Tredget
- Surgical-Medical Research Institute, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
44
|
Differential impact of CD154 costimulation blockade on alloreactive effector and regulatory T cells in murine renal transplant recipients. Transplantation 2008; 85:1332-8. [PMID: 18475192 DOI: 10.1097/tp.0b013e31816c4f2b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Although CD154 costimulation blockade prolongs allograft survival in multiple transplantation models, the underlying immunological mechanisms remain to be elucidated. METHODS AND RESULTS We used a murine orthotopic kidney allograft (KTx) model to analyze the impact of CD154 blockade on trafficking and function of alloreactive T effector versus T regulatory cells. A single dose of MR1 Ab treatment at the time of KTx significantly improved the survival of Balb/c KTx in naïve C57BL/6 recipients (mean survival time >100 days vs. 52 days in controls; P<0.005), and improved graft histology, as evidenced by decreased lymphocyte infiltration and preservation of tissue architecture (days 6-8). In the early posttransplant phase, fluorescence-activated cell sorting analysis revealed preferential depression of T effector (CD8+CD25+) and relative enrichment of T-regulatory (CD4+ CD25+ CD152+) cells selectively in KTx. This pattern was further supported by intragraft gene expression analysis, which showed increased FoxP3/Tbet ratio and simultaneously decreased granzyme B/IFN-gamma levels in Ab-treated recipients. Additionally, MR1 Ab selectively up-regulated intragraft CCL17, but suppressed CXCL9/CCL5, in parallel with increased CCR4/CCR8 but unaltered CXCR3 expression. CONCLUSION These results provide evidence, at both cellular and molecular levels, that CD154 blockade in murine KTx recipients differentially targeted T-effector and T-regulatory cell subsets by regulating intragraft induction of chemokines targeting distinct T-cell subsets.
Collapse
|
45
|
Lunsford KE, Jayanshankar K, Eiring AM, Horne PH, Koester MA, Gao D, Bumgardner GL. Alloreactive (CD4-Independent) CD8+ T cells jeopardize long-term survival of intrahepatic islet allografts. Am J Transplant 2008; 8:1113-28. [PMID: 18522544 PMCID: PMC3081659 DOI: 10.1111/j.1600-6143.2008.02219.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite success of early islet allograft engraftment and survival in humans, late islet allograft loss has emerged as an important clinical problem. CD8+ T cells that are independent of CD4+ T cell help can damage allograft tissues and are resistant to conventional immunosuppressive therapies. Previous work demonstrates that islet allografts do not primarily initiate rejection by the (CD4-independent) CD8-dependent pathway. This study was performed to determine if activation of alloreactive CD4-independent, CD8+ T cells, by exogenous stimuli, can precipitate late loss of islet allografts. Recipients were induced to accept intrahepatic islet allografts (islet 'acceptors') by short-term immunotherapy with donor-specific transfusion (DST) and anti-CD154 mAb. Following the establishment of stable long-term islet allograft function for 60-90 days, recipients were challenged with donor-matched hepatocellular allografts, which are known to activate (CD4-independent) CD8+ T cells. Allogeneic islets engrafted long-term were vulnerable to damage when challenged locally with donor-matched hepatocytes. Islet allograft loss was due to allospecific immune damage, which was CD8- but not CD4-dependent. Selection of specific immunotherapy to suppress both CD4- and CD8-dependent immune pathways at the time of transplant protects islet allografts from both early and late immune damage.
Collapse
Affiliation(s)
- Keri E. Lunsford
- Integrated Biomedical Science Graduate Program, College of Medicine and Public Health, The Ohio State University, Columbus, OH
| | - Kartika Jayanshankar
- Department of Surgery, Division of Transplantation, The Ohio State University Medical Center, Columbus, OH
| | - Anna M. Eiring
- Department of Surgery, Division of Transplantation, The Ohio State University Medical Center, Columbus, OH
| | - Phillip H. Horne
- Integrated Biomedical Science Graduate Program, College of Medicine and Public Health, The Ohio State University, Columbus, OH
| | - Mitchel A. Koester
- Department of Surgery, Division of Transplantation, The Ohio State University Medical Center, Columbus, OH
| | - Donghong Gao
- Department of Surgery, Division of Transplantation, The Ohio State University Medical Center, Columbus, OH
| | - Ginny L. Bumgardner
- Department of Surgery, Division of Transplantation, The Ohio State University Medical Center, Columbus, OH
| |
Collapse
|
46
|
Giraud S, Barrou B, Sebillaud S, Debré P, Klatzmann D, Thomas-Vaslin V. Transient depletion of dividing T lymphocytes in mice induces the emergence of regulatory T cells and dominant tolerance to islet allografts. Am J Transplant 2008; 8:942-53. [PMID: 18341686 DOI: 10.1111/j.1600-6143.2008.02195.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We previously showed that transient depletion of dividing T cells at the time of an allogeneic transplantation induces long-term tolerance to the allograft. Here we investigated the role of homeostatic perturbation and regulatory T cells (Treg) in such tolerance. Transient depletion of dividing T cells was induced at the time of an allogeneic pancreatic islets graft, by administration of ganciclovir for 14 days, into diabetic transgenic mice expressing a thymidine kinase (TK) conditional suicide gene in T cells. Allograft tolerance was obtained in 63% of treated mice. It was not due to global immunosuppression, permanent deletion or anergy of donor-alloantigens specific T cells but to a dominant tolerance process since lymphocytes from tolerant mice could transfer tolerance to naïve allografted recipients. The transient depletion of dividing T cells induces a 2- to 3-fold increase in the proportion of CD4(+)CD25(+)Foxp3(+) Treg, within 3 weeks that persisted only in allograft-bearing mice but not in nongrafted mice. Tolerance with similar increased proportion of Treg cells was also obtained after a cytostatic hydroxyurea treatment in normal mice. Thus, the transient depletion of dividing T cells represents a novel means of immuno-intervention based on disturbance of T-cell homeostasis and subsequent increase in Treg proportion.
Collapse
Affiliation(s)
- S Giraud
- UPMC Univ Paris 06, U543, Laboratoire d'Immunologie Cellulaire et Tissulaire, Paris F-75013 France
| | | | | | | | | | | |
Collapse
|
47
|
Arefanian H, Tredget EB, Rajotte RV, Korbutt GS, Gill RG, Rayat GR. Combination of anti-CD4 with anti-LFA-1 and anti-CD154 monoclonal antibodies promotes long-term survival and function of neonatal porcine islet xenografts in spontaneously diabetic NOD mice. Cell Transplant 2008; 16:787-98. [PMID: 18087999 DOI: 10.3727/000000007783465244] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is caused by the autoimmune destruction of pancreatic islet beta-cells, which are required for the production of insulin. Islet transplantation has been shown to be an effective treatment option for TIDM; however, the current shortage of human islet donors limits the application of this treatment to patients with brittle T1DM. Xenotransplantation of pig islets is a potential solution to the shortage of human donor islets provided xenograft rejection is prevented. We demonstrated that a short-term administration of a combination of anti-LFA-1 and anti-CD154 monoclonal antibodies (mAbs) was highly effective in preventing rejection of neonatal porcine islet (NPI) xenografts in non-autoimmune-prone B6 mice. However, the efficacy of this therapy in preventing rejection of NPI xenografts in autoimmune-prone nonobese diabetic (NOD) mice is not known. Given that the current application of islet transplantation is for the treatment of T1DM, we set out to determine whether a combination of anti-LFA-1 and anti-CD154 mAbs could promote long-term survival of NPI xenografts in NOD mice. Short-term administration of a combination of anti-LFA-1 and anti-CD154 mAbs, which we found highly effective in preventing rejection of NPI xenografts in B6 mice, failed to promote long-term survival of NPI xenografts in NOD mice. However, addition of anti-CD4 mAb to short-term treatment of a combination of anti-LFA-1 and anti-CD154 mAbs resulted in xenograft function in 9/12 animals and long-term graft (>100 days) survival in 2/12 mice. Immunohistochemical analysis of islet grafts from these mice identified numerous insulin-producing beta-cells. Moreover, the anti-porcine antibody as well as autoreactive antibody responses in these mice was reduced similar to those observed in naive nontransplanted mice. These data demonstrate that simultaneous targeting of LFA-1, CD154, and CD4 molecules can be effective in inducing long-term islet xenograft survival and function in autoimmune-prone NOD mice.
Collapse
Affiliation(s)
- Hossein Arefanian
- Surgical-Medical Research Institute, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Noske AB, Costin AJ, Morgan GP, Marsh BJ. Expedited approaches to whole cell electron tomography and organelle mark-up in situ in high-pressure frozen pancreatic islets. J Struct Biol 2008; 161:298-313. [PMID: 18069000 PMCID: PMC2396228 DOI: 10.1016/j.jsb.2007.09.015] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2007] [Revised: 08/28/2007] [Accepted: 09/11/2007] [Indexed: 01/11/2023]
Abstract
We have developed a simplified, efficient approach for the 3D reconstruction and analysis of mammalian cells in toto by electron microscope tomography (ET), to provide quantitative information regarding 'global' cellular organization at approximately 15-20 nm resolution. Two insulin-secreting beta cells-deemed 'functionally equivalent' by virtue of their location at the periphery of the same pancreatic islet-were reconstructed in their entirety in 3D after fast-freezing/freeze-substitution/plastic embedment in situ within a glucose-stimulated islet of Langerhans isolated intact from mouse pancreata. These cellular reconstructions have afforded several unique insights into fundamental structure-function relationships among key organelles involved in the biosynthesis and release of the crucial metabolic hormone, insulin, that could not be provided by other methods. The Golgi ribbon, mitochondria and insulin secretory granules in each cell were segmented for comparative analysis. We propose that relative differences between the two cells in terms of the number, dimensions and spatial distribution (and for mitochondria, also the extent of branching) of these organelles per cubic micron of cellular volume reflects differences in the two cells' individual capacity (and/or readiness) to respond to secretagogue stimulation, reflected by an apparent inverse relationship between the number/size of insulin secretory granules versus the number/size of mitochondria and the Golgi ribbon. We discuss the advantages of this approach for quantitative cellular ET of mammalian cells, briefly discuss its application relevant to other complementary techniques, and summarize future strategies for overcoming some of its current limitations.
Collapse
Affiliation(s)
- Andrew B. Noske
- Institute for Molecular Bioscience, Queensland Bioscience Precinct, The University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Bioinformatics, Queensland Bioscience Precinct, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Adam J. Costin
- Institute for Molecular Bioscience, Queensland Bioscience Precinct, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Garry P. Morgan
- Institute for Molecular Bioscience, Queensland Bioscience Precinct, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Brad J. Marsh
- Institute for Molecular Bioscience, Queensland Bioscience Precinct, The University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Bioinformatics, Queensland Bioscience Precinct, The University of Queensland, Brisbane, Queensland 4072, Australia
- Centre for Microscopy & Microanalysis and School of Molecular & Microbial Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
49
|
Babu AN, Murakawa T, Thurman JM, Miller EJ, Henson PM, Zamora MR, Voelkel NF, Nicolls MR. Microvascular destruction identifies murine allografts that cannot be rescued from airway fibrosis. J Clin Invest 2008; 117:3774-85. [PMID: 18060031 DOI: 10.1172/jci32311] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 09/12/2007] [Indexed: 11/17/2022] Open
Abstract
Small airway fibrosis (bronchiolitis obliterans syndrome) is the primary obstacle to long-term survival following lung transplantation. Here, we show the importance of functional microvasculature in the prevention of epithelial loss and fibrosis due to rejection and for the first time, relate allograft microvascular injury and loss of tissue perfusion to immunotherapy-resistant rejection. To explore the role of alloimmune rejection and airway ischemia in the development of fibroproliferation, we used a murine orthotopic tracheal transplant model. We determined that transplants were reperfused by connection of recipient vessels to donor vessels at the surgical anastomosis site. Microcirculation through the newly formed vascular anastomoses appeared partially dependent on VEGFR2 and CXCR2 pathways. In the absence of immunosuppression, the microvasculature in rejecting allografts exhibited vascular complement deposition, diminished endothelial CD31 expression, and absent perfusion prior to the onset of fibroproliferation. Rejecting grafts with extensive endothelial cell injury were refractory to immunotherapy. After early microvascular loss, neovascularization was eventually observed in the membranous trachea, indicating a reestablishment of graft perfusion in established fibrosis. One implication of this study is that bronchial artery revascularization at the time of lung transplantation may decrease the risk of subsequent airway fibrosis.
Collapse
Affiliation(s)
- Ashok N Babu
- Department of Surgery, University of Colorado at Denver and Health Sciences Center, Denver, Colorado, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Significant progress has been made in the field of beta-cell replacement therapies by islet transplantation in patients with unstable Type 1 diabetes mellitus (T1DM). Recent clinical trials have shown that islet transplantation can reproducibly lead to insulin independence when adequate islet numbers are implanted. Benefits include improvement of glycemic control, prevention of severe hypoglycemia and amelioration of quality of life. Numerous challenges still limit this therapeutic option from becoming the treatment of choice for T1DM. The limitations are primarily associated with the low islet yield of human pancreas isolations and the need for chronic immunosuppressive therapies. Herein the authors present an overview of the historical progress of islet transplantation and outline the recent advances of the field. Cellular therapies offer the potential for a cure for patients with T1DM. The progress in beta-cell replacement treatment by islet transplantation as well as those of emerging immune interventions for the restoration of self tolerance justify great optimism for years to come.
Collapse
Affiliation(s)
- Simona Marzorati
- University of Miami Miller School of Medicine, Cell Transplant Center and Clinical Islet Transplant Program, Diabetes Research Institute, 1450 NW, 10th Avenue (R-134), Miami, FL 33136, USA
| | | | | |
Collapse
|