1
|
Lande R, Mennella A, Palazzo R, Favaro R, Facheris P, Mancini F, Ocone G, Botti E, Falchi M, Pietraforte I, Conrad C, Bianchi L, Costanzo A, Frasca L. The nature of the post-translational modifications of the autoantigen LL37 influences the autoreactive T-helper cell phenotype in psoriasis. Front Immunol 2025; 16:1546422. [PMID: 40270954 PMCID: PMC12014627 DOI: 10.3389/fimmu.2025.1546422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/18/2025] [Indexed: 04/25/2025] Open
Abstract
Psoriasis is a chronic skin disease evolving to psoriatic arthritis (PsA) in 30% of cases. LL37 is a psoriasis T-cell autoantigen and, in complex with self-DNA/RNA, a trigger of type I interferon (IFN-I) and pro-inflammatory factors in dendritic cells. LL37 can undergo irreversible post-translational modifications (PTMs), namely, citrullination and carbamylation, which are linked to a neutrophil-dominated inflammation. Notably, in PsA, carbamylated and citrullinated LL37 (carb-LL37 and cit-LL37) become antibody targets. Here, we analyze the presence of, and the T-cell and antibody reactivity to, cit-LL37 and carb-LL37, to address the occurrence and significance of these PTMs in psoriasis. The presence of modified LL37 in skin biopsies was assessed by laser scanner confocal microscopy (LSCM); T-cell responses to modified LL37 were assessed by Ki67 assay and intracellular cytokine staining using flow cytometry; serum autoantibodies to the same antigens were tested by enzyme-linked immunosorbent assay (ELISA). The results show that native and modified LL37 (both carb-LL37 and cit-LL37) are detectable in psoriatic skin, but not in healthy donors' (HD) skin, where they colocalize with neutrophil infiltrates and neutrophil extracellular trap formation (NETosis). Psoriatic T cells and antibodies recognize native LL37, cit-LL37, and carb-LL37, but only CD4-T-cell responses to native LL37 and carb-LL37 correlate with psoriasis area severity index (PASI), whereas CD8-T-cell responses to the same peptides correlate with PASI in the HLA-Cw6*02-positive subgroup. CD4-T cells specific for modified LL37 express heterogeneous T-helper (Th) phenotypes: native/carb-LL37-specific T cells mainly manifest a Th1/Th17-like phenotype, whereas cit-LL37-specific T cells resemble Th-follicular (Thf)-like cells. In vitro T-cell polarization experiments suggest that distinct pro-inflammatory effects of LL37 and modified LL37, in complex with self-nucleic acids, may concur to these phenomena. This is the first evidence in psoriasis that PTMs of an autoantigen with innate immune cell stimulatory ability dictate autoreactive Th-cell polarization. These data, obtained using LL37 as a model autoantigen, indicate that citrullination and carbamylation pathways may play a role in the psoriasis course, generating epitopes to which immunological tolerance does not exist and potentially concur to PsA development.
Collapse
Affiliation(s)
- Roberto Lande
- Istituto Superiore di Sanità, National Center for Global Health, Roma, Italy
| | - Anna Mennella
- Istituto Superiore di Sanità, National Center for Global Health, Roma, Italy
| | - Raffaella Palazzo
- Istituto Superiore di Sanità, National Center for Global Health, Roma, Italy
| | - Rebecca Favaro
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Dermatology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Paola Facheris
- Dermatology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Flavia Mancini
- Istituto Superiore di Sanità, National Center for Global Health, Roma, Italy
| | - Giuseppe Ocone
- Istituto Superiore di Sanità, National Center for Global Health, Roma, Italy
| | - Elisabetta Botti
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Mario Falchi
- Istituto superiore di Sanità, National AIDS Center, Rome, Italy
| | - Immacolata Pietraforte
- Istituto Superiore di Sanità, Department of Oncology and Molecular Medicine, Rome, Italy
| | - Curdin Conrad
- Department of Dermatology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Antonio Costanzo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Dermatology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Loredana Frasca
- Istituto Superiore di Sanità, National Center for Global Health, Roma, Italy
| |
Collapse
|
2
|
Rekha RS, Padhi A, Frengen N, Hauenstein J, Végvári Á, Agerberth B, Månsson R, Guðmundsson GH, Bergman P. The di-leucine motif in the host defense peptide LL-37 is essential for initiation of autophagy in human macrophages. Cell Rep 2025; 44:115031. [PMID: 39708316 DOI: 10.1016/j.celrep.2024.115031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/16/2024] [Accepted: 11/13/2024] [Indexed: 12/23/2024] Open
Abstract
The human cathelicidin peptide LL-37 induces autophagy in human macrophages. Different post-translational modifications (PTMs) such as citrullination, acetylation, and formylation impact LL-37, yet their effect on autophagy remains unknown. Thus, we set out to study how the cellular source could impact PTM of LL-37 and subsequent effects on autophagy initiation. Neutrophil-released LL-37 failed to induce autophagy, unlike macrophage-released LL-37. Mass spectrometry analysis revealed modifications on neutrophil-derived LL-37, especially at the N terminus, while macrophage-derived LL-37 remained mostly native. Native LL-37 initiated autophagy, while formylated and acetylated versions did not. Truncated peptides lacking the N-terminal di-leucine motif or substituted with di-alanine did not initiate autophagy. Native LL-37 failed to initiate autophagy in macrophages with genetic inactivation of dipeptidyl peptidase-1. An intact N-terminal di-leucine motif in LL-37 was crucial for autophagy initiation, and modifications abrogated the effects. This pathway presents a novel way to regulate the effects of LL-37 in infection or inflammation.
Collapse
Affiliation(s)
- Rokeya Sultana Rekha
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Avinash Padhi
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
| | - Nicolai Frengen
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Julia Hauenstein
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Agerberth
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Robert Månsson
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, Huddinge, Stockholm, Sweden; Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden; Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Guðmundur H Guðmundsson
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, Huddinge, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Peter Bergman
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, Huddinge, Stockholm, Sweden; Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
3
|
Verma SC, Enée E, Manasse K, Rebhi F, Penc A, Romeo-Guitart D, Bui Thi C, Titeux M, Oury F, Fillatreau S, Liblau R, Diana J. Cathelicidin antimicrobial peptide expression in neutrophils and neurons antagonistically modulates neuroinflammation. J Clin Invest 2024; 135:e184502. [PMID: 39656548 PMCID: PMC11785927 DOI: 10.1172/jci184502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/05/2024] [Indexed: 02/03/2025] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease that affects the CNS, the pathophysiology of which remains unclear and for which there is no definitive cure. Antimicrobial peptides (AMPs) are immunomodulatory molecules expressed in various tissues, including the CNS. Here, we investigated whether the cathelicidin-related AMP (CRAMP) modulated the development of experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. We showed that, at an early stage, CNS-recruited neutrophils produced neutrophil extracellular traps (NETs) rich in CRAMP that were required for EAE initiation. NET-associated CRAMP stimulated IL-6 production by dendritic cells via the cGAS/STING pathway, thereby promoting encephalitogenic Th17 response. However, at a later disease stage, neurons also expressed CRAMP that reduced EAE severity. Camp knockdown in neurons led to disease exacerbation, while local injection of CRAMP1-39 at the peak of EAE promoted disease remission. In vitro, CRAMP1-39 regulated the activation of microglia and astrocytes through the formyl peptide receptor (FPR) 2. Finally, administration of butyrate, a gut microbiota-derived metabolite, stimulated the expression of neural CRAMP via the free fatty acids receptors 2/3 (FFAR2/3), and prevented EAE. This study shows that CRAMP produced by different cell types has opposing effects on neuroinflammation, offering therapeutic opportunities for MS and other neuroinflammatory disorders.
Collapse
MESH Headings
- Animals
- Mice
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Neutrophils/metabolism
- Neutrophils/pathology
- Neutrophils/immunology
- Neurons/metabolism
- Neurons/pathology
- Neurons/immunology
- Cathelicidins/genetics
- Multiple Sclerosis/pathology
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/immunology
- Multiple Sclerosis/genetics
- Antimicrobial Cationic Peptides/genetics
- Extracellular Traps/immunology
- Extracellular Traps/genetics
- Extracellular Traps/metabolism
- Neuroinflammatory Diseases/pathology
- Neuroinflammatory Diseases/metabolism
- Neuroinflammatory Diseases/genetics
- Neuroinflammatory Diseases/immunology
- Female
- Mice, Inbred C57BL
- Antimicrobial Peptides/genetics
- Receptors, Formyl Peptide/metabolism
- Receptors, Formyl Peptide/genetics
Collapse
Affiliation(s)
- Subash Chand Verma
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| | - Emmanuelle Enée
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| | - Kanchanadevi Manasse
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| | - Feriel Rebhi
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| | - Axelle Penc
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| | - David Romeo-Guitart
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| | - Cuc Bui Thi
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| | - Matthias Titeux
- Université Paris Cité, Imagine Institute, INSERM U1163, Paris, France
| | - Franck Oury
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| | - Simon Fillatreau
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
- APHP, Hôpital Necker-Enfants Malades, Paris, France
| | - Roland Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS, INSERM, Université Paul-Sabatier de Toulouse (UPS), Toulouse, France
- Department of Immunology, Toulouse University Hospital, Toulouse, France
| | - Julien Diana
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades–INEM, Paris, France
| |
Collapse
|
4
|
Yoon G, Puentes R, Tran J, Multani A, Cobo ER. The role of cathelicidins in neutrophil biology. J Leukoc Biol 2024; 116:689-705. [PMID: 38758953 DOI: 10.1093/jleuko/qiae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024] Open
Abstract
Despite their relatively short lifespan, neutrophils are tasked with counteracting pathogens through various functions, including phagocytosis, production of reactive oxygen species, neutrophil extracellular traps (NETs), and host defense peptides. Regarding the latter, small cationic cathelicidins present a conundrum in neutrophil function. Although primarily recognized as microbicides with an ability to provoke pores in microbial cell walls, the ability of cathelicidin to modulate key neutrophil functions is also of great importance, including the release of chemoattractants, cytokines, and reactive oxygen species, plus prolonging neutrophil lifespan. Cumulative evidence indicates a less recognized role of cathelicidin as an "immunomodulator"; however, this term is not always explicit, and its relevance in neutrophil responses during infection and inflammation is seldom discussed. This review compiles and discusses studies of how neutrophils use cathelicidin to respond to infections, while also acknowledging immunomodulatory aspects of cathelicidin through potential crosstalk between sources of the peptide.
Collapse
Affiliation(s)
- Grace Yoon
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Rodrigo Puentes
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Jacquelyn Tran
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Anmol Multani
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Eduardo R Cobo
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
5
|
Murphy MP, Hunt D, Herron M, McDonnell J, Alshuhoumi R, McGarvey LP, Fabré A, O’Brien H, McCarthy C, Martin SL, McElvaney NG, Reeves EP. Neutrophil-Derived Peptidyl Arginine Deiminase Activity Contributes to Pulmonary Emphysema by Enhancing Elastin Degradation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:75-85. [PMID: 38758115 PMCID: PMC11212725 DOI: 10.4049/jimmunol.2300658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/12/2024] [Indexed: 05/18/2024]
Abstract
In chronic obstructive pulmonary disease (COPD), inflammation gives rise to protease-mediated degradation of the key extracellular matrix protein, elastin, which causes irreversible loss of pulmonary function. Intervention against proteolysis has met with limited success in COPD, due in part to our incomplete understanding of the mechanisms that underlie disease pathogenesis. Peptidyl arginine deiminase (PAD) enzymes are a known modifier of proteolytic susceptibility, but their involvement in COPD in the lungs of affected individuals is underexplored. In this study, we showed that enzyme isotypes PAD2 and PAD4 are present in primary granules of neutrophils and that cells from people with COPD release increased levels of PADs when compared with neutrophils of healthy control subjects. By examining bronchoalveolar lavage and lung tissue samples of patients with COPD or matched smoking and nonsmoking counterparts with normal lung function, we reveal that COPD presents with markedly increased airway concentrations of PADs. Ex vivo, we established citrullinated elastin in the peripheral airways of people with COPD, and in vitro, elastin citrullination significantly enhanced its proteolytic degradation by serine and matrix metalloproteinases, including neutrophil elastase and matrix metalloprotease-12, respectively. These results provide a mechanism by which neutrophil-released PADs affect lung function decline, indicating promise for the future development of PAD-based therapeutics for preserving lung function in patients with COPD.
Collapse
Affiliation(s)
- Mark P. Murphy
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - David Hunt
- Pulmonary Clinical Science, Department of Anaesthesia and Critical Care Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Malcolm Herron
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Jake McDonnell
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Rashed Alshuhoumi
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Lorcan P. McGarvey
- Wellcome–Wolfson Centre for Experimental Medicine, School of Medicine Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
- Department of Respiratory Medicine, Royal Victoria Hospital; Belfast Health Social Care Trust, Belfast, United Kingdom
| | - Aurelie Fabré
- Department of Histopathology, St. Vincent’s University Hospital and Department of Medicine, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Helen O’Brien
- Department of Respiratory Medicine, St. Vincent’s University Hospital, Elm Park, Dublin, Ireland
| | - Cormac McCarthy
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Respiratory Medicine, St. Vincent’s University Hospital, Elm Park, Dublin, Ireland
| | - S. Lorraine Martin
- Biomolecular Sciences Research Group, School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Noel G. McElvaney
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Emer P. Reeves
- Pulmonary Clinical Science, Department of Anaesthesia and Critical Care Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
6
|
Zielke C, Nielsen JE, Lin JS, Barron AE. Between good and evil: Complexation of the human cathelicidin LL-37 with nucleic acids. Biophys J 2024; 123:1316-1328. [PMID: 37919905 PMCID: PMC11163296 DOI: 10.1016/j.bpj.2023.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
The innate immune system provides a crucial first line of defense against invading pathogens attacking the body. As the only member of the human cathelicidin family, the antimicrobial peptide LL-37 has been shown to have antiviral, antifungal, and antibacterial properties. In complexation with nucleic acids, LL-37 is suggested to maintain its beneficial health effects while also acting as a condensation agent for the nucleic acid. Complexes formed by LL-37 and nucleic acids have been shown to be immunostimulatory with a positive impact on the human innate immune system. However, some studies also suggest that in some circumstances, LL-37/nucleic acid complexes may be a contributing factor to autoimmune disorders such as psoriasis and systemic lupus erythematosus. This review provides a comprehensive discussion of research highlighting the beneficial health effects of LL-37/nucleic acid complexes, as well as discussing observed detrimental effects. We will emphasize why it is important to investigate and elucidate structural characteristics, such as condensation patterns of nucleic acids within complexation, and their mechanisms of action, to shed light on the intricate physiological effects of LL-37 and the seemingly contradictory role of LL-37/nucleic acid complexes in the innate immune response.
Collapse
Affiliation(s)
- Claudia Zielke
- Department of Bioengineering, Stanford University, Schools of Medicine and of Engineering, Stanford, California
| | - Josefine Eilsø Nielsen
- Department of Bioengineering, Stanford University, Schools of Medicine and of Engineering, Stanford, California; Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Jennifer S Lin
- Department of Bioengineering, Stanford University, Schools of Medicine and of Engineering, Stanford, California
| | - Annelise E Barron
- Department of Bioengineering, Stanford University, Schools of Medicine and of Engineering, Stanford, California.
| |
Collapse
|
7
|
Harada K, Carr SM, Shrestha A, La Thangue NB. Citrullination and the protein code: crosstalk between post-translational modifications in cancer. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220243. [PMID: 37778382 PMCID: PMC10542456 DOI: 10.1098/rstb.2022.0243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/05/2023] [Indexed: 10/03/2023] Open
Abstract
Post-translational modifications (PTMs) of proteins are central to epigenetic regulation and cellular signalling, playing an important role in the pathogenesis and progression of numerous diseases. Growing evidence indicates that protein arginine citrullination, catalysed by peptidylarginine deiminases (PADs), is involved in many aspects of molecular and cell biology and is emerging as a potential druggable target in multiple diseases including cancer. However, we are only just beginning to understand the molecular activities of PADs, and their underlying mechanistic details in vivo under both physiological and pathological conditions. Many questions still remain regarding the dynamic cellular functions of citrullination and its interplay with other types of PTMs. This review, therefore, discusses the known functions of PADs with a focus on cancer biology, highlighting the cross-talk between citrullination and other types of PTMs, and how this interplay regulates downstream biological events. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.
Collapse
Affiliation(s)
- Koyo Harada
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Simon M. Carr
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Amit Shrestha
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Nicholas B. La Thangue
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| |
Collapse
|
8
|
Myszor IT, Gudmundsson GH. Modulation of innate immunity in airway epithelium for host-directed therapy. Front Immunol 2023; 14:1197908. [PMID: 37251385 PMCID: PMC10213533 DOI: 10.3389/fimmu.2023.1197908] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Innate immunity of the mucosal surfaces provides the first-line defense from invading pathogens and pollutants conferring protection from the external environment. Innate immune system of the airway epithelium consists of several components including the mucus layer, mucociliary clearance of beating cilia, production of host defense peptides, epithelial barrier integrity provided by tight and adherens junctions, pathogen recognition receptors, receptors for chemokines and cytokines, production of reactive oxygen species, and autophagy. Therefore, multiple components interplay with each other for efficient protection from pathogens that still can subvert host innate immune defenses. Hence, the modulation of innate immune responses with different inducers to boost host endogenous front-line defenses in the lung epithelium to fend off pathogens and to enhance epithelial innate immune responses in the immunocompromised individuals is of interest for host-directed therapy. Herein, we reviewed possibilities of modulation innate immune responses in the airway epithelium for host-directed therapy presenting an alternative approach to standard antibiotics.
Collapse
Affiliation(s)
- Iwona T. Myszor
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Gudmundur Hrafn Gudmundsson
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
LL-37 antimicrobial peptide and heterologous prime-boost vaccination regimen significantly induce HIV-1 Nef-Vpr antigen- and virion-specific immune responses in mice. Biotechnol Lett 2023; 45:33-45. [PMID: 36550339 DOI: 10.1007/s10529-022-03339-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/20/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES HIV infection still remains a leading cause of morbidity and mortality worldwide. The inability of highly-active antiretroviral therapy in HIV-1 eradication led to development of therapeutic vaccines. Exploiting effective immunogenic constructs and potent delivery systems are important to generate effective therapeutic vaccines, and overcome their poor membrane permeability. Among HIV-1 proteins, the Nef and Vpr proteins can be considered as antigen candidates in vaccine design. METHODS In this study, the immunogenicity of Nef-Vpr antigen candidate in different regimens along with antimicrobial peptide LL-37 (as a DNA carrier) and Montanide 720 (as an adjuvant) was studied in mice. Moreover, the secretion of cytokines was assessed in virion-exposed mice lymphocytes in vitro. RESULTS Our data indicated that groups immunized with the homologous protein + Montanide regimen (group 1), and also the heterologous DNA + LL-37 prime/protein + Montanide boost regimen (group 2) could significantly generate strong immune responses as compared to groups immunized with the DNA constructs (groups 3 & 4). Moreover, immunization of mice with the homologous DNA + LL-37 regimen in low dose of DNA (5 µg) could induce higher immune responses than the homologous naked DNA regimen in high dose of DNA (50 µg) indicating the role of LL-37 as a cell penetrating peptide. Additionally, the heterologous DNA + LL-37 prime/protein + Montanide boost regimen (group 2) induced significantly IFN-gamma secretion from virion-exposed lymphocytes in vitro. CONCLUSION Generally, the use of LL-37 for DNA delivery, Montanide 720 as an adjuvant, and heterologous DNA prime/protein boost strategy could significantly increase IgG2a, IFN-gamma, and Granzyme B, and maintain cytokine secretion after exposure to virions. Indeed, the heterologous DNA + LL-37 prime/protein + Montanide boost regimen can be considered as a potent strategy for development of therapeutic HIV vaccines.
Collapse
|
10
|
Khairkhah N, Bolhassani A, Agi E, Namvar A, Nikyar A. Immunological investigation of a multiepitope peptide vaccine candidate based on main proteins of SARS-CoV-2 pathogen. PLoS One 2022; 17:e0268251. [PMID: 35679246 PMCID: PMC9182696 DOI: 10.1371/journal.pone.0268251] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/25/2022] [Indexed: 11/19/2022] Open
Abstract
Multiepitope vaccines could induce multiantigenic immunity against large complex pathogens with different strain variants. Herein, the in silico, in vitro and in vivo studies were used to design and develop a novel candidate antigenic multiepitope vaccine against SARS-CoV-2 pathogen. The designed multiepitope construct targets the spike glycoprotein (S), membrane protein (M), and nucleocapsid phosphoprotein (N) of SARS-CoV-2 (i.e., the S-N-M construct). This construct contains the cytotoxic T lymphocyte (CTL)-, helper T lymphocyte (HTL)-, and linear B lymphocyte (LBL)-inducing epitopes. The multiepitope s-n-m fusion gene was subcloned in prokaryotic (pET24a) and eukaryotic (pcDNA3.1) expression vectors. Its expression was evaluated in mammalian cell line using LL37 cell penetrating peptide. Moreover, the recombinant multiepitope S-N-M peptide was produced in E. coli strain. Finally, mice were immunized using homologous and heterologous regimens for evaluation of immune responses. Our data indicated that the multiepitope S-N-M peptide construct combined with Montanide 720 in homologous regimen significantly stimulated total IgG, IgG2a, IFN-γ, TNF-α, IL-15, IL-21 and IL-6, and Granzyme B secretion as compared to other groups. Moreover, the pcDNA-s-n-m/ LL37 nanoparticles significantly induced higher immune responses than the naked DNA in both homologous and heterologous regimens. In general, our designed multiepitope vaccine construct can be considered as a vaccine candidate in SARS-CoV-2 infection model.
Collapse
Affiliation(s)
- Niloofar Khairkhah
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
- Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Elnaz Agi
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Ali Namvar
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Arash Nikyar
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
11
|
Rai A, Ferrão R, Marta D, Vilaça A, Lino M, Rondão T, Ji J, Paiva A, Ferreira L. Antimicrobial Peptide-Tether Dressing Able to Enhance Wound Healing by Tissue Contact. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24213-24228. [PMID: 35584375 DOI: 10.1021/acsami.2c06601] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
No effective therapeutic dressings are currently available in the market that can prevent bacterial infection and simultaneously promote skin regeneration in diabetic patients. The lack of re-epithelization, prevalence of inflammation, and high risk of infection are hallmarks of non-healing wounds. Here, we have evaluated the antimicrobial and pro-regenerative effect of a relatively non-leaching LL37 peptide immobilized in polyurethane (PU)-based wound dressings (PU-adhesive-LL37 dressing). The PU-adhesive-LL37 (63 μg LL37NPs/cm2) dressing killed Gram-positive and Gram-negative bacteria in human serum without inducing bacterial resistance after 16 antimicrobial test cycles in contrast to commercially available dressings with the capacity to release antimicrobial Ag ions. Importantly, type II diabetic mice (db/db mice) treated with the PU-adhesive-LL37 dressing for different periods of time (6 or 14 days) showed enhanced wound healing and re-epithelialization (i.e., high keratin 14/5 levels) and lower macrophage infiltration in the wounds compared to animals treated with PU. The wounds treated with PU-adhesive-LL37 dressings showed also low expression of pro-inflammatory cytokines such as TNF-α and IL6 after 6 days of treatment, indicating that they act as an anti-inflammatory dressing. Additionally, PU-adhesive-LL37 dressings do not induce acute inflammatory responses in the peripheral blood mononuclear cells (PBMCs) after 3 days of exposure, in contrast to controls. Taken together, PU-adhesive-LL37NP dressings might prevent the bacterial infections and facilitate wound healing by tissue contact, inducing re-epithelialization and anti-inflammatory processes in diabetic conditions.
Collapse
Affiliation(s)
- Akhilesh Rai
- Faculty of Medicine, University of Coimbra, Coimbra 3000-354, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
| | - Rafaela Ferrão
- Faculty of Medicine, University of Coimbra, Coimbra 3000-354, Portugal
| | - Denise Marta
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
| | - Andreia Vilaça
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
| | - Miguel Lino
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
| | - Tiago Rondão
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Artur Paiva
- Unidade de Gestão Operacional de Citometria, Serviço de Patologia Clínica, Centro Hospitalar e Universitário de Coimbra, Coimbra 3001-301, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculdade de Medicina, Universidade de Coimbra, Polo III-Health Sciences Campus, Coimbra 3000-548, Portugal
- ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, Instituto Politécnico de Coimbra, Coimbra 3040-854, Portugal
| | - Lino Ferreira
- Faculty of Medicine, University of Coimbra, Coimbra 3000-354, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
| |
Collapse
|
12
|
Aloul KM, Nielsen JE, Defensor EB, Lin JS, Fortkort JA, Shamloo M, Cirillo JD, Gombart AF, Barron AE. Upregulating Human Cathelicidin Antimicrobial Peptide LL-37 Expression May Prevent Severe COVID-19 Inflammatory Responses and Reduce Microthrombosis. Front Immunol 2022; 13:880961. [PMID: 35634307 PMCID: PMC9134243 DOI: 10.3389/fimmu.2022.880961] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/11/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is characterized by hyperactivation by inflammatory cytokines and recruitment of macrophages, neutrophils, and other immune cells, all hallmarks of a strong inflammatory response that can lead to severe complications and multi-organ damage. Mortality in COVID-19 patients is associated with a high prevalence of neutrophil extracellular trap (NET) formation and microthrombosis that are exacerbated by hyperglycemia, diabetes, and old age. SARS-CoV-2 infection in humans and non-human primates have revealed long-term neurological consequences of COVID-19, possibly concomitant with the formation of Lewy bodies in the brain and invasion of the nervous system via the olfactory bulb. In this paper, we review the relevance of the human cathelicidin LL-37 in SARS-CoV-2 infections. LL-37 is an immunomodulatory, host defense peptide with direct anti-SARS-CoV-2 activity, and pleiotropic effects on the inflammatory response, neovascularization, Lewy body formation, and pancreatic islet cell function. The bioactive form of vitamin D and a number of other compounds induce LL-37 expression and one might predict its upregulation, could reduce the prevalence of severe COVID-19. We hypothesize upregulation of LL-37 will act therapeutically, facilitating efficient NET clearance by macrophages, speeding endothelial repair after inflammatory tissue damage, preventing α-synuclein aggregation, and supporting blood-glucose level stabilization by facilitating insulin release and islet β-cell neogenesis. In addition, it has been postulated that LL-37 can directly bind the S1 domain of SARS-CoV-2, mask angiotensin converting enzyme 2 (ACE2) receptors, and limit SARS-CoV-2 infection. Purposeful upregulation of LL-37 could also serve as a preventative and therapeutic strategy for SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Karim M. Aloul
- Department of Bioengineering, Schools of Medicine and of Engineering, Stanford University, Stanford, CA, United States
| | - Josefine Eilsø Nielsen
- Department of Bioengineering, Schools of Medicine and of Engineering, Stanford University, Stanford, CA, United States
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Erwin B. Defensor
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Jennifer S. Lin
- Department of Bioengineering, Schools of Medicine and of Engineering, Stanford University, Stanford, CA, United States
| | - John A. Fortkort
- Department of Bioengineering, Schools of Medicine and of Engineering, Stanford University, Stanford, CA, United States
| | - Mehrdad Shamloo
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Jeffrey D. Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M College of Medicine, Bryan, TX, United States
| | - Adrian F. Gombart
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, United States
- The Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Annelise E. Barron
- Department of Bioengineering, Schools of Medicine and of Engineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
13
|
Wielento A, Bereta GP, Łagosz-Ćwik KB, Eick S, Lamont RJ, Grabiec AM, Potempa J. TLR2 Activation by Porphyromonas gingivalis Requires Both PPAD Activity and Fimbriae. Front Immunol 2022; 13:823685. [PMID: 35432342 PMCID: PMC9010743 DOI: 10.3389/fimmu.2022.823685] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/02/2022] [Indexed: 02/05/2023] Open
Abstract
Porphyromonas gingivalis, a keystone oral pathogen implicated in development and progression of periodontitis, may also contribute to the pathogenicity of diseases such as arthritis, atherosclerosis, and Alzheimer's. P. gingivalis is a master manipulator of host immune responses due to production of a large variety of virulence factors. Among these, P. gingivalis peptidilarginine deiminase (PPAD), an enzyme unique to P. gingivalis, converts C-terminal Arg residues in bacterium- and host-derived proteins and peptides into citrulline. PPAD contributes to stimulation of proinflammatory responses in host cells and is essential for activation of the prostaglandin E2 (PGE2) synthesis pathway in gingival fibroblasts. Since P. gingivalis is recognized mainly by Toll-like receptor-2 (TLR2), we investigated the effects of PPAD activity on TLR2-dependent host cell responses to P. gingivalis, as well as to outer membrane vesicles (OMVs) and fimbriae produced by this organism. Using reporter cell lines, we found that PPAD activity was required for TLR2 activation by P. gingivalis cells and OMVs. We also found that fimbriae, an established TLR2 ligand, from wild-type ATCC 33277 (but not from its isogenic PPAD mutant) enhanced the proinflammatory responses of host cells. Furthermore, only fimbriae from wild-type ATCC 33277, but not from the PPAD-deficient strains, induced cytokine production and stimulated expression of genes within the PGE2 synthesis pathway in human gingival fibroblasts via activation of the NF-ĸB and MAP kinase-dependent signaling pathways. Analysis of ten clinical isolates revealed that type I FimA is preferable for TLR2 signaling enhancement. In conclusion, the data strongly suggest that both PPAD activity and fimbriae are important for TLR2-dependent cell responses to P. gingivalis infection.
Collapse
Affiliation(s)
- Aleksandra Wielento
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grzegorz P. Bereta
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Katarzyna B. Łagosz-Ćwik
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sigrun Eick
- Department of Periodontology, Laboratory of Oral Microbiology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | - Aleksander M. Grabiec
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| |
Collapse
|
14
|
Maronek M, Gardlik R. The Citrullination-Neutrophil Extracellular Trap Axis in Chronic Diseases. J Innate Immun 2022; 14:393-417. [PMID: 35263752 PMCID: PMC9485962 DOI: 10.1159/000522331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/25/2022] [Indexed: 11/19/2022] Open
Abstract
Citrullination of proteins is crucial for the formation of neutrophil extracellular traps (NETs) − strands of nuclear DNA expulsed in the extracellular environment along with antimicrobial proteins in order to halt the spread of pathogens. Paradoxically, NETs may be immunogenic and contribute to inflammation. It is known that for the externalization of DNA, a group of enzymes called peptidyl arginine deiminases (PADs) is required. Current research often looks at citrullination, NET formation, PAD overexpression, and extracellular DNA (ecDNA) accumulation in chronic diseases as separate events. In contrast, we propose that citrullination can be viewed as the primary mechanism of autoimmunity, for instance by the formation of anti-citrullinated protein antibodies (ACPAs) but also as a process contributing to chronic inflammation. Therefore, citrullination could be at the center, connecting and impacting multiple inflammatory diseases in which ACPAs, NETs, or ecDNA have already been documented. In this review, we aimed to highlight the importance of citrullination in the etiopathogenesis of a number of chronic diseases and to explore the diagnostic, prognostic, and therapeutic potential of the citrullination-NET axis.
Collapse
Affiliation(s)
- Martin Maronek
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Roman Gardlik
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
15
|
Nikyar A, Bolhassani A, Rouhollah F, Heshmati M. In Vitro Delivery of HIV-1 Nef-Vpr DNA Construct Using the Human Antimicrobial Peptide LL-37. Curr Drug Deliv 2022; 19:1083-1092. [PMID: 35176981 DOI: 10.2174/1567201819666220217164055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/05/2021] [Accepted: 01/02/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVES DNA-based therapeutic vaccines have been proposed as promising strategy for treatment of established HIV infections. However, these vaccines are often associated with certain shortcomings, such as poor immunogenicity and low transfection efficiency. In this study, we investigated ability of LL-37 to deliver a potential immunogenic fusion construct comprising HIV-1 nef and vpr genes into a mammalian cell line. METHODS First, the pEGFP-N1 eukaryotic expression vector harboring the HIV-1 nef-vpr fusion was produced free of endotoxin on large scale. Then, DNA/LL-37 complexes were prepared by co-incubation of pEGFP-nef-vpr with LL-37 for 45 minutes at different nitrogen to phosphate (N/P) ratios. Formation of DNA/peptide complexes was investigated by gel retardation assay. Next, stability and morphological characteristics of the nanoparticles were evaluated. Toxicity of LL-37 and the nanoparticles in HEK-293T cells was assessed by MTT assay. Transfection efficiency of the DNA/LL-37 complexes was studied by fluorescence microscopy, flow cytometry, and western blot analysis. RESULTS LL-37 formed stable complexes with pEGFP-nef-vpr (diameter of 150-200 nm) while providing good protection against nucleolytic and proteolytic degradation. The peptide significantly affected cell viability even at low concentrations. However, the LL-37/DNA complexes had no significant cytotoxic effect. Treatment of cells with pEGFP-N1/LL-37 and pEGFP-nef-vpr/LL-37 resulted in transfection of 36.32% ± 1.13 and 25.55% ± 2.07 of cells, respectively. CONCLUSION Given these findings and the important immunomodulatory and antiviral activities of LL-37, the use of this peptide can be further exploited in the development of novel gene delivery strategies and vaccine design.
Collapse
Affiliation(s)
- Arash Nikyar
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDs, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Rouhollah
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Masoumeh Heshmati
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
16
|
Proteinous Components of Neutrophil Extracellular Traps Are Arrested by the Cell Wall Proteins of Candida albicans during Fungal Infection, and Can Be Used in the Host Invasion. Cells 2021; 10:cells10102736. [PMID: 34685715 PMCID: PMC8534323 DOI: 10.3390/cells10102736] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/08/2023] Open
Abstract
One of defense mechanisms of the human immune system to counteract infection by the opportunistic fungal pathogen Candida albicans is the recruitment of neutrophils to the site of invasion, and the subsequent production of neutrophil extracellular traps (NETs) that efficiently capture and kill the invader cells. In the current study, we demonstrate that within these structures composed of chromatin and proteins, the latter play a pivotal role in the entrapment of the fungal pathogen. The proteinous components of NETs, such as the granular enzymes elastase, myeloperoxidase and lactotransferrin, as well as histones and cathelicidin-derived peptide LL-37, are involved in contact with the surface of C. albicans cells. The fungal partners in these interactions are a typical adhesin of the agglutinin-like sequence protein family Als3, and several atypical surface-exposed proteins of cytoplasmic origin, including enolase, triosephosphate isomerase and phosphoglycerate mutase. Importantly, the adhesion of both the elastase itself and the mixture of proteins originating from NETs on the C. albicans cell surface considerably increased the pathogen potency of human epithelial cell destruction compared with fungal cells without human proteins attached. Such an implementation of adsorbed NET-derived proteins by invading C. albicans cells might alter the effectiveness of the fungal pathogen entrapment and affect the further host colonization.
Collapse
|
17
|
Karmakar U, Vermeren S. Crosstalk between B cells and neutrophils in rheumatoid arthritis. Immunology 2021; 164:689-700. [PMID: 34478165 PMCID: PMC8561113 DOI: 10.1111/imm.13412] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease without known cure that primarily affects synovial joints. RA has a prevalence of approximately 1% of the population worldwide. A vicious circle between two critical immune cell types, B cells and neutrophils, develops and promotes disease. Pathogenic anti‐citrullinated protein antibodies (ACPA) directed against a range of citrullinated epitopes are abundant in both plasma and synovial fluid of RA patients. In addition to stimulating numerous cell types, ACPA and other autoantibodies, notably rheumatoid factor, form immune complexes (ICs) that potently activate neutrophils. Attracted to the synovium by abundant chemokines, neutrophils are locally stimulated by ICs. They generate cytokines and release cytotoxic compounds including neutrophil extracellular traps (NETs), strands of decondensed chromatin decorated with citrullinated histones and granule‐derived neutrophil proteins, which are particularly abundant in the synovial fluid. In this way, neutrophils generate citrullinated epitopes and release peptidylarginine deiminase (PAD) enzymes capable of citrullinating extracellular proteins in the rheumatic joint, contributing to renewed ACPA generation. This review article focusses on the central function of citrullination, a post‐translational modification of arginine residues in RA. The discussion includes ACPA and related autoantibodies, somatic hypermutation‐mediated escape from negative selection by autoreactive B cells, promotion of the dominance of citrullinated antigens by genetic and lifestyle susceptibility factors and the vicious circle between ACPA‐producing pathogenic B cells and NET‐producing neutrophils in RA.
Collapse
Affiliation(s)
- Utsa Karmakar
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Sonja Vermeren
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
18
|
Al Adwani S, Padhi A, Karadottir H, Mörman C, Gräslund A, Végvári Á, Johansson J, Rising A, Agerberth B, Bergman P. Citrullination Alters the Antibacterial and Anti-Inflammatory Functions of the Host Defense Peptide Canine Cathelicidin K9CATH In Vitro. THE JOURNAL OF IMMUNOLOGY 2021; 207:974-984. [PMID: 34282000 DOI: 10.4049/jimmunol.2001374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/25/2021] [Indexed: 11/19/2022]
Abstract
K9CATH is the sole cathelicidin in canines (dogs) and exhibits broad antimicrobial activity against both Gram-positive and Gram-negative bacteria. K9CATH also modulates inflammatory responses and binds to LPS. These activities depend on the secondary structure and a net-positive charge of the peptide. Peptidylarginine deiminases (PAD) convert cationic peptidyl arginine to neutral citrulline. Thus, we hypothesized that citrullination is a biologically relevant modification of the peptide that would reduce the antibacterial and LPS-binding activities of K9CATH. Recombinant PAD2 and PAD4 citrullinated K9CATH to various extents and circular dichroism spectroscopy revealed that both native and citrullinated K9CATH exhibited similar α-helical secondary structures. Notably, citrullination of K9CATH reduced its bactericidal activity, abolished its ability to permeabilize the membrane of Gram-negative bacteria and reduced the hemolytic capacity. Electron microscopy showed that citrullinated K9CATH did not cause any morphological changes of Gram-negative bacteria, whereas the native peptide caused clear alterations of membrane integrity, concordant with a rapid bactericidal effect. Finally, citrullination of K9CATH impaired its capacity to inhibit LPS-mediated release of proinflammatory molecules from mouse and canine macrophages. In conclusion, citrullination attenuates the antibacterial and the LPS-binding properties of K9CATH, demonstrating the importance of a net positive charge for antibacterial lysis of bacteria and LPS-binding effects and suggests that citrullination is a means to regulate cathelicidin activities.
Collapse
Affiliation(s)
- Salma Al Adwani
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Huddinge, Sweden.,Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoudh, Muscat, Oman
| | - Avinash Padhi
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Huddinge, Sweden.,Dermatology and Venereology Section, Department of Medicine Solna, Karolinska Institutet, Huddinge, Sweden
| | - Harpa Karadottir
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Huddinge, Sweden
| | - Cecilia Mörman
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ákos Végvári
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Huddinge, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Anna Rising
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden; and
| | - Birgitta Agerberth
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Huddinge, Sweden
| | - Peter Bergman
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Huddinge, Sweden; .,Infectious Disease Clinic, Immunodeficiency Unit, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
19
|
Complementary Effects of Carbamylated and Citrullinated LL37 in Autoimmunity and Inflammation in Systemic Lupus Erythematosus. Int J Mol Sci 2021; 22:ijms22041650. [PMID: 33562078 PMCID: PMC7915858 DOI: 10.3390/ijms22041650] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 01/10/2023] Open
Abstract
LL37 acts as T-cell/B-cell autoantigen in Systemic lupus erythematosus (SLE) and psoriatic disease. Moreover, when bound to "self" nucleic acids, LL37 acts as "danger signal," leading to type I interferon (IFN-I)/pro-inflammatory factors production. T-cell epitopes derived from citrullinated-LL37 act as better antigens than unmodified LL37 epitopes in SLE, at least in selected HLA-backgrounds, included the SLE-associated HLA-DRB1*1501/HLA-DRB5*0101 backgrounds. Remarkably, while "fully-citrullinated" LL37 acts as better T-cell-stimulator, it loses DNA-binding ability and the associated "adjuvant-like" properties. Since LL37 undergoes a further irreversible post-translational modification, carbamylation and antibodies to carbamylated self-proteins other than LL37 are present in SLE, here we addressed the involvement of carbamylated-LL37 in autoimmunity and inflammation in SLE. We detected carbamylated-LL37 in SLE-affected tissues. Most importantly, carbamylated-LL37-specific antibodies and CD4 T-cells circulate in SLE and both correlate with disease activity. In contrast to "fully citrullinated-LL37," "fully carbamylated-LL37" maintains both innate and adaptive immune-cells' stimulatory abilities: in complex with DNA, carbamylated-LL37 stimulates plasmacytoid dendritic cell IFN-α production and B-cell maturation into plasma cells. Thus, we report a further example of how different post-translational modifications of a self-antigen exert complementary effects that sustain autoimmunity and inflammation, respectively. These data also show that T/B-cell responses to carbamylated-LL37 represent novel SLE disease biomarkers.
Collapse
|
20
|
Citrullination-Resistant LL-37 Is a Potent Antimicrobial Agent in the Inflammatory Environment High in Arginine Deiminase Activity. Int J Mol Sci 2020; 21:ijms21239126. [PMID: 33266231 PMCID: PMC7730452 DOI: 10.3390/ijms21239126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
LL-37, the only member of the mammalian cathelicidin in humans, plays an essential role in innate immunity by killing pathogens and regulating the inflammatory response. However, at an inflammatory focus, arginine residues in LL-37 can be converted to citrulline via a reaction catalyzed by peptidyl-arginine deiminases (PAD2 and PAD4), which are expressed in neutrophils and are highly active during the formation of neutrophil extracellular traps (NETs). Citrullination impairs the bactericidal activity of LL-37 and abrogates its immunomodulatory functions. Therefore, we hypothesized that citrullination-resistant LL-37 variants would retain the functionality of the native peptide in the presence of PADs. To test this hypothesis, we synthetized LL-37 in which arginine residues were substituted by homoarginine (hArg-LL-37). Bactericidal activity of hArg-LL-37 was comparable with that of native LL-37, but neither treatment with PAD4 nor exposure to NETs affected the antibacterial and immunomodulatory activities of hArg-LL-37. Importantly, the susceptibilities of LL-37 and hArg-LL-37 to degradation by proteases did not significantly differ. Collectively, we demonstrated that citrullination-resistant hArg-LL-37 is an attractive lead compound for the generation of new agents to treat bacterial infections and other inflammatory diseases associated with enhanced PAD activity. Moreover, our results provide a proof-of-concept for synthesis of therapeutic peptides using homoarginine.
Collapse
|
21
|
Liang W, Diana J. The Dual Role of Antimicrobial Peptides in Autoimmunity. Front Immunol 2020; 11:2077. [PMID: 32983158 PMCID: PMC7492638 DOI: 10.3389/fimmu.2020.02077] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
Autoimmune diseases (AiDs) are characterized by the destruction of host tissues by the host immune system. The etiology of AiDs is complex, with the implication of multiple genetic defects and various environmental factors (pathogens, antibiotic use, pollutants, stress, and diet). The interaction between these two compartments results in the rupture of tolerance against self-antigens and the unwanted activation of the immune system. Thanks to animal models, the immunopathology of many AiDs is well described, with the implication of both the innate and adaptive immune systems. This progress toward the understanding of AiDs led to several therapies tested in patients. However, the results from these clinical trials have not been satisfactory, from reversing the course of AiDs to preventing them. The need for a cure has prompted many investigators to explore alternative aspects in the immunopathology of these diseases. Among these new aspects, the role of antimicrobial host defense peptides (AMPs) is growing. Indeed, beyond their antimicrobial activity, AMPs are potent immunomodulatory molecules and consequently are implicated in the development of numerous AiDs. Importantly, according to the disease considered, AMPs appear to play a dual role in autoimmunity with either anti- or pro-inflammatory abilities. Here, we aimed to summarize the current knowledge about the role of AMPs in the development of AiDs and attempt to provide some hypotheses explaining their dual role. Definitely, a complete understanding of this aspect is mandatory before the design of AMP-based therapies against AiDs.
Collapse
Affiliation(s)
- Wenjie Liang
- Centre National de la Recherche Scientifique (CNRS), Institut Necker Enfants Malades, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France
| | - Julien Diana
- Centre National de la Recherche Scientifique (CNRS), Institut Necker Enfants Malades, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France
| |
Collapse
|
22
|
Generation of Monoclonal Antibodies Specific for Native LL37 and Citrullinated LL37 That Discriminate the Two LL37 Forms in the Skin and Circulation of Cutaneous/Systemic Lupus Erythematosus and Rheumatoid Arthritis Patients. Antibodies (Basel) 2020; 9:antib9020014. [PMID: 32403306 PMCID: PMC7345132 DOI: 10.3390/antib9020014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/25/2020] [Accepted: 04/30/2020] [Indexed: 12/22/2022] Open
Abstract
Human cathelicidin LL37 is a cationic antimicrobial peptide active against bacteria and viruses and exerting immune modulatory functions. LL37 can be also a target of autoreactive B- and T-lymphocytes in autoimmune settings. Irreversible post-translational modifications, such as citrullination and carbamylation, mainly occurring at the level of cationic amino acids arginine and lysine, can affect the inflammatory properties and reduce antibacterial effects. Moreover, these modifications could be implicated in the rupture of immune tolerance to LL37 in chronic conditions such as psoriatic disease and cutaneous lupus (LE)/systemic lupus erythematosus (SLE). Here, we describe the generation and fine specificity of six recombinant antibodies (MRB137–MRB142), produced as a monovalent mouse antibody with the antigen-binding scFv portion fused to a mouse IgG2a Fc, and their ability to recognize either native or citrullinated LL37 (cit-LL37) and not cross-react to carbamylated LL37. By using these antibodies, we detected native LL37 or cit-LL37 in SLE and rheumatoid arthritis (RA) sera, and in LE skin, by ELISA and immunohistochemistry, respectively. Such antibodies represent previously unavailable and useful tools to address relationships between the presence of post-translational modified LL37 and the immune system status (in terms of innate/adaptive responses activation) and the clinical characteristics of patients affected by chronic immune-mediated diseases or infectious diseases.
Collapse
|
23
|
Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov 2020; 19:311-332. [DOI: 10.1038/s41573-019-0058-8] [Citation(s) in RCA: 425] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2019] [Indexed: 12/18/2022]
|
24
|
Al-Adwani S, Wallin C, Balhuizen MD, Veldhuizen EJA, Coorens M, Landreh M, Végvári Á, Smith ME, Qvarfordt I, Lindén A, Gräslund A, Agerberth B, Bergman P. Studies on citrullinated LL-37: detection in human airways, antibacterial effects and biophysical properties. Sci Rep 2020; 10:2376. [PMID: 32047184 PMCID: PMC7012854 DOI: 10.1038/s41598-020-59071-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/23/2020] [Indexed: 11/09/2022] Open
Abstract
Arginine residues of the antimicrobial peptide LL-37 can be citrullinated by peptidyl arginine deiminases, which reduce the positive charge of the peptide. Notably, citrullinated LL-37 has not yet been detected in human samples. In addition, functional and biophysical properties of citrullinated LL-37 are not fully explored. The aim of this study was to detect citrullinated LL-37 in human bronchoalveolar lavage (BAL) fluid and to determine antibacterial and biophysical properties of citrullinated LL-37. BAL fluid was obtained from healthy human volunteers after intra-bronchial exposure to lipopolysaccharide. Synthetic peptides were used for bacterial killing assays, transmission electron microscopy, isothermal titration calorimetry, mass-spectrometry and circular dichroism. Using targeted proteomics, we were able to detect both native and citrullinated LL-37 in BAL fluid. The citrullinated peptide did not kill Escherichia coli nor lysed human red blood cells. Both peptides had similar α-helical secondary structures but citrullinated LL-37 was more stable at higher temperatures, as shown by circular dichroism. In conclusion, citrullinated LL-37 is present in the human airways and citrullination impaired bacterial killing, indicating that a net positive charge is important for antibacterial and membrane lysing effects. It is possible that citrullination serves as a homeostatic regulator of AMP-function by alteration of key functions.
Collapse
Affiliation(s)
- Salma Al-Adwani
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden.,Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Cecilia Wallin
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Melanie D Balhuizen
- Department of Infectious Diseases and Immunology, Division of Molecular Host Defence, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Edwin J A Veldhuizen
- Department of Infectious Diseases and Immunology, Division of Molecular Host Defence, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Maarten Coorens
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ákos Végvári
- Division of Physiological Chemistry I, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Margaretha E Smith
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingemar Qvarfordt
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Lindén
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Birgitta Agerberth
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Bergman
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden. .,Infectious Disease Clinic, Immunodeficiency Unit, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
25
|
Casanova V, Sousa FH, Shakamuri P, Svoboda P, Buch C, D'Acremont M, Christophorou MA, Pohl J, Stevens C, Barlow PG. Citrullination Alters the Antiviral and Immunomodulatory Activities of the Human Cathelicidin LL-37 During Rhinovirus Infection. Front Immunol 2020; 11:85. [PMID: 32117246 PMCID: PMC7010803 DOI: 10.3389/fimmu.2020.00085] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022] Open
Abstract
Human rhinoviruses (HRV) are the most common cause of viral respiratory tract infections. While normally mild and self-limiting in healthy adults, HRV infections are associated with bronchiolitis in infants, pneumonia in immunocompromised patients, and exacerbations of asthma and COPD. The human cathelicidin LL-37 is a host defense peptide (HDP) with broad immunomodulatory and antimicrobial activities that has direct antiviral effects against HRV. However, LL-37 is known to be susceptible to the enzymatic activity of peptidyl arginine deiminases (PAD), and exposure of the peptide to these enzymes results in the conversion of positively charged arginines to neutral citrullines (citrullination). Here, we demonstrate that citrullination of LL-37 reduced its direct antiviral activity against HRV. Furthermore, while the anti-rhinovirus activity of LL-37 results in dampened epithelial cell inflammatory responses, citrullination of the peptide, and a loss in antiviral activity, ameliorates this effect. This study also demonstrates that HRV infection upregulates PAD2 protein expression, and increases levels of protein citrullination, including histone H3, in human bronchial epithelial cells. Increased PADI gene expression and HDP citrullination during infection may represent a novel viral evasion mechanism, likely applicable to a wide range of pathogens, and should therefore be considered in the design of therapeutic peptide derivatives.
Collapse
Affiliation(s)
- Víctor Casanova
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | | | - Priyanka Shakamuri
- Biotechnology Core Facility Branch, Division of Scientific Resources, US Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Pavel Svoboda
- Biotechnology Core Facility Branch, Division of Scientific Resources, US Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Chloé Buch
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Mathilde D'Acremont
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Maria A Christophorou
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Jan Pohl
- Biotechnology Core Facility Branch, Division of Scientific Resources, US Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Craig Stevens
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Peter G Barlow
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| |
Collapse
|
26
|
Lazzaretto B, Fadeel B. Intra- and Extracellular Degradation of Neutrophil Extracellular Traps by Macrophages and Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:2276-2290. [PMID: 31519860 DOI: 10.4049/jimmunol.1800159] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/09/2019] [Indexed: 12/15/2022]
Abstract
Neutrophil extracellular traps (NETs) composed of nuclear DNA associated with histones and granule proteins are involved in the extracellular killing of pathogens. Excessive NET formation has been implicated in several noninfectious pathological conditions. The disposal of NETs is, therefore, important to prevent inadvertent effects resulting from the continued presence of NETs in the extracellular environment. In this study, we investigated the interaction of NETs released by freshly isolated, PMA-stimulated primary human neutrophils with primary human monocyte-derived macrophages or dendritic cells (DCs). NETs were internalized by macrophages, and removal of the protein component prevented engulfment of NETs, whereas complexation with LL-37 restored the uptake of "naked" (protein-free) NETs. NETs were also found to dampen the bacterial LPS-induced maturation of DCs. Cytokine profiling was conducted by using a multiplex array following the interaction of NETs with macrophages or DCs, and NETs alone were found to be noninflammatory, whereas immunomodulatory effects were noted in the presence of LPS with significant upregulation of IL-1β secretion, and a marked suppression of other LPS-induced factors including vascular endothelial growth factor (VEGF) in both cell types. Moreover, macrophage digestion of NETs was dependent on TREX1 (also known as DNaseIII), but not DNaseII, whereas extracellular DNase1L3-mediated degradation of NETs was observed for DCs. Collectively, these findings shed light on the interactions between NETs and phagocytic cells and provide new insights regarding the clearance of NETs, double-edged swords of innate immunity.
Collapse
Affiliation(s)
- Beatrice Lazzaretto
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
27
|
Heil M, Brockmeyer NH. Self-DNA Sensing Fuels HIV-1-Associated Inflammation. Trends Mol Med 2019; 25:941-954. [PMID: 31300343 DOI: 10.1016/j.molmed.2019.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 05/01/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
Inflammation, over-reacting innate immunity, and CD4+ T cell depletion are hallmarks of HIV-1 infection. Self-DNA is usually not considered in the context of HIV-1-associated inflammation, although self-DNA contributes to inflammation in diverse pathologies, including autoimmune diseases, cancer, multiorgan failure after trauma, and even virus infections. Cells undergoing HIV-1-associated pyroptotic bystander cell death release self-DNA and other damage-associated molecular patterns (DAMPs), including chaperones and histones. In complexes with such DAMPs or extracellular vesicles, self-DNA gains immunogenic potential and becomes accessible to intracellular DNA sensors. Therefore, we hypothesize that self-DNA can contribute to HIV-1-associated inflammation. Self-DNA might not only drive HIV-1-associated 'inflamm-ageing' but also provide new opportunities for 'shock and kill' strategies aimed at eliminating latent HIV-1.
Collapse
Affiliation(s)
- Martin Heil
- Department of Genetic Engineering, CINVESTAV-Irapuato, Irapuato, Guanajuato, Mexico.
| | - Norbert H Brockmeyer
- WIR 'Walk In Ruhr' - Center for Sexual Health and Medicine, German Competence Net HIV/AIDS, University of Bochum, Bochum, Germany
| |
Collapse
|
28
|
Development of Chemical Tools to Monitor Human Kallikrein 13 (KLK13) Activity. Int J Mol Sci 2019; 20:ijms20071557. [PMID: 30925705 PMCID: PMC6479877 DOI: 10.3390/ijms20071557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/14/2019] [Accepted: 03/25/2019] [Indexed: 12/17/2022] Open
Abstract
Kallikrein 13 (KLK13) was first identified as an enzyme that is downregulated in a subset of breast tumors. This serine protease has since been implicated in a number of pathological processes including ovarian, lung and gastric cancers. Here we report the design, synthesis and deconvolution of libraries of internally quenched fluorogenic peptide substrates to determine the specificity of substrate binding subsites of KLK13 in prime and non-prime regions (according to the Schechter and Berger convention). The substrate with the consensus sequential motive ABZ-Val-Arg-Phe-Arg-ANB-NH2 demonstrated selectivity towards KLK13 and was successfully converted into an activity-based probe by the incorporation of a chloromethylketone warhead and biotin bait. The compounds described may serve as suitable tools to detect KLK13 activity in diverse biological samples, as exemplified by overexpression experiments and targeted labeling of KLK13 in cell lysates and saliva. In addition, we describe the development of selective activity-based probes targeting KLK13, to our knowledge the first tool to analyze the presence of the active enzyme in biological samples.
Collapse
|
29
|
Dwivedi N, Radic M. Burning controversies in NETs and autoimmunity: The mysteries of cell death and autoimmune disease. Autoimmunity 2018; 51:267-280. [PMID: 30417698 DOI: 10.1080/08916934.2018.1523395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The causes and mechanisms of autoimmune disease pose continuing challenges to the scientific community. Recent clues implicate a peculiar feature of neutrophils, their ability to release nuclear chromatin in the form of neutrophil extracellular traps (NETs), in the induction or progression of autoimmune disease. Efforts to define the beneficial versus detrimental effects of NET release have, as yet, only partially revealed mechanisms that guide this process. Evidence suggests that the process of NET release is highly regulated, but the details of regulation remain controversial and obscure. Without a better understanding of the factors that initiate and control NET formation, the judicious modification of neutrophil behaviour for medically useful purposes appears remote. We highlight gaps and inconsistencies in published work, which make NETs and their role in health and disease a puzzle that deserves more focused attention.
Collapse
Affiliation(s)
- Nishant Dwivedi
- a TIP Immunology , EMD Serono Research and Development Institute, Inc , Billerica , MA , USA
| | - Marko Radic
- b Department of Microbiology, Immunology and Biochemistry , University of Tennessee Health Science Center , Memphis , TN , USA
| |
Collapse
|
30
|
Cau L, Méchin MC, Simon M. Peptidylarginine deiminases and deiminated proteins at the epidermal barrier. Exp Dermatol 2018; 27:852-858. [PMID: 29756256 DOI: 10.1111/exd.13684] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2018] [Indexed: 12/13/2022]
Abstract
Deimination or citrullination is a post-translational modification catalysed by a family of calcium-dependent enzymes called peptidylarginine deiminases (PADs). It corresponds to the transformation of arginine residues within a peptide sequence into citrulline residues. Deimination induces a decreased net charge of targeted proteins; therefore, it alters their folding and changes intra- and intermolecular ionic interactions. Deimination is involved in several physiological processes (inflammation, gene regulation, etc.) and human diseases (rheumatoid arthritis, neurodegenerative diseases, cancer, etc.). Here, we describe the PADs expressed in the epidermis and their known substrates, focusing on their role in the epidermal barrier function.
Collapse
Affiliation(s)
- Laura Cau
- UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université Paul Sabatier, Université de Toulouse Midi-Pyrénées, Toulouse, France
| | - Marie-Claire Méchin
- UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université Paul Sabatier, Université de Toulouse Midi-Pyrénées, Toulouse, France
| | - Michel Simon
- UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université Paul Sabatier, Université de Toulouse Midi-Pyrénées, Toulouse, France
| |
Collapse
|