1
|
Cao R, Chen P, Wang H, Jing H, Zhang H, Xing G, Luo B, Pan J, Yu Z, Xiong WC, Mei L. Intrafusal-fiber LRP4 for muscle spindle formation and maintenance in adult and aged animals. Nat Commun 2023; 14:744. [PMID: 36765071 PMCID: PMC9918736 DOI: 10.1038/s41467-023-36454-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Proprioception is sensed by muscle spindles for precise locomotion and body posture. Unlike the neuromuscular junction (NMJ) for muscle contraction which has been well studied, mechanisms of spindle formation are not well understood. Here we show that sensory nerve terminals are disrupted by the mutation of Lrp4, a gene required for NMJ formation; inducible knockout of Lrp4 in adult mice impairs sensory synapses and movement coordination, suggesting that LRP4 is required for spindle formation and maintenance. LRP4 is critical to the expression of Egr3 during development; in adult mice, it interacts in trans with APP and APLP2 on sensory terminals. Finally, spindle sensory endings and function are impaired in aged mice, deficits that could be diminished by LRP4 expression. These observations uncovered LRP4 as an unexpected regulator of muscle spindle formation and maintenance in adult and aged animals and shed light on potential pathological mechanisms of abnormal muscle proprioception.
Collapse
Affiliation(s)
- Rangjuan Cao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.,Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Peng Chen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hongsheng Wang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hongyang Jing
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hongsheng Zhang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Guanglin Xing
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Bin Luo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jinxiu Pan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Zheng Yu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA. .,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA.
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA. .,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
2
|
Han S, Zhu T, Ding S, Wen J, Lin Z, Lu G, Zhang Y, Xiao W, Ding Y, Jia X, Chen H, Gong W. Early growth response genes 2 and 3 induced by AP-1 and NF-κB modulate TGF-β1 transcription in NK1.1 - CD4 + NKG2D + T cells. Cell Signal 2020; 76:109800. [PMID: 33011290 DOI: 10.1016/j.cellsig.2020.109800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
NK1.1- CD4+ NKG2D+ T cells are a subpopulation of regulatory T cells that downregulate the functions of CD4+ T, CD8+ T, natural killer (NK) cells, and macrophages through TGF-β1 production. Early growth response genes 2 (Egr2) and 3 (Egr3) maintain immune homeostasis by modulating T lymphocyte development, inhibiting effector T cell function, and promoting the induction of regulatory T cells. Whether Egr2 and Egr3 directly regulate TGF-β1 transcription in NK1.1- CD4+ NKG2D+ T cells remains elusive. The expression levels of Egr2 and Egr3 were higher in NK1.1- CD4+ NKG2D+ T cells than in NK1.1- CD4+ NKG2D- T cells. Egr2 and Egr3 expression were remarkably increased after stimulating NK1.1- CD4+ NKG2D+ T cells with sRAE or α-CD3/sRAE. The ectopic expression of Egr2 or Egr3 resulted in the enhancement of TGF-β1 expression, while knockdown of Egr2 or Egr3 led to the decreased expression of TGF-β1 in NK1.1- CD4+ NKG2D+ T cells. Egr2 and Egr3 directly bound with the TGF-β1 promoter as demonstrated by the electrophoretic mobility shift assay and dual-luciferase gene reporter assay. Furthermore, the Egr2 and Egr3 expression of NK1.1- CD4+ NKG2D+ T cells could be induced by the AP-1 and NF-κB transcriptional factors, but had no involvement with the activation of NF-AT and STAT3. In conclusion, Egr2 and Egr3 induced by AP-1 and NF-κB directly initiate TGF-β1 transcription in NK1.1- CD4+ NKG2D+ T cells. This study indicates that manipulating Egr2 and Egr3 expression would potentiate or alleviate the regulatory function of NK1.1- CD4+ NKG2D+ T cells and this strategy could be used in the therapy for patients with autoimmune diseases or tumor.
Collapse
Affiliation(s)
- Sen Han
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou 225000, PR China; Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Tao Zhu
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou 225000, PR China
| | - Shizhen Ding
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou 225000, PR China
| | - Jianqiang Wen
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou 225000, PR China
| | - Zhijie Lin
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou 225000, PR China
| | - Guotao Lu
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou 225000, PR China; Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou 225000, PR China
| | - Yu Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou 225000, PR China
| | - Weiming Xiao
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou 225000, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou 225000, PR China
| | - Yanbing Ding
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou 225000, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou 225000, PR China
| | - Xiaoqin Jia
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou 225000, PR China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou 225000, PR China
| | - Huabiao Chen
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Weijuan Gong
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou 225000, PR China; Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou 225000, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou 225000, PR China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou 225000, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, PR China.
| |
Collapse
|
3
|
Hastings KT, Elizalde D, Muppana L, Levine S, Kamel CM, Ingram WM, Kirkpatrick JT, Hu C, Rausch MP, Gallitano AL. Nab2 maintains thymus cellularity with aging and stress. Mol Immunol 2017; 85:185-195. [PMID: 28282643 DOI: 10.1016/j.molimm.2017.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 12/31/2022]
Abstract
Thymic cellularity is influenced by a variety of biological and environmental factors, such as age and stress; however, little is known about the molecular genetic mechanisms that regulate this process. Immediate early genes of the Early growth response (Egr) family have critical roles in immune function and response to environmental stress. The transcription factors, Egr1, Egr2 and Egr3, play roles in the thymus and in peripheral T-cell activation. Nab2, which binds Egrs 1, 2, and 3 as a co-regulator of transcription, also regulates peripheral T-cell activation. However, a role for Nab2 in the thymus has not been reported. Using Nab2-deficient (KO) mice we found that male Nab2KO mice have reduced thymus size and decreased numbers of thymocytes, compared with age-matched wildtype (WT) mice. Furthermore, the number of thymocytes in Nab2KO males decreases more rapidly with age. This effect is sex-dependent as female Nab2KO mice show neither reduced thymocyte numbers nor accelerated thymocyte loss with age, compared to female WT littermates. Since stress induces expression of Nab2 and the Egrs, we examined whether loss of Nab2 alters stress-induced decrease in thymic cellularity. Restraint stress induced a significant decrease in thymic cellularity in Nab2KO and WT mice, with significant changes in the thymocyte subset populations only in the Nab2KO mice. Stress reduced the percentage of DP cells by half and increased the percentage of CD4SP and CD8SP cells by roughly three-fold in Nab2KO mice. These findings indicate a requirement for Nab2 in maintaining thymocyte number in male mice with age and in response to stress.
Collapse
Affiliation(s)
- K Taraszka Hastings
- Department of Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, 425 N. 5th St., Phoenix, AZ, 85004, USA.
| | - Diana Elizalde
- Department of Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, 425 N. 5th St., Phoenix, AZ, 85004, USA
| | - Leela Muppana
- Department of Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, 425 N. 5th St., Phoenix, AZ, 85004, USA
| | - Sarah Levine
- Department of Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, 425 N. 5th St., Phoenix, AZ, 85004, USA
| | - Christy M Kamel
- Department of Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, 425 N. 5th St., Phoenix, AZ, 85004, USA
| | - Wendy M Ingram
- Department of Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, 425 N. 5th St., Phoenix, AZ, 85004, USA
| | - Jennifer T Kirkpatrick
- Department of Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, 425 N. 5th St., Phoenix, AZ, 85004, USA
| | - Chengcheng Hu
- Department of Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, 714 E. Van Buren St., Phoenix, AZ, 85004, USA.
| | - Matthew P Rausch
- Department of Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, 425 N. 5th St., Phoenix, AZ, 85004, USA
| | - Amelia L Gallitano
- Department of Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, 425 N. 5th St., Phoenix, AZ, 85004, USA.
| |
Collapse
|
4
|
López-Rodríguez C, Aramburu J, Berga-Bolaños R. Transcription factors and target genes of pre-TCR signaling. Cell Mol Life Sci 2015; 72:2305-21. [PMID: 25702312 PMCID: PMC11113633 DOI: 10.1007/s00018-015-1864-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/22/2015] [Accepted: 02/16/2015] [Indexed: 11/27/2022]
Abstract
Almost 30 years ago pioneering work by the laboratories of Harald von Boehmer and Susumo Tonegawa provided the first indications that developing thymocytes could assemble a functional TCRβ chain-containing receptor complex, the pre-TCR, before TCRα expression. The discovery and study of the pre-TCR complex revealed paradigms of signaling pathways in control of cell survival and proliferation, and culminated in the recognition of the multifunctional nature of this receptor. As a receptor integrated in a dynamic developmental process, the pre-TCR must be viewed not only in the light of the biological outcomes it promotes, but also in context with those molecular processes that drive its expression in thymocytes. This review article focuses on transcription factors and target genes activated by the pre-TCR to drive its different outcomes.
Collapse
Affiliation(s)
- Cristina López-Rodríguez
- Immunology Unit, Department of Experimental and Health Sciences and Barcelona Biomedical Research Park, Universitat Pompeu Fabra, C/Doctor Aiguader Nº88, 08003, Barcelona, Barcelona, Spain,
| | | | | |
Collapse
|
5
|
Interplay of H2A deubiquitinase 2A-DUB/Mysm1 and the p19(ARF)/p53 axis in hematopoiesis, early T-cell development and tissue differentiation. Cell Death Differ 2015; 22:1451-62. [PMID: 25613381 PMCID: PMC4532772 DOI: 10.1038/cdd.2014.231] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 02/06/2023] Open
Abstract
Monoubiquitination of core histone 2A (H2A-K119u) has a critical role in gene regulation in hematopoietic differentiation and other developmental processes. To explore the interplay of histone H2A deubiquitinase Myb-like SWIRM and MPN domain containing1 (2A-DUB/Mysm1) with the p53 axis in the sequential differentiation of mature lymphocytes from progenitors, we systematically analyzed hematopoiesis and early T-cell development using Mysm1(-/-) and p53(-/-)Mysm1(-/-) mice. Mysm1(-/-) thymi were severely hypoplastic with <10% of wild-type cell numbers as a result of a reduction of early thymocyte progenitors in context with defective hematopoietic stem cells, a partial block at the double-negative (DN)1-DN2 transition and increased apoptosis of double-positive thymocytes. Increased rates of apoptosis were also detected in other tissues affected by Mysm1 deficiency, including the developing brain and the skin. By quantitative PCR and chromatin immunoprecipitation analyses, we identified p19(ARF), an important regulator of p53 tumor suppressor protein levels, as a potential Mysm1 target gene. In newly generated p53(-/-)Mysm1(-/-) double-deficient mice, anomalies of Mysm1(-/-) mice including reduction of lymphoid-primed multipotent progenitors, reduced thymocyte numbers and viability, and interestingly defective B-cell development, growth retardation, neurological defects, skin atrophy, and tail malformation were almost completely restored as well, substantiating the involvement of the p53 pathway in the alterations caused by Mysm1 deficiency. In conclusion, this investigation uncovers a novel link between H2A deubiquitinase 2A-DUB/Mysm1 and suppression of p53-mediated apoptotic programs during early lymphoid development and other developmental processes.
Collapse
|
6
|
Parkinson RM, Collins SL, Horton MR, Powell JD. Egr3 induces a Th17 response by promoting the development of γδ T cells. PLoS One 2014; 9:e87265. [PMID: 24475259 PMCID: PMC3901773 DOI: 10.1371/journal.pone.0087265] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/24/2013] [Indexed: 01/13/2023] Open
Abstract
The transcription factor Early Growth Response 3 (Egr3) has been shown to play an important role in negatively regulating T cell activation and promoting T cell anergy in Th1 cells. However, its role in regulating other T helper subsets has yet to be described. We sought to determine the role of Egr3 in a Th17 response using transgenic mice that overexpress Egr3 in T cells (Egr3 TG). Splenocytes from Egr3 TG mice demonstrated more robust generation of Th17 cells even under non-Th17 skewing conditions. We found that while Egr3 TG T cells were not intrinsically more likely to become Th17 cells, the environment encountered by these cells was more conducive to Th17 development. Further analysis revealed a considerable increase in the number of γδ T cells in both the peripheral lymphoid organs and mucosal tissues of Egr3 TG mice, a cell type which normally accounts for only a small fraction of peripheral lymphocytes. Consistent with this marked increase in peripheral γδ T cells, thymocytes from Egr3 TG mice also appear biased toward γδ T cell development. Coculture of these Egr3-induced γδ T cells with wildtype CD4+ T cells increases Th17 differentiation, and Egr3 TG mice are more susceptible to bleomycin-induced lung inflammation. Overall our findings strengthen the role for Egr3 in promoting γδ T cell development and show that Egr3-induced γδ T cells are both functional and capable of altering the adaptive immune response in a Th17-biased manner. Our data also demonstrates that the role played by Egr3 in T cell activation and differentiation is more complex than previously thought.
Collapse
Affiliation(s)
- Rose M. Parkinson
- The Sidney-Kimmel Cancer Research Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Samuel L. Collins
- Division of Pulmonary Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Maureen R. Horton
- Division of Pulmonary Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jonathan D. Powell
- The Sidney-Kimmel Cancer Research Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
7
|
Lai L, Zhang M, Song Y, Rood D. Recombinant IL-7/HGFβ hybrid cytokine enhances T cell recovery in mice following allogeneic bone marrow transplantation. PLoS One 2013; 8:e82998. [PMID: 24349415 PMCID: PMC3861470 DOI: 10.1371/journal.pone.0082998] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/08/2013] [Indexed: 11/23/2022] Open
Abstract
T cell immunodeficiency is a major complication of bone marrow (BM) transplantation (BMT). Therefore, approaches to enhance T cell reconstitution after BMT are required. We have purified a hybrid cytokine, consisting of IL-7 and the β-chain of hepatocyte growth factor (HGFβ) (IL-7/HGFβ), from a unique long-term BM culture system. We have cloned and expressed the IL-7/HGFβ gene in which the IL-7 and HGFβ genes are connected by a flexible linker to generate rIL-7/HGFβ protein. Here, we show that rIL-7/HGFβ treatment enhances thymopoiesis after allogeneic BMT. Although rIL-7 treatment also enhances the number of thymocytes, rIL-7/HGFβ hybrid cytokine was more effective than was rIL-7 and the mechanisms by which rIL-7 and rIL-7/HGFβ increase the numbers of thymocytes are different. rIL-7 enhances the survival of double negative (DN), CD4 and CD8 single positive (SP) thymocytes. In contrast, rIL-7/HGFβ enhances the proliferation of the DN, SP thymocytes, as well as the survival of CD4 and CD8 double positive (DP) thymocytes. rIL-7/HGFβ treatment also increases the numbers of early thymocyte progenitors (ETPs) and thymic epithelial cells (TECs). The enhanced thymic reconstitution in the rIL-7/HGFβ-treated allogeneic BMT recipients results in increased number and functional activities of peripheral T cells. Graft-versus-host-disease (GVHD) is not induced in the rIL-7/HGFβ-treated BMT mice. Therefore, rIL-7/HGFβ may offer a new tool for the prevention and/or treatment of T cell immunodeficiency following BMT.
Collapse
Affiliation(s)
- Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, United States of America
- University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail:
| | - Mingfeng Zhang
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, United States of America
| | - Yinhong Song
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, United States of America
| | - Debra Rood
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, United States of America
| |
Collapse
|
8
|
The Sound of Silence: RNAi in Poly (ADP-Ribose) Research. Genes (Basel) 2012; 3:779-805. [PMID: 24705085 PMCID: PMC3899979 DOI: 10.3390/genes3040779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/05/2012] [Accepted: 11/06/2012] [Indexed: 02/07/2023] Open
Abstract
Poly(ADP-ribosyl)-ation is a nonprotein posttranslational modification of proteins and plays an integral part in cell physiology and pathology. The metabolism of poly(ADP-ribose) (PAR) is regulated by its synthesis by poly(ADP-ribose) polymerases (PARPs) and on the catabolic side by poly(ADP-ribose) glycohydrolase (PARG). PARPs convert NAD+ molecules into PAR chains that interact covalently or noncovalently with target proteins and thereby modify their structure and functions. PAR synthesis is activated when PARP1 and PARP2 bind to DNA breaks and these two enzymes account for almost all PAR formation after genotoxic stress. PARG cleaves PAR molecules into free PAR and finally ADP-ribose (ADPR) moieties, both acting as messengers in cellular stress signaling. In this review, we discuss the potential of RNAi to manipulate the levels of PARPs and PARG, and consequently those of PAR and ADPR, and compare the results with those obtained after genetic or chemical disruption.
Collapse
|
9
|
β-catenin/TCF-1 pathway in T cell development and differentiation. J Neuroimmune Pharmacol 2012; 7:750-62. [PMID: 22535304 DOI: 10.1007/s11481-012-9367-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 04/03/2012] [Indexed: 02/04/2023]
Abstract
T cells must undergo two critical differentiation processes before they become competent effectors that can mediate actual immune responses. Progenitor T cells undergo defined stages of differentiation in the thymus, which include positive and negative selection, to generate a repertoire of T cells that will respond to foreign but not self antigens. When these immunocompetent T cells first migrate out of thymus into peripheral lymphoid tissues, they are naïve and are unable to mediate immune responses. However, upon antigen encounter, peripheral CD4+ naïve T cells undergo another differentiation process to become armed effector T cells including Th1, Th2, Th17 or regulatory T cells, all of which are capable of regulating immune responses. A canonical Wnt/β-catenin/T cell factor (TCF) pathway has been shown to regulate T cell differentiation in both the thymus and in peripheral lymphoid tissues. Dysfunction of this pathway at any stage of T cell differentiation could lead to severe autoimmunity including experimental autoimmune encephalomyelitis or immune deficiency. Understanding the role played by β-catenin/TCF-1 in T cell differentiation will facilitate our understanding of the mechanisms that regulate T cell function and assist in identifying novel therapy targets for treating both autoimmune and immune diseases. Therefore, in this review, we will focus on the function of β-catenin/TCF-1 pathway in the regulation of thymic and peripheral T cell differentiation processes.
Collapse
|
10
|
Wang R, Xie H, Huang Z, Ma J, Fang X, Ding Y, Sun Z. Transcription factor network regulating CD(+)CD8(+) thymocyte survival. Crit Rev Immunol 2012; 31:447-58. [PMID: 22321106 DOI: 10.1615/critrevimmunol.v31.i6.10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
More than 80% of thymocytes are CD4(+)CD8(+) double positive (DP) cells subject to positive/ negative selection. The lifespan of DP thymocytes is critical in shaping the peripheral T-cell repertoire essential for mounting immune responses against foreign, but not self, antigens. During T-cell maturation, if the first round of T-cell receptor (TCR) α chain rearrangement fails to generate a productive T-cell receptor, DP cells start another round of α chain rearrangement until positive selection or cell death intervenes. Thus, the lifespan of DP cells determines how many rounds of α chain rearrangement can be carried out, and influences the likelihood of completing positive selection. The antiapoptotic protein Bcl-x(L) is the ultimate effector regulating DP cell survival, and several transcription factors critical for T-cell development, such as TCF-1, E proteins, c-Myb, and RORγt, regulate DP survival via a Bcl-x(L)-dependent pathway. However, the relationship between these transcription factors in this process is largely unclear. Recent results are revealing an interactive network among these critical factors during regulation of DP thymocyte survival. This review will discuss how these transcription factors potentially work together to control DP thymocyte survival that is critical for successful completion of T-cell development.
Collapse
Affiliation(s)
- Ruiqing Wang
- Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The nuclear hormone receptor retinoid-related orphan receptor γt (RORγt) induces a pro-inflammatory program in lymphoid cells, culminating in the expression of interleukin-6 (IL-6), IL-17, IL-22, granulocyte-macrophage colony-stimulating factor, and tumor necrosis factor. During ontogeny, the first type of cells expressing RORγt are lymphoid tissue inducer cells, a type of innate lymphoid cell (ILC) generated in mammalian fetuses to induce the development of lymph nodes and Peyer's patches. After birth, RORγt(+) ILCs and RORγt(+) T cells are involved in the defense of epithelial surfaces against extracellular microbes and play an important role in the intestinal homeostasis with symbiotic microbiota. The development and evolution of RORγt(+) cells is intimately associated with the construction of a stable host-microbe interface.
Collapse
Affiliation(s)
- Gérard Eberl
- Lymphoid Tissue Development Unit, Institut Pasteur, Paris, France. CNRS, URA1961, Paris, France.
| |
Collapse
|
12
|
Wang R, Xie H, Huang Z, Ma J, Fang X, Ding Y, Sun Z. T cell factor 1 regulates thymocyte survival via a RORγt-dependent pathway. THE JOURNAL OF IMMUNOLOGY 2011; 187:5964-73. [PMID: 22039299 DOI: 10.4049/jimmunol.1101205] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Survival of CD4(+)CD8(+) double-positive (DP) thymocytes plays a critical role in shaping the peripheral T cell repertoire. However, the mechanisms responsible for the regulation of DP thymocyte lifespan remain poorly understood. In this work, we demonstrate that T cell factor (TCF)-1 regulates DP thymocyte survival by upregulating RORγt. Microarray analysis revealed that RORγt was significantly downregulated in TCF-1(-/-) thymocytes that underwent accelerated apoptosis, whereas RORγt was greatly upregulated in thymocytes that had enhanced survival due to transgenic expression of a stabilized β-catenin (β-cat(Tg)), a TCF-1 activator. Both TCF-1(-/-) and RORγt(-/-) DP thymocytes underwent similar accelerated apoptosis. Forced expression of RORγt successfully rescued TCF-1(-/-) DP thymocytes from apoptosis, whereas ectopically expressed TCF-1 was not able to rescue the defective T cell development because of the lack of RORγt-supported survival. Furthermore, activation of TCF-1 by stabilized β-catenin was able to enhance DP thymocyte survival only in the presence of RORγt, indicating that RORγt acts downstream of TCF-1 in the regulation of DP thymocyte survival. Moreover, β-catenin/TCF-1 directly interacted with the RORγt promoter region and stimulated its activity. Therefore, our data demonstrated that TCF-1 enhances DP thymocyte survival through transcriptional upregulation of RORγt, which we previously showed is an essential prosurvival molecule for DP thymocytes.
Collapse
Affiliation(s)
- Ruiqing Wang
- Division of Immunology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Li S, Symonds ALJ, Zhu B, Liu M, Raymond MV, Miao T, Wang P. Early growth response gene-2 (Egr-2) regulates the development of B and T cells. PLoS One 2011; 6:e18498. [PMID: 21533228 PMCID: PMC3077377 DOI: 10.1371/journal.pone.0018498] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 03/09/2011] [Indexed: 11/21/2022] Open
Abstract
Background Understanding of how transcription factors are involved in lymphocyte development still remains a challenge. It has been shown that Egr-2 deficiency results in impaired NKT cell development and defective positive selection of T cells. Here we investigated the development of T, B and NKT cells in Egr-2 transgenic mice and the roles in the regulation of distinct stages of B and T cell development. Methods and Findings The expression of Egr1, 2 and 3 were analysed at different stages of T and B cell development by RT-PCT and results showed that the expression was strictly regulated at different stages. Forced expression of Egr-2 in CD2+ lymphocytes resulted in a severe reduction of CD4+CD8+ (DP) cells in thymus and pro-B cells in bone marrow, which was associated with reduced expression of Notch1 in ISP thymocytes and Pax5 in pro-B cells, suggesting that retraction of Egr-2 at the ISP and pro-B cell stages is important for the activation of lineage differentiation programs. In contrast to reduction of DP and pro-B cells, Egr-2 enhanced the maturation of DP cells into single positive (SP) T and NKT cells in thymus, and immature B cells into mature B cells in bone marrow. Conclusions Our results demonstrate that Egr-2 expressed in restricted stages of lymphocyte development plays a dynamic, but similar role for the development of T, NKT and B cells.
Collapse
Affiliation(s)
- Suling Li
- Department of Biosciences, Brunel University, Uxbridge, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
14
|
Yuan J, Crittenden RB, Bender TP. c-Myb promotes the survival of CD4+CD8+ double-positive thymocytes through upregulation of Bcl-xL. THE JOURNAL OF IMMUNOLOGY 2010; 184:2793-804. [PMID: 20142358 DOI: 10.4049/jimmunol.0902846] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mechanisms that regulate the lifespan of CD4(+)CD8(+) double-positive (DP) thymocytes help shape the peripheral T cell repertoire. However, the molecular mechanisms controlling DP thymocyte survival remain poorly understood. The Myb proto-oncogene encodes a transcription factor required during multiple stages of T cell development. We demonstrate that Myb mRNA expression is upregulated as thymocytes differentiate from the double-negative into the metabolically quiescent, small, preselection DP stage during T cell development. Using a conditional deletion mouse model, we demonstrate that Myb-deficient DP thymocytes undergo premature apoptosis, resulting in a limited Tcralpha repertoire biased toward 5' Jalpha segment usage. Premature apoptosis occurs specifically in the small preselection DP compartment in an alphabetaTCR-independent manner and is a consequence of decreased Bcl-xL expression. Forced Bcl-xL expression is able to rescue survival, and reintroduction of c-Myb restores both Bcl-xL expression and the small preselection DP compartment. We further demonstrate that c-Myb promotes transcription at the Bcl2l1 locus via a genetic pathway that is independent of the expression of T cell-specific factor-1 or RORgammat, two transcription factors that induce Bcl-xL expression in T cell development. Thus, Bcl-xL is a novel mediator of c-Myb activity during normal T cell development.
Collapse
Affiliation(s)
- Joan Yuan
- Department of Microbiology, Beirne B Carter Center for Immunology Research, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
15
|
Jetten AM. Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism. NUCLEAR RECEPTOR SIGNALING 2009; 7:e003. [PMID: 19381306 PMCID: PMC2670432 DOI: 10.1621/nrs.07003] [Citation(s) in RCA: 511] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 03/18/2009] [Indexed: 12/11/2022]
Abstract
The last few years have witnessed a rapid increase in our knowledge of the retinoid-related orphan receptors RORα, -β, and -γ (NR1F1-3), their mechanism of action, physiological functions, and their potential role in several pathologies. The characterization of ROR-deficient mice and gene expression profiling in particular have provided great insights into the critical functions of RORs in the regulation of a variety of physiological processes. These studies revealed that RORα plays a critical role in the development of the cerebellum, that both RORα and RORβ are required for the maturation of photoreceptors in the retina, and that RORγ is essential for the development of several secondary lymphoid tissues, including lymph nodes. RORs have been further implicated in the regulation of various metabolic pathways, energy homeostasis, and thymopoiesis. Recent studies identified a critical role for RORγ in lineage specification of uncommitted CD4+ T helper cells into Th17 cells. In addition, RORs regulate the expression of several components of the circadian clock and may play a role in integrating the circadian clock and the rhythmic pattern of expression of downstream (metabolic) genes. Study of ROR target genes has provided insights into the mechanisms by which RORs control these processes. Moreover, several reports have presented evidence for a potential role of RORs in several pathologies, including osteoporosis, several autoimmune diseases, asthma, cancer, and obesity, and raised the possibility that RORs may serve as potential targets for chemotherapeutic intervention. This prospect was strengthened by recent evidence showing that RORs can function as ligand-dependent transcription factors.
Collapse
Affiliation(s)
- Anton M Jetten
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA.
| |
Collapse
|
16
|
Miyazaki M, Miyazaki K, Itoi M, Katoh Y, Guo Y, Kanno R, Katoh-Fukui Y, Honda H, Amagai T, van Lohuizen M, Kawamoto H, Kanno M. Thymocyte proliferation induced by pre-T cell receptor signaling is maintained through polycomb gene product Bmi-1-mediated Cdkn2a repression. Immunity 2008; 28:231-45. [PMID: 18275833 DOI: 10.1016/j.immuni.2007.12.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 11/15/2007] [Accepted: 12/07/2007] [Indexed: 11/16/2022]
Abstract
Thymocytes undergo massive proliferation before T cell receptor (TCR) gene rearrangement, ensuring the diversification of the TCR repertoire. Because activated cells are more susceptible to damage, cell-death restraint as well as promotion of cell-cycle progression is considered important for adequate cell growth. Although the molecular mechanism of pre-TCR-induced proliferation has been examined, the mechanisms of protection against cell death during the proliferation phase remain unknown. Here we show that the survival of activated pre-T cells induced by pre-TCR signaling required the Polycomb group (PcG) gene product Bmi-1-mediated repression of Cdkn2A, and that p19Arf expression resulted in thymocyte cell death and inhibited the transition from CD4(-)CD8(-) (DN) to CD4(+)CD8(+) (DP) stage upstream of the transcriptional factor p53 pathway. The expression of Cdkn2A (the gene encoding p19Arf) in immature thymocytes was directly regulated by PcG complex containing Bmi-1 and M33 through the maintenance of local trimethylated histone H3K27. Our results indicate that this epigenetic regulation critically contributes to the survival of the activated pre-T cells, thereby supporting their proliferation during the DN-DP transition.
Collapse
Affiliation(s)
- Masaki Miyazaki
- Department of Immunology, Graduate School of Biomedical Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yélamos J, Schreiber V, Dantzer F. Toward specific functions of poly(ADP-ribose) polymerase-2. Trends Mol Med 2008; 14:169-78. [PMID: 18353725 DOI: 10.1016/j.molmed.2008.02.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 02/12/2008] [Accepted: 02/13/2008] [Indexed: 12/31/2022]
Abstract
Poly(ADP-ribose) polymerase-2 (PARP-2) belongs to a family of enzymes that catalyze poly(ADP-ribosyl)ation of proteins. PARP-1 and PARP-2 are so far the only PARP enzymes whose catalytic activity has been shown to be induced by DNA-strand breaks, providing strong support for key shared functions in the cellular response to DNA damage. Accordingly, clinical trials for cancer, using PARP inhibitors that target the conserved catalytic domain of PARP proteins, are now ongoing. However, recent data suggest unique functions for PARP-2 in specific processes, such as genome surveillance, spermatogenesis, adipogenesis and T cell development. Understanding these physiological roles might provide invaluable clues to the rational development and exploitation of specific PARP-2 inhibitor drugs in a clinical setting and the design of new therapeutic approaches in different pathophysiological conditions.
Collapse
Affiliation(s)
- José Yélamos
- Department of Immunology, IMIM-Hospital del Mar, Barcelona Biomedical Research Park, Barcelona, Spain.
| | | | | |
Collapse
|
18
|
Koltsova EK, Wiest DL, Vavilova TP. Transcription factors NFAT2 and Egr1 cooperatively regulate the maturation of T-lymphoma in vitro. BIOCHEMISTRY (MOSCOW) 2007; 72:954-61. [PMID: 17922653 DOI: 10.1134/s0006297907090052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have demonstrated that transcription factors Egr1 and NFAT2 cooperate in regulation of the early stages of T-lymphocyte development, whereas the related factors Egr2 and Egr3 do not cooperate with NFAT2. Egr1 and NFAT2 are shown to cooperatively control gene expression of the regulatory factor Id3 and recombinase Rag2, whose functions are critical for T-lymphocyte differentiation. Thus, the concerted action of the transcription factors Egr1 and NFAT2 can play a crucial role in regulation of the T cell differentiation in vitro due to the cooperative regulation of Id3 and Rag2 gene expression.
Collapse
Affiliation(s)
- E K Koltsova
- Moscow State Medical Stomatological University, Moscow 127473, Russia.
| | | | | |
Collapse
|
19
|
Liu D, Evans I, Britton G, Zachary I. The zinc-finger transcription factor, early growth response 3, mediates VEGF-induced angiogenesis. Oncogene 2007; 27:2989-98. [PMID: 18059339 DOI: 10.1038/sj.onc.1210959] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Early growth response 3 (Egr3) is a member of a zinc-finger transcription factor subfamily, which we previously found to be strongly upregulated by vascular endothelial growth factor (VEGF)-A in an oligonucleotide microarray screen of endothelial cells. Here, we show that Egr3 is the predominant Egr family member upregulated by VEGF in endothelial cells at 45 min, and that VEGF induced a rapid increase in Egr-dependent transcriptional activation mediated via its major signalling receptor, VEGFR2/KDR, and the protein kinase C (PKC) pathway. VEGF-induced Egr3 gene expression was also mediated in part via a PKC-dependent activation of protein kinase D. Inhibition of Egr3 gene expression by RNA interference was effective in inhibiting basal and VEGF-induced Egr3 gene expression, and it also inhibited VEGF-mediated endothelial cell proliferation, migration and tubulogenesis. These findings indicate that Egr3 has an essential downstream role in VEGF-mediated endothelial functions leading to angiogenesis and may have particular relevance for adult angiogenic processes involved in vascular repair and neovascular disease.
Collapse
Affiliation(s)
- D Liu
- BHF Laboratories, Department of Medicine, University College London, London, UK
| | | | | | | |
Collapse
|
20
|
Abstract
Hypertonicity activates several different transcription factors, including TonEBP/OREBP, that in turn increase transcription of numerous genes. Hypertonicity elevates TonEBP/OREBP transcriptional activity by moving it into the nucleus, where it binds to its cognate DNA element (ORE), and by increasing its transactivational activity. This chapter presents protocols for measuring the transcriptional activity of TonEBP/OREBP and determining its subcellular localization, its binding to OREs, and activity of its transactivation domain.
Collapse
Affiliation(s)
- Joan D Ferraris
- Laboratory of Kidney and Electrolyte Metabolism, National Heart Lung Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | | |
Collapse
|
21
|
Carter JH, Lefebvre JM, Wiest DL, Tourtellotte WG. Redundant role for early growth response transcriptional regulators in thymocyte differentiation and survival. THE JOURNAL OF IMMUNOLOGY 2007; 178:6796-805. [PMID: 17513727 DOI: 10.4049/jimmunol.178.11.6796] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The early growth response (Egr) family of transcriptional regulators consists of four proteins that share highly conserved DNA-binding domains. In many cell types, they are coexpressed and appear to have cooperative roles in regulating gene expression during growth and differentiation. Three Egr proteins, Egr1, Egr2, and Egr3, are induced during thymocyte differentiation in response to pre-TCR signaling, suggesting they may be critical for some aspects of pre-TCR-mediated differentiation. Indeed, enforced expression of Egr proteins in developing thymocytes can recapitulate some aspects of pre-TCR signaling, but the mechanisms by which they contribute to beta-selection are still poorly understood. Egr3 stimulates proliferation of beta-selected thymocytes, and Egr3-deficient mice have hypocellular thymuses, defects in proliferation, and impaired progression from double-negative 3 to double-negative 4. Surprisingly, Egr1-deficient mice exhibit normal beta-selection, indicating that the functions of Egr1 during beta-selection are likely compensated by other Egr proteins. In this study, we show that mice lacking both Egr1 and Egr3 exhibit a more severe thymic atrophy and impairment of thymocyte differentiation than mice lacking either Egr1 or Egr3. This is due to a proliferation defect and cell-autonomous increase in apoptosis, indicating that Egr1 and Egr3 cooperate to promote thymocyte survival. Microarray analysis of deregulated gene expression in immature thymocytes lacking both Egr1 and Egr3 revealed a previously unknown role for Egr proteins in the maintenance of cellular metabolism, providing new insight into the function of these molecules during T cell development.
Collapse
Affiliation(s)
- John H Carter
- Department of Pathology, Northwestern University, Chicago IL, 60611, USA
| | | | | | | |
Collapse
|
22
|
David-Fung ES, Yui MA, Morales M, Wang H, Taghon T, Diamond RA, Rothenberg EV. Progression of regulatory gene expression states in fetal and adult pro-T-cell development. Immunol Rev 2006; 209:212-36. [PMID: 16448545 PMCID: PMC4157939 DOI: 10.1111/j.0105-2896.2006.00355.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Precursors entering the T-cell developmental pathway traverse a progression of states characterized by distinctive patterns of gene expression. Of particular interest are regulatory genes, which ultimately control the dwell time of cells in each state and establish the mechanisms that propel them forward to subsequent states. Under particular genetic and developmental circumstances, the transitions between these states occur with different timing, and environmental feedbacks may shift the steady-state accumulations of cells in each state. The fetal transit through pro-T-cell stages is faster than in the adult and subject to somewhat different genetic requirements. To explore causes of such variation, this review presents previously unpublished data on differentiation gene activation in pro-T cells of pre-T-cell receptor-deficient mutant mice and a quantitative comparison of the profiles of transcription factor gene expression in pro-T-cell subsets of fetal and adult wildtype mice. Against a background of consistent gene expression, several regulatory genes show marked differences between fetal and adult expression profiles, including those encoding two basic helix-loop-helix antagonist Id factors, the Ets family factor SpiB and the Notch target gene Deltex1. The results also reveal global differences in regulatory alterations triggered by the first T-cell receptor-dependent selection events in fetal and adult thymopoiesis.
Collapse
|
23
|
Yélamos J, Monreal Y, Saenz L, Aguado E, Schreiber V, Mota R, Fuente T, Minguela A, Parrilla P, de Murcia G, Almarza E, Aparicio P, Ménissier-de Murcia J. PARP-2 deficiency affects the survival of CD4+CD8+ double-positive thymocytes. EMBO J 2006; 25:4350-60. [PMID: 16946705 PMCID: PMC1570435 DOI: 10.1038/sj.emboj.7601301] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 08/01/2006] [Indexed: 12/18/2022] Open
Abstract
Poly-(ADP-ribose) polymerase-2 (PARP-2) belongs to a large family of enzymes that synthesize and transfer ADP-ribose polymers to acceptor proteins, modifying their functional properties. PARP-2-deficient (Parp-2-/-) cells, similar to Parp-1-/- cells, are sensitive to both ionizing radiation and alkylating agents. Here we show that inactivation of mouse Parp-2, but not Parp-1, produced a two-fold reduction in CD4+CD8+ double-positive (DP) thymocytes associated with decreased DP cell survival. Microarray analyses revealed increased expression of the proapoptotic Bcl-2 family member Noxa in Parp-2-/- DP thymocytes compared to littermate controls. In addition, DP thymocytes from Parp-2-/- have a reduced expression of T-cell receptor (TCR)alpha and a skewed repertoire of TCRalpha toward the 5' Jalpha segments. Our results show that in the absence of PARP-2, the survival of DP thymocytes undergoing TCRalpha recombination is compromised despite normal amounts of Bcl-xL. These data suggest a novel role for PARP-2 as an important mediator of T-cell survival during thymopoiesis by preventing the activation of DNA damage-dependent apoptotic response during the multiple rounds of TCRalpha rearrangements preceding a positively selected TCR.
Collapse
Affiliation(s)
- José Yélamos
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia, Murcia, Spain
- These authors contributed equally to this work
- Departamento de Bioquímica, Biología Molecular e Inmunología, Facultad de Medicina, Campus de Espinardo, Apartado de Correos 4021, Universidad de Murcia, 30100-Murcia, Spain. Tel.: +34 968 369090; Fax: +34 968 369678; E-mail:
| | - Yolanda Monreal
- Transplant Unit, University Hospital ‘Virgen de la Arrixaca', Murcia, Spain
- These authors contributed equally to this work
| | - Luis Saenz
- Transplant Unit, University Hospital ‘Virgen de la Arrixaca', Murcia, Spain
| | - Enrique Aguado
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia, Murcia, Spain
| | - Valérie Schreiber
- UPR 9003 du Centre National de la Recherche Scientifique, Strasbourg, France
| | - Rubén Mota
- Transplant Unit, University Hospital ‘Virgen de la Arrixaca', Murcia, Spain
| | - Teodomiro Fuente
- Transplant Unit, University Hospital ‘Virgen de la Arrixaca', Murcia, Spain
| | - Alfredo Minguela
- Immunology Unit, University Hospital ‘Virgen de la Arrixaca', Murcia, Spain
| | - Pascual Parrilla
- Transplant Unit, University Hospital ‘Virgen de la Arrixaca', Murcia, Spain
| | - Gilbert de Murcia
- UPR 9003 du Centre National de la Recherche Scientifique, Strasbourg, France
| | | | - Pedro Aparicio
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia, Murcia, Spain
| | - Josiane Ménissier-de Murcia
- UPR 9003 du Centre National de la Recherche Scientifique, Strasbourg, France
- UPR 9003 du Centre National de la Recherche Scientifique, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP10413, 67412 Illkirch, Strasbourg, France. Tel.: +33 390 244704; Fax: +33 390 244686; E-mail:
| |
Collapse
|
24
|
Xi H, Schwartz R, Engel I, Murre C, Kersh GJ. Interplay between RORgammat, Egr3, and E proteins controls proliferation in response to pre-TCR signals. Immunity 2006; 24:813-826. [PMID: 16782036 DOI: 10.1016/j.immuni.2006.03.023] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2005] [Revised: 12/20/2005] [Accepted: 03/21/2006] [Indexed: 10/24/2022]
Abstract
The response of thymocytes to pre-T cell receptor (pre-TCR) signaling includes proliferation and gene rearrangement, two cellular processes that are incompatible. The control of proliferation by pre-TCR signals depends on the activities of the transcription factors RORgammat, Egr3, E12, and E47. Here, we describe a regulatory network in which interplay between these factors ensures transient proliferation that is temporally distinct from gene rearrangement. RORgammat expression was elevated after pre-TCR signaling, and RORgammat promoted gene rearrangement in CD4+, CD8+ cells by inhibiting cell division, promoting survival via Bcl-X(L), and inducing Rag2. Egr3 was transiently induced by pre-TCR signals and promoted a distinct proliferative phase by reducing E protein-dependent RORgammat expression and interacting with RORgammat to prevent induction of target genes. After Egr3 subsided, the expression and function of RORgammat increased. Thus, transient induction of Egr3 delays the effects of RORgammat and enables pre-TCR signaling to induce both proliferation and gene rearrangement.
Collapse
MESH Headings
- Animals
- E-Box Elements
- Early Growth Response Protein 3/genetics
- Early Growth Response Protein 3/metabolism
- Gene Rearrangement, T-Lymphocyte
- Inhibitor of Differentiation Proteins/metabolism
- Lymphocyte Activation/genetics
- Mice
- Mice, Mutant Strains
- Nuclear Receptor Subfamily 1, Group F, Member 3
- Promoter Regions, Genetic
- RNA-Binding Proteins/genetics
- Rats
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- Signal Transduction
- T-Lymphocytes/immunology
- TCF Transcription Factors/metabolism
- Transcription Factor 7-Like 1 Protein
Collapse
Affiliation(s)
- Hongkang Xi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, Georgia 30322
| | - Ruth Schwartz
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92903
| | - Isaac Engel
- La Jolla Institute for Allergy and Immunology, San Diego, California 92121
| | - Cornelis Murre
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92903
| | - Gilbert J Kersh
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, Georgia 30322.
| |
Collapse
|
25
|
Abstract
In this issue of Immunity, Kersh and colleagues (Xi et al., 2006) investigate the regulatory network that permits two otherwise clashing cellular processes--proliferation and gene rearrangement--to occur at temporally distinct periods following the formation of the pre-T cell receptor (pre-TCR) complex.
Collapse
Affiliation(s)
- Juan Carlos Zúñiga-Pflücker
- Sunnybrook Research Institute, Department of Immunology, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada.
| | - Maria Ciofani
- Sunnybrook Research Institute, Department of Immunology, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| |
Collapse
|
26
|
Lahousse SA, Wallace DG, Liu D, Gaido KW, Johnson KJ. Testicular Gene Expression Profiling following Prepubertal Rat Mono-(2-ethylhexyl) Phthalate Exposure Suggests a Common Initial Genetic Response at Fetal and Prepubertal Ages. Toxicol Sci 2006; 93:369-81. [PMID: 16809437 DOI: 10.1093/toxsci/kfl049] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Phthalate chemical plasticizers can damage the fetal and postnatal mammalian testis, but several aspects of the injury mechanism remain unknown. Using a genome-wide microarray, the profile of testicular gene expression changes was examined following exposure of postnatal day 28 rats to a single, high dose (1000 mg/kg) of mono-(2-ethylhexyl) phthalate (MEHP). By microarray analysis, approximately 1675 nonredundant genes exhibited significant expression changes; the vast majority were observed at 12 h. Among the 36 genes significantly altered up to the 3-h time point, prominent functional categories were secreted, transcription, and signaling factors. Using quantitative PCR (qPCR), the dose-response of 24 genes was determined after a single MEHP exposure of 10, 100, or 1000 mg/kg. Increasing 114-fold by 12 h at 1000 mg/kg, Thbs1 (thrombospondin 1) showed the highest level of gene induction. The vast majority of genes analyzed by qPCR exhibited significant expression alterations at the lowest dose level. Interestingly, a unique, dose-dependent expression pattern was observed for the transcription factor Nr0b1, steroidogenic genes (Cyp17a1 and StAR), and a cholesterol metabolism gene (Dhcr7). For these genes, the direction of expression change at 10 or 100 mg/kg was opposite that observed at 1000 mg/kg. Gene profiling data at 1000 mg/kg MEHP were phenotypically anchored to increased germ cell apoptosis (6 and 12 h) and an interstitial neutrophil infiltrate (12 h). At 10 or 100 mg/kg MEHP, no testicular morphological changes were detected, but a significant increase in germ cell apoptosis was seen at 6 h. Finally, comparison of the prepubertal MEHP microarray data to similar data from fetal dibutyl phthalate (DBP) exposure showed conservation in both the identities of testicular genes altered and the direction of expression changes. For example, 60% of the genes altered within 3 h of prepubertal MEHP exposure also were changed following acute fetal DBP exposure, and the direction of expression change was highly preserved. These data demonstrate that similar genetic targets are altered following fetal and prepubertal phthalate exposure, suggesting that the initial mechanism of fetal and prepubertal phthalate-induced testicular injury is shared.
Collapse
Affiliation(s)
- Stephanie A Lahousse
- Division of Biological Sciences, CIIT Centers for Health Research, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
27
|
Aifantis I, Mandal M, Sawai K, Ferrando A, Vilimas T. Regulation of T-cell progenitor survival and cell-cycle entry by the pre-T-cell receptor. Immunol Rev 2006; 209:159-69. [PMID: 16448541 DOI: 10.1111/j.0105-2896.2006.00343.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Pre-T-cell receptor (pre-TCR) functions and the study of early thymocyte development continue to fascinate immunologists more than 10 years after the first description and cloning of the receptor. Although multiple reports have addressed several aspects of pre-TCR signaling and function, its ability to regulate diverse functions, including proliferation, survival, and allelic exclusion of the TCR-beta locus, remains an open question. What fascinates us is its central role in the fine balance between physiological differentiation and thymocyte transformation that leads to T-cell leukemia and lymphomas. In this review, we integrate pre-TCR signaling pathways and study their effects on the regulation of T-cell progenitor cell-cycle entry and cell survival. We also connect aberrant pre-TCR signaling to deregulated proliferation and apoptotic balances and thymocyte transformation.
Collapse
MESH Headings
- Animals
- Cell Cycle
- Cell Survival
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/metabolism
- Humans
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Signal Transduction
- T-Lymphocytes/cytology
- Thymus Gland/cytology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Iannis Aifantis
- University of Chicago, Department of Medicine, Section of Rheumatology, Committees of Immunology, Cancer and Developmental Biology, Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
28
|
Jetten AM, Joo JH. Retinoid-related Orphan Receptors (RORs): Roles in Cellular Differentiation and Development. ADVANCES IN DEVELOPMENTAL BIOLOGY (AMSTERDAM, NETHERLANDS) 2006; 16:313-355. [PMID: 18418469 DOI: 10.1016/s1574-3349(06)16010-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Retinoid-related orphan receptors RORalpha, -beta, and -gamma are transcription factors belonging to the steroid hormone receptor superfamily. During embryonic development RORs are expressed in a spatial and temporal manner and are critical in the regulation of cellular differentiation and the development of several tissues. RORalpha plays a key role in the development of the cerebellum particularly in the regulation of the maturation and survival of Purkinje cells. In RORalpha-deficient mice, the reduced production of sonic hedgehog by these cells appears to be the major cause of the decreased proliferation of granule cell precursors and the observed cerebellar atrophy. RORalpha has been implicated in the regulation of a number of other physiological processes, including bone formation. RORbeta expression is largely restricted to several regions of the brain, the retina, and pineal gland. Mice deficient in RORbeta develop retinal degeneration that results in blindness. RORgamma is essential for lymph node organogenesis. In the intestine RORgamma is required for the formation of several other lymphoid tissues: Peyer's patches, cryptopatches, and isolated lymphoid follicles. RORgamma plays a key role in the generation of lymphoid tissue inducer (LTi) cells that are essential for the development of these lymphoid tissues. In addition, RORgamma is a critical regulator of thymopoiesis. It controls the differentiation of immature single-positive thymocytes into double-positive thymocytes and promotes the survival of double-positive thymocytes by inducing the expression of the anti-apoptotic gene Bcl-X(L). Interestingly, all three ROR receptors appear to play a role in the control of circadian rhythms. RORalpha positively regulates the expression of Bmal1, a transcription factor that is critical in the control of the circadian clock. This review intends to provide an overview of the current status of the functions RORs have in these biological processes.
Collapse
Affiliation(s)
- Anton M Jetten
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | | |
Collapse
|
29
|
Xie H, Huang Z, Sadim MS, Sun Z. Stabilized β-Catenin Extends Thymocyte Survival by Up-Regulating Bcl-xL. THE JOURNAL OF IMMUNOLOGY 2005; 175:7981-8. [PMID: 16339534 DOI: 10.4049/jimmunol.175.12.7981] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD4+CD8+ double-positive (DP) thymocytes, which are extremely sensitive to apoptosis, specifically up-regulate Bcl-xL to extend their lifespan. Deletion of the Bcl-xL gene leads to premature apoptosis of the thymocytes. In this study, we show that stabilization of beta-catenin, a critical coactivator for T cell factor (TCF), enhances DP thymocyte survival via up-regulating Bcl-xL. Spontaneous or glucocorticoid-induced thymocyte apoptosis was associated with reduced levels of beta-catenin and Bcl-xL. Transgenic expression of a stabilized beta-catenin protected DP thymocytes from both spontaneous and glucocorticoid-induced apoptosis, resulting in significantly increased thymic cellularity. Compared with the wild-type mice, both protein and transcript levels of Bcl-xL were significantly increased in thymocytes of beta-catenin transgenic mice. In addition, TCF-1 as well as beta-catenin were able to stimulate transcriptional activity of the reporter driven by a Bcl-xL promoter. beta-Catenin/TCF is thus able to act as a signal to up-regulate Bcl-xL levels in DP thymocytes, resulting in their enhanced survival.
Collapse
Affiliation(s)
- Huimin Xie
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
30
|
Huang Z, Tunnacliffe A. Gene induction by desiccation stress in human cell cultures. FEBS Lett 2005; 579:4973-7. [PMID: 16115627 DOI: 10.1016/j.febslet.2005.07.084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 07/17/2005] [Accepted: 07/30/2005] [Indexed: 11/28/2022]
Abstract
One strategy for investigating desiccation tolerance is to use mammalian cells, which are sensitive to desiccation, as a model for testing putative adaptive mechanisms. However, how mammalian cells themselves respond to desiccation is poorly characterised. Although MAPK signal transduction pathways are activated by desiccation of human cells, hypertonicity-responsive genes AR, BGT1 and SMIT are not significantly induced, although they are proposed to be regulated by physiological changes which should occur during drying. To determine whether a response to desiccation occurs at the transcriptional level in human cells, we performed genome-wide microarray analysis. Twenty upregulated genes, including early stress response and transcription factor genes, were identified, most of which, e.g., EGR1, EGR3, SNAI1, RASD1 and GADD45B, were also induced by hypertonicity, indicating common regulatory mechanisms. Our data suggest that human cells can initiate a complex desiccation stress response distinct from, but overlapping with, that to hypertonic stress.
Collapse
Affiliation(s)
- Zebo Huang
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
| | | |
Collapse
|
31
|
Luo X, Ding L, Xu J, Williams RS, Chegini N. Leiomyoma and myometrial gene expression profiles and their responses to gonadotropin-releasing hormone analog therapy. Endocrinology 2005; 146:1074-96. [PMID: 15604208 DOI: 10.1210/en.2004-1384] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gene microarray was used to characterize the molecular environment of leiomyoma and matched myometrium during growth and in response to GnRH analog (GnRHa) therapy as well as GnRHa direct action on primary cultures of leiomyoma and myometrial smooth muscle cells (LSMC and MSMC). Unsupervised and supervised analysis of gene expression values and statistical analysis in R programming with a false discovery rate of P < or = 0.02 resulted in identification of 153 and 122 differentially expressed genes in leiomyoma and myometrium in untreated and GnRHa-treated cohorts, respectively. The expression of 170 and 164 genes was affected by GnRHa therapy in these tissues compared with their respective untreated group. GnRHa (0.1 microm), in a time-dependent manner (2, 6, and 12 h), targeted the expression of 281 genes (P < or = 0.005) in LSMC and MSMC, 48 of which genes were found in common with GnRHa-treated tissues. Functional annotations assigned these genes as key regulators of processes involving transcription, translational, signal transduction, structural activities, and apoptosis. We validated the expression of IL-11, early growth response 3, TGF-beta-induced factor, TGF-beta-inducible early gene response, CITED2 (cAMP response element binding protein-binding protein/p300-interacting transactivator with ED-rich tail), Nur77, growth arrest-specific 1, p27, p57, and G protein-coupled receptor kinase 5, representing cytokine, common transcription factors, cell cycle regulators, and signal transduction, at tissue levels and in LSMC and MSMC in response to GnRHa time-dependent action using real-time PCR, Western blotting, and immunohistochemistry. In conclusion, using different, complementary approaches, we characterized leiomyoma and myometrium molecular fingerprints and identified several previously unrecognized genes as targets of GnRHa action, implying that local expression and activation of these genes may represent features differentiating leiomyoma and myometrial environments during growth and GnRHa-induced regression.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Blotting, Western
- Cluster Analysis
- Cohort Studies
- DNA, Complementary/metabolism
- DNA-Binding Proteins/metabolism
- Down-Regulation
- Female
- Gene Expression Regulation
- Gene Expression Regulation, Neoplastic
- Gonadotropin-Releasing Hormone/analogs & derivatives
- Humans
- Immunohistochemistry
- Leiomyoma/metabolism
- Models, Biological
- Myocytes, Smooth Muscle/cytology
- Myometrium/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Oligonucleotide Array Sequence Analysis
- Premenopause
- Protein Processing, Post-Translational
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear
- Receptors, Steroid
- Repressor Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Trans-Activators/metabolism
- Transcription Factors/metabolism
- Up-Regulation
- Uterine Neoplasms/metabolism
Collapse
Affiliation(s)
- Xiaoping Luo
- Department of Obstetrics and Gynecology, University of Florida, Box 100294, Gainesville, Florida 32610, USA
| | | | | | | | | |
Collapse
|