1
|
You Y, Dunst J, Ye K, Sandoz PA, Reinhardt A, Sandrock I, Comet NR, Sarkar RD, Yang E, Duprez E, Agudo J, Brown BD, Utz PJ, Kastenmüller W, Gerlach C, Prinz I, Önfelt B, Kreslavsky T. Direct presentation of inflammation-associated self-antigens by thymic innate-like T cells induces elimination of autoreactive CD8 + thymocytes. Nat Immunol 2024; 25:1367-1382. [PMID: 38992254 PMCID: PMC11291280 DOI: 10.1038/s41590-024-01899-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/17/2024] [Indexed: 07/13/2024]
Abstract
Upregulation of diverse self-antigens that constitute components of the inflammatory response overlaps spatially and temporally with the emergence of pathogen-derived foreign antigens. Therefore, discrimination between these inflammation-associated self-antigens and pathogen-derived molecules represents a unique challenge for the adaptive immune system. Here, we demonstrate that CD8+ T cell tolerance to T cell-derived inflammation-associated self-antigens is efficiently induced in the thymus and supported by redundancy in cell types expressing these molecules. In addition to thymic epithelial cells, this included thymic eosinophils and innate-like T cells, a population that expressed molecules characteristic for all major activated T cell subsets. We show that direct T cell-to-T cell antigen presentation by minute numbers of innate-like T cells was sufficient to eliminate autoreactive CD8+ thymocytes. Tolerance to such effector molecules was of critical importance, as its breach caused by decreased thymic abundance of a single model inflammation-associated self-antigen resulted in autoimmune elimination of an entire class of effector T cells.
Collapse
Affiliation(s)
- Yuanyuan You
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefine Dunst
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kewei Ye
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Patrick A Sandoz
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Annika Reinhardt
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Natalia R Comet
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Rupak Dey Sarkar
- Max Planck Research Group, Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Emily Yang
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA, USA
| | - Estelle Duprez
- Epigenetic Factors in Normal and Malignant Hematopoiesis Lab, CRCM, CNRS, INSERM, Institut Paoli Calmettes, Aix Marseille University, Marseille, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Judith Agudo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Parker Institute for Cancer Immunotherapy, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Brian D Brown
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul J Utz
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Wolfgang Kastenmüller
- Max Planck Research Group, Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Carmen Gerlach
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Önfelt
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Taras Kreslavsky
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Mazerolles F. New expression of PD-L1 on activated CD4 + T cells opens up new opportunities for cell interactions and signaling. Hum Immunol 2024; 85:110831. [PMID: 38870593 DOI: 10.1016/j.humimm.2024.110831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/06/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Surface expression of programmed death-ligand 1 (PD-L1) is mainly observed on antigen presenting cells (APC) such as monocytes or dendritic cells (DCs). Our results showing a high expression of PD-L1 on human naïve CD4+ effector T-cells (TEFFs) and CD4+ regulatory T cells (TREGs) after activation with human DCs, allow us to propose a new role for PD-L1 and its ligands and their potential impact on new signaling pathways. Indeed, expression of PD-L1 on activated CD4+T cells could allow cis interaction with its ligands such as PD-1 and CD80, thus disrupting interactions with other signaling receptors, such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) or CD28, which interact with CD80. The ability to compete with hypothetical configuration modifications that may cause a change in affinity/avidity for the trans and cis interactions between these proteins expressed on T cells and/or DCs is discussed. As the study of cancer is strongly influenced by the role of the PD-L1/PD-1 pathway and CD4+T cells, new interactions, cis and/or trans, between TEFFs, TREGs and tumor cells are also proposed. The presence of PD-L1 on activated CD4+ T cells could influence the quality of the cytotoxic T lymphocyte response during priming to provide other help signals.
Collapse
Affiliation(s)
- Fabienne Mazerolles
- Laboratory of Immunogenetics of Paediatric Autoimmunity, Mixed Research Unit 1163, Institut National de la Santé et de la Recherche Médicale, Paris, France; Imagine Institute Paris, Paris Descartes -Sorbonne Paris Cité University, Paris, France.
| |
Collapse
|
3
|
Abstract
The thymus is an evolutionarily conserved organ that supports the development of T cells. Not only does the thymic environment support the rearrangement and expression of diverse T cell receptors but also provides a unique niche for the selection of appropriate T cell clones. Thymic selection ensures that the repertoire of available T cells is both useful (being MHC-restricted) and safe (being self-tolerant). The unique antigen-presentation features of the thymus ensure that the display of self-antigens is optimal to induce tolerance to all types of self-tissue. MHC class-specific functions of CD4+ T helper cells, CD8+ killer T cells and CD4+ regulatory T cells are also established in the thymus. Finally, the thymus provides signals for the development of several minor T cell subsets that promote immune and tissue homeostasis. This Review provides an introductory-level overview of our current understanding of the sophisticated thymic selection mechanisms that ensure T cells are useful and safe.
Collapse
Affiliation(s)
- K Maude Ashby
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
4
|
Perez C, Plaza-Rojas L, Boucher JC, Nagy MZ, Kostenko E, Prajapati K, Burke B, Reyes MD, Austin AL, Zhang S, Le PT, Guevara-Patino JA. NKG2D receptor signaling shapes T cell thymic education. J Leukoc Biol 2024; 115:306-321. [PMID: 37949818 DOI: 10.1093/jleuko/qiad130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 08/11/2023] [Accepted: 09/30/2023] [Indexed: 11/12/2023] Open
Abstract
The role of natural killer group 2D (NKG2D) in peripheral T cells as a costimulatory receptor is well established. However, its contribution to T cell thymic education and functional imprint is unknown. Here, we report significant changes in development, receptor signaling, transcriptional program, and function in T cells from mice lacking NKG2D signaling. In C57BL/6 (B6) and OT-I mice, we found that NKG2D deficiency results in Vβ chain usage changes and stagnation of the double-positive stage in thymic T cell development. We found that the expression of CD5 and CD45 in thymocytes from NKG2D deficient mice were reduced, indicating a direct influence of NKG2D on the strength of T cell receptor (TCR) signaling during the developmental stage of T cells. Depicting the functional consequences of NKG2D, peripheral OT-I NKG2D-deficient cells were unresponsive to ovalbumin peptide stimulation. Paradoxically, while αCD3/CD28 agonist antibodies led to phenotypic T cell activation, their ability to produce cytokines remained severely compromised. We found that OT-I NKG2D-deficient cells activate STAT5 in response to interleukin-15 but were unable to phosphorylate ERK or S6 upon TCR engagement, underpinning a defect in TCR signaling. Finally, we showed that NKG2D is expressed in mouse and human thymic T cells at the double-negative stage, suggesting an evolutionarily conserved function during T cell development. The data presented in this study indicate that NKG2D impacts thymic T cell development at a fundamental level by reducing the TCR threshold and affecting the functional imprint of the thymic progeny. In summary, understanding the impact of NKG2D on thymic T cell development and TCR signaling contributes to our knowledge of immune system regulation, immune dysregulation, and the design of immunotherapies.
Collapse
Affiliation(s)
- Cynthia Perez
- Department of Cancer Biology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
| | - Lourdes Plaza-Rojas
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Justin C Boucher
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Mate Z Nagy
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Elena Kostenko
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Kushal Prajapati
- Department of Cancer Biology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
| | - Brianna Burke
- Department of Cancer Biology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
| | - Michael Delos Reyes
- Department of Cancer Biology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
| | - Anna L Austin
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Shubin Zhang
- Department of Cancer Biology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
- Department of Microbiology and Immunology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
| | - Phong T Le
- Department of Cancer Biology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
- Department of Microbiology and Immunology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
| | - José A Guevara-Patino
- Department of Cancer Biology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| |
Collapse
|
5
|
Caruso B, Moran AE. Thymic expression of immune checkpoint molecules and their implication for response to immunotherapies. Trends Cancer 2023:S2405-8033(23)00063-8. [PMID: 37173189 DOI: 10.1016/j.trecan.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023]
Abstract
The thymus is responsible for generating a diverse T cell repertoire that is tolerant to self, but capable of responding to various immunologic insults, including cancer. Checkpoint blockade has changed the face of cancer treatment by targeting inhibitory molecules, which are known to regulate peripheral T cell responses. However, these inhibitory molecules and their ligands are expressed during T cell development in the thymus. In this review, we describe the underappreciated role of checkpoint molecule expression during the formation of the T cell repertoire and detail the importance of inhibitory molecules in regulating T cell lineage commitment. Understanding how these molecules function in the thymus may inform therapeutic strategies for better patient outcomes.
Collapse
Affiliation(s)
- Breanna Caruso
- Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Amy E Moran
- Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
6
|
Kern R, Panis C. CTLA-4 Expression and Its Clinical Significance in Breast Cancer. Arch Immunol Ther Exp (Warsz) 2021; 69:16. [PMID: 34148159 DOI: 10.1007/s00005-021-00618-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022]
Abstract
Breast cancer is the leading cause of women's death among all cancers. The main reason associated with this is the development of metastasis and therapy-resistant breast carcinoma (BC), which pose the main challenge of oncology nowadays. Evidence suggest that these tumors seem to have inhibitory mechanisms that may favor their progression and surveillance. Cancer cells can evade antitumor T cell responses by expressing some immune inhibitory molecules such as the cytotoxic T-lymphocyte antigen-4 (CTLA-4), whose clinical meaning has emerged in the last few years and is poorly understood in the BC context. This systematic literature review aims at identifying studies on CTLA-4 expression in BC, and address what is known about its clinical meaning. A literature search was performed in PubMed and LILACS databases, using the MESH terms "breast cancer"; "CTLA-4 Antigen/antagonists and inhibitors"; and "Lymphocytes, Tumor-Infiltrating/immunology", published in the last 10 years. In total, 12 studies were included in this review. Systematic review used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Despite the small number of eligible studies, the literature reports some associations between CTLA-4 expression in the tumor microenvironment and worse BC outcomes, regardless of its molecular subtype. CTLA-4 expression in BC is a putative marker of clinical significance and a rationale therapeutic target in the emerging field of immunotherapy.
Collapse
Affiliation(s)
- Rodrigo Kern
- Laboratory of Tumor Biology, State University of West Paraná, UNIOESTE, Francisco Beltrão, Brazil
| | - Carolina Panis
- Laboratory of Tumor Biology, State University of West Paraná, UNIOESTE, Francisco Beltrão, Brazil.
- State University of Western Paraná, Health Sciences Center, Vitório Traiano Highway, Km 2, Francisco Beltrão, PR, Brazil.
| |
Collapse
|
7
|
A computational study of co-inhibitory immune complex assembly at the interface between T cells and antigen presenting cells. PLoS Comput Biol 2021; 17:e1008825. [PMID: 33684103 PMCID: PMC7971848 DOI: 10.1371/journal.pcbi.1008825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/18/2021] [Accepted: 02/21/2021] [Indexed: 11/19/2022] Open
Abstract
The activation and differentiation of T-cells are mainly directly by their co-regulatory receptors. T lymphocyte-associated protein-4 (CTLA-4) and programed cell death-1 (PD-1) are two of the most important co-regulatory receptors. Binding of PD-1 and CTLA-4 with their corresponding ligands programed cell death-ligand 1 (PD-L1) and B7 on the antigen presenting cells (APC) activates two central co-inhibitory signaling pathways to suppress T cell functions. Interestingly, recent experiments have identified a new cis-interaction between PD-L1 and B7, suggesting that a crosstalk exists between two co-inhibitory receptors and the two pairs of ligand-receptor complexes can undergo dynamic oligomerization. Inspired by these experimental evidences, we developed a coarse-grained model to characterize the assembling of an immune complex consisting of CLTA-4, B7, PD-L1 and PD-1. These four proteins and their interactions form a small network motif. The temporal dynamics and spatial pattern formation of this network was simulated by a diffusion-reaction algorithm. Our simulation method incorporates the membrane confinement of cell surface proteins and geometric arrangement of different binding interfaces between these proteins. A wide range of binding constants was tested for the interactions involved in the network. Interestingly, we show that the CTLA-4/B7 ligand-receptor complexes can first form linear oligomers, while these oligomers further align together into two-dimensional clusters. Similar phenomenon has also been observed in other systems of cell surface proteins. Our test results further indicate that both co-inhibitory signaling pathways activated by B7 and PD-L1 can be down-regulated by the new cis-interaction between these two ligands, consistent with previous experimental evidences. Finally, the simulations also suggest that the dynamic and the spatial properties of the immune complex assembly are highly determined by the energetics of molecular interactions in the network. Our study, therefore, brings new insights to the co-regulatory mechanisms of T cell activation. The activation of a T cell can be regulated by the receptors on its surface, such as CTLA-4 and PD-1. People used to think that these two receptors inhibit T cell activation through distinct pathways. However, recent experiments discovered that the ligands of these two receptors, B7 and PD-L1, can interact with each other on the same surface of antigen presenting cells. Here we utilized computational simulations to investigate functional roles of this newly discovered interaction in T cell coregulation. The specific environment of interface between T cell and antigen presenting cell has been taken into account of our model. Ligand and receptors randomly diffuse within this interface area. They further involve in different types of interactions, with each other from the same side or the opposite side of cell surface. Using this method, we found ligands and receptors can not only form complexes, but also aggregate into large-scale clusters. We also demonstrated that the engagement between B7 and PD-L1 can reduce the interactions with their corresponding receptors. This study, therefore, offers new insights to our understanding of signal regulation in T cells.
Collapse
|
8
|
Watanabe M, Lu Y, Breen M, Hodes RJ. B7-CD28 co-stimulation modulates central tolerance via thymic clonal deletion and Treg generation through distinct mechanisms. Nat Commun 2020; 11:6264. [PMID: 33293517 PMCID: PMC7722925 DOI: 10.1038/s41467-020-20070-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 11/09/2020] [Indexed: 12/22/2022] Open
Abstract
The molecular and cellular mechanisms mediating thymic central tolerance and prevention of autoimmunity are not fully understood. Here we show that B7-CD28 co-stimulation and B7 expression by specific antigen-presenting cell (APC) types are required for clonal deletion and for regulatory T (Treg) cell generation from endogenous tissue-restricted antigen (TRA)-specific thymocytes. While B7-CD28 interaction is required for both clonal deletion and Treg induction, these two processes differ in their CD28 signaling requirements and in their dependence on B7-expressing dendritic cells, B cells, and thymic epithelial cells. Meanwhile, defective thymic clonal deletion due to altered B7-CD28 signaling results in the accumulation of mature, peripheral TRA-specific T cells capable of mediating destructive autoimmunity. Our findings thus reveal a function of B7-CD28 co-stimulation in shaping the T cell repertoire and limiting autoimmunity through both thymic clonal deletion and Treg cell generation.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/metabolism
- Autoimmunity/physiology
- B7-1 Antigen/metabolism
- CD28 Antigens/genetics
- CD28 Antigens/metabolism
- Cell Differentiation/immunology
- Central Tolerance
- Clonal Deletion
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Flow Cytometry
- Gene Knock-In Techniques
- Mice
- Mice, Knockout
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Signal Transduction/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Thymocytes/physiology
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Masashi Watanabe
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Ying Lu
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Michael Breen
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Richard J Hodes
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
9
|
Kern R, Correa SC, Scandolara TB, Carla da Silva J, Pires BR, Panis C. Current advances in the diagnosis and personalized treatment of breast cancer: lessons from tumor biology. Per Med 2020; 17:399-420. [PMID: 32804054 DOI: 10.2217/pme-2020-0070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Breast cancer treatment has advanced enormously in the last decade. Most of this is due to advances reached in the knowledge regarding tumor biology, mainly in the field of diagnosis and treatment. This review brings information about how the genomics-based information contributed to advances in breast cancer diagnosis and prognosis perspective, as well as presents how tumor biology discoveries fostered the main therapeutic approaches available to treat such patients, based on a personalized point of view.
Collapse
Affiliation(s)
- Rodrigo Kern
- Laboratory of Tumor Biology, State University of West Paraná, Francisco Beltrão - Paraná 85601-970, Brazil.,Post-Graduation Program in Health-Applied Sciences, State University of West Paraná, Francisco Beltrão - Paraná 85601-970, Brazil
| | - Stephany Christiane Correa
- Center for Bone Marrow Transplantation, Laboratory of Stem Cells, National Cancer Institute (INCA), Rio de Janeiro 20230-130, RJ, Brazil
| | - Thalita Basso Scandolara
- Laboratory of Tumor Biology, State University of West Paraná, Francisco Beltrão - Paraná 85601-970, Brazil.,Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil
| | - Janaína Carla da Silva
- Laboratory of Tumor Biology, State University of West Paraná, Francisco Beltrão - Paraná 85601-970, Brazil.,Post-Graduation Program in Health-Applied Sciences, State University of West Paraná, Francisco Beltrão - Paraná 85601-970, Brazil
| | - Bruno Ricardo Pires
- Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro 20230-130, RJ, Brazil.,Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Carolina Panis
- Laboratory of Tumor Biology, State University of West Paraná, Francisco Beltrão - Paraná 85601-970, Brazil.,Post-Graduation Program in Health-Applied Sciences, State University of West Paraná, Francisco Beltrão - Paraná 85601-970, Brazil
| |
Collapse
|
10
|
Breed ER, Watanabe M, Hogquist KA. Measuring Thymic Clonal Deletion at the Population Level. THE JOURNAL OF IMMUNOLOGY 2019; 202:3226-3233. [PMID: 31010850 DOI: 10.4049/jimmunol.1900191] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/25/2019] [Indexed: 12/18/2022]
Abstract
Clonal deletion of T cells specific for self-antigens in the thymus has been widely studied, primarily by approaches that focus on a single receptor (using TCR transgenes) or a single specificity (using peptide-MHC tetramers). However, less is known about clonal deletion at the population level. In this article, we report an assay that measures cleaved caspase 3 to define clonal deletion at the population level. This assay distinguishes clonal deletion from apoptotic events caused by neglect and approximates the anatomic site of deletion using CCR7. This approach showed that 78% of clonal deletion events occur in the cortex in mice. Medullary deletion events were detected at both the semimature and mature stages, although mature events were associated with failed regulatory T cell induction. Using this assay, we showed that bone marrow-derived APC drive approximately half of deletion events at both stages. We also found that both cortical and medullary deletion rely heavily on CD28 costimulation. These findings demonstrate a useful strategy for studying clonal deletion within the polyclonal repertoire.
Collapse
Affiliation(s)
- Elise R Breed
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455; and
| | - Masashi Watanabe
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Kristin A Hogquist
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455; and
| |
Collapse
|
11
|
Seitz C, Liu S, Klocke K, Joly AL, Czarnewski PV, Tibbitt CA, Parigi SM, Westerberg LS, Coquet JM, Villablanca EJ, Wing K, Andersson J. Multi-faceted inhibition of dendritic cell function by CD4 +Foxp3 + regulatory T cells. J Autoimmun 2019; 98:86-94. [PMID: 30616979 DOI: 10.1016/j.jaut.2018.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/22/2022]
Abstract
CTLA-4 is required for CD4+Foxp3+ regulatory T (Treg) cell function, but its mode of action remains incompletely defined. Herein we generated Ctla-4ex2fl/flFoxp3-Cre mice with Treg cells exclusively expressing a naturally occurring, ligand-independent isoform of CTLA-4 (liCTLA-4) that cannot interact with the costimulatory molecules CD80 and CD86. The mice did not exhibit any signs of effector T cell activation early in life, however, at 6 months of age they exhibited excessive T cell activation and inflammation in lungs. In contrast, mice with Treg cells completely lacking CTLA-4 developed lymphoproliferative disease characterized by multi-organ inflammation early in life. In vitro, Treg cells exclusively expressing liCTLA-4 inhibited CD80 and CD86 expression on dendritic cells (DC). Conversely, Treg cells required the extra-cellular part of CTLA-4 to up-regulate expression of the co-inhibitory molecule PD-L2 on DCs. Transcriptomic analysis of suppressed DCs revealed that Treg cells induced a specific immunosuppressive program in DCs.
Collapse
Affiliation(s)
- Christina Seitz
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Sang Liu
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Katrin Klocke
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Anne-Laure Joly
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | | | - Christopher A Tibbitt
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sara M Parigi
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan M Coquet
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Kajsa Wing
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - John Andersson
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
12
|
Abstract
Cancer immunotherapy has long offered the promise of producing cancer treatments that are more effective and less toxic than traditional chemotherapy and radiotherapy. That potential has only begun to be realized in the last 5 years with the first US FDA-approved cancer vaccine (sipuleucel-T), checkpoint inhibitors and adoptive cell therapy. While these therapies have been remarkably more effective than previous cancer immunotherapeutics, they are often limited by their inherently personalized nature. Indeed, each patient’s immune system and cancer are unique, limiting the scalability and generalizability of new approaches. However, emerging solutions may overcome these limitations, producing ‘off-the-shelf’ cancer immunotherapies that transform patient outcomes.
Collapse
Affiliation(s)
- Tara S Abraham
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street Philadelphia, PA 19107, USA
| | - Adam E Snook
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street Philadelphia, PA 19107, USA
| |
Collapse
|
13
|
Induction of autoimmune disease by deletion of CTLA-4 in mice in adulthood. Proc Natl Acad Sci U S A 2016; 113:E2383-92. [PMID: 27071130 DOI: 10.1073/pnas.1603892113] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytotoxic T lymphocyte antigen-4 (CTLA-4) is essential for immunological (self-) tolerance, but due to the early fatality of CTLA-4 KO mice, its specific function in central and peripheral tolerance and in different systemic diseases remains to be determined. Here, we further examined the role of CTLA-4 by abrogating CTLA-4 expression in adult mice and compared the resulting autoimmunity that follows with that produced by congenital CTLA-4 deficiency. We found that conditional deletion of CTLA-4 in adult mice resulted in spontaneous lymphoproliferation, hypergammaglobulinemia, and histologically evident pneumonitis, gastritis, insulitis, and sialadenitis, accompanied by organ-specific autoantibodies. However, in contrast to congenital deficiency, this was not fatal. CTLA-4 deletion induced preferential expansion of CD4(+)Foxp3(+) Treg cells. However, T cells from CTLA-4-deficient inducible KO mice were able to adoptively transfer the diseases into T cell-deficient mice. Notably, cell transfer of thymocytes de novo produced myocarditis, otherwise not observed in donor mice depleted in adulthood. Moreover, CTLA-4 deletion in adult mice had opposing impacts on induced autoimmune models. Thus, although CTLA-4-deficient mice had more severe collagen-induced arthritis (CIA), they were protected against peptide-induced experimental autoimmune encephalomyelitis (EAE); however, onset of protein-induced EAE was only delayed. Collectively, this indicates that CTLA-4 deficiency affects both central and peripheral tolerance and Treg cell-mediated suppression.
Collapse
|
14
|
Tuulasvaara A, Vanhanen R, Baldauf HM, Puntila J, Arstila TP. Interleukin-7 promotes human regulatory T cell development at the CD4+CD8+ double-positive thymocyte stage. J Leukoc Biol 2016; 100:491-8. [PMID: 26965634 DOI: 10.1189/jlb.1a0415-164r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 02/20/2016] [Indexed: 12/19/2022] Open
Abstract
Although mature human FOXP3(+) regulatory T cells are CD127 (IL-7Rα) negative, CD4(+)CD8(+) FOXP3(+) thymocytes express relatively high levels of CD127 and are responsive to IL-7. However, the role of IL-7 in human regulatory T cell development is poorly known. We show that at the CD4(+)CD8(+) stage, FOXP3(+) thymocytes are highly susceptible to apoptosis, and IL-7 selectively rescues them from death, leading to an increased frequency of FOXP3(+) cells. IL-7 also promotes the development of regulatory T cell phenotype by inducing up-regulation of FOXP3(+) and CTLA-4 expression. In contrast, IL-7 does not enhance proliferation of FOXP3(+)thymocytes or induce demethylation of FOXP3(+) regulatory T cell-specific demethylated region. After the CD4(+)CD8(+) stage, the FOXP3(+) thymocytes down-regulate CD127 expression but despite very low levels of CD127, remain responsive to IL-7. These results suggest that IL-7 affects human regulatory T cell development in the thymus by at least 2 distinct mechanisms: suppression of apoptosis and up-regulation of FOXP3(+) expression.
Collapse
Affiliation(s)
- Anni Tuulasvaara
- Haartman Institute, Department of Bacteriology and Immunology, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland; and
| | - Reetta Vanhanen
- Haartman Institute, Department of Bacteriology and Immunology, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland; and
| | - Hanna-Mari Baldauf
- Haartman Institute, Department of Bacteriology and Immunology, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland; and
| | - Juha Puntila
- Department of Surgery, Hospital for Children and Adolescents, Helsinki University Hospital, Helsinki, Finland
| | - T Petteri Arstila
- Haartman Institute, Department of Bacteriology and Immunology, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland; and
| |
Collapse
|
15
|
Paterson AM, Lovitch SB, Sage PT, Juneja VR, Lee Y, Trombley JD, Arancibia-Cárcamo CV, Sobel RA, Rudensky AY, Kuchroo VK, Freeman GJ, Sharpe AH. Deletion of CTLA-4 on regulatory T cells during adulthood leads to resistance to autoimmunity. ACTA ACUST UNITED AC 2015; 212:1603-21. [PMID: 26371185 PMCID: PMC4577848 DOI: 10.1084/jem.20141030] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/11/2015] [Indexed: 12/31/2022]
Abstract
Paterson et al. demonstrate that, in contrast to CTLA-4 germline knockout mice, conditional deletion on T reg cells during adulthood confers protection from EAE and does not increase resistance to tumors. Cytotoxic T lymphocyte antigen-4 (CTLA-4) is an essential negative regulator of T cell responses. Germline Ctla4 deficiency is lethal, making investigation of the function of CTLA-4 on mature T cells challenging. To elucidate the function of CTLA-4 on mature T cells, we have conditionally ablated Ctla4 in adult mice. We show that, in contrast to germline knockout mice, deletion of Ctla4 during adulthood does not precipitate systemic autoimmunity, but surprisingly confers protection from experimental autoimmune encephalomyelitis (EAE) and does not lead to increased resistance to MC38 tumors. Deletion of Ctla4 during adulthood was accompanied by activation and expansion of both conventional CD4+Foxp3− (T conv) and regulatory Foxp3+ (T reg cells) T cell subsets; however, deletion of CTLA-4 on T reg cells was necessary and sufficient for protection from EAE. CTLA-4 deleted T reg cells remained functionally suppressive. Deletion of Ctla4 on T reg cells alone or on all adult T cells led to major changes in the Ctla4 sufficient T conv cell compartment, including up-regulation of immunoinhibitory molecules IL-10, LAG-3 and PD-1, thereby providing a compensatory immunosuppressive mechanism. Collectively, our findings point to a profound role for CTLA-4 on T reg cells in limiting their peripheral expansion and activation, thereby regulating the phenotype and function of T conv cells.
Collapse
Affiliation(s)
- Alison M Paterson
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115 Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Scott B Lovitch
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115 Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115 Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
| | - Peter T Sage
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115 Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Vikram R Juneja
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115 Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Youjin Lee
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Justin D Trombley
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115 Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Carolina V Arancibia-Cárcamo
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, Experimental Medicine Division, University of Oxford, Oxford OX3 9DU, England, UK
| | - Raymond A Sobel
- Department of Pathology, Stanford University, Stanford, CA 94304
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Sloan-Kettering Institute for Cancer Research; Ludwig Center at Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Vijay K Kuchroo
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115 Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| |
Collapse
|
16
|
Abstract
Induction of specific immune tolerance to grafts remains the sought-after standard following transplantation. Defined by expression of the Foxp3 (forkhead box protein 3) transcription factor, the regulatory T-cell (Treg) lineage has been noted to exert potent immunoregulatory functions that contribute to specific graft tolerance. In this review, we discuss the known signals and pathways which govern Treg development, both in the thymus and in peripheral sites, as well as lineage maintenance and homeostasis. In particular, we highlight the roles of T-cell receptor signaling, CD28 costimulation, and signals through phosphatidyl inositol 3-kinase (PI3K) and related metabolic pathways in multiple aspects of Treg biology.
Collapse
Affiliation(s)
- Alexandria Huynh
- Division of Medical Sciences, Harvard Medical School, Boston, MA, USA; Transplantation Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
17
|
Chatzigeorgiou A, Chung KJ, Garcia-Martin R, Alexaki VI, Klotzsche-von Ameln A, Phieler J, Sprott D, Kanczkowski W, Tzanavari T, Bdeir M, Bergmann S, Cartellieri M, Bachmann M, Nikolakopoulou P, Androutsellis-Theotokis A, Siegert G, Bornstein SR, Muders MH, Boon L, Karalis KP, Lutgens E, Chavakis T. Dual role of B7 costimulation in obesity-related nonalcoholic steatohepatitis and metabolic dysregulation. Hepatology 2014; 60:1196-1210. [PMID: 24845056 DOI: 10.1002/hep.27233] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 05/19/2014] [Indexed: 12/15/2022]
Abstract
UNLABELLED The low-grade inflammatory state present in obesity contributes to obesity-related metabolic dysregulation, including nonalcoholic steatohepatitis (NASH) and insulin resistance. Intercellular interactions between immune cells or between immune cells and hepatic parenchymal cells contribute to the exacerbation of liver inflammation and steatosis in obesity. The costimulatory molecules, B7.1 and B7.2, are important regulators of cell-cell interactions in several immune processes; however, the role of B7 costimulation in obesity-related liver inflammation is unknown. Here, diet-induced obesity (DIO) studies in mice with genetic inactivation of both B7.1 and B7.2 (double knockout; DKO) revealed aggravated obesity-related metabolic dysregulation, reduced insulin signalling in the liver and adipose tissue (AT), glucose intolerance, and enhanced progression to steatohepatitis resulting from B7.1/B7.2 double deficiency. The metabolic phenotype of B7.1/B7.2 double deficiency upon DIO was accompanied by increased hepatic and AT inflammation, associated with largely reduced numbers of regulatory T cells (Tregs) in these organs. In order to assess the role of B7 costimulation in DIO in a non-Treg-lacking environment, we performed antibody (Ab)-mediated inhibition of B7 molecules in wild-type mice in DIO. Antibody-blockade of both B7.1 and B7.2 improved the metabolic phenotype of DIO mice, which was linked to amelioration of hepatic steatosis and reduced inflammation in liver and AT. CONCLUSION Our study demonstrates a dual role of B7 costimulation in the course of obesity-related sequelae, particularly NASH. The genetic inactivation of B7.1/B7.2 deteriorates obesity-related liver steatosis and metabolic dysregulation, likely a result of the intrinsic absence of Tregs in these mice, rendering DKO mice a novel murine model of NASH. In contrast, inhibition of B7 costimulation under conditions where Tregs are present may provide a novel therapeutic approach for obesity-related metabolic dysregulation and, especially, NASH.
Collapse
Affiliation(s)
- Antonios Chatzigeorgiou
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, Dresden, Germany; Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany; Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute, Dresden, Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kong KF, Fu G, Zhang Y, Yokosuka T, Casas J, Canonigo-Balancio AJ, Becart S, Kim G, Yates JR, Kronenberg M, Saito T, Gascoigne NRJ, Altman A. Protein kinase C-η controls CTLA-4-mediated regulatory T cell function. Nat Immunol 2014; 15:465-72. [PMID: 24705298 PMCID: PMC4040250 DOI: 10.1038/ni.2866] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/10/2014] [Indexed: 12/15/2022]
Abstract
Regulatory T cells (Treg cells), which maintain immune homeostasis and self-tolerance, form an immunological synapse (IS) with antigen-presenting cells (APCs). However, signaling events at the Treg IS remain unknown. Here we show that protein kinase C-η (PKC-η) associated with CTLA-4 and was recruited to the Treg IS. PKC-η-deficient Treg cells displayed defective suppressive activity, including suppression of tumor immunity but not autoimmune colitis. Phosphoproteomic analysis revealed an association between CTLA-4-PKC-η and the GIT-PIX-PAK complex, an IS-localized focal adhesion complex. Defective activation of this complex in PKC-η-deficient Treg cells was associated with reduced CD86 depletion from APCs by Treg cells. These results reveal a novel CTLA-4-PKC-η signaling axis required for contact-dependent suppression, implicating this pathway as a potential cancer immunotherapy target.
Collapse
Affiliation(s)
- Kok-Fai Kong
- 1] Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA. [2]
| | - Guo Fu
- 1] Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA. [2]
| | - Yaoyang Zhang
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Tadashi Yokosuka
- 1] RIKEN Center for Integrative Medical Sciences, Yokohama, Japan. [2] PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Javier Casas
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA
| | - Ann J Canonigo-Balancio
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Stephane Becart
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Gisen Kim
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Takashi Saito
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Nicholas R J Gascoigne
- 1] Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA. [2] Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA. [3] [4]
| | - Amnon Altman
- 1] Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA. [2]
| |
Collapse
|
19
|
Tan YX, Manz BN, Freedman TS, Zhang C, Shokat KM, Weiss A. Inhibition of the kinase Csk in thymocytes reveals a requirement for actin remodeling in the initiation of full TCR signaling. Nat Immunol 2014; 15:186-94. [PMID: 24317039 PMCID: PMC3946925 DOI: 10.1038/ni.2772] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/23/2013] [Indexed: 12/15/2022]
Abstract
Signaling via the T cell antigen receptor (TCR) is initiated by Src-family kinases (SFKs). To understand how the kinase Csk, a negative regulator of SFKs, controls the basal state and the initiation of TCR signaling, we generated mice that express a Csk variant sensitive to an analog of the common kinase inhibitor PP1 (Csk(AS)). Inhibition of Csk(AS) in thymocytes, without engagement of the TCR, induced potent activation of SFKs and proximal TCR signaling up to phospholipase C-γ1 (PLC-γ1). Unexpectedly, increases in inositol phosphates, intracellular calcium and phosphorylation of the kinase Erk were impaired. Altering the actin cytoskeleton pharmacologically or providing costimulation via CD28 'rescued' those defects. Thus, Csk has a critical role in preventing TCR signaling. However, our studies also revealed a requirement for actin remodeling, initiated by costimulation, for full TCR signaling.
Collapse
Affiliation(s)
- Ying Xim Tan
- Rosalind Russell-Ephraim P. Engleman Medical Research Center for Arthritis, Division of Rheumatology, Department of Medicine, University of California, San Francisco, California, USA
| | - Boryana N Manz
- Rosalind Russell-Ephraim P. Engleman Medical Research Center for Arthritis, Division of Rheumatology, Department of Medicine, University of California, San Francisco, California, USA
| | - Tanya S Freedman
- Rosalind Russell-Ephraim P. Engleman Medical Research Center for Arthritis, Division of Rheumatology, Department of Medicine, University of California, San Francisco, California, USA
| | - Chao Zhang
- Department of Chemistry, University of Southern California, California, USA
| | - Kevan M Shokat
- 1] Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA. [2] Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Arthur Weiss
- 1] Rosalind Russell-Ephraim P. Engleman Medical Research Center for Arthritis, Division of Rheumatology, Department of Medicine, University of California, San Francisco, California, USA. [2] Howard Hughes Medical Institute, Chevy Chase, Maryland, USA. [3] Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| |
Collapse
|
20
|
Abstract
T cell activation is a key event in the adaptive immune response and vital to the generation of both cellular and humoral immunity. Activation is required not only for effective CD4 T cell responses but also to provide help for B cells and the generation of cytotoxic T cell responses. Unsurprisingly, impaired T cell activation results in infectious pathology, whereas dysregulated activation can result in autoimmunity. The decision to activate is therefore tightly regulated and the CD28/CTLA-4 pathway represents this apical decision point at the molecular level. In particular, CTLA-4 (CD152) is an essential checkpoint control for autoimmunity; however, the molecular mechanism(s) by which CTLA-4 achieves its regulatory function are not well understood, especially how it functionally intersects with the CD28 pathway. In this chapter, we review the established molecular and cellular concepts relating to CD28 and CTLA-4 biology, and attempt to integrate these by discussing the transendocytosis of ligands as a new model of CTLA-4 function.
Collapse
Affiliation(s)
- Blagoje Soskic
- School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom
| | | | - Tiezheng Hou
- UCL Institute of Immunity and Transplantation, Royal Free Campus, London, United Kingdom
| | - David M Sansom
- UCL Institute of Immunity and Transplantation, Royal Free Campus, London, United Kingdom.
| |
Collapse
|
21
|
Construction of self-recognizing regulatory T cells from conventional T cells by controlling CTLA-4 and IL-2 expression. Proc Natl Acad Sci U S A 2013; 110:E2116-25. [PMID: 23690575 DOI: 10.1073/pnas.1307185110] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Thymus-produced CD4(+) regulatory T (Treg) cells, which specifically express the transcription factor forkhead box p3, are potently immunosuppressive and characteristically possess a self-reactive T-cell receptor (TCR) repertoire. To determine the molecular basis of Treg suppressive activity and their self-skewed TCR repertoire formation, we attempted to reconstruct these Treg-specific properties in conventional T (Tconv) cells by genetic manipulation. We show that Tconv cells rendered IL-2 deficient and constitutively expressing transgenic cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) were potently suppressive in vitro when they were preactivated by antigenic stimulation. They also suppressed in vivo inflammatory bowel disease and systemic autoimmunity/inflammation produced by Treg deficiency. In addition, in the thymus, transgenic CTLA-4 expression in developing Tconv cells skewed their TCR repertoire toward higher self-reactivity, whereas CTLA-4 deficiency specifically in developing thymic Treg cells cancelled their physiological TCR self-skewing. The extracellular portion of CTLA-4 was sufficient for the suppression and repertoire shifting. It interfered with CD28 signaling to responder Tconv cells via outcompeting CD28 for binding to CD80 and CD86,or modulating CD80/CD86 expression on antigen-presenting cells. Thus, a triad of IL-2 repression, CTLA-4 expression, and antigenic stimulation is a minimalistic requirement for conferring Treg-like suppressive activity on Tconv cells, in accordance with the function of forkhead box p3 to strongly repress IL-2 and maintain CTLA-4 expression in natural Treg cells. Moreover, CTLA-4 expression is a key element for the formation of a self-reactive TCR repertoire in natural Treg cells. These findings can be exploited to control immune responses by targeting IL-2 and CTLA-4 in Treg and Tconv cells.
Collapse
|
22
|
CTLA-4 controls the thymic development of both conventional and regulatory T cells through modulation of the TCR repertoire. Proc Natl Acad Sci U S A 2012; 110:E221-30. [PMID: 23267099 DOI: 10.1073/pnas.1208573110] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4; CD152) is of pivotal importance for self-tolerance, with deficiency or unfavorable polymorphisms leading to autoimmune disease. Tolerance to self-antigens is achieved through thymic deletion of highly autoreactive conventional T (Tconv) cells and generation of FoxP3(+) regulatory T (Treg) cells. The main costimulatory molecule, CD28, augments the negative selection of Tconv cells and promotes the generation of FoxP3(+) Treg cells. The role of its antagonistic homolog CTLA-4, however, remains a topic of debate. To address this topic, we investigated the thymic development of T cells in the presence and absence of CTLA-4 in a T-cell receptor (TCR) transgenic mouse model specific for the myelin basic protein peptide Ac1-9. We reveal that CTLA-4 is expressed in the corticomedullary region of the thymus. Its absence alters the response of CD4(+)CD8(-) thymocytes to self-antigen recognition, which affects the quantity of the Treg cells generated and broadens the repertoire of peripheral Tconv cells. T-cell repertoire alteration after deletion of CTLA-4 results from changes in TCR Vα and Jα segment selection as well as CDR3α composition in Tconv and Treg cells. CTLA-4, therefore, regulates the early development of self-reactive T cells in the thymus and plays a key role in central tolerance.
Collapse
|
23
|
Abstract
Successful allogeneic hematopoietic stem cell transplantation (HSCT) and solid organ transplantation require development of a degree of immune tolerance against allogeneic antigens. T lymphocytes play a critical role in allograft rejection, graft failure, and graft-versus-host disease (GVHD). T-cell tolerance occurs by two different mechanisms: (1) depletion of self-reactive T cells during their maturation in the thymus (central tolerance), and (2) suppression/elimination of self-reactive mature T cells in the periphery (peripheral tolerance). Induction of transplant tolerance improves transplantation outcomes. Adoptive immunotherapy with immune suppressor cells including regulatory T cells, natural killer (NK)-T cells, veto cells, and facilitating cells are promising therapies for modulation of immune tolerance. Achieving mixed chimerism with the combination of thymic irradiation and T-cell-depleting antibodies, costimulatory molecule blockade with/without inhibitory signal activation, and elimination of alloreactive T cells with varying methods including pre- or post-transplant cyclophosphamide administration appear to be effective in inducing transplant tolerance.
Collapse
Affiliation(s)
- Onder Alpdogan
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | | |
Collapse
|
24
|
Abstract
Somatic recombination of TCR genes in immature thymocytes results in some cells with useful TCR specificities, but also many with useless or potentially self-reactive specificities. Thus thymic selection mechanisms operate to shape the T-cell repertoire. Thymocytes that have a TCR with low affinity for self-peptide-MHC complexes are positively selected to further differentiate and function in adaptive immunity, whereas useless ones die by neglect. Clonal deletion and clonal diversion (Treg differentiation) are the major processes in the thymus that eliminate or control self-reactive T cells. Although these processes are thought to be efficient, they fail to control self-reactivity in all circumstances. Thus, peripheral tolerance processes exist wherein self-reactive T cells become functionally unresponsive (anergy) or are deleted after encountering self-antigens outside of the thymus. Recent advances in mechanistic studies of central and peripheral T-cell tolerance are promoting the development of therapeutic strategies to treat autoimmune disease and cancer and improve transplantation outcome.
Collapse
Affiliation(s)
- Yan Xing
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, 55455, USA
| | | |
Collapse
|
25
|
Clonal deletion and the fate of autoreactive thymocytes that survive negative selection. Nat Immunol 2012; 13:569-78. [PMID: 22544394 PMCID: PMC3362677 DOI: 10.1038/ni.2292] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/21/2012] [Indexed: 12/11/2022]
Abstract
Clonal deletion of autoreactive thymocytes is important for self-tolerance, but the intra-thymic signals that induce clonal deletion have not been clearly identified. We now report that clonal deletion during negative selection requires CD28 costimulation of autoreactive thymocytes at the CD4+CD8lo intermediate stage of differentiation. Autoreactive thymocytes were prevented from undergoing clonal deletion by either absent CD28 costimulation or transgenic over-expression of the anti-apoptotic factors Bcl-2 or Mcl-1, with surviving thymocytes differentiating into anergic T cell receptor αβ+ double negative thymocytes that preferentially migrated to the intestine where they re-expressed CD8α and were sequestered as CD8αα intraepithelial lymphocytes (IELs). This study identifies CD28 costimulation as the intrathymic signal required for clonal deletion and identifies CD8αα IELs as the developmental fate of autoreactive thymocytes that survive negative selection.
Collapse
|
26
|
Billard MJ, Gruver AL, Sempowski GD. Acute endotoxin-induced thymic atrophy is characterized by intrathymic inflammatory and wound healing responses. PLoS One 2011; 6:e17940. [PMID: 21437240 PMCID: PMC3060875 DOI: 10.1371/journal.pone.0017940] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 02/18/2011] [Indexed: 11/28/2022] Open
Abstract
Background Productive thymopoiesis is essential for a robust and healthy immune system.
Thymus unfortunately is acutely sensitive to stress resulting in involution
and decreased T cell production. Thymic involution is a complication of many
clinical settings, including infection, malnutrition, starvation, and
irradiation or immunosuppressive therapies. Systemic rises in
glucocorticoids and inflammatory cytokines are known to contribute to thymic
atrophy. Little is known, however, about intrathymic mechanisms that may
actively contribute to thymus atrophy or initiate thymic recovery following
stress events. Methodology/Principal Findings Phenotypic, histologic and transcriptome/pathway analysis of murine thymic
tissue during the early stages of endotoxemia-induced thymic involution was
performed to identify putative mechanisms that drive thymic involution
during stress. Thymus atrophy in this murine model was confirmed by
down-regulation of genes involved in T cell development, cell activation,
and cell cycle progression, correlating with observed phenotypic and
histologic thymus involution. Significant gene changes support the
hypothesis that multiple key intrathymic pathways are differentially
activated during stress-induced thymic involution. These included direct
activation of thymus tissue by LPS through TLR signaling, local expression
of inflammatory cytokines, inhibition of T cell signaling, and induction of
wound healing/tissue remodeling. Conclusions/Significance Taken together, these observations demonstrated that in addition to the
classic systemic response, a direct intrathymic response to endotoxin
challenge concurrently contributes to thymic involution during endotoxemia.
These findings are a substantial advancement over current understanding of
thymus response to stress and may lead to the development of novel
therapeutic approaches to ameliorate immune deficiency associated with
stress events.
Collapse
Affiliation(s)
- Matthew J. Billard
- Department of Biostatistics & Bioinformatics, Duke University Medical
Center, Durham, North Carolina, United States of America
| | - Amanda L. Gruver
- Department of Medicine, Department of Pathology, and the Duke University
Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina,
United States of America
| | - Gregory D. Sempowski
- Department of Medicine, Department of Pathology, and the Duke University
Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina,
United States of America
- * E-mail:
| |
Collapse
|
27
|
Regulatory T-cell differentiation versus clonal deletion of autoreactive thymocytes. Immunol Cell Biol 2010; 89:45-53. [PMID: 21042335 DOI: 10.1038/icb.2010.123] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The concept of clonal deletion of immune cells that carry an autoreactive antigen receptor was a central prediction of Burnet's clonal selection theory. A series of classical experiments in the late 1980s revealed that certain immature thymocytes upon encounter of 'self' are indeed removed from the T-cell repertoire before their release into the blood circulation. A second essential cornerstone of immunological tolerance, not anticipated by Burnett, has more recently surfaced through the discovery of Foxp3(+) regulatory T cells (Treg). Intriguingly, it appears that the expression of an autoreactive T-cell receptor is a shared characteristic of T cells that are subject to clonal deletion as well as of those deviated into the Treg lineage. This is all the more striking as Treg differentiation for the most part branches off from mainstream CD4T cell development during thymocyte maturation in the thymus, that is, it may neither temporally nor spatially be separated from clonal deletion. This raises the question of how an apparently identical stimulus, namely the encounter of 'self' during thymocyte development, can elicit fundamentally different outcomes such as apoptotic cell death on the one hand or differentiation into a highly specialized T-cell lineage on the other hand. Here, we will review the T-cell intrinsic and extrinsic factors that have been implicated in intrathymic Treg differentiation and discuss how these parameters may determine whether an autoreactive major histocompatibility complex class II-restricted thymocyte is deviated into the Treg lineage or subject to clonal deletion.
Collapse
|
28
|
Abstract
The thymus serves as the central organ of immunologic self-nonself discrimination. Thymocytes undergo both positive and negative selection, resulting in T cells with a broad range of reactivity to foreign antigens but with a lack of reactivity to self-antigens. The thymus is also the source of a subset of regulatory T cells that inhibit autoreactivity of T-cell clones that may escape negative selection. As a result of these functions, the thymus has been shown to be essential for the induction of tolerance in many rodent and large animal models. Proper donor antigen presentation in the thymus after bone marrow, dendritic cell, or solid organ transplantation has been shown to induce tolerance to allografts. The molecular mechanisms of positive and negative selection and regulatory T-cell development must be understood if a tolerance-inducing therapeutic intervention is to be designed effectively. In this brief and selective review, we present some of the known information on T-cell development and on the role of the thymus in experimental models of transplant tolerance. We also cite some clinical attempts to induce tolerance to allografts using pharmacologic or biologic interventions.
Collapse
|
29
|
|
30
|
Gatzka M, Newton RH, Walsh CM. Altered thymic selection and increased autoimmunity caused by ectopic expression of DRAK2 during T cell development. THE JOURNAL OF IMMUNOLOGY 2009; 183:285-97. [PMID: 19542440 DOI: 10.4049/jimmunol.0803530] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Negative regulation of TCR signaling is an important mechanism enforcing immunological self-tolerance to prevent inappropriate activation of T cells and thus the development of autoimmune diseases. The lymphoid-restricted serine/threonine kinase death-associated protein-related apoptotic kinase-2 (DRAK2) raises the TCR activation threshold by targeting TCR-induced calcium mobilization in thymocytes and peripheral T cells and regulates positive thymic selection and peripheral T cell activation. Despite a hypersensitivity of peripheral drak2-deficient T cells, drak2-deficient mice are enigmatically resistant to induced autoimmunity in the model experimental autoimmune encephalomyelitis. To further evaluate the differential role of DRAK2 in central vs peripheral tolerance and to assess its impact on the development of autoimmune diseases, we have generated a transgenic (Tg) mouse strain ectopically expressing DRAK2 via the lck proximal promoter (1017-DRAK2 Tg mice). This transgene led to highest expression levels in double-positive thymocytes that are normally devoid of DRAK2. 1017-DRAK2 Tg mice displayed a reduction of single-positive CD4(+) and CD8(+) thymocytes in context with diminished negative selection in male HY TCR x 1017-DRAK2 Tg mice as well as peripheral T cell hypersensitivity, enhanced susceptibility to experimental autoimmune encephalomyelitis, and spontaneous autoimmunity. These findings suggest that alteration in thymocyte signaling thresholds impacts the sensitivity of peripheral T cell pools.
Collapse
Affiliation(s)
- Martina Gatzka
- Department of Molecular Biology and Biochemistry/Institute for Immunology, University of California, Irvine, 92697, USA
| | | | | |
Collapse
|
31
|
Chuang WY, Ströbel P, Belharazem D, Rieckmann P, Toyka KV, Nix W, Schalke B, Gold R, Kiefer R, Klinker E, Opitz A, Inoue M, Kuo TT, Müller-Hermelink HK, Marx A. The PTPN22gain-of-function+1858T(+) genotypes correlate with low IL-2 expression in thymomas and predispose to myasthenia gravis. Genes Immun 2009; 10:667-72. [PMID: 19693092 DOI: 10.1038/gene.2009.64] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protein tyrosine phosphatase, non-receptor type 22 (PTPN22) inhibits T-cell activation and interleukin-2 (IL-2) production. The PTPN22(gain-of-function)+1858T(+) genotypes predispose to multiple autoimmune diseases, including early-onset (non-thymomatous) myasthenia gravis (MG). The disease association and the requirement of IL-2/IL-2 receptor signaling for intrathymic, negative T-cell selection have suggested that these genotypes may weaken T-cell receptor (TCR) signaling and impair the deletion of autoreactive T cells. Evidence for this hypothesis is missing. Thymoma-associated MG, which depends on intratumorous generation and export of mature autoreactive CD4(+) T cells, is a model of autoimmunity because of central tolerance failure. Here, we analyzed the PTPN22 +1858C/T single nucleotide polymorphism in 426 German Caucasian individuals, including 125 thymoma patients (79 with MG), and investigated intratumorous IL-2 expression levels. Unlike two previous studies on French and Swedish patients, we found strong association of PTPN22 +1858T(+) genotypes not only with early-onset MG (P=0.00034) but also with thymoma-associated MG (P=0.0028). IL-2 expression in thymomas with PTPN22 +1858T(+) genotypes (P=0.028) was lower, implying weaker TCR signaling. We conclude that the PTPN22(gain-of-function) variant biases towards MG in a subgroup of thymoma patients possibly by impeding central tolerance induction.
Collapse
Affiliation(s)
- W-Y Chuang
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Voelkl S, Moore TV, Rehli M, Nishimura MI, Mackensen A, Fischer K. Characterization of MHC class-I restricted TCRalphabeta+ CD4- CD8- double negative T cells recognizing the gp100 antigen from a melanoma patient after gp100 vaccination. Cancer Immunol Immunother 2009; 58:709-18. [PMID: 18836718 PMCID: PMC2832593 DOI: 10.1007/s00262-008-0593-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 09/05/2008] [Indexed: 12/18/2022]
Abstract
The immune attack against malignant tumors require the concerted action of CD8+ cytotoxic T lymphocytes (CTL) as well as CD4+ T helper cells. The contribution of T cell receptor (TCR) alphabeta+ CD4- CD8- double-negative (DN) T cells to anti-tumor immune responses is widely unknown. In previous studies, we have demonstrated that DN T cells with a broad TCR repertoire are present in humans in the peripheral blood and the lymph nodes of healthy individuals. Here, we characterize a human DN T cell clone (T4H2) recognizing an HLA-A2-restricted melanoma-associated antigenic gp100-peptide isolated from the peripheral blood of a melanoma patient. Antigen recognition by the T4H2 DN clone resulted in specific secretion of IFN-gamma and TNF. Although lacking the CD8 molecule the gp100-specific DN T cell clone was able to confer antigen-specific cytotoxicity against gp100-loaded target cells as well as HLA-A2+ gp100 expressing melanoma cells. The cytotoxic capacity was found to be perforin/granzymeB-dependent. Together, these data indicate that functionally active antigen-specific DN T cells recognizing MHC class I-restricted tumor-associated antigen (TAA) may contribute to anti-tumor immunity in vivo.
Collapse
MESH Headings
- Antigen Presentation
- Antigens, CD/analysis
- Antigens, Neoplasm/immunology
- Cancer Vaccines/immunology
- Cancer Vaccines/therapeutic use
- Cell Line, Tumor/immunology
- Clone Cells/immunology
- Clone Cells/metabolism
- Cytotoxicity, Immunologic
- Granzymes/immunology
- HLA-A2 Antigen/immunology
- Humans
- Immunophenotyping
- Immunotherapy, Active
- Interferon-gamma/metabolism
- Interleukins/metabolism
- Melanoma/blood
- Melanoma/immunology
- Melanoma/therapy
- Membrane Glycoproteins/immunology
- Perforin/immunology
- Receptors, Antigen, T-Cell, alpha-beta/analysis
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Tumor Necrosis Factor-alpha/metabolism
- gp100 Melanoma Antigen
Collapse
Affiliation(s)
- Simon Voelkl
- Department of Internal Medicine 5, Hematology/Oncology, University of Erlangen-Nuernberg, Krankenhausstrasse 12, 91054 Erlangen, Germany
- Department of Hematology and Oncology, University of Regensburg, 93042 Regensburg, Germany
| | - Tamson V. Moore
- Department of Surgery, The University of Chicago, Chicago, IL 60637 USA
| | - Michael Rehli
- Department of Hematology and Oncology, University of Regensburg, 93042 Regensburg, Germany
| | - Michael I. Nishimura
- Department of Surgery, The University of Chicago, Chicago, IL 60637 USA
- Departments of Surgery and Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology/Oncology, University of Erlangen-Nuernberg, Krankenhausstrasse 12, 91054 Erlangen, Germany
- Department of Hematology and Oncology, University of Regensburg, 93042 Regensburg, Germany
| | - Karin Fischer
- Department of Hematology and Oncology, University of Regensburg, 93042 Regensburg, Germany
| |
Collapse
|
33
|
Alecu M, Ursaciuc C, Surcel M, Coman G, Ciotaru D, Dobre M. CD28 T-cell costimulatory molecule expression in pemphigus vulgaris. J Eur Acad Dermatol Venereol 2009; 23:288-91. [DOI: 10.1111/j.1468-3083.2008.03035.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Schmidt EM, Wang CJ, Ryan GA, Clough LE, Qureshi OS, Goodall M, Abbas AK, Sharpe AH, Sansom DM, Walker LSK. Ctla-4 controls regulatory T cell peripheral homeostasis and is required for suppression of pancreatic islet autoimmunity. THE JOURNAL OF IMMUNOLOGY 2009; 182:274-82. [PMID: 19109158 DOI: 10.4049/jimmunol.182.1.274] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The CTLA-4 pathway is recognized as a major immune inhibitory axis and is a key therapeutic target for augmenting antitumor immunity or curbing autoimmunity. CTLA-4-deficient mice provide the archetypal example of dysregulated immune homeostasis, developing lethal lymphoproliferation with multiorgan inflammation. In this study, we show that surprisingly these mice have an enlarged population of Foxp3(+) regulatory T cells (Treg). The increase in Treg is associated with normal thymic output but enhanced proliferation of Foxp3(+) cells in the periphery. We confirmed the effect of CTLA-4 deficiency on the Treg population using OVA-specific Treg which develop normally in the absence of CTLA-4, but show increased proliferation in response to peripheral self-Ag. Functional analysis revealed that Ag-specific Treg lacking CTLA-4 were unable to regulate disease in an adoptive transfer model of diabetes. Collectively, these data suggest that the proliferation of Treg in the periphery is tuned by CTLA-4 signals and that Treg expression of CTLA-4 is required for regulation of pancreas autoimmunity.
Collapse
Affiliation(s)
- Emily M Schmidt
- Medical Research Council Centre for Immune Regulation, University of Birmingham Medical School, Birmingham, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Enhanced selection of FoxP3+ T-regulatory cells protects CTLA-4-deficient mice from CNS autoimmune disease. Proc Natl Acad Sci U S A 2009; 106:3306-11. [PMID: 19218450 DOI: 10.1073/pnas.0803186106] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is generally acknowledged that cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4/CD152) plays a pivotal role in the regulation of T-cell activation and the establishment of self-tolerance in the periphery. CTLA-4-deficient (CTLA-4KO) mice develop a lymphoproliferative disorder and die within 4 weeks of birth, suggesting a role for CTLA-4 in T-cell homeostasis or the development and activity of T-regulatory (Treg) cells. To study the role of CTLA-4 in the control of experimental autoimmune encephalomyelitis (EAE), we have generated a CTLA-4KO mouse in which >90% of all CD4(+) T cells bear a Vbeta8.2 transgenic T-cell receptor that is specific for myelin basic protein peptide Ac1-9 (ASQKRPSQR). These mice do not develop spontaneous lymphoproliferative disease or EAE and are resistant to disease induction. This correlates with a higher frequency of functional FoxP3(+) Treg cells in the spleen and thymus of CTLA-4KO mice. The absence of CTLA-4-mediated suppression of CD28 signaling resulted in the early expression of FoxP3 on double-positive cells in the thymic cortex. We conclude that CTLA-4 is not essential for the peripheral function of FoxP3(+) Treg cells but plays a pivotal role in their thymic selection.
Collapse
|
36
|
Jiang H, Chess L. How the immune system achieves self-nonself discrimination during adaptive immunity. Adv Immunol 2009; 102:95-133. [PMID: 19477320 DOI: 10.1016/s0065-2776(09)01202-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We propose an "Avidity Model of Self-Nonself Discrimination" in which self-nonself discrimination is achieved by both central thymic selection and peripheral immune regulation. The conceptual framework that links these two events is the understanding that both in the thymus and in the periphery the survival or the fate of T cells is determined by the avidity of the interactions between T cell receptors (TCRs) on T cells, specific to any antigens and MHC/antigen peptides presented by antigen-presenting cells (APCs). We envision that the immune system achieves self-nonself discrimination, during adaptive immunity, not by recognizing the structural differences between self versus foreign antigens, but rather by perceiving the avidity of T cell activation. Intrathymic deletion of high avidity T cell clones responding to the majority of self-antigens generates a truncated peripheral self-reactive repertoire composed of mainly intermediate and low but devoid of high avidity T cells compared with the foreign-reactive repertoire. The existence of intermediate avidity self-reactive T cells in the periphery represents a potential danger of pathogenic autoimmunity inherited in each individual because potentially pathogenic self-reactive T cells are included in the pool of intermediate avidity T cells and can often be functionally activated to elicit autoimmune diseases. The distinct composition of peripheral T cell repertoires to self versus to foreign antigens provides a unique opportunity for the immune system to discriminate self from nonself, in the periphery, by selectively downregulating intermediate avidity T cells to both self and foreign antigens. Selective downregulation of the intermediate avidity T cell populations containing the potentially pathogenic self-reactive T cells enables the immune system to specifically control autoimmune diseases without damaging the effective anti-infection immunity, which is, largely, mediated by high avidity T cells specific to the infectious pathogens. In this regard, it has been recently shown that Qa-1-restricted CD8(+) T cells selectively downregulate intermediate avidity T cells, to both self and foreign antigens, and as a consequence, specifically dampen autoimmunity yet optimize the immune response to foreign antigens. Selective downregulation of intermediate avidity T cells is accomplished via specific recognition, by the Qa-1-restricted CD8(+) T cells, of particular Qa-1/self-peptide complexes, such as Qa-1/Hsp60sp, which function as a common surrogate target structure and preferentially expressed on the activated intermediate avidity T cells. This regulatory pathway thus represents one example of the peripheral mechanisms that the immune system evolved to complete self-nonself discrimination that is achieved, imperfectly, by thymic negative selection, in order to maintain self-tolerance. The conceptual framework of the "Avidity Model" differs from, but contains intellectual wisdom of certain conceptual elements of, the "Tunable Activation Thresholds Hypothesis," the "Danger Model," and the "Ergotypic Regulation Phenomenon." It provides a unified and simple paradigm to explain various seemingly unrelated biomedical problems inherent in immunological disorders that cannot be uniformly interpreted by any currently existing paradigms. The potential impact of the conceptual framework of the "Avidity Model" on our understanding of the development and control of commonly seen autoimmune diseases is also discussed.
Collapse
Affiliation(s)
- Hong Jiang
- Institute of Immunology, School of Medicine, Shanghai Jiaotong University, Shanghai, PR China
| | | |
Collapse
|
37
|
McCaughtry TM, Hogquist KA. Central tolerance: what have we learned from mice? Semin Immunopathol 2008; 30:399-409. [PMID: 19015857 DOI: 10.1007/s00281-008-0137-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 10/01/2008] [Indexed: 10/21/2022]
Abstract
Producing a healthy immune system capable of defending against pathogens, while avoiding autoimmunity, is dependent on thymic selection. Positive selection yields functional T cells that have the potential to recognize both self and foreign antigens. Therefore, negative selection exists to manage potentially self-reactive cells. Negative selection results from the induction of anergy, receptor editing, clonal diversion (agonist selection), and/or clonal deletion (apoptosis) in self-reactive clones. Clonal deletion has been inherently difficult to study because the cells of interest are undergoing apoptosis and being eliminated quickly. Furthermore, analysis of clonal deletion in humans has proved even more difficult due to availability of samples and lack of reagents. Mouse models have thus been instrumental in achieving our current understanding of central tolerance, and the evolution of elegant model systems has led to an explosion of new data to be assimilated. This review will focus on recent advances in the field of clonal deletion with respect to three aspects: the development of physiological model systems, signaling pathways that lead to apoptosis, and antigen presenting cell types involved in the induction of clonal deletion.
Collapse
Affiliation(s)
- Tom M McCaughtry
- Center for Immunology, Laboratory Medicine & Pathology, University of Minnesota, Mayo Mail Code 334, 420 Delaware Street SE, Minneapolis, MN, 55454, USA
| | | |
Collapse
|
38
|
Hubert FX, Kinkel SA, Webster KE, Cannon P, Crewther PE, Proeitto AI, Wu L, Heath WR, Scott HS. A specific anti-Aire antibody reveals aire expression is restricted to medullary thymic epithelial cells and not expressed in periphery. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:3824-32. [PMID: 18322189 DOI: 10.4049/jimmunol.180.6.3824] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy is an autoimmune disorder caused by mutations in the autoimmune regulator gene AIRE. We examined the expression of Aire in different organs (thymus, spleen, and lymph nodes) in C57BL/6 mice, using a novel rat mAb, specific for murine Aire. Using flow cytometry, directly fluorochrome-labeled mAb revealed Aire expression in a rare thymic cellular subset that was CD45(-), expressed low levels of Ly51, and was high for MHC-II and EpCam. This subset also expressed a specific pattern of costimulatory molecules, including CD40, CD80, and PD-L1. Immunohistochemical analysis revealed that Aire(+) cells were specifically localized to the thymus or, more precisely, to the cortico-medulla junction and medulla, correlating with the site of negative selection. Although in agreement with previous studies, low levels of Aire mRNA was detected in all dendritic cell subtypes however lacZ staining, immunohistochemistry and flow cytometry failed to detect Aire protein. At a cellular level, Aire was expressed in perinuclear speckles within the nucleus. This report provides the first detailed analysis of Aire protein expression, highlighting the precise location at both the tissue and cellular level.
Collapse
Affiliation(s)
- François-Xavier Hubert
- Division of Molecular and Medicine, Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Horai R, Mueller KL, Handon RA, Cannons JL, Anderson SM, Kirby MR, Schwartzberg PL. Requirements for selection of conventional and innate T lymphocyte lineages. Immunity 2008; 27:775-85. [PMID: 18031697 DOI: 10.1016/j.immuni.2007.09.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 09/13/2007] [Accepted: 09/17/2007] [Indexed: 01/05/2023]
Abstract
Mice deficient in the Tec kinase Itk develop a large population of CD8(+) T cells with properties, including expression of memory markers, rapid production of cytokines, and dependence on Interleukin-15, resembling NKT and other innate T cell lineages. Like NKT cells, these CD8(+) T cells can be selected on hematopoietic cells. We demonstrate that these CD8(+) T cell phenotypes resulted from selection on hematopoietic cells-forcing selection on the thymic stroma reduced the number and innate phenotypes of mature Itk-deficient CD8(+) T cells. We further show that, similar to NKT cells, selection of innate-type CD8(+) T cells in Itk(-/-) mice required the adaptor SAP. Acquisition of their innate characteristics, however, required CD28. Our results suggest that SAP and Itk reciprocally regulate selection of innate and conventional CD8(+) T cells on hematopoietic cells and thymic epithelium, respectively, whereas CD28 regulates development of innate phenotypes resulting from selection on hematopoietic cells.
Collapse
Affiliation(s)
- Reiko Horai
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Davalos-Misslitz ACM, Worbs T, Willenzon S, Bernhardt G, Förster R. Impaired responsiveness to T-cell receptor stimulation and defective negative selection of thymocytes in CCR7-deficient mice. Blood 2007; 110:4351-9. [PMID: 17785582 DOI: 10.1182/blood-2007-01-070284] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The chemokine receptor CCR7 has been implicated in maintenance of thymus morphology and establishment of tolerance to self-antigens. In this study, we provide direct evidence that negative selection of maturing thymocytes is defective in CCR7-deficent mice. Impaired negative selection was observed after TCR/CD3 complex stimulation in vivo as well as in vitro and was prominent in both double-positive and semimature single positive cells (CD4+CD8−CD24high). It is noteworthy that thymocytes of CCR7−/− mice display defective negative selection in response to endogenous superantigens, demonstrating that the defect also occurs under physiological conditions. Disturbed negative selection was correlated with delayed activation kinetics and decreased calcium flux response of CCR7−/− thymocytes after in vitro TCR/CD3 stimulation, suggesting that an impaired response of CCR7−/− thymocytes via TCR-mediated signaling is responsible for defective negative selection in these mice.
Collapse
|
41
|
Verhagen J, Sabatos CA, Wraith DC. The role of CTLA-4 in immune regulation. Immunol Lett 2007; 115:73-4. [PMID: 18035425 PMCID: PMC2629540 DOI: 10.1016/j.imlet.2007.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 10/12/2007] [Indexed: 11/30/2022]
Affiliation(s)
- Johan Verhagen
- Corresponding author. Tel.: +44 117 3312008; fax: +44 117 9287896.
| | | | | |
Collapse
|
42
|
Petrie HT, Zúñiga-Pflücker JC. Zoned out: functional mapping of stromal signaling microenvironments in the thymus. Annu Rev Immunol 2007; 25:649-79. [PMID: 17291187 DOI: 10.1146/annurev.immunol.23.021704.115715] [Citation(s) in RCA: 350] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All hematopoietic cells, including T lymphocytes, originate from stem cells that reside in the bone marrow. Most hematopoietic lineages also mature in the bone marrow, but in this respect, T lymphocytes differ. Under normal circumstances, most T lymphocytes are produced in the thymus from marrow-derived progenitors that circulate in the blood. Cells that home to the thymus from the marrow possess the potential to generate multiple T and non-T lineages. However, there is little evidence to suggest that, once inside the thymus, they give rise to anything other than T cells. Thus, signals unique to the thymic microenvironment compel multipotent progenitors to commit to the T lineage, at the expense of other potential lineages. Summarizing what is known about the signals the thymus delivers to uncommitted progenitors, or to immature T-committed progenitors, to produce functional T cells is the focus of this review.
Collapse
Affiliation(s)
- Howard T Petrie
- Scripps Florida Research Institute, Jupiter, Florida 33458, USA.
| | | |
Collapse
|
43
|
Kasler HG, Verdin E. Histone deacetylase 7 functions as a key regulator of genes involved in both positive and negative selection of thymocytes. Mol Cell Biol 2007; 27:5184-200. [PMID: 17470548 PMCID: PMC1951960 DOI: 10.1128/mcb.02091-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histone deacetylase 7 (HDAC7) is highly expressed in CD4(+)/CD8(+) thymocytes and functions as a signal-dependent repressor of gene transcription during T-cell development. In this study, we expressed HDAC7 mutant proteins in a T-cell line and use DNA microarrays to identify transcriptional targets of HDAC7 in T cells. The changes in gene expression levels were compared to differential gene expression profiles associated with positive and negative thymic selection. This analysis reveals that HDAC7 regulates an extensive set of genes that are differentially expressed during both positive and negative thymic selection. Many of these genes play important functional roles in thymic selection, primarily via modulating the coupling between antigen receptor engagement and downstream signaling events. Consistent with the model that HDAC7 may play an important role in both positive and negative thymic selection, the expression of distinct HDAC7 mutants or the abrogation of HDAC7 expression can either enhance or inhibit the signal-dependent differentiation of a CD4(+)/CD8(+) cell line.
Collapse
Affiliation(s)
- Herbert G Kasler
- Gladstone Institute of Virology and Immunology, 1650 Owens Street, San Francisco, CA 94158, USA
| | | |
Collapse
|
44
|
Motta V, Lejon K, Holmberg D. The NOD allele of the Idd5 locus on chromosome 1 mediates a non-cell-autonomous defect in negative selection of T cells. J Autoimmun 2007; 28:216-23. [PMID: 17449224 DOI: 10.1016/j.jaut.2007.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 03/01/2007] [Accepted: 03/02/2007] [Indexed: 01/11/2023]
Abstract
Recent data have suggested that non-obese diabetic (NOD) mice display a defect in negative thymic selection. Using mixed bone marrow chimeras, we demonstrate that the NOD allele of the diabetes susceptibility region 5 (Idd5) locus on chromosome 1, confers defective negative selection in response to endogenous superantigens (SAg) Mtv8 and Mtv9. We generated mixed bone marrow (BM) chimeras in which the donor cells of NOD and C3H or NOD.Idd5(b10) and C3H coexist and are similarly exposed to the Mtv8 and Mtv9 SAg. Under these conditions, SAg-mediated deletion of Vbeta11+ T cells is less efficient in chimeric mice reconstituted with NOD+C3H BM, compared with chimeras reconstituted with NOD.Idd5(b10)+C3H BM. Interestingly, the observed discrepancy was not T cell autonomous but was found to be mediated by a BM derived cellular subset, and under control of a gene(s) in the Idd5 region.
Collapse
Affiliation(s)
- Vinicius Motta
- Department of Medical Biosciences, Division of Medical and Clinical Genetics, Umeå University, S-901 87 Umeå, Sweden
| | | | | |
Collapse
|
45
|
Lomada D, Liu B, Coghlan L, Hu Y, Richie ER. Thymus Medulla Formation and Central Tolerance Are Restored in IKKα−/− Mice That Express an IKKα Transgene in Keratin 5+ Thymic Epithelial Cells. THE JOURNAL OF IMMUNOLOGY 2007; 178:829-37. [PMID: 17202344 DOI: 10.4049/jimmunol.178.2.829] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Medullary thymic epithelial cells (mTECs) play an essential role in establishing central tolerance due to their unique capacity to present a diverse array of tissue restricted Ags that induce clonal deletion of self-reactive thymocytes. One mTEC subset expresses keratin 5 (K5) and K14, but fails to bind Ulex europaeus agglutinin-1 (UEA-1) lectin. A distinct mTEC subset binds UEA-1 and expresses K8, but not K5 or K14. Development of both mTEC subsets requires activation of the noncanonical NF-kappaB pathway. In this study, we show that mTEC development is severely impaired and autoimmune manifestations occur in mice that are deficient in IkappaB kinase (IKK)alpha, a required intermediate in the noncanonical NF-kappaB signaling pathway. Introduction of an IKKalpha transgene driven by a K5 promoter restores the K5(+)K14(+) mTEC subset in IKKalpha(-/-) mice. Unexpectedly, the K5-IKKalpha transgene also rescues the UEA-1 binding mTEC subset even though K5 expression is not detectable in these cells. In addition, expression of the K5-IKKalpha transgene ameliorates autoimmune symptoms in IKKalpha(-/-) mice. These data suggest that 1) medulla formation and central tolerance depend on activating the alternative NF-kappaB signaling pathway selectively in K5-expressing mTECs and 2) the K5-expressing subset either contains immediate precursors of UEA-1 binding cells or indirectly induces their development.
Collapse
Affiliation(s)
- Dakshayani Lomada
- Department of Carcinogenesis, Science Park Research Division, University of Texas M. D. Anderson Cancer Center, 1808 Park Road 1C, Smithville, TX 78957, USA
| | | | | | | | | |
Collapse
|
46
|
Sansom DM, Walker LSK. The role of CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) in regulatory T-cell biology. Immunol Rev 2006; 212:131-48. [PMID: 16903911 DOI: 10.1111/j.0105-2896.2006.00419.x] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The profound influence of CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) on T-cell immunity has been known for over a decade, yet the precise roles played by these molecules still continue to emerge. Initially viewed as molecules that provide cell-intrinsic costimulatory and inhibitory signals, recent evidence suggests that both CD28 and CTLA-4 are also important in the homeostasis and function of a population of suppressive cells, termed regulatory T cells (Tregs). Here we review the main features of the CD28 and CTLA-4 system and examine how these impact upon Treg biology.
Collapse
Affiliation(s)
- David M Sansom
- MRC Centre for Immune Regulation, University of Birmingham Medical School, Birmingham, UK.
| | | |
Collapse
|
47
|
Ito H, Esashi E, Akiyama T, Inoue JI, Miyajima A. IL-18 produced by thymic epithelial cells induces development of dendritic cells with CD11b in the fetal thymus. Int Immunol 2006; 18:1253-63. [PMID: 16772369 DOI: 10.1093/intimm/dxl058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Thymic dendritic cells (DCs) are suggested to be involved in T cell selection; however, their exact origin and function remain to be established. Although DCs in the adult thymus are mostly CD8alpha(+)CD11b(-), we found that CD8alpha(-)CD11b(+) DCs were abundantly present in the fetal thymus and they possessed antigen-presenting activity. Interestingly, these CD11b(+) DCs were significantly decreased in mice deficient for TNFR-associated factor 6 (TRAF6), a key signaling molecule downstream of IL-1 and tumor necrosis factor-alpha that have been known to induce DCs from intra-thymic precursor cells. CD11b(+) DCs were induced from CD4(-)CD8(-) thymocytes by fetal thymic epithelial cells (TECs). Analysis of cytokine expression in TECs revealed that none of the cytokines previously shown to induce DCs were expressed. Instead, we found strong expression of IL-18 that transmits signals through TRAF6. IL-18 induced CD11b(+) DCs from CD4(-)CD8(-) thymocytes in vitro, which exhibited strong antigen-presenting activity and formed conjugates with CD4(+)CD8(+) T cells efficiently. Taken together, these results strongly suggest that CD11b(+) DCs are differentiated from CD4(-)CD8(-) thymocytes by IL-18 produced from TECs and that they are involved in T cell selection in the fetal thymus.
Collapse
Affiliation(s)
- Hiroaki Ito
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Tokyo 113-0032, Japan
| | | | | | | | | |
Collapse
|
48
|
Romagnoli P, Tellier J, Van Meerwijk JPM. Genetic control of thymic development of CD4+CD25+FoxP3+ regulatory T lymphocytes. Eur J Immunol 2005; 35:3525-32. [PMID: 16259008 PMCID: PMC2755768 DOI: 10.1002/eji.200535225] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Among the several mechanisms known to be involved in the establishment and maintenance of immunological tolerance, the activity of CD4+CD25+ regulatory T lymphocytes has recently incited most interest because of its critical role in inhibition of autoimmunity and anti-tumor immunity. Surprisingly, very little is known about potential genetic modulation of intrathymic regulatory T lymphocyte development. We show that distinct proportions of CD4+CD25+FoxP3+ regulatory T cells are found in thymi of common laboratory mouse strains. We demonstrate that distinct levels of phenotypically identical regulatory T cells develop with similar kinetics in the mice studied. Our experimental data on congenic mouse strains indicate that differences are not caused by the distinct MHC haplotypes of the inbred mouse strains. Moreover, the responsible loci act in a thymocyte-intrinsic manner, confirming the latter conclusion. We have not found any correlation between thymic and peripheral levels of regulatory T cells, consistent with known homeostatic expansion and/or retraction of the peripheral regulatory T cell pool. Our data indicate that polymorphic genes modulate differentiation of regulatory T cells. Identification of responsible genes may reveal novel clinical targets and still elusive regulatory T cell-specific markers. Importantly, these genes may also modulate susceptibility to autoimmune disease.
Collapse
Affiliation(s)
- Paola Romagnoli
- Centre de Physiopathologie Toulouse Purpan
INSERM : U563IFR30Université Paul Sabatier - Toulouse IIIIFR150Hopital de Purpan Place du Docteur Baylac 31024 TOULOUSE CEDEX 3,FR
| | - Julie Tellier
- Centre de Physiopathologie Toulouse Purpan
INSERM : U563IFR30Université Paul Sabatier - Toulouse IIIIFR150Hopital de Purpan Place du Docteur Baylac 31024 TOULOUSE CEDEX 3,FR
| | - Joost PM Van Meerwijk
- Centre de Physiopathologie Toulouse Purpan
INSERM : U563IFR30Université Paul Sabatier - Toulouse IIIIFR150Hopital de Purpan Place du Docteur Baylac 31024 TOULOUSE CEDEX 3,FR
- IUF, Institut Universitaire de France
Institut Universitaire de FranceToulouse, France,FR
- Université Toulouse III Paul Sabatier
Université Paul Sabatier - Toulouse IIIToulouse, F-31400 France,FR
| |
Collapse
|
49
|
Hogquist KA, Baldwin TA, Jameson SC. Central tolerance: learning self-control in the thymus. Nat Rev Immunol 2005; 5:772-82. [PMID: 16200080 DOI: 10.1038/nri1707] [Citation(s) in RCA: 436] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the past few years, there has been a flurry of discoveries and advancements in our understanding of how the thymus prepares T cells to exist at peace in normal healthy tissue: that is, to be self-tolerant. In the thymus, one of the main mechanisms of T-cell central tolerance is clonal deletion, although the selection of regulatory T cells is also important and is gaining enormous interest. In this Review, we discuss the emerging consensus about which models of clonal deletion are most physiological, and we review recent data that define the molecular mechanisms of central tolerance.
Collapse
Affiliation(s)
- Kristin A Hogquist
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, 312 Church Street South East, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
50
|
Holmberg D, Cilio CM, Lundholm M, Motta V. CTLA-4 (CD152) and its involvement in autoimmune disease. Autoimmunity 2005; 38:225-33. [PMID: 16126511 DOI: 10.1080/08916930500050210] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Autoimmune diseases (AID) are inherited as complex genetic diseases. Different Autoimmune diseases have been found to cluster in families and are believed to share some common etiological factors. With the exception of major histocompatibility complex (MHC) genes contributing susceptibility to these diseases have been difficult to identify. CD152 has emerged as one such candidate unifying several autoimmune diseases. We here review the evidence that CD152 constitutes a general susceptibility factor for multiple autoimmune diseases and discuss how CD152 and other co-stimulatory pathways may contribute to autoimmune pathogenesis.
Collapse
Affiliation(s)
- Dan Holmberg
- Department of Medical Biosciences, Umeå University, Sweden.
| | | | | | | |
Collapse
|