1
|
Liu Z, Liang W, Pan Y. Complement-coagulation crosstalk in idiopathic membranous nephropathy: The potential pathogenesis and therapeutic perspective. Autoimmun Rev 2025; 24:103763. [PMID: 39914678 DOI: 10.1016/j.autrev.2025.103763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 01/09/2025] [Accepted: 02/03/2025] [Indexed: 02/12/2025]
Abstract
Idiopathic membranous nephropathy (IMN) is a glomerular disease that is prevalent in elderly males. The pathogenesis of IMN includes abnormal autoimmunity and complement activation, both of which leading to the damage of the glomerular filtration structure. Meanwhile, due to the pathological changes in the kidney, certain coagulation-related proteins are leaked from urine, resulting in the imbalance of coagulation homeostasis. Recent studies have indicated the interaction between complement and coagulation systems, while the aberration of both is common in IMN. In this review, we summarize the subsistent and underlying pathogenesis that ensue from complement-coagulation crosstalk and present the emerging evidence in this evolving field.
Collapse
Affiliation(s)
- Zikang Liu
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China
| | - Wei Liang
- Department of Nephrology, Renmin Hospital of Wuhan University, 430060 Wuhan, China.
| | - Yangbin Pan
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China.
| |
Collapse
|
2
|
Ma J, Yiu WH, Tang SCW. Complement anaphylatoxins: Potential therapeutic target for diabetic kidney disease. Diabet Med 2025; 42:e15427. [PMID: 39189098 PMCID: PMC11733663 DOI: 10.1111/dme.15427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024]
Abstract
Diabetic kidney disease (DKD) is the most common cause of kidney failure, characterized by chronic inflammation and fibrosis. The complement system is increasingly implicated in the development and progression of diabetic nephropathy. The important complement anaphylatoxins C3a and C5a are key mediators of the innate immune system, which regulates cellular inflammation, oxidative stress, mitochondrial homeostasis and tissue fibrosis. This review summarizes the involvement of anaphylatoxins in the pathogenesis of diabetic kidney disease, highlights their important roles in the pathophysiologic changes of glomerulopathy, tubulointerstitial damage and immune cell infiltration, and discusses the modulatory effects of new anti-diabetic drugs acting on the complement system. Based on available clinical data and findings from the preclinical studies of complement blockade, anaphylatoxin-targeted therapeutics may become a promising approach for patients with DKD in the future.
Collapse
Affiliation(s)
- Jingyuan Ma
- Division of Nephrology, Department of Medicine, School of Clinical MedicineThe University of Hong Kong, Queen Mary HospitalHong KongChina
| | - Wai Han Yiu
- Division of Nephrology, Department of Medicine, School of Clinical MedicineThe University of Hong Kong, Queen Mary HospitalHong KongChina
| | - Sydney C. W. Tang
- Division of Nephrology, Department of Medicine, School of Clinical MedicineThe University of Hong Kong, Queen Mary HospitalHong KongChina
| |
Collapse
|
3
|
Faivre A, Verissimo T, de Seigneux S. Proteinuria and tubular cells: Plasticity and toxicity. Acta Physiol (Oxf) 2025; 241:e14263. [PMID: 39797499 DOI: 10.1111/apha.14263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/26/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025]
Abstract
AIM Proteinuria is the most robust predictive factors for the progression of chronic kidney disease (CKD), and interventions targeting proteinuria reduction have shown to be the most effective nephroprotective treatments to date. While glomerular dysfunction is the primary source of proteinuria, its consequences extend beyond the glomerulus and have a profound impact on tubular epithelial cells. Indeed, proteinuria induces notable phenotypic changes in tubular epithelial cells and plays a crucial role in driving CKD progression. This comprehensive review aims to elucidate the mechanisms involved in the tubular handling of proteins and explore the potential effects of proteinuria on the function of tubular epithelial cells. METHODS This paper is a narrative review. Litterature review was performed on PubMed from its inception until 2024, focusing on the effects of proteinuria on tubular cells. RESULTS The review highlights the toxic effects of plasma proteins on tubular epithelial cells through signal transduction pathways, as well as endoplasmic reticulum stress activation, oxidative stress, and metabolic alterations. Additionally, it provides an updated understanding of the dynamic phenotypic changes occurring within the nephron in response to proteinuria. CONCLUSIONS By examining the intricate interplay between proteinuria and tubular epithelial cells, this review sheds light on key factors contributing to CKD progression and unveils potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Anna Faivre
- Department of Medicine, Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Department of Medicine, Service of Nephrology, Geneva University Hospitals, Geneva, Switzerland
| | - Thomas Verissimo
- Department of Medicine, Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Sophie de Seigneux
- Department of Medicine, Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Department of Medicine, Service of Nephrology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
4
|
Magnusen AF, Pandey MK. Complement System and Adhesion Molecule Skirmishes in Fabry Disease: Insights into Pathogenesis and Disease Mechanisms. Int J Mol Sci 2024; 25:12252. [PMID: 39596318 PMCID: PMC11594573 DOI: 10.3390/ijms252212252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Fabry disease is a rare X-linked lysosomal storage disorder caused by mutations in the galactosidase alpha (GLA) gene, resulting in the accumulation of globotriaosylceramide (Gb3) and its deacetylated form, globotriaosylsphingosine (Lyso-Gb3) in various tissues and fluids throughout the body. This pathological accumulation triggers a cascade of processes involving immune dysregulation and complement system activation. Elevated levels of complement 3a (C3a), C5a, and their precursor C3 are observed in the plasma, serum, and tissues of patients with Fabry disease, correlating with significant endothelial cell abnormalities and vascular dysfunction. This review elucidates how the complement system, particularly through the activation of C3a and C5a, exacerbates disease pathology. The activation of these pathways leads to the upregulation of adhesion molecules, including vascular cell adhesion molecule 1 (VCAM1), intercellular adhesion molecule 1 (ICAM1), platelet and endothelial cell adhesion molecule 1 (PECAM1), and complement receptor 3 (CR3) on leukocytes and endothelial cells. This upregulation promotes the excessive recruitment of leukocytes, which in turn exacerbates disease pathology. Targeting complement components C3a, C5a, or their respective receptors, C3aR (C3a receptor) and C5aR1 (C5a receptor 1), could potentially reduce inflammation, mitigate tissue damage, and improve clinical outcomes for individuals with Fabry disease.
Collapse
Affiliation(s)
- Albert Frank Magnusen
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Manoj Kumar Pandey
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
5
|
Alkaff FF, Lammerts RGM, Daha MR, Berger SP, van den Born J. Apical tubular complement activation and the loss of kidney function in proteinuric kidney diseases. Clin Kidney J 2024; 17:sfae215. [PMID: 39135935 PMCID: PMC11318052 DOI: 10.1093/ckj/sfae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Indexed: 08/15/2024] Open
Abstract
Many kidney diseases are associated with proteinuria. Since proteinuria is independently associated with kidney function loss, anti-proteinuric medication, often in combination with dietary salt restriction, comprises a major cornerstone in the prevention of progressive kidney failure. Nevertheless, complete remission of proteinuria is very difficult to achieve, and most patients with persistent proteinuria slowly progress toward kidney failure. It is well-recognized that proteinuria leads to kidney inflammation and fibrosis via various mechanisms. Among others, complement activation at the apical side of the proximal tubular epithelial cells is suggested to play a crucial role as a cause of progressive loss of kidney function. However, hitherto limited attention is given to the pathophysiological role of tubular complement activation relative to glomerular complement activation. This review aims to summarize the evidence for tubular epithelial complement activation in proteinuric kidney diseases in relation to loss of kidney function.
Collapse
Affiliation(s)
- Firas F Alkaff
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Division of Pharmacology and Therapy, Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| | - Rosa G M Lammerts
- Transplantation Immunology, Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mohamed R Daha
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stefan P Berger
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jacob van den Born
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Wang Y, Shang S, Jiang S, Zou G, Gao H, Li W. Complement C3a/C3aR and C5a/C5aR deposits accelerate the progression of advanced IgA nephropathy to end-stage renal disease. Clin Exp Med 2024; 24:139. [PMID: 38951265 PMCID: PMC11217045 DOI: 10.1007/s10238-024-01410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
IgA nephropathy (IgAN) is still one of the leading causes of end-stage kidney disease (ESRD), and complement system activation is a key to the pathogenesis of IgAN. The role of complement C3a/C3aR and C5a/C5aR in late stage of IgAN remains unknown. Renal specimens of 75 IgAN patients at the stage 4 CKD were stained using immunofluorescence and immunohistochemistry. The primary outcome was a composite of end-stage renal disease (ESRD) and death. Associations of complement components with baseline clinicopathological characteristics and outcomes were assessed using multivariable Cox regression and Spearman analyses. During a median follow-up of 15.0 months, 27 patients progressed to ESRD and none died. Lower eGFR [hazards ratio (HR), 0.827, 95% confidence interval (CI), 0.732-0.935; P = 0.002] and glomerular C3 deposition (HR, 3.179, 95% CI, 1.079-9.363; P = 0.036) were predictive of time to ESRD in stage 4 CKD IgAN. Higher expression of C3a (P = 0.010), C3aR (P = 0.005), C5a (P = 0.015), and C5aR (P < 0.001) was identified in ESRD group than in non-ESRD group. Glomerular C3a/C3aR and C5a/C5aR deposits were both correlated with a lower baseline eGFR, higher baseline 24 h-urinary protein (24 h-UP) and faster decline of eGFR. Besides, C3a and C5a deposits were found in patients with high S (S1) and T (T1/2) scores, respectively. Complement C3a/C3aR and C5a/C5aR in IgAN patients with stage 4 CKD may portend a faster deterioration of kidney function.
Collapse
Affiliation(s)
- Ying Wang
- Department of Nephrology, China-Japan Friendship Hospital, No. 2 East Yinghuayuan Street, Chaoyang District, Beijing, 100029, China
| | - Shunlai Shang
- Department of Nephrology, China-Japan Friendship Hospital, No. 2 East Yinghuayuan Street, Chaoyang District, Beijing, 100029, China.
| | - Shimin Jiang
- Department of Nephrology, China-Japan Friendship Hospital, No. 2 East Yinghuayuan Street, Chaoyang District, Beijing, 100029, China
| | - Guming Zou
- Department of Nephrology, China-Japan Friendship Hospital, No. 2 East Yinghuayuan Street, Chaoyang District, Beijing, 100029, China
| | - Hongmei Gao
- Department of Nephrology, China-Japan Friendship Hospital, No. 2 East Yinghuayuan Street, Chaoyang District, Beijing, 100029, China
| | - Wenge Li
- Department of Nephrology, China-Japan Friendship Hospital, No. 2 East Yinghuayuan Street, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
7
|
Isaksson GL, Hinrichs GR, Andersen H, Bach ML, Weyer K, Zachar R, Henriksen JE, Madsen K, Lund IK, Mollet G, Bistrup C, Birn H, Jensen BL, Palarasah Y. Amiloride Reduces Urokinase/Plasminogen-Driven Intratubular Complement Activation in Glomerular Proteinuria. J Am Soc Nephrol 2024; 35:410-425. [PMID: 38254266 PMCID: PMC11000727 DOI: 10.1681/asn.0000000000000312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
SIGNIFICANCE STATEMENT Proteinuria predicts accelerated decline in kidney function in CKD. The pathologic mechanisms are not well known, but aberrantly filtered proteins with enzymatic activity might be involved. The urokinase-type plasminogen activator (uPA)-plasminogen cascade activates complement and generates C3a and C5a in vitro / ex vivo in urine from healthy persons when exogenous, inactive, plasminogen, and complement factors are added. Amiloride inhibits uPA and attenuates complement activation in vitro and in vivo . In conditional podocin knockout (KO) mice with severe proteinuria, blocking of uPA with monoclonal antibodies significantly reduces the urine excretion of C3a and C5a and lowers tissue NLRP3-inflammasome protein without major changes in early fibrosis markers. This mechanism provides a link to proinflammatory signaling in proteinuria with possible long-term consequences for kidney function. BACKGROUND Persistent proteinuria is associated with tubular interstitial inflammation and predicts progressive kidney injury. In proteinuria, plasminogen is aberrantly filtered and activated by urokinase-type plasminogen activator (uPA), which promotes kidney fibrosis. We hypothesized that plasmin activates filtered complement factors C3 and C5 directly in tubular fluid, generating anaphylatoxins, and that this is attenuated by amiloride, an off-target uPA inhibitor. METHODS Purified C3, C5, plasminogen, urokinase, and urine from healthy humans were used for in vitro / ex vivo studies. Complement activation was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoblotting, and ELISA. Urine and plasma from patients with diabetic nephropathy treated with high-dose amiloride and from mice with proteinuria (podocin knockout [KO]) treated with amiloride or inhibitory anti-uPA antibodies were analyzed. RESULTS The combination of uPA and plasminogen generated anaphylatoxins C3a and C5a from intact C3 and C5 and was inhibited by amiloride. Addition of exogenous plasminogen was sufficient for urine from healthy humans to activate complement. Conditional podocin KO in mice led to severe proteinuria and C3a and C5a urine excretion, which was attenuated reversibly by amiloride treatment for 4 days and reduced by >50% by inhibitory anti-uPA antibodies without altering proteinuria. NOD-, LRR- and pyrin domain-containing protein 3-inflammasome protein was reduced with no concomitant effect on fibrosis. In patients with diabetic nephropathy, amiloride reduced urinary excretion of C3dg and sC5b-9 significantly. CONCLUSIONS In conditions with proteinuria, uPA-plasmin generates anaphylatoxins in tubular fluid and promotes downstream complement activation sensitive to amiloride. This mechanism links proteinuria to intratubular proinflammatory signaling. In perspective, amiloride could exert reno-protective effects beyond natriuresis and BP reduction. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER Increased Activity of a Renal Salt Transporter (ENaC) in Diabetic Kidney Disease, NCT01918488 and Increased Activity of ENaC in Proteinuric Kidney Transplant Recipients, NCT03036748 .
Collapse
Affiliation(s)
- Gustaf L. Isaksson
- Department of Molecular Medicine–Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Gitte R. Hinrichs
- Department of Molecular Medicine–Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Henrik Andersen
- Department of Molecular Medicine–Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Marie L. Bach
- Department of Molecular Medicine–Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Kathrin Weyer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Rikke Zachar
- Department of Molecular Medicine–Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Jan Erik Henriksen
- Steno Diabetes Center Odense, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kirsten Madsen
- Department of Molecular Medicine–Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Ida K. Lund
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Géraldine Mollet
- Laboratory of Hereditary Kidney Diseases, Inserm UMR1163, Imagine Institute, Université Paris Cité, Paris, France
| | - Claus Bistrup
- Department of Nephrology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Henrik Birn
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Boye L. Jensen
- Department of Molecular Medicine–Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Yaseelan Palarasah
- Department of Molecular Medicine–Cancer and Inflammation, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
8
|
Makhammajanov Z, Gaipov A, Myngbay A, Bukasov R, Aljofan M, Kanbay M. Tubular toxicity of proteinuria and the progression of chronic kidney disease. Nephrol Dial Transplant 2024; 39:589-599. [PMID: 37791392 DOI: 10.1093/ndt/gfad215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Indexed: 10/05/2023] Open
Abstract
Proteinuria is a well-established biomarker of chronic kidney disease (CKD) and a risk predictor of associated disease outcomes. Proteinuria is also a driver of CKD progression toward end-stage kidney disease. Toxic effects of filtered proteins on proximal tubular epithelial cells enhance tubular atrophy and interstitial fibrosis. The extent of protein toxicity and the underlying molecular mechanisms responsible for tubular injury during proteinuria remain unclear. Nevertheless, albumin elicits its toxic effects when degraded and reabsorbed by proximal tubular epithelial cells. Overall, healthy kidneys excrete over 1000 individual proteins, which may be potentially harmful to proximal tubular epithelial cells when filtered and/or reabsorbed in excess. Proteinuria can cause kidney damage, inflammation and fibrosis by increasing reactive oxygen species, autophagy dysfunction, lysosomal membrane permeabilization, endoplasmic reticulum stress and complement activation. Here we summarize toxic proteins reported in proteinuria and the current understanding of molecular mechanisms of toxicity of proteins on proximal tubular epithelial cells leading to CKD progression.
Collapse
Affiliation(s)
| | - Abduzhappar Gaipov
- Department of Medicine, School of Medicine, Nazarbayev University, Astana, Kazakhstan
- Clinical Academic Department of Internal Medicine, CF "University Medical Center", Astana, Kazakhstan
| | - Askhat Myngbay
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Rostislav Bukasov
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Mohamad Aljofan
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Mehmet Kanbay
- Division of Nephrology, Department of Internal Medicine, Koc University, Istanbul, Turkey
| |
Collapse
|
9
|
Buelli S, Imberti B, Morigi M. The Complement C3a and C5a Signaling in Renal Diseases: A Bridge between Acute and Chronic Inflammation. Nephron Clin Pract 2024; 148:712-723. [PMID: 38452744 DOI: 10.1159/000538241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
The complement system, a cornerstone of the innate immune defense, typically confers protection against pathogens. However, in various clinical scenarios the complement's defensive actions can harm host cells, exacerbating immune and inflammatory responses. The central components C3 and C5 undergo proteolytic cleavage during complement activation, yielding small active fragments C3a and C5a anaphylatoxins. Traditionally, these fragments were associated with inflammation via the specific receptors C3a receptor (R), C5aR1 and C5aR2. Recent insights, however, spotlight the excessive C3a/C3aR and C5a/C5aR1 signaling as culprits in diverse disorders of inflammatory and autoimmune etiology. This is particularly true for several kidney diseases, where the potential involvement of anaphylatoxins in renal damage is supported by the enhanced renal expression of their receptors and the high levels of C3a and C5a in both plasma and urine. Furthermore, the production of complement proteins in the kidney, with different renal cells synthesizing C3 and C5, significantly contributes to local tissue injury. In the present review, we discuss the different aspects of C3a/C3aR and C5a/C5aR signaling in acute and chronic kidney diseases and explore the therapeutic potential of emerging targeted drugs for future clinical applications.
Collapse
Affiliation(s)
- Simona Buelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Barbara Imberti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Marina Morigi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| |
Collapse
|
10
|
Kistler AD, Salant DJ. Complement activation and effector pathways in membranous nephropathy. Kidney Int 2024; 105:473-483. [PMID: 38142037 DOI: 10.1016/j.kint.2023.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 12/25/2023]
Abstract
Complement activation has long been recognized as a central feature of membranous nephropathy (MN). Evidence for its role has been derived from the detection of complement products in biopsy tissue and urine from patients with MN and from mechanistic studies primarily based on the passive Heymann nephritis model. Only recently, more detailed insights into the exact mechanisms of complement activation and effector pathways have been gained from patient data, animal models, and in vitro models based on specific target antigens relevant to the human disease. These data are of clinical relevance, as they parallel the recent development of numerous specific complement therapeutics for clinical use. Despite efficient B-cell depletion, many patients with MN achieve only partial remission of proteinuria, which may be explained by the persistence of subepithelial immune complexes and ongoing complement-mediated podocyte injury. Targeting complement, therefore, represents an attractive adjunct treatment for MN, but it will need to be tailored to the specific complement pathways relevant to MN. This review summarizes the different lines of evidence for a central role of complement in MN and for the relevance of distinct complement activation and effector pathways, with a focus on recent developments.
Collapse
Affiliation(s)
- Andreas D Kistler
- Department of Medicine, Cantonal Hospital Frauenfeld, Spital Thurgau AG, Frauenfeld, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| | - David J Salant
- Section of Nephrology, Department of Medicine, Boston Medical Center and Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Tan SM, Snelson M, Østergaard JA, Coughlan MT. The Complement Pathway: New Insights into Immunometabolic Signaling in Diabetic Kidney Disease. Antioxid Redox Signal 2022; 37:781-801. [PMID: 34806406 PMCID: PMC9587781 DOI: 10.1089/ars.2021.0125] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: The metabolic disorder, diabetes mellitus, results in microvascular complications, including diabetic kidney disease (DKD), which is partly believe to involve disrupted energy generation in the kidney, leading to injury that is characterized by inflammation and fibrosis. An increasing body of evidence indicates that the innate immune complement system is involved in the pathogenesis of DKD; however, the precise mechanisms remain unclear. Recent Advances: Complement, traditionally thought of as the prime line of defense against microbial intrusion, has recently been recognized to regulate immunometabolism. Studies have shown that the complement activation products, Complement C5a and C3a, which are potent pro-inflammatory mediators, can mediate an array of metabolic responses in the kidney in the diabetic setting, including altered fuel utilization, disrupted mitochondrial respiratory function, and reactive oxygen species generation. In diabetes, the lectin pathway is activated via autoreactivity toward altered self-surfaces known as danger-associated molecular patterns, or via sensing altered carbohydrate and acetylation signatures. In addition, endogenous complement inhibitors can be glycated, whereas diet-derived glycated proteins can themselves promote complement activation, worsening DKD, and lending support for environmental influences as an additional avenue for propagating complement-induced inflammation and kidney injury. Critical Issues: Recent evidence indicates that conventional renoprotective agents used in DKD do not target the complement, leaving this web of inflammatory stimuli intact. Future Directions: Future studies should focus on the development of novel pharmacological agents that target the complement pathway to alleviate inflammation, oxidative stress, and kidney fibrosis, thereby reducing the burden of microvascular diseases in diabetes. Antioxid. Redox Signal. 37, 781-801.
Collapse
Affiliation(s)
- Sih Min Tan
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Australia
| | - Matthew Snelson
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Australia
| | - Jakob A Østergaard
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Australia.,Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Melinda T Coughlan
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Australia.,Baker Heart & Diabetes Institute, Melbourne, Australia
| |
Collapse
|
12
|
Liao TH, Wu HC, Liao MT, Hu WC, Tsai KW, Lin CC, Lu KC. The Perspective of Vitamin D on suPAR-Related AKI in COVID-19. Int J Mol Sci 2022; 23:10725. [PMID: 36142634 PMCID: PMC9500944 DOI: 10.3390/ijms231810725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has claimed the lives of millions of people around the world. Severe vitamin D deficiency can increase the risk of death in people with COVID-19. There is growing evidence that acute kidney injury (AKI) is common in COVID-19 patients and is associated with poorer clinical outcomes. The kidney effects of SARS-CoV-2 are directly mediated by angiotensin 2-converting enzyme (ACE2) receptors. AKI is also caused by indirect causes such as the hypercoagulable state and microvascular thrombosis. The increased release of soluble urokinase-type plasminogen activator receptor (suPAR) from immature myeloid cells reduces plasminogen activation by the competitive inhibition of urokinase-type plasminogen activator, which results in low plasmin levels and a fibrinolytic state in COVID-19. Frequent hypercoagulability in critically ill patients with COVID-19 may exacerbate the severity of thrombosis. Versican expression in proximal tubular cells leads to the proliferation of interstitial fibroblasts through the C3a and suPAR pathways. Vitamin D attenuates the local expression of podocyte uPAR and decreases elevated circulating suPAR levels caused by systemic inflammation. This decrease preserves the function and structure of the glomerular barrier, thereby maintaining renal function. The attenuated hyperinflammatory state reduces complement activation, resulting in lower serum C3a levels. Vitamin D can also protect against COVID-19 by modulating innate and adaptive immunity, increasing ACE2 expression, and inhibiting the renin-angiotensin-aldosterone system. We hypothesized that by reducing suPAR levels, appropriate vitamin D supplementation could prevent the progression and reduce the severity of AKI in COVID-19 patients, although the data available require further elucidation.
Collapse
Affiliation(s)
- Tzu-Hsien Liao
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Hsien-Chang Wu
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital Hsinchu Branch, Hsinchu City 300, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Wan-Chung Hu
- Department of Clinical Pathology and Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Ching-Chieh Lin
- Department of Chest Medicine, Taoyuan Armed Forces General Hospital Hsinchu Branch, Hsinchu City 300, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
| |
Collapse
|
13
|
Gao S, Cui Z, Zhao MH. Complement C3a and C3a Receptor Activation Mediates Podocyte Injuries in the Mechanism of Primary Membranous Nephropathy. J Am Soc Nephrol 2022; 33:1742-1756. [PMID: 35777783 PMCID: PMC9529185 DOI: 10.1681/asn.2021101384] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/09/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The complement system is highly activated in primary membranous nephropathy (MN). Identifying the complement components that damage podocytes has important therapeutic implications. This study investigated the role of C3a and the C3a receptor (C3aR) in the pathogenesis of MN. METHODS C3aR expression in kidneys and circulating levels of C3a of MN patients were examined. Human podocyte damage was assessed after exposure to MN plasma +/- C3aR blockade (SB290157, JR14a). C3aR antagonists were administered to rats with Heymann nephritis on day 0 or after proteinuria. Clinical and pathologic parameters, specific IgG and complement activation, and podocyte injuries were then assessed. RESULTS In the glomeruli, C3aR staining merged well with podocin. Overexpression of C3aR correlated positively with proteinuria, serum creatinine, and no response to treatments. Human podocytes exposed to MN plasma showed increased expression of PLA2R, C3aR, and Wnt3/β-catenin, reduced expression of synaptopodin and migration function, downregulated Bcl-2, and decreased cell viability. C3aR antagonists could block these effects. In Heymann nephritis rats, C3aR blockade attenuated proteinuria, electron-dense deposition, foot process width, and glomerular basement membrane thickening in glomeruli. The increased plasma C3a levels and overexpression of C3aR were also alleviated. Specific, but not total, IgG levels decreased, with less deposition of rat IgG in glomeruli and subsequent reduction of C1q, factor B, and C5b-9. CONCLUSION C3a anaphylatoxin is a crucial effector of complement-mediated podocyte damage in MN. The C3aR antagonist may be a potentially viable treatment for this disease.
Collapse
Affiliation(s)
- Shuang Gao
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Zhao Cui
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Ming-hui Zhao
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
14
|
You D, Weng M, Wu X, Nie K, Cui J, Chen Y, Yang L, Wan J. C3aR contributes to unilateral ureteral obstruction-induced renal interstitial fibrosis via the activation of the NLRP3 inflammasome. Life Sci 2022; 308:120905. [PMID: 36041502 DOI: 10.1016/j.lfs.2022.120905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022]
Abstract
AIMS Complement component 3a and its receptor (C3a/C3aR) and nucleotide-binding oligomerization domain-like receptor protein-3 (NLRP3) inflammasome are involved in the pathogenesis of renal interstitial fibrosis (RIF). However, the mechanisms have not been clearly illuminated. This study aimed to elucidate the roles of C3aR and the NLRP3 inflammasome involved in unilateral ureteral obstruction (UUO)-induced renal interstitial fibrosis. MAIN METHODS UUO models were established using male C57BL/6 wild-type (WT) mice and age-matched C3aR-deficient mice. MCC950, an inhibitor of the NLRP3 inflammasome, was intraperitoneally injected in UUO mice. Blood samples were collected to quantify serum creatinine and urea. Kidney samples were collected for hematoxylin-eosin (HE), Masson, and immunohistochemistry staining, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, and Western blotting. KEY FINDINGS Renal function, renal fibrosis, and renal inflammation in WT mice were aggravated with longer periods of UUO. C3aR deficiency improved renal function and attenuated renal fibrosis and the activation of the NLRP3 inflammasome in UUO mice. Renal function and renal fibrosis in UUO mice were attenuated after NLRP3 inflammasome inhibition; however, the expression of C3aR did not change. SIGNIFICANCE Our data revealed that C3aR may aggravate RIF by regulating the activation of the NLRP3 inflammasome (particularly regulating inflammasome assembly) in renal tubular epithelial cells in the UUO model.
Collapse
Affiliation(s)
- Danyu You
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Mengjie Weng
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Xiaoting Wu
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Kun Nie
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Jiong Cui
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Yi Chen
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Liyan Yang
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Jianxin Wan
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
| |
Collapse
|
15
|
Wang C, Wang Z, Zhang W. The potential role of complement alternative pathway activation in hypertensive renal damage. Exp Biol Med (Maywood) 2022; 247:797-804. [PMID: 35473318 DOI: 10.1177/15353702221091986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hypertensive renal damage is a common secondary kidney disease caused by poor control of blood pressure. Recent evidence has revealed abnormal activation of the complement alternative pathway (AP) in hypertensive patients and animal models and that this phenomenon is related to hypertensive renal damage. Conditions in the setting of hypertension, including high renin concentration, reduced binding of factor H to the glomerular basement membrane, and abnormal local synthesis of complement proteins, potentially promote the AP activation in the kidney. The products of the AP activation promote the phenotypic transition of mesangial cells and tubular cells, attack endothelial cells and recruit immunocytes to worsen hypertensive renal damage. The effects of complement inhibition on hypertensive renal damage are contradictory. Although clinical data support the use of C5 monoclonal antibody in malignant hypertension, pharmacological inhibition in hypertensive animals provides little benefit to kidney function. Therefore, the role of the complement AP in the pathogenesis of hypertensive renal damage and the value of complement inhibition in hypertensive renal damage treatment must be further explored.
Collapse
Affiliation(s)
- Chongjian Wang
- Division of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhiyu Wang
- Division of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen Zhang
- Division of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
16
|
Li Z, He P, Ding H, Gong L, Wu J, Zhong C, Liu D. Association between peripheral blood WBCs C3aR mRNA level and plasma C3a, C3aR, IL-1β concentrations and acute exacerbation of chronic obstructive pulmonary disease. Immunobiology 2022; 227:152164. [PMID: 34923262 DOI: 10.1016/j.imbio.2021.152164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND The relationship between C3a-C3aR, IL-1β, and the acute exacerbation of chronic obstructive pulmonary disease is still unclear. This study aims to explore the expression levels of C3aR in peripheral blood WBCs and the concentrations of C3a, C3aR, and IL-1β in plasma in healthy controls and patients with chronic obstructive pulmonary disease (COPD). METHODS WBCs C3aR level in the peripheral blood, the concentrations of C3a, C3aR, and IL-1β in plasma were measured in 60 patients with acute exacerbation of COPD (AECOPD), 30 patients with stable COPD (SCOPD), and 30 healthy controls. The baseline characteristics and clinical data collected from enrolled patients, including age, gender, laboratory indicators, and lung function. We analyzed the correlation between C3a, C3aR, IL-1β, and lung function indicators (forced expiratory volume in the first second as a percentage of predicted value, FEV1%pred) in the AECOPD group. RESULTS The white blood cell count (WBC), neutrophil/lymphocyte ratio (NLR), and C-reactive protein (CRP) of patients in COPD were higher than in healthy controls (P < 0.05). The peripheral blood WBCs C3aR mRNA and plasma C3a, C3aR, and IL-1β in AECOPD were higher than in SCOPD and healthy controls (P < 0.05). The peripheral blood WBCs C3aR mRNA and plasma C3aR, and IL-1β in AECOPD combined with respiratory failure were higher than in the non-respiratory failure group (P < 0.05). The peripheral blood WBCs C3aR mRNA and plasma C3a, C3aR, and IL-1β in AECOPD with high-risk were higher than in the low-risk group (P < 0.05). The peripheral blood WBCs C3aR mRNA and plasma C3a, C3aR, and IL-1β in AECOPD were negatively correlated with FEV1pred%. The peripheral blood WBCs C3aR mRNA, the plasma C3a and C3aR in AECOPD were positively correlated with IL-1β. CONCLUSION The peripheral blood WBCs C3aR mRNA and plasma C3a, C3aR, and IL-1β in COPD patients were significantly related to the risk of disease deterioration. The C3a-C3aR axis may be involved in airway inflammation in patients with COPD.
Collapse
Affiliation(s)
- Zhu Li
- Department of Respiratory Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 563000 Guizhou, China
| | - Peiyong He
- The Third Hospital of Mianyang, Sichuan Mental Health Center, 621000 Sichuan, China
| | - Hongwei Ding
- School of Public Health, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Ling Gong
- Department of Respiratory Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 563000 Guizhou, China
| | - Jie Wu
- Scientific Research Center, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 563000 Guizhou, China
| | - Chengyao Zhong
- Department of Respiratory Geriatrics and Otolaryngology, Chongqing Public Health Medical, Chongqing 400030, China
| | - Daishun Liu
- Zunyi Medical University, Zunyi 563000, Guizhou, China.
| |
Collapse
|
17
|
Pajenda S, Zawedde F, Kapps S, Wagner L, Schmidt A, Winnicki W, O’Connell D, Gerges D. Urinary C3 levels associated with sepsis and acute kidney injury-A pilot study. PLoS One 2021; 16:e0259777. [PMID: 34767613 PMCID: PMC8589214 DOI: 10.1371/journal.pone.0259777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 10/18/2021] [Indexed: 12/01/2022] Open
Abstract
Acute kidney injury (AKI) is an abrupt deterioration of renal function often caused by severe clinical disease such as sepsis, and patients require intensive care. Acute-phase parameters for systemic inflammation are well established and used in routine clinical diagnosis, but no such parameters are known for AKI and inflammation at the local site of tissue damage, namely the nephron. Therefore, we sought to investigate complement factors C3a/C3 in urine and urinary sediment cells. After the development of a C3a/C3-specific mouse monoclonal antibody (3F7E2), urine excretion from ICU sepsis patients was examined by dot blot and immunoblotting. This C3a/C3 ELISA and a C3a ELISA were used to obtain quantitative data over 24 hours for 6 consecutive days. Urine sediment cells were analyzed for topology of expression. Patients with severe infections (n = 85) showed peak levels of C3a/C3 on the second day of ICU treatment. The majority (n = 59) showed C3a/C3 levels above 20 μg/ml at least once in the first 6 days after admission. C3a was detectable on all 6 days. Peak C3a/C3 levels correlated negatively with peak C-reactive protein (CRP) levels. No relationship was found between peak C3a/C3 with peak leukocyte count, age, or AKI stage. Analysis of urine sediment cells identified C3a/C3-producing epithelial cells with reticular staining patterns and cells with large-granular staining. Opsonized bacteria were detected in patients with urinary tract infections. In critically ill sepsis patients with AKI, urinary C3a/C3 inversely correlated with serum CRP. Whether urinary C3a/C3 has a protective function through autophagy, as previously shown for cisplatin exposure, or is a by-product of sepsis caused by pathogenic stimuli to the kidney must remain open in this study. However, our data suggest that C3a/C3 may function as an inverse acute-phase parameter that originates in the kidney and is detectable in urine.
Collapse
Affiliation(s)
- Sahra Pajenda
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Florence Zawedde
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Sebastian Kapps
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Ludwig Wagner
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Alice Schmidt
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Winnicki
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - David O’Connell
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Daniela Gerges
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
18
|
Gulleroglu K, Baskin E, Ozdemir H, Moray G, Haberal M. Clinical impact of complement deposition findings on biopsies in acute rejection episodes of pediatric renal transplant patients. Transpl Immunol 2021; 69:101466. [PMID: 34508854 DOI: 10.1016/j.trim.2021.101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Rejection is the most important problem for renal graft function and survival. Complement system plays a key role in immune responses from host to graft. It was demonstrated that complement system activation is related with renal fibrosis. We evaluate clinical impact of complement deposition findings on biopsies in acute rejection episodes of pediatric renal transplant patients. METHOD Demographics of the patients, graft functions, acute rejection episodes and graft loss were recorded from data files of 165 pediatric renal transplant patients. Findings of 98 renal biopsies were retrospectively evaluated. RESULTS Thirty three patients with kidney transplant had 44 acute rejection episodes (32 pure cellular acute rejection episodes / 1 pure humoral acute rejection episode / 11 combined acute cellular and acute humoral rejection episodes) proven by biopsy. C1q staining was positive in 7 biopsies, C3 staining in 15 biopsies and, C4d staining in 15 biopsies. 26 patients had graft fibrosis. All patients with a rejection history had a significant decrease in GFR value during follow-up. Patients who did not have fibrotic changes in first biopsy had same level of deterioration of GFR when compared with patients who had fibrotic changes in first biopsy. CONCLUSION We could not demonstrate a significant relation between complement deposition and renal fibrosis, and between complement deposition and GFR values. Our data demonstrated that graft outcomes and graft loss after acute rejection episodes cannot be predicted only with complement deposition on graft or only with graft fibrosis.
Collapse
Affiliation(s)
| | - Esra Baskin
- Baskent University Pediatric Nephrology, Ankara, Turkey
| | | | - Gokhan Moray
- Baskent University General Surgery, Ankara, Turkey
| | | |
Collapse
|
19
|
Chang CY, Chien YJ, Kao MC, Lin HY, Chen YL, Wu MY. Pre-operative proteinuria, postoperative acute kidney injury and mortality: A systematic review and meta-analysis. Eur J Anaesthesiol 2021; 38:702-714. [PMID: 34101638 DOI: 10.1097/eja.0000000000001542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To investigate the association of pre-operative proteinuria with postoperative acute kidney injury (AKI) development as well as the requirement for a renal replacement therapy (RRT) and mortality at short-term and long-term follow-up. BACKGROUND Postoperative AKI is associated with surgical morbidity and mortality. Pre-operative proteinuria is potentially a risk factor for postoperative AKI and mortality. However, the results in literature are conflicting. METHODS We searched PubMed, Embase, Scopus, Web of Science and Cochrane Library from the inception through to 3 June 2020. Observational cohort studies investigating the association of pre-operative proteinuria with postoperative AKI development, requirement for RRT, and all-cause mortality at short-term and long-term follow-up were considered eligible. Using inverse variance method with a random-effects model, the pooled effect estimates and 95% confidence interval (CI) were calculated. RESULTS Twenty-eight studies were included. Pre-operative proteinuria was associated with postoperative AKI development [odds ratio (OR) 1.74, 95% CI, 1.45 to 2.09], in-hospital RRT (OR 1.70, 95% CI, 1.25 to 2.32), requirement for RRT at long-term follow-up [hazard ratio (HR) 3.72, 95% CI, 2.03 to 6.82], and long-term all-cause mortality (hazard ratio 1.50, 95% CI, 1.30 to 1.73). In the subgroup analysis, pre-operative proteinuria was associated with increased odds of postoperative AKI in both cardiovascular (OR 1.77, 95% CI, 1.47 to 2.14) and noncardiovascular surgery (OR 1.63, 95% CI, 1.01 to 2.63). Moreover, there is a stepwise increase in OR of postoperative AKI development when the quantity of proteinuria increases from trace to 3+. CONCLUSION Pre-operative proteinuria is significantly associated with postoperative AKI and long-term mortality. Pre-operative anaesthetic assessment should take into account the presence of proteinuria to identify high-risk patients. PROSPERO REGISTRATION CRD42020190065.
Collapse
Affiliation(s)
- Chun-Yu Chang
- From the Department of Anesthesiology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City (C-YC, M-CK, H-YL), Department of Anesthesiology, School of Medicine, Tzu Chi University, Hualien (C-YC, M-CK, H-YL), Department of Physical Medicine and Rehabilitation, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City (Y-JC), Department of Physical Medicine and Rehabilitation, School of Medicine, Tzu Chi University, Hualien (Y-JC), Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City (Y-LC, M-YW) and Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien, Taiwan (Y-LC, M-YW)
| | | | | | | | | | | |
Collapse
|
20
|
Zheng JM, Wang SS, Tian X, Che DJ. Sustained activation of C3aR in a human podocyte line impairs the morphological maturation of the cells. Mol Med Rep 2020; 22:5326-5338. [PMID: 33174024 PMCID: PMC7646996 DOI: 10.3892/mmr.2020.11626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/02/2020] [Indexed: 12/03/2022] Open
Abstract
The C3a receptor (C3aR) has been reported to be involved in various physiological and pathological processes, including the regulation of cellular structure development. Expression of C3aR has been reported in podocytes; however, data concerning the role of C3aR in podocyte morphology is scarce. The aim of the present study was to examine the effect of C3aR activation on the architectural development of podocytes. An immortal human podocyte line (HPC) was transfected with a C3a expression lentivirus vector or recombinant C3a. SB290157 was used to block the activation of C3aR. The expression of C3a in HPC cells was analyzed by reverse transcription-quantitative PCR (RT-qPCR) and ELISAs. Phase contrast and fluorescence microscopy were used to observe the morphology of the podocytes. The adhesive ability of HPC cells was analyzed using an attachment assay. RT-qPCR, cyto-immunofluorescence and western blotting were used to determine the expression levels of the adhesion-associated genes. The expression levels of carboxypeptidases in HPC cells was also detected by RT-qPCR. Compared with the untransfected and control virus-transfected HPC cells, the C3a-overexpressing cells (HPC-C3a) failed to expand their cell bodies and develop an arborized appearance in the process of maturation, which the control cells exhibited. In addition, HPC-C3a cells presented with decreased adhesive capacity, altered focal adhesion (FA) plaques and decreased expression of FA-associated genes. These effects were blocked by a C3aR antagonist; however, the addition of purified C3a could not completely mimic the effects of C3a overexpression. Furthermore, HPC cells expressed carboxypeptidases, which have been reported to be able to inactivate C3a. In summary, the results demonstrated that sustained C3aR activation impaired the morphological maturation of HPC cells, which may be associated with the altered expression of FA-associated genes and impaired FA. Since chronic complement activation has been reported in renal diseases, which indicate sustained C3aR activation in renal cells, including podocytes and podocyte progenitors, the possible role of C3aR in the dysregulation of podocyte architecture and podocyte regeneration requires further research.
Collapse
Affiliation(s)
- Jing-Min Zheng
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Sha-Sha Wang
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Xiong Tian
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - De-Jun Che
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| |
Collapse
|
21
|
Gao S, Cui Z, Zhao MH. The Complement C3a and C3a Receptor Pathway in Kidney Diseases. Front Immunol 2020; 11:1875. [PMID: 32973774 PMCID: PMC7461857 DOI: 10.3389/fimmu.2020.01875] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/13/2020] [Indexed: 12/23/2022] Open
Abstract
The pathogenesis of some kidney diseases is closely associated with complement activation, where the C3a/C3a receptor (C3aR) might play a crucial role. C3a/C3aR has dual roles and may exert anti-inflammatory or pro-inflammatory effects depending on different cell types and diseases. In the kidneys, C3aR is primarily expressed on the tubular epithelium and less in glomerular podocytes. C3aR expression is enhanced and the levels of C3a in the plasma and urine are increased in kidney diseases of several types, and are associated with disease progression and severity. The C3a/C3aR pathway facilitates the progression of glomerular and tubulointerstitial diseases, while it has opposite effects on urinary tract infections. Clinical trials targeting C3a/C3aR in kidney diseases are lacking. Here, we reviewed the studies on the C3a/C3aR pathway in kidney disease, with the aim of understanding in-depth its controversial roles and its potential therapeutic value.
Collapse
Affiliation(s)
- Shuang Gao
- Renal Division, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Zhao Cui
- Renal Division, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Ming-Hui Zhao
- Renal Division, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
22
|
Morigi M, Perico L, Corna D, Locatelli M, Cassis P, Carminati CE, Bolognini S, Zoja C, Remuzzi G, Benigni A, Buelli S. C3a receptor blockade protects podocytes from injury in diabetic nephropathy. JCI Insight 2020; 5:131849. [PMID: 32161193 DOI: 10.1172/jci.insight.131849] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
Renal activation of the complement system has been described in patients with diabetic nephropathy (DN), although its pathological relevance is still ill-defined. Here, we studied whether glomerular C3a, generated by uncontrolled complement activation, promotes podocyte damage, leading to proteinuria and renal injury in mice with type 2 diabetes. BTBR ob/ob mice exhibited podocyte loss, albuminuria, and glomerular injury accompanied by C3 deposits and increased C3a and C3a receptor (C3aR) levels. Decreased glomerular nephrin and α-actinin4 expression, coupled with integrin-linked kinase induction, were also observed. Treatment of DN mice with a C3aR antagonist enhanced podocyte density and preserved their phenotype, limiting proteinuria and glomerular injury. Mechanistically, ultrastructural and functional mitochondrial alterations, accompanied by downregulation of antioxidant superoxide dismutase 2 (SOD2) and increased protein oxidation, occurred in podocytes and were normalized by C3aR blockade. In cultured podocytes, C3a induced cAMP-dependent mitochondrial fragmentation. Alterations of mitochondrial membrane potential, SOD2 expression, and energetic metabolism were also found in response to C3a. Notably, C3a-induced podocyte motility was inhibited by SS-31, a peptide with mitochondrial protective effects. These data indicate that C3a blockade represents a potentially novel therapeutic strategy in DN for preserving podocyte integrity through the maintenance of mitochondrial functions.
Collapse
Affiliation(s)
- Marina Morigi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Luca Perico
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Daniela Corna
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Monica Locatelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Paola Cassis
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Claudia Elisa Carminati
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Silvia Bolognini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Carlamaria Zoja
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy.,"L. Sacco" Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Simona Buelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| |
Collapse
|
23
|
Li XQ, Chang DY, Chen M, Zhao MH. Deficiency of C3a receptor attenuates the development of diabetic nephropathy. BMJ Open Diabetes Res Care 2019; 7:e000817. [PMID: 31798904 PMCID: PMC6861086 DOI: 10.1136/bmjdrc-2019-000817] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/18/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022] Open
Abstract
Objective Diabetic nephropathy (DN) is the leading cause of chronic kidney disease and end-stage renal disease. Emerging evidence suggests that complement activation is involved in the pathogenesis of DN. The aim of this study was to investigate the pathogenic role of C3a and C3a receptor (C3aR) in DN. Research design and methods The expression of C3aR was examined in the renal specimen of patients with DN. Using a C3aR gene knockout mice (C3aR-/-), we evaluated kidney injury in diabetic mice. The mouse gene expression microarray was performed to further explore the pathogenic role of C3aR. Then the underlying mechanism was investigated in vitro with macrophage treated with C3a. Results Compared with normal controls, the renal expression of C3aR was significantly increased in patients with DN. C3aR-/- diabetic mice developed less severe diabetic renal damage compared with wild-type (WT) diabetic mice, exhibiting significantly lower level of albuminuria and milder renal pathological injury. Microarray profiling uncovered significantly suppressed inflammatory responses and T-cell adaptive immunity in C3aR-/- diabetic mice compared with WT diabetic mice, and this result was further verified by immunohistochemical staining of renal CD4+, CD8+ T cells and macrophage infiltration. In vitro study demonstrated C3a can enhance macrophage-secreted cytokines which could induce inflammatory responses and differentiation of T-cell lineage. Conclusions C3aR deficiency could attenuate diabetic renal damage through suppressing inflammatory responses and T-cell adaptive immunity, possibly by influencing macrophage-secreted cytokines. Thus, C3aR may be a promising therapeutic target for DN.
Collapse
Affiliation(s)
- Xiao-Qian Li
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Dong-Yuan Chang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
24
|
Abstract
Increasing evidence indicates an integral role for the complement system in the deleterious inflammatory reactions that occur during critical phases of the transplantation process, such as brain or cardiac death of the donor, surgical trauma, organ preservation and ischaemia-reperfusion injury, as well as in humoral and cellular immune responses to the allograft. Ischaemia is the most common cause of complement activation in kidney transplantation and in combination with reperfusion is a major cause of inflammation and graft damage. Complement also has a prominent role in antibody-mediated rejection (ABMR) owing to ABO and HLA incompatibility, which leads to devastating damage to the transplanted kidney. Emerging drugs and treatment modalities that inhibit complement activation at various stages in the complement cascade are being developed to ameliorate the damage caused by complement activation in transplantation. These promising new therapies have various potential applications at different stages in the process of transplantation, including inhibiting the destructive effects of ischaemia and/or reperfusion injury, treating ABMR, inducing accommodation and modulating the adaptive immune response.
Collapse
|
25
|
Dick J, Gan PY, Kitching AR, Holdsworth SR. The C3aR promotes macrophage infiltration and regulates ANCA production but does not affect glomerular injury in experimental anti-myeloperoxidase glomerulonephritis. PLoS One 2018; 13:e0190655. [PMID: 29315316 PMCID: PMC5760037 DOI: 10.1371/journal.pone.0190655] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/18/2017] [Indexed: 11/18/2022] Open
Abstract
The anti-neutrophil cytoplasmic antibody (ANCA) associated vasculitides are autoimmune diseases associated with significant morbidity and mortality. They often affect the kidney causing rapidly progressive glomerulonephritis. While signalling by complement anaphylatoxin C5a though the C5a receptor is important in this disease, the role of the anaphylatoxin C3a signalling via the C3a receptor (C3aR) is not known. Using two different murine models of anti-myeloperoxidase (MPO) glomerulonephritis, one mediated by passive transfer of anti-MPO antibodies, the other by cell-mediated immunity, we found that the C3aR did not alter histological disease severity. However, it promoted macrophage recruitment to the inflamed glomerulus and inhibited the generation of MPO-ANCA whilst not influencing T cell autoimmunity. Thus, whilst the C3aR modulates some elements of disease pathogenesis, overall it is not critical in effector responses and glomerular injury caused by autoimmunity to MPO.
Collapse
Affiliation(s)
- Jonathan Dick
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Clayton, Victoria, Australia
- Department of Nephrology, Monash Health, Clayton, Victoria, Australia
| | - Poh-Yi Gan
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Clayton, Victoria, Australia
| | - A. Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Clayton, Victoria, Australia
- Department of Nephrology, Monash Health, Clayton, Victoria, Australia
- Department of Paediatric Nephrology, Monash Children’s Hospital, Monash Health, Clayton, Victoria, Australia
| | - Stephen R. Holdsworth
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Clayton, Victoria, Australia
- Department of Nephrology, Monash Health, Clayton, Victoria, Australia
| |
Collapse
|
26
|
Freeley S, Kemper C, Le Friec G. The "ins and outs" of complement-driven immune responses. Immunol Rev 2017; 274:16-32. [PMID: 27782335 DOI: 10.1111/imr.12472] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The complement system represents an evolutionary old and critical component of innate immunity where it forms the first line of defense against invading pathogens. Originally described as a heat-labile fraction of the serum responsible for the opsonization and subsequent lytic killing of bacteria, work over the last century firmly established complement as a key mediator of the general inflammatory response but also as an acknowledged vital bridge between innate and adaptive immunity. However, recent studies particularly spanning the last decade have provided new insights into the novel modes and locations of complement activation and highlighted unexpected additional biological functions for this ancient system, for example, in regulating basic processes of the cell. In this review, we will cover the current knowledge about complement's established and novel roles in innate and adaptive immunity with a focus on the functional differences between serum circulating and intracellularly active complement and will describe and discuss the newly discovered cross-talks of complement with other cell effector systems particularly during T-cell induction and contraction.
Collapse
Affiliation(s)
- Simon Freeley
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK
| | - Claudia Kemper
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK. .,Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Gaëlle Le Friec
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK
| |
Collapse
|
27
|
Quell KM, Karsten CM, Kordowski A, Almeida LN, Briukhovetska D, Wiese AV, Sun J, Ender F, Antoniou K, Schröder T, Schmudde I, Berger JL, König P, Vollbrandt T, Laumonnier Y, Köhl J. Monitoring C3aR Expression Using a Floxed tdTomato-C3aR Reporter Knock-in Mouse. THE JOURNAL OF IMMUNOLOGY 2017. [PMID: 28626064 DOI: 10.4049/jimmunol.1700318] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
C3a exerts multiple biologic functions through activation of its cognate C3a receptor. C3-/- and C3aR-/- mice have been instrumental in defining important roles of the C3a/C3aR axis in the regulation of acute and chronic inflammatory diseases, including ischemia/reperfusion injury, allergic asthma, autoimmune nephritis, and rheumatoid arthritis. Surprisingly little is known about C3aR expression and function in immune and stromal cells. To close this gap, we generated a floxed tandem-dye Tomato (tdTomato)-C3aR reporter knock-in mouse, which we used to monitor C3aR expression in cells residing in the lung, airways, lamina propria (LP) of the small intestine, brain, visceral adipose tissue, bone marrow (BM), spleen, and the circulation. We found a strong expression of tdTomato-C3aR in the brain, lung, LP, and visceral adipose tissue, whereas it was minor in the spleen, blood, BM, and the airways. Most macrophage and eosinophil populations were tdTomato-C3aR+ Interestingly, most tissue eosinophils and some macrophage populations expressed C3aR intracellularly. BM-derived dendritic cells (DCs), lung-resident cluster of differentiation (CD) 11b+ conventional DCs (cDCs) and monocyte-derived DCs, LP CD103+, and CD11b+ cDCs but not pulmonary CD103+ cDCs and splenic DCs were tdTomato-C3aR+ Surprisingly, neither BM, blood, lung neutrophils, nor mast cells expressed C3aR. Similarly, all lymphoid-derived cells were tdTomato-C3aR-, except some LP-derived type 3 innate lymphoid cells. Pulmonary and LP-derived epithelial cells expressed at best minor levels of C3aR. In summary, we provide novel insights into the expression pattern of C3aR in mice. The floxed C3aR knock-in mouse will help to reliably track and conditionally delete C3aR expression in experimental models of inflammation.
Collapse
Affiliation(s)
- Katharina M Quell
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Anna Kordowski
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | | | - Daria Briukhovetska
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Anna V Wiese
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Jing Sun
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Fanny Ender
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Konstantina Antoniou
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Torsten Schröder
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Inken Schmudde
- Institute of Anatomy, University of Lübeck, Lübeck 23562, Germany
| | - Johann L Berger
- Institute of Anatomy, University of Lübeck, Lübeck 23562, Germany
| | - Peter König
- Institute of Anatomy, University of Lübeck, Lübeck 23562, Germany
| | - Tillman Vollbrandt
- Cell Analysis Core Facility, University of Lübeck, Lübeck 23562, Germany; and
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany;
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany; .,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| |
Collapse
|
28
|
Novel insights into the expression pattern of anaphylatoxin receptors in mice and men. Mol Immunol 2017; 89:44-58. [PMID: 28600003 DOI: 10.1016/j.molimm.2017.05.019] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 02/06/2023]
Abstract
The anaphylatoxins (AT) C3a and C5a play important roles as mediators of inflammation. Further, they regulate and control multiple innate and adaptive immune responses through binding and activation of their cognate G protein-coupled receptors, i.e. C3a receptor (C3aR), C5a receptor 1 (C5aR1) and C5a receptor 2 (C5aR2), although the latter lacks important sequence motifs for G protein-coupling. Based on their pleiotropic functions, they contribute not only to tissue homeostasis but drive, perpetuate and resolve immune responses in many inflammatory diseases including infections, malignancies, autoimmune as well as allergic diseases. During the past few years, transcriptome expression data provided detailed insights into AT receptor tissue mRNA expression. In contrast, our understanding of cellular AT receptor expression in human and mouse tissues under steady and inflammatory conditions is still sketchy. Ligand binding studies, flow cytometric and immunohistochemical analyses convincingly demonstrated tissue-specific C5aR1 expression in various cells of myeloid origin. However, a detailed map for C3aR or C5aR2 expression in human or mouse tissue cells is still lacking. Also, reports about AT expression in lymphoid cells is still controversial. To understand the multiple roles of the ATs in the innate and adaptive immune networks, a detailed understanding of their receptor expression in health and disease is required. Recent findings obtained with novel GFP or tdTomato AT-receptor knock-in mice provide detailed insights into their expression pattern in tissue immune and stroma cells. Here, we will provide an update about our current knowledge of AT receptor expression pattern in humans and mice.
Collapse
|
29
|
Mizuno M, Suzuki Y, Ito Y. Complement regulation and kidney diseases: recent knowledge of the double-edged roles of complement activation in nephrology. Clin Exp Nephrol 2017; 22:3-14. [DOI: 10.1007/s10157-017-1405-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/14/2017] [Indexed: 12/28/2022]
|
30
|
Calame DG, Mueller-Ortiz SL, Wetsel RA. Innate and adaptive immunologic functions of complement in the host response to Listeria monocytogenes infection. Immunobiology 2016; 221:1407-1417. [PMID: 27476791 DOI: 10.1016/j.imbio.2016.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/15/2016] [Accepted: 07/13/2016] [Indexed: 12/20/2022]
Abstract
Listeria monocytogenes is a leading cause of foodborne-illness associated mortality that has attracted considerable attention in recent years due to several significant outbreaks. It has also served as a model organism for the study of intracellular pathogens. For these reasons the host response to L. monocytogenes has long been the subject of investigation. A potent innate and adaptive immune response is required for containment and clearance of L. monocytogenes. However, some elements of this response, such as type 1 interferons, can be detrimental to the host. Recent studies have revealed novel functions for the complement system, an ancient arm of innate immunity, in this process. Here we review the role of complement in the host response to L. monocytogenes.
Collapse
Affiliation(s)
- Daniel G Calame
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States; University of Texas McGovern Medical School at Houston, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, United States
| | - Stacey L Mueller-Ortiz
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Rick A Wetsel
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States; Department of Biochemistry and Molecular Biology, University of Texas McGovern Medical School at Houston, Houston, TX 77030, United States.
| |
Collapse
|
31
|
Morigi M, Locatelli M, Rota C, Buelli S, Corna D, Rizzo P, Abbate M, Conti D, Perico L, Longaretti L, Benigni A, Zoja C, Remuzzi G. A previously unrecognized role of C3a in proteinuric progressive nephropathy. Sci Rep 2016; 6:28445. [PMID: 27345360 PMCID: PMC4921969 DOI: 10.1038/srep28445] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/02/2016] [Indexed: 12/16/2022] Open
Abstract
Podocyte loss is the initial event in the development of glomerulosclerosis, the structural hallmark of progressive proteinuric nephropathies. Understanding mechanisms underlying glomerular injury is the key challenge for identifying novel therapeutic targets. In mice with protein-overload induced by bovine serum albumin (BSA), we evaluated whether the alternative pathway (AP) of complement mediated podocyte depletion and podocyte-dependent parietal epithelial cell (PEC) activation causing glomerulosclerosis. Factor H (Cfh−/−) or factor B-deficient mice were studied in comparison with wild-type (WT) littermates. WT+BSA mice showed podocyte depletion accompanied by glomerular complement C3 and C3a deposits, PEC migration to capillary tuft, proliferation, and glomerulosclerosis. These changes were more prominent in Cfh−/− +BSA mice. The pathogenic role of AP was documented by data that factor B deficiency preserved glomerular integrity. In protein-overload mice, PEC dysregulation was associated with upregulation of CXCR4 and GDNF/c-Ret axis. In vitro studies provided additional evidence of a direct action of C3a on proliferation and CXCR4-related migration of PECs. These effects were enhanced by podocyte-derived GDNF. In patients with proteinuric nephropathy, glomerular C3/C3a paralleled PEC activation, CXCR4 and GDNF upregulation. These results indicate that mechanistically uncontrolled AP complement activation is not dispensable for podocyte-dependent PEC activation resulting in glomerulosclerosis.
Collapse
Affiliation(s)
- Marina Morigi
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Monica Locatelli
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Cinzia Rota
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Simona Buelli
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Daniela Corna
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Paola Rizzo
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Mauro Abbate
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Debora Conti
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Luca Perico
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Lorena Longaretti
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Ariela Benigni
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Carlamaria Zoja
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Giuseppe Remuzzi
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy.,Unit of Nephrology and Dialysis, Azienda Socio Sanitaria Territoriale (ASST) Papa Giovanni XXIII, Bergamo, Italy.,Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
32
|
Gu H, Fisher AJ, Mickler EA, Duerson F, Cummings OW, Peters-Golden M, Twigg HL, Woodruff TM, Wilkes DS, Vittal R. Contribution of the anaphylatoxin receptors, C3aR and C5aR, to the pathogenesis of pulmonary fibrosis. FASEB J 2016; 30:2336-50. [PMID: 26956419 DOI: 10.1096/fj.201500044] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 02/22/2016] [Indexed: 12/24/2022]
Abstract
Complement activation, an integral arm of innate immunity, may be the critical link to the pathogenesis of idiopathic pulmonary fibrosis (IPF). Whereas we have previously reported elevated anaphylatoxins-complement component 3a (C3a) and complement component 5a (C5a)-in IPF, which interact with TGF-β and augment epithelial injury in vitro, their role in IPF pathogenesis remains unclear. The objective of the current study is to determine the mechanistic role of the binding of C3a/C5a to their respective receptors (C3aR and C5aR) in the progression of lung fibrosis. In normal primary human fetal lung fibroblasts, C3a and C5a induces mesenchymal activation, matrix synthesis, and the expression of their respective receptors. We investigated the role of C3aR and C5aR in lung fibrosis by using bleomycin-injured mice with fibrotic lungs, elevated local C3a and C5a, and overexpression of their receptors via pharmacologic and RNA interference interventions. Histopathologic examination revealed an arrest in disease progression and attenuated lung collagen deposition (Masson's trichrome, hydroxyproline, collagen type I α 1 chain, and collagen type I α 2 chain). Pharmacologic or RNA interference-specific interventions suppressed complement activation (C3a and C5a) and soluble terminal complement complex formation (C5b-9) locally and active TGF-β1 systemically. C3aR/C5aR antagonists suppressed local mRNA expressions of tgfb2, tgfbr1/2, ltbp1/2, serpine1, tsp1, bmp1/4, pdgfbb, igf1, but restored the proteoglycan, dcn Clinically, compared with pathologically normal human subjects, patients with IPF presented local induction of C5aR, local and systemic induction of soluble C5b-9, and amplified expression of C3aR/C5aR in lesions. The blockade of C3aR and C5aR arrested the progression of fibrosis by attenuating local complement activation and TGF-β/bone morphologic protein signaling as well as restoring decorin, which suggests a promising therapeutic strategy for patients with IPF.-Gu, H., Fisher, A. J., Mickler, E. A., Duerson, F., III, Cummings, O. W., Peters-Golden, M., Twigg, H. L., III, Woodruff, T. M., Wilkes, D. S., Vittal, R. Contribution of the anaphylatoxin receptors, C3aR and C5aR, to the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Hongmei Gu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Amanda J Fisher
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Elizabeth A Mickler
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Frank Duerson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Oscar W Cummings
- Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Homer L Twigg
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - David S Wilkes
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ragini Vittal
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
33
|
Schraufstatter IU, Khaldoyanidi SK, DiScipio RG. Complement activation in the context of stem cells and tissue repair. World J Stem Cells 2015; 7:1090-1108. [PMID: 26435769 PMCID: PMC4591784 DOI: 10.4252/wjsc.v7.i8.1090] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 07/27/2015] [Indexed: 02/06/2023] Open
Abstract
The complement pathway is best known for its role in immune surveillance and inflammation. However, its ability of opsonizing and removing not only pathogens, but also necrotic and apoptotic cells, is a phylogenetically ancient means of initiating tissue repair. The means and mechanisms of complement-mediated tissue repair are discussed in this review. There is increasing evidence that complement activation contributes to tissue repair at several levels. These range from the chemo-attraction of stem and progenitor cells to areas of complement activation, to increased survival of various cell types in the presence of split products of complement, and to the production of trophic factors by cells activated by the anaphylatoxins C3a and C5a. This repair aspect of complement biology has not found sufficient appreciation until recently. The following will examine this aspect of complement biology with an emphasis on the anaphylatoxins C3a and C5a.
Collapse
|
34
|
Li L, Chen L, Zang J, Tang X, Liu Y, Zhang J, Bai L, Yin Q, Lu Y, Cheng J, Fu P, Liu F. C3a and C5a receptor antagonists ameliorate endothelial-myofibroblast transition via the Wnt/β-catenin signaling pathway in diabetic kidney disease. Metabolism 2015; 64:597-610. [PMID: 25682062 DOI: 10.1016/j.metabol.2015.01.014] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 01/28/2023]
Abstract
BACKGROUND Endothelial-myofibroblast transition (EndMT) has been implicated in the pathogenesis of diabetic renal fibrosis. In this study, the effect of the complement fragments C3a/C5a and their receptor antagonists C3aRA and C5aRA on EndMT in diabetic kidney disease (DKD) and the possible mechanisms were investigated. METHODS The coexpression of CD31 with α-smooth muscle (α-SMA), C3a receptor (C3aR) and C5a receptor (C5aR) was detected in human renal biopsy tissue obtained from patients with early and advanced DKD and in normal renal tissues from patients with renal-cell carcinoma. The effects of C3aRA and C5aRA on EndMT and the expression of C3a/C3aR, C5a/C5aR, α-SMA, CD31, TGFβ, FN and β-catenin were examined in a streptozotocin (STZ)-induced rat model of DKD and in human renal glomerular endothelial cells (HRGECs) cultured in high glucose and with C3a/C5a, and DKK1 (a Wnt/β-catenin inhibitor). RESULTS Double-labeling of α-SMA, C3aR, C5aR and CD31 was detected in the glomerulus of renal tissues obtained from biopsies of patients with DKD. Upregulated expression of α-SMA, TGF-β, FN and β-catenin and downregulated expression of CD31 were detected in the GECs of diabetic rats. The expression of these proteins was inhibited by treatment with C3aRA/C5aRA. In vitro, C3aRA/C5aRA and DKK1 ameliorated the high glucose-induced EndMT and the subsequent expression of α-SMA, TGFβ, FN and β-catenin in HRGECs. CONCLUSIONS The blockade of C3aR/C5aR and the downstream Wnt/β-catenin pathway may prevent EndMT and alleviate fibrosis in the glomeruli of individuals with DKD.
Collapse
Affiliation(s)
- Ling Li
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Lijia Chen
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jing Zang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Xi Tang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Yan Liu
- Laboratory Animal Center of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jie Zhang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Lin Bai
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Qinghua Yin
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Ping Fu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Fang Liu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
35
|
Maillard N, Wyatt RJ, Julian BA, Kiryluk K, Gharavi A, Fremeaux-Bacchi V, Novak J. Current Understanding of the Role of Complement in IgA Nephropathy. J Am Soc Nephrol 2015; 26:1503-12. [PMID: 25694468 DOI: 10.1681/asn.2014101000] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Complement activation has a role in the pathogenesis of IgA nephropathy, an autoimmune disease mediated by pathogenic immune complexes consisting of galactose-deficient IgA1 bound by antiglycan antibodies. Of three complement-activation pathways, the alternative and lectin pathways are involved in IgA nephropathy. IgA1 can activate both pathways in vitro, and pathway components are present in the mesangial immunodeposits, including properdin and factor H in the alternative pathway and mannan-binding lectin, mannan-binding lectin-associated serine proteases 1 and 2, and C4d in the lectin pathway. Genome-wide association studies identified deletion of complement factor H-related genes 1 and 3 as protective against the disease. Because the corresponding gene products compete with factor H in the regulation of the alternative pathway, it has been hypothesized that the absence of these genes could lead to more potent inhibition of complement by factor H. Complement activation can take place directly on IgA1-containing immune complexes in circulation and/or after their deposition in the mesangium. Notably, complement factors and their fragments may serve as biomarkers of IgA nephropathy in serum, urine, or renal tissue. A better understanding of the role of complement in IgA nephropathy may provide potential targets and rationale for development of complement-targeting therapy of the disease.
Collapse
Affiliation(s)
- Nicolas Maillard
- University of Alabama at Birmingham, Departments of Microbiology and Medicine, Birmingham, Alabama; Université Jean Monnet, Groupe sur l'immunité des Muqueuses et Agents Pathogènes, St. Etienne, Pôle de Recherche et d'Enseignement Supérieur, Université de Lyon, Lyon, France
| | - Robert J Wyatt
- University of Tennessee Health Science Center and Children's Foundation Research at the Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Bruce A Julian
- University of Alabama at Birmingham, Departments of Microbiology and Medicine, Birmingham, Alabama
| | - Krzysztof Kiryluk
- Columbia University, Department of Medicine, New York, New York; and
| | - Ali Gharavi
- Columbia University, Department of Medicine, New York, New York; and
| | - Veronique Fremeaux-Bacchi
- Unité Mixte de Recherche en Santé 1138, Team "Complement and Diseases," Cordeliers Research Center, Paris, France
| | - Jan Novak
- University of Alabama at Birmingham, Departments of Microbiology and Medicine, Birmingham, Alabama;
| |
Collapse
|
36
|
Kitai Y, Doi Y, Osaki K, Sugioka S, Koshikawa M, Sugawara A. Nephrotic range proteinuria as a strong risk factor for rapid renal function decline during pre-dialysis phase in type 2 diabetic patients with severely impaired renal function. Clin Exp Nephrol 2015; 19:1037-43. [PMID: 25680889 DOI: 10.1007/s10157-015-1094-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 02/03/2015] [Indexed: 01/13/2023]
Abstract
BACKGROUND Proteinuria is an established risk factor for progression of renal disease, including diabetic nephropathy. The predictive power of proteinuria, especially nephrotic range proteinuria, for progressive renal deterioration has been well demonstrated in diabetic patients with normal to relatively preserved renal function. However, little is known about the relationship between severity of proteinuria and renal outcome in pre-dialysis diabetic patients with severely impaired renal function. METHODS 125 incident dialysis patients with type 2 diabetes were identified. This study was aimed at retrospectively evaluating the impact of nephrotic range proteinuria (urinary protein-creatinine ratio above 3.5 g/gCr) on renal function decline during the 3 months just prior to dialysis initiation. RESULTS In total, 103 patients (82.4 %) had nephrotic range proteinuria. The median rate of decline in estimated glomerular filtration rate (eGFR) in this study population was 0.98 (interquartile range 0.51-1.46) ml/min/1.73 m(2) per month. Compared to patients without nephrotic range proteinuria, patients with nephrotic range proteinuria showed significantly faster renal function decline (0.46 [0.24-1.25] versus 1.07 [0.64-1.54] ml/min/1.73 m(2) per month; p = 0.007). After adjusting for gender, age, systolic blood pressure, serum albumin, calcium-phosphorus product, hemoglobin A1c, and use of an angiotensin-converting enzyme inhibitor or an angiotensin II receptor blocker, patients with nephrotic range proteinuria showed a 3.89-fold (95 % CI 1.08-14.5) increased risk for rapid renal function decline defined as a decline in eGFR ≥0.5 ml/min/1.73 m(2) per month. CONCLUSION Nephrotic range proteinuria is the predominant renal risk factor in type 2 diabetic patients with severely impaired renal function receiving pre-dialysis care.
Collapse
Affiliation(s)
- Yuichiro Kitai
- Department of Nephrology, Osaka Red Cross Hospital, 5-30 Fudegasaki-cho, Tennoji-ku, Osaka, 543-8555, Japan
| | - Yohei Doi
- Department of Nephrology, Osaka Red Cross Hospital, 5-30 Fudegasaki-cho, Tennoji-ku, Osaka, 543-8555, Japan
| | - Keisuke Osaki
- Department of Nephrology, Osaka Red Cross Hospital, 5-30 Fudegasaki-cho, Tennoji-ku, Osaka, 543-8555, Japan
| | - Sayaka Sugioka
- Department of Nephrology, Osaka Red Cross Hospital, 5-30 Fudegasaki-cho, Tennoji-ku, Osaka, 543-8555, Japan
| | - Masao Koshikawa
- Department of Nephrology, Osaka Red Cross Hospital, 5-30 Fudegasaki-cho, Tennoji-ku, Osaka, 543-8555, Japan
| | - Akira Sugawara
- Department of Nephrology, Osaka Red Cross Hospital, 5-30 Fudegasaki-cho, Tennoji-ku, Osaka, 543-8555, Japan.
| |
Collapse
|
37
|
Fearn A, Sheerin NS. Complement activation in progressive renal disease. World J Nephrol 2015; 4:31-40. [PMID: 25664245 PMCID: PMC4317626 DOI: 10.5527/wjn.v4.i1.31] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/14/2014] [Accepted: 12/10/2014] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) is common and the cause of significant morbidity and mortality. The replacement of functioning nephrons by fibrosis is characteristic of progressive disease. The pathways that lead to fibrosis are not fully understood, although chronic non-resolving inflammation in the kidney is likely to drive the fibrotic response that occurs. In patients with progressive CKD there is histological evidence of inflammation in the interstitium and strategies that reduce inflammation reduce renal injury in pre-clinical models of CKD. The complement system is an integral part of the innate immune system but also augments adaptive immune responses. Complement activation is known to occur in many diverse renal diseases, including glomerulonephritis, thrombotic microangiopathies and transplant rejection. In this review we discuss current evidence that complement activation contributes to progression of CKD, how complement could cause renal inflammation and whether complement inhibition would slow progression of renal disease.
Collapse
|
38
|
Mueller-Ortiz SL, Morales JE, Wetsel RA. The receptor for the complement C3a anaphylatoxin (C3aR) provides host protection against Listeria monocytogenes-induced apoptosis. THE JOURNAL OF IMMUNOLOGY 2014; 193:1278-89. [PMID: 24981453 DOI: 10.4049/jimmunol.1302787] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Listeria monocytogenes is a Gram-positive intracellular bacterium that is acquired through tainted food and may lead to systemic infection and possible death. Despite the importance of the innate immune system in fighting L. monocytogenes infection, little is known about the role of complement and its activation products, including the potent C3a anaphylatoxin. In a model of systemic L. monocytogenes infection, we show that mice lacking the receptor for C3a (C3aR(-/-)) are significantly more sensitive to infection compared with wild-type mice, as demonstrated by decreased survival, increased bacterial burden, and increased damage to their livers and spleens. The inability of the C3aR(-/-) mice to clear the bacterial infection was not caused by defective macrophages or by a reduction in cytokines/chemokines known to be critical in the host response to L. monocytogenes, including IFN-γ and TNF-α. Instead, TUNEL staining, together with Fas, active caspase-3, and Bcl-2 expression data, indicates that the increased susceptibility of C3aR(-/-) mice to L. monocytogenes infection was largely caused by increased L. monocytogenes-induced apoptosis of myeloid and lymphoid cells in the spleen that are required for ultimate clearance of L. monocytogenes, including neutrophils, macrophages, dendritic cells, and T cells. These findings reveal an unexpected function of C3a/C3aR signaling during the host immune response that suppresses Fas expression and caspase-3 activity while increasing Bcl-2 expression, thereby providing protection to both myeloid and lymphoid cells against L. monocytogenes-induced apoptosis.
Collapse
Affiliation(s)
- Stacey L Mueller-Ortiz
- Brown Foundation Institute of Molecular Medicine, Research Center for Immunology and Autoimmune Diseases, University of Texas Medical School at Houston, Houston, TX 77030; and
| | - John E Morales
- Brown Foundation Institute of Molecular Medicine, Research Center for Immunology and Autoimmune Diseases, University of Texas Medical School at Houston, Houston, TX 77030; and
| | - Rick A Wetsel
- Brown Foundation Institute of Molecular Medicine, Research Center for Immunology and Autoimmune Diseases, University of Texas Medical School at Houston, Houston, TX 77030; and Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030
| |
Collapse
|
39
|
Gu H, Mickler EA, Cummings OW, Sandusky GE, Weber DJ, Gracon A, Woodruff T, Wilkes DS, Vittal R. Crosstalk between TGF-β1 and complement activation augments epithelial injury in pulmonary fibrosis. FASEB J 2014; 28:4223-34. [PMID: 24958208 DOI: 10.1096/fj.13-247650] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The epithelial complement inhibitory proteins (CIPs) cluster of differentiation 46 and 55 (CD46 and CD55) regulate circulating immune complex-mediated complement activation in idiopathic pulmonary fibrosis (IPF). Our previous studies demonstrated that IL-17A mediates epithelial injury via transforming growth factor β1 (TGF-β1) and down-regulates CIPs. In the current study, we examined the mechanistic role of TGF-β1 in complement activation-mediated airway epithelial injury in IPF pathogenesis. We observed lower epithelial CIP expression in IPF lungs compared to normal lungs, associated with elevated levels of complement component 3a and 5a (C3a and C5a), locally and systemically. In normal primary human small airway epithelial cells (SAECs) treated with TGF-β1 (10 ng/ml), C3a, or C5a (100 nM), we observed loss of CIPs and increased poly(ADP-ribose) polymerase (PARP) activation [also observed with RNA interference (RNAi) of CD46/CD55]. TGF-β1-mediated loss of CIPs and Snail induction [SNAI1; a transcriptional repressor of E-cadherin (E-CAD)] was blocked by inhibiting mitogen-activated protein kinase (p38MAPK; SB203580) and RNAi silencing of SNAI1. C3a- and C5a-mediated loss of CIPs was also blocked by p38MAPK inhibition. While C3a upregulated TGFb transcripts, both C3a and C5a down-regulated SMAD7 (negative regulator of TGF-β), and whereas TGF-β1 induced C3a/C5a receptor (C3aR/C5aR) expression, pharmacologic C3aR/C5aR inhibition protected against C3a-/C5a-mediated loss of CIPs. Taken together, our results suggest that epithelial injury in IPF can be collectively amplified as a result of TGF-β1-induced loss of CIPs leading to complement activation that down-regulates CIPs and induces TGF-β1 expression
Collapse
Affiliation(s)
- Hongmei Gu
- Center for Immunobiology and Pulmonary Division, Department of Medicine
| | | | | | | | | | | | - Trent Woodruff
- Therapeutic Development and Translation Program, School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - David S Wilkes
- Center for Immunobiology and Pulmonary Division, Department of Medicine, Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA; and
| | - Ragini Vittal
- Center for Immunobiology and Pulmonary Division, Department of Medicine,
| |
Collapse
|
40
|
Touzot M, Obada EN, Beaudreuil S, François H, Durrbach A. Complement modulation in solid-organ transplantation. Transplant Rev (Orlando) 2014; 28:119-25. [PMID: 24996770 DOI: 10.1016/j.trre.2014.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 03/08/2014] [Indexed: 01/18/2023]
Abstract
The complement system is a major constituent of the innate immune system. It has a critical role in defense against pathogens but dysregulation of complement activation may lead to tissue injury and modulate the adaptive immune response. In organ transplantation, local complement activation is involved in hyper-acute rejection and antibody-mediated rejection. This last decade, interest in complement activation has increased due to new insights into the pathophysiology of antibody-mediated rejection, but also since the availability of news drugs that target terminal complement activation. In this review, we discuss our current understanding of how local complement activation induces acute and chronic graft injury, and review recent advances in clinical trials that block complement activation using the anti-C5 monoclonal antibody, eculizumab. Finally, we discuss how complement-targeted therapy may be integrated into our current immunosuppressive regimen and what type of patient will benefit most from this therapy.
Collapse
Affiliation(s)
- Maxime Touzot
- Nephrology Department, IFRNT, Le Kremlin-Bicêtre, France; Institut National de la Santé et de la Recherche Médicale INSERM U1014, Villejuif, France
| | | | - Severine Beaudreuil
- Nephrology Department, IFRNT, Le Kremlin-Bicêtre, France; Institut National de la Santé et de la Recherche Médicale INSERM U1014, Villejuif, France
| | - Hélène François
- Nephrology Department, IFRNT, Le Kremlin-Bicêtre, France; Institut National de la Santé et de la Recherche Médicale INSERM U1014, Villejuif, France
| | - Antoine Durrbach
- Nephrology Department, IFRNT, Le Kremlin-Bicêtre, France; Institut National de la Santé et de la Recherche Médicale INSERM U1014, Villejuif, France.
| |
Collapse
|
41
|
Locatelli M, Buelli S, Pezzotta A, Corna D, Perico L, Tomasoni S, Rottoli D, Rizzo P, Conti D, Thurman JM, Remuzzi G, Zoja C, Morigi M. Shiga toxin promotes podocyte injury in experimental hemolytic uremic syndrome via activation of the alternative pathway of complement. J Am Soc Nephrol 2014; 25:1786-98. [PMID: 24578132 DOI: 10.1681/asn.2013050450] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli is the offending agent of postdiarrhea-associated hemolytic uremic syndrome (HUS), a disorder of glomerular ischemic damage and widespread microvascular thrombosis. We previously documented that Stx induces glomerular complement activation, generating C3a responsible for microvascular thrombosis in experimental HUS. Here, we show that the presence of C3 deposits on podocytes is associated with podocyte damage and loss in HUS mice generated by the coinjection of Stx2 and LPS. Because podocyte adhesion to the glomerular basement membrane is mediated by integrins, the relevance of integrin-linked kinase (ILK) signals in podocyte dysfunction was evaluated. Podocyte expression of ILK increased after the injection of Stx2/LPS and preceded the upregulation of Snail and downregulation of nephrin and α-actinin-4. Factor B deficiency or pretreatment with an inhibitory antibody to factor B protected mice against Stx2/LPS-induced podocyte dysregulation. Similarly, pretreatment with a C3a receptor antagonist limited podocyte loss and changes in ILK, Snail, and α-actinin-4 expression. In cultured podocytes, treatment with C3a reduced α-actinin-4 expression and promoted ILK-dependent nuclear expression of Snail and cell motility. These results suggest that Stx-induced activation of the alternative pathway of complement and generation of C3a promotes ILK signaling, leading to podocyte dysfunction and loss in Stx-HUS.
Collapse
Affiliation(s)
- Monica Locatelli
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Bergamo, Italy
| | - Simona Buelli
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Bergamo, Italy
| | - Anna Pezzotta
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Bergamo, Italy
| | - Daniela Corna
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Bergamo, Italy
| | - Luca Perico
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Bergamo, Italy
| | - Susanna Tomasoni
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Bergamo, Italy
| | - Daniela Rottoli
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Bergamo, Italy
| | - Paola Rizzo
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Bergamo, Italy
| | - Debora Conti
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Bergamo, Italy
| | - Joshua M Thurman
- Division of Nephrology and Hypertension, University of Colorado Denver School of Medicine, Aurora, Colorado; and
| | - Giuseppe Remuzzi
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Bergamo, Italy; Unit of Nephrology and Dialysis, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Carlamaria Zoja
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Bergamo, Italy
| | - Marina Morigi
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Bergamo, Italy;
| |
Collapse
|
42
|
Zhou M, Ma H, Lin H, Qin J. Induction of epithelial-to-mesenchymal transition in proximal tubular epithelial cells on microfluidic devices. Biomaterials 2013; 35:1390-401. [PMID: 24239111 DOI: 10.1016/j.biomaterials.2013.10.070] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/27/2013] [Indexed: 01/09/2023]
Abstract
In proteinuric nephropathy, epithelial-to-mesenchymal transition (EMT) is an important mechanism that causes renal interstitial fibrosis. The precise role of EMT in the pathogenesis of fibrosis remains controversial, partly due to the absence of suitable in vitro or in vivo models. We developed two microfluidic and compartmental chips that reproduced the fluidic and three-dimensional microenvironment of proximal tubular epithelial cells in vivo. Using one microfluidic device, we stimulated epithelial cells with a flow of healthy human serum, heat-inactivated serum and complement C3a, which mimicked the flow of urine within the proximal tubule. We observed that epithelial cells exposed to serum proteins became apoptotic or developed a mesenchymal phenotype. Incubating cells with C3a induced similar features. However, cells exposed to heat-inactivated serum did not adopt the mesenchymal phenotype. Furthermore, we successfully recorded the cellular morphological changes and the process of transmigration into basement membrane extract during EMT in real-time using another three-dimensional microdevice. In conclusion, we have established a cell-culture system that mimics the native microenvironment of the proximal tubule to a certain extent. Our data indicates that EMT did occur in epithelial cells that were exposed to serum proteins, and C3a plays an essential role in this pathological process.
Collapse
Affiliation(s)
- Mengying Zhou
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Rd, Dalian 116011, China
| | - Huipeng Ma
- Department of Biotechnology, Dalian Institute of Chemical Physics, CAS, No. 457 Zhongshan Rd, Dalian 116023, China; College of Medical Laboratory, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian 116044, China
| | - Hongli Lin
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Rd, Dalian 116011, China.
| | - Jianhua Qin
- Department of Biotechnology, Dalian Institute of Chemical Physics, CAS, No. 457 Zhongshan Rd, Dalian 116023, China.
| |
Collapse
|
43
|
Abstract
Acute kidney injury is a common and severe clinical problem. Patients who develop acute kidney injury are at increased risk of death despite supportive measures such as hemodialysis. Research in recent years has shown that tissue inflammation is central to the pathogenesis of renal injury, even after nonimmune insults such as ischemia/reperfusion and toxins. Examination of clinical samples and preclinical models has shown that activation of the complement system is a critical cause of acute kidney injury. Furthermore, complement activation within the injured kidney is a proximal trigger of many downstream inflammatory events within the renal parenchyma that exacerbate injury to the kidney. Complement activation also may account for the systemic inflammatory events that contribute to remote organ injury and patient mortality. Complement inhibitory drugs have now entered clinical use and may provide an important new therapeutic approach for patients suffering from, or at high risk of developing, acute kidney injury.
Collapse
Affiliation(s)
- James W McCullough
- Department of Medicine, University of Colorado Denver School of Medicine, Aurora, CO
| | | | | |
Collapse
|
44
|
An update on the pathomechanisms and future therapies of Alport syndrome. Pediatr Nephrol 2013; 28:1025-36. [PMID: 22903660 DOI: 10.1007/s00467-012-2272-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/12/2012] [Accepted: 07/13/2012] [Indexed: 01/08/2023]
Abstract
Alport Syndrome (AS) is an inherited progressive disease that is caused by mutations of the genes encoding the key collagen chains, α3, α4, and α5, which are necessary for the composition of collagen type IV to form a robust glomerular basement membrane (GBM), capable of withstanding the significant biomechanical strain to which the glomerulus is subjected. Progressive loss of the filtration barrier allows excessive proteinuria, which ultimately leads to end-stage kidney disease (ESKD). The evidence for a beneficial renoprotective effect of renin-angiotensin-aldosterone system (RAAS) blockade by angiotensin-converting enzyme (ACE) inhibition and/or angiotensin receptor blockers (ARBs) is well established in AS and recent evidence has shown that it can significantly delay the time to onset of renal replacement therapy and ESKD. Future potential treatments of AS disease progression are evaluated in this review.
Collapse
|
45
|
Peng Q, Li K, Smyth LA, Xing G, Wang N, Meader L, Lu B, Sacks SH, Zhou W. C3a and C5a promote renal ischemia-reperfusion injury. J Am Soc Nephrol 2012; 23:1474-85. [PMID: 22797180 DOI: 10.1681/asn.2011111072] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Renal ischemia reperfusion injury triggers complement activation, but whether and how the small proinflammatory fragments C3a and C5a contribute to the pathogenesis of this injury remains to be elucidated. Using C3aR-, C5aR-, or C3aR/C5aR-deficient mice and models of renal ischemia-reperfusion injury, we found that deficiency of either or both of these receptors protected mice from injury, but the C3aR/C5aR- and C5aR-deficient mice were most protected. Protection from injury was associated with less cellular infiltration and lower mRNA levels of kidney injury molecule-1, proinflammatory mediators, and adhesion molecules in postischemic kidneys. Furthermore, chimera studies showed that the absence of C3aR and C5aR on renal tubular epithelial cells or circulating leukocytes attenuated renal ischemia-reperfusion injury. In vitro, C3a and C5a stimulation induced inflammatory mediators from both renal tubular epithelial cells and macrophages after hypoxia/reoxygenation. In conclusion, although both C3a and C5a contribute to renal ischemia-reperfusion injury, the pathogenic role of C5a in this injury predominates. These data also suggest that expression of C3aR and C5aR on both renal and circulating leukocytes contributes to the pathogenesis of renal ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Qi Peng
- MRC Centre for Transplantation, King's College London, London SE1 9RT, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Loverre A, Tataranni T, Castellano G, Divella C, Battaglia M, Ditonno P, Corcelli M, Mangino M, Gesualdo L, Schena FP, Grandaliano G. IL-17 expression by tubular epithelial cells in renal transplant recipients with acute antibody-mediated rejection. Am J Transplant 2011; 11:1248-59. [PMID: 21645256 DOI: 10.1111/j.1600-6143.2011.03529.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Acute rejection is still a common complication of kidney transplantation. IL-17 is known to be associated with allograft rejection but the cellular source and the role of this cytokine remains unclear. We investigated IL-17 graft expression in renal transplant recipients with acute antibody-mediated rejection (ABMR), acute T-cell-mediated rejection (TCMR), interstitial fibrosis and tubular atrophy (IFTA) and acute tubular damage due to calcineurin-inhibitor toxicity (CNI). In acute ABMR, tubular IL-17 protein expression was significantly increased compared to TCMR, where most of the IL-17⁺ cells were CD4⁺ graft infiltrating lymphocytes, IFTA and CNI control groups. The tubular expression of IL-17 in acute ABMR colocalized with JAK2 phosphorylation and peritubular capillaries C4d deposition. In addition, IL-17 tubular expression was directly and significantly correlated with the extension of C4d deposits. In cultured proximal tubular cells, C3a induced IL-17 gene and protein expression along with an increased in JAK2 phosphorylation. The inhibition of JAK2 abolished C3a-induced IL-17 expression. The use of steroids and monoclonal antibodies reduced IL-17 expression, JAK2 phosphorylation and C4d deposition in acute ABMR patients. Our data suggest that tubular cells represent a significant source of IL-17 in ABMR and this event might be mediated by the complement system activation featuring this condition.
Collapse
Affiliation(s)
- A Loverre
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Tang Z, Sheerin N. Complement Activation and Progression of Chronic Kidney Disease. Int J Organ Transplant Med 2009. [DOI: 10.1016/s1561-5413(09)60241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
48
|
Wenderfer SE, Wang H, Ke B, Wetsel RA, Braun MC. C3a receptor deficiency accelerates the onset of renal injury in the MRL/lpr mouse. Mol Immunol 2009; 46:1397-404. [PMID: 19167760 PMCID: PMC2697606 DOI: 10.1016/j.molimm.2008.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 12/04/2008] [Accepted: 12/07/2008] [Indexed: 12/23/2022]
Abstract
The development and progression of systemic lupus erythematosus (SLE) is strongly associated with complement activation and deposition. The anaphylatoxin C3a is a product of complement activation with immunomodulatory properties, and the receptor for C3a (C3aR) is not only expressed by granulocytes and antigen presenting cell populations, but it is also strongly up-regulated in lupus prone mice with active nephritis. In order to characterize the role of the C3aR in inflammatory nephritis, we bred C3aR knock out mice onto the MRL/lpr genetic background (C3aR KO MRL). Compared to control MRL/lpr mice, C3aR KO MRL mice had elevated auto-antibody titers and an earlier onset of renal injury. At 8 weeks, renal expression of a wide range of chemokines and chemokine receptors was increased in C3aR KO MRL kidneys compared to controls. Only the expression of MCP-1 was significantly decreased in the C3aR KO MRL mice. The increased chemokine and chemokine receptor expression seen in the C3aR KO MRL mice was associated with a more rapid rise in serum creatinine and the acceleration of renal fibrosis. However, loss of the C3aR had little impact on long-term kidney injury and did not alter survival. These findings suggest that activation of the C3aR plays a protective, not pathologic, role in the early phase of inflammatory nephritis in the MRL/lpr model of SLE.
Collapse
Affiliation(s)
- Scott E. Wenderfer
- The Center for Immunology and Autoimmune Diseases, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center-Houston Houston, Texas, USA
- Division of Pediatric Nephrology and Hypertension, Department of Pediatrics, University of Texas Health Science Center at Houston, USA
| | - Hongyu Wang
- The Center for Immunology and Autoimmune Diseases, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center-Houston Houston, Texas, USA
| | - Baozhen Ke
- The Center for Immunology and Autoimmune Diseases, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center-Houston Houston, Texas, USA
| | - Rick A. Wetsel
- The Center for Immunology and Autoimmune Diseases, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center-Houston Houston, Texas, USA
| | - Michael C. Braun
- The Center for Immunology and Autoimmune Diseases, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center-Houston Houston, Texas, USA
- Division of Pediatric Nephrology and Hypertension, Department of Pediatrics, University of Texas Health Science Center at Houston, USA
| |
Collapse
|
49
|
Tang Z, Lu B, Hatch E, Sacks SH, Sheerin NS. C3a mediates epithelial-to-mesenchymal transition in proteinuric nephropathy. J Am Soc Nephrol 2009; 20:593-603. [PMID: 19158354 DOI: 10.1681/asn.2008040434] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tubulointerstitial inflammation and progressive fibrosis are common pathways that lead to kidney failure in proteinuric nephropathies. Activation of the complement system has been implicated in the development of tubulointerstitial injury in clinical and animal studies, but the mechanism by which complement induces kidney injury is not fully understood. Here, we studied the effect of complement on the phenotype of tubular epithelial cells. Tubular epithelial cells exposed to serum proteins adopted phenotypic and functional characteristics of mesenchymal cells. Expression of E-cadherin protein decreased and expression of both alpha-smooth muscle actin protein and collagen I mRNA increased. Exposure of the cells to the complement anaphylotoxin C3a induced similar features. Treating with a C3a receptor (C3aR) antagonist prevented both C3a- and serum-induced epithelial-to-mesenchymal transition. In the adriamycin-induced proteinuria model, C3aR-deficient mice demonstrated less injury, preserved renal function, and improved survival compared with wild-type mice. Furthermore, the kidneys of C3aR-deficient mice had significantly less interstitial collagen I and alpha-smooth muscle actin. In summary, the complement anaphylotoxin C3a is an important mediator of glomerular and tubulointerstitial injury and can induce tubular epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Ziyong Tang
- King's College London, Department of Nephrology and Transplantation, Guy's Hospital London, London, UK
| | | | | | | | | |
Collapse
|
50
|
Jun SW, Kim TH, Lee HM, Lee SH, Kim WJ, Park SJ, Kim YS, Lee SH. Overexpression of the anaphylatoxin receptors, complement anaphylatoxin 3a receptor and complement anaphylatoxin 5a receptor, in the nasal mucosa of patients with mild and severe persistent allergic rhinitis. J Allergy Clin Immunol 2008; 122:119-25. [PMID: 18538384 DOI: 10.1016/j.jaci.2008.04.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 04/15/2008] [Accepted: 04/24/2008] [Indexed: 11/28/2022]
Abstract
BACKGROUND Although the complement anaphylatoxin peptides, complement anaphylatoxin 3a (C3a) and complement anaphylatoxin 5a (C5a), are implicated in the inflammatory process in allergic rhinitis, a direct interaction between allergic mucosa and complement receptors has not been demonstrated. OBJECTIVE We investigated the expressional levels and distributional patterns of the C3a receptor (C3aR) and C5a receptor (C5aR) in normal, mild, and severe persistent allergic nasal mucosa. METHODS Immunohistochemistry and Western blotting using C3aR and C5aR antibodies were applied to normal nasal, mild, and severe persistent allergic nasal mucosa. RESULTS Complement anaphylatoxin 5a receptor was detected in the inflammatory cells of normal and allergic nasal mucosa, and its expression level was significantly higher in allergic nasal mucosa than normal nasal mucosa. C3aR in normal and allergic nasal mucosa was commonly expressed in nonmyeloid cells such as epithelial cells, submucosal glands, and nerve fibers. In addition, C3aR was expressed in the endothelium of cavernous sinuses and the surrounding perivascular muscle layer in severe persistent allergic nasal mucosa, but not in normal and mild allergic nasal mucosa. Western blotting demonstrated that the expression level of C3aR was significantly increased in severe persistent allergic nasal mucosa compared with normal and mild nasal mucosa. CONCLUSION On the basis of the location of C3aR and C5aR, C5aR may play a role in activation of inflammatory cells, whereas C3aR may mediate mucus secretion and mucosal swelling in allergic nasal mucosa, especially severe persistent allergic nasal mucosa.
Collapse
Affiliation(s)
- Sung Whan Jun
- Department of Otorhinolaryngology-Head and Neck Surgery, National Medical Center, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|