1
|
Qian B, Lu R, Mao S, Chen Y, Yang M, Zhang W, Zhang M, Zhu D, Liu Z, Zen K, Li L. Podocyte SIRPα reduction aggravates lupus nephritis via promoting T cell inflammatory responses. Cell Rep 2024; 43:114249. [PMID: 38758648 DOI: 10.1016/j.celrep.2024.114249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/07/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024] Open
Abstract
Signal-regulatory protein alpha (SIRPα) has recently been found to be highly expressed in podocytes and is essential for maintaining podocyte function. However, its immunoregulatory function in podocytes remains elusive. Here, we report that SIRPα controls podocyte antigen presentation in specific T cell activation via inhibiting spleen tyrosine kinase (Syk) phosphorylation. First, podocyte SIRPα under lupus nephritis (LN) conditions is strongly downregulated. Second, podocyte-specific deletion of SIRPα exacerbates renal disease progression in lupus-prone mice, as evidenced by an increase in T cell infiltration. Third, SIRPα deletion or knockdown enhances podocyte antigen presentation, which activates specific T cells, via enhancing Syk phosphorylation. Supporting this, Syk inhibitor GS-9973 prevents podocyte antigen presentation, resulting in a decrease of T cell activation and mitigation of renal disease caused by SIRPα knockdown or deletion. Our findings reveal an immunoregulatory role of SIRPα loss in promoting podocyte antigen presentation to activate specific T cell immune responses in LN.
Collapse
Affiliation(s)
- Bin Qian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Rui Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Shuya Mao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Yang Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Miao Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Wenxuan Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Dihan Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Ke Zen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Limin Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
2
|
Lteif M, Pallardy M, Turbica I. Antibodies internalization mechanisms by dendritic cells and their role in therapeutic antibody immunogenicity. Eur J Immunol 2024; 54:e2250340. [PMID: 37985174 DOI: 10.1002/eji.202250340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Internalization and processing by antigen-presenting cells such as dendritic cells (DCs) are critical steps for initiating a T-cell response to therapeutic antibodies. Consequences are the production of neutralizing antidrug antibodies altering the clinical response, the presence of immune complexes, and, in some rare cases, hypersensitivity reactions. In recent years, significant progress has been made in the knowledge of cellular uptake mechanisms of antibodies in DCs. The uptake of antibodies could be directly related to their immunogenicity by regulating the quantity of materials entering the DCs in relation to antibody structure. Here, we summarize the latest insights into cellular uptake mechanisms and pathways in DCs. We highlight the approaches to study endocytosis, the impact of endocytosis routes on T-cell response, and discuss the link between how DCs internalize therapeutic antibodies and the potential mechanisms that could give rise to immunogenicity. Understanding these processes could help in developing assays to evaluate the immunogenicity potential of biotherapeutics.
Collapse
Affiliation(s)
- Maria Lteif
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| | - Marc Pallardy
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| | - Isabelle Turbica
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| |
Collapse
|
3
|
Nam KH, Im DS. Alisol B 23-Acetate Ameliorates Ovalbumin-Induced Allergic Asthma during Sensitization and Challenge Periods. Biomol Ther (Seoul) 2023; 31:611-618. [PMID: 37317820 PMCID: PMC10616516 DOI: 10.4062/biomolther.2023.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 06/16/2023] Open
Abstract
Rhizome of Alisma orientale has been used as a traditional medicine for treating kidney diseases in East Asian countries. Its inhibitory effects on hypersensitivity responses have been reported for methanol extracts, with alisol B 23-acetate (AB23Ac) being the most active constituent among six terpenes in inhibiting the direct passive Arthus reaction. However, whether AB23Ac has efficacy against allergic asthma has not been tested to date. The in vivo efficacy of AB23Ac in an ovalbumin (OVA)-induced allergic asthma mouse model was evaluated by administrating AB23Ac before OVA sensitization or OVA challenge in BALB/c mice. AB23Ac suppressed antigen-induced degranulation of RBL-2H3 mast cells in a concentration-dependent manner. The administration of AB23Ac both before OVA sensitization and OVA challenge greatly lowered pulmonary resistance and the increase in immune cell counts and inflammatory responses around the peribronchial and perivascular regions. In addition, the inflammatory cytokine levels of Th1/Th2/Th17 cells in the bronchoalveolar lavage fluid decreased in the AB23Ac-treated groups. AB23Ac reduced the number of PAS-stained cells in the lungs. Furthermore, a computer modeling study indicated that AB23Ac can bind tightly to spleen tyrosine kinase (Syk). These results suggest that AB23Ac may ameliorate allergic asthma by suppressing immune responses in dendritic cells during sensitization and in mast cells during challenge periods.
Collapse
Affiliation(s)
- Ki-Hyuk Nam
- Department of Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02446, Republic of Korea
| | - Dong-Soon Im
- Department of Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02446, Republic of Korea
- Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446, Republic of Korea
| |
Collapse
|
4
|
Guillet É, Brun É, Ferard C, Hardonnière K, Nabhan M, Legrand FX, Pallardy M, Biola-Vidamment A. Human dendritic cell maturation induced by amorphous silica nanoparticles is Syk-dependent and triggered by lipid raft aggregation. Part Fibre Toxicol 2023; 20:12. [PMID: 37076877 PMCID: PMC10114393 DOI: 10.1186/s12989-023-00527-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Synthetic amorphous silica nanoparticles (SAS-NPs) are widely employed in pharmaceutics, cosmetics, food and concretes. Workers and the general population are exposed daily via diverse routes of exposure. SAS-NPs are generally recognized as safe (GRAS) by the Food and Drug Administration, but because of their nanoscale size and extensive uses, a better assessment of their immunotoxicity is required. In the presence of immune "danger signals", dendritic cells (DCs) undergo a maturation process resulting in their migration to regional lymph nodes where they activate naive T-cells. We have previously shown that fumed silica pyrogenic SAS-NPs promote the two first steps of the adaptative immune response by triggering DC maturation and T-lymphocyte response, suggesting that SAS-NPs could behave as immune "danger signals". The present work aims to identify the mechanism and the signalling pathways involved in DC phenotype modifications provoked by pyrogenic SAS-NPs. As a pivotal intracellular signalling molecule whose phosphorylation is associated with DC maturation, we hypothesized that Spleen tyrosine kinase (Syk) may play a central role in SAS-NPs-induced DC response. RESULTS In human monocyte-derived dendritic cells (moDCs) exposed to SAS-NPs, Syk inhibition prevented the induction of CD83 and CD86 marker expression. A significant decrease in T-cell proliferation and IFN-γ, IL-17F and IL-9 production was found in an allogeneic moDC:T-cell co-culture model. These results suggested that the activation of Syk was necessary for optimal co-stimulation of T-cells. Moreover, Syk phosphorylation, observed 30 min after SAS-NP exposure, occurred upstream of the c-Jun N-terminal kinase (JNK) Mitogen-activated protein kinases (MAPK) and was elicited by the Src family of protein tyrosine kinases. Our results also showed for the first time that SAS-NPs provoked aggregation of lipid rafts in moDCs and that MβCD-mediated raft destabilisation altered Syk activation. CONCLUSIONS We showed that SAS-NPs could act as an immune danger signal in DCs through a Syk-dependent pathway. Our findings revealed an original mechanism whereby the interaction of SAS-NPs with DC membranes promoted aggregation of lipid rafts, leading to a Src kinase-initiated activation loop triggering Syk activation and functional DC maturation.
Collapse
Affiliation(s)
- Éléonore Guillet
- INSERM UMR-996, Inserm, Inflammation, Microbiome and Immunosurveillance, Faculté de Pharmacie, Université Paris-Saclay, 17, Avenue Des Sciences, 91400, Orsay, France
| | - Émilie Brun
- Institut de Chimie Physique, CNRS, Université Paris-Saclay, 91400, Orsay, France
| | - Céline Ferard
- Institut de Chimie Physique, CNRS, Université Paris-Saclay, 91400, Orsay, France
| | - Kévin Hardonnière
- INSERM UMR-996, Inserm, Inflammation, Microbiome and Immunosurveillance, Faculté de Pharmacie, Université Paris-Saclay, 17, Avenue Des Sciences, 91400, Orsay, France
| | - Myriam Nabhan
- INSERM UMR-996, Inserm, Inflammation, Microbiome and Immunosurveillance, Faculté de Pharmacie, Université Paris-Saclay, 17, Avenue Des Sciences, 91400, Orsay, France
| | | | - Marc Pallardy
- INSERM UMR-996, Inserm, Inflammation, Microbiome and Immunosurveillance, Faculté de Pharmacie, Université Paris-Saclay, 17, Avenue Des Sciences, 91400, Orsay, France
| | - Armelle Biola-Vidamment
- INSERM UMR-996, Inserm, Inflammation, Microbiome and Immunosurveillance, Faculté de Pharmacie, Université Paris-Saclay, 17, Avenue Des Sciences, 91400, Orsay, France.
| |
Collapse
|
5
|
Development of New Drugs for Autoimmune Hemolytic Anemia. Pharmaceutics 2022; 14:pharmaceutics14051035. [PMID: 35631621 PMCID: PMC9147507 DOI: 10.3390/pharmaceutics14051035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Autoimmune hemolytic anemia (AIHA) is a rare disorder characterized by the autoantibody-mediated destruction of red blood cells, and treatments for it still remain challenging. Traditional first-line immunosuppressive therapy, which includes corticosteroids and rituximab, is associated with adverse effects as well as treatment failures, and relapses are common. Subsequent lines of therapy are associated with higher rates of toxicity, and some patients remain refractory to currently available treatments. Novel therapies have become promising for this vulnerable population. In this review, we will discuss the mechanism of action, existing data, and ongoing clinical trials of current novel therapies for AIHA, including B-cell-directed therapy, phagocytosis inhibition, plasma cell-directed therapy, and complement inhibition.
Collapse
|
6
|
The transmembrane adapter SCIMP recruits tyrosine kinase Syk to phosphorylate Toll-like receptors to mediate selective inflammatory outputs. J Biol Chem 2022; 298:101857. [PMID: 35337798 PMCID: PMC9052152 DOI: 10.1016/j.jbc.2022.101857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/23/2022] Open
Abstract
Innate immune signaling by Toll-like receptors (TLRs) involves receptor phosphorylation, which helps to shape and drive key inflammatory outputs, yet our understanding of the kinases and mechanisms that mediate TLR phosphorylation is incomplete. Spleen tyrosine kinase (Syk) is a nonreceptor protein tyrosine kinase, which is known to relay adaptive and innate immune signaling, including from TLRs. However, TLRs do not contain the conserved dual immunoreceptor tyrosine-based activation motifs that typically recruit Syk to many other receptors. One possibility is that the Syk-TLR association is indirect, relying on an intermediary scaffolding protein. We previously identified a role for the palmitoylated transmembrane adapter protein SCIMP in scaffolding the Src tyrosine kinase Lyn, for TLR phosphorylation, but the role of SCIMP in mediating the interaction between Syk and TLRs has not yet been investigated. Here, we show that SCIMP recruits Syk in response to lipopolysaccharide-mediated TLR4 activation. We also show that Syk contributes to the phosphorylation of SCIMP and TLR4 to enhance their binding. Further evidence pinpoints two specific phosphorylation sites in SCIMP critical for its interaction with Syk-SH2 domains in the absence of immunoreceptor tyrosine-based activation motifs. Finally, using inhibitors and primary macrophages from SCIMP-/- mice, we confirm a functional role for SCIMP-mediated Syk interaction in modulating TLR4 phosphorylation, signaling, and cytokine outputs. In conclusion, we identify SCIMP as a novel, immune-specific Syk scaffold, which can contribute to inflammation through selective TLR-driven inflammatory responses.
Collapse
|
7
|
Inhibition of spleen tyrosine kinase decreases donor specific antibody levels in a rat model of sensitization. Sci Rep 2022; 12:3330. [PMID: 35228550 PMCID: PMC8885754 DOI: 10.1038/s41598-022-06413-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
Antibody mediated rejection is a major cause of renal allograft loss. Circulating preformed donor specific antibodies (DSA) can result as a consequence of blood transfusion, pregnancy or prior transplantation. Current treatment strategies are limited due to partial or transient efficacy, adverse side-effects or patient unsuitability. Previous in vivo studies exploring autoimmune diseases have shown that spleen tyrosine kinase (SYK) signalling is involved in the development of pathogenic autoantibody. The role of SYK in allogenic antibody production is unknown, and we investigated this in a rodent model of sensitization, established by the transfusion of F344 whole blood into LEW rats. Two-week treatment of sensitized rats with selective SYK inhibitor fostamatinib strongly blocked circulating DSA production without affecting overall total immunoglobulin levels, and inhibition was sustained up to 5 weeks post-completion of the treatment regimen. Fostamatinib treatment did not affect mature B cell subset or plasma cell levels, which remained similar between non-treated controls, vehicle treated and fostamatinib treated animals. Our data indicate fostamatinib may provide an alternative therapeutic option for patients who are at risk of sensitization following blood transfusion while awaiting renal transplant.
Collapse
|
8
|
Zhang TM, Yang K, Liang SX, Tian YY, Xu ZY, Liu H, Yan YB. Microarray Analysis of Differential Gene Expression Between Traumatic Temporomandibular Joint Fibrous and Bony Ankylosis in a Sheep Model. Med Sci Monit 2021; 27:e932545. [PMID: 34400603 PMCID: PMC8379999 DOI: 10.12659/msm.932545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background The type of traumatic temporomandibular joint (TMJ) ankylosis depends on the degree of severity of TMJ trauma. Here, we performed comprehensive differential molecular profiling between TMJ fibrous and bony ankylosis. Material/Methods Six sheep were used and a bilateral different degree of TMJ trauma was performed to induce fibrous ankylosis in one side and bony ankylosis in the other side. The ankylosed calluses were harvested at days 14 and 28 postoperatively and analyzed by Affymetrix OviGene-1_0-ST microarrays. DAVID was used to perform the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis for the different expression genes (DEGs). The DEGs were also typed into protein–protein interaction (PPI) networks to get the interaction data. Ten DEGs, including 7 hub genes from PPI analysis, were confirmed by real-time PCR. Results We found 90 and 323 DEGs at least 2-fold at days 14 and 28, respectively. At day 14, bony ankylosis showed upregulated DEGs, such as TLR8, SYK, NFKBIA, PTPRC, CD86, ITGAM, and ITGAL, indicating a stronger immune and inflammatory response and cell adhesion, while genes associated with anti-adhesion (PRG4) and inhibition of osteoblast differentiation (SFRP1) had higher expression in fibrous ankylosis. At day 28, bony ankylosis showed increased biological process related to new bone formation, while fibrous ankylosis was characterized by a prolonged immune and inflammatory reaction. Conclusions This study provides a differential gene expression profile between TMJ fibrous and bony ankylosis. Further study of these key genes may provide new ideas for future treatment of TMJ bony ankylosis.
Collapse
Affiliation(s)
- Tong-Mei Zhang
- Department of Oromaxillofacial - Head and Neck Surgery, Tianjin Stomatological Hospital, Tianjin, China (mainland)
| | - Kun Yang
- Tianjin Medical University, Tianjin, China (mainland)
| | - Su-Xia Liang
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, Tianjin, China (mainland)
| | - Yuan-Yuan Tian
- Department of Oromaxillofacial - Head and Neck Surgery, Tianjin Stomatological Hospital, Tianjin, China (mainland)
| | - Zhao-Yuan Xu
- Department of Oromaxillofacial - Head and Neck Surgery, Tianjin Stomatological Hospital, Tianjin, China (mainland)
| | - Hao Liu
- Department of Oromaxillofacial - Head and Neck Surgery, Tianjin Stomatological Hospital, Tianjin, China (mainland)
| | - Ying-Bin Yan
- Department of Oromaxillofacial - Head and Neck Surgery, Tianjin Stomatological Hospital, Tianjin, China (mainland)
| |
Collapse
|
9
|
Pohlmeyer CW, Shang C, Han P, Cui ZH, Jones RM, Clarke AS, Murray BP, Lopez DA, Newstrom DW, Inzunza MD, Matzkies FG, Currie KS, Di Paolo JA. Characterization of the mechanism of action of lanraplenib, a novel spleen tyrosine kinase inhibitor, in models of lupus nephritis. BMC Rheumatol 2021; 5:15. [PMID: 33781343 PMCID: PMC8008554 DOI: 10.1186/s41927-021-00178-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
Background B cells are critical mediators of systemic lupus erythematosus (SLE) and lupus nephritis (LN), and antinuclear antibodies can be found in the serum of approximately 98% of patients with SLE. Spleen tyrosine kinase (SYK) is a nonreceptor tyrosine kinase that mediates signaling from immunoreceptors, including the B cell receptor. Active, phosphorylated SYK has been observed in tissues from patients with SLE or cutaneous lupus erythematosus, and its inhibition is hypothesized to ameliorate disease pathogenesis. We sought to evaluate the efficacy and characterize the mechanism of action of lanraplenib, a selective oral SYK inhibitor, in the New Zealand black/white (NZB/W) murine model of SLE and LN. Methods Lanraplenib was evaluated for inhibition of primary human B cell functions in vitro. Furthermore, the effect of SYK inhibition on ameliorating LN-like disease in vivo was determined by treating NZB/W mice with lanraplenib, cyclophosphamide, or a vehicle control. Glomerulopathy and immunoglobulin G (IgG) deposition were quantified in kidneys. The concentration of proinflammatory cytokines was measured in serum. Splenocytes were analyzed by flow cytometry for B cell maturation and T cell memory maturation, and the presence of T follicular helper and dendritic cells. Results In human B cells in vitro, lanraplenib inhibited B cell activating factor-mediated survival as well as activation, maturation, and immunoglobulin M production. Treatment of NZB/W mice with lanraplenib improved overall survival, prevented the development of proteinuria, and reduced blood urea nitrogen concentrations. Kidney morphology was significantly preserved by treatment with lanraplenib as measured by glomerular diameter, protein cast severity, interstitial inflammation, vasculitis, and frequency of glomerular crescents; treatment with lanraplenib reduced glomerular IgG deposition. Mice treated with lanraplenib had reduced concentrations of serum proinflammatory cytokines. Lanraplenib blocked disease-driven B cell maturation and T cell memory maturation in the spleen. Conclusions Lanraplenib blocked the progression of LN-like disease in NZB/W mice. Human in vitro and murine in vivo data suggest that lanraplenib may be efficacious in preventing disease progression in patients with LN at least in part by inhibiting B cell maturation. These data provide additional rationale for the use of lanraplenib in the treatment of SLE and LN. Supplementary Information The online version contains supplementary material available at 10.1186/s41927-021-00178-3.
Collapse
Affiliation(s)
| | - Ching Shang
- Department of Biology, Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA, 94404, USA
| | - Pei Han
- Department of Biology, Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA, 94404, USA
| | - Zhi-Hua Cui
- Department of Biology, Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA, 94404, USA
| | - Randall M Jones
- Department of Biology, Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA, 94404, USA
| | - Astrid S Clarke
- Department of Biology, Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA, 94404, USA
| | - Bernard P Murray
- Department of Drug Metabolism, Gilead Sciences, Inc., Foster City, CA, USA
| | - David A Lopez
- Department of Biology, Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA, 94404, USA
| | - David W Newstrom
- Department of Nonclinical Safety and Pathobiology, Gilead Sciences, Inc., Foster City, CA, USA
| | - M David Inzunza
- Department of Nonclinical Safety and Pathobiology, Gilead Sciences, Inc., Foster City, CA, USA
| | | | - Kevin S Currie
- Department of Chemistry, Gilead Sciences, Inc., Foster City, CA, USA
| | - Julie A Di Paolo
- Department of Biology, Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA, 94404, USA
| |
Collapse
|
10
|
Constitutively Activated DAP12 Induces Functional Anti-Tumor Activation and Maturation of Human Monocyte-Derived DC. Int J Mol Sci 2021; 22:ijms22031241. [PMID: 33513928 PMCID: PMC7865632 DOI: 10.3390/ijms22031241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 01/07/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen presenting cells with a great capacity for cross-presentation of exogenous antigens from which robust anti-tumor immune responses ensue. However, this function is not always available and requires DCs to first be primed to induce their maturation. In particular, in the field of DC vaccine design, currently available methodologies have been limited in eliciting a sustained anti-tumor immune response. Mechanistically, part of the maturation response is influenced by the presence of stimulatory receptors relying on ITAM-containing activating adaptor molecules like DAP12, that modulates their function. We hypothesize that activating DAP12 in DC could force their maturation and enhance their potential anti-tumor activity for therapeutic intervention. For this purpose, we developed constitutively active DAP12 mutants that can promote activation of monocyte-derived DC. Here we demonstrate its ability to induce the maturation and activation of monocyte-derived DCs which enhances migration, and T cell stimulation in vitro using primary human cells. Moreover, constitutively active DAP12 stimulates a strong immune response in a murine melanoma model leading to a reduction of tumor burden. This provides proof-of-concept for investigating the pre-activation of antigen presenting cells to enhance the effectiveness of anti-tumor immunotherapies.
Collapse
|
11
|
Nabhan M, Legrand FX, Le-Minh V, Robin B, Bechara R, Huang N, Smadja C, Pallardy M, Turbica I. The FcγRIIa–Syk Axis Controls Human Dendritic Cell Activation and T Cell Response Induced by Infliximab Aggregates. THE JOURNAL OF IMMUNOLOGY 2020; 205:2351-2361. [DOI: 10.4049/jimmunol.1901381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 08/28/2020] [Indexed: 11/19/2022]
|
12
|
Zhang NN, Kang JS, Liu SS, Gu SM, Song ZP, Li FX, Wang LF, Yao L, Li T, Li LL, Wang Y, Li XJ, Mao XM. Flavanomarein inhibits high glucose-stimulated epithelial-mesenchymal transition in HK-2 cells via targeting spleen tyrosine kinase. Sci Rep 2020; 10:439. [PMID: 31949205 PMCID: PMC6965095 DOI: 10.1038/s41598-019-57360-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 12/27/2019] [Indexed: 01/14/2023] Open
Abstract
Flavanomarein (FM) is a major natural compound of Coreopsis tinctoria Nutt with protective effects against diabetic nephropathy (DN). In this study, we investigated the effects of FM on epithelial-mesenchymal transition (EMT) in high glucose (HG)-stimulated human proximal tubular epithelial cells (HK-2) and the underlying mechanisms, including both direct targets and downstream signal-related proteins. The influence of FM on EMT marker proteins was evaluated via western blot. Potential target proteins of FM were searched using Discovery Studio 2017 R2. Gene Ontology (GO) analysis was conducted to enrich the proteins within the protein-protein interaction (PPI) network for biological processes. Specific binding of FM to target proteins was examined via molecular dynamics and surface plasmon resonance analyses (SPR). FM promoted the proliferation of HK-2 cells stimulated with HG and inhibited EMT through the Syk/TGF-β1/Smad signaling pathway. Spleen tyrosine kinase (Syk) was predicted to be the most likely directly interacting protein with FM. Combined therapy with a Syk inhibitor and FM presents significant potential as an effective novel therapeutic strategy for DN.
Collapse
Affiliation(s)
- Nan-Nan Zhang
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China.,Department of Pharmacology, Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Jin-Sen Kang
- Department of Pharmacology, Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Shuai-Shuai Liu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Si-Meng Gu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Zhi-Peng Song
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China.,Department of Pharmacology, Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Feng-Xiang Li
- Department of Pharmacology, Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Li-Feng Wang
- Department of Physiology, Preclinical School, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Lan Yao
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Tian Li
- Department of Histology and Embryology, Preclinical College, XinJiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Lin-Lin Li
- Department of Pharmacology, Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Ye Wang
- Department of Pharmacology, Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Xue-Jun Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Xin-Min Mao
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China. .,College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China.
| |
Collapse
|
13
|
Verbeek JS, Hirose S, Nishimura H. The Complex Association of FcγRIIb With Autoimmune Susceptibility. Front Immunol 2019; 10:2061. [PMID: 31681256 PMCID: PMC6803437 DOI: 10.3389/fimmu.2019.02061] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022] Open
Abstract
FcγRIIb is the only inhibitory Fc receptor and controls many aspects of immune and inflammatory responses. The observation 19 years ago that Fc γ RIIb -/- mice generated by gene targeting in 129 derived ES cells developed severe lupus like disease when backcrossed more than 7 generations into C57BL/6 background initiated extensive research on the functional understanding of this strong autoimmune phenotype. The genomic region in the distal part of Chr1 both in human and mice in which the Fc γ R gene cluster is located shows a high level of complexity in relation to the susceptibility to SLE. Specific haplotypes of closely linked genes including the Fc γ RIIb and Slamf genes are associated with increased susceptibility to SLE both in mice and human. Using forward and reverse genetic approaches including in human GWAS and in mice congenic strains, KO mice (germline and cell type specific, on different genetic background), knockin mice, overexpressing transgenic mice combined with immunological models such as adoptive transfer of B cells from Ig transgenic mice the involved genes and the causal mutations and their associated functional alterations were analyzed. In this review the results of this 19 years extensive research are discussed with a focus on (genetically modified) mouse models.
Collapse
Affiliation(s)
- J Sjef Verbeek
- Department of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| | - Sachiko Hirose
- Department of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| | - Hiroyuki Nishimura
- Department of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| |
Collapse
|
14
|
McAdoo S, Tam FWK. Role of the Spleen Tyrosine Kinase Pathway in Driving Inflammation in IgA Nephropathy. Semin Nephrol 2019; 38:496-503. [PMID: 30177021 PMCID: PMC6135887 DOI: 10.1016/j.semnephrol.2018.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Summary: IgA nephropathy is the most common type of primary glomerulonephritis worldwide. At least 25% of patients may progress to kidney failure requiring dialysis or transplantation. Treatment of IgA nephropathy using generalized immunosuppression is controversial, with concerns regarding the balance of safety and efficacy in a nonspecific approach. This review describes the recent scientific evidence, and a current clinical trial, investigating whether spleen tyrosine kinase (SYK) may be a novel and selective therapeutic target for IgA nephropathy. SYK, a cytoplasmic tyrosine kinase, has a pivotal role as an early intermediate in intracellular signal transduction cascades for the B-cell receptor and the immunoglobulin Fc receptor, and thus is critical for B-cell proliferation, differentiation, and activation, and for mediating proinflammatory responses after Fc-receptor engagement in various cell types. In renal biopsy specimens of patients with IgA nephropathy, increased expression and phosphorylation of SYK were detected, and this correlated with the histologic features of mesangial and endocapillary proliferation. In cell culture studies, patient-derived IgA1 stimulated mesangial cell SYK activation, cell proliferation, and cytokine production, and these responses were attenuated by pharmacologic or molecular inhibition of SYK. A global, randomized, double-blind, placebo-controlled trial investigating the safety and efficacy of fostamatinib (an oral prodrug SYK inhibitor) in the treatment of patients with IgA nephropathy is ongoing, which may provide important evidence of the safety and efficacy of targeting this pathway in clinical disease.
Collapse
Affiliation(s)
- Stephen McAdoo
- Renal and Vascular Inflammation Section, Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom
| | - Frederick W K Tam
- Renal and Vascular Inflammation Section, Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom..
| |
Collapse
|
15
|
Alzahrani KS, Nadeem A, Ahmad SF, Al-Harbi NO, Ibrahim KE, El-Sherbeeny AM, Alhoshani AR, Alshammari MA, Alotaibi MR, Al-Harbi MM. Inhibition of spleen tyrosine kinase attenuates psoriasis-like inflammation in mice through blockade of dendritic cell-Th17 inflammation axis. Biomed Pharmacother 2018; 111:347-358. [PMID: 30593001 DOI: 10.1016/j.biopha.2018.12.060] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/05/2018] [Accepted: 12/14/2018] [Indexed: 12/27/2022] Open
Abstract
Psoriasis is a debilitating autoimmune disease of the skin characterized by acanthosis and hyperkeratosis resulting from excessive growth of keratinocytes in the epidermis and inflammatory infiltrates in the dermis. Innate immune cells such as dendritic cells (DCs), perform a critical role in the pathophysiology of psoriasis by presenting inflammatory/costimulatory signals for differentiation of Th17 cells. Recent studies point to the involvement of spleen tyrosine kinase (SYK) in inflammatory signaling cascade of DCs. However, it is yet to be determined whether SYK inhibition in DCs would lead to diminishment of psoriatic inflammation. Therefore, our study evaluated the effects of SYK inhibitor, R406 on imiquimod (IMQ)-induced psoriasis-like inflammation, expression of costimulatory/inflammatory molecules in DCs and their relationship with Th17/Treg cells. Our data show that R406 causes attenuation of IMQ-induced dermal inflammation as shown by reduction in ear/back skin thickness, acanthosis and myeloperoxidase activity. This was concurrent with reduction in inflammatory cytokines and co-stimulatory molecules in CD11c + DCs such as IL-6, IL-23, MHCII, and CD40. This favoured the suppression of Th17 cells and upregulation of Treg cells in R406-treated mice with psoriasis-like inflammation. Direct activation of TLR7 by IMQ in splenocytic cultures led to increased SYK expression in CD11c + DCs and release of IL-23/IL-6. IMQ-induced IL-6/IL-23 levels were significantly diminished by SYK inhibitor, R406 in splenocytic cultures. In essence, our study shows that SYK inhibition supresses psoriasis-like inflammation by modifying DC function in mice. Further, it implies that SYK inhibition could be a prospective therapeutic approach for the treatment of psoriasis-like inflammation.
Collapse
Affiliation(s)
- Khalid S Alzahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad M El-Sherbeeny
- Industrial Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Ali R Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Musaad A Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Moureq R Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Clarke AS, Rousseau E, Wang K, Kim JY, Murray BP, Bannister R, Matzkies F, Currie KS, Di Paolo JA. Effects of GS-9876, a novel spleen tyrosine kinase inhibitor, on platelet function and systemic hemostasis. Thromb Res 2018; 170:109-118. [DOI: 10.1016/j.thromres.2018.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/08/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022]
|
17
|
Clarke F, Purvis HA, Sanchez-Blanco C, Gutiérrez-Martinez E, Cornish GH, Zamoyska R, Guermonprez P, Cope AP. The protein tyrosine phosphatase PTPN22 negatively regulates presentation of immune complex derived antigens. Sci Rep 2018; 8:12692. [PMID: 30139951 PMCID: PMC6107551 DOI: 10.1038/s41598-018-31179-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022] Open
Abstract
A C1858T single nucleotide polymorphism within PTPN22 (which encodes PTPN22R620W) is associated with an enhanced susceptibility to multiple autoimmune diseases including type 1 diabetes and rheumatoid arthritis. Many of the associated autoimmune diseases have an autoantibody component to their pathology. Fc receptors (FcRs) recognise autoantibodies when they bind to autoantigens and form immune complexes. After immune complex binding and receptor crosslinking, FcRs signal via Src and Syk family kinases, leading to antigen uptake, presentation and cytokine secretion. Ptpn22 encodes a protein tyrosine phosphatase that negatively regulates Src and Syk family kinases proximal to immunoreceptor signalling cascades. We therefore hypothesised that PTPN22 regulates immune complex stimulated FcR responses in dendritic cells (DCs). Bone marrow derived DCs (BMDCs) from wild type (WT) or Ptpn22-/- mice were pulsed with ovalbumin:anti-ovalbumin immune complexes (ova ICs). Co-culture with WT OT-II T cells revealed that ova IC pulsed Ptpn22-/- BMDCs have an enhanced capability to induce T cell proliferation. This was associated with an increased capability of Ptpn22-/- BMDCs to present immune complex derived antigens and to form ova IC dependent DC-T cell conjugates. These findings highlight PTPN22 as a regulator of FcR mediated responses and provide a link between the association of PTPN22R620W with autoantibody associated autoimmune diseases.
Collapse
Affiliation(s)
- Fiona Clarke
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, United Kingdom.
| | - Harriet A Purvis
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, United Kingdom
| | - Cristina Sanchez-Blanco
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, United Kingdom
| | - Enrique Gutiérrez-Martinez
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, United Kingdom
| | - Georgina H Cornish
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, United Kingdom
| | - Rose Zamoyska
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3FL, United Kingdom
| | - Pierre Guermonprez
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, United Kingdom
| | - Andrew P Cope
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, United Kingdom
| |
Collapse
|
18
|
Alhazmi A. Spleen Tyrosine Kinase as a Target Therapy for Pseudomonas aeruginosa Infection. J Innate Immun 2018; 10:255-263. [PMID: 29925062 DOI: 10.1159/000489863] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 04/29/2018] [Indexed: 12/11/2022] Open
Abstract
Spleen tyrosine kinase (SYK) is a nonreceptor tyrosine kinase which associates directly with extracellular receptors, and is critically involved in signal transduction pathways in a variety of cell types for the regulation of cellular responses. SYK is expressed ubiquitously in immune and nonimmune cells, and has a much wider biological role than previously recognized. Several studies have highlighted SYK as a key player in the pathogenesis of a multitude of diseases. Pseudomonas aeruginosa is an opportunistic gram-negative pathogen, which is responsible for systemic infections in immunocompromised individuals, accounting for a major cause of severe chronic lung infection in cystic fibrosis patients and subsequently resulting in a progressive deterioration of lung function. Inhibition of SYK activity has been explored as a therapeutic option in several allergic disorders, autoimmune diseases, and hematological malignancies. This review focuses on SYK as a therapeutic target, and describes the possibility of how current knowledge could be translated for therapeutic purposes to regulate the immune response to the opportunistic pathogen P. aeruginosa.
Collapse
Affiliation(s)
- Alaa Alhazmi
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada.,Department of Medical Laboratory Technology, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
19
|
Mahon OR, O'Hanlon S, Cunningham CC, McCarthy GM, Hobbs C, Nicolosi V, Kelly DJ, Dunne A. Orthopaedic implant materials drive M1 macrophage polarization in a spleen tyrosine kinase- and mitogen-activated protein kinase-dependent manner. Acta Biomater 2018; 65:426-435. [PMID: 29104084 DOI: 10.1016/j.actbio.2017.10.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 12/17/2022]
Abstract
Total joint replacements (TJR) are costly procedures required to relieve pain and restore function in patients suffering from end-stage arthritis. Despite great progress in the development and durability of TJRs, the generation of prosthesis-associated wear particles over time leads to an inflammatory cascade which culminates in periprosthetic osteolysis. Studies suggest that wear particles drive the polarization/differentiation of immature macrophages towards a pro-inflammatory M1 phenotype rather than an anti-inflammatory M2 phenotype associated with normal bone and wound healing. This, in turn, contributes to the initiation of peri-implant inflammation. As a result, modulating M1 macrophage cytokine production has been recognised as a viable therapeutic option. The aim of this study was to examine the impact of hydroxyapatite (HA) and poly(methyl methacrylate) (PMMA) particles on human macrophage polarization by comparing their effect on M1/M2-associated gene expression using real-time PCR. Furthermore, using immunoblotting to assess kinase activation, we sought to identify the intracellular signalling molecules activated by PMMA/HA particles and to determine whether pharmacological blockade of these molecules impacts on macrophage phenotype and cytokine production as measured by ELISA. We report that wear particles preferentially polarize macrophages towards an M1 phenotype, an effect that is dependent on activation of the membrane proximal kinase, Syk and members of the mitogen-activated protein kinase (MAPK) family of signalling molecules. Pre-treatment of macrophages with Syk inhibitors (R788/piceatannol) or MAPK inhibitors (SB203580 and PD98059), not only prevents M1 polarization, but also attenuates production of key pro-inflammatory mediators that have been specifically implicated in periprosthetic osteolysis and osteoclast differentiation. STATEMENT OF SIGNIFICANCE It is now well established that wear-debris particles from implanted materials drive deleterious inflammatory responses which can eventually lead to implant loosening. In this study, we provide further insight into the specific cellular pathways activated by wear particles in primary human immune cells. We demonstrate that PMMA bone cement and hydroxyapatite, a commonly used biomaterial, drive the polarization of macrophages towards an inflammatory phenotype and identify the specific signalling molecules that are activated in this process. Pre-treatment of macrophages with pharmacological inhibitors of these molecules in turn prevents macrophage polarization and dampens inflammatory cytokine production. Hence these signalling molecules represent potential therapeutic targets to treat or possibly prevent particulate induced osteolysis.
Collapse
|
20
|
Lehmann CHK, Baranska A, Heidkamp GF, Heger L, Neubert K, Lühr JJ, Hoffmann A, Reimer KC, Brückner C, Beck S, Seeling M, Kießling M, Soulat D, Krug AB, Ravetch JV, Leusen JHW, Nimmerjahn F, Dudziak D. DC subset-specific induction of T cell responses upon antigen uptake via Fcγ receptors in vivo. J Exp Med 2017; 214:1509-1528. [PMID: 28389502 PMCID: PMC5413326 DOI: 10.1084/jem.20160951] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 01/19/2017] [Accepted: 02/17/2017] [Indexed: 12/20/2022] Open
Abstract
Lehmann et al. targeted antigens to Fcγ receptors expressed on various antigen-presenting cells. Induced CD4+ and CD8+ T cell responses were solely dependent on CD11b+ and CD8+ DC subsets, respectively, but independent of receptor intrinsic ITAM or ITIM signaling domains. Dendritic cells (DCs) are efficient antigen-presenting cells equipped with various cell surface receptors for the direct or indirect recognition of pathogenic microorganisms. Interestingly, not much is known about the specific expression pattern and function of the individual activating and inhibitory Fcγ receptors (FcγRs) on splenic DC subsets in vivo and how they contribute to the initiation of T cell responses. By targeting antigens to select activating and the inhibitory FcγR in vivo, we show that antigen uptake under steady-state conditions results in a short-term expansion of antigen-specific T cells, whereas under inflammatory conditions especially, the activating FcγRIV is able to induce superior CD4+ and CD8+ T cell responses. Of note, this effect was independent of FcγR intrinsic activating signaling pathways. Moreover, despite the expression of FcγRIV on both conventional splenic DC subsets, the induction of CD8+ T cell responses was largely dependent on CD11c+CD8+ DCs, whereas CD11c+CD8− DCs were critical for priming CD4+ T cell responses.
Collapse
Affiliation(s)
- Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anna Baranska
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany.,Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale-Centre National de la Recherche Scientifique, 13288 Marseille-Luminy, France
| | - Gordon F Heidkamp
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Kirsten Neubert
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jennifer J Lühr
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Alana Hoffmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Katharina C Reimer
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christin Brückner
- Department of Biology, Chair of Genetics, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Simone Beck
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Michaela Seeling
- Department of Biology, Chair of Genetics, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Melissa Kießling
- Department of Biology, Chair of Genetics, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Didier Soulat
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anne B Krug
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Jeffrey V Ravetch
- Leonard Wagner Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065
| | - Jeanette H W Leusen
- Immunotherapy Laboratory, Laboratory for Translational Immunology, University Medical Center Utrecht, 3584 Utrecht, Netherlands
| | - Falk Nimmerjahn
- Department of Biology, Chair of Genetics, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany .,Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany .,Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
21
|
Corr EM, Cunningham CC, Helbert L, McCarthy GM, Dunne A. Osteoarthritis-associated basic calcium phosphate crystals activate membrane proximal kinases in human innate immune cells. Arthritis Res Ther 2017; 19:23. [PMID: 28173838 PMCID: PMC5296949 DOI: 10.1186/s13075-017-1225-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/06/2017] [Indexed: 12/14/2022] Open
Abstract
Background Osteoarthritis (OA) is a chronic debilitating joint disorder of particularly high prevalence in the elderly population. Intra-articular basic calcium phosphate (BCP) crystals are present in the majority of OA joints and are associated with severe degeneration. They are known to activate macrophages, synovial fibroblasts, and articular chondrocytes, resulting in increased cell proliferation and the production of pro-inflammatory cytokines and matrix metalloproteases (MMPs). This suggests a pathogenic role in OA by causing extracellular matrix degradation and subchondral bone remodelling. There are currently no disease-modifying drugs available for crystal-associated OA; hence, the aim of this study was to explore the inflammatory pathways activated by BCP crystals in order to identify potential therapeutic targets to limit crystal-induced inflammation. Methods Primary human macrophages and dendritic cells were stimulated with BCP crystals, and activation of spleen tyrosine kinase (Syk), phosphoinositide-3 kinase (PI3K), and mitogen-activated protein kinases (MAPKs) was detected by immunoblotting. Lipopolysaccharide (LPS)-primed macrophages were pre-treated with inhibitors of Syk, PI3K, and MAPKs prior to BCP stimulation, and cytokine production was quantified by enzyme-linked immunosorbent assay (ELISA). Aa an alternative, cells were treated with synovial fluid derived from osteoarthritic knees in the presence or absence of BCP crystals, and gene induction was assessed by real-time polymerase chain reaction (PCR). Results We demonstrate that exposure of primary human macrophages and dendritic cells to BCP crystals leads to activation of the membrane-proximal tyrosine kinases Syk and PI3K. Furthermore, we show that production of the pro-inflammatory cytokines interleukin (IL)-1α and IL-1β and phosphorylation of downstream MEK and ERK MAPKs is suppressed following treatment with inhibitors of Syk or PI3K. Finally, we demonstrate that treatment of macrophages with BCP crystals induces the production of the damage-associated molecule S100A8 and MMP1 in a Syk-dependent manner and that synovial fluid from OA patients together with BCP crystals exacerbates these effects. Conclusions We identify Syk and PI3K as key signalling molecules activated by BCP crystals prior to inflammatory cytokine and DAMP expression and therefore propose that Syk and PI3K represent potential targets for the treatment of BCP-related pathologies.
Collapse
Affiliation(s)
- Emma M Corr
- School of Biochemistry & Immunology and School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Clare C Cunningham
- School of Biochemistry & Immunology and School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Laura Helbert
- Mater Misericordiae University Hospital, Dublin, Ireland
| | | | - Aisling Dunne
- School of Biochemistry & Immunology and School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
22
|
Carmi Y, Prestwood TR, Spitzer MH, Linde IL, Chabon J, Reticker-Flynn NE, Bhattacharya N, Zhang H, Zhang X, Basto PA, Burt BM, Alonso MN, Engleman EG. Akt and SHP-1 are DC-intrinsic checkpoints for tumor immunity. JCI Insight 2016; 1:e89020. [PMID: 27812544 DOI: 10.1172/jci.insight.89020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BM-derived DC (BMDC) are powerful antigen-presenting cells. When loaded with immune complexes (IC), consisting of tumor antigens bound to antitumor antibody, BMDC induce powerful antitumor immunity in mice. However, attempts to employ this strategy clinically with either tumor-associated DC (TADC) or monocyte-derived DC (MoDC) have been disappointing. To investigate the basis for this phenomenon, we compared the response of BMDC, TADC, and MoDC to tumor IgG-IC. Our findings revealed, in both mice and humans, that upon exposure to IgG-IC, BMDC internalized the IC, increased costimulatory molecule expression, and stimulated autologous T cells. In contrast, TADC and, surprisingly, MoDC remained inert upon contact with IC due to dysfunctional signaling following engagement of Fcγ receptors. Such dysfunction is associated with elevated levels of the Src homology region 2 domain-containing phosphatase-1 (SHP-1) and phosphatases regulating Akt activation. Indeed, concomitant inhibition of both SHP-1 and phosphatases that regulate Akt activation conferred upon TADC and MoDC the capacity to take up and process IC and induce antitumor immunity in vivo. This work identifies the molecular checkpoints that govern activation of MoDC and TADC and their capacity to elicit T cell immunity.
Collapse
Affiliation(s)
- Yaron Carmi
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Department of Pathology, The Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, Israel
| | - Tyler R Prestwood
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Program in Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Matthew H Spitzer
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
| | - Ian L Linde
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Program in Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Jonathan Chabon
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Nupur Bhattacharya
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Hong Zhang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Xiangyue Zhang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Pamela A Basto
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Bryan M Burt
- Division of General Thoracic Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Michael N Alonso
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Edgar G Engleman
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
23
|
Wen YM, Mu L, Shi Y. Immunoregulatory functions of immune complexes in vaccine and therapy. EMBO Mol Med 2016; 8:1120-1133. [PMID: 27572622 PMCID: PMC5048363 DOI: 10.15252/emmm.201606593] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/01/2016] [Accepted: 08/03/2016] [Indexed: 12/15/2022] Open
Abstract
Clinical and experimental preparations of IgG/soluble antigen complexes, as well as those formed following antibody therapy in vivo, are multifaceted immune regulators. These immune complexes (ICs) have been tested in humans and animal models, mostly in forms of experimental or clinical vaccination, for at least a century. With intensified research on Fcγ receptor-mediated immune modulation, as well as with immune complex-directed antigen processing, presentation, and inflammatory responses, there are renewed interests of using ICs in vaccines and immunotherapies. Currently, IC-based immune therapy has been broadly experimented in HBV and HIV viral infection control and antitumor treatments. However, mechanistic insights of IC-based treatments are relatively recent subjects of study; strong efforts are needed to establish links to connect laboratory findings with clinical practices. This review covers the history, mechanisms, and in vivo outcomes of this safe and effective therapeutic tool, with a clear aim to bridge laboratory findings with evolving clinical applications.
Collapse
Affiliation(s)
- Yu-Mei Wen
- Key Laboratory of Molecular Medical Virology, MOE/MOH, School of Basic Medical Sciences Shanghai Medical College Fudan University, Shanghai, China
| | - Libing Mu
- Center for Life Sciences, Department of Basic Medical Sciences, Institute of Immunology Tsinghua University, Beijing, China
| | - Yan Shi
- Center for Life Sciences, Department of Basic Medical Sciences, Institute of Immunology Tsinghua University, Beijing, China Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
24
|
Boye L, Welsby I, Lund LD, Goriely S, Frøkiaer H. Plasma membrane Toll-like receptor activation increases bacterial uptake but abrogates endosomal Lactobacillus acidophilus induction of interferon-β. Immunology 2016; 149:329-342. [PMID: 27441725 DOI: 10.1111/imm.12650] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 12/31/2022] Open
Abstract
Lactobacillus acidophilus induces a potent interferon-β (IFN-β) response in dendritic cells (DCs) by a Toll-like receptor 2 (TLR2) -dependent mechanism, in turn leading to strong interleukin-12 (IL-12) production. In the present study, we investigated the involvement of different types of endocytosis in the L. acidophilus-induced IFN-β and IL-12 responses and how TLR2 or TLR4 ligation by lipopolysaccharide and Pam3/4CSK4 influenced endocytosis of L. acidophilus and the induced IFN-β and IL-12 production. Lactobacillus acidophilus was endocytosed by constitutive macropinocytosis taking place in the immature cells as well as by spleen tyrosine kinase (Syk) -dependent phagocytosis but without involvement of plasma membrane TLR2. Stimulation with TLR2 or TLR4 ligands increased macropinocytosis in a Syk-independent manner. As a consequence, incubation of DCs with TLR ligands before incubation with L. acidophilus enhanced the uptake of the bacteria. However, in these experimental conditions, induction of IFN-β and IL-12 was strongly inhibited. As L. acidophilus-induced IFN-β depends on endocytosis and endosomal degradation before signalling and as TLR stimulation from the plasma membrane leading to increased macropinocytosis abrogates IFN-β induction we conclude that plasma membrane TLR stimulation leading to increased macropinocytosis decreases endosomal induction of IFN-β and speculate that this is due to competition between compartments for molecules involved in the signal pathways. In summary, endosomal signalling by L. acidophilus that leads to IFN-β and IL-12 production is inhibited by TLR stimulation from the plasma membrane.
Collapse
Affiliation(s)
- Louise Boye
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Iain Welsby
- Institute of Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Lisbeth Drozd Lund
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Stanislas Goriely
- Institute of Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Hanne Frøkiaer
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
25
|
Corr EM, Cunningham CC, Dunne A. Cholesterol crystals activate Syk and PI3 kinase in human macrophages and dendritic cells. Atherosclerosis 2016; 251:197-205. [DOI: 10.1016/j.atherosclerosis.2016.06.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022]
|
26
|
Knittel D, Gadzinski A, Hua S, Denizeau J, Savatier A, de la Rochère P, Boulain JC, Amigorena S, Piaggio E, Sedlik C, Léonetti M. Heparan sulfates targeting increases MHC class I- and MHC class II-restricted antigen presentation and CD8(+) T-cell response. Vaccine 2016; 34:3093-3101. [PMID: 27154391 DOI: 10.1016/j.vaccine.2016.04.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 03/31/2016] [Accepted: 04/25/2016] [Indexed: 10/21/2022]
Abstract
Heparan sulfates (HS) are carbohydrate moieties of HS proteoglycans (HSPGs). They often represent alternative attachment points for proteins or microorganisms targeting receptors. HSPGs, which are ubiquitously expressed, thereby participate in numerous biological processes. We previously showed that MHC class II-restricted antigen presentation is increased when antigens are coupled to HS ligands, suggesting that HSPGs might contribute to adaptive immune responses. Here, we examined if HSPG targeting influences other aspects of immune responses. We found that coupling of an HS ligand to the antigen increases antigen presentation to CD4(+) and CD8(+) T-cells after antigen targeting to membrane immunoglobulins or to MHC-II molecules. Moreover, this increased stimulating capacity correlates with an enhanced CD8(+) immune response in mice. Last, animals control more effectively the growth of Ova-expressing tumour cells when they are immunized with an Ova construct targeting HSPGs and MHC-II molecules. Our results indicate that ubiquitous molecules can influence both MHC class I- and MHC class II-restricted antigen presentation and behave as co-receptors during T-cell stimulation. Moreover, they suggest that tumour-antigens endowed with the ability to target both HSPGs and MHC-II molecules could be of value to increase CD8(+) immune response and control tumour-growth, opening new perspectives for the design of highly immunogenic protein-based vaccines.
Collapse
Affiliation(s)
- Delphine Knittel
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie et Technologies de Saclay, Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etudes et de Recherches en Immunoanalyse, Gif-Sur-Yvette F-91191, France
| | - Adeline Gadzinski
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie et Technologies de Saclay, Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etudes et de Recherches en Immunoanalyse, Gif-Sur-Yvette F-91191, France
| | - Stéphane Hua
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie et Technologies de Saclay, Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etudes et de Recherches en Immunoanalyse, Gif-Sur-Yvette F-91191, France
| | - Jordan Denizeau
- Institut Curie, Centre de Recherche, Paris 75005, France; INSERM, U932, Paris F-75005, France; Centre d'Investigation Clinique Biothérapie CICBT 507, Institut Curie, Paris F-75005, France
| | - Alexandra Savatier
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie et Technologies de Saclay, Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etudes et de Recherches en Immunoanalyse, Gif-Sur-Yvette F-91191, France
| | - Philippe de la Rochère
- Institut Curie, Centre de Recherche, Paris 75005, France; INSERM, U932, Paris F-75005, France; Centre d'Investigation Clinique Biothérapie CICBT 507, Institut Curie, Paris F-75005, France
| | - Jean-Claude Boulain
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie et Technologies de Saclay, Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etudes et de Recherches en Immunoanalyse, Gif-Sur-Yvette F-91191, France
| | - Sebastian Amigorena
- Institut Curie, Centre de Recherche, Paris 75005, France; INSERM, U932, Paris F-75005, France; Centre d'Investigation Clinique Biothérapie CICBT 507, Institut Curie, Paris F-75005, France
| | - Eliane Piaggio
- Institut Curie, Centre de Recherche, Paris 75005, France; INSERM, U932, Paris F-75005, France; Centre d'Investigation Clinique Biothérapie CICBT 507, Institut Curie, Paris F-75005, France
| | - Christine Sedlik
- Institut Curie, Centre de Recherche, Paris 75005, France; INSERM, U932, Paris F-75005, France; Centre d'Investigation Clinique Biothérapie CICBT 507, Institut Curie, Paris F-75005, France
| | - Michel Léonetti
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie et Technologies de Saclay, Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etudes et de Recherches en Immunoanalyse, Gif-Sur-Yvette F-91191, France.
| |
Collapse
|
27
|
Gómez RS, Ramirez BA, Céspedes PF, Cautivo KM, Riquelme SA, Prado CE, González PA, Kalergis AM. Contribution of Fcγ receptors to human respiratory syncytial virus pathogenesis and the impairment of T-cell activation by dendritic cells. Immunology 2016; 147:55-72. [PMID: 26451966 PMCID: PMC4693880 DOI: 10.1111/imm.12541] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 09/16/2015] [Accepted: 09/29/2015] [Indexed: 12/11/2022] Open
Abstract
Human respiratory syncytial virus (hRSV) is the leading cause of infant hospitalization related to respiratory disease. Infection with hRSV produces abundant infiltration of immune cells into the airways, which combined with an exacerbated pro-inflammatory immune response can lead to significant damage to the lungs. Human RSV re-infection is extremely frequent, suggesting that this virus may have evolved molecular mechanisms that interfere with host adaptive immunity. Infection with hRSV can be reduced by administering a humanized neutralizing antibody against the virus fusion protein in high-risk infants. Although neutralizing antibodies against hRSV effectively block the infection of airway epithelial cells, here we show that both, bone marrow-derived dendritic cells (DCs) and lung DCs undergo infection with IgG-coated virus (hRSV-IC), albeit abortive. Yet, this is enough to negatively modulate DC function. We observed that such a process is mediated by Fcγ receptors (FcγRs) expressed on the surface of DCs. Remarkably, we also observed that in the absence of hRSV-specific antibodies FcγRIII knockout mice displayed significantly less cellular infiltration in the lungs after hRSV infection, compared with wild-type mice, suggesting a potentially harmful, IgG-independent role for this receptor in hRSV disease. Our findings support the notion that FcγRs can contribute significantly to the modulation of DC function by hRSV and hRSV-IC. Further, we provide evidence for an involvement of FcγRIII in the development of hRSV pathogenesis.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- Antibodies, Neutralizing/pharmacology
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Antiviral Agents/pharmacology
- Cells, Cultured
- Coculture Techniques
- Cytokines/metabolism
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/virology
- Disease Models, Animal
- Immunoglobulin G/immunology
- Immunoglobulin G/metabolism
- Lung/drug effects
- Lung/immunology
- Lung/metabolism
- Lung/virology
- Lymphocyte Activation/drug effects
- Mice, Inbred C57BL
- Mice, Knockout
- Palivizumab/pharmacology
- Receptors, IgG/deficiency
- Receptors, IgG/genetics
- Receptors, IgG/immunology
- Receptors, IgG/metabolism
- Respiratory Syncytial Virus Infections/drug therapy
- Respiratory Syncytial Virus Infections/genetics
- Respiratory Syncytial Virus Infections/immunology
- Respiratory Syncytial Virus Infections/metabolism
- Respiratory Syncytial Virus Infections/virology
- Respiratory Syncytial Virus, Human/drug effects
- Respiratory Syncytial Virus, Human/immunology
- Respiratory Syncytial Virus, Human/pathogenicity
- Signal Transduction
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/virology
- Viral Load
- Virus Replication
Collapse
Affiliation(s)
- Roberto S. Gómez
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiago de ChileChile
| | - Bruno A. Ramirez
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiago de ChileChile
| | - Pablo F. Céspedes
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiago de ChileChile
| | - Kelly M. Cautivo
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiago de ChileChile
| | - Sebastián A. Riquelme
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiago de ChileChile
- INSERM U1064NantesFrance
| | - Carolina E. Prado
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiago de ChileChile
| | - Pablo A. González
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiago de ChileChile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiago de ChileChile
- INSERM U1064NantesFrance
- Departamento de ReumatologíaFacultad de Medicina. Pontificia Universidad Católica de ChileSantiago de ChileChile
| |
Collapse
|
28
|
Can G, Ayvaz S, Can H, Demirtas S, Aksit H, Yilmaz B, Korkmaz U, Kurt M, Karaca T. The Syk Inhibitor Fostamatinib Decreases the Severity of Colonic Mucosal Damage in a Rodent Model of Colitis. J Crohns Colitis 2015; 9:907-917. [PMID: 26116555 DOI: 10.1093/ecco-jcc/jjv114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/22/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Inflammatory bowel disease is a chronic inflammatory disease of the gastrointestinal system. In some cases, current medications used for inflammatory bowel disease may not be enough for remission, creating a need for more potent and reliable medications. There is no study showing the efficacy of fostamatinib, with proven effects on some inflammatory diseases, on ulcerative colitis. In our study we planned to research the efficacy of fostamatinib, a spleen tyrosine kinase inhibitor, on acetic acid-induced colitis. METHODS The study included 28 male Sprague-Dawley rats, randomly divided into control group, fostamatinib group, colitis group and fostamatinib + colitis group, each containing seven rats. Colitis induction was performed with 4% acetic acid. Colonic inflammation was assessed with disease activity index, macroscopic and histological damage scores, colonic myeloperoxidase, malondialdehyde and superoxide dismutase activity, and tumour necrosis factor alpha [TNFα], CD3, Syk, and phospho-Syk expression. RESULTS There was a significant difference between the colitis and control groups in terms of all parameters. The disease activity index, macroscopic and microscopic damage scores, immunohistochemical TNFα, CD3, Syk, and phospho-Syk expression, and tissue myeloperoxidase activity were found to be significantly lower in the colitis + fostamatinib group compared with the colitis group. There was no significant difference between the two groups in terms of myeloperoxidase and malondialdehyde activity. CONCLUSIONS Fostamatinib reduced the inflammatory damage in the experimental colitis. This effect may be due to suppression of TNFα, T-lymphocytes, and neutrophils in colonic mucosa via suppression of Syk. Fostamatinib may be an appropriate treatment alternative for ulcerative colitis. Further clinical studies are required to support this.
Collapse
Affiliation(s)
- Guray Can
- Department of Gastroenterology, Abant İzzet Baysal University, Faculty of Medicine, Bolu, Turkey
| | - Suleyman Ayvaz
- Department of Pediatric Surgery, Trakya University Faculty of Medicine, Edirne, Turkey
| | - Hatice Can
- Department of Internal Medicine, Abant İzzet Baysal University, Faculty of Medicine, Bolu, Turkey
| | - Selim Demirtas
- Department of Histology and Embryology, Trakya University, Faculty of Medicine, Edirne, Turkey
| | - Hasan Aksit
- Department of Biochemistry, Balıkesir University Faculty of Veterinary, Balıkesir, Turkey
| | - Bulent Yilmaz
- Department of Gastroenterology, Bolu İzzet Baysal State Hospital, Bolu, Turkey
| | - Ugur Korkmaz
- Department of Gastroenterology, Bolu İzzet Baysal State Hospital, Bolu, Turkey
| | - Mevlut Kurt
- Department of Gastroenterology, Abant İzzet Baysal University, Faculty of Medicine, Bolu, Turkey
| | - Turan Karaca
- Department of Histology and Embryology, Trakya University, Faculty of Medicine, Edirne, Turkey
| |
Collapse
|
29
|
Bakema JE, Tuk CW, van Vliet SJ, Bruijns SC, Vos JB, Letsiou S, Dijkstra CD, van Kooyk Y, Brenkman AB, van Egmond M. Antibody-opsonized bacteria evoke an inflammatory dendritic cell phenotype and polyfunctional Th cells by cross-talk between TLRs and FcRs. THE JOURNAL OF IMMUNOLOGY 2015; 194:1856-66. [PMID: 25582855 DOI: 10.4049/jimmunol.1303126] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During secondary immune responses, Ab-opsonized bacteria are efficiently taken up via FcRs by dendritic cells. We now demonstrate that this process induces cross-talk between FcRs and TLRs, which results in synergistic release of several inflammatory cytokines, as well as altered lipid metabolite profiles. This altered inflammatory profile redirects Th1 polarization toward Th17 cell responses. Interestingly, GM-CSF-producing Th cells were synergistically evoked as well, which suggests the onset of polyfunctional Th17 cells. Synergistic cytokine release was dependent on activation via MyD88 and ITAM signaling pathways through TLRs and FcRs, respectively. Cytokine regulation occurred via transcription-dependent mechanisms for TNF-α and IL-23 and posttranscriptional mechanisms for caspase-1-dependent release of IL-1β. Furthermore, cross-talk between TLRs and FcRs was not restricted to dendritic cells. In conclusion, our results support that bacteria alone initiate fundamentally different immune responses compared with Ab-opsonized bacteria through the combined action of two classes of receptors and, ultimately, may refine new therapies for inflammatory diseases.
Collapse
Affiliation(s)
- Jantine E Bakema
- Department of Otolaryngology - Head and Neck Surgery, VU University Medical Center, 1007 MB Amsterdam, the Netherlands; Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 BT Amsterdam, the Netherlands;
| | - Cornelis W Tuk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 BT Amsterdam, the Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 BT Amsterdam, the Netherlands
| | - Sven C Bruijns
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 BT Amsterdam, the Netherlands
| | - Joost B Vos
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 BT Amsterdam, the Netherlands; Immunaffect BV, 1404 AK Bussum, the Netherlands
| | - Sophia Letsiou
- Department of Metabolic Diseases, Netherlands Metabolomics Centre, University Medical Centre Utrecht, Utrecht 3584 EA, the Netherlands; and
| | - Christien D Dijkstra
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 BT Amsterdam, the Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 BT Amsterdam, the Netherlands
| | - Arjan B Brenkman
- Department of Metabolic Diseases, Netherlands Metabolomics Centre, University Medical Centre Utrecht, Utrecht 3584 EA, the Netherlands; and
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 BT Amsterdam, the Netherlands; Department of Surgery, VU University Medical Center, 1081 BT Amsterdam, the Netherlands
| |
Collapse
|
30
|
Berg EL, O'Mahony A. Complex Primary Human Cell Systems for Drug Discovery. HUMAN-BASED SYSTEMS FOR TRANSLATIONAL RESEARCH 2014. [DOI: 10.1039/9781782620136-00088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Phenotypic or biofunctional assays play an important role in drug discovery by helping to bridge the gap between high-throughput, target-based screening assays used for compound identification and more physiologically relevant in vivo disease models used for preclinical development. We have developed a standardised panel of phenotypic assays using primary human cells and co-cultures that model tissue and disease biology for characterization of drug leads. Here we show application of these assays for characterisation of clinical stage kinase inhibitors for rheumatoid arthritis, the recently approved JAK kinase inhibitor, tofacitinib, and the SYK kinase inhibitor, fostamatinib. We demonstrate how profiling in this assay panel can relate to clinical effects, both efficacy and safety related.
Collapse
Affiliation(s)
- Ellen L. Berg
- BioSeek, A Division of DiscoveRx 310 Utah Avenue Suite 100 South San Francisco CA 94080 USA
| | - Alison O'Mahony
- BioSeek, A Division of DiscoveRx 310 Utah Avenue Suite 100 South San Francisco CA 94080 USA
| |
Collapse
|
31
|
Boross P, van Montfoort N, Stapels DAC, van der Poel CE, Bertens C, Meeldijk J, Jansen JHM, Verbeek JS, Ossendorp F, Wubbolts R, Leusen JHW. FcRγ-chain ITAM signaling is critically required for cross-presentation of soluble antibody-antigen complexes by dendritic cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:5506-14. [PMID: 25355925 DOI: 10.4049/jimmunol.1302012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The uptake of Ag-Ab immune complexes (IC) after the ligation of activating FcγR on dendritic cells (DC) leads to 100 times more efficient Ag presentation than the uptake of free Ags. FcγRs were reported to facilitate IC uptake and simultaneously induce cellular activation that drives DC maturation and mediates efficient T cell activation. Activating FcγRs elicit intracellular signaling via the ITAM domain of the associated FcRγ-chain. Studies with FcRγ-chain knockout (FcRγ(-/-)) mice reported FcRγ-chain ITAM signaling to be responsible for enhancing both IC uptake and DC maturation. However, FcRγ-chain is also required for surface expression of activating FcγRs, hampering the dissection of ITAM-dependent and independent FcγR functions in FcRγ(-/-) DCs. In this work, we studied the role of FcRγ-chain ITAM signaling using DCs from NOTAM mice that express normal surface levels of activating FcγR, but lack functional ITAM signaling. IC uptake by bone marrow-derived NOTAM DCs was reduced compared with wild-type DCs, but was not completely absent as in FcRγ(-/-) DCs. In NOTAM DCs, despite the uptake of ICs, both MHC class I and MHC class II Ag presentation was completely abrogated similar to FcRγ(-/-) DCs. Secretion of cytokines, upregulation of costimulatory molecules, and Ag degradation were abrogated in NOTAM DCs in response to FcγR ligation. Cross-presentation using splenic NOTAM DCs and prolonged incubation with OVA-IC was also abrogated. Interestingly, in this setup, proliferation of CD4(+) OT-II cells was induced by NOTAM DCs. We conclude that FcRγ-chain ITAM signaling facilitates IC uptake and is essentially required for cross-presentation, but not for MHC class II Ag presentation.
Collapse
Affiliation(s)
- Peter Boross
- Laboratory for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Nadine van Montfoort
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Daphne A C Stapels
- Laboratory for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Cees E van der Poel
- Laboratory for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Christian Bertens
- Laboratory for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Jan Meeldijk
- Laboratory for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands; Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, the Netherlands; and
| | - J H Marco Jansen
- Laboratory for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - J Sjef Verbeek
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Richard Wubbolts
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, the Netherlands; and
| | - Jeanette H W Leusen
- Laboratory for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands;
| |
Collapse
|
32
|
Baker K, Rath T, Pyzik M, Blumberg RS. The Role of FcRn in Antigen Presentation. Front Immunol 2014; 5:408. [PMID: 25221553 PMCID: PMC4145246 DOI: 10.3389/fimmu.2014.00408] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/12/2014] [Indexed: 01/06/2023] Open
Abstract
Immunoglobulins are unique molecules capable of simultaneously recognizing a diverse array of antigens and themselves being recognized by a broad array of receptors. The abundance specifically of the IgG subclass and the variety of signaling receptors to which it binds render this an important immunomodulatory molecule. In addition to the classical Fcγ receptors that bind IgG at the cell surface, the neonatal Fc receptor (FcRn) is a lifelong resident of the endolysosomal system of most hematopoietic cells where it determines the intracellular fate of both IgG and IgG-containing immune complexes (IgG IC). Cross-linking of FcRn by multivalent IgG IC within antigen presenting cells such as dendritic cells initiates specific mechanisms that result in trafficking of the antigen-bearing IgG IC into compartments from which the antigen can successfully be processed into peptide epitopes compatible with loading onto both major histocompatibility complex class I and II molecules. In turn, this enables the synchronous activation of both CD4(+) and CD8(+) T cell responses against the cognate antigen, thereby bridging the gap between the humoral and cellular branches of the adaptive immune response. Critically, FcRn-driven T cell priming is efficient at very low doses of antigen due to the exquisite sensitivity of the IgG-mediated antigen delivery system through which it operates. FcRn-mediated antigen presentation has important consequences in tissue compartments replete with IgG and serves not only to determine homeostatic immune activation at a variety of sites but also to induce inflammatory responses upon exposure to antigens perceived as foreign. Therapeutically targeting the pathway by which FcRn enables T cell activation in response to IgG IC is thus a highly attractive prospect not only for the treatment of diseases that are driven by immune complexes but also for manipulating local immune responses against defined antigens such as those present during infections and cancer.
Collapse
Affiliation(s)
- Kristi Baker
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Timo Rath
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Erlangen University Hospital, Friedrich Alexander University Erlangen-Nueremberg, Erlangen, Germany
| | - Michal Pyzik
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard S. Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Digestive Diseases Center, Boston, MA, USA
| |
Collapse
|
33
|
Pham GH, Iglesias BV, Gosselin EJ. Fc receptor-targeting of immunogen as a strategy for enhanced antigen loading, vaccination, and protection using intranasally administered antigen-pulsed dendritic cells. Vaccine 2014; 32:5212-20. [PMID: 25068496 DOI: 10.1016/j.vaccine.2014.07.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 05/14/2014] [Accepted: 07/15/2014] [Indexed: 12/17/2022]
Abstract
Dendritic cells (DCs) play a critical role in the generation of adaptive immunity via the efficient capture, processing, and presentation of antigen (Ag) to naïve T cells. Administration of Ag-pulsed DCs is also an effective strategy for enhancing immunity to tumors and infectious disease organisms. Studies have also demonstrated that targeting Ags to Fcγ receptors (FcγR) on Ag presenting cells can enhance humoral and cellular immunity in vitro and in vivo. Specifically, our studies using a Francisella tularensis (Ft) infectious disease vaccine model have demonstrated that targeting immunogens to FcγR via intranasal (i.n.) administration of monoclonal antibody (mAb)-inactivated Ft (iFt) immune complexes (ICs) enhances protection against Ft challenge. Ft is the causative agent of tularemia, a debilitating disease of humans and other mammals and a category A biothreat agent for which there is no approved vaccine. Therefore, using iFt Ag as a model immunogen, we sought to determine if ex vivo targeting of iFt to FcγR on DCs would enhance the potency of i.n. administered iFt-pulsed DCs. In this study, bone marrow-derived DCs (BMDCs) were pulsed ex vivo with iFt or mAb-iFt ICs. Intranasal administration of mAb-iFt-pulsed BMDCs enhanced humoral and cellular immune responses, as well as protection against Ft live vaccine strain (LVS) challenge. Increased protection correlated with increased iFt loading on the BMDC surface as a consequence of FcγR-targeting. However, the inhibitory FcγRIIB had no impact on this enhancement. In conclusion, targeting Ag ex vivo to FcγR on DCs provides a method for enhanced Ag loading of DCs ex vivo, thereby reducing the amount of Ag required, while also avoiding the inhibitory impact of FcγRIIB. Thus, this represents a simple and less invasive strategy for increasing the potency of ex vivo-pulsed DC vaccines against chronic infectious diseases and cancer.
Collapse
Affiliation(s)
- Giang H Pham
- Center for Immunology and Microbial Disease, 47 New Scotland Avenue, MC-151, Albany Medical College, Albany, NY 12208, United States
| | - Bibiana V Iglesias
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Edmund J Gosselin
- Center for Immunology and Microbial Disease, 47 New Scotland Avenue, MC-151, Albany Medical College, Albany, NY 12208, United States.
| |
Collapse
|
34
|
Platt AM, Benson RA, McQueenie R, Butcher JP, Braddock M, Brewer JM, McInnes IB, Garside P. The active metabolite of spleen tyrosine kinase inhibitor fostamatinib abrogates the CD4+ T cell-priming capacity of dendritic cells. Rheumatology (Oxford) 2014; 54:169-77. [DOI: 10.1093/rheumatology/keu273] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
35
|
Geahlen RL. Getting Syk: spleen tyrosine kinase as a therapeutic target. Trends Pharmacol Sci 2014; 35:414-22. [PMID: 24975478 DOI: 10.1016/j.tips.2014.05.007] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/27/2014] [Accepted: 05/30/2014] [Indexed: 02/06/2023]
Abstract
Spleen tyrosine kinase (Syk) is a cytoplasmic protein tyrosine kinase well known for its ability to couple immune cell receptors to intracellular signaling pathways that regulate cellular responses to extracellular antigens and antigen-immunoglobulin (Ig) complexes of particular importance to the initiation of inflammatory responses. Thus, Syk is an attractive target for therapeutic kinase inhibitors designed to ameliorate the symptoms and consequences of acute and chronic inflammation. Its more recently recognized role as a promoter of cell survival in numerous cancer cell types ranging from leukemia to retinoblastoma has attracted considerable interest as a target for a new generation of anticancer drugs. This review discusses the biological processes in which Syk participates that have made this kinase such a compelling drug target.
Collapse
Affiliation(s)
- Robert L Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, Hansen Life Sciences Research Building, 210 South University Street, West Lafayette, IN 47907, USA.
| |
Collapse
|
36
|
McAdoo SP, Reynolds J, Bhangal G, Smith J, McDaid JP, Tanna A, Jackson WD, Masuda ES, Cook HT, Pusey CD, Tam FWK. Spleen tyrosine kinase inhibition attenuates autoantibody production and reverses experimental autoimmune GN. J Am Soc Nephrol 2014; 25:2291-302. [PMID: 24700868 DOI: 10.1681/asn.2013090978] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Spleen tyrosine kinase (SYK) has an important role in immunoreceptor signaling, and SYK inhibition has accordingly attenuated immune-mediated injury in several in vivo models. However, the effect of SYK inhibition on autoantibody production remains unclear, and SYK inhibition has not been studied in an autoimmune model of renal disease. We, therefore, studied the effect of SYK inhibition in experimental autoimmune GN, a rodent model of antiglomerular basement membrane disease. We show glomerular SYK expression and activation by immunohistochemistry in both experimental and clinical disease, and we show that treatment with fostamatinib, a small molecule kinase inhibitor selective for SYK, completely prevents the induction of experimental autoimmune GN. In established experimental disease, introduction of fostamatinib treatment led to cessation of autoantibody production, reversal of renal injury, preservation of biochemical renal function, and complete protection from lung hemorrhage. B cell ELISpot and flow cytometric analysis suggest that short-term fostamatinib treatment inhibits the generation and activity of antigen-specific B cells without affecting overall B-cell survival. Additionally, fostamatinib inhibited proinflammatory cytokine production by nephritic glomeruli ex vivo and cultured bone marrow-derived macrophages in vitro, suggesting additional therapeutic effects independent of effects on autoantibody production that are likely related to inhibited Fc receptor signaling within macrophages in diseased glomeruli. Given these encouraging results in an in vivo model that is highly applicable to human disease, we believe clinical studies targeting SYK in GN are now warranted.
Collapse
Affiliation(s)
| | - John Reynolds
- Department of Biomedical/Forensic Science, University of Bedfordshire, Befordshire, United Kingdom; and
| | | | | | | | | | | | - Esteban S Masuda
- Department of Immunology, Rigel Pharmaceuticals, South San Francisco, California
| | - H Terence Cook
- Centre for Complement and Inflammation Research, Department of Medicine, Imperial College London, London, United Kingdom
| | | | | |
Collapse
|
37
|
Ziętara N, Łyszkiewicz M, Krueger A, Weiss S. B-cell modulation of dendritic-cell function: signals from the far side. Eur J Immunol 2014; 44:23-32. [PMID: 24307285 DOI: 10.1002/eji.201344007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/26/2013] [Accepted: 11/29/2013] [Indexed: 11/05/2022]
Abstract
An appropriate immune response against a specific pathogen requires finely orchestrated interactions between the various cell populations within the immune system. At the same time, immunological tolerance to self must be maintained. DCs play an essential role in achieving these dual requisites. They coordinate adaptive immunity by integrating signals directly emanating from both infectious agents and cells of the immune system. Many such signals, especially those from innate cells and T cells, have been extensively characterized. In contrast, little is known about how B cells modulate function of DCs. B cells produce a variety of cytokines, including IL-10 and IL-6, which are known to influence DC function. In addition, Igs constitute the major secretory products of terminally differentiated B cells (plasma cells). DCs express various types of receptors for binding Ig, such as Fc receptors and C-type lectin receptors. In accordance, Igs can regulate DC function depending on the receptors engaged. Here, we review the emerging immunomodulatory role of cytokines and Ig secreted by B cells. We discuss the evidence for how these B-cell-derived factors may shape the adaptive immune response by directly acting on DCs.
Collapse
|
38
|
Fric J, Zelante T, Ricciardi-Castagnoli P. Phagocytosis of Particulate Antigens - All Roads Lead to Calcineurin/NFAT Signaling Pathway. Front Immunol 2014; 4:513. [PMID: 24409187 PMCID: PMC3885923 DOI: 10.3389/fimmu.2013.00513] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 12/27/2013] [Indexed: 11/25/2022] Open
Affiliation(s)
- Jan Fric
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR) , Biopolis , Singapore
| | - Teresa Zelante
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR) , Biopolis , Singapore
| | - Paola Ricciardi-Castagnoli
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR) , Biopolis , Singapore
| |
Collapse
|
39
|
Crespo HJ, Lau JTY, Videira PA. Dendritic cells: a spot on sialic Acid. Front Immunol 2013; 4:491. [PMID: 24409183 PMCID: PMC3873530 DOI: 10.3389/fimmu.2013.00491] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/15/2013] [Indexed: 11/17/2022] Open
Abstract
Glycans decorating cell surface and secreted proteins and lipids occupy the juncture where critical host–host and host-pathogen interactions occur. The role of glycan epitopes in cell–cell and cell-pathogen adhesive events is already well-established, and cell surface glycan structures change rapidly in response to stimulus and inflammatory cues. Despite the wide acceptance that glycans are centrally implicated in immunity, exactly how glycans and their changes contribute to the overall immune response remains poorly defined. Sialic acids are unique sugars that usually occupy the terminal position of the glycan chains and may be modified by external factors, such as pathogens, or upon specific physiological cellular events. At cell surface, sialic acid-modified structures form the key fundamental determinants for a number of receptors with known involvement in cellular adhesiveness and cell trafficking, such as the Selectins and the Siglec families of carbohydrate recognizing receptors. Dendritic cells (DCs) preside over the transition from innate to the adaptive immune repertoires, and no other cell has such relevant role in antigen screening, uptake, and its presentation to lymphocytes, ultimately triggering the adaptive immune response. Interestingly, sialic acid-modified structures are involved in all DC functions, such as antigen uptake, DC migration, and capacity to prime T cell responses. Sialic acid content changes along DC differentiation and activation and, while, not yet fully understood, these changes have important implications in DC functions. This review focuses on the developmental regulation of DC surface sialic acids and how manipulation of DC surface sialic acids can affect immune-critical DC functions by altering antigen endocytosis, pathogen and tumor cell recognition, cell recruitment, and capacity for T cell priming. The existing evidence points to a potential of DC surface sialylation as a therapeutic target to improve and diversify DC-based therapies.
Collapse
Affiliation(s)
- Hélio J Crespo
- CEDOC - UC Imunologia, Faculdade de Ciências Médicas, Universidade Nova de Lisboa , Lisbon , Portugal ; Department of Molecular and Cellular Biology, Roswell Park Cancer Institute , Buffalo, NY , USA
| | - Joseph T Y Lau
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute , Buffalo, NY , USA
| | - Paula A Videira
- CEDOC - UC Imunologia, Faculdade de Ciências Médicas, Universidade Nova de Lisboa , Lisbon , Portugal
| |
Collapse
|
40
|
Kyrmizi I, Ioannou M, Hatziapostolou M, Tsichlis PN, Boumpas DT, Tassiulas I. Tpl2 kinase regulates FcγR signaling and immune thrombocytopenia in mice. J Leukoc Biol 2013; 94:751-7. [PMID: 23898046 DOI: 10.1189/jlb.0113039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The MAPK3 Tpl2 controls innate and adaptive immunity by regulating TLR, TNF-α, and GPCR signaling in a variety of cell types. Its ablation gives rise to an anti-inflammatory phenotype characterized by resistance to LPS-induced endotoxin shock, DSS-induced colitis, and TNF-α-induced IBD. Here, we address the role of Tpl2 in autoimmunity. Our data show that the ablation and the pharmacological inhibition of Tpl2 protect mice from antiplatelet antibody-induced thrombocytopenia, a model of ITP. Thrombocytopenia in this model and in ITP is caused by phagocytosis of platelets opsonized with antiplatelet antibodies and depends on FcγR activation in splenic and hepatic myeloid cells. Further studies explained how Tpl2 inhibition protects from antibody-induced thrombocytopenia, by showing that Tpl2 is activated by FcγR signals in macrophages and that its activation by these signals is required for ERK activation, cytoplasmic Ca(2+) influx, the induction of cytokine and coreceptor gene expression, and phagocytosis.
Collapse
Affiliation(s)
- Irene Kyrmizi
- 2.Div. of Allergy, Clinical Immunology and Rheumatology, New York Medical College, 40 Sunshine Cottage Rd., Valhalla, NY 10595, USA.
| | | | | | | | | | | |
Collapse
|
41
|
An fc gamma receptor-mediated upregulation of the production of interleukin 10 by intravenous immunoglobulin in bone-marrow-derived mouse dendritic cells stimulated with lipopolysaccharide in vitro. JOURNAL OF SIGNAL TRANSDUCTION 2013; 2013:239320. [PMID: 23853721 PMCID: PMC3703884 DOI: 10.1155/2013/239320] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/24/2013] [Accepted: 06/02/2013] [Indexed: 11/18/2022]
Abstract
Intravenous immunoglobulin (IVIG), a highly purified immunoglobulin fraction prepared from pooled plasma of several thousand donors, increased anti-inflammatory cytokine IL-10 production, while decreased proinflammatory cytokine IL-12p70 production in bone-marrow-derived mouse dendritic cells (BMDCs) stimulated with lipopolysaccharide (LPS). The changes of cytokine production were confirmed with the transcription levels of these cytokines. To study the mechanisms of this bidirectional effect, we investigated changes of intracellular molecules in the LPS-induced signaling pathway and observed that IVIG upregulated ERK1/2 phosphorylation while downregulated p38 MAPK phosphorylation. Using chemical inhibitors specific to protein kinases involved in activation of Fc gamma receptors (FcγRs), which mediate IgG signals, we found that hyperphosphorylation of ERK1/2 and Syk phosphorylation occurred after stimulation of BMDC with LPS and IVIG, and the increasing effect on IL-10 production was abolished by these inhibitors. Furthermore, an antibody specific to FcγRI, one of FcγRs involved in immune activation, inhibited IVIG-induced increases in IL-10 production, but not IL-12p70 decreases, whereas the anti-IL-10 antibody restored the decrease in IL-12p70 induced by IVIG. These findings suggest that IVIG induced the upregulation of IL-10 production through FcγRI activation, and IL-10 was indispensable to the suppressing effect of IVIG on the production of IL-12p70 in LPS-stimulated BMDC.
Collapse
|
42
|
Baker K, Rath T, Lencer WI, Fiebiger E, Blumberg RS. Cross-presentation of IgG-containing immune complexes. Cell Mol Life Sci 2013; 70:1319-1334. [PMID: 22847331 PMCID: PMC3609906 DOI: 10.1007/s00018-012-1100-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 07/09/2012] [Accepted: 07/17/2012] [Indexed: 12/23/2022]
Abstract
IgG is a molecule that functionally combines facets of both innate and adaptive immunity and therefore bridges both arms of the immune system. On the one hand, IgG is created by adaptive immune cells, but can be generated by B cells independently of T cell help. On the other hand, once secreted, IgG can rapidly deliver antigens into intracellular processing pathways, which enable efficient priming of T cell responses towards epitopes from the cognate antigen initially bound by the IgG. While this process has long been known to participate in CD4(+) T cell activation, IgG-mediated delivery of exogenous antigens into a major histocompatibility complex (MHC) class I processing pathway has received less attention. The coordinated engagement of IgG with IgG receptors expressed on the cell-surface (FcγR) and within the endolysosomal system (FcRn) is a highly potent means to deliver antigen into processing pathways that promote cross-presentation of MHC class I and presentation of MHC class II-restricted epitopes within the same dendritic cell. This review focuses on the mechanisms by which IgG-containing immune complexes mediate such cross-presentation and the implications that this understanding has for manipulation of immune-mediated diseases that depend upon or are due to the activities of CD8(+) T cells.
Collapse
Affiliation(s)
- Kristi Baker
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Timo Rath
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Wayne I. Lencer
- Division of Gastroenterology and Nutrition, Children’s Hospital Boston, Harvard Medical School, Boston, MA 02115 USA
- Harvard Digestive Diseases Center, Boston, MA 02115 USA
| | - Edda Fiebiger
- Division of Gastroenterology and Nutrition, Children’s Hospital Boston, Harvard Medical School, Boston, MA 02115 USA
- Harvard Digestive Diseases Center, Boston, MA 02115 USA
| | - Richard S. Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
- Harvard Digestive Diseases Center, Boston, MA 02115 USA
| |
Collapse
|
43
|
Tan SL, Liao C, Lucas MC, Stevenson C, DeMartino JA. Targeting the SYK-BTK axis for the treatment of immunological and hematological disorders: recent progress and therapeutic perspectives. Pharmacol Ther 2013; 138:294-309. [PMID: 23396081 DOI: 10.1016/j.pharmthera.2013.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 01/08/2023]
Abstract
Spleen Tyrosine Kinase (SYK) and Bruton's Tyrosine Kinase (BTK) are non-receptor cytoplasmic tyrosine kinases that are primarily expressed in cells of hematopoietic lineage. Both are key mediators in coupling activated immunoreceptors to downstream signaling events that affect diverse biological functions, from cellular proliferation, differentiation and adhesion to innate and adaptive immune responses. As such, pharmacological inhibitors of SYK or BTK are being actively pursued as potential immunomodulatory agents for the treatment of autoimmune and inflammatory disorders. Deregulation of SYK or BTK activity has also been implicated in certain hematological malignancies. To date, from a clinical perspective, pharmacological inhibition of SYK activity has demonstrated encouraging efficacy in patients with rheumatoid arthritis (RA), while patients with relapsed or refractory chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL) have benefited from covalent inhibitors of BTK in early clinical studies. Here, we review and discuss recent insights into the emerging role of the SYK-BTK axis in innate immune cell function as well as in the maintenance of survival and homing signals for tumor cell progression. The current progress on the clinical development of SYK and BTK inhibitors is also highlighted.
Collapse
Affiliation(s)
- Seng-Lai Tan
- Inflammation Discovery and Therapeutic Area, Hoffmann-La Roche, Nutley, NJ 07110, USA.
| | | | | | | | | |
Collapse
|
44
|
Yang Y, Yu T, Lee YG, Yang WS, Oh J, Jeong D, Lee S, Kim TW, Park YC, Sung GH, Cho JY. Methanol extract of Hopea odorata suppresses inflammatory responses via the direct inhibition of multiple kinases. JOURNAL OF ETHNOPHARMACOLOGY 2013; 145:598-607. [PMID: 23220195 DOI: 10.1016/j.jep.2012.11.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/15/2012] [Accepted: 11/18/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hopea odorata Roxb. (Dipterocarpaceae) is a representative Thai ethnopharmacological herbal plant used in the treatment of various inflammation-related diseases. In spite of its traditional use, systematic studies of its anti-inflammatory action have not been performed. MATERIALS AND METHODS The inhibitory activities of a Hopea odorata methanol extract (Ho-ME) on the production of nitric oxide (NO), tumour necrosis factor (TNF)-α, and prostaglandin E(2) (PGE(2)) in RAW264.7 cells and peritoneal macrophages were investigated. The effects of Ho-ME on the gastritis symptoms induced by HCl/EtOH and on ear oedemas induced by arachidonic acid were also examined. Furthermore, to identify the immunopharmacological targets of this extract, nuclear fractionation, a reporter gene assay, immunoprecipitation, immunoblot analysis, and a kinase assay were employed. RESULTS Ho-ME strongly inhibited the release of NO, PGE(2), and TNF-α in RAW264.7 cells and peritoneal macrophages stimulated by lipopolysaccharide (LPS). Ho-ME also clearly suppressed the gene expression of pro-inflammatory cytokines and chemokines, such as interferon (IFN)-β, interleukin (IL)-12, and monocyte chemotactic protein-1 (MCP-1). By analysing the inhibited target molecules, Syk and Src were found to be suppressed in the inhibition of nuclear factor (NF)-κB pathway. In addition, the observed downregulation of activator protein (AP)-1 and cAMP response element-binding (CREB) was due to the direct inhibition of interleukin-1 receptor-associated kinase (IRAK)1 and IRAK4, which was also linked to the suppression of c-Jun N-terminal kinase (JNK) and p38. In agreement with the in vitro observations, this extract also ameliorated the inflammatory symptoms in EtOH/HCl-induced gastritis and arachidonic acid-induced ear oedemas in mice. CONCLUSION Ho-ME has potential as a functional herbal remedy targeting Syk- and Src-mediated anti-inflammatory mechanisms. Future pre-clinical studies will be needed to investigate this possibility.
Collapse
Affiliation(s)
- Yanyan Yang
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
van Montfoort N, ’t Hoen PAC, Mangsbo SM, Camps MGM, Boross P, Melief CJM, Ossendorp F, Verbeek JS. Fcγ Receptor IIb Strongly Regulates Fcγ Receptor-Facilitated T Cell Activation by Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2012; 189:92-101. [DOI: 10.4049/jimmunol.1103703] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
IgG opsonization of bacteria promotes Th17 responses via synergy between TLRs and FcγRIIa in human dendritic cells. Blood 2012; 120:112-21. [PMID: 22649103 DOI: 10.1182/blood-2011-12-399931] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Dendritic cells (DCs) are essential in inducing adaptive immune responses against bacteria by expressing cytokines that skew T-cell responses toward protective Th17 cells. Although it is widely recognized that induction of these cytokines by DCs involves activation of multiple receptors, it is still incompletely characterized which combination of receptors specifically skews Th17-cell responses. Here we have identified a novel role for FcγRIIa in promoting human Th17 cells. Activation of DCs by bacteria opsonized by serum IgG strongly promoted Th17 responses, which was FcγRIIa-dependent and coincided with enhanced production of selected cytokines by DCs, including Th17-promoting IL-1β and IL-23. Notably, FcγRIIa stimulation on DCs did not induce cytokine production when stimulated individually, but selectively amplified cytokine responses through synergy with TLR2, 4, or 5. Importantly, this synergy is mediated at 2 different levels. First, TLR-FcγRIIa costimulation strongly increased transcription of pro-IL-1β and IL-23p19. Second, FcγRIIa triggering induced activation of caspase-1, which cleaves pro-IL-1β into its bioactive form and thereby enhanced IL-1β secretion. Taken together, these data identified cross-talk between TLRs and FcγRIIa as a novel mechanism by which DCs promote protective effector Th17-cell responses against bacteria.
Collapse
|
47
|
Singh R, Masuda ES, Payan DG. Discovery and development of spleen tyrosine kinase (SYK) inhibitors. J Med Chem 2012; 55:3614-43. [PMID: 22257213 DOI: 10.1021/jm201271b] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rajinder Singh
- Rigel, Inc., 1180 Veterans Boulevard, South San Francisco, California 94080, USA.
| | | | | |
Collapse
|
48
|
|
49
|
Kim DS, Park JH, Kim JY, Kim D, Nam JH. A mechanism of immunoreceptor tyrosine-based activation motif (ITAM)-like sequences in the capsid protein VP2 in viral growth and pathogenesis of Coxsackievirus B3. Virus Genes 2011; 44:176-82. [DOI: 10.1007/s11262-011-0681-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 10/06/2011] [Indexed: 10/16/2022]
|
50
|
Hilgendorf I, Eisele S, Remer I, Schmitz J, Zeschky K, Colberg C, Stachon P, Wolf D, Willecke F, Buchner M, Zirlik K, Ortiz-Rodriguez A, Lozhkin A, Hoppe N, von zur Muhlen C, zur Hausen A, Bode C, Zirlik A. The oral spleen tyrosine kinase inhibitor fostamatinib attenuates inflammation and atherogenesis in low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 2011; 31:1991-9. [PMID: 21700926 DOI: 10.1161/atvbaha.111.230847] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Spleen tyrosine kinase (SYK) has come into focus as a potential therapeutic target in chronic inflammatory diseases, such as rheumatoid arthritis and asthma, as well as in B-cell lymphomas. SYK has also been involved in the signaling of immunoreceptors, cytokine receptors, and integrins. We therefore hypothesized that inhibition of SYK attenuates the inflammatory process underlying atherosclerosis and reduces plaque development. METHODS AND RESULTS Low-density lipoprotein receptor-deficient mice consuming a high-cholesterol diet supplemented with 2 doses of the orally available SYK inhibitor fostamatinib for 16 weeks showed a dose-dependent reduction in atherosclerotic lesion size by up to 59±6% compared with the respective controls. Lesions of fostamatinib-treated animals contained fewer macrophages but more smooth muscle cells and collagen-characteristics associated with more stable plaques in humans. Mechanistically, fostamatinib attenuated adhesion and migration of inflammatory cells and limited macrophage survival. Furthermore, fostamatinib normalized high-cholesterol diet -induced monocytosis and inflammatory gene expression. CONCLUSIONS We present the novel finding that the SYK inhibitor fostamatinib attenuates atherogenesis in mice. Our data identify SYK inhibition as a potentially fruitful antiinflammatory therapeutic strategy in atherosclerosis.
Collapse
Affiliation(s)
- Ingo Hilgendorf
- Department of Cardiology, University Hospital Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|