1
|
Uppin V, Gibbons H, Troje M, Feinberg D, Webber BR, Moriarity BS, Parameswaran R. CAR-T cell targeting three receptors on autoreactive B cells for systemic lupus erythematosus therapy. J Autoimmun 2025; 151:103369. [PMID: 39832454 DOI: 10.1016/j.jaut.2025.103369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by dysregulated B cell activation, autoantibody production, and nephritis. B cell activating factor (BAFF) overexpression enhances autoreactive B-cell survival, driving autoimmunity. BAFF specific belimumab and CD20 specific rituximab antibodies are used for SLE therapy but are not curative, highlighting the need for alternative B cell depletion therapies. Here, we use BAFF ligand based chimeric antigen receptor T (CAR-T) cells targeting BAFFr, BCMA and TACI expressed on mature B cells and plasma cells. BAFF CAR-T cells efficiently killed B cells after co-culture with peripheral blood mononuclear cells (PBMCs) from SLE patients and in a patient derived SLE xenograft humanized mouse model developed by injecting patient PBMCs into immunocompromised mice. We also generated murine CD8+ T cells expressing human BAFF CAR to test their therapeutic efficacy in spontaneous (MRL/lpr) and pristane induced mouse models of SLE. In both models, BAFF CAR-T cells mediated persistent elimination of mature B cells, resulting in a decrease in the production of autoantibodies (IgM, IgG, Anti-ANA, and Anti-dsDNA IgG) and proteinuria along with prolonged survival. Adoptive transfer of B cells from control MRL/lpr lupus mice to previously BAFF CAR-T treated MRL/lpr lupus mice showed continued depletion of B cells and prolonged survival. Potential advantages of BAFF CAR-T therapy include avoiding B cell aplasia as BAFF receptors are not expressed by early B cells and preventing the escape of long-lived plasma cells post BAFF CAR-T therapy as they express receptors of BAFF. These data demonstrate the potential for a cellular immunotherapy based approach to induce remission of SLE pathogenesis using BAFF-CAR-T therapy.
Collapse
Affiliation(s)
- Vinayak Uppin
- Division of Haematology/Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | | | - Daniel Feinberg
- Division of Haematology/Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Beau R Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | | | - Reshmi Parameswaran
- Division of Haematology/Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA; Pediatric Haematology and Oncology, The Angie Fowler Adolescent & Young Adult Cancer Institute, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH, USA; The Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
2
|
Kono DH, Hahn BH. Animal models of systemic lupus erythematosus (SLE). DUBOIS' LUPUS ERYTHEMATOSUS AND RELATED SYNDROMES 2025:189-234. [DOI: 10.1016/b978-0-323-93232-5.00024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
He X, Liu P, Luo Y, Fu X, Yang T. STATs, promising targets for the treatment of autoimmune and inflammatory diseases. Eur J Med Chem 2024; 277:116783. [PMID: 39180944 DOI: 10.1016/j.ejmech.2024.116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Cytokines play a crucial role in the pathophysiology of autoimmune and inflammatory diseases, with over 50 cytokines undergoing signal transduction through the Signal Transducers and Activators of Transcription (STAT) signaling pathway. Recent studies have solidly confirmed the pivotal role of STATs in autoimmune and inflammatory diseases. Therefore, this review provides a detailed summary of the immunological functions of STATs, focusing on exploring their mechanisms in various autoimmune and inflammatory diseases. Additionally, with the rapid advancement of structural biology in the field of drug discovery, many STAT inhibitors have been identified using structure-based drug design strategies. In this review, we also examine the structures of STAT proteins and compile the latest research on STAT inhibitors currently being tested in animal models and clinical trials for the treatment of immunological diseases, which emphasizes the feasibility of STATs as promising therapeutic targets and provides insights into the design of the next generation of STAT inhibitors.
Collapse
Affiliation(s)
- Xinlian He
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pingxian Liu
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Youfu Luo
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyuan Fu
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Moysidou E, Christodoulou M, Lioulios G, Stai S, Karamitsos T, Dimitroulas T, Fylaktou A, Stangou M. Lymphocytes Change Their Phenotype and Function in Systemic Lupus Erythematosus and Lupus Nephritis. Int J Mol Sci 2024; 25:10905. [PMID: 39456692 PMCID: PMC11508046 DOI: 10.3390/ijms252010905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease, characterized by considerable changes in peripheral lymphocyte structure and function, that plays a critical role in commencing and reviving the inflammatory and immune signaling pathways. In healthy individuals, B lymphocytes have a major role in guiding and directing defense mechanisms against pathogens. Certain changes in B lymphocyte phenotype, including alterations in surface and endosomal receptors, occur in the presence of SLE and lead to dysregulation of peripheral B lymphocyte subpopulations. Functional changes are characterized by loss of self-tolerance, intra- and extrafollicular activation, and increased cytokine and autoantibody production. T lymphocytes seem to have a supporting, rather than a leading, role in the disease pathogenesis. Substantial aberrations in peripheral T lymphocyte subsets are evident, and include a reduction of cytotoxic, regulatory, and advanced differentiated subtypes, together with an increase of activated and autoreactive forms and abnormalities in follicular T cells. Up-regulated subpopulations, such as central and effector memory T cells, produce pre-inflammatory cytokines, activate B lymphocytes, and stimulate cell signaling pathways. This review explores the pivotal roles of B and T lymphocytes in the pathogenesis of SLE and Lupus Nephritis, emphasizing the multifaceted mechanisms and interactions and their phenotypic and functional dysregulations.
Collapse
Affiliation(s)
- Eleni Moysidou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Michalis Christodoulou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Georgios Lioulios
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Stamatia Stai
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Theodoros Karamitsos
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Cardiology, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Theodoros Dimitroulas
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 4th Department of Medicine, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Asimina Fylaktou
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece;
| | - Maria Stangou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| |
Collapse
|
5
|
Hosseini S, Mahmoudi M, Rezaieyazdi Z, Shapouri-Moghaddam A, Hosseinzadeh A, Arab FL, Tabasi NS, Esmaeili SA. Lupus mice derived mesenchymal stromal cells: Beneficial or detrimental on SLE disease outcome. Int Immunopharmacol 2024; 126:111306. [PMID: 38039717 DOI: 10.1016/j.intimp.2023.111306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease characterized by the presence of autoantibodies against nuclear genes, deposition of immune complexes, and autoimmune T cells, through which, tissue damage would ultimately occur. Furthermore, loss of immune tolerance and imbalance of Th1/Th2 cells in addition to Th17/Treg are contributed to the pathogenesis of SLE. Mesenchymal stromal cells (MSCs) infusion is a potential therapy for SLE disease. Despite a majority of SLE patients achieving clinical remission after allogeneic MSC infusion from healthy individuals, SLE patients have less benefited from autologous MSC infusion, justifying the probable compromised function of SLE patients-derived MSCs. In this study, we aim to further investigate the potential immunoregulatory mechanisms in which mesenchymal stromal cells derived from pristane-induced lupus mice, following injection into healthy and lupus mice, exert their possible effects on the lupus process. METHOD 40 female Balb/c mice aged 3 weeks were purchased and randomly divided into six groups. First, lupus disease was induced into the lupus groups by intraperitoneal injection of pristane and then the mice were surveyed for 6 months. The body weight, anti-dsDNA autoantibody levels, serum creatinine, and Blood Urea Nitrogen (BUN) levels were measured in two-month intervals. After 6 months, the group of lupus mice was sacrificed, and lupus MSCs were isolated. Two months later, cultured lupus MSCs were intravenously injected into two groups of healthy and lupus mice. After two months, the mice were euthanized and the kidneys of each group were examined histologically by hematoxylin & eosin (H&E) staining and the immunofluorescence method was also performed to evaluate IgG and C3 deposition. The frequency of splenic Th1, Th2, Th17, and Treg cells was measured by flow cytometry. Moreover, the cytokine levels of IFN-γ, IL-4, IL-17, and TGF-β in sera were measured by ELISA method. RESULTS Our results showed that the induction of lupus disease by pristane in Balb/c mice caused the formation of lipogranuloma, increased levels of anti-dsDNA autoantibodies, and impaired renal function in all pristane-induced lupus groups. In addition, the injection of lupus mesenchymal stromal cells (L-MSC) into healthy and lupus mice led to a further rise in anti-dsDNA serum levels, IgG and C3 deposition, and further dysfunction of mice renal tissue. Also, the flow cytometry results implicated that compared to the control groups, splenic Th1, Th2, and Th17 inflammatory cell subtypes and their secreted cytokines (IFN-γ, IL-4, and IL-17) in the sera of healthy and lupus mice were increased after the intake of L-MSC. Additionally, the splenic Treg cells were also significantly increased in the lupus mice receiving L-MSC. However, a decrease in serum levels of TGF-β cytokine was observed in healthy and lupus mice following L-MSC injection. In contrast, the lupus mice receiving healthy mesenchymal stem cells (H-MSC) manifested opposite results. CONCLUSION In a nutshell, our results suggest that although allogeneic MSCs are encouraging candidates for SLE treatment, syngeneic MSCs may not be eligible for treating SLE patients due to their defects in regulating the immune system in addition to their capability in promoting inflammation which would consequently worsen the SLE disease status.
Collapse
Affiliation(s)
- Sara Hosseini
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Rezaieyazdi
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Shapouri-Moghaddam
- Department of Immunology, BuAli Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Akram Hosseinzadeh
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nafiseh Sadat Tabasi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Álvarez K, Palacio J, Agudelo NA, Anacona CA, Castaño D, Vásquez G, Rojas M. B cell-targeted polylactic acid nanoparticles as platform for encapsulating jakinibs: potential therapeutic strategy for systemic lupus erythematosus. Nanomedicine (Lond) 2023; 18:2001-2019. [PMID: 38084660 DOI: 10.2217/nnm-2023-0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Background: B cells are pivotal in systemic lupus erythematosus and autoimmune disease pathogenesis. Materials & methods: To address this, Nile Red-labeled polylactic acid nanoparticles (NR-PLA NPs) loaded with the JAK inhibitor baricitinib (BARI), specifically targeting JAK1 and JAK2 in B cells, were developed. Results: Physicochemical characterization confirmed NP stability over 30 days. NR-PLA NPs were selectively bound and internalized by CD19+ B cells, sparing other leukocytes. In contrast to NR-PLA NPs, BARI-NR-PLA NPs significantly dampened B-cell activation, proliferation and plasma cell differentiation in healthy controls. They also inhibited key cytokine production. These effects often surpassed those of equimolar-free BARI. Conclusion: This study underscores the potential of PLA NPs to regulate autoreactive B cells, offering a novel therapeutic avenue for autoimmune diseases.
Collapse
Affiliation(s)
- Karen Álvarez
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Universidad de Antioquia, Calle 70 No. 52-21 & Calle 62 No. 52-59, Torre 1, Lab. 510; Medellín, Colombia
| | - Juliana Palacio
- Grupo De Investigación Ciencia de Los Materiales, Instituto de Química, Universidad de Antioquia, Calle 70 No. 52-21 & Calle 62 No. 52-59, Torre 1, Lab. 310; Medellín, Colombia
- Escuela de Química, Universidad Nacional de Colombia, Sede Medellín, Carrera 65A No. 59A-110, Medellín, Colombia
| | - Natalia A Agudelo
- Grupo de Investigación e Innovación en Formulaciones Químicas, Escuela de Ingeniería y Ciencias Básicas, Universidad EIA, Envigado, Colombia
| | - Cristian A Anacona
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Universidad de Antioquia, Calle 70 No. 52-21 & Calle 62 No. 52-59, Torre 1, Lab. 510; Medellín, Colombia
| | - Diana Castaño
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Universidad de Antioquia, Calle 70 No. 52-21 & Calle 62 No. 52-59, Torre 1, Lab. 510; Medellín, Colombia
| | - Gloria Vásquez
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Universidad de Antioquia, Calle 70 No. 52-21 & Calle 62 No. 52-59, Torre 1, Lab. 510; Medellín, Colombia
| | - Mauricio Rojas
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Universidad de Antioquia, Calle 70 No. 52-21 & Calle 62 No. 52-59, Torre 1, Lab. 510; Medellín, Colombia
- Unidad de Citometría de Flujo, Sede de Investigación Universitaria, Universidad de Antioquia, Calle 62 No. 52-59, Medellín, 050010, Colombia
| |
Collapse
|
7
|
Prakash A, Medved J, Arneja A, Niebuhr C, Li AN, Tarrah S, Boscia AR, Burnett ED, Singh A, Salazar JE, Xu W, Santhanakrishnan M, Hendrickson JE, Luckey CJ. Class switching is differentially regulated in RBC alloimmunization and vaccination. Transfusion 2023; 63:826-838. [PMID: 36907655 PMCID: PMC10851675 DOI: 10.1111/trf.17301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND Studies of human patients have shown that most anti-RBC alloantibodies are IgG1 or IgG3 subclasses, although it is unclear why transfused RBCs preferentially drive these subclasses over others. Though mouse models allow for the mechanistic exploration of class-switching, previous studies of RBC alloimmunization in mice have focused more on the total IgG response than the relative distribution, abundance, or mechanism of IgG subclass generation. Given this major gap, we compared the IgG subclass distribution generated in response to transfused RBCs relative to protein in alum vaccination, and determined the role of STAT6 in their generation. STUDY DESIGN AND METHODS WT mice were either immunized with Alum/HEL-OVA or transfused with HOD RBCs and levels of anti-HEL IgG subtypes were measured using end-point dilution ELISAs. To study the role of STAT6 in IgG class-switching, we first generated and validated novel STAT6 KO mice using CRISPR/cas9 gene editing. STAT6 KO mice were then transfused with HOD RBCs or immunized with Alum/HEL-OVA, and IgG subclasses were quantified by ELISA. RESULTS When compared with antibody responses to Alum/HEL-OVA, transfusion of HOD RBCs induced lower levels of IgG1, IgG2b, and IgG2c but similar levels of IgG3. Class switching to most IgG subtypes remained largely unaffected in STAT6 deficient mice in response to HOD RBC transfusion, with the one exception being IgG2b. In contrast, STAT6 deficient mice showed altered levels of all IgG subtypes following Alum vaccination. DISCUSSION Our results show that anti-RBC class-switching occurs via alternate mechanisms when compared with the well-studied immunogen alum vaccination.
Collapse
Affiliation(s)
- Anupam Prakash
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Jelena Medved
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Abhinav Arneja
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Conrad Niebuhr
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Andria N. Li
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Soraya Tarrah
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Alexis R. Boscia
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Emily D. Burnett
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Aanika Singh
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Juan E. Salazar
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Wenhao Xu
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Manjula Santhanakrishnan
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jeanne E. Hendrickson
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Chance John Luckey
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
8
|
Prakash A, Medved J, Arneja A, Niebuhr C, Li AN, Tarrah S, Boscia AR, Burnett ED, Singh A, Salazar JE, Xu W, Santhanakrishnan M, Hendrickson JE, Luckey CJ. Class switching is differentially regulated in RBC alloimmunization and vaccination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523608. [PMID: 36712006 PMCID: PMC9882062 DOI: 10.1101/2023.01.11.523608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background Studies of human patients have shown that most anti-RBC alloantibodies are IgG1 or IgG3 subclasses, though it is unclear why transfused RBCs preferentially drive these subclasses over others. Though mouse models allow for the mechanistic exploration of class-switching, previous studies of RBC alloimmunization in mice have focused more on the total IgG response than the relative distribution, abundance, or mechanism of IgG subclass generation. Given this major gap, we compared the IgG subclass distribution generated in response to transfused RBCs relative to protein in alum vaccination, and determined the role of STAT6 in their generation. Study Design and Methods WT mice were either immunized with Alum/HEL-OVA or transfused with HOD RBCs and levels of anti-HEL IgG subtypes were measured using end-point dilution ELISAs. To study the role of STAT6 in IgG class-switching, we first generated and validated novel STAT6 KO mice using CRISPR/cas9 gene editing. STAT6 KO mice were then transfused with HOD RBCs or immunized with Alum/HEL-OVA, and IgG subclasses were quantified by ELISA. Results When compared to antibody responses to Alum/HEL-OVA, transfusion of HOD RBCs induced lower levels of IgG1, IgG2b and IgG2c but similar levels of IgG3. Class switching to most IgG subtypes remained largely unaffected in STAT6 deficient mice in response to HOD RBC transfusion, with the one exception being IgG2b. In contrast, STAT6 deficient mice showed altered levels of all IgG subtypes following Alum vaccination. Discussion Our results show that anti-RBC class-switching occurs via alternate mechanisms when compared to the well-studied immunogen alum vaccination.
Collapse
|
9
|
Wang R, Zhang J, Li D, Liu G, Fu Y, Li Q, Zhang L, Qian L, Hao L, Wang Y, Harris DCH, Wang D, Cao Q. Imbalance of circulating innate lymphoid cell subpopulations in patients with chronic kidney disease. Clin Immunol 2022; 239:109029. [PMID: 35525476 DOI: 10.1016/j.clim.2022.109029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/19/2022]
Abstract
Innate lymphoid cells (ILCs) are a newly identified heterogeneous family of innate immune cells. We conducted this study to investigate the frequency of circulating ILC subsets in various chronic kidney diseases (CKD). In DN, the proportion of total ILCs and certain ILC subgroups increased significantly. Positive correlations between proportion of total ILCs, ILC1s and body mass index, glycated hemoglobin were observed in DN. In LN, a significantly increased proportion of ILC1s was found in parallel with a reduced proportion of ILC2s. The proportions of total ILCs and ILC1s were correlated with WBC count and the level of C3. In all enrolled patients, the proportion of total ILCs and ILC1s was significantly correlated with the levels of ACR and GFR. In the present study, the proportion of circulating ILC subsets increased significantly in various types of CKD and correlated with clinico-pathological features, which suggests a possible role for ILCs in CKD.
Collapse
Affiliation(s)
- Ruifeng Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China; Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia; Department of Nephrology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingjing Zhang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dandan Li
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guiling Liu
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuqin Fu
- Department of Nephrology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qing Li
- The Central Laboratory of Medical Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lei Zhang
- Department of Rheumatology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Long Qian
- Department of Rheumatology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Hao
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yiping Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - David C H Harris
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Deguang Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Qi Cao
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
10
|
Ko H, Kim CJ, Im SH. T Helper 2-Associated Immunity in the Pathogenesis of Systemic Lupus Erythematosus. Front Immunol 2022; 13:866549. [PMID: 35444658 PMCID: PMC9014558 DOI: 10.3389/fimmu.2022.866549] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease that mainly affects women in their reproductive years. A complex interaction of environmental and genetic factors leads to the disruption of immune tolerance towards self, causing overt immune activation and production of autoantibodies that attack multiple organs. Kidney damage, termed lupus nephritis, is the leading cause of SLE-related morbidity and mortality. Autoantibodies are central to propagating lupus nephritis through forming immune complexes and triggering complements. Immunoglobulin G (IgG) potently activates complement; therefore, autoantibodies were mainly considered to be of the IgG isotype. However, studies revealed that over 50% of patients produce autoantibodies of the IgE isotype. IgE autoantibodies actively participate in disease pathogenesis as omalizumab treatment, a humanized anti-IgE monoclonal antibody, improved disease severity in an SLE clinical trial. IgE is a hallmark of T helper 2-associated immunity. Thus, T helper 2-associated immunity seems to play a pathogenic role in a subset of SLE patients. This review summarizes human and animal studies that illustrate type 2 immune responses involved during the pathology of SLE.
Collapse
Affiliation(s)
- Haeun Ko
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Chan Johng Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
- Pohang University of Science and Technology (POSTECH) Biotech Center, Pohang University of Science and Technology, Pohang, South Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
- Institute for Convergence Research and Education, Yonsei University, Seoul, South Korea
- ImmunoBiome Inc., Bio Open Innovation Center, Pohang, South Korea
| |
Collapse
|
11
|
Abstract
Sjögren's syndrome (SjS) is a systemic autoimmune disease marked by xerostomia (dry mouth), keratoconjunctivitis sicca (eye dryness), and other systematic disorders. Its pathogenesis involves an inflammatory process that is characterized by lymphocytic infiltration into exocrine glands and other tissues. Although the development of ectopic lymphoid tissue and overproduction of autoantibodies by hyperactive B cells suggest that they may promote SjS development, treatment directed towards them fails to induce significant laboratory or clinical improvement. T cells are overwhelming infiltrators in most phases of the disease, and the involvement of multiple T cell subsets of suggests the extraordinary complexity of SjS pathogenesis. The factors, including various cellular subtypes and molecules, regulate the activation and suppression of T cells. T cell activation induces inflammatory cell infiltration, B cell activation, tissue damage, and metabolic changes in SjS. Knowledge of the pathways that link these T cell subtypes and regulation of their activities are not completely understood. This review comprehensively summarizes the research progress and our understanding of T cells in SjS, including CD4+ T cells, CD8+ TRM cells, and innate T cells, to provide insights into for clinical treatment.
Collapse
|
12
|
Targeting Canonical and Non-Canonical STAT Signaling Pathways in Renal Diseases. Cells 2021; 10:cells10071610. [PMID: 34199002 PMCID: PMC8305338 DOI: 10.3390/cells10071610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 01/05/2023] Open
Abstract
Signal transducer and activator of transcription (STAT) plays an essential role in the inflammatory reaction and immune response of numerous renal diseases. STATs can transmit the signals of cytokines, chemokines, and growth factors from the cell membrane to the nucleus. In the canonical STAT signaling pathways, upon binding with their cognate receptors, cytokines lead to a caspase of Janus kinases (JAKs) and STATs tyrosine phosphorylation and activation. Besides receptor-associated tyrosine kinases JAKs, receptors with intrinsic tyrosine kinase activities, G-protein coupled receptors, and non-receptor tyrosine kinases can also activate STATs through tyrosine phosphorylation or, alternatively, other post-translational modifications. Activated STATs translocate into the nucleus and mediate the transcription of specific genes, thus mediating the progression of various renal diseases. Non-canonical STAT pathways consist of preassembled receptor complexes, preformed STAT dimers, unphosphorylated STATs (U-STATs), and non-canonical functions including mitochondria modulation, microtubule regulation and heterochromatin stabilization. Most studies targeting STAT signaling pathways have focused on canonical pathways, but research extending into non-canonical STAT pathways would provide novel strategies for treating renal diseases. In this review, we will introduce both canonical and non-canonical STAT pathways and their roles in a variety of renal diseases.
Collapse
|
13
|
Dong X, Antao OQ, Song W, Sanchez GM, Zembrzuski K, Koumpouras F, Lemenze A, Craft J, Weinstein JS. Type I Interferon-Activated STAT4 Regulation of Follicular Helper T Cell-Dependent Cytokine and Immunoglobulin Production in Lupus. Arthritis Rheumatol 2021; 73:478-489. [PMID: 33512094 PMCID: PMC7914134 DOI: 10.1002/art.41532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 09/17/2020] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To assess the role of STAT4 activation in driving pathogenic follicular helper T (Tfh) cell secretion of the cytokines interleukin-21 (IL-21) and interferon-γ (IFNγ) in murine and human lupus. METHODS The effect of STAT4-dependent Tfh cell signaling on cytokine production and autoreactive B cell maturation was assessed temporally during the course of lupus in a murine model, with further assessment of Tfh cell gene transcription performed using RNA-Seq technology. STAT4-dependent signaling and cytokine production were also determined in circulating Tfh-like cells in patients with systemic lupus erythematosus (SLE), as compared to cells from healthy control subjects, and correlations with disease activity were assessed in the Tfh-like cells from SLE patients. RESULTS IL-21- and IFNγ-coproducing Tfh cells expanded prior to the detection of potentially pathogenic IgG2c autoantibodies in lupus-prone mice. Tfh cells transcriptionally evolved during the course of disease with acquisition of a STAT4-dependent gene signature. Maintenance of Tfh cell cytokine synthesis was dependent upon STAT4 signaling, driven by type I IFNs. Circulating Tfh-like cells from patients with SLE also secreted IL-21 and IFNγ, with STAT4 phosphorylation enhanced by IFNβ, in association with the extent of clinical disease activity. CONCLUSION We identified a role for type I IFN signaling in driving STAT4 activation and production of IL-21 and IFNγ by Tfh cells in murine and human lupus. Enhanced STAT4 activation in Tfh cells may underlie pathogenic B cell responses in both murine and human lupus. These data indicate that STAT4 guides pathogenic cytokine and immunoglobulin production in SLE, demonstrating a potential therapeutic target to modulate autoimmunity.
Collapse
Affiliation(s)
- Xuemei Dong
- Yale University School of Medicine, New Haven, Connecticut
| | | | - Wenzhi Song
- Yale University School of Medicine, New Haven, Connecticut
| | | | | | | | | | - Joe Craft
- Yale University School of Medicine, New Haven, Connecticut
| | - Jason S Weinstein
- Yale University School of Medicine, New Haven, Connecticut, and Rutgers New Jersey Medical School, Newark
| |
Collapse
|
14
|
Reséndiz-Mora A, Wong-Baeza C, Nevárez-Lechuga I, Landa-Saldívar C, Molina-Gómez E, Hernández-Pando R, Wong-Baeza I, Escobar-Gutiérrez A, Baeza I. Interleukin 4 deficiency limits the development of a lupus-like disease in mice triggered by phospholipids in a non-bilayer arrangement. Scand J Immunol 2020; 93:e13002. [PMID: 33247472 DOI: 10.1111/sji.13002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/30/2020] [Accepted: 11/22/2020] [Indexed: 11/29/2022]
Abstract
Non-bilayer phospholipids arrangements (NPAs) are transient molecular associations different from lipid bilayers. When they become stable, they can trigger a disease in mice resembling human lupus, which is mainly characterized by the production of anti-NPA IgG antibodies. NPAs are stabilized on liposomes or cell bilayers by the drugs procainamide or chlorpromazine, which produce drug-induced lupus in humans. Here, we evaluated the participation of the TH 2 response, through its hallmark cytokine IL-4, on the development of the lupus-like disease in mice. Wild-type or IL-4 knockout BALB/c mice received liposomes bearing drug-induced NPAs, the drugs alone, or an anti-NPA monoclonal antibody (H308) to induce the lupus-like disease (the last two procedures stabilize NPAs on mice cells). IL-4 KO mice showed minor disease manifestations, compared to wild-type mice, with decreased production of anti-NPA IgG antibodies, no anti-cardiolipin, anti-histones and anticoagulant antibodies, and no kidney or skin lesions. In these mice, H308 was the only inducer of anti-NPA IgG antibodies. These findings indicate that IL-4 has a central role in the development of the murine lupus-like disease induced by NPA stabilization.
Collapse
Affiliation(s)
- Albany Reséndiz-Mora
- Laboratorio de Biomembranas, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México.,Laboratorio de Enzimología, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Carlos Wong-Baeza
- Laboratorio de Biomembranas, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México.,Laboratorio de Enzimología, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Irene Nevárez-Lechuga
- Laboratorio de Biomembranas, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México.,Laboratorio de Enzimología, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Carla Landa-Saldívar
- Laboratorio de Biomembranas, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Eréndira Molina-Gómez
- Laboratorio de Biomembranas, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México.,Laboratorio de Enzimología, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| | - Isabel Wong-Baeza
- Laboratorio de Inmunología Molecular II, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | | | - Isabel Baeza
- Laboratorio de Biomembranas, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
15
|
Ashmawy I, El-Lebedy D, Awadallah E, Marzouk H, Farag Y, Ibrahim AA. Association of FCN2 gene rs3124954 and STAT4 gene rs7582694 polymorphisms with juvenile onset systemic lupus erythematosus and lupus nephritis in a sample of Egyptian children. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Cytokines and Transgenic Matrix in Autoimmune Diseases: Similarities and Differences. Biomedicines 2020; 8:biomedicines8120559. [PMID: 33271810 PMCID: PMC7761121 DOI: 10.3390/biomedicines8120559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/16/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Autoimmune diseases are increasingly recognized as disease entities in which dysregulated cytokines contribute to tissue-specific inflammation. In organ-specific and multiorgan autoimmune diseases, the cytokine profiles show some similarities. Despite these similarities, the cytokines have different roles in the pathogenesis of different diseases. Altered levels or action of cytokines can result from changes in cell signaling. This article describes alterations in the JAK-STAT, TGF-β and NF-κB signaling pathways, which are involved in the pathogenesis of multiple sclerosis and systemic lupus erythematosus. There is a special focus on T cells in preclinical models and in patients afflicted with these chronic inflammatory diseases.
Collapse
|
17
|
Radmanesh F, Mahmoudi M, Yazdanpanah E, Keyvani V, Kia N, Nikpoor AR, Zafari P, Esmaeili SA. The immunomodulatory effects of mesenchymal stromal cell-based therapy in human and animal models of systemic lupus erythematosus. IUBMB Life 2020; 72:2366-2381. [PMID: 33006813 DOI: 10.1002/iub.2387] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/17/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune inflammatory disease with no absolute cure. Although the exact etiopathogenesis of SLE is still enigmatic, it has been well demonstrated that a combination of genetic predisposition and environmental factors trigger a disturbance in immune responses and thereby participate in the development of this condition. Almost all available therapeutic strategies in SLE are primarily based on the administration of immunosuppressive drugs and are not curative. Mesenchymal stromal cells (MSCs) are a subset of non-hematopoietic adult stem cells that can be isolated from many adult tissues and are increasingly recognized as immune response modulating agents. MSC-mediated inhibition of immune responses is a complex mechanism that involves almost every aspect of the immune response. MSCs suppress the maturation of antigen-presenting cells (DC and MQ), proliferation of T cells (Th1, T17, and Th2), proliferation and immunoglobulin production of B cells, the cytotoxic activity of CTL and NK cells in addition to increasing regulatory cytokines (TGF-β and IL10), and decreasing inflammatory cytokines (IL17, INF-ϒ, TNF-α, and IL12) levels. MSCs have shown encouraging results in the treatment of several autoimmune diseases, in particular SLE. This report aims to review the beneficial and therapeutic properties of MSCs; it also focuses on the results of animal model studies, preclinical studies, and clinical trials of MSC therapy in SLE from the immunoregulatory aspect.
Collapse
Affiliation(s)
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Esmaeil Yazdanpanah
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahideh Keyvani
- Molecular Genetics, Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Nadia Kia
- Skin Cancer Prevention Research Center, Torvergata University of Medical Sciences, Rome, Italy
| | - Amin Reza Nikpoor
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Parisa Zafari
- Department of Immunology, School of Medicine, Mazandaran University of Medical Science, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Science, Sari, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Yang C, Mai H, Peng J, Zhou B, Hou J, Jiang D. STAT4: an immunoregulator contributing to diverse human diseases. Int J Biol Sci 2020; 16:1575-1585. [PMID: 32226303 PMCID: PMC7097918 DOI: 10.7150/ijbs.41852] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Signal transducer and activator of transcription 4 (STAT4) is a member of the STAT family and localizes to the cytoplasm. STAT4 is phosphorylated after a variety of cytokines bind to the membrane, and then dimerized STAT4 translocates to the nucleus to regulate gene expression. We reviewed the essential role played by STAT4 in a wide variety of cells and the pathogenesis of diverse human diseases, especially many kinds of autoimmune and inflammatory diseases, via activation by different cytokines through the Janus kinase (JAK)-STAT signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Deke Jiang
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, GuangZhou, China
| |
Collapse
|
19
|
Kansal R, Richardson N, Neeli I, Khawaja S, Chamberlain D, Ghani M, Ghani QUA, Balazs L, Beranova-Giorgianni S, Giorgianni F, Kochenderfer JN, Marion T, Albritton LM, Radic M. Sustained B cell depletion by CD19-targeted CAR T cells is a highly effective treatment for murine lupus. Sci Transl Med 2020; 11:11/482/eaav1648. [PMID: 30842314 DOI: 10.1126/scitranslmed.aav1648] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/21/2018] [Accepted: 01/30/2019] [Indexed: 12/12/2022]
Abstract
The failure of anti-CD20 antibody (Rituximab) as therapy for lupus may be attributed to the transient and incomplete B cell depletion achieved in clinical trials. Here, using an alternative approach, we report that complete and sustained CD19+ B cell depletion is a highly effective therapy in lupus models. CD8+ T cells expressing CD19-targeted chimeric antigen receptors (CARs) persistently depleted CD19+ B cells, eliminated autoantibody production, reversed disease manifestations in target organs, and extended life spans well beyond normal in the (NZB × NZW) F1 and MRL fas/fas mouse models of lupus. CAR T cells were active for 1 year in vivo and were enriched in the CD44+CD62L+ T cell subset. Adoptively transferred splenic T cells from CAR T cell-treated mice depleted CD19+ B cells and reduced disease in naive autoimmune mice, indicating that disease control was cell-mediated. Sustained B cell depletion with CD19-targeted CAR T cell immunotherapy is a stable and effective strategy to treat murine lupus, and its effectiveness should be explored in clinical trials for lupus.
Collapse
Affiliation(s)
- Rita Kansal
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Noah Richardson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Indira Neeli
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Saleem Khawaja
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Damian Chamberlain
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Marium Ghani
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Qurat-Ul-Ain Ghani
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Louisa Balazs
- Department of Pathology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sarka Beranova-Giorgianni
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Francesco Giorgianni
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - James N Kochenderfer
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Tony Marion
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Lorraine M Albritton
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Marko Radic
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
20
|
Carrasco Pro S, Dafonte Imedio A, Santoso CS, Gan KA, Sewell JA, Martinez M, Sereda R, Mehta S, Fuxman Bass JI. Global landscape of mouse and human cytokine transcriptional regulation. Nucleic Acids Res 2019; 46:9321-9337. [PMID: 30184180 PMCID: PMC6182173 DOI: 10.1093/nar/gky787] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/21/2018] [Indexed: 12/24/2022] Open
Abstract
Cytokines are cell-to-cell signaling proteins that play a central role in immune development, pathogen responses, and diseases. Cytokines are highly regulated at the transcriptional level by combinations of transcription factors (TFs) that recruit cofactors and the transcriptional machinery. Here, we mined through three decades of studies to generate a comprehensive database, CytReg, reporting 843 and 647 interactions between TFs and cytokine genes, in human and mouse respectively. By integrating CytReg with other functional datasets, we determined general principles governing the transcriptional regulation of cytokine genes. In particular, we show a correlation between TF connectivity and immune phenotype and disease, we discuss the balance between tissue-specific and pathogen-activated TFs regulating each cytokine gene, and cooperativity and plasticity in cytokine regulation. We also illustrate the use of our database as a blueprint to predict TF-disease associations and identify potential TF-cytokine regulatory axes in autoimmune diseases. Finally, we discuss research biases in cytokine regulation studies, and use CytReg to predict novel interactions based on co-expression and motif analyses which we further validated experimentally. Overall, this resource provides a framework for the rational design of future cytokine gene regulation studies.
Collapse
Affiliation(s)
- Sebastian Carrasco Pro
- Department of Biology, Boston University, Boston, MA 02215, USA.,Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | | | | | - Kok Ann Gan
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | | | - Rebecca Sereda
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Shivani Mehta
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Juan Ignacio Fuxman Bass
- Department of Biology, Boston University, Boston, MA 02215, USA.,Bioinformatics Program, Boston University, Boston, MA 02215, USA
| |
Collapse
|
21
|
Adolescents with urinary stones have elevated urine levels of inflammatory mediators. Urolithiasis 2019; 47:461-466. [PMID: 30993354 DOI: 10.1007/s00240-019-01133-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
Abstract
Urinary stones are increasing in children, primarily during adolescence. Although urinary stones are often viewed in the context of intermittent stone events, increasing evidence indicates that stones are a metabolic process associated with chronic kidney disease and cardiovascular disease. These aforementioned stone-associated conditions may have pediatric origins. To compare urine inflammatory markers in otherwise healthy stone forming children versus matched controls. Urine samples were collected from 12 adolescents with urinary stones along with 15 controls. The levels of 30 urine cytokines were measured using a Mesoscale 30-Plex Human Cytokine panel and normalized to urine creatinine levels. Macrophage inflammatory protein 1β and interleukin 13 levels were significantly elevated in the urine of the stone forming adolescents compared to controls. Interleukin 17A was elevated in the urine of controls. This study indicates that urine levels of cytokines involved in chronic inflammation and fibrosis are elevated in urinary stone formers as early as adolescence. Because stone formers are at risk for chronic kidney disease, macrophage inflammatory protein 1β and interleukin 13 represent investigative targets.
Collapse
|
22
|
Puttaraksa K, Pirttinen H, Karvonen K, Nykky J, Naides SJ, Gilbert L. Parvovirus B19V Nonstructural Protein NS1 Induces Double-Stranded Deoxyribonucleic Acid Autoantibodies and End-Organ Damage in Nonautoimmune Mice. J Infect Dis 2019; 219:1418-1429. [PMID: 30346568 PMCID: PMC6468957 DOI: 10.1093/infdis/jiy614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/17/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Viral infection is implicated in development of autoimmunity. Parvovirus B19 (B19V) nonstructural protein, NS1, a helicase, covalently modifies self double-stranded deoxyribonucleic acid (dsDNA) and induces apoptosis. This study tested whether resulting apoptotic bodies (ApoBods) containing virally modified dsDNA could induce autoimmunity in an animal model. METHODS BALB/c mice were inoculated with (1) pristane-induced, (2) B19V NS1-induced, or (3) staurosporine-induced ApoBods. Serum was tested for dsDNA autoantibodies by Crithidia luciliae staining and enzyme-linked immunosorbent assay. Brain, heart, liver, and kidney pathology was examined. Deposition of self-antigens in glomeruli was examined by staining with antibodies to dsDNA, histones H1 and H4, and TATA-binding protein. RESULTS The B19V NS1-induced ApoBod inoculation induced dsDNA autoantibodies in a dose-dependent fashion. Histopathological features of immune-mediated organ damage were evident in pristane-induced and NS1-induced ApoBod groups; severity scores were higher in these groups than in staurosporine-treated groups. Tissue damage was dependent on NS1-induced ApoBod dose. Nucleosomal antigens were deposited in target tissue from pristane-induced and NS1-induced ApoBod inoculated groups, but not in the staurosporine-induced ApoBod inoculated group. CONCLUSIONS This study demonstrated proof of principle in an animal model that virally modified dsDNA in apoptotic bodies could break tolerance to self dsDNA and induce dsDNA autoantibodies and end-organ damage.
Collapse
Affiliation(s)
- Kanoktip Puttaraksa
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Finland
| | - Heidi Pirttinen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Finland
| | - Kati Karvonen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Finland
| | - Jonna Nykky
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Finland
| | - Stanley J Naides
- Quest Diagnostics Nichols Institute, Immunology R&D, San Juan Capistrano, California
| | - Leona Gilbert
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Finland
| |
Collapse
|
23
|
Hahn BH, Kono DH. Animal Models in Lupus. DUBOIS' LUPUS ERYTHEMATOSUS AND RELATED SYNDROMES 2019:164-215. [DOI: 10.1016/b978-0-323-47927-1.00014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Dong C, Fu T, Ji J, Li Z, Gu Z. The role of interleukin-4 in rheumatic diseases. Clin Exp Pharmacol Physiol 2018; 45:747-754. [PMID: 29655253 DOI: 10.1111/1440-1681.12946] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 03/31/2018] [Accepted: 04/04/2018] [Indexed: 01/10/2023]
Abstract
Rheumatism is a group of diseases, most of which are autoimmune diseases, that violate joints, bones, muscles, blood vessels and related soft tissue. As is well known, cytokines play a role in the pathogenesis of several rheumatic diseases, such as rheumatoid arthritis, spondyloarthritides, and systemic lupus erythematosus. Recently, the role of interleukin-4 (IL-4), which may participate in the mechanism of rheumatism, have been discovered. It is reported that IL-4 takes part in the regulation of T cell activation, differentiation, proliferation, and survival of different T cell types. IL-4 also has an immunomodulatory effect on B cells, mast cells, macrophages, and many cell types. A review of the literature on functions of IL-4 in rheumatic diseases is presented.
Collapse
Affiliation(s)
- Chen Dong
- School of Nursing, Nantong University, Nantong, Jiangsu Province, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Ting Fu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Juan Ji
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zhenyu Li
- School of Nursing, Nantong University, Nantong, Jiangsu Province, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zhifeng Gu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW The complexity and heterogeneity of the clinical presentation in systemic lupus of erythematosus (SLE), combined to the inherent limitations of clinical research, have made it difficult to investigate the cause of this disease directly in patients. Various mouse models have been developed to dissect the cellular and genetic mechanisms of SLE, as well as to identify therapeutic targets and to screen treatments. The purpose of this review is to summarize the major spontaneous and induced mouse models of SLE and to provide an update on the major advances they have contributed to the field. RECENT FINDINGS Mouse models of SLE have continued to contribute to understand the cellular, signaling and metabolic mechanisms contributing to the disease and how targeting these pathways can provide therapeutic targets. Whenever possible, we discuss the advantage of using one model over the others to test a specific hypothesis. SUMMARY Spontaneous and induced models of lupus models are useful tools for the study of the cause of the disease, identify therapeutic targets and screen treatments in preclinical studies. Each model shares specific subsets of attributes with the disease observed in humans, which provides investigators a tool to tailor to their specific needs.
Collapse
|
26
|
Yang B, Zhang J, Liu X, Huang Z, Su Z, Liao Y, Wang L. Genetic polymorphisms in HLA-DP and STAT4 are associated with IgA nephropathy in a Southwest Chinese population. Oncotarget 2018; 9:7066-7074. [PMID: 29467950 PMCID: PMC5805536 DOI: 10.18632/oncotarget.23829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 12/28/2017] [Indexed: 02/05/2023] Open
Abstract
IgA nephropathy (IgAN) is the most common chronic glomerular disease worldwide. Genetic factors are thought to be crucial in the pathogenesis of IgAN. However, few data are available on the relationship between human leucocyte antigen (HLA) and signal transducer and activator of transcription 4 (STAT4) polymorphisms and IgAN susceptibility in the Chinese population. Therefore, we examined HLA-DP/DQ and STAT4 polymorphisms (rs3077, rs9277535, rs7453920 and rs7574865) in a total of 630 subjects including 140 IgAN and 490 healthy controls in Chinese. There were significant associations between IgAN patients and healthy controls in the allele frequency of rs3077, rs9277535 and rs7574865. In addition, the genotypes of rs3077, rs9277535 and rs7574865 were also significantly associated with IgAN under recessive models. Moreover, the haplotypes block AAG, AGG, GAG and GGA in the HLA gene significantly correlated with the risk of IgAN. This is the first study demonstrating the significant associations of SNP rs3077, rs9277535 and rs7574865 and the haplotypes in the HLA gene with the risk of IgAN in a Southwest Chinese population. This research provides a new insight into the significant relationship between HLA-DP and STAT4 polymorphisms and the susceptibility to IgAN.
Collapse
Affiliation(s)
- Bin Yang
- Department of Lab Medicine, West China Hospital, Sichuan University, Sichuan 610041, Chengdu, China
| | - Junlong Zhang
- Department of Lab Medicine, West China Hospital, Sichuan University, Sichuan 610041, Chengdu, China
| | - Xinle Liu
- Department of Lab Medicine, West China Hospital, Sichuan University, Sichuan 610041, Chengdu, China
| | - Zhuochun Huang
- Department of Lab Medicine, West China Hospital, Sichuan University, Sichuan 610041, Chengdu, China
| | - Zhenzhen Su
- Department of Lab Medicine, West China Hospital, Sichuan University, Sichuan 610041, Chengdu, China
| | - Yun Liao
- Department of Lab Medicine, West China Hospital, Sichuan University, Sichuan 610041, Chengdu, China
| | - Lanlan Wang
- Department of Lab Medicine, West China Hospital, Sichuan University, Sichuan 610041, Chengdu, China
| |
Collapse
|
27
|
Growth Factor Midkine Promotes T-Cell Activation through Nuclear Factor of Activated T Cells Signaling and Th1 Cell Differentiation in Lupus Nephritis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:740-751. [DOI: 10.1016/j.ajpath.2016.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/02/2016] [Accepted: 12/08/2016] [Indexed: 12/24/2022]
|
28
|
Wun CM, Piao Z, Hong KT, Choi JY, Hong CR, Park JD, Park KD, Shin HY, Kang HJ. Effect of donor STAT4 polymorphism rs7574865 on clinical outcomes of pediatric acute leukemia patients after hematopoietic stem cell transplant. Int Immunopharmacol 2016; 43:62-69. [PMID: 27960128 DOI: 10.1016/j.intimp.2016.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/17/2016] [Accepted: 12/06/2016] [Indexed: 01/08/2023]
Abstract
STAT4 polymorphism, rs7574865 is linked to various autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis. Its T minor allele is associated with higher STAT4 mRNA and protein expression, indicating a stronger skewed immune response than the norm. Although widely studied in autoimmune disease patients and the general population, its effect on immunocompromised subjects is still unknown. Especially in situations, i.e. post-hematopoietic stem cell transplantation (post-HSCT), where control of the immune response is crucial. Hence, this study investigates if the presence of the T minor allele in donors would affect immunological response and clinical outcomes post-HSCT. Samples from 161 pediatric patients who underwent allogeneic HSCT for acute leukemia and showed complete chimerism by donor cells were obtained. Six clinical outcomes were investigated; hepatic veno-occlusive disease, acute graft-vs-host disease, chronic graft-vs-host disease, cytomegalovirus (CMV) infection, relapse and overall survival. The TT genotype was found to be significant in the occurrence of CMV infection (P=0.049), showing higher incidence of CMV infection compared to the others. Multivariate analysis confirmed that association of the TT genotype is independent from other variables in CMV infection occurrence (P=0.010). This is the first study on STAT4 polymorphism rs7574865 in allogeneic HSCT as well as immunocompromised patients. As the TT genotype is associated with autoimmune diseases, our results seem at a paradox with current evidence hinting at a different role of STAT4 in normal circumstances versus immunocompromised patients. Further investigation is needed to elicit the reason behind this and discover novel applications for better post-transplant outcomes.
Collapse
Affiliation(s)
- Cheng Mun Wun
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Zhe Piao
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyung Taek Hong
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung Yoon Choi
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Che Ry Hong
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - June Dong Park
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyung Duk Park
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Young Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyoung Jin Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
29
|
Kiani AN, Aukrust P, Ueland T, Hollan I, Barr E, Magder LS, Petri M. Serum osteoprotegrin (OPG) in subclinical atherosclerosis in systemic lupus erythematosus. Lupus 2016; 26:865-870. [PMID: 27927880 DOI: 10.1177/0961203316682101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction Osteoprotegerin (OPG) is a member of the tumor necrosis factor (TNF) receptor family. It has recently been demonstrated that OPG is produced by a variety of tissues, including the cardiovascular system (heart, arteries, veins), lung, kidney, immune tissues, and bone. The OPG-RANKL signaling pathway is strongly related to vascular calcification. We determined the association of this biomarker with subclinical atherosclerosis in systemic lupus erythematous (SLE). Methods We measured OPG and markers of subclinical atherosclerosis (coronary artery calcium (CAC), carotid intima-media thickness (cIMT) carotid plaque) in 166 SLE patients (91% female, 64% Caucasian, 31% African American, 5% others, mean age 45 years). Subgroups of patients with different levels of OPG level were compared with respect to average levels of CAC, cIMT, and with respect to presence of carotid plaque. Age was adjusted for using multiple regression. Results OPG was highly correlated with age ( p < 0.0001). Individuals with higher levels of OPG tended to have higher measures of CAC, cIMT, and more carotid plaque. However, after adjustment for age, these associations, while still positive, were no longer statistically significant. Conclusion In our study much of the association observed was due to confounding by age, and after adjusting for age, our findings do not rule out the possibility of a null association.
Collapse
Affiliation(s)
- A N Kiani
- 1 Johns Hopkins University School of Medicine, Division of Rheumatology, Baltimore, MD, USA
| | - P Aukrust
- 2 Oslo University Hospital, Oslo, Norway
| | - T Ueland
- 2 Oslo University Hospital, Oslo, Norway
| | - I Hollan
- 3 Lillehammer Hospital of Rheumatic Diseases, Oslo, Norway
| | - E Barr
- 4 University of Maryland, Baltimore, MD, USA
| | - L S Magder
- 4 University of Maryland, Baltimore, MD, USA
| | - M Petri
- 1 Johns Hopkins University School of Medicine, Division of Rheumatology, Baltimore, MD, USA
| |
Collapse
|
30
|
Goropevšek A, Holcar M, Avčin T. The Role of STAT Signaling Pathways in the Pathogenesis of Systemic Lupus Erythematosus. Clin Rev Allergy Immunol 2016; 52:164-181. [DOI: 10.1007/s12016-016-8550-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Predictors of clinical outcomes in patients with neuropsychiatric systemic lupus erythematosus. Cytokine 2016; 79:31-7. [DOI: 10.1016/j.cyto.2015.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/29/2015] [Accepted: 12/11/2015] [Indexed: 12/29/2022]
|
32
|
Garrett-Sinha LA, Kearly A, Satterthwaite AB. The Role of the Transcription Factor Ets1 in Lupus and Other Autoimmune Diseases. Crit Rev Immunol 2016; 36:485-510. [PMID: 28845756 DOI: 10.1615/critrevimmunol.2017020284] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by excess B- and T-cell activation, the development of autoantibodies against self-antigens including nuclear antigens, and immune complex deposition in target organs, which triggers an inflammatory response and tissue damage. The genetic and environmental factors that contribute to the development of SLE have been studied extensively in both humans and mouse models of the disease. One of the important genetic contributions to SLE development is an alteration in the expression of the transcription factor Ets1, which regulates the functional differentiation of lymphocytes. Here, we review the genetic, biochemical, and immunological studies that have linked low levels of Ets1 to aberrant lymphocyte differentiation and to the pathogenesis of SLE.
Collapse
Affiliation(s)
- Lee Ann Garrett-Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203
| | - Alyssa Kearly
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203
| | - Anne B Satterthwaite
- Department of Internal Medicine, Rheumatic Diseases Division; Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
33
|
|
34
|
Abstract
Cytosolic DNA-sensing pathways that signal via Stimulator of interferon genes (STING) mediate immunity to pathogens and also promote autoimmune pathology in DNaseII- and DNaseIII-deficient mice. In contrast, we report here that STING potently suppresses inflammation in a model of systemic lupus erythematosus (SLE). Lymphoid hypertrophy, autoantibody production, serum cytokine levels, and other indicators of immune activation were markedly increased in STING-deficient autoimmune-prone mice compared with STING-sufficient littermates. As a result, STING-deficient autoimmune-prone mice had significantly shorter lifespans than controls. Importantly, Toll-like receptor (TLR)-dependent systemic inflammation during 2,6,10,14-tetramethylpentadecane (TMPD)-mediated peritonitis was similarly aggravated in STING-deficient mice. Mechanistically, STING-deficient macrophages failed to express negative regulators of immune activation and thus were hyperresponsive to TLR ligands, producing abnormally high levels of proinflammatory cytokines. This hyperreactivity corresponds to dramatically elevated numbers of inflammatory macrophages and granulocytes in vivo. Collectively these findings reveal an unexpected negative regulatory role for STING, having important implications for STING-directed therapies.
Collapse
|
35
|
Abstract
γδ T cells can influence specific antibody responses. Here, we report that mice deficient in individual γδ T-cell subsets have altered levels of serum antibodies, including all major subclasses, sometimes regardless of the presence of αβ T cells. One strain with a partial γδ deficiency that increases IgE antibodies also displayed increases in IL-4-producing T cells (both residual γδ T cells and αβ T cells) and in systemic IL-4 levels. Its B cells expressed IL-4-regulated inhibitory receptors (CD5, CD22, and CD32) at diminished levels, whereas IL-4-inducible IL-4 receptor α and MHCII were increased. They also showed signs of activation and spontaneously formed germinal centers. These mice displayed IgE-dependent features found in hyper-IgE syndrome and developed antichromatin, antinuclear, and anticytoplasmic autoantibodies. In contrast, mice deficient in all γδ T cells had nearly unchanged Ig levels and did not develop autoantibodies. Removing IL-4 abrogated the increases in IgE, antichromatin antibodies, and autoantibodies in the partially γδ-deficient mice. Our data suggest that γδ T cells, controlled by their own cross-talk, affect IL-4 production, B-cell activation, and B-cell tolerance.
Collapse
|
36
|
Insight into gene polymorphisms involved in toll-like receptor/interferon signalling pathways for systemic lupus erythematosus in South East Asia. J Immunol Res 2014; 2014:529167. [PMID: 24741605 PMCID: PMC3987947 DOI: 10.1155/2014/529167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 12/20/2013] [Accepted: 12/26/2013] [Indexed: 01/02/2023] Open
Abstract
Polymorphisms in genes involved in toll-like receptor/interferon signalling pathways have been reported previously to be associated with SLE in many populations. This study aimed to investigate the role of seven single nucleotide polymorphisms within TNFAIP3, STAT4, and IRF5, which are involved in upstream and downstream pathways of type I interferon production, in SLE in the South East Asian populations. Genotyping of 360 Malaysian SLE patients and 430 normal healthy individuals revealed that minor alleles of STAT4 rs7574865 and rs10168266 were associated with elevated risk of SLE in the Chinese and Malay patients, respectively (P = 0.028, odds ratio (OR) = 1.42; P = 0.035, OR = 1.80, respectively). Polymorphisms in TNFAIP3 and IRF5 did not show significant associations with SLE in any of the ethnicities. Combined analysis of the Malays, Chinese, and Indians for each SNP indicated that STAT4 rs10168266 was significantly associated with the Malaysian SLE as a whole (P = 0.014; OR = 1.435). The meta-analysis of STAT4 rs10168266, which combined the data of other studies and this study, further confirmed its importance as the risk factor for SLE by having pooled OR of 1.559 and P value of <0.001.
Collapse
|
37
|
The role of interleukins 4, 17 and interferon gamma as biomarkers in patients with Systemic Lupus Erythematosus and their correlation with disease activity. EGYPTIAN RHEUMATOLOGIST 2014. [DOI: 10.1016/j.ejr.2013.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Bethunaickan R, Berthier CC, Zhang W, Kretzler M, Davidson A. Comparative transcriptional profiling of 3 murine models of SLE nephritis reveals both unique and shared regulatory networks. PLoS One 2013; 8:e77489. [PMID: 24167575 PMCID: PMC3805607 DOI: 10.1371/journal.pone.0077489] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 08/31/2013] [Indexed: 11/30/2022] Open
Abstract
Objective To define shared and unique features of SLE nephritis in mouse models of proliferative and glomerulosclerotic renal disease. Methods Perfused kidneys from NZB/W F1, NZW/BXSB and NZM2410 mice were harvested before and after nephritis onset. Affymetrix based gene expression profiles of kidney RNA were analyzed using Genomatix Pathway Systems and Ingenuity Pathway Analysis software. Gene expression patterns were confirmed using real-time PCR. Results 955, 1168 and 755 genes were regulated in the kidneys of nephritic NZB/W F1, NZM2410 and NZW/BXSB mice respectively. 263 genes were regulated concordantly in all three strains reflecting immune cell infiltration, endothelial cell activation, complement activation, cytokine signaling, tissue remodeling and hypoxia. STAT3 was the top associated transcription factor, having a binding site in the gene promoter of 60/263 regulated genes. The two strains with proliferative nephritis shared a macrophage/DC infiltration and activation signature. NZB/W and NZM2410 mice shared a mitochondrial dysfunction signature. Dominant T cell and plasma cell signatures in NZB/W mice reflected lymphoid aggregates; this was the only strain with regulatory T cell infiltrates. NZW/BXSB mice manifested tubular regeneration and NZM2410 mice had the most metabolic stress and manifested loss of nephrin, indicating podocyte loss. Conclusions These findings identify shared inflammatory mechanisms of SLE nephritis that can be therapeutically targeted. Nevertheless, the heterogeneity of effector mechanisms suggests that individualized therapy might need to be based on biopsy findings. Some common mechanisms are shared with non-immune–mediated renal diseases, suggesting that strategies to prevent tissue hypoxia and remodeling may be useful in SLE nephritis.
Collapse
Affiliation(s)
- Ramalingam Bethunaickan
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, New York, United States of America
| | - Celine C. Berthier
- Department of Internal Medicine, Nephrology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Weijia Zhang
- Department of Medicine, Mount Sinai Medical Center, New York, New York, United States of America
| | - Matthias Kretzler
- Department of Internal Medicine, Nephrology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Anne Davidson
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
39
|
Al-Shami A, Crisostomo J, Wilkins C, Xu N, Humphries J, Chang WC, Anderson SJ, Oravecz T. Integrin-α FG-GAP repeat-containing protein 2 is critical for normal B cell differentiation and controls disease development in a lupus model. THE JOURNAL OF IMMUNOLOGY 2013; 191:3789-98. [PMID: 23997217 DOI: 10.4049/jimmunol.1203534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The phenylalanyl-glycyl-glycyl-alanyl-prolyl (FG-GAP) domain plays an important role in protein-protein interactions, including interaction of integrins with their ligands. Integrin-α FG-GAP repeat-containing protein 2 (Itfg2) is a highly conserved protein in vertebrates that carries two FG-GAP domains, but its role in mammalian physiology is unknown. In this article, we show that Itfg2 is an intracellular protein and it plays a critical role in B cell differentiation and development of autoimmunity. Itfg2-deficient mice displayed a phenotype consistent with retention of B cells in the spleen and had a lower concentration of IgG in the blood when compared with wild-type littermates. Itfg2-deficient splenocytes also showed a defect in cell migration in vitro. After immunization with a thymus-dependent Ag, the absence of Itfg2 caused a shift in B cell maturation from the germinal centers to the extrafollicular regions of the spleen and blocked deposition of Ag-specific plasma cells in the bone marrow. In support of hematopoietic cell intrinsic activity of Itfg2, bone marrow transplantation of Itfg2-deficient cells was sufficient to impair germinal center development in wild-type mice. Furthermore, Itfg2 deficiency exacerbated development of autoimmune disease in MRL/lpr lupus-prone mice. These results identify Itfg2 as a novel contributor to B cell differentiation and a negative regulator of the autoimmune response during lupus.
Collapse
Affiliation(s)
- Amin Al-Shami
- Lexicon Pharmaceuticals, Inc., The Woodlands, TX 77381
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Kim HD, Yu SJ, Kim HS, Kim YJ, Choe JM, Park YG, Kim J, Sohn J. Interleukin-4 induces senescence in human renal carcinoma cell lines through STAT6 and p38 MAPK. J Biol Chem 2013; 288:28743-54. [PMID: 23935100 DOI: 10.1074/jbc.m113.499053] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin (IL)-4, originally identified as a lymphocyte growth factor, can directly inhibit growth of certain tumor cell types. We reported previously that IL-4 induced cell cycle arrest in G1 phase through an increase in p21(WAF1/CIP1) expression in human renal cell carcinoma (RCC) cell lines. In the present study, we investigated the underlying mechanism of IL-4-induced growth inhibition. In four of six human RCC cell lines, including Caki-1, A498, SNU482, and SNU228, IL-4 induced cellular senescence as demonstrated by enlarged and flattened morphology, increased granularity, and senescence-associated-β-galactosidase (SA-β-gal) staining. Signal tranducer and activator of transcription 6 (STAT6) and p38 MAPK were found to mediate IL-4-induced growth inhibition and cellular senescence. Both of these molecules were activated by 10 min after IL-4 treatment, and inhibition of their activity or expression prevented growth suppression and cellular senescence induced by IL-4. Inhibiting or silencing either STAT6 or p38 MAPK alone partially reduced the effect of IL-4, whereas inhibiting or silencing both molecules exerted an additive effect and almost completely abrogated the effect of IL-4. Thus STAT6 and p38 MAPK appeared to independently mediate IL-4-induced growth inhibition and cellular senescence. The p21(WAF1/CIP1) up-regulation that accompanied growth inhibition and cellular senescence by IL-4 was also attenuated additively when p38 MAPK and STAT6 were silenced. Taken together, these results show that IL-4 induces cellular senescence through independent signaling pathways involving STAT6 and p38 MAPK in some human RCC cell lines.
Collapse
Affiliation(s)
- Hag Dong Kim
- From the Department of Biochemistry, Korea University College of Medicine, Seoul 136-705
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Yang JQ, Kim PJ, Halder RC, Singh RR. Intrinsic hyporesponsiveness of invariant natural killer T cells precedes the onset of lupus. Clin Exp Immunol 2013; 173:18-27. [PMID: 23607366 DOI: 10.1111/cei.12079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2013] [Indexed: 01/26/2023] Open
Abstract
Patients with systemic lupus erythematosus (SLE) display reduced numbers and functions of invariant natural killer T (iNK T) cells, which are restored upon treatment with corticosteroids and rituximab. It is unclear whether the iNK T cell insufficiency is a consequence of disease or is a primary abnormality that precedes the onset of disease. To address this, we analysed iNK T cell function at different stages of disease development using the genetically lupus-susceptible NZB × NZW F1 (BWF(1)) model. We found that iNK T cell in-vivo cytokine responses to an iNK T cell ligand α-galactosylceramide (α-GalCer) were lower in BWF(1) mice than in non-autoimmune BALB/c and major histocompatibility complex (MHC)-matched NZB × N/B10.PL F1 mice, although iNK T cell numbers in the periphery were unchanged in BWF(1) mice compared to control mice. Such iNK T cell hyporesponsiveness in BWF(1) mice was detected at a young age long before the animals exhibited any sign of autoimmunity. In-vivo activation of iNK T cells is known to transactivate other immune cells. Such transactivated T and B cell activation markers and/or cytokine responses were also lower in BWF(1) mice than in BALB/c controls. Finally, we show that iNK T cell responses were markedly deficient in the NZB parent but not in NZW parent of BWF(1) mice, suggesting that BWF(1) might inherit the iNK T cell defect from NZB mice. Thus, iNK T cells are functionally insufficient in lupus-prone BWF(1) mice. Such iNK T cell insufficiency precedes the onset of disease and may play a pathogenic role during early stages of disease development in SLE.
Collapse
Affiliation(s)
- J-Q Yang
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, USA
| | | | | | | |
Collapse
|
42
|
Zheng J, Yin J, Huang R, Petersen F, Yu X. Meta-analysis reveals an association of STAT4 polymorphisms with systemic autoimmune disorders and anti-dsDNA antibody. Hum Immunol 2013; 74:986-92. [PMID: 23628400 DOI: 10.1016/j.humimm.2013.04.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/11/2013] [Accepted: 04/12/2013] [Indexed: 12/21/2022]
Abstract
Signal transducer and activator of transcription 4 (STAT4) has been recently identified as a susceptibility gene for multiple autoimmune diseases. Here we performed a comprehensive analysis of the association between STAT4 and several different autoimmune disorders to identify potential common inflammatory principles behind this association. Our meta-analysis revealed that the STAT4 rs7574865 polymorphism is associated with four autoimmune diseases with systemic pathology, including systemic lupus erythematosus (OR = 1.52; 95% CI = 1.48 - 1.56, P<1.0 × 10(-16)), rheumatoid arthritis (OR = 1.27; 95% CI = 1.21 - 1.33, P < 1.00 × 10(-16)), systemic sclerosis (OR = 1.38; 95% CI = 1.27 - 1.50, P < 1.44 × 10(-14)), and primary Sjogren's syndrome (OR = 1.32; 95% CI = 1.01 - 1.73, P = 4.40 × 10(-2)), while no association was found with type I diabetes, juvenile idiopathic arthritis, ulcerative colitis and Crohn's disease. Furthermore, the stratified meta-analysis also demonstrate that the STAT4 rs7574865 polymorphism is associated with the presence of autoantibodies with systemic reactivity (anti-ds-DNA antibodies) in SLE patients (OR = 1.37; 95% CI = 1.21 - 1.56, P = 1.12 × 10(-6)). However, no such specific association was seen in RA with regard to the presence of non-systemically reacting antibodies, including rheumatoid factor and anti-cyclic citrullinated peptide antibodies. Taken together, these results suggest that STAT4 polymorphisms are associated with autoimmune diseases which are characterized by a systemic pathology and anti-dsDNA antibody.
Collapse
Affiliation(s)
- Junfeng Zheng
- Laboratory of Autoimmunity, The Medical College of Xiamen University, Xiamen University, 361005 Xiamen, China
| | | | | | | | | |
Collapse
|
43
|
Buneva VN, Krasnorutskii MA, Nevinsky GA. Natural antibodies to nucleic acids. BIOCHEMISTRY (MOSCOW) 2013; 78:127-143. [DOI: 10.1134/s0006297913020028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
44
|
Borchers AT, Leibushor N, Naguwa SM, Cheema GS, Shoenfeld Y, Gershwin ME. Lupus nephritis: a critical review. Autoimmun Rev 2012; 12:174-94. [PMID: 22982174 DOI: 10.1016/j.autrev.2012.08.018] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2012] [Indexed: 01/18/2023]
Abstract
Lupus nephritis remains one of the most severe manifestations of systemic lupus erythematosus associated with considerable morbidity and mortality. A better understanding of the pathogenesis of lupus nephritis is an important step in identifying more targeted and less toxic therapeutic approaches. Substantial research has helped define the pathogenetic mechanisms of renal manifestations and, in particular, the complex role of type I interferons is increasingly recognized; new insights have been gained into the contribution of immune complexes containing endogenous RNA and DNA in triggering the production of type I interferons by dendritic cells via activation of endosomal toll-like receptors. At the same time, there have been considerable advances in the treatment of lupus nephritis. Corticosteroids have long been the cornerstone of therapy, and the addition of cyclophosphamide has contributed to renal function preservation in patients with severe proliferative glomerulonephritis, though at the cost of serious adverse events. More recently, in an effort to minimize drug toxicity and achieve equal effectiveness, other immunosuppressive agents, including mycophenolate mofetil, have been introduced. Herein, we provide a detailed review of the trials that established the equivalency of these agents in the induction and/or maintenance therapy of lupus nephritis, culminating in the recent publication of new treatment guidelines by the American College of Rheumatology. Although newer biologics have been approved and continue to be a focus of research, they have, for the most part, been relatively disappointing compared to the effectiveness of biologics in other autoimmune diseases. Early diagnosis and treatment are essential for renal preservation.
Collapse
Affiliation(s)
- Andrea T Borchers
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA 95616, United States
| | | | | | | | | | | |
Collapse
|
45
|
Lau M, Tsantikos E, Maxwell MJ, Tarlinton DM, Anderson GP, Hibbs ML. Loss of STAT6 promotes autoimmune disease and atopy on a susceptible genetic background. J Autoimmun 2012; 39:388-97. [PMID: 22867713 DOI: 10.1016/j.jaut.2012.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/22/2012] [Accepted: 06/27/2012] [Indexed: 01/22/2023]
Abstract
Atopy and autoimmunity are usually considered opposed immunological manifestations. Lyn(-/-) mice develop lupus-like autoimmune disease yet have coexistent intrinsic allergic traits and are prone to severe, persistent asthma induced exogenously. Recently it has been proposed that the Th2 environment and IgE auto-Abs promotes autoimmune disease in Lyn(-/-) mice. To examine this apparent contradiction, we derived Lyn(-/-) mice with a null mutation in STAT6, a regulator of Th2 immunity that integrates signaling from the IL-4/IL-13 receptor complex. Atopy and spontaneous peritoneal eosinophilia, characteristic of Lyn(-/-) mice, were lost in young Lyn(-/-)STAT6(-/-) mice; however, autoimmune disease was markedly exacerbated. At a time-point where Lyn(-/-) mice showed only mild autoimmune disease, Lyn(-/-)STAT6(-/-) mice had maximal titres of IgG and IgA auto-Abs, impaired renal function, myeloid expansion and a highly activated T cell compartment. Remarkably, low level IgE auto-Abs but not IgG1 auto-Abs were a feature of some aged Lyn(-/-)STAT6(-/-) mice. Furthermore, aged Lyn(-/-)STAT6(-/-) mice showed dramatically increased levels of serum IgE but minimal IgG1, suggesting that class-switching to IgE can occur in the absence of an IgG1 intermediate. The results show that Lyn-deficient mice can overcome the effects of disabling Th2 immunity, highlighting the importance of Lyn in controlling Th2 responses. Our data also indicates that, under certain conditions, STAT6-independent factors can promote IgE class-switching. This work has important clinical implications as many experimental therapies designed for the treatment of asthma or atopy are based on targeting the STAT6 axis, which could potentially reveal life endangering autoimmunity or promote atopy in susceptible individuals.
Collapse
Affiliation(s)
- Maverick Lau
- Leukocyte Signaling Laboratory, Department of Immunology, Monash University, Central Clinical School, Alfred Medical Research and Education Precinct, Commercial Road, Melbourne, Victoria 3004, Australia.
| | | | | | | | | | | |
Collapse
|
46
|
Berthier CC, Bethunaickan R, Gonzalez-Rivera T, Nair V, Ramanujam M, Zhang W, Bottinger EP, Segerer S, Lindenmeyer M, Cohen CD, Davidson A, Kretzler M. Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis. THE JOURNAL OF IMMUNOLOGY 2012; 189:988-1001. [PMID: 22723521 DOI: 10.4049/jimmunol.1103031] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lupus nephritis (LN) is a serious manifestation of systemic lupus erythematosus. Therapeutic studies in mouse LN models do not always predict outcomes of human therapeutic trials, raising concerns about the human relevance of these preclinical models. In this study, we used an unbiased transcriptional network approach to define, in molecular terms, similarities and differences among three lupus models and human LN. Genome-wide gene-expression networks were generated using natural language processing and automated promoter analysis and compared across species via suboptimal graph matching. The three murine models and human LN share both common and unique features. The 20 commonly shared network nodes reflect the key pathologic processes of immune cell infiltration/activation, endothelial cell activation/injury, and tissue remodeling/fibrosis, with macrophage/dendritic cell activation as a dominant cross-species shared transcriptional pathway. The unique nodes reflect differences in numbers and types of infiltrating cells and degree of remodeling among the three mouse strains. To define mononuclear phagocyte-derived pathways in human LN, gene sets activated in isolated NZB/W renal mononuclear cells were compared with human LN kidney profiles. A tissue compartment-specific macrophage-activation pattern was seen, with NF-κB1 and PPARγ as major regulatory nodes in the tubulointerstitial and glomerular networks, respectively. Our study defines which pathologic processes in murine models of LN recapitulate the key transcriptional processes active in human LN and suggests that there are functional differences between mononuclear phagocytes infiltrating different renal microenvironments.
Collapse
Affiliation(s)
- Celine C Berthier
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Definition of IFN-γ-related pathways critical for chemically-induced systemic autoimmunity. J Autoimmun 2012; 39:323-31. [PMID: 22578563 DOI: 10.1016/j.jaut.2012.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/12/2012] [Accepted: 04/15/2012] [Indexed: 12/24/2022]
Abstract
IFN-γ is essential for idiopathic and murine mercury-induced systemic autoimmunity (mHgIA), and heterozygous IFN-γ(+/-) mice also exhibit reduced disease. This suggests that blocking specific IFN-γ-related pathways that may only partially inhibit IFN-γ production or function will also suppress autoimmunity. To test this hypothesis, mice deficient in genes regulating IFN-γ expression (Casp1, Nlrp3, Il12a, Il12b, Stat4) or function (Ifngr1, Irf1) were examined for mHgIA susceptibility. Absence of either Ifngr1 or Irf1 resulted in a striking reduction of disease, while deficiency of genes promoting IFN-γ expression had modest to no effect. Furthermore, both Irf1- and Ifng-deficiency only modestly reduced the expansion of CD44(hi) and CD44(hi)CD55(lo) CD4(+) T cells, indicating that they are not absolutely required for T cell activation. Thus, there is substantial redundancy in genes that regulate IFN-γ expression in contrast to those that mediate later signaling events. These findings have implications for the therapeutic targeting of IFN-γ pathways in systemic autoimmunity.
Collapse
|
48
|
Lupus nephritis: an overview of recent findings. Autoimmune Dis 2012; 2012:849684. [PMID: 22536486 PMCID: PMC3318208 DOI: 10.1155/2012/849684] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 11/30/2011] [Indexed: 11/18/2022] Open
Abstract
Lupus nephritis (LN) is one of the most serious complications of systemic lupus erythematosus (SLE) since it is the major predictor of poor prognosis. In susceptible individuals suffering of SLE, in situ formation and deposit of immune complexes (ICs) from apoptotic bodies occur in the kidneys as a result of an amplified epitope immunological response. IC glomerular deposits generate release of proinflammatory cytokines and cell adhesion molecules causing inflammation. This leads to monocytes and polymorphonuclear cells chemotaxis. Subsequent release of proteases generates endothelial injury and mesangial proliferation. Presence of ICs promotes adaptive immune response and causes dendritic cells to release type I interferon. This induces maturation and activation of infiltrating T cells, and amplification of Th2, Th1 and Th17 lymphocytes. Each of them, amplify B cells and activates macrophages to release more proinflammatory molecules, generating effector cells that cannot be modulated promoting kidney epithelial proliferation and fibrosis. Herein immunopathological findings of LN are reviewed.
Collapse
|
49
|
Berthier CC, Kretzler M, Davidson A. From the Large Scale Expression Analysis of Lupus Nephritis to Targeted Molecular Medicine. ACTA ACUST UNITED AC 2012; 3. [PMID: 23626922 DOI: 10.4172/2153-0602.1000123] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lupus nephritis (LN) is one of the most severe complications of systemic lupus erythematosus (SLE). Current treatments for LN lack sufficient efficacy as they do not necessarily target the LN responsible pathways and therapeutic responses vary widely in the patient population. LN mouse models have been useful in delineating disease pathogenesis and for testing novel therapies, but they do not entirely represent the events happening in human LN. This review describes how recently developed systems biology technologies can help to integrate current knowledge with large scale experimental data to generate new hypotheses and insight into the regulatory events occurring in LN.
Collapse
Affiliation(s)
- Celine C Berthier
- Department of Internal Medicine, Nephrology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
50
|
Bethunaickan R, Sahu R, Davidson A. Analysis of renal mononuclear phagocytes in murine models of SLE. Methods Mol Biol 2012; 900:207-32. [PMID: 22933071 DOI: 10.1007/978-1-60761-720-4_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this chapter we present methods for the isolation and characterization of mononuclear phagocytes from the kidneys of mice with SLE. Activation of these cells is associated with the onset of clinical disease in mice and infiltration with these cells is associated with poor prognosis in humans. Using magnetic beads followed by flow cytometric sorting, pure populations of cells are obtained that are functional in a variety of assays. Sufficient numbers of cells are obtained for genomic characterization. An analysis of the function of these cells should lead to a better understanding of the inflammatory processes that cause renal impairment in SLE and other renal inflammatory diseases.
Collapse
Affiliation(s)
- Ramalingam Bethunaickan
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, NY, USA
| | | | | |
Collapse
|