1
|
Loughland JR, Woodberry T, Field M, Andrew DW, SheelaNair A, Dooley NL, Piera KA, Amante FH, Kenangalem E, Price RN, Engwerda CR, Anstey NM, McCarthy JS, Boyle MJ, Minigo G. Transcriptional profiling and immunophenotyping show sustained activation of blood monocytes in subpatent Plasmodium falciparum infection. Clin Transl Immunology 2020; 9:e1144. [PMID: 32566226 PMCID: PMC7302943 DOI: 10.1002/cti2.1144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES Malaria, caused by Plasmodium infection, remains a major global health problem. Monocytes are integral to the immune response, yet their transcriptional and functional responses in primary Plasmodium falciparum infection and in clinical malaria are poorly understood. METHODS The transcriptional and functional profiles of monocytes were examined in controlled human malaria infection with P. falciparum blood stages and in children and adults with acute malaria. Monocyte gene expression and functional phenotypes were examined by RNA sequencing and flow cytometry at peak infection and compared to pre-infection or at convalescence in acute malaria. RESULTS In subpatent primary infection, the monocyte transcriptional profile was dominated by an interferon (IFN) molecular signature. Pathways enriched included type I IFN signalling, innate immune response and cytokine-mediated signalling. Monocytes increased TNF and IL-12 production upon in vitro toll-like receptor stimulation and increased IL-10 production upon in vitro parasite restimulation. Longitudinal phenotypic analyses revealed sustained significant changes in the composition of monocytes following infection, with increased CD14+CD16- and decreased CD14-CD16+ subsets. In acute malaria, monocyte CD64/FcγRI expression was significantly increased in children and adults, while HLA-DR remained stable. Although children and adults showed a similar pattern of differentially expressed genes, the number and magnitude of gene expression change were greater in children. CONCLUSIONS Monocyte activation during subpatent malaria is driven by an IFN molecular signature with robust activation of genes enriched in pathogen detection, phagocytosis, antimicrobial activity and antigen presentation. The greater magnitude of transcriptional changes in children with acute malaria suggests monocyte phenotypes may change with age or exposure.
Collapse
Affiliation(s)
- Jessica R Loughland
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia,Menzies School of Health ResearchDarwinNTAustralia
| | - Tonia Woodberry
- Menzies School of Health ResearchDarwinNTAustralia,Charles Darwin UniversityDarwinNTAustralia,Present address:
The University of NewcastleCallaghanNSWAustralia
| | - Matt Field
- Australian Institute of Tropical Health and Medicine and Centre for Tropical Bioinformatics and Molecular BiologyJames Cook UniversityCairnsQLDAustralia,John Curtin School of Medical ResearchAustralian National UniversityCanberraACTAustralia
| | - Dean W Andrew
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Arya SheelaNair
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | | | - Kim A Piera
- Menzies School of Health ResearchDarwinNTAustralia,Charles Darwin UniversityDarwinNTAustralia
| | - Fiona H Amante
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Enny Kenangalem
- Timika Malaria Research ProgramPapuan Health and Community Development FoundationTimikaIndonesia,District Health AuthorityTimikaIndonesia
| | - Ric N Price
- Menzies School of Health ResearchDarwinNTAustralia,Charles Darwin UniversityDarwinNTAustralia,Centre for Tropical Medicine and Global HealthNuffield Department of Clinical MedicineUniversity of OxfordOxfordUK,Mahidol‐Oxford Tropical Medicine Research UnitFaculty of Tropical MedicineMahidol UniversityBangkokThailand
| | | | - Nicholas M Anstey
- Menzies School of Health ResearchDarwinNTAustralia,Charles Darwin UniversityDarwinNTAustralia
| | | | - Michelle J Boyle
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia,Menzies School of Health ResearchDarwinNTAustralia
| | - Gabriela Minigo
- Menzies School of Health ResearchDarwinNTAustralia,Charles Darwin UniversityDarwinNTAustralia,College of Health and Human SciencesCharles Darwin UniversityDarwinNTAustralia
| |
Collapse
|
2
|
Jansen MF, Hollander MR, van Royen N, Horrevoets AJ, Lutgens E. CD40 in coronary artery disease: a matter of macrophages? Basic Res Cardiol 2016; 111:38. [PMID: 27146510 PMCID: PMC4856717 DOI: 10.1007/s00395-016-0554-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/05/2016] [Indexed: 12/20/2022]
Abstract
Coronary artery disease (CAD), also known as ischemic heart disease (IHD), is the leading cause of mortality in the western world, with developing countries showing a similar trend. With the increased understanding of the role of the immune system and inflammation in coronary artery disease, it was shown that macrophages play a major role in this disease. Costimulatory molecules are important regulators of inflammation, and especially, the CD40L-CD40 axis is of importance in the pathogenesis of cardiovascular disease. Although it was shown that CD40 can mediate macrophage function, its exact role in macrophage biology has not gained much attention in cardiovascular disease. Therefore, the goal of this review is to give an overview on the role of macrophage-specific CD40 in cardiovascular disease, with a focus on coronary artery disease. We will discuss the function of CD40 on the macrophage and its (proposed) role in the reduction of atherosclerosis, the reduction of neointima formation, and the stimulation of arteriogenesis.
Collapse
Affiliation(s)
- Matthijs F Jansen
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands
- Department of Medical Biochemistry, Academic Medical Centre, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| | - Maurits R Hollander
- Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Niels van Royen
- Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Anton J Horrevoets
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Academic Medical Centre, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands.
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany.
| |
Collapse
|
3
|
Kataoka H, Ariyama Y, Deushi M, Osaka M, Nitta K, Yoshida M. Inhibitory Effect of Serotonin Antagonist on Leukocyte-Endothelial Interactions In Vivo and In Vitro. PLoS One 2016; 11:e0147929. [PMID: 26824242 PMCID: PMC4732655 DOI: 10.1371/journal.pone.0147929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 01/11/2016] [Indexed: 11/25/2022] Open
Abstract
Background Although 5-HT2A serotonergic antagonists have been used to treat vascular disease in patients with diabetes mellitus or obesity, their effects on leukocyte-endothelial interactions have not been fully investigated. In this study, we assessed the effects of sarpogrelate hydrochloride (SRPO), a 5-HT2A receptor inverse agonist, on leukocyte-endothelial cell interactions in obesity both in vivo and in vitro. Methods and Findings In the in vivo experiment, C57BL/6 mice were fed a high-fat high-fructose diet (HFFD), comprising 20% fat and 30% fructose, with or without intraperitoneal injection of 5 mg/kg/day SRPO for 4 weeks. The body weight, visceral fat weight, and serum monocyte chemoattractant protein-1 levels in the mice increased significantly with the HFFD, but these effects were prevented by chronic injections of SRPO. Intravital microscopy of the femoral artery detected significant leukocyte-endothelial interactions after treatment with HFFD, but these leukocyte-endothelial interactions were reduced in the mice injected with SRPO. In the in vitro experiment, pre-incubation of activated human umbilical vein endothelial cells (HUVECs) with platelet-rich plasma (PRP) induced THP-1 cell adhesion under physiological flow conditions, but the adhesion was reduced by pretreatment of PRP with SRPO. A fluorescent immunobinding assay showed that PRP induced significant upregulation of E-selectin in HUVECs, but this upregulation was reduced by pretreatment of PRP with SRPO. In other in vitro conditions, pre-incubation of THP-1 cells with phorbol 12-myristate 13-acetate increased the adhesion of THP-1 cells to activated HUVECs under rotational conditions, but this adhesion was reduced by pretreatment with SRPO. Western blotting analysis showed that protein kinase C α activation in THP-1 cells was inhibited by SRPO. Conclusion Our findings indicated that SRPO inhibits vascular inflammation in obesity via inactivation of platelets and leukocytes, and improvement of obese.
Collapse
Affiliation(s)
- Hiroshi Kataoka
- Department of Medicine, Kidney Center, Tokyo Women’s Medical University, Tokyo, Japan
| | - Yuno Ariyama
- Department of Life Sciences and Bioethics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michiyo Deushi
- Department of Life Sciences and Bioethics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mizuko Osaka
- Department of Life Sciences and Bioethics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kosaku Nitta
- Department of Medicine, Kidney Center, Tokyo Women’s Medical University, Tokyo, Japan
| | - Masayuki Yoshida
- Department of Life Sciences and Bioethics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
4
|
Fu R, Shen Q, Xu P, Luo JJ, Tang Y. Phagocytosis of microglia in the central nervous system diseases. Mol Neurobiol 2014; 49:1422-34. [PMID: 24395130 PMCID: PMC4012154 DOI: 10.1007/s12035-013-8620-6] [Citation(s) in RCA: 476] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/15/2013] [Indexed: 12/20/2022]
Abstract
Microglia, the resident macrophages of the central nervous system, rapidly activate in nearly all kinds of neurological diseases. These activated microglia become highly motile, secreting inflammatory cytokines, migrating to the lesion area, and phagocytosing cell debris or damaged neurons. During the past decades, the secretory property and chemotaxis of microglia have been well-studied, while relatively less attention has been paid to microglial phagocytosis. So far there is no obvious concordance with whether it is beneficial or detrimental in tissue repair. This review focuses on phagocytic phenotype of microglia in neurological diseases such as Alzheimer's disease, multiple sclerosis, Parkinson's disease, traumatic brain injury, ischemic and other brain diseases. Microglial morphological characteristics, involved receptors and signaling pathways, distribution variation along with time and space changes, and environmental factors that affecting phagocytic function in each disease are reviewed. Moreover, a comparison of contributions between macrophages from peripheral circulation and the resident microglia to these pathogenic processes will also be discussed.
Collapse
Affiliation(s)
- Ruying Fu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Number 107, Yan Jiang Xi Road, Guangzhou, 510120 Guangdong Province China
| | - Qingyu Shen
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Number 107, Yan Jiang Xi Road, Guangzhou, 510120 Guangdong Province China
- Department of Neurology, Zengcheng People’s Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Pengfei Xu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Number 107, Yan Jiang Xi Road, Guangzhou, 510120 Guangdong Province China
| | - Jin Jun Luo
- Department of Neurology, School of Medicine, Temple University, Philadelphia, PA USA
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Number 107, Yan Jiang Xi Road, Guangzhou, 510120 Guangdong Province China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
5
|
Kawashima M, Fujikawa Y, Itonaga I, Takita C, Tsumura H. The effect of selective cyclooxygenase-2 inhibitor on human osteoclast precursors to influence osteoclastogenesis in vitro. Mod Rheumatol 2014. [DOI: 10.3109/s10165-008-0149-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Masayuki Kawashima
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University,
1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Yosuke Fujikawa
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University,
1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Ichiro Itonaga
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University,
1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Chikahiro Takita
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University,
1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Hiroshi Tsumura
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University,
1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| |
Collapse
|
6
|
Wang H, Nagai A, Sheikh AM, Liang XY, Yano S, Mitaki S, Ishibashi Y, Kobayashi S, Kim SU, Yamaguchi S. Human mesenchymal stem cell transplantation changes proinflammatory gene expression through a nuclear factor-κB-dependent pathway in a rat focal cerebral ischemic model. J Neurosci Res 2013; 91:1440-9. [PMID: 23996632 DOI: 10.1002/jnr.23267] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/20/2013] [Accepted: 06/01/2013] [Indexed: 12/16/2022]
Abstract
Previous studies have demonstrated the immunomodulatory functions of mesenchymal stem cells (MSCs) in cerebral ischemic rats. However, the underlying mechanisms are unclear. The purpose of this study is to investigate the effects of MSC transplantation on transcriptional regulations of proinflammatory genes in cerebral ischemia. Transient ischemia was induced by middle cerebral artery occlusion (MCAO) in adult male Sprague-Dawley rats. After 24 hr, vehicle (PBS) or a human MSC line (B10) was transplanted intravenously. The neurological deficits, infarct volume, cellular accumulations, and gene expression changes were monitored by means of behavior tests, MRI, immunohistochemistry, Western blotting, laser capture microdissection, and real-time PCR. In the core area of the B10 transplantation group, the number of ED1-positive macrophage/microglia was decreased compared with the PBS group. In the core, nuclear factor-κB (NF-κB) was decreased, although CCAAT/enhancer-binding protein β was not changed; both were expressed mainly in ED1-positive macrophage/microglia. Likewise, mRNAs of NF-κB-dependent genes including interleukin-1β, MCP-1, and inducible nitric oxide synthase were decreased in ED1-positive and Iba-1-positive macrophage/microglia in the B10 transplantation group. Moreover, upstream receptors of the NF-κB pathway, including CD40 and Toll-like receptor 2 (TLR2), were decreased. Immunofluorescence results showed that, in the B10 transplantation group, the percentages of NF-κB-positive, CD40-positive, and TLR2-positive cells were decreased in ED1-positive macrophage/microglia. Furthermore, NF-κB-positive cells in the CD40- or TLR2-expressing cell population were decreased in the B10 transplantation group. This study demonstrates that B10 transplantation inhibits NF-κB activation, possibly through inhibition of CD40 and TLR2, which might be responsible for the inhibition of proinflammatory gene expression in macrophage/microglia in the infarct lesion.
Collapse
Affiliation(s)
- Hui Wang
- Department of Neurology, Shimane University Faculty of Medicine, Izumo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
The immunobiology of prostanoid receptor signaling in connecting innate and adaptive immunity. BIOMED RESEARCH INTERNATIONAL 2013; 2013:683405. [PMID: 24024207 PMCID: PMC3762073 DOI: 10.1155/2013/683405] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/08/2013] [Accepted: 07/21/2013] [Indexed: 12/20/2022]
Abstract
Prostanoids, including prostaglandins (PGs), thromboxanes (TXs), and prostacyclins, are synthesized from arachidonic acid (AA) by the action of Cyclooxygenase (COX) enzymes. They are bioactive inflammatory lipid mediators that play a key role in immunity and immunopathology. Prostanoids exert their effects on immune and inflammatory cells by binding to membrane receptors that are widely expressed throughout the immune system and act at multiple levels in innate and adaptive immunity. The immunoregulatory role of prostanoids results from their ability to regulate cell-cell interaction, antigen presentation, cytokine production, cytokine receptor expression, differentiation, survival, apoptosis, cell-surface molecule levels, and cell migration in both autocrine and paracrine manners. By acting on immune cells of both systems, prostanoids and their receptors have great impact on immune regulation and play a pivotal role in connecting innate and adaptive immunity. This paper focuses on the immunobiology of prostanoid receptor signaling because of their potential clinical relevance for various disorders including inflammation, autoimmunity, and tumorigenesis. We mainly discuss the effects of major COX metabolites, PGD2, PGE2, their signaling during dendritic cell (DC)-natural killer (NK) reciprocal crosstalk, DC-T cell interaction, and subsequent consequences on determining crucial aspects of innate and adaptive immunity in normal and pathological settings.
Collapse
|
8
|
Understanding the pathogenesis of Kawasaki disease by network and pathway analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:989307. [PMID: 23533546 PMCID: PMC3606754 DOI: 10.1155/2013/989307] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 01/04/2013] [Indexed: 12/20/2022]
Abstract
Kawasaki disease (KD) is a complex disease, leading to the damage of multisystems. The pathogen that triggers this sophisticated disease is still unknown since it was first reported in 1967. To increase our knowledge on the effects of genes in KD, we extracted statistically significant genes so far associated with this mysterious illness from candidate gene studies and genome-wide association studies. These genes contributed to susceptibility to KD, coronary artery lesions, resistance to initial IVIG treatment, incomplete KD, and so on. Gene ontology category and pathways were analyzed for relationships among these statistically significant genes. These genes were represented in a variety of functional categories, including immune response, inflammatory response, and cellular calcium ion homeostasis. They were mainly enriched in the pathway of immune response. We further highlighted the compelling immune pathway of NF-AT signal and leukocyte interactions combined with another transcription factor NF- κ B in the pathogenesis of KD. STRING analysis, a network analysis focusing on protein interactions, validated close contact between these genes and implied the importance of this pathway. This data will contribute to understanding pathogenesis of KD.
Collapse
|
9
|
Cho W, Kim Y, Jeoung DI, Kim YM, Choe J. IL-4 and IL-13 suppress prostaglandins production in human follicular dendritic cells by repressing COX-2 and mPGES-1 expression through JAK1 and STAT6. Mol Immunol 2011; 48:966-72. [PMID: 21277633 DOI: 10.1016/j.molimm.2011.01.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/09/2011] [Accepted: 01/09/2011] [Indexed: 01/10/2023]
Abstract
Originally discovered as a B cell growth and differentiation factor, IL-4 displays a variety of functions in many different cell types. Germinal center T cells are abundant producers of IL-4. In a recent report, we demonstrated that IL-4 inhibits prostaglandins (PGs) production in follicular dendritic cell (FDC)-like cells, HK. To understand the inhibitory mechanisms of IL-4, its effects on the biosynthesis of enzymes in charge of PG production were assessed in this study. Although IL-4 did not affect COX-1 expression, it specifically inhibited LPS-induced COX-2 biosynthesis at mRNA and protein levels. Protein expression of mPGES-1, a downstream enzyme of COX-2, was also markedly diminished by IL-4 but not by IL-10, maximizing the inhibitory activity. Next, we attempted to identify the early signaling molecules that led to this inhibition of COX-2 expression. Although IL-4 induced tyrosine phosphorylation of JAK1 and TYK2, RNA interference experiments revealed that only JAK1 was responsible for the IL-4-stimulated STAT6 phosphorylation. Knocking down JAK1 and STAT6 ablated the inhibitory effect of IL-4 on COX-2 expression and significantly reduced production of PGE(2) and prostacyclin. Similar results were obtained with IL-13. Pharmacologic inhibitors of ERK and p38 mitogen-activated protein kinases inhibited the COX-2 upregulation. However, IL-4 did not affect LPS-induced phosphorylation of ERK and p38. These results stress the essential roles of JAK1 and STAT6 in the early signaling pathway of IL-4 and IL-13 leading to suppression of COX-2 expression and repression of PG production by HK cells. Our results suggest that T cells via IL-4 play a regulatory role in PG generation in FDC. IL-4 therapeutics may be applied to immune disorders where normal and ectopic expression of germinal center reactions needs to be regulated.
Collapse
Affiliation(s)
- Whajung Cho
- Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| | | | | | | | | |
Collapse
|
10
|
Fox L, Hegde S, Gumperz JE. Natural killer T cells: innate lymphocytes positioned as a bridge between acute and chronic inflammation? Microbes Infect 2010; 12:1125-33. [PMID: 20850561 DOI: 10.1016/j.micinf.2010.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 08/27/2010] [Indexed: 10/19/2022]
Abstract
Natural killer T cells are an innate population of T lymphocytes that recognize antigens derived from host lipids and glycolipids. In this review, we focus on how these unique T cells are positioned to influence both acute and chronic inflammatory processes through their early recruitment to sites of inflammation, interactions with myeloid antigen presenting cells, and recognition of lipids associated with inflammation.
Collapse
Affiliation(s)
- Lisa Fox
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | |
Collapse
|
11
|
Harizi H, Limem I, Gualde N. CD40 engagement on dendritic cells induces cyclooxygenase-2 and EP2 receptor via p38 and ERK MAPKs. Immunol Cell Biol 2010; 89:275-82. [PMID: 20697426 DOI: 10.1038/icb.2010.94] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We have previously reported that cyclooxygenase (COX)-2-derived prostaglandin (PG)E2 critically regulates dendritic cell (DC) inflammatory phenotype and function through EP2/EP4 receptor subtypes. As genes activated by CD40 engagement are directly relevant to inflammation, we examined the effects of CD40 activation on inflammatory PGs in murine bone marrow-derived DC (mBM-DC). We showed for the first time that activation of mBM-DC with agonist anti-CD40 monoclonal antibody (anti-CD40 mAb) dose dependently induces the synthesis of significant amounts of PGE2 via inducible expression of COX-2 enzyme, as NS-398, a COX-2-selective inhibitor reduces this upregulation. In contrast to lipopolysaccharide, which upregulates mBM-DC surface levels of EP2 and EP4 receptors, CD40 crosslinking on mBM-DC increases EP2, but not EP4, receptor expression. Flow cytometry analysis and radioligand-binding assay showed that EP2 was the major EP receptor subtype, which binds to PGE2 at the surface of anti-CD40-activated mBM-DC. Upregulation of COX-2 and EP2 levels by CD40 engagement was accompanied by dose-dependent phosphorylation of p38 and ERK1/2 mitogen-activated protein kinase (MAPK) and was abrogated by inhibitors of both pathways. Collectively, we demonstrated that CD40 engagement on mBM-DC upregulates COX-2 and EP2 receptor expression through activation of p38 and ERK1/2 MAPK signaling. Triggering the PGE2/EP2 pathway by anti-CD40 mAb resulted on the induction of Th2 immune response. Thus, CD40-induced production of PGE2 by mBM-DC could represent a negative feedback mechanism involving EP2 receptor and limiting the propagation of Th1 responses. Blocking CD40 pathway may represent a novel therapeutic pathway of inhibiting COX-2-derived prostanoids in chronically inflamed tissues (that is, arthritis).
Collapse
Affiliation(s)
- Hedi Harizi
- CNRS UMR 5540, Bordeaux, Université Bordeaux 2, Bordeaux, France.
| | | | | |
Collapse
|
12
|
Chatzigeorgiou A, Lyberi M, Chatzilymperis G, Nezos A, Kamper E. CD40/CD40L signaling and its implication in health and disease. Biofactors 2009; 35:474-483. [PMID: 19904719 DOI: 10.1002/biof.62] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
CD40, a transmembrane receptor of the tumor necrosis factor gene superfamily is expressed on a variety of cells, such as monocytes, B-cells, antigen presenting cells, endothelial, smooth muscle cells, and fibroblasts. The interaction between CD40 and CD40 ligand (CD40L) enhances the expression of cytokines, chemokines, matrix metalloproteinases, growth factors, and adhesion molecules, mainly through the stimulation of nuclear factor kappa B. The aim of this review is to summarize the molecular and cellular characteristics of CD40 and CD40L, the mechanisms that regulate their expression, the cellular responses they stimulate and finally their implication in the pathophysiology of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Antonios Chatzigeorgiou
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | | | |
Collapse
|
13
|
Suttles J, Stout RD. Macrophage CD40 signaling: A pivotal regulator of disease protection and pathogenesis. Semin Immunol 2009; 21:257-64. [DOI: 10.1016/j.smim.2009.05.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 05/21/2009] [Indexed: 10/20/2022]
|
14
|
The effect of selective cyclooxygenase-2 inhibitor on human osteoclast precursors to influence osteoclastogenesis in vitro. Mod Rheumatol 2009; 19:192-8. [PMID: 19198759 DOI: 10.1007/s10165-008-0149-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 12/03/2008] [Indexed: 10/21/2022]
Abstract
The inducible prostaglandin synthesis enzyme, cyclooxygenase-2 (COX-2), is involved in bone resorption and osteoclastogenesis, and acts indirectly through prostaglandin E2 (PG E2) produced by osteoblastic cells. This study was undertaken to investigate whether celecoxib (a selective COX-2 inhibitor) has a direct effect on human osteoclast precursors to influence osteoclastogenesis in vitro. Human peripheral blood mononuclear cells (PBMCs) were cultured on glass coverslips and dentine slices with soluble receptor activator of NF-kB ligand (sRANKL) and macrophage colony stimulating factor (M-CSF). COX inhibitors including celecoxib were added to the cultures. Osteoclast formation was assessed as the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells (MNCs), and the functional evidence of lacunar resorption pits on dentine slices was assessed. Celecoxib and indomethacin inhibited osteoclast formation and the extent of lacunar resorption in a dose-dependent manner, but the effect of indomethacin was less than that of celecoxib. Mofezolac affected neither the number of TRAP-positive MNCs nor the extent of lacunar resorption pits. These results indicate that celecoxib influences not only osteoclast formation through osteoblastic cells but also acts directly on circulating osteoclast precursors to influence human osteoclast differentiation. The effect of celecoxib on osteoclast precursors may be related to the COX-2 signal pathway.
Collapse
|
15
|
Monocyte chemoattractant protein 1 and CD40 ligation have a synergistic effect on vascular endothelial growth factor production through cyclooxygenase 2 upregulation in gastric cancer. J Gastroenterol 2008; 43:216-24. [PMID: 18373164 DOI: 10.1007/s00535-007-2151-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 12/24/2007] [Indexed: 02/04/2023]
Abstract
BACKGROUND Recent studies have reported that expression of monocyte chemoattractant protein 1 (MCP-1) and its receptor (CCR2) and CD40 ligation on mesenchymal cells play important roles in tumor development. Cyclooxygenase 2 (COX-2) has also been shown to contribute to tumor angiogenesis. We examined the interaction between MCP-1 and CD40 ligation in mesenchymal cells in gastric cancer to determine the effect of these factors on vascular endothelial growth factor (VEGF) production via upregulation of COX-2 expression. METHODS COX-2, prostaglandin E2 (PGE2), and VEGF production were evaluated in CD40 ligand (CD40L)-stimulated macrophages. CD40L and MCP-1 mRNA levels in gastric cancer tissues were evaluated by real-time polymerase chain reaction (PCR). Localizations of MCP-1, CD40L, CD34, CD40, and CCR2 in 34 gastric cancer tissue specimens were evaluated by single-or double-label immunohistochemistry. RESULTS COX-2 expression levels were significantly higher in CD40L-stimulated macrophages and correlated with increased PGE2 and VEGF production. Addition of MCP-1 to CD40L-stimulated macrophages had a synergistic effect on COX-2 expression and subsequent PGE2 and VEGF production. CD40L and MCP-1 mRNA levels were significantly higher in poorly differentiated gastric cancers than in H. pylori-infected gastritis patients. High microvessel density was significantly associated with MCP-1 and CCR2 scores and lymph node metastasis. CONCLUSIONS MCP-1 and CD40L had a synergistic effect on COX-2 expression and subsequent VEGF production in gastric cancer.
Collapse
|
16
|
Futagami S, Hiratsuka T, Shindo T, Hamamoto T, Tatsuguchi A, Nobue U, Shinji Y, Suzuki K, Kusunoki M, Tanaka S, Wada K, Miyake K, Gudis K, Tsukui T, Sakamoto C. COX-2 and CCR2 induced by CD40 ligand and MCP-1 are linked to VEGF production in endothelial cells. Prostaglandins Leukot Essent Fatty Acids 2008; 78:137-146. [PMID: 18093816 DOI: 10.1016/j.plefa.2007.10.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 09/25/2007] [Accepted: 10/30/2007] [Indexed: 11/30/2022]
Abstract
Recent studies have reported that expression of MCP-1 and its receptor, CCR2; and CD40-CD40 ligand (CD40L) interaction on mesenchymal cells play important roles in tumor development. Studies have also connected MCP-1, CCR2, and CD40L to COX-2 expression. The aim of this study was to examine the effect of MCP-1/CCR2 and CD40-CD40L interaction on COX-2 and VEGF expression in endothelial cells. We also investigated the localization of these proteins in gastric cancer tissue. COX-2 and CCR2 levels were evaluated in CD40L-stimulated HUVECs by Western blot and real-time PCR. VEGF secreted in the culture media was quantified by ELISA. Localizations of MCP-1, CD40L, CD34, CD40 and CCR2 in 34 gastric cancer tissue specimens were evaluated by immunohistochemistry. CD40-CD40L interaction-induced COX-2 production and subsequently, upregulated COX-2 production contributed to elevated VEGF and CCR2 levels in CD40L-stimulated HUVECs. CD40L-stimulated VEGF production was COX-2 but not COX-1 dependent. RS-102895, a CCR2-specific antagonist, significantly reduced VEGF production in CD40L- and MCP-1-stimulated HUVECs. MCP-1 had a synergistic effect on COX-2, CCR2 and VEGF levels in CD40L-stimulated HUVECs. In gastric cancer tissue, there was significant correlation between microvessel density and scores for CD40L, MCP-1 and CCR2 protein expression. Thus, MCP-1 had a synergistic effect on COX-2 and CCR2 protein expression in CD40L-stimulated HUVECs and thereby stimulated VEGF production in these cells.
Collapse
Affiliation(s)
- Seiji Futagami
- Division of Gastroenterology, Department of Internal Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 1138603, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Garg A, Barnes PF, Roy S, Quiroga MF, Wu S, García VE, Krutzik SR, Weis SE, Vankayalapati R. Mannose-capped lipoarabinomannan- and prostaglandin E2-dependent expansion of regulatory T cells in human Mycobacterium tuberculosis infection. Eur J Immunol 2008; 38:459-69. [PMID: 18203140 PMCID: PMC2955512 DOI: 10.1002/eji.200737268] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We evaluated the role of regulatory T cells (CD4(+) CD25(+) Foxp3(+) cells, Tregs) in human Mycobacterium tuberculosis infection. Tregs were expanded in response to M. tuberculosis in healthy tuberculin reactors, but not in tuberculin-negative individuals. The M. tuberculosis mannose-capped lipoarabinomannan (ManLAM) resulted in regulatory T cell expansion, whereas the M. tuberculosis 19-kDa protein and heat shock protein 65 had no effect. Anti-IL-10 and anti-TGF-beta alone or in combination, did not reduce expansion of Tregs. In contrast, the cyclooxygenase enzyme-2 inhibitor NS398 significantly inhibited expansion of Tregs, indicating that prostaglandin E2 (PGE2) contributes to Treg expansion. Monocytes produced PGE2 upon culturing with heat-killed M. tuberculosis or ManLAM, and T cells from healthy tuberculin reactors enhanced PGE2 production by monocytes. Expanded Tregs produced significant amounts of TGF-beta and IL-10 and depletion of Tregs from PBMC of these individuals increased the frequency of M. tuberculosis-responsive CD4(+) IFN-gamma cells. Culturing M. tuberculosis-expanded Tregs with autologous CD8(+) cells decreased the frequency of IFN-gamma(+)cells. Freshly isolated PBMC from tuberculosis patients had increased percentages of Tregs, compared to healthy tuberculin reactors. These findings demonstrate that Tregs expand in response to M. tuberculosis through mechanisms that depend on ManLAM and PGE2.
Collapse
Affiliation(s)
- Ankita Garg
- Center for Pulmonary and Infectious Disease Control, University of Texas Health Center, Tyler, Texas, TX 75708
- Department of Microbiology and Immunology, Center for Biomedical Research, University of Texas Health Center, Tyler, Texas, TX 75708
| | - Peter F. Barnes
- Center for Pulmonary and Infectious Disease Control, University of Texas Health Center, Tyler, Texas, TX 75708
- Department of Microbiology and Immunology, Center for Biomedical Research, University of Texas Health Center, Tyler, Texas, TX 75708
- Department of Medicine, Center for Biomedical Research, University of Texas Health Center, Tyler, Texas, TX 75708
| | - Sugata Roy
- Center for Pulmonary and Infectious Disease Control, University of Texas Health Center, Tyler, Texas, TX 75708
- Department of Microbiology and Immunology, Center for Biomedical Research, University of Texas Health Center, Tyler, Texas, TX 75708
| | - María F. Quiroga
- Department of Microbiology, Parasitology, and Immunology, University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| | - Shiping Wu
- Center for Pulmonary and Infectious Disease Control, University of Texas Health Center, Tyler, Texas, TX 75708
- Department of Microbiology and Immunology, Center for Biomedical Research, University of Texas Health Center, Tyler, Texas, TX 75708
| | - Verónica E. García
- Department of Microbiology, Parasitology, and Immunology, University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| | - Stephan R. Krutzik
- Division of Dermatology, University of California at Los Angeles, Los Angeles, CA 90095
| | - Steven E. Weis
- Department of Internal Medicine, University of North Texas Health Sciences Center, Fort Worth, TX 76107
| | - Ramakrishna Vankayalapati
- Center for Pulmonary and Infectious Disease Control, University of Texas Health Center, Tyler, Texas, TX 75708
- Department of Microbiology and Immunology, Center for Biomedical Research, University of Texas Health Center, Tyler, Texas, TX 75708
| |
Collapse
|
18
|
Zhou HJ, Pham LV, Tamayo AT, Lin-Lee YC, Fu L, Yoshimura LC, Ford RJ. Nuclear CD40 interacts with c-Rel and enhances proliferation in aggressive B-cell lymphoma. Blood 2007; 110:2121-7. [PMID: 17567982 PMCID: PMC1976364 DOI: 10.1182/blood-2007-02-073080] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
CD40 is an integral plasma membrane-associated member of the TNF receptor family that has recently been shown to also reside in the nucleus of both normal B cells and large B-cell lymphoma (LBCL) cells. However, the physiological function of CD40 in the B-cell nucleus has not been examined. In this study, we demonstrate that nuclear CD40 interacts with the NF-kappaB protein c-Rel, but not p65, in LBCL cells. Nuclear CD40 forms complexes with c-Rel on the promoters of NF-kappaB target genes, CD154, BLyS/BAFF, and Bfl-1/A1, in various LBCL cell lines. Wild-type CD40, but not NLS-mutated CD40, further enhances c-Rel-mediated Blys promoter activation as well as proliferation in LBCL cells. Studies in normal B cells and LBCL patient cells further support a nuclear transcriptional function for CD40 and c-Rel. Cooperation between nuclear CD40 and c-Rel appears to be important in regulating cell growth and survival genes involved in lymphoma cell proliferation and survival mechanisms. Modulating the nuclear function of CD40 and c-Rel could reveal new mechanisms in LBCL pathophysiology and provide potential new targets for lymphoma therapy.
Collapse
MESH Headings
- B-Cell Activating Factor/genetics
- B-Cell Activating Factor/metabolism
- B-Lymphocytes/metabolism
- CD40 Antigens/genetics
- CD40 Antigens/metabolism
- Cell Nucleus/metabolism
- Cell Proliferation
- Chromatin Immunoprecipitation
- Electrophoretic Mobility Shift Assay
- Genes, rel/physiology
- Humans
- Immunoprecipitation
- Luciferases/metabolism
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Promoter Regions, Genetic
- Thymidine/metabolism
- Transfection
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- Hai-Jun Zhou
- Department of Hematopathology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Léveillé C, Bouillon M, Guo W, Bolduc J, Sharif-Askari E, El-Fakhry Y, Reyes-Moreno C, Lapointe R, Merhi Y, Wilkins JA, Mourad W. CD40 ligand binds to alpha5beta1 integrin and triggers cell signaling. J Biol Chem 2006; 282:5143-51. [PMID: 17182621 DOI: 10.1074/jbc.m608342200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
It was originally thought that the critical role of the CD40 ligand (CD40L) in normal and inflammatory immune responses was mainly mediated through its interaction with the classic receptor, CD40. However, data from CD40L(-/-) and CD40(-/-) mice suggest that the CD40L-induced inflammatory immune response involves at least one other receptor. This hypothesis is supported by the fact that CD40L stabilizes arterial thrombi through an alphaIIbbeta3-dependent mechanism. Here we provide evidence that soluble CD40L (sCD40L) binds to cells of the undifferentiated human monocytic U937 cell line in a CD40- and alphaIIbbeta3-independent manner. Binding of sCD40L to U937 cells was inhibited by anti-CD40L monoclonal antibody 5C8, anti-alpha5beta1 monoclonal antibody P1D6, and soluble alpha5beta1. The direct binding of sCD40L to purified alpha5beta1 was confirmed in a solid phase binding assay. Binding of sCD40L to alpha5beta1 was modulated by the form of alpha5beta1 expressed on the cell surface as the activation of alpha5beta1 by Mn(2+) or dithiothreitol resulted in the loss of sCD40L binding. Moreover, sCD40L induced the translocation of alpha5beta1 to the Triton X-100-insoluble fraction of U937 cells, the rapid activation of the MAPK pathways ERK1/2, and interleukin-8 gene expression. The binding of sCD40L to CD40 on BJAB cells, an alpha5beta1-negative B cell line, and the resulting activation of ERK1/2 was not inhibited by soluble alpha5beta1, suggesting that sCD40L can bind concomitantly to both receptors. These results document the existence of novel CD40L-dependent pathways of physiological relevance for cells expressing multiple receptors (CD40, alpha5beta1, and alphaIIbbeta3) for CD40L.
Collapse
Affiliation(s)
- Claire Léveillé
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier de l'Université Laval, Québec City, Quebec G1V 4G2, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Schwartz EA, Reaven PD. Molecular and signaling mechanisms of atherosclerosis in insulin resistance. Endocrinol Metab Clin North Am 2006; 35:525-49, viii. [PMID: 16959584 DOI: 10.1016/j.ecl.2006.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although the prevalence of cardiovascular complications is increased in insulin-resistant individuals, the underlying causes of this link have been elusive. Recent work suggests that several intracellular signal transduction pathways are inappropriately activated by hyperinsulinemia, hyperglycemia, increased free fatty acids, dyslipidemia, various inflammatory cytokines and adipokines--factors that are increased in insulin resistance. Once activated, substantial cross talk occurs between these pathways, especially a self-reinforcing cascade of vascular inflammation and cell dysfunction, greatly increasing the risk and severity of atherosclerosis in the insulin-resistant individual. We review several key cell-signalling pathways, describe how they are activated in they insulin-resistant state and the damage they induce, and discusses possible therapeutic approaches to limit vascular damage.
Collapse
Affiliation(s)
- Eric A Schwartz
- Division of Research, Carl T. Hayden VA Medical Center, 650 East Indian School Road, Phoenix, AZ 85012, USA
| | | |
Collapse
|
21
|
Mongini PKA, Inman JK, Han H, Fattah RJ, Abramson SB, Attur M. APRIL and BAFF promote increased viability of replicating human B2 cells via mechanism involving cyclooxygenase 2. THE JOURNAL OF IMMUNOLOGY 2006; 176:6736-51. [PMID: 16709833 DOI: 10.4049/jimmunol.176.11.6736] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Of relevance to both protective and pathogenic responses to Ag is the recent finding that soluble molecules of the innate immune system, i.e., IL-4, B cell-activation factor of the TNF family (BAFF), and C3, exhibit significant synergy in promoting the clonal expansion of human B2 cells following low-level BCR ligation. Although IL-4, BAFF, and C3dg each contribute to early cell cycle entry and progression to S phase, only BAFF promotes later sustained viability of progeny needed for continued cycling. The present study sought to further clarify the mechanisms for BAFF's multiple functions. By comparing BAFF and a proliferation-inducing ligand (APRIL) efficacy at different stages in the response (only BAFF binds BR3; both bind transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI) and B cell maturation Ag, the early role was attributed to BR3, while the later role was attributed to TACI/B cell maturation Ag. Importantly, BAFF- and APRIL-promoted viability of cycling lymphoblasts was associated with sustained expression of cyclooxygenase 2 (COX-2), the rate-limiting enzyme for PGE2 synthesis, within replicating cells. Supernatants of cultures with BAFF and APRIL contained elevated PGE2. Although COX-2 inhibitors diminished daughter cell viability, exogenous PGE2 (1-1000 nM) increased the viability and recovery of lymphoblasts. Increased yield of viable progeny was associated with elevated Mcl-1, suggesting that a BAFF/APRIL --> TACI --> COX-2 --> PGE2--> Mcl-1 pathway reduces activation-related, mitochondrial apoptosis in replicating human B2 cell clones.
Collapse
Affiliation(s)
- Patricia K A Mongini
- Department of Medicine, Division of Rheumatology, New York University Hospital for Joint Diseases, New York University Medical Center, New York, NY 10003, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Shibata Y, Gabbard J, Yamashita M, Tsuji S, Smith M, Nishiyama A, Henriksen RA, Myrvik QN. Heat‐killed BCG induces biphasic cyclooxygenase 2
+
splenic macrophage formation—role of IL‐10 and bone marrow precursors. J Leukoc Biol 2006; 80:590-8. [PMID: 16822852 DOI: 10.1189/jlb.1205737] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Previous studies have shown that prostaglandin E(2) (PGE(2)) release by splenic F4/80(+) cyclooxygenase (COX)-2(+) macrophages (MØ) isolated from mice, treated with mycobacterial components, plays a major role in the regulation of immune responses. However, splenic MØ, isolated from untreated mice and treated in vitro with lipopolysaccharide and interferon-gamma, express COX-1 and COX-2 within 1 day but release only minimal amounts of PGE(2) following elicitation with calcium ionophore A23187. For further characterization of in vivo requirements for development of PGE(2)-releasing MØ (PGE(2)-MØ), C57Bl/6 [wild-type (WT)], and interleukin (IL)-10-deficient (IL-10(-/-)) mice were treated intraperitoneally with heat-killed Mycobacterium bovis bacillus Calmette-Guerin (HK-BCG). One day following injection, COX-2 was induced in splenic MØ of both mouse strains. However, PGE(2) biosynthesis by these MØ was not increased. Thus, expression of COX-2 is not sufficient to induce PGE(2) production in vivo or in vitro. In sharp contrast, 14 days after HK-BCG treatment, PGE(2) release by COX-2(+) splenic MØ increased as much as sevenfold, and a greater increase was seen in IL-10(-/-) cells than in WT cells. To further determine whether the 14-day splenic PGE(2)-MØ could be derived from bone marrow precursors, we established a chimera in which bone marrow cells were transfused from green fluorescent protein (GFP)-transgenic donors to WT mice. Donors and recipients were treated with HK-BCG simultaneously, and marrow transfusion was performed on Days 1 and 2. On Day 14 after BCG treatment, a significant number of spleen cells coexpressed COX-2 and GFP, indicating that bone marrow-derived COX-2(+) MØ may be responsible for the increased PGE(2) production.
Collapse
Affiliation(s)
- Yoshimi Shibata
- Department of Biomedical Sciences, Florida Atlantic University, 777 Glades Rd., P.O. Box 3091, Boca Raton, 33431-0991, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Dang PMC, Elbim C, Marie JC, Chiandotto M, Gougerot-Pocidalo MA, El-Benna J. Anti-inflammatory effect of interleukin-10 on human neutrophil respiratory burst involves inhibition of GM-CSF-induced p47PHOX phosphorylation through a decrease in ERK1/2 activity. FASEB J 2006; 20:1504-6. [PMID: 16720733 DOI: 10.1096/fj.05-5395fje] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Interleukin-10 (IL-10) exerts its anti-inflammatory properties by down-regulating polymorphonuclear neutrophil (PMN) functions such as reactive oxygen species (ROS) production via NADPH oxidase. The molecular mechanisms underlying this process are unclear. Partial phosphorylation of the NADPH oxidase cytosolic component p47(PHOX) induced by proinflammatory cytokines, such as granulocyte-macrophage colony stimulating factor (GM-CSF) and tumor necrosis factor (TNF)-alpha, is essential for priming ROS production by PMN. The aim of this study was to determine whether IL-10 inhibits GM-CSF- and TNFalpha-induced p47(PHOX) phosphorylation and to investigate the molecular mechanisms involved in this effect. We found that IL-10 selectively inhibited GM-CSF- but not TNFalpha-induced p47PHOX phosphorylation in a concentration-dependent manner. As GM-CSF-induced p47PHOX phosphorylation is mediated by extracellular signal-regulated kinase 1/2 (ERK1/2), we tested the effect of IL-10 on this pathway. We found that IL-10 inhibited GM-CSF-induced ERK1/2 activity in an immunocomplex kinase assay. This inhibitory effect was confirmed by analyzing the phosphorylation status of the endogenous substrate of ERK1/2, p90RSK, in intact PMN. Furthermore, IL-10 decreased ROS production by adherent GM-CSF-treated PMN in keeping with the higher ROS production observed in whole blood from IL-10 knockout mice compared to their wild-type counterparts. Together, these results suggest that IL-10 inhibits GM-CSF-induced priming of ROS production by inhibiting p47PHOX phosphorylation through a decrease in ERK1/2 activity. This IL-10 effect could contribute to the tight regulation of NADPH oxidase activity at the inflammatory site.
Collapse
Affiliation(s)
- Pham My-Chan Dang
- INSERM U773, Centre Hospitalier Universitaire Xavier Bichat, Faculté de Médecine, 16 rue Henri Huchard, Paris 75018, France.
| | | | | | | | | | | |
Collapse
|
24
|
Lin-Lee YC, Pham LV, Tamayo AT, Fu L, Zhou HJ, Yoshimura LC, Decker GL, Ford RJ. Nuclear localization in the biology of the CD40 receptor in normal and neoplastic human B lymphocytes. J Biol Chem 2006; 281:18878-87. [PMID: 16644731 DOI: 10.1074/jbc.m513315200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD40 is a tumor necrosis factor (TNF) receptor superfamily, (TNFR; TNFRSF-5) member, that initiates important signaling pathways mediating cell growth, survival, and differentiation in B-lymphocytes. Although CD40 has been extensively studied as a plasma membrane-associated growth factor receptor, we demonstrate here that CD40 is present not only in the plasma membrane and cytoplasm but also in the nucleus of normal and neoplastic B-lymphoid cells. Confocal microscopy showed that transfected CD40-green fluorescent fusion protein entered B-cell nuclei. The CD40 protein contains a nuclear localization signal sequence that, when mutated, blocks entry of CD40 into the nucleus through the classic karyopherins (importins-alpha/beta) pathway. Nuclear fractionation studies revealed the presence of CD40 protein in the nucleoplasm fraction of activated B cells, and chromatin immunoprecipitation assays demonstrated that CD40 binds to and stimulates the BLyS/BAFF promoter, another TNF family member (TNFSF-13B) involved in cell survival in the B cell lineage. Like other nuclear growth factor receptors, CD40 appears to be a transcriptional regulator and is likely to play a larger and more complex role than previously demonstrated in regulating essential growth and survival pathways in B-lymphocytes.
Collapse
Affiliation(s)
- Yen-Chiu Lin-Lee
- Department of Hematopathology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Koenigsknecht-Talboo J, Landreth GE. Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J Neurosci 2006; 25:8240-9. [PMID: 16148231 PMCID: PMC6725530 DOI: 10.1523/jneurosci.1808-05.2005] [Citation(s) in RCA: 395] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Microglia undergo a phenotypic activation in response to fibrillar beta-amyloid (fAbeta) deposition in the brains of Alzheimer's disease (AD) patients, resulting in their elaboration of inflammatory molecules. Despite the presence of abundant plaque-associated microglia in the brains of AD patients and in animal models of the disease, microglia fail to efficiently clear fAbeta deposits. However, they can be induced to do so during Abeta vaccination therapy attributable to anti-Abeta antibody stimulation of IgG receptor (FcR)-mediated phagocytic clearance of Abeta plaques. We report that proinflammatory cytokines attenuate microglial phagocytosis stimulated by fAbeta or complement receptor 3 and argue that this may, in part, underlie the accumulation of fAbeta-containing plaques within the AD brain. The proinflammatory suppression of fAbeta-elicited phagocytosis is dependent on nuclear factor kappaB activation. Significantly, the proinflammatory cytokines do not inhibit phagocytosis elicited by antibody-mediated activation of FcR, which may contribute to the efficiency of Abeta vaccination-based therapy. Importantly, the proinflammatory suppression of fAbeta phagocytosis can be relieved by the coincubation with anti-inflammatory cytokines, cyclooxygenase inhibitors, ibuprofen, or an E prostanoid receptor antagonist, suggesting that proinflammatory cytokines induce the production of prostaglandins, leading to an E prostanoid receptor-dependent inhibition of phagocytosis. These findings support anti-inflammatory therapies for the treatment of AD.
Collapse
|
26
|
Heurtaux T, Benani A, Moulin D, Muller N, Netter P, Minn A. Induction of UGT1A6 isoform by inflammatory conditions in rat astrocytes. Neuropharmacology 2006; 50:317-28. [PMID: 16274708 DOI: 10.1016/j.neuropharm.2005.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 09/08/2005] [Accepted: 09/19/2005] [Indexed: 01/30/2023]
Abstract
Alteration of drug metabolism under diseased conditions is of clinical importance. We have investigated the effects of inflammatory conditions on phase II drug-metabolizing enzyme activity in rat cultured astrocytes. Lipopolysaccharide (LPS) treatment was used to promote inflammatory conditions. Thus, we reported that LPS initiates an inflammatory response, which is mediated by pro-inflammatory mediators and free radical generation. An increase in astrocyte glucuronidation activity was observed after a 48-h LPS treatment. This increase in glucuronidation activity was associated with an up-regulation of the UGT1A6 isoform mRNA level as shown by RT-PCR and gene reporter assay. Moreover, this endotoxin-induced increase in UGT1A6 expression level was blocked by actinomycin D and cycloheximide, indicating the requirement for RNA and protein synthesis. The UGT1A6 expression enhancement could be prevented by anti-inflammatory drugs (dexamethasone and NS398) or nitric oxide synthase inhibitors (L-NAME and L-NMMA). Moreover, gel shift assay revealed increased activator protein-1 (AP-1) binding activity after LPS treatment. We propose, based on the data presented, that the action of LPS to induce UGT1A6 isoform up-regulation may be mediated by pro-inflammatory mediator accumulation, and AP-1 binding activity increase.
Collapse
Affiliation(s)
- T Heurtaux
- Unité Mixte de Recherche CNRS - Université Henri Poincaré Nancy 1, No 7561, Laboratoire de Pharmacologie, Faculté de Médecine, BP 184, 54505 Vandoeuvre-lès-Nancy Cedex, France
| | | | | | | | | | | |
Collapse
|
27
|
Shibata Y, Nishiyama A, Ohata H, Gabbard J, Myrvik QN, Henriksen RA. Differential effects of IL-10 on prostaglandin H synthase-2 expression and prostaglandin E2 biosynthesis between spleen and bone marrow macrophages. J Leukoc Biol 2005; 77:544-51. [PMID: 15657087 DOI: 10.1189/jlb.0504311] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Different populations of mononuclear phagocytes (MO) show considerable diversity of cellular function including prostaglandin E2 (PGE2) biosynthesis. Certain bacterial components enhance PGE2 biosynthesis differentially in selected populations of MO. Interleukin (IL)-10 is proposed to inhibit modulation of PGE2 biosynthesis by down-regulating prostaglandin G/H synthase-2 (PGHS-2) expression. To assess whether IL-10 regulates PGE2 biosynthesis and PGHS-2 expression, splenic and bone marrow MO were isolated from IL-10-deficient (IL-10(-/-)), C57Bl/6 [wild-type (WT) control], and Balb/c (comparison control) mice and were treated with lipopolysaccharide (LPS) and/or interferon-gamma (IFN-gamma) as a model of bacterial inflammation. LPS-induced PGHS-2 expression was similar for splenic MO isolated from the three strains of mice. However, PGE2 released by LPS-treated splenic MO was significantly higher in IL-10(-/-) and Balb/c than in WT cells. In the presence of LPS and IFN-gamma, PGHS-2 expression and PGE2 release by IL-10(-/-) and Balb/c splenic MO were enhanced compared with stimulation with LPS alone or IFN-gamma alone. However, there was no significant increase in PGE2 release from WT splenic MO treated with LPS plus IFN-gamma despite increased PGHS-2 expression. In sharp contrast, PGHS-2 expression and PGE2 release by bone marrow MO were greatly enhanced in IL-10(-/-) cells compared with control cells. Our results indicate that IL-10 regulation of MO PGE2 biosynthesis and PGHS-2 expression is compartment-dependent and that PGE2 production is not linked directly to PGHS-2 levels. Furthermore, our findings emphasize strain-specific differences between C57Bl/6 and Balb/c mice, and Balb/c appears more similar to the IL-10(-/-) than to the C57Bl/6 with respect to prostanoid production.
Collapse
Affiliation(s)
- Yoshimi Shibata
- Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, FL 33431-0991, USA.
| | | | | | | | | | | |
Collapse
|