1
|
Yao YE, Qin CC, Yang CM, Huang TX. γδT17/γδTreg cell subsets: a new paradigm for asthma treatment. J Asthma 2021; 59:2028-2038. [PMID: 34634976 DOI: 10.1080/02770903.2021.1980585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bronchial asthma (abbreviated as asthma), is a heterogeneous disease characterized by chronic airway inflammation and airway hyperresponsiveness. The main characteristics of asthma include variable reversible airflow limitation and airway remodeling. The pathogenesis of asthma is still unclear. Th1/Th2 imbalance, Th1 deficiency and Th2 hyperfunction are classic pathophysiological mechanisms of asthma. Some studies have shown that the imbalance of the Th1/Th2 cellular immune model and Th17/Treg imbalance play a key role in the occurrence and development of asthma; however, these imbalances do not fully explain the disease. In recent years, studies have shown that γδT and γδT17 cells are involved in the pathogenesis of asthma. γδTreg has a potential immunosuppressive function, but its regulatory mechanisms have not been fully elucidated. In this paper, we reviewed the role of γδT17/γδTreg cells in bronchial asthma, including the mechanisms of their development and activation. Here we propose that γδT17/Treg cell subsets contribute to the occurrence and development of asthma, constituting a novel potential target for asthma treatment.
Collapse
Affiliation(s)
- Yi-En Yao
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Cai-Cheng Qin
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chao-Mian Yang
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tian-Xia Huang
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
2
|
Zarobkiewicz MK, Wawryk-Gawda E, Kowalska W, Janiszewska M, Bojarska-Junak A. γδ T Lymphocytes in Asthma: a Complicated Picture. Arch Immunol Ther Exp (Warsz) 2021; 69:4. [PMID: 33661375 PMCID: PMC7932949 DOI: 10.1007/s00005-021-00608-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 02/17/2021] [Indexed: 02/08/2023]
Abstract
A minor subset (approximately 5%) of peripheral T cells has their TCR build up from γ and δ chains instead of α and β-those are the γδ T lymphocytes. They can be functionally divided into subsets, e.g., Th1-, Th2-, Th9-, Th17-, Tfh-, and Treg-like γδ T cells. They share some specifics of both innate and adaptive immunity, and are capable of rapid response to a range of stimuli, including some viral and bacterial infections. Atopic diseases, including asthma, are one of major health-related problems of modern western societies. Asthma is one of the most common airway diseases, affecting people of all ages and having potential life-threatening consequences. In this paper, we review the current knowledge about the involvement of γδ T cells in the pathogenesis of asthma and its exacerbations. We summarize both the studies performed on human subjects as well as on the murine model of asthma. γδ T cells seem to be involved in the pathogenesis of asthma, different subsets probably perform opposite functions, e.g., symptom-exacerbating Vγ1 and symptom-suppressing Vγ4 in mice model of asthma.
Collapse
Affiliation(s)
- Michał K Zarobkiewicz
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland.
| | - Ewelina Wawryk-Gawda
- Department of Paediatric Pulmonology and Rheumatology, Medical University of Lublin, Lublin, Poland
| | - Wioleta Kowalska
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland
| | - Mariola Janiszewska
- Department of Medical Informatics and Statistics With E-Learning Laboratory, Medical University of Lublin, Lublin, Poland
| | - Agnieszka Bojarska-Junak
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland
| |
Collapse
|
3
|
Yirsaw A, Baldwin CL. Goat γδ T cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103809. [PMID: 32795585 DOI: 10.1016/j.dci.2020.103809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/06/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Goats are important food animals and are disseminated globally because of their high adaptability to varying environmental conditions and feeding regimes that provide them with a comparative advantage. Productivity is impacted by infectious diseases; this then contributes to societal poverty, food insecurity, and international trade restrictions. Since γδ T cells have been shown to have vital roles in immune responses in other mammals we reviewed the literature regarding what is known about their functions, distribution in tissues and organs and their responses to a variety of infections in goats. It has been shown that caprine γδ T cells produce interferon-γ and IL-17, are found in a variety of lymphoid and nonlymphoid tissues and constitute a significant population of blood mononuclear cells. Their representation in tissues and their functional responses may be altered concomitant with infection. This review summarizes caprine γδ T cell responses to Brucella melitensis, Fasciola hepatica, Mycobacterium avium paratuberculosis, caprine arthritis encephalitis virus (CAEV), and Schistosoma bovis in infected or vaccinated goats. Caprine γδ T cells have also been evaluated in goats infected with M. caprae, Ehrilichia ruminantium, Haemonchus contortus and peste des petits ruminants (PPR) virus but found to have an unknown or limited response or role in either protective immunity or immunopathogenesis in those cases.
Collapse
Affiliation(s)
- Alehegne Yirsaw
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, 661 N. Pleasant St, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Cynthia L Baldwin
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, 661 N. Pleasant St, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
4
|
Fischer MA, Golovchenko NB, Edelblum KL. γδ T cell migration: Separating trafficking from surveillance behaviors at barrier surfaces. Immunol Rev 2020; 298:165-180. [PMID: 32845516 PMCID: PMC7968450 DOI: 10.1111/imr.12915] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022]
Abstract
γδ T cells are found in highest numbers at barrier surfaces throughout the body, including the skin, intestine, lung, gingiva, and uterus. Under homeostatic conditions, γδ T cells provide immune surveillance of the epidermis, intestinal, and oral mucosa, whereas the presence of pathogenic microorganisms in the dermis or lungs elicits a robust γδ17 response to clear the infection. Although T cell migration is most frequently defined in the context of trafficking, analysis of specific migratory behaviors of lymphocytes within the tissue microenvironment can provide valuable insight into their function. Intravital imaging and computational analyses have been used to define "search" behavior associated with conventional αβ T cells; however, based on the known role of γδ T cells as immune sentinels at barrier surfaces and their TCR-independent functions, we put forth the need to classify distinct migratory patterns that reflect the surveillance capacity of these unconventional lymphocytes. This review will focus on how γδ T cells traffic to various barrier surfaces and how recent investigation into their migratory behavior has provided unique insight into the contribution of γδ T cells to barrier immunity.
Collapse
Affiliation(s)
- Matthew A. Fischer
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Natasha B. Golovchenko
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Karen L. Edelblum
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| |
Collapse
|
5
|
Witherden DA, Johnson MD, Havran WL. Coreceptors and Their Ligands in Epithelial γδ T Cell Biology. Front Immunol 2018; 9:731. [PMID: 29686687 PMCID: PMC5900413 DOI: 10.3389/fimmu.2018.00731] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/23/2018] [Indexed: 01/15/2023] Open
Abstract
Epithelial tissues line the body providing a protective barrier from the external environment. Maintenance of these epithelial barrier tissues critically relies on the presence of a functional resident T cell population. In some tissues, the resident T cell population is exclusively comprised of γδ T cells, while in others γδ T cells are found together with αβ T cells and other lymphocyte populations. Epithelial-resident γδ T cells function not only in the maintenance of the epithelium, but are also central to the repair process following damage from environmental and pathogenic insults. Key to their function is the crosstalk between γδ T cells and neighboring epithelial cells. This crosstalk relies on multiple receptor–ligand interactions through both the T cell receptor and accessory molecules leading to temporal and spatial regulation of cytokine, chemokine, growth factor, and extracellular matrix protein production. As antigens that activate epithelial γδ T cells are largely unknown and many classical costimulatory molecules and coreceptors are not used by these cells, efforts have focused on identification of novel coreceptors and ligands that mediate pivotal interactions between γδ T cells and their neighbors. In this review, we discuss recent advances in the understanding of functions for these coreceptors and their ligands in epithelial maintenance and repair processes.
Collapse
Affiliation(s)
- Deborah A Witherden
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Margarete D Johnson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Wendy L Havran
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
6
|
Wu J, Xu L, Han X, Hu H, Qi F, Bai S, Chai R, Teng Y, Liu B. Role of γδ T cells in exacerbated airway inflammation during reinfection of neonatally primed mice in adulthood. J Med Virol 2017; 89:2108-2115. [PMID: 28815644 DOI: 10.1002/jmv.24914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/22/2017] [Indexed: 11/08/2022]
Abstract
Age at primary infection with respiratory syncytial virus (RSV) is a crucial factor in determining the outcome of reinfection. However, how neonatal RSV infection affects the immune system and renders the host more susceptible to reinfection in later life is poorly understood. In the present study, by using BALB/c mice that were first infected with RSV as neonates, the role of γδ T cells in the development of airway inflammation during reinfection in adulthood was investigated. We found that neonatal RSV infection resulted in an aggravated infiltration of mononuclear cells in bronchoalveolar lavage (BAL) fluids, in parallel with a significant increase in the levels of type 2 cytokines in lungs on day 4 after reinfection. Since the numbers of total γδ T cells as well as activated γδ T cells, particularly IL-4-, IL-5-, and IL-13-producing γδ T cells, were enhanced markedly in the lungs of neonatally primed mice, we speculate that γδ T cells might participate in the augmented airway inflammation seen during reinfection. Indeed, depletion of γδ T cells attenuated the severity of lung histopathology during reinfection. Meanwhile, treatment of neonatal mice with anti-TCRδ mAb diminished not only the numbers of neutrophils, eosinophils, and lymphocytes, but also the levels of IL-4, IL-5, and IL-13 in the lungs after reinfection in adulthood, suggesting that γδ T cells, particularly Th2-type γδ T cells might play a critical role in exacerbating the pulmonary tissue pathology during reinfection of adult mice that were first infected as neonates.
Collapse
Affiliation(s)
- Jianqi Wu
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lei Xu
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang, China
| | - Xu Han
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Haiyan Hu
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang, China
| | - Feifei Qi
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang, China
| | - Song Bai
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang, China
| | - Ruonan Chai
- The PLA Center of Respiratory and Allergic Disease Diagnosing Management, The General Hospital of Shenyang Military Command, Shenyang, China
| | - Yuee Teng
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Beixing Liu
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
7
|
Gelfand EW, Joetham A, Wang M, Takeda K, Schedel M. Spectrum of T-lymphocyte activities regulating allergic lung inflammation. Immunol Rev 2017; 278:63-86. [PMID: 28658551 PMCID: PMC5501488 DOI: 10.1111/imr.12561] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite advances in the treatment of asthma, optimization of symptom control remains an unmet need in many patients. These patients, labeled severe asthma, are responsible for a substantial fraction of the disease burden. In these patients, research is needed to define the cellular and molecular pathways contributing to disease which in large part are refractory to corticosteroid treatment. The causes of steroid-resistant asthma are multifactorial and result from complex interactions of genetics, environmental factors, and innate and adaptive immunity. Adaptive immunity, addressed here, integrates the activities of distinct T-cell subsets and by definition is dynamic and responsive to an ever-changing environment and the influences of epigenetic modifications. These T-cell subsets exhibit different susceptibilities to the actions of corticosteroids and, in some, corticosteroids enhance their functional activation. Moreover, these subsets are not fixed in lineage differentiation but can undergo transcriptional reprogramming in a bidirectional manner between protective and pathogenic effector states. Together, these factors contribute to asthma heterogeneity between patients but also in the same patient at different stages of their disease. Only by carefully defining mechanistic pathways, delineating their sensitivity to corticosteroids, and determining the balance between regulatory and effector pathways will precision medicine become a reality with selective and effective application of targeted therapies.
Collapse
Affiliation(s)
- Erwin W Gelfand
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Anthony Joetham
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Meiqin Wang
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Katsuyuki Takeda
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Michaela Schedel
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| |
Collapse
|
8
|
Liang D, Nian H, Shao H, Kaplan HJ, Sun D. Functional Conversion and Dominance of γδ T Subset in Mouse Experimental Autoimmune Uveitis. THE JOURNAL OF IMMUNOLOGY 2017; 198:1429-1438. [PMID: 28069804 DOI: 10.4049/jimmunol.1601510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/14/2016] [Indexed: 12/19/2022]
Abstract
We have previously shown that activated γδ T cells have a much stronger proinflammatory effect in the development of experimental autoimmune uveitis than their nonactivated counterparts. Our present study explored γδ T cell subsets are functionally distinct in autoimmune pathogenesis and determined the pathogenic contribution of biased Vγ4+ γδ T cell activation in this disease. By systematically comparing two major peripheral γδ T cell subsets, the Vγ1+ and the Vγ4+ cells, we found that the Vγ4+ cells were readily activated in B6 mice during experimental autoimmune uveitis development, whereas Vγ1+ cells remained nonactivated. Cytokines that were abundantly found in the serum of immunized mice activated Vγ4+, but did not activate Vγ1+, cells. The Vγ4+ cells had a strong proinflammatory activity, whereas the Vγ1+ cells remained nonactivated when tested immediately after isolation from immunized mice. However, when the Vγ1+ cells were activated in vitro, they promoted inflammation. Our results demonstrated that activation is a major factor in switching the enhancing and inhibiting effects of both Vγ1+ and Vγ4+ γδ T cell subsets, and that γδ T cell subsets differ greatly in their activation requirements. Whether the enhancing or inhibiting function of γδ T cells is dominant is mainly determined by the proportion of the γδ T cells that are activated versus the proportion not activated.
Collapse
Affiliation(s)
- Dongchun Liang
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90033
| | - Hong Nian
- Tianjin Medical University Eye Hospital, Eye Institute and School of Optometry and Ophthalmology, Tianjin 300384, China; and
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY 40202
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY 40202
| | - Deming Sun
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90033;
| |
Collapse
|
9
|
Han CZ, Juncadella IJ, Kinchen JM, Buckley MW, Klibanov AL, Dryden K, Onengut-Gumuscu S, Erdbrügger U, Turner SD, Shim YM, Tung KS, Ravichandran KS. Macrophages redirect phagocytosis by non-professional phagocytes and influence inflammation. Nature 2016; 539:570-574. [PMID: 27820945 PMCID: PMC5799085 DOI: 10.1038/nature20141] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/04/2016] [Indexed: 12/16/2022]
Abstract
Professional phagocytes (such as macrophages) and non-professional phagocytes (such as epithelial cells) clear billions of apoptotic cells and particles on a daily basis. Although professional and non-professional macrophages reside in proximity in most tissues, whether they communicate with each other during cell clearance, and how this might affect inflammation, is not known. Here we show that macrophages, through the release of a soluble growth factor and microvesicles, alter the type of particles engulfed by non-professional phagocytes and influence their inflammatory response. During phagocytosis of apoptotic cells or in response to inflammation-associated cytokines, macrophages released insulin-like growth factor 1 (IGF-1). The binding of IGF-1 to its receptor on non-professional phagocytes redirected their phagocytosis, such that uptake of larger apoptotic cells was reduced whereas engulfment of microvesicles was increased. IGF-1 did not alter engulfment by macrophages. Macrophages also released microvesicles, whose uptake by epithelial cells was enhanced by IGF-1 and led to decreased inflammatory responses by epithelial cells. Consistent with these observations, deletion of IGF-1 receptor in airway epithelial cells led to exacerbated lung inflammation after allergen exposure. These genetic and functional studies reveal that IGF-1- and microvesicle-dependent communication between macrophages and epithelial cells can critically influence the magnitude of tissue inflammation in vivo.
Collapse
Affiliation(s)
- Claudia Z Han
- The Center for Cell Clearance, University of Virginia, Charlottesville, Virginia 22903, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Ignacio J Juncadella
- The Center for Cell Clearance, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Jason M Kinchen
- The Center for Cell Clearance, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Monica W Buckley
- The Center for Cell Clearance, University of Virginia, Charlottesville, Virginia 22903, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Alexander L Klibanov
- Department of Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Kelly Dryden
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Suna Onengut-Gumuscu
- Department of Medicine, Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, Virginia 22903, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Uta Erdbrügger
- Department of Medicine, Division of Nephrology, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Stephen D Turner
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Yun M Shim
- Department of Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Kenneth S Tung
- Department of Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Kodi S Ravichandran
- The Center for Cell Clearance, University of Virginia, Charlottesville, Virginia 22903, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22903, USA
| |
Collapse
|
10
|
Streptomycin treatment alters the intestinal microbiome, pulmonary T cell profile and airway hyperresponsiveness in a cystic fibrosis mouse model. Sci Rep 2016; 6:19189. [PMID: 26754178 PMCID: PMC4709690 DOI: 10.1038/srep19189] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/07/2015] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator deficient mouse models develop phenotypes of relevance to clinical cystic fibrosis (CF) including airway hyperresponsiveness, small intestinal bacterial overgrowth and an altered intestinal microbiome. As dysbiosis of the intestinal microbiota has been recognized as an important contributor to many systemic diseases, herein we investigated whether altering the intestinal microbiome of BALB/c Cftr(tm1UNC) mice and wild-type littermates, through treatment with the antibiotic streptomycin, affects the CF lung, intestinal and bone disease. We demonstrate that streptomycin treatment reduced the intestinal bacterial overgrowth in Cftr(tm1UNC) mice and altered the intestinal microbiome similarly in Cftr(tm1UNC) and wild-type mice, principally by affecting Lactobacillus levels. Airway hyperresponsiveness of Cftr(tm1UNC) mice was ameliorated with streptomycin, and correlated with Lactobacillus abundance in the intestine. Additionally, streptomycin treated Cftr(tm1UNC) and wild-type mice displayed an increased percentage of pulmonary and mesenteric lymph node Th17, CD8 + IL-17+ and CD8 + IFNγ+ lymphocytes, while the CF-specific increase in respiratory IL-17 producing γδ T cells was decreased in streptomycin treated Cftr(tm1UNC) mice. Bone disease and intestinal phenotypes were not affected by streptomycin treatment. The airway hyperresponsiveness and lymphocyte profile of BALB/c Cftr(tm1UNC) mice were affected by streptomycin treatment, revealing a potential intestinal microbiome influence on lung response in BALB/c Cftr(tm1UNC) mice.
Collapse
|
11
|
Schmolka N, Wencker M, Hayday AC, Silva-Santos B. Epigenetic and transcriptional regulation of γδ T cell differentiation: Programming cells for responses in time and space. Semin Immunol 2015; 27:19-25. [PMID: 25726512 DOI: 10.1016/j.smim.2015.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 12/15/2022]
Abstract
γδ T cells are major providers of the pro-inflammatory cytokines interferon-γ (IFNγ) and interleukin-17 (IL-17) in protective or pathogenic immune responses. Notably, murine γδ T cells commit to either IFNγ or IL-17 production during development in the thymus, before any subsequent activation in the periphery. Here we discuss the molecular networks that underlie thymic γδ T cell differentiation, as well as the mechanisms that sustain or modify their functional properties in the periphery. We concentrate on recent findings on lymphoid and tissue-resident γδ T cell subpopulations, with an emphasis on genome-wide studies and their added value to elucidate the regulation of γδ T cell differentiation at the transcriptional and epigenetic (chromatin) levels.
Collapse
Affiliation(s)
- Nina Schmolka
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Mélanie Wencker
- London Research Institute, Cancer Research UK, London, UK; Immunity and Cytotoxic Lymphocytes, Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, Lyon, France
| | - Adrian C Hayday
- London Research Institute, Cancer Research UK, London, UK; Peter Gorer Department of Immunobiology, King's College London, London, UK.
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| |
Collapse
|
12
|
Abstract
γδ T cells can influence specific antibody responses. Here, we report that mice deficient in individual γδ T-cell subsets have altered levels of serum antibodies, including all major subclasses, sometimes regardless of the presence of αβ T cells. One strain with a partial γδ deficiency that increases IgE antibodies also displayed increases in IL-4-producing T cells (both residual γδ T cells and αβ T cells) and in systemic IL-4 levels. Its B cells expressed IL-4-regulated inhibitory receptors (CD5, CD22, and CD32) at diminished levels, whereas IL-4-inducible IL-4 receptor α and MHCII were increased. They also showed signs of activation and spontaneously formed germinal centers. These mice displayed IgE-dependent features found in hyper-IgE syndrome and developed antichromatin, antinuclear, and anticytoplasmic autoantibodies. In contrast, mice deficient in all γδ T cells had nearly unchanged Ig levels and did not develop autoantibodies. Removing IL-4 abrogated the increases in IgE, antichromatin antibodies, and autoantibodies in the partially γδ-deficient mice. Our data suggest that γδ T cells, controlled by their own cross-talk, affect IL-4 production, B-cell activation, and B-cell tolerance.
Collapse
|
13
|
Abstract
γδ T cells represent a small population of overall T lymphocytes (0.5-5%) and have variable tissue distribution in the body. γδ T cells can perform complex functions, such as immune surveillance, immunoregulation, and effector function, without undergoing clonal expansion. Heterogeneous distribution and anatomic localization of γδ T cells in the normal and inflamed tissues play an important role in alloimmunity, autoimmunity, or immunity. The cross-talk between γδ T cells and other immune cells and phenotypic and functional plasticity of γδ T cells have been given recent attention in the field of immunology. In this review, we discussed the cellular and molecular interaction of γδ T cells with other immune cells and its mechanism in the pathogenesis of various autoimmune diseases.
Collapse
Affiliation(s)
- Sourav Paul
- National Centre for Cell Science, Pune University Campus, Pune, India
| | - Shilpi
- National Centre for Cell Science, Pune University Campus, Pune, India
| | - Girdhari Lal
- National Centre for Cell Science, Pune University Campus, Pune, India
| |
Collapse
|
14
|
Global characterization of differential gene expression profiles in mouse Vγ1+ and Vγ4+ γδ T cells. PLoS One 2014; 9:e112964. [PMID: 25405356 PMCID: PMC4236085 DOI: 10.1371/journal.pone.0112964] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 10/16/2014] [Indexed: 11/19/2022] Open
Abstract
Peripheral γδ T cells in mice are classified into two major subpopulations, Vγ1+ and Vγ4+, based on the composition of T cell receptors. However, their intrinsic differences remain unclear. In this study, we analyzed gene expression profiles of the two subsets using Illumina HiSeq 2000 Sequencer. We identified 1995 transcripts related to the activation of Vγ1+ γδ T cells, and 2158 transcripts related to the activation of Vγ4+ γδ T cells. We identified 24 transcripts differentially expressed between the two subsets in resting condition, and 20 after PMA/Ionomycin treatment. We found that both cell types maintained phenotypes producing IFN-γ, TNF-α, TGF-β and IL-10. However, Vγ1+ γδ T cells produced more Th2 type cytokines, such as IL-4 and IL-5, while Vγ4+ γδ T cells preferentially produced IL-17. Our study provides a comprehensive gene expression profile of mouse peripheral Vγ1+ and Vγ4+ γδ T cells that describes the inherent differences between them.
Collapse
|
15
|
Murdoch JR, Gregory LG, Lloyd CM. γδT cells regulate chronic airway inflammation and development of airway remodelling. Clin Exp Allergy 2014; 44:1386-98. [PMID: 25146585 PMCID: PMC4238847 DOI: 10.1111/cea.12395] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 06/25/2014] [Accepted: 07/10/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND γδT cells play a crucial immunoregulatory role in the lung, maintaining normal airway tone and preventing hyperresponsiveness to innocuous allergen. During acute inflammatory episodes, γδT cells promote resolution of acute inflammation. However, their contribution to inflammation-associated airway remodelling remains unexplored. Here we investigate the effects of γδT cell blockade on established allergic airway inflammation and development of remodelling. METHODS Sensitised mice were exposed to prolonged ovalbumin challenge or continuous house-dust mite exposure to induce chronic inflammation and remodelling. Functional blocking anti-TCRδ antibody was administered therapeutically, and parameters of airway inflammation and remodelling were examined. RESULTS Therapeutic blockade of γδT cells prevented the typical resolution of acute airway inflammation characterised by elevated eosinophil and Th2 cell numbers. Moreover, the lung displayed exacerbated airway remodelling, typified by excess peribronchiolar collagen deposition. CONCLUSIONS These results demonstrate a unique role for γδT cells in constraining allergen-induced airway remodelling. Manipulating the γδT cell compartment may therefore contribute to strategies to prevent and treat remodelling.
Collapse
Affiliation(s)
- J R Murdoch
- Leukocyte Biology Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College LondonLondon, UK
| | - L G Gregory
- Leukocyte Biology Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College LondonLondon, UK
| | - C M Lloyd
- Leukocyte Biology Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College LondonLondon, UK
| |
Collapse
|
16
|
Nakada EM, Shan J, Kinyanjui MW, Fixman ED. Adjuvant-dependent regulation of interleukin-17 expressing γδ T cells and inhibition of Th2 responses in allergic airways disease. Respir Res 2014; 15:90. [PMID: 25123451 PMCID: PMC4151193 DOI: 10.1186/s12931-014-0090-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/28/2014] [Indexed: 01/07/2023] Open
Abstract
Background Th2 immune responses are linked primarily to mild and moderate asthma, while Th17 cells, Interleukin-17A (IL-17) and neutrophilia have been implicated in more severe forms of disease. How Th2-dependent allergic reactions are influenced by Th17 and IL-17-γδ T cells is poorly understood. In murine models, under some conditions, IL-17 promotes Th2-biased airway inflammatory responses. However, IL-17-γδ T cells have been implicated in the inhibition and resolution of allergic airway inflammation and hyperresponsiveness (AHR). Methods We compared airway responses in Balb/c mice sensitized to OVA with (and without) a Th2-skewing aluminum-based adjuvant and the IL-17 skewing, complete Freund’s adjuvant (CFA). AHR was measured invasively by flexiVent, while serum OVA-IgE was quantified by an enzyme immunoassay. Airway inflammatory and cytokine profiles, and cellular sources of IL-17 were assessed from bronchoalveolar lavage and/or lungs. The role of γδ T cells in these responses was addressed in OVA/CFA sensitized mice using a γδ T cell antibody. Results Following OVA challenge, all mice exhibited mixed eosinophilic/neutrophilic airway inflammatory profiles and elevated serum OVA-IgE. Whereas OVA/alum sensitized mice had moderate inflammation and AHR, OVA/CFA sensitized mice had significantly greater inflammation but lacked AHR. This correlated with a shift in IL-17 production from CD4+ to γδ T cells. Additionally, OVA/CFA sensitized mice, given a γδ TCR stimulatory antibody, showed increased frequencies of IL-17-γδ T cells and diminished airway reactivity and eosinophilia. Conclusions Thus, the conditions of antigen sensitization influence the profile of cells that produce IL-17, the balance of which may then modulate the airway inflammatory responses, including AHR. The possibility for IL-17-γδ T cells to reduce AHR and robust eosinophilic inflammation provides evidence that therapeutic approaches focused on stimulating and increasing airway IL-17-γδ T cells may be an effective alternative in treating steroid resistant, severe asthma. Electronic supplementary material The online version of this article (doi:10.1186/s12931-014-0090-5) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Zeng S, Wu J, Liu J, Qi F, Kimura Y, Cao Y, Liu B. Infection with respiratory syncytial virus influences FasL-mediated apoptosis of pulmonary γδ T cells in a murine model of allergen sensitization. J Asthma 2014; 51:360-5. [PMID: 24564286 DOI: 10.3109/02770903.2013.878954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND It has been reported that adoptive transfer of γδ T cells increases the cellular infiltration, especially eosinophils, in the lungs of allergic mice, suggesting that γδ T cells may play a proinflammatory role in allergic airway inflammation. Respiratory syncytial virus (RSV) infection can decrease the number of Th2-type γδ T cells. However, the underlying mechanisms remain unknown. METHODS BALB/c mice were inoculated intranasally with RSV before or after sensitization to OVA. The amounts of Th1/Th2 cytokines as well as the levels of specific antibodies were determined by ELISA. The apoptotic death of pulmonary γδ T cells was analyzed by flow cytometry. RESULTS Adoptive transfer of γδ T cells increased the production of Th2 cytokines in the lungs and allergy-related antibodies in the serum, further confirming that γδ T cells act as pro-inflammatory cells or a promoter for the development of allergic asthma. RSV infection before sensitization to OVA enhanced apoptotic death of pulmonary γδ T cells. The percentage and absolute number of FasL-expressing γδ T cells in the lungs of allergic mice were elicited significantly by prior RSV infection. Blocking FasL with monoclonal antibody diminished apoptotic death of γδ T cells, suggesting that FasL is important for RSV-induced apoptosis of pulmonary γδ T cells. CONCLUSIONS This work provides evidence that RSV infection suppresses the subsequent development of OVA-induced allergic responses partly by enhancing FasL-mediated apoptosis of pulmonary γδ T cells.
Collapse
Affiliation(s)
- Sheng Zeng
- Department of Immunology, School of Basic Medical Science, China Medical University , Shenyang , PR China
| | | | | | | | | | | | | |
Collapse
|
18
|
Serre K, Silva-Santos B. Molecular Mechanisms of Differentiation of Murine Pro-Inflammatory γδ T Cell Subsets. Front Immunol 2013; 4:431. [PMID: 24367369 PMCID: PMC3852037 DOI: 10.3389/fimmu.2013.00431] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/21/2013] [Indexed: 12/24/2022] Open
Abstract
γδ T cells are unconventional innate-like lymphocytes that actively participate in protective immunity against tumors and infectious organisms including bacteria, viruses, and parasites. However, γδ T cells are also involved in the development of inflammatory and autoimmune diseases. γδ T cells are functionally characterized by very rapid production of pro-inflammatory cytokines, while also impacting on (slower but long-lasting) adaptive immune responses. This makes it crucial to understand the molecular mechanisms that regulate γδ T cell effector functions. Although they share many similarities with αβ T cells, our knowledge of the molecular pathways that control effector functions in γδ T cells still lags significantly behind. In this review, we focus on the segregation of interferon-γ versus interleukin-17 production in murine thymic-derived γδ T cell subsets defined by CD27 and CCR6 expression levels. We summarize the most recent studies that disclose the specific epigenetic and transcriptional mechanisms that govern the stability or plasticity of discrete pro-inflammatory γδ T cell subsets, whose manipulation may be valuable for regulating (auto)immune responses.
Collapse
Affiliation(s)
- Karine Serre
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa , Lisbon , Portugal
| | - Bruno Silva-Santos
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa , Lisbon , Portugal
| |
Collapse
|
19
|
Glanville N, Message SD, Walton RP, Pearson RM, Parker HL, Laza-Stanca V, Mallia P, Kebadze T, Contoli M, Kon OM, Papi A, Stanciu LA, Johnston SL, Bartlett NW. γδT cells suppress inflammation and disease during rhinovirus-induced asthma exacerbations. Mucosal Immunol 2013; 6:1091-100. [PMID: 23385428 PMCID: PMC3806405 DOI: 10.1038/mi.2013.3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 01/02/2013] [Indexed: 02/04/2023]
Abstract
Most asthma exacerbations are triggered by virus infections, the majority being caused by human rhinoviruses (RV). In mouse models, γδT cells have been previously demonstrated to influence allergen-driven airways hyper-reactivity (AHR) and can have antiviral activity, implicating them as prime candidates in the pathogenesis of asthma exacerbations. To explore this, we have used human and mouse models of experimental RV-induced asthma exacerbations to examine γδT-cell responses and determine their role in the immune response and associated airways disease. In humans, airway γδT-cell numbers were increased in asthmatic vs. healthy control subjects during experimental infection. Airway and blood γδT-cell numbers were associated with increased airways obstruction and AHR. Airway γδT-cell number was also positively correlated with bronchoalveolar lavage (BAL) virus load and BAL eosinophils and lymphocytes during RV infection. Consistent with our observations of RV-induced asthma exacerbations in humans, infection of mice with allergic airways inflammation increased lung γδT-cell number and activation. Inhibiting γδT-cell responses using anti-γδTCR (anti-γδT-cell receptor) antibody treatment in the mouse asthma exacerbation model increased AHR and airway T helper type 2 cell recruitment and eosinophilia, providing evidence that γδT cells are negative regulators of airways inflammation and disease in RV-induced asthma exacerbations.
Collapse
Affiliation(s)
- N Glanville
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College London; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma; Centre for Respiratory Infections, London, UK
| | - S D Message
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College London; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma; Centre for Respiratory Infections, London, UK
| | - R P Walton
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College London; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma; Centre for Respiratory Infections, London, UK
| | - R M Pearson
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College London; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma; Centre for Respiratory Infections, London, UK
| | - H L Parker
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College London; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma; Centre for Respiratory Infections, London, UK
| | - V Laza-Stanca
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College London; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma; Centre for Respiratory Infections, London, UK
| | - P Mallia
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College London; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma; Centre for Respiratory Infections, London, UK
| | - T Kebadze
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College London; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma; Centre for Respiratory Infections, London, UK
| | - M Contoli
- Sezione di Malattie dell'Apparato Respiratorio, Centro per lo Studio delle Malattie Infiammatorie Croniche delle Vie Aeree e Patologie Fumo Correlate dell'Apparato Respiratorio (CEMICEF), University of Ferrara, Ferrara, Italy
| | - O M Kon
- Imperial College Healthcare NHS Trust, St Mary's Hospital, London, UK
| | - A Papi
- Sezione di Malattie dell'Apparato Respiratorio, Centro per lo Studio delle Malattie Infiammatorie Croniche delle Vie Aeree e Patologie Fumo Correlate dell'Apparato Respiratorio (CEMICEF), University of Ferrara, Ferrara, Italy
| | - L A Stanciu
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College London; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma; Centre for Respiratory Infections, London, UK
| | - S L Johnston
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College London; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma; Centre for Respiratory Infections, London, UK
| | - N W Bartlett
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College London; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma; Centre for Respiratory Infections, London, UK
| |
Collapse
|
20
|
Witherden DA, Havran WL. Cross-talk between intraepithelial γδ T cells and epithelial cells. J Leukoc Biol 2013; 94:69-76. [PMID: 23620015 DOI: 10.1189/jlb.0213101] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Intraepithelial γδ T cells play pivotal roles in homeostasis, tissue repair, inflammation, and protection from malignancy. In some tissues, γδ T cells are the only resident T cell population, whereas in others, they coexist with αβ T cells and other lymphocyte populations. γδ T cell function in the epithelium requires constant communication between cells in the form of cell-to-cell contacts and cell-to-matrix interactions. These interactions coordinate with the timely production of specific cytokines, chemokines, growth factors, and glycosaminoglycans, which have specialized effects on neighboring epithelial cells. Antigens that activate these T cells are not well-defined, and they do not express classic costimulatory or coreceptor molecules. As such, an understanding of the mechanisms used by epithelial γδ T cells to maintain homeostasis and facilitate wound repair has necessitated the identification of novel molecular interactions between γδ T cells and their neighboring epithelial cells.
Collapse
Affiliation(s)
- Deborah A Witherden
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|
21
|
Zhang L, Liu J, Wang E, Wang B, Zeng S, Wu J, Kimura Y, Liu B. Respiratory syncytial virus protects against the subsequent development of ovalbumin-induced allergic responses by inhibiting Th2-type γδ T cells. J Med Virol 2013; 85:149-56. [PMID: 23154879 DOI: 10.1002/jmv.23435] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Respiratory syncytial virus (RSV) infection has been hypothesized to be a risk factor for the development of allergy and asthma, but epidemiologic studies in humans still remain inconclusive. The association between RSV infection and allergic diseases may be dependent on an atopic background and previous history of RSV infection. It has been reported that RSV infection before sensitization to an allergen decreased the production of Th2-like cytokines in the lung and the levels of allergen-specific Th2-type antibodies in the serum. However, the underlying mechanisms are largely unknown. In the present study, the role of pulmonary γδ T cells in RSV-affected, allergen-induced airway inflammation was investigated. BALB/c mice were sensitized to or challenged with ovalbumin (OVA) and infected with RSV either before or after the sensitization period. It became clear that sensitization and challenge of mice with OVA induced a large influx of γδ T cells to the lungs. However, prior RSV infection inhibited the infiltration of γδ T cells as well as activated γδ T cells, characterized by expression of CD40L or CD69 molecular in the cell surface. Moreover, prior RSV infection elevated the type 1 cytokine gene expression but suppressed type 2 cytokine expression in the lung γδ T cells. Adoptive transfer of γδ T cells from OVA-sensitized and challenged mice increased airway inflammation, suggesting that γδ T cells may play a proinflammatory role in allergic responses. These results described here support the idea of an unknown γδ T cell-dependent mechanism in the regulation of RSV-affected, allergen-induced allergic airway responses.
Collapse
Affiliation(s)
- Leiying Zhang
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
γδ T cells account for approximately 5% of peripheral blood T cells but are more abundant in mucosal tissue. Based on the recognized ligands and their general lack of MHC restriction, γδ T cells are considered as unconventional T cells that link innate and adaptive immunity. γδ T cells produce a diverse range of cytokines, exert cytotoxic effector function, can act as antigen-presenting cells, and display regulatory activity. Here we review the current knowledge on the regulatory functions of murine and human γδ T cells. Some γδ T cells produce inhibitory cytokines such as transforming growth factor-β but γδ T cells can utilize additional regulatory mechanisms. By subverting regulatory T cells (Treg) through induction of Treg apoptosis or cytokine-dependent reversal of Treg activity, however, γδ T cells can also enhance effector T cell activity and thereby contribute to autoimmunity. A more precise understanding of the plasticity of regulatory γδ T cells is required to specifically identify strategies for intentional modulation of their beneficial or detrimental regulatory activity.
Collapse
|
23
|
Wilson SJ, Harmer MJ, Lee RL, Rigden HM, Doyon-Reale NM, Forman KM, Gao X, Lieh-Lai MW, Bassett DJP. Recurring BALB/c mouse lung inflammatory responses to episodic allergen exposure. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:176-191. [PMID: 23356647 PMCID: PMC3558838 DOI: 10.1080/15287394.2013.752323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This study detailed the sequence of recurring inflammatory events associated with episodic allergen exposures of mice resulting in airway hyperreactivity, sustained inflammation, goblet-cell hyperplasia, and fibrogenesis that characterize a lung with chronic asthma. Ovalbumin (OVA)-sensitized female BALB/c mice were exposed to saline-control or OVA aerosols for 1 h per day for episodes of 3 d/wk for up to 8 wk. Lung inflammation was assessed by inflammatory cell recoveries using bronchoalveolar lavages (BAL) and tissue collagenase dispersions. Cell accumulations were observed within airway submucosal and associated perivascular spaces using immunohistochemical and tinctorial staining methods. Airway responsiveness to methacholine aerosols were elevated after 2 wk and further enhanced to a sustained level after wk 4 and 8. Although by wk 8 diminished OVA-induced accumulations of eosinophils, neutrophils, and monocyte-macrophages were observed, suggesting diminished responsiveness, the BAL recovery of lymphocytes remained elevated. Airway but not perivascular lesions persisted with a proliferating cell population, epithelial goblet-cell hyperplasia, and evidence of enhanced collagen deposition. Examination of lung inflammatory cell content before the onset of the first, second, and fourth OVA exposure episodes demonstrated enhancements in residual BAL lymphocyte and BAL and tissue eosinophil recoveries with each exposure episode. Although tissue monocyte-macrophage numbers returned to baseline prior to each exposure episode, the greatest level of accumulation was observed after wk 4. These results provide the basis for establishing the inflammatory and exposure criteria by which episodic environmental exposures to allergen might result in the development of a remodeled lung in asthma.
Collapse
Affiliation(s)
- S J Wilson
- Histochemistry Research Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
de Oliveira Henriques MDGM, Penido C. γδ T Lymphocytes Coordinate Eosinophil Influx during Allergic Responses. Front Pharmacol 2012; 3:200. [PMID: 23316161 PMCID: PMC3540995 DOI: 10.3389/fphar.2012.00200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 11/14/2012] [Indexed: 11/21/2022] Open
Abstract
Tissue eosinophil infiltration, which is a hallmark of allergic and helminthic diseases, is mainly coordinated by T lymphocytes, via the production of eosinophilotactic chemokines. Among T lymphocyte subsets, lymphocytes expressing γδ T cell receptor have been determined as a key factor for eosinophil accumulation via direct and indirect mechanisms. This knowledge is strongly supported by the fact that, in different experimental models of eosinophilic airway inflammation and helminth-induced Th2 lung inflammation, an evident tissue accumulation of γδ T lymphocytes is observed. In addition, the depletion of γδ T lymphocytes is correlated with the impairment of eosinophil accumulation in inflamed tissue. γδ T lymphocytes are non-conventional T lymphocytes, which comprise a minor T lymphocyte subset, mainly distributed in the tissue, and present crucial roles in innate and acquired immune responses. γδ T lymphocytes recognize several danger- and pathogen-associated molecular pattern molecules and stress antigens in a MHC-independent fashion and can provide rapid tissue-specific responses, via the production of a wide range of chemical mediators capable to modulate other cell populations. These mediators include chemoattractant cytokines and chemokines that attract eosinophils into the tissue by either direct recognition (such as IL-5, CCL11/eotaxin), or indirect mechanisms via the modulation of αβ T lymphocytes and macrophages (through the production of interferon-γ, IL-4, and CCL2/Monocyte chemoattractant protein-1, MCP-1, for example). The present review presents an overview of how γδ T lymphocytes coordinate eosinophil accumulation in allergy, by focusing on their role in airway inflammation and by discussing the involvement of cytokines and chemokines in this phenomenon.
Collapse
|
25
|
Costa MFS, Bornstein VU, Candéa AL, Henriques-Pons A, Henriques MG, Penido C. CCL25 induces α₄β₇ integrin-dependent migration of IL-17⁺ γδ T lymphocytes during an allergic reaction. Eur J Immunol 2012; 42:1250-60. [PMID: 22539297 DOI: 10.1002/eji.201142021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein, we provide evidence that during allergic inflammation, CCL25 induces the selective migration of IL-17(+) γδ T cells mediated by α(4) β(7) integrin. Intrapleural injection of CCL25 into ovalbumin (OVA)-immunized C57BL/6 mice triggered the accumulation of γδ T lymphocytes expressing CCR9 (CCL25 receptor) and α(4) β(7) integrin in the pleura, but failed to attract αβ T lymphocytes. CCL25 attracted CCR6(+) γδ T cells producing IL-17 (but not IFN-γ or IL-4). OVA challenge triggered increased production of CCL25 followed by the accumulation of CCR9(+) , α(4) β(7) (+) , and CCR6(+) /IL-17(+) γδ T cells into the pleural cavities of OVA-immunized mice, which was inhibited by the in vivo neutralization of CCL25. The in vivo blockade of α(4) β(7) integrin also inhibited the migration of IL-17(+) γδ T lymphocytes (but not of αβ T lymphocytes) into mouse pleura after OVA challenge, suggesting that the CCL25/α(4) β(7) integrin pathway is selective for γδ T cells. In addition, α(4) β(7) integrin blockade impaired the in vitro transmigration of γδ T cells across endothelium (which expresses α(4) β(7) ligands VCAM-1 and MadCAM-1), which was induced by CCL25 and by cell-free pleural washes recovered from OVA-challenged mice. Our results reveal that during an allergic reaction, CCL25 drives IL-17(+) γδ T-cell mobilization to inflamed tissue via α(4) β(7) integrin and modulates IL-17 levels.
Collapse
Affiliation(s)
- Maria F S Costa
- Laboratório de Farmacologia Aplicada, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
26
|
Hüttemann M, Lee I, Gao X, Pecina P, Pecinova A, Liu J, Aras S, Sommer N, Sanderson TH, Tost M, Neff F, Aguilar-Pimentel JA, Becker L, Naton B, Rathkolb B, Rozman J, Favor J, Hans W, Prehn C, Puk O, Schrewe A, Sun M, Höfler H, Adamski J, Bekeredjian R, Graw J, Adler T, Busch DH, Klingenspor M, Klopstock T, Ollert M, Wolf E, Fuchs H, Gailus-Durner V, Hrabě de Angelis M, Weissmann N, Doan JW, Bassett DJP, Grossman LI. Cytochrome c oxidase subunit 4 isoform 2-knockout mice show reduced enzyme activity, airway hyporeactivity, and lung pathology. FASEB J 2012; 26:3916-30. [PMID: 22730437 DOI: 10.1096/fj.11-203273] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cytochrome c oxidase (COX) is the terminal enzyme of the mitochondrial electron transport chain. The purpose of this study was to analyze the function of lung-specific cytochrome c oxidase subunit 4 isoform 2 (COX4i2) in vitro and in COX4i2-knockout mice in vivo. COX was isolated from cow lung and liver as control and functionally analyzed. COX4i2-knockout mice were generated and the effect of the gene knockout was determined, including COX activity, tissue energy levels, noninvasive and invasive lung function, and lung pathology. These studies were complemented by a comprehensive functional screen performed at the German Mouse Clinic (Neuherberg, Germany). We show that isolated cow lung COX containing COX4i2 is about twice as active (88 and 102% increased activity in the presence of allosteric activator ADP and inhibitor ATP, respectively) as liver COX, which lacks COX4i2. In COX4i2-knockout mice, lung COX activity and cellular ATP levels were significantly reduced (-50 and -29%, respectively). Knockout mice showed decreased airway responsiveness (60% reduced P(enh) and 58% reduced airway resistance upon challenge with 25 and 100 mg methacholine, respectively), and they developed a lung pathology deteriorating with age that included the appearance of Charcot-Leyden crystals. In addition, there was an interesting sex-specific phenotype, in which the knockout females showed reduced lean mass (-12%), reduced total oxygen consumption rate (-8%), improved glucose tolerance, and reduced grip force (-14%) compared to wild-type females. Our data suggest that high activity lung COX is a central determinant of airway function and is required for maximal airway responsiveness and healthy lung function. Since airway constriction requires energy, we propose a model in which reduced tissue ATP levels explain protection from airway hyperresponsiveness, i.e., absence of COX4i2 leads to reduced lung COX activity and ATP levels, which results in impaired airway constriction and thus reduced airway responsiveness; long-term lung pathology develops in the knockout mice due to impairment of energy-costly lung maintenance processes; and therefore, we propose mitochondrial oxidative phosphorylation as a novel target for the treatment of respiratory diseases, such as asthma.
Collapse
Affiliation(s)
- Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhao N, Hao J, Ni Y, Luo W, Liang R, Cao G, Zhao Y, Wang P, Zhao L, Tian Z, Flavell R, Hong Z, Han J, Yao Z, Wu Z, Yin Z. Vγ4 γδ T cell-derived IL-17A negatively regulates NKT cell function in Con A-induced fulminant hepatitis. THE JOURNAL OF IMMUNOLOGY 2011; 187:5007-14. [PMID: 21987663 DOI: 10.4049/jimmunol.1101315] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Con A-induced fulminant hepatitis is a well-known animal model for acute liver failure. However, the role of γδ T cells in this model is undefined. In this report, using TCR δ(-/-) mice, we demonstrated a protective role of γδ T cells in Con A-induced hepatitis model. TCR δ(-/-) mice showed significantly decreased levels of IL-17A and IL-17F in the Con A-treated liver tissue, and reconstitution of TCR δ(-/-) mice with wild-type (Wt), but not IL-17A(-/-), γδ T cells significantly reduced hepatitis, strongly suggesting a critical role of IL-17A in mediating the protective effect of γδ T cells. Interestingly, only Vγ4, but not Vγ1, γδ T cells exerted such a protective effect. Furthermore, depletion of NKT cells in TCR δ(-/-) mice completely abolished hepatitis, and NKT cells from Con A-challenged liver tissues of TCR δ(-/-) mice expressed significantly higher amounts of proinflammatory cytokine IFN-γ than those from Wt mice, indicating that γδ T cells protected hepatitis through targeting NKT cells. Finally, abnormal capacity of IFN-γ production by NKT cells of TCR δ(-/-) mice could only be downregulated by transferring Wt, but not IL-17(-/-), Vγ4 γδ T cells, confirming an essential role of Vγ4-derived IL-17A in regulating the function of NKT cells. In summary, our report thus demonstrated a novel function of Vγ4 γδ T cells in mediating a protective effect against Con A-induced fulminant hepatitis through negatively regulating function of NKT cells in an IL-17A-dependent manner, and transferring Vγ4 γδ T cells may provide a novel therapeutic approach for this devastating liver disease.
Collapse
Affiliation(s)
- Na Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Jaffar Z, Ferrini ME, Shaw PK, FitzGerald GA, Roberts K. Prostaglandin I₂promotes the development of IL-17-producing γδ T cells that associate with the epithelium during allergic lung inflammation. THE JOURNAL OF IMMUNOLOGY 2011; 187:5380-91. [PMID: 21976777 DOI: 10.4049/jimmunol.1101261] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
γδ T cells rapidly produce cytokines and represent a first line of defense against microbes and other environmental insults at mucosal tissues and are thus thought to play a local immunoregulatory role. We show that allergic airway inflammation was associated with an increase in innate IL-17-producing γδ T (γδ-17) cells that expressed the αEβ7 integrin and were closely associated with the airway epithelium. Importantly, PGI(2) and its receptor IP, which downregulated airway eosinophilic inflammation, promoted the emergence of these intraepithelial γδ-17 cells into the airways by enhancing IL-6 production by lung eosinophils and dendritic cells. Accordingly, a pronounced reduction of γδ-17 cells was observed in the thymus of naive mice lacking the PGI(2) receptor IP, as well as in the lungs during allergic inflammation, implying a critical role for PGI(2) in the programming of "natural" γδ-17 cells. Conversely, iloprost, a stable analog of PGI(2), augmented IL-17 production by γδ T cells but significantly reduced airway inflammation. Together, these findings suggest that PGI(2) plays a key immunoregulatory role by promoting the development of innate intraepithelial γδ-17 cells through an IL-6-dependent mechanism. By enhancing γδ-17 cell responses, stable analogs of PGI(2) may be exploited in the development of new immunotherapeutic approaches.
Collapse
Affiliation(s)
- Zeina Jaffar
- Center for Environmental Health Sciences, Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | | | | | | | | |
Collapse
|
29
|
Taube C, Tertilt C, Gyülveszi G, Dehzad N, Kreymborg K, Schneeweiss K, Michel E, Reuter S, Renauld JC, Arnold-Schild D, Schild H, Buhl R, Becher B. IL-22 is produced by innate lymphoid cells and limits inflammation in allergic airway disease. PLoS One 2011; 6:e21799. [PMID: 21789181 PMCID: PMC3138740 DOI: 10.1371/journal.pone.0021799] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 06/07/2011] [Indexed: 01/11/2023] Open
Abstract
Interleukin (IL)-22 is an effector cytokine, which acts primarily on epithelial cells in the skin, gut, liver and lung. Both pro- and anti-inflammatory properties have been reported for IL-22 depending on the tissue and disease model. In a murine model of allergic airway inflammation, we found that IL-22 is predominantly produced by innate lymphoid cells in the inflamed lungs, rather than TH cells. To determine the impact of IL-22 on airway inflammation, we used allergen-sensitized IL-22-deficient mice and found that they suffer from significantly higher airway hyperreactivity upon airway challenge. IL-22-deficiency led to increased eosinophil infiltration lymphocyte invasion and production of CCL17 (TARC), IL-5 and IL-13 in the lung. Mice treated with IL-22 before antigen challenge displayed reduced expression of CCL17 and IL-13 and significant amelioration of airway constriction and inflammation. We conclude that innate IL-22 limits airway inflammation, tissue damage and clinical decline in allergic lung disease.
Collapse
Affiliation(s)
- Christian Taube
- III. Medical Clinic, Johannes Gutenberg-University, Mainz, Germany
| | - Christine Tertilt
- Institute of Immunology, Johannes Gutenberg-University, Mainz, Germany
- Department of Pediatrics, Johannes Gutenberg-University, Mainz, Germany
| | - Gabor Gyülveszi
- Institute of Experimental Immunology, Department of Pathology, Neuroimmunology Divison, University Hospital Zurich, Zurich, Switzerland
| | - Nina Dehzad
- III. Medical Clinic, Johannes Gutenberg-University, Mainz, Germany
| | - Katharina Kreymborg
- Institute of Experimental Immunology, Department of Pathology, Neuroimmunology Divison, University Hospital Zurich, Zurich, Switzerland
| | | | - Erich Michel
- Institute for Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Sebastian Reuter
- III. Medical Clinic, Johannes Gutenberg-University, Mainz, Germany
| | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research Ltd Experimental Medicine Unit, Universite Catholique de Louvain, Louvain, Belgium
| | | | - Hansjörg Schild
- Institute of Immunology, Johannes Gutenberg-University, Mainz, Germany
| | - Roland Buhl
- III. Medical Clinic, Johannes Gutenberg-University, Mainz, Germany
| | - Burkhard Becher
- Institute of Experimental Immunology, Department of Pathology, Neuroimmunology Divison, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Segawa S, Goto D, Yoshiga Y, Horikoshi M, Sugihara M, Hayashi T, Chino Y, Matsumoto I, Ito S, Sumida T. Involvement of NK 1.1-positive γδT cells in interleukin-18 plus interleukin-2-induced interstitial lung disease. Am J Respir Cell Mol Biol 2011; 45:659-66. [PMID: 21257923 DOI: 10.1165/rcmb.2010-0298oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Interstitial lung disease (ILD) is induced by various factors in humans. However, the exact mechanism of ILD remains elusive. This study sought to determine the role of natural killer (NK) 1.1(+) γδT cells in ILD. The injection of IL-18 plus IL-2 (IL-18/IL-2) into C57BL6 (B6) mice induced acute ILD that resembled early-stage human ILD. An accumulation of NK1.1(+) γδT cells similar to NK cells was evident in the lungs. The T Cell Receptor (TCR) Vγ and Vδ repertoires of NK1.1(+) γδT cells indicated polyclonal expansion. The expression of IL-2 receptor β (Rβ) and IL-18Rβ in NK1.1(+) γδT cells was higher than in NK1.1(-) γδT cells. IL-18/IL-2 stimulated the proliferation of NK1.1(+) γδT cells, but not NK1.1(-) γδT cells. The IL-18/IL-2-stimulated NK1.1(+) γδT cells produced higher concentrations of IFN-γ than did NK1.1(-) γδT cells. Moreover, NK1.1(+) γδT and NK1.1(-) γδT cells constituted completely different cell populations. The IL-18/IL-2-induced ILD was milder in TCRδ(-/-) and IFN-γ(-/-) mice, compared with B6 mice. Furthermore, cell-transfer experiments demonstrated that NK1.1(+) γδT cells could induce the expansion of NK cells and IFN-γ mRNA in the lung by IL-18/IL-2. Our results suggest that NK1.1(+) γδT cells function as inflammatory mediators in the early phase of IL-18/IL-2-induced ILD.
Collapse
Affiliation(s)
- Seiji Segawa
- Division of Clinical Immunology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Asthma has been considered a T helper 2 (T(H)2) cell-associated inflammatory disease, and T(H)2-type cytokines, such as interleukin-4 (IL-4), IL-5 and IL-13, are thought to drive the disease pathology in patients. Although atopic asthma has a substantial T(H)2 cell component, the disease is notoriously heterogeneous, and recent evidence has suggested that other T cells also contribute to the development of asthma. Here, we discuss the roles of different T cell subsets in the allergic lung, consider how each subset can contribute to the development of allergic pathology and evaluate how we might manipulate these cells for new asthma therapies.
Collapse
Affiliation(s)
- Clare M Lloyd
- Leukocyte Biology Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London SW7 2AZ, UK.
| | | |
Collapse
|
32
|
Inapagolla R, Guru BR, Kurtoglu YE, Gao X, Lieh-Lai M, Bassett DJP, Kannan RM. In vivo efficacy of dendrimer-methylprednisolone conjugate formulation for the treatment of lung inflammation. Int J Pharm 2010; 399:140-7. [PMID: 20667503 DOI: 10.1016/j.ijpharm.2010.07.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 06/01/2010] [Accepted: 07/20/2010] [Indexed: 11/27/2022]
Abstract
Dendrimers are an emerging class of nanoscale intracellular drug delivery vehicles. Methylprednisolone (MP) is an important corticosteroid used in the treatment (through inhalation) of lung inflammation associated with asthma. The ability of MP-polyamidoamine (PAMAM) dendrimer conjugate to improve the airway delivery was evaluated in a pulmonary inflammatory murine model that was based on an 11-fold enhancement of eosinophil lung accumulation following five daily inhalation exposures of sensitized mice to the experimental allergen, ovalbumin. MP was successfully conjugated to PAMAM-G4-OH dendrimer yielding 12 MP molecules per dendrimer, and further solubilized in lysine carrier. Five daily trans-nasal treatments with the carrier alone, free MP, and MP-dendrimer at 5 mg kg(-1) (on a drug basis) did not induce additional lung inflammation, although free MP decreased baseline phagocytic cell recoveries by airway lavage and tissue collagenase dispersion. MP treatments alone decreased ovalbumin-associated airway and tissue eosinophil recoveries by 71 and 47%, respectively. Equivalent daily MP dosing with MP-dendrimer conjugate further diminished these values, with decreases of 87% and 67%, respectively. These findings demonstrate that conjugation of MP with a dendrimer enhances the ability of MP to decrease allergen-induced inflammation, perhaps by improving drug residence time in the lung. This is supported by the fact that only 24% of a single dose of dendrimer delivered to the peripheral lung is lost over a 3-day period. Therefore, conjugation of drugs to a dendrimer may provide an improved method for retaining drugs within the lung when treating such inflammatory disorders as asthma.
Collapse
Affiliation(s)
- R Inapagolla
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
O'Brien RL, Born WK. gammadelta T cell subsets: a link between TCR and function? Semin Immunol 2010; 22:193-8. [PMID: 20451408 PMCID: PMC2906689 DOI: 10.1016/j.smim.2010.03.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 03/03/2010] [Accepted: 03/30/2010] [Indexed: 11/17/2022]
Abstract
The gammadelta T lmphocytes are often divided into subsets based upon expression of certain TCR components. This division was initially made because gammadelta T cells residing in particular epithelia were found to show tissue specific differences in their TCRs. Many examples now show that gammadelta T cell subsets also appear to be biased to carry out particular functions. This suggests that particular gammadelta TCR types direct the cells to acquire a certain type of functional programming during thymic development. Here, we describe functionally distinct, TCR-defined gammadelta T cell subsets, and evidence that their functions are predetermined in the thymus.
Collapse
Affiliation(s)
- Rebecca L O'Brien
- Integrated Dept. of Immunology, National Jewish Health, 1400 Jackson St., Denver, CO 80206, United States; Univ. of Colorado Denver, Aurora, CO 80045, USA.
| | | |
Collapse
|
34
|
He W, Hao J, Dong S, Gao Y, Tao J, Chi H, Flavell R, O'Brien RL, Born WK, Craft J, Han J, Wang P, Zhao L, Wu J, Yin Z. Naturally activated V gamma 4 gamma delta T cells play a protective role in tumor immunity through expression of eomesodermin. THE JOURNAL OF IMMUNOLOGY 2010; 185:126-33. [PMID: 20525896 DOI: 10.4049/jimmunol.0903767] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We previously demonstrated that gammadelta T cells played an important role in tumor immune surveillance by providing an early source of IFN-gamma. The precise role of different subsets of gammadelta T cells in the antitumor immune response, however, is unknown. Vgamma1 and Vgamma4 gammadelta T cells are the principal subsets of peripheral lymphoid gammadelta T cells and they might play distinct roles in tumor immunity. In support of this, we observed that reconstitution of TCRdelta(-/-) mice with Vgamma4, but not Vgamma1, gammadelta T cells restored the antitumor response. We also found that these effects were exerted by the activated (CD44(high)) portion of Vgamma4 gammadelta T cells. We further determined that IFN-gamma and perforin are critical elements in the Vgamma4-mediated antitumor immune response. Indeed, CD44(high) Vgamma4 gammadelta T cells produced significantly more IFN-gamma and perforin on activation, and showed greater cytolytic activity than did CD44(high) Vgamma1 gammadelta T cells, apparently due to the high level of eomesodermin (Eomes) in these activated Vgamma4 gammadelta T cells. Consistently, transfection of dominant-negative Eomes in Vgamma4 gammadelta T cells diminished the level of IFN-gamma secretion, indicating a critical role of Eomes in the effector function of these gammadelta T cells. Our results thus reveal distinct functions of Vgamma4 and Vgamma1 gammadelta T cells in antitumor immune response, and identify a protective role of activated Vgamma4 gammadelta T cells, with possible implications for tumor immune therapy.
Collapse
Affiliation(s)
- Weifeng He
- Chongqing Key Laboratory for Diseases Proteomics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The murine epidermis contains resident T cells that express a canonical gammadelta TCR. These cells arise from fetal thymic precursors and use a TCR that is restricted to the skin in adult animals. These cells assume a dendritic morphology in normal skin and constitutively produce low levels of cytokines that contribute to epidermal homeostasis. When skin is wounded, an unknown Ag is expressed on damaged keratinocytes. Neighboring gammadelta T cells then round up and contribute to wound healing by local production of epithelial growth factors and inflammatory cytokines. In the absence of skin gammadelta T cells, wound healing is impaired. Similarly, epidermal T cells from patients with healing wounds are activated and secreting growth factors. Patients with nonhealing wounds have a defective epidermal T cell response. Information gained on the role of epidermal-resident T cells in the mouse may provide information for development of new therapeutic approaches to wound healing.
Collapse
Affiliation(s)
- Wendy L Havran
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
36
|
Murdoch JR, Lloyd CM. Resolution of allergic airway inflammation and airway hyperreactivity is mediated by IL-17-producing {gamma}{delta}T cells. Am J Respir Crit Care Med 2010; 182:464-76. [PMID: 20413629 DOI: 10.1164/rccm.200911-1775oc] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
RATIONALE gammadeltaT lymphocytes are enriched within the epithelial microenvironment, where they are thought to maintain homeostasis and limit immunopathology. gammadeltaT cells are postulated to exert a regulatory influence during acute allergic airway disease, but the mechanism is unknown. Although regulation of allergic airway disease has been attributed to IL-17-producing T helper (Th) 17 cells, we have found that gammadeltaT cells represent the major source of IL-17 in the allergic lung. OBJECTIVES The aim of this study was to determine the contribution of these IL-17-producing gammadeltaT cells to regulation of allergic airway inflammation. METHODS Flow cytometry revealed that IL-17-producing gammadeltaT cells are more prevalent than IL-17(+)alphabetaT cells (Th17) in a murine model of ovalbumin-induced allergic inflammation. MEASUREMENTS AND MAIN RESULTS Transfer of gammadeltaT cells at the peak of acute allergic responses ameliorated airway hyperresponsiveness with a corresponding acceleration in the resolution of eosinophilic and Th2-driven inflammation. Conversely, functional blockade of gammadeltaT cells led to exacerbation of injury. Neither treatment changed pulmonary Th17 cell numbers. Moreover, transfer of Th17 cells had no effect on disease outcome. Importantly, IL-17-deficient gammadeltaT cells were unable to promote resolution of injury. These data identify IL-17-producing gammadeltaT cells as key regulators of the allergic response in vivo. CONCLUSIONS This unfolds a new perspective for the understanding of gammadeltaT cell function with regard to innate regulation of the adaptive immune responses, emphasizing that resolution of responses are important in determining the outcome of acute inflammatory episodes as well as for maintenance of tissue integrity and homeostasis.
Collapse
Affiliation(s)
- Jenna R Murdoch
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | | |
Collapse
|
37
|
Born WK, Yin Z, Hahn YS, Sun D, O'Brien RL. Analysis of gamma delta T cell functions in the mouse. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:4055-61. [PMID: 20368285 PMCID: PMC4476288 DOI: 10.4049/jimmunol.0903679] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mouse models of disease and injury have been invaluable in investigations of the functional role of gammadelta T cells. They show that gammadelta T cells engage in immune responses both early and late, that they can function both polyclonally and as peripherally selected clones, and that they can be effector cells and immune regulators. They also suggest that functional development of gammadelta T cells occurs stepwise in thymus and periphery, and that it is governed by gammadelta TCR-signaling and other signals. Finally, they indicate that gammadelta T cell functions often segregate with TCR-defined subsets, in contrast to conventional T cells. From the functional studies in mice and other animal models, gammadelta T cells emerge as a distinct lymphocyte population with a unique and broad functional repertoire, and with important roles in Ab responses, inflammation and tissue repair. They also are revealed as a potentially useful target for immune intervention.
Collapse
MESH Headings
- Animals
- Cell Differentiation/immunology
- Disease Models, Animal
- Humans
- Inflammation Mediators/physiology
- Mice
- Models, Animal
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/classification
- Receptors, Antigen, T-Cell, gamma-delta/physiology
- Signal Transduction/immunology
- T-Lymphocyte Subsets/classification
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
- Thymus Gland/embryology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Thymus Gland/pathology
Collapse
Affiliation(s)
- Willi K Born
- Integrated Department of Immunology, National Jewish Health, Denver, CO 80206, USA.
| | | | | | | | | |
Collapse
|
38
|
|
39
|
Bassett D, Hirata F, Gao X, Kannan R, Kerr J, Doyon-Reale N, Wilson S, Lieh-Lai M. Reversal of methylprednisolone effects in allergen-exposed female BALB/c mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2010; 73:711-724. [PMID: 20391114 DOI: 10.1080/15287391003614018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A high percentage of asthma is associated with aeroallergen exposures. Glucocorticoids such as methylprednisolone represent a major method for managing chronic asthma. However, studies suggested that corticosteroid therapy might have the potential to stimulate rather than inhibit adaptive immune inflammatory reactions, raising concerns about possible adverse reactions due to excessive repeated methylprednisolone treatment. Therefore, a murine model of allergen-induced inflammation was characterized and used to investigate the effects of repeated intraperitoneal (ip) and transnasal treatments with methylprednisolone (0-20 mg/kg body weight) and cyclosporin A (20 mg/kg body weight). Sensitized BALB/c female mice were exposed daily to ovalbumin (OVA) aerosols for up to 5 d with 24-h postexposure analyses for airway responses to methacholine aerosols and inflammatory cell recoveries by bronchoalveolar lavage (BAL) and tissue collagenase dispersion. Although increased tissue neutrophils, lymphocytes, monocytes, and macrophages reached maximal levels after 2 daily OVA exposures, recoverable eosinophil numbers continued to rise over the 5-d period. Daily ip treatments with a 5-mg/kg body weight dose of methylprednisolone diminished both OVA-induced airway responses to methacholine and inflammatory-cell accumulations to levels comparable to those observed with cyclosporin A. However, treatments with higher doses of methylprednisolone reversed this anti-inflammatory effect, indicated by a return to untreated levels of OVA-induced eosinophil recovery. A similar biphasic response in eosinophil recoveries was observed using daily transnasal methylprednisolone treatments that correlated with a concomitant fall and rise in BAL interleukin-13. These results supported the hypothesis that repeated high-steroid treatments might activate rather than suppress allergen-induced immune responses.
Collapse
Affiliation(s)
- David Bassett
- Department of Family Medicine & Public Health Sciences, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Murdoch JR, Lloyd CM. Chronic inflammation and asthma. Mutat Res 2009; 690:24-39. [PMID: 19769993 PMCID: PMC2923754 DOI: 10.1016/j.mrfmmm.2009.09.005] [Citation(s) in RCA: 307] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 09/11/2009] [Accepted: 09/14/2009] [Indexed: 12/12/2022]
Abstract
Allergic asthma is a complex and chronic inflammatory disorder which is associated with airway hyper-responsiveness and tissue remodelling of the airway structure. Although originally thought to be a Th2-driven inflammatory response to inhaled innocuous allergen, the immune response in asthma is now considered highly heterogeneous. There are now various in vivo systems which have been designed to examine the pathways leading to the development of this chronic immune response and reflect, in part this heterogeneity. Furthermore, the emergence of endogenous immunoregulatory pathways and active pro-resolving mediators hold great potential for future therapeutic intervention. In this review, the key cellular and molecular mediators relating to chronic allergic airway disease are discussed, as well as emerging players in the regulation of chronic allergic inflammation.
Collapse
Affiliation(s)
- Jenna R Murdoch
- Leukocyte Biology Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.
| | | |
Collapse
|
41
|
Huang Y, Jin N, Roark CL, Aydintug MK, Wands JM, Huang H, O'Brien RL, Born WK. The influence of IgE-enhancing and IgE-suppressive gammadelta T cells changes with exposure to inhaled ovalbumin. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:849-55. [PMID: 19542369 PMCID: PMC2712735 DOI: 10.4049/jimmunol.0804104] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It has been reported that the IgE response to allergens is influenced by gammadelta T cells. Intrigued by a study showing that airway challenge of mice with OVA induces in the spleen the development of gammadelta T cells that suppress the primary IgE response to i.p.-injected OVA-alum, we investigated the gammadelta T cells involved. We found that the induced IgE suppressors are contained within the Vgamma4(+) subset of gammadelta T cells of the spleen, that they express Vdelta5 and CD8, and that they depend on IFN-gamma for their function. However, we also found that normal nonchallenged mice harbor IgE-enhancing gammadelta T cells, which are contained within the larger Vgamma1(+) subset of the spleen. In cell transfer experiments, airway challenge of the donors was required to induce the IgE suppressors among the Vgamma4(+) cells. Moreover, this challenge simultaneously turned off the IgE enhancers among the Vgamma1(+) cells. Thus, airway allergen challenge differentially affects two distinct subsets of gammadelta T cells with nonoverlapping functional potentials, and the outcome is IgE suppression.
Collapse
Affiliation(s)
- Yafei Huang
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206
- University of Colorado at Denver, 4200 E. Ninth Ave., Denver, CO 80206
| | - Niyun Jin
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206
- University of Colorado at Denver, 4200 E. Ninth Ave., Denver, CO 80206
| | - Christina L. Roark
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206
- University of Colorado at Denver, 4200 E. Ninth Ave., Denver, CO 80206
| | - M. Kemal Aydintug
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206
- University of Colorado at Denver, 4200 E. Ninth Ave., Denver, CO 80206
| | - JM Wands
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206
- University of Colorado at Denver, 4200 E. Ninth Ave., Denver, CO 80206
| | - Hua Huang
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206
| | - Rebecca L. O'Brien
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206
- University of Colorado at Denver, 4200 E. Ninth Ave., Denver, CO 80206
| | - Willi K. Born
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206
- University of Colorado at Denver, 4200 E. Ninth Ave., Denver, CO 80206
| |
Collapse
|
42
|
O'Brien RL, Taylor MA, Hartley J, Nuhsbaum T, Dugan S, Lahmers K, Aydintug MK, Wands JM, Roark CL, Born WK. Protective role of gammadelta T cells in spontaneous ocular inflammation. Invest Ophthalmol Vis Sci 2009; 50:3266-74. [PMID: 19151391 PMCID: PMC2701479 DOI: 10.1167/iovs.08-2982] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE A role for gammadelta T cells in immunoregulation has been shown in a number of studies, but in the absence of infection or induced disease, mice lacking gammadelta T cells generally appear to be healthy. That certain mice lacking gammadelta T cells often spontaneously develop keratitis, characterized by a progressive and destructive inflammation of the cornea is reported here. METHODS The keratitis developing in these mice was characterized in terms of prevalence in males versus females, age of onset, and histologic features. Attempts were made to understand the underlying causes of the disease by removing alphabeta T cells, altering sex hormones, and reconstituting gammadelta T cells. RESULTS The development of keratitis in these mice depended on the C57BL/10 genetic background, and was much more common among females than males. The incidence of the disease increased with age, exceeding 80% in females greater than 18 weeks old. Evidence that the keratitis in these mice is at least partly autoimmune in nature, and that despite its prevalence in females, male hormones do not protect against the disease is presented. CONCLUSIONS These findings indicate an important role for gammadelta T cells in maintaining immune balance in the eye. The mice described in this study represent a potential new small animal model of keratitis.
Collapse
Affiliation(s)
- Rebecca L O'Brien
- Integrated Department of Immunology, National Jewish Health, Denver, Colorado 80206, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Jin N, Roark CL, Miyahara N, Taube C, Aydintug MK, Wands JM, Huang Y, Hahn YS, Gelfand EW, O’Brien RL, Born WK. Allergic airway hyperresponsiveness-enhancing gammadelta T cells develop in normal untreated mice and fail to produce IL-4/13, unlike Th2 and NKT cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:2002-10. [PMID: 19201853 PMCID: PMC2688721 DOI: 10.4049/jimmunol.0803280] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Allergic airway hyperresponsiveness (AHR) in OVA-sensitized and challenged mice, mediated by allergen-specific Th2 cells and Th2-like invariant NKT (iNKT) cells, develops under the influence of enhancing and inhibitory gammadelta T cells. The AHR-enhancing cells belong to the Vgamma1(+) gammadelta T cell subset, cells that are capable of increasing IL-5 and IL-13 levels in the airways in a manner like Th2 cells. They also synergize with iNKT cells in mediating AHR. However, unlike Th2 cells, the AHR enhancers arise in untreated mice, and we show here that they exhibit their functional bias already as thymocytes, at an HSA(high) maturational stage. In further contrast to Th2 cells and also unlike iNKT cells, they could not be stimulated to produce IL-4 and IL-13, consistent with their synergistic dependence on iNKT cells in mediating AHR. Mice deficient in IFN-gamma, TNFRp75, or IL-4 did not produce these AHR-enhancing gammadelta T cells, but in the absence of IFN-gamma, spontaneous development of these cells was restored by adoptive transfer of IFN-gamma-competent dendritic cells from untreated donors. The i.p. injection of OVA/aluminum hydroxide restored development of the AHR enhancers in all of the mutant strains, indicating that the enhancers still can be induced when they fail to develop spontaneously, and that they themselves need not express TNFRp75, IFN-gamma, or IL-4 to exert their function. We conclude that both the development and the cytokine potential of the AHR-enhancing gammadelta T cells differs critically from that of Th2 cells and NKT cells, despite similar influences of these cell populations on AHR.
Collapse
Affiliation(s)
- Niyun Jin
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206
- University of Colorado at Denver Health Sciences Center, 4200 E. Ninth Ave., Denver, CO 80206
| | - Christina L. Roark
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206
- University of Colorado at Denver Health Sciences Center, 4200 E. Ninth Ave., Denver, CO 80206
| | - Nobuaki Miyahara
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206
| | - Christian Taube
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206
| | - M. Kemal Aydintug
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206
- University of Colorado at Denver Health Sciences Center, 4200 E. Ninth Ave., Denver, CO 80206
| | - JM Wands
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206
- University of Colorado at Denver Health Sciences Center, 4200 E. Ninth Ave., Denver, CO 80206
| | - Yafei Huang
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206
- University of Colorado at Denver Health Sciences Center, 4200 E. Ninth Ave., Denver, CO 80206
| | - Youn-Soo Hahn
- Department of Pediatrics, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 361-711 and 240, Kore
| | - Erwin W. Gelfand
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206
| | - Rebecca L. O’Brien
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206
- University of Colorado at Denver Health Sciences Center, 4200 E. Ninth Ave., Denver, CO 80206
| | - Willi K. Born
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206
- University of Colorado at Denver Health Sciences Center, 4200 E. Ninth Ave., Denver, CO 80206
| |
Collapse
|
44
|
Requirement of L-selectin for gammadelta T lymphocyte activation and migration during allergic pleurisy: co-relation with eosinophil accumulation. Int Immunopharmacol 2009; 9:303-12. [PMID: 19135179 DOI: 10.1016/j.intimp.2008.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 12/01/2008] [Accepted: 12/02/2008] [Indexed: 11/20/2022]
Abstract
Intra-thoracic antigenic challenge (ovalbumin, 12.5 microg/cavity) led to increased numbers of gammadelta T lymphocytes in pleural cavities, blood and thoracic lymph nodes in sensitized mice within 48 h. Part of these cells expressed CD62L, which increased on gammadelta T cell surfaces obtained from lymph nodes after ovalbumin (OVA) challenge. Selectin blockade by fucoidan pre-treatment (10 mg/kg, i.v.) impaired in vivo increase in CD25(+) and c-fos(+) gammadelta T cell numbers in lymph nodes, indicating a role for selectins on gammadelta T lymphocyte activation and proliferation. In vivo selectin blockade by fucoidan or alpha-CD62L mAb (200 microg/mice, i.p.) also inhibited OVA-induced gammadelta T cell accumulation in pleural cavities. Confirming the direct effect of CD62L on gammadelta T cell transmigration, the migration of i.v. adoptively-transferred CFSE-labeled gammadelta T lymphocytes into pleural cavities of challenged recipient mice was impaired by fucoidan ex vivo treatment. It is noteworthy that eosinophil influx was also impaired in those mice, indicating that reduced eosinophil migration by CD62L in vivo blockade depended on gammadelta T cell migration via CD62L molecules. Accordingly, pleural gammadelta T lymphocytes from fucoidan-treated mice presented reduced OVA-induced IL-5 and CCL11 production. Supporting these data, the depletion of Vgamma4 T lymphocytes, which are pulmonary gammadelta T cells, decreased OVA-induced eosinophil influx into allergic site. Such results demonstrate that CD62L is crucial for the activation of gammadelta T cells in lymph nodes, for their migration into inflamed tissue and for the modulation of eosinophil influx during allergic response.
Collapse
|
45
|
Born WK, Roark CL, Jin N, Wands JM, Kemal Aydintug M, Huang Y, Chain JL, Hahn YS, Simonian PL, Fontenot AP, O'Brien RL. Role of γδ T Cells in Lung Inflammation. ACTA ACUST UNITED AC 2009; 2:143-150. [PMID: 26550059 PMCID: PMC4634705 DOI: 10.2174/1874226200902010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The resident population of γδ T cells in the normal lung is small but during lung inflammation, γδ T cells can increase dramatically. Histological analysis reveals diverse interactions between γδ T cells and other pulmonary leukocytes. Studies in animal models show that γδ T cells play a role in allergic lung inflammation where they can protect normal lung function, that they also are capable of resolving infection-induced pulmonary inflammation, and that they can help preventing pulmonary fibrosis. Lung inflammation threatens vital lung functions. Protection of the lung tissues and their functions during inflammation is the net-effect of opposing influences of specialized subsets of γδ T cells as well as interactions of these cells with other pulmonary leukocytes.
Collapse
Affiliation(s)
- Willi K Born
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 and University of Colorado Denver, Aurora, CO 80045, USA
| | - Christina L Roark
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 and University of Colorado Denver, Aurora, CO 80045, USA
| | - Niyun Jin
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 and University of Colorado Denver, Aurora, CO 80045, USA
| | - J M Wands
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 and University of Colorado Denver, Aurora, CO 80045, USA
| | - M Kemal Aydintug
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 and University of Colorado Denver, Aurora, CO 80045, USA
| | - Yafei Huang
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 and University of Colorado Denver, Aurora, CO 80045, USA
| | - Jennifer L Chain
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 and University of Colorado Denver, Aurora, CO 80045, USA
| | - Youn-Soo Hahn
- Department of Pediatrics, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 361-711 and 240, Korea
| | - Philip L Simonian
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Andrew P Fontenot
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Rebecca L O'Brien
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 and University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
46
|
Matsubara S, Takeda K, Jin N, Okamoto M, Matsuda H, Shiraishi Y, Park JW, McConville G, Joetham A, O'Brien RL, Dakhama A, Born WK, Gelfand EW. Vgamma1+ T cells and tumor necrosis factor-alpha in ozone-induced airway hyperresponsiveness. Am J Respir Cell Mol Biol 2008; 40:454-63. [PMID: 18927346 DOI: 10.1165/rcmb.2008-0346oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
gammadelta T cells regulate airway reactivity, but their role in ozone (O3)-induced airway hyperresponsiveness (AHR) is not known. Our objective was to determine the role of gammadelta T cells in O3-induced AHR. Different strains of mice, including those that were genetically manipulated or antibody-depleted to render them deficient in total gammadelta T cells or specific subsets of gammadelta T cells, were exposed to 2.0 ppm of O3 for 3 hours. Airway reactivity to inhaled methacholine, airway inflammation, and epithelial cell damage were monitored. Exposure of C57BL/6 mice to O3 resulted in a transient increase in airway reactivity, neutrophilia, and increased numbers of epithelial cells in the lavage fluid. TCR-delta(-/-) mice did not develop AHR, although they exhibited an increase in neutrophils and epithelial cells in the lavage fluid. Similarly, depletion of gammadelta T cells in wild-type mice suppressed O3-induced AHR without influencing airway inflammation or epithelial damage. Depletion of Vgamma1+, but not of Vgamma4+ T cells, reduced O3-induced AHR, and transfer of total gammadelta T cells or Vgamma1+ T cells to TCR-delta(-/-) mice restored AHR. After transfer of Vgamma1+ cells to TCR-delta(-/-) mice, restoration of AHR after O3 exposure was blocked by anti-TNF-alpha. However, AHR could be restored in TCR-delta(-/-)mice by transfer of gammadelta T cells from TNF-alpha-deficient mice, indicating that another cell type was the source of TNF-alpha. These results demonstrate that TNF-alpha and activation of Vgamma1+ gammadelta T cells are required for the development of AHR after O3 exposure.
Collapse
Affiliation(s)
- Shigeki Matsubara
- Division of Cell Biology, Department of Pediatrics, National Jewish Health and the University of Colorado Health Sciences Center, Denver, Colorado, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hahn YS, Ji XY, Woo SI, Choi YK, Song MS, Shin KS, Jin N, O'Brien RL, Born WK. Vγ1+ γδ T cells reduce IL-10-producing CD4+CD25+ T cells in the lung of ovalbumin-sensitized and challenged mice. Immunol Lett 2008; 121:87-92. [PMID: 18840468 DOI: 10.1016/j.imlet.2008.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Revised: 08/16/2008] [Accepted: 09/05/2008] [Indexed: 10/21/2022]
Abstract
In OVA-sensitized and challenged mice, gammadelta T cells expressing Vgamma1 enhance airway hyperresponsiveness (AHR) but the underlying mechanism is unclear. These cells also reduce IL-10 levels in the airways, suggesting that they might function by inhibiting CD4(+)CD25(+) regulatory T cells (T(reg)) or other CD4(+) T cells capable of producing IL-10 and suppressing AHR. Indeed, sensitization and challenge with OVA combined with inactivation of Vgamma1(+) cells increased CD4(+)CD25(+) cells in the lung, and markedly those capable of producing IL-10. The cellular change was associated with increased IL-10 and TGF-beta levels in the airways, and a decrease of IL-13. T(reg) include naturally occurring Foxp3(+) T(reg), inducible Foxp3(-) T(reg), and antigen-specific T(reg) many of which express folate receptor 4 (FR4). Although Foxp3 gene expression in the lung was also increased pulmonary CD4(+) T cells, expressing Foxp3-protein or FR4 remained stable. Therefore, the inhibition by Vgamma1(+) gammadelta T cells might not be targeting Foxp3(+) T(reg) but rather CD4(+) T cells destined to produce IL-10.
Collapse
Affiliation(s)
- Youn-Soo Hahn
- Department of Pediatrics, College of Medicine and Medical Research Institute, Chungbuk National University, 62 Kaeshin-dong, Hungduk-gu, Cheongju 361-711, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kim CH, Witherden DA, Havran WL. Characterization and TCR variable region gene use of mouse resident nasal gammadelta T lymphocytes. J Leukoc Biol 2008; 84:1259-63. [PMID: 18667688 DOI: 10.1189/jlb.0108050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Tissue-resident gammadelta T lymphocytes, such as dendritic epidermal T cells, intestinal intraepithelial lymphocytes (IEL), and resident pulmonary lymphocytes, are known to support local tissue homeostasis and host defense. Inhaled antigens, toxins, and microorganisms first interact with the immune system through contact with the nasal mucosa. Herein, we characterized two populations of resident nasal lymphocytes (RNL) that are present in the nasal mucosa: nasal IEL (nIEL) and nasal lamina propria lymphocytes (nLPL). gammadelta TCR+ and alphabeta TCR+ nIEL and nLPL were detected by immunofluorescent staining. Mononuclear cells (5-15%) were CD3+ RNL by FACS analysis. Among the CD3+ RNL, 20-30% were GL3+ gammadelta T cells, which were double-negative for CD4 and CD8 and predominantly expressed a Vgamma4/Vdelta1 TCR. These results demonstrate that RNL might be crucial for the host defense and tissue homeostasis in the nasal mucosa.
Collapse
Affiliation(s)
- Chang-Hoon Kim
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
49
|
Cook L, Miyahara N, Jin N, Wands JM, Taube C, Roark CL, Potter TA, Gelfand EW, O'Brien RL, Born WK. Evidence that CD8+ dendritic cells enable the development of gammadelta T cells that modulate airway hyperresponsiveness. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:309-19. [PMID: 18566396 PMCID: PMC2493442 DOI: 10.4049/jimmunol.181.1.309] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Airway hyperresponsiveness (AHR), a hallmark of asthma and several other diseases, can be modulated by gammadelta T cells. In mice sensitized and challenged with OVA, AHR depends on allergen-specific alphabeta T cells; but Vgamma1+ gammadelta T cells spontaneously enhance AHR, whereas Vgamma4+ gammadelta T cells, after being induced by airway challenge, suppress AHR. The activity of these gammadelta T cell modulators is allergen nonspecific, and how they develop is unclear. We now show that CD8 is essential for the development of both the AHR suppressor and enhancer gammadelta T cells, although neither type needs to express CD8 itself. Both cell types encounter CD8-expressing non-T cells in the spleen, and their functional development in an otherwise CD8-negative environment can be restored with transferred spleen cell preparations containing CD8+ dendritic cells (DCs), but not CD8+ T cells or CD8- DCs. Our findings suggest that CD8+ DCs in the lymphoid tissues enable an early step in the development of gammadelta T cells through direct cell contact. DC-expressed CD8 might take part in this interaction.
Collapse
MESH Headings
- Animals
- Bronchial Hyperreactivity/genetics
- Bronchial Hyperreactivity/immunology
- Bronchial Hyperreactivity/metabolism
- CD8 Antigens/immunology
- Cell Differentiation/immunology
- Dendritic Cells/immunology
- Mice
- Mice, Knockout
- Receptors, Antigen, T-Cell, gamma-delta/deficiency
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Spleen/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Laura Cook
- Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Penido C, Costa MFS, Souza MC, Costa KA, Candéa ALP, Benjamim CF, Henriques MDGMO. Involvement of CC chemokines in gammadelta T lymphocyte trafficking during allergic inflammation: the role of CCL2/CCR2 pathway. Int Immunol 2007; 20:129-39. [PMID: 18056919 DOI: 10.1093/intimm/dxm128] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In the present study, we show that the intra-thoracic injection of ovalbumin (OVA, 12.5 microg per cavity) into C57BL/10 mice induced a significant increase in gammadelta T lymphocyte numbers in the pleural cavity, blood and thoracic lymph node of challenged mice. Such increase was significant within 12 h, peaked within 48 h and returned to basal counts within 120 h. Levels of CC chemokine ligand (CCL)-2/monocyte chemotactic protein-1, CCL5/regulated upon activation, normal T cell expressed and secreted, CCL3/macrophage inflammatory protein-1 alpha and CCL25/thymus-expressed chemokine were above control values in pleural washes recovered 24 h after OVA challenge (OPW) and were likely produced by pleural macrophages and mesothelial cells. Antigenic challenge also induced an up-regulation in CC chemokine receptor (CCR)-2, CCR5 and CCR9 on gammadelta T cells from pleural cavities, blood and lymph nodes, suggesting that cells found in mice pleural cavity migrate from secondary lymphoid organs into the inflammatory site via blood stream. The in vitro neutralization of CCL2 (but not of CCL3, CCL5 or CCL25) abrogated OPW-induced gammadelta T lymphocyte transmigration. Confirming such results, the in vivo administration of alpha-CCL2 mAb inhibited gammadelta T lymphocyte accumulation in the pleural cavity of challenged mice, whereas the blockade of CCL3, CCL5 or CCL25 showed no effect on gammadelta T cell mobilization. In addition, OVA challenge failed to induce gammadelta T lymphocyte accumulation in the pleural cavity of C57BL/6 CCR2 knockout mice, which also showed decreased numbers of these cells in blood and lymph nodes when compared with wild-type mice. Overall, such results demonstrate that CCR2/CCL2 pathway is crucial for gammadelta T lymphocyte mobilization during the allergic response.
Collapse
Affiliation(s)
- Carmen Penido
- Laboratório de Farmacologia Aplicada, Departamento de Farmacologia Aplicada, Farmanguinhos, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro, RJ, CEP 21041-250, Brazil.
| | | | | | | | | | | | | |
Collapse
|