1
|
Duweb A, Schmiech M, Ulrich J, Abdel-Kahaar E, Pfeiffer M, El Gaafary M, Barth H, Simmet T, Syrovets T. Comparative analysis of micellar and native formulations of Boswellia serrata oleogum extracts in T-cell receptor-activated lymphocytes. Biomed Pharmacother 2025; 186:118009. [PMID: 40157006 DOI: 10.1016/j.biopha.2025.118009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Chronic inflammatory disorders represent one of the predominant healthcare burdens. There is evidence that the oleogum resin from Boswellia serrata trees can downmodulate pro-inflammatory processes. Lipid micellar preparations of Boswellia serrata have been introduced to the market to overcome the low bioavailability of nonformulated Boswellia oleogum resin preparations. In this study, we aimed to compare the anti-inflammatory effects of two different Boswellia serrata nutraceuticals: the native, nonformulated Biotikon® BS-85 and the micellar Boswellia-Loges®. We have previously shown that single oral administration of 800 mg of either formulation reduces the release of proinflammatory cytokines TNF-α, IL-1β, and IL-6 by LPS-activated blood of donors. Here we show that under the same conditions, the production of IL-17A was increased by the nonformulated, native extract of Boswellia serrata oleogum resin. In vitro, the nonformulated but not the micellar formulation of Boswellia serrata oleogum resin decreased the release of IFN-γ, TNF-α, and IL-2 by TCR-activated lymphocytes. Both formulations as well as the bioactive principles boswellic acids lowered NF-κB activity in TCR-activated T lymphocytes. Similarly, both Boswellia serrata formulations and boswellic acids reduced NFAT activity in TCR-activated T lymphocytes. The nonformulated Boswellia serrata extract exhibited higher inhibitory activity on the release of T-cell cytokines. The results suggest that nutraceuticals containing the nonformulated oleogum extract of Boswellia serrata might be more effective in hampering chronic inflammatory disorders characterized by increased activity of T cells than the micellar formulations.
Collapse
Affiliation(s)
- Amira Duweb
- Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany; Department of Pharmacology, Faculty of Medicine, University of Tripoli, Tripoli, Libya.
| | - Michael Schmiech
- Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany
| | - Judith Ulrich
- Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany
| | - Emaad Abdel-Kahaar
- Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany; Department of Immunopharmacology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Maximilian Pfeiffer
- Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany
| | - Menna El Gaafary
- Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany; Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany
| | - Thomas Simmet
- Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany
| | - Tatiana Syrovets
- Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany
| |
Collapse
|
2
|
Barzin Tond S, Abolghasemi S, Khatami SH, Ehtiati S, Zarei T, Shateri S, Mahmoodi Baram S, Yarahmadi S, Fallah S, Salmani F, Shahmohammadi MR, Khajavirad N, Tafakhori A, Riazi A, Karima S. Boswellic Acids Reduce Systemic Inflammation in Patients with Moderate COVID-19 Through Modulation of NF-κB Pathway. J Diet Suppl 2025; 22:365-381. [PMID: 40012185 DOI: 10.1080/19390211.2025.2468484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Prevention and/or management of the dysregulated immune response in patients with COVID-19 is expected to help in the treatment of COVID-19. Boswellic acids (BAs) have great therapeutic potential because they have anti-inflammatory and immunomodulatory effects. Here, we aimed to investigate the mechanism of action of a BA formulation, Inflawell syrup, which was previously shown to be effective in reducing disease symptoms in patients who suffer from mild to moderate COVID-19. Patients with mild to moderate COVID-19 were treated with either Inflawell containing boswellic acids or a placebo for 14 days. The serum levels of inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin (IL)-8, IL-1α, IL-17, IL-1Ra, and Monocyte Chemoattractant Protein-1 (MCP-1), were measured both at study onset and on day 14 after treatment started. In addition, to further investigate the signaling pathway(s) underlying the changes in cytokine levels, we evaluated the expression of tumor necrosis factor receptor 1 (TNFR1), tumor necrosis factor receptor 2 (TNFR2), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 mRNAs and phospho-inhibitor of nuclear factor kappa B (IκB) and IκB proteins. In our study, a significant decrease in the serum levels of IL-1α (p < .009), IL-8 (p < .04), TNF-α (p < .0001), and MCP-1 (p < .007) was detected in patients treated with Inflawell. Additionally, our data revealed a decrease in phospho-IκB protein levels (p < .02) and NF-κB p65 mRNA levels (p < .002), whereas the amount of IκB protein (p < .01) in the Inflawell group was significantly greater than that in the placebo group. Furthermore, despite the decreasing trend in the expression of TNFR1 and TNFR2 in the Inflawell group, there was no statistically significant difference compared with that in the placebo group. In general, treatment with Inflawell syrup led to a lower level of proinflammatory cytokines and a decrease in the activity of the TNF-α/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Sepideh Barzin Tond
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Sara Abolghasemi
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medial Sciences (SBMU), Tehran, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Ehtiati
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayebe Zarei
- Clinical Trial Department, Behbalin Co., Ltd, Tehran, Iran
| | - Somayyeh Shateri
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | | | - Sahar Yarahmadi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soudabeh Fallah
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Salmani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Mohammad Reza Shahmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Nasim Khajavirad
- Internal Medicine Department, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Abbas Tafakhori
- Iranian Center of Neurological Research, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| |
Collapse
|
3
|
Touny AA, Venkataraman B, Ojha S, Pessia M, Subramanian VS, Hariharagowdru SN, Subramanya SB. Phytochemical Compounds as Promising Therapeutics for Intestinal Fibrosis in Inflammatory Bowel Disease: A Critical Review. Nutrients 2024; 16:3633. [PMID: 39519465 PMCID: PMC11547603 DOI: 10.3390/nu16213633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVE Intestinal fibrosis, a prominent consequence of inflammatory bowel disease (IBD), presents considerable difficulty owing to the absence of licensed antifibrotic therapies. This review assesses the therapeutic potential of phytochemicals as alternate methods for controlling intestinal fibrosis. Phytochemicals, bioactive molecules originating from plants, exhibit potential antifibrotic, anti-inflammatory, and antioxidant activities, targeting pathways associated with inflammation and fibrosis. Compounds such as Asperuloside, Berberine, and olive phenols have demonstrated potential in preclinical models by regulating critical signaling pathways, including TGF-β/Smad and NFκB, which are integral to advancing fibrosis. RESULTS The main findings suggest that these phytochemicals significantly reduce fibrotic markers, collagen deposition, and inflammation in various experimental models of IBD. These phytochemicals may function as supplementary medicines to standard treatments, perhaps enhancing patient outcomes while mitigating the adverse effects of prolonged immunosuppressive usage. Nonetheless, additional clinical trials are necessary to validate their safety, effectiveness, and bioavailability in human subjects. CONCLUSIONS Therefore, investigating phytochemicals may lead to crucial advances in the formulation of innovative treatment approaches for fibrosis associated with IBD, offering a promising avenue for future therapeutic development.
Collapse
Affiliation(s)
- Aya A. Touny
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Ahram Canadian University, Giza 12581, Egypt
| | - Balaji Venkataraman
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Mauro Pessia
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
| | | | - Shamanth Neralagundi Hariharagowdru
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sandeep B. Subramanya
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
4
|
Schmiech M, Abdel-Kahaar E, Ulrich J, Pfeiffer M, Duweb A, Zolk O, Syrovets T, Simmet T. Single-dose comparative pharmacokinetic/pharmacodynamic study of a micellar formulation versus a native Boswellia serrata dry extract in healthy volunteers. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155863. [PMID: 39033725 DOI: 10.1016/j.phymed.2024.155863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Extracts of oleogum resins of Boswellia trees possess anti-inflammatory activities. Micellar formulations have been developed to increase the oral bioavailability of bioactive boswellic and lupeolic acids. PURPOSE The current single-dose crossover clinical trial compares for the first time pharmacokinetics/pharmacodynamics of two Boswellia serrata nutraceuticals, native Biotikon® BS-85 and micellar Boswellia-Loges®. METHODS After oral administration of the study preparations (800 mg) to 20 healthy volunteers, plasma concentrations of 8 boswellic and lupeolic acids were measured by using HPLC-MS/MS for up to 48 h Blood samples collected 2 and 5 h after drug administration were stimulated for 24 h with endotoxic lipopolysaccharide. The release of proinflammatory cytokines analyzed by flow cytometry was used as readout of the pharmacodynamic properties of the preparations. REGISTRATION German Clinical Trials Register (DRKS) No. DRKS00027369. RESULTS Administration of the micellar extract significantly increased Cmax, AUC0-48, and shortened Tmax for all boswellic and lupeolic acids compared to native extract. Accordingly, their relative bioavailability increased to 1,720-4,291 % with the highest difference for acetyl-11-keto-β-boswellic acid (AKBA). Both preparations reduced the release of TNF-α and the native formulation diminished also IL-1β and IL-6. However, no significant differences were observed between the preparations, except for a higher decrease in IL-1β by the native formulation Biotikon® BS-85. In a lymphocytic gene reporter cell line, both nutraceuticals similarly inhibited the NF-κB transcription factor activity as well as the TNF-α release, yet the native formulation Biotikon®BS-85 was more efficient in inhibiting TNF-α. CONCLUSION Administration of the micellar Boswellia serrata nutraceutical increased the oral bioavailability of boswellic and lupeolic acids. Yet, the increase in plasma concentration did not enhance the anti-inflammatory efficacy of the micellar extract compared to the native extract in this ex vivo model.
Collapse
Affiliation(s)
- Michael Schmiech
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University, Helmholtzstr. 20, Ulm 89081, Germany
| | - Emaad Abdel-Kahaar
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University, Helmholtzstr. 20, Ulm 89081, Germany
| | - Judith Ulrich
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University, Helmholtzstr. 20, Ulm 89081, Germany
| | - Maximilian Pfeiffer
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University, Helmholtzstr. 20, Ulm 89081, Germany
| | - Amira Duweb
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University, Helmholtzstr. 20, Ulm 89081, Germany; Department of Pharmacology, Faculty of Medicine, University of Tripoli, Tripoli 13628, Libya
| | - Oliver Zolk
- Institute of Clinical Pharmacology, Brandenburg Medical School, Immanuel Hospital Rüdersdorf, Rüdersdorf 15562, Germany
| | - Tatiana Syrovets
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University, Helmholtzstr. 20, Ulm 89081, Germany
| | - Thomas Simmet
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University, Helmholtzstr. 20, Ulm 89081, Germany.
| |
Collapse
|
5
|
Majeed A, Majeed S, Satish G, Manjunatha R, Rabbani SN, Patil NVP, Mundkur L. A standardized Boswellia serrata extract shows improvements in knee osteoarthritis within five days-a double-blind, randomized, three-arm, parallel-group, multi-center, placebo-controlled trial. Front Pharmacol 2024; 15:1428440. [PMID: 39092235 PMCID: PMC11291344 DOI: 10.3389/fphar.2024.1428440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/26/2024] [Indexed: 08/04/2024] Open
Abstract
Background Boswellin® Super is a standardized extract of Boswellia serrata Roxb gum resin, standardized to contain 30% 3-acetyl-11-keto-β-boswellic acid along with other β-boswellic acids (BSE). A randomized, double-blind, placebo-controlled clinical trial was conducted at two doses of BSE to understand its safety and efficacy in supporting joint health and improving mobility and symptoms of osteoarthritis (OA) of the knee. Methods Based on the inclusion/exclusion criteria, 105 newly diagnosed participants with degenerative hypertrophy OA were recruited and randomized into Placebo, BSE-150 mg or BSE-300 mg (n = 35 in each group) to receive either 150 mg or 300 mg BSE or a placebo tablet twice a day for 90 days. All the participants were evaluated for pain and physical function using the standard tools including the Visual Analog Scale (VAS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Lequesne Functional Index (LFI), EuroQol- 5 Dimension (EQ-5D) quality of life, 6-min walk test at day 0, days 5, 30, 60 and 90 of treatment. Additionally, the circulating levels of inflammatory biomarkers, tumor necrosis factor-α (TNFα), high-sensitive C-reactive protein (hs-CRP), and interleukin-6 (IL-6) were evaluated. Safety was evaluated by blood biochemical, hematological analysis, urinary analyses and by monitoring adverse events throughout the study. Results Ninety-eight subjects completed the study. Improvements in pain scores were observed as early as 5 days after the start of the supplement in the BSE-150 and BSE-300 groups. By 90 days, the VAS pain score reduced by 45.3% and 61.9%, WOMAC- total score improved by 68.5% and 73.6% in the BSE-150 and BSE-300 groups respectively. WOMAC pain (70.2%, 73.9%, WOMAC stiffness (65.6%,68.9%), WOMAC function (68.8%,74.2%), LFI severity (50%,53.3%), decreased and EQ5D (56.9%, 62.9%) and distance walked in 6 minutes (21.2%, 21.9%) improved in the BSE-150 and BSE-300 groups in 90 days. Further, the levels of TNFα, hs-CRP, and IL-6 were found to decrease in the serum in BSE-supplemented participants. No significant adverse events were recorded during the study. Conclusion The study confirms that Boswellin® Super can be used as a safe and effective supplement to support joint health and mobility in the management of osteoarthritis. Clinical Trial Registration https://ctri.nic.in/Clinicaltrials/pmaindet2.php?EncHid=NzU2Nzc=&Enc=&userName=CTRI, identifier CTRI/2022/11/047397.
Collapse
Affiliation(s)
- Anju Majeed
- Sami-Sabinsa Group Limited, Peenya Industrial Area Bangalore, Bangalore, Karnataka, India
| | | | - G. Satish
- Sami-Sabinsa Group Limited, Peenya Industrial Area Bangalore, Bangalore, Karnataka, India
| | - R. Manjunatha
- Sami-Sabinsa Group Limited, Peenya Industrial Area Bangalore, Bangalore, Karnataka, India
| | | | - Neelanagowda V. P. Patil
- KR Hospital, Department of Orthopedics, Mysore Medical College and Research Institute K R Hospital, Mysore, Karnataka, India
| | - Lakshmi Mundkur
- Sami-Sabinsa Group Limited, Peenya Industrial Area Bangalore, Bangalore, Karnataka, India
| |
Collapse
|
6
|
Al-Matubsi H, Rashan L, Aburayyan W, Al Hanbali O, Abuarqoub D, Efferth T. Antidiabetic and antioxidant properties of Boswellia sacra oleo-gum in streptozotocin-induced diabetic rats. J Ayurveda Integr Med 2024; 15:101014. [PMID: 39167989 PMCID: PMC11381996 DOI: 10.1016/j.jaim.2024.101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/20/2024] [Accepted: 06/11/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Diabetes is a metabolic disorder requiring the administration of insulin or other oral hypoglycemic medicines. Although metformin is a popular prescription for type 2 diabetes, long-term use of chemotherapy-based diabetes medications can be hazardous. As a result, novel plant medicines with a high concentration of bioactive molecules, no harmful side effects, and potent pharmacological effects must be found. Edible Boswellia sacra (B. sacra) Flueck oleo-gum resin is widely utilized to treat many clinical diseases in traditional Arab, Chinese, African, and Ayurvedic medicine. OBJECTIVE The goal of this study was to examine the possible therapeutic benefits of several B. sacra oleo-gum resin extracts on rat streptozotocin (STZ)-induced hyperglycemia (Type II). MATERIALS AND METHODS For 29 days, hyperglycemic rats are given either metformin (the reference drug; 250 mg/kg body weight per day) or several B. sacra extracts (ethanol, methanol, hydrodistilled, ethyl acetate, and acetone extracts) at doses of 200 or 400 mg/kg/day. Blood glucose levels and body weights were measured before the initiation and at 7, 11, 16, 22, and 29 days after oral treatment. Furthermore, an oral glucose tolerance test (OGTT) was carried out. At the end of the study, the rats were euthanized, and blood samples were obtained to evaluate cytokines (interleukin (IL-)2 and IL-8), reduced glutathione (GSH), superoxide dismutase (SOD), and serum insulin levels. The pancreas and liver tissues were rapidly excised, washed, fixed, and kept in a 10% formalin buffer for histological examination. RESULTS B. sacra's ethanolic extract had the greatest concentration of total pentacyclic triterpenic acid (PTA) (391.52 mg/g) in comparison to the other extracts. The lower dose of B. sacra ethanol extract, 200 mg/kg/day, reduces blood glucose levels more efficiently than the higher dose of 400 mg/kg/day. In a 180-min OGTT, diabetic rats given ethanol extract (200 mg/kg) performed no better than control rats and even outperformed those given the reference medication metformin. Additionally, ethanol extract (200 mg/kg)- or metformin-treated diabetic rats gained weight. This was associated with a significant (p < 0.05) decrease in serum levels of IL-2 and IL-8, a reduction in oxidative stress as evidenced by a significant (p < 0.05) increase in SOD and GSH compared to the untreated diabetic group, and a significant (p < 0.05) increase in serum insulin levels compared to normal plasma rat levels. These discoveries, which were eventually confirmed by histochemical assays, indicated that the ethanol extract of B. sacra greatly enhanced the cellular architecture of pancreatic and liver cells. CONCLUSION The present investigation indicates that the ethanol extract of B. sacra oleo-gum resin, which contains a high proportion of acetyl-β-boswellic acid (β-ABA) and acetyl-11-keto-β-boswellic acid (AKBA), possesses antihyperglycemic, anti-inflammatory, and anti-oxidant properties for the first time to our knowledge. Additionally, it restores hepatic cells in STZ-induced diabetic rats and protects the pancreas against oxidative damage. Thus, the current study's results give a scientific rationale for the use of B. sacra in the medical management of diabetes and associated complications. More investigation into the metabolic profiles of these extracts must be conducted to establish the precise mechanism of action of the ethanol extract.
Collapse
Affiliation(s)
- Hisham Al-Matubsi
- Department of Department of Pharmaceutical and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan.
| | - Luay Rashan
- Medicinal Plants Division, Research Center, Dhofar University, Salalah, Oman
| | - Walid Aburayyan
- Department of Medical Laboratory Analysis, Faculty of Science, Al-Balqa Applied University, Al-salt, Jordan
| | - Othman Al Hanbali
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Palestine
| | - Duaa Abuarqoub
- Department of Department of Pharmaceutical and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Thomas Efferth
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Germany
| |
Collapse
|
7
|
Ragab EA, Abd El-Wahab MF, Doghish AS, Salama RM, Eissa N, Darwish SF. The journey of boswellic acids from synthesis to pharmacological activities. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1477-1504. [PMID: 37740772 PMCID: PMC10858840 DOI: 10.1007/s00210-023-02725-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
There has been a lot of interest in using naturally occurring substances to treat a wide variety of chronic disorders in recent years. From the gum resin of Boswellia serrata and Boswellia carteri, the pentacyclic triterpene molecules known as boswellic acid (BA) are extracted. We aimed to provide a detailed overview of the origins, chemistry, synthetic derivatives, pharmacokinetic, and biological activity of numerous Boswellia species and their derivatives. The literature searched for reports of B. serrata and isolated BAs having anti-cancer, anti-microbial, anti-inflammatory, anti-arthritic, hypolipidemic, immunomodulatory, anti-diabetic, hepatoprotective, anti-asthmatic, and clastogenic activities. Our results revealed that the cytotoxic and anticancer effects of B. serrata refer to its triterpenoid component, including BAs. Three-O-acetyl-11-keto-BA was the most promising cytotoxic molecule among tested substances. Activation of caspases, upregulation of Bax expression, downregulation of nuclear factor-kappa B (NF-kB), and stimulation of poly (ADP)-ribose polymerase (PARP) cleavage are the primary mechanisms responsible for cytotoxic and antitumor effects. Evidence suggests that BAs have shown promise in combating a wide range of debilitating disease conditions, including cancer, hepatic, inflammatory, and neurological disorders.
Collapse
Affiliation(s)
- Ehab A Ragab
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Mohammed F Abd El-Wahab
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Nermin Eissa
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | - Samar F Darwish
- Pharmacology & Toxicology Department, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
| |
Collapse
|
8
|
Obiștioiu D, Hulea A, Cocan I, Alexa E, Negrea M, Popescu I, Herman V, Imbrea IM, Heghedus-Mindru G, Suleiman MA, Radulov I, Imbrea F. Boswellia Essential Oil: Natural Antioxidant as an Effective Antimicrobial and Anti-Inflammatory Agent. Antioxidants (Basel) 2023; 12:1807. [PMID: 37891886 PMCID: PMC10603989 DOI: 10.3390/antiox12101807] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The research aimed to determine the chemical composition, the antioxidant and anti-inflammatory activity as well as the antimicrobial activity against Gram-positive, Gram-negative and two fungal Candida ATCC strains of a commercial Boswellia essential oil (BEO) containing Boswellia carteri, Boswellia sacra, Boswellia papryfera, and Boswellia frereana. Additionally, molecular docking was carried out to show the molecular dynamics of the compounds identified from the essential oil against three bacterial protein targets and one fungal protein target. The major components identified by GC-MS (Gas Chromatography-Mass Spectrometry) were represented by α-pinene, followed by limonene. Evaluation of antioxidant activity using the DPPH (2,2-Diphenyl-1-Picrylhydrazyl) method showed high inhibition comparable to the synthetic antioxidant used as a control. Oxidative stability evaluation showed that BEO has the potential to inhibit primary and secondary oxidation products with almost the same efficacy as butylated hydroxyanisole (BHA). The use of BEO at a concentration of 500 ppm provided the best protection against secondary oxidation during 30 days of storage at room temperature, which was also evident in the peroxide value. Regarding the in vitro anti-inflammatory activity, the membrane lysis assay and the protein denaturation test revealed that even if the value of protection was lower than the value registered in the case of dexamethasone, the recommendation of using BEO as a protective agent stands, considering the lower side effects. Gram-positive bacteria proved more sensitive, while Pseudomonas aeruginosa presented different sensitivity, with higher MICs (minimal inhibitory concentration). Haemophilus influenzae demonstrated a MIC at 2% but with consecutive inhibitory values in a negative correlation with the increase in concentration, in contrast to E. coli, which demonstrated low inhibitory rates at high concentrations of BEO. The computational tools employed revealed interesting binding energies with compounds having low abundance. The interaction of these compounds and the proteins (tyrosyl-tRNA synthetase, DNA gyrase, peptide deformylase, 1,3-β-glucan synthase) predicts hydrogen bonds with amino acid residues, which are reported in the active sites of the proteins. Even so, compounds with low abundance in BEO could render the desired bioactive properties to the overall function of the oil sustained by physical factors such as storage and temperature. Interestingly, the findings from this study demonstrated the antioxidant and antimicrobial potential of Boswellia essential oil against food-related pathogens, thus making the oil a good candidate for usage in food, feed or food-safety-related products.
Collapse
Affiliation(s)
- Diana Obiștioiu
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (D.O.); (I.P.); (I.R.); (F.I.)
| | - Anca Hulea
- Faculty of Veterinary Medicine, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania;
| | - Ileana Cocan
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (E.A.); (M.N.); (G.H.-M.)
| | - Ersilia Alexa
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (E.A.); (M.N.); (G.H.-M.)
| | - Monica Negrea
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (E.A.); (M.N.); (G.H.-M.)
| | - Iuliana Popescu
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (D.O.); (I.P.); (I.R.); (F.I.)
| | - Viorel Herman
- Faculty of Veterinary Medicine, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania;
| | - Ilinca Merima Imbrea
- Faculty of Engineering and Applied Technologies, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania;
| | - Gabriel Heghedus-Mindru
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (E.A.); (M.N.); (G.H.-M.)
| | - Mukhtar Adeiza Suleiman
- Faculty of Life Science, Department of Biochemistry, Ahmadu Bello University, Zaria 810107, Kaduna State, Nigeria;
| | - Isidora Radulov
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (D.O.); (I.P.); (I.R.); (F.I.)
| | - Florin Imbrea
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (D.O.); (I.P.); (I.R.); (F.I.)
| |
Collapse
|
9
|
AlTamimi JZ, AlFaris NA, Alshammari GM, Alagal RI, Aljabryn DH, Yahya MA. The Protective Effect of 11-Keto-β-Boswellic Acid against Diabetic Cardiomyopathy in Rats Entails Activation of AMPK. Nutrients 2023; 15:nu15071660. [PMID: 37049501 PMCID: PMC10097356 DOI: 10.3390/nu15071660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/25/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
This study examined the protective effect of 11-keto-β-boswellic acid (AKBA) against streptozotocin (STZ)-induced diabetic cardiomyopathy (DC) in rats and examined the possible mechanisms of action. Male rats were divided into 5 groups (n = 8/each): (1) control, AKBA (10 mg/kg, orally), STZ (65 mg/kg, i.p.), STZ + AKBA (10 mg/kg, orally), and STZ + AKBA + compound C (CC/an AMPK inhibitor, 0.2 mg/kg, i.p.). AKBA improved the structure and the systolic and diastolic functions of the left ventricles (LVs) of STZ rats. It also attenuated the increase in plasma glucose, plasma insulin, and serum and hepatic levels of triglycerides (TGs), cholesterol (CHOL), and free fatty acids (FFAs) in these diabetic rats. AKBA stimulated the ventricular activities of phosphofructokinase (PFK), pyruvate dehydrogenase (PDH), and acetyl CoA carboxylase (ACC); increased levels of malonyl CoA; and reduced levels of carnitine palmitoyltransferase I (CPT1), indicating improvement in glucose and FA oxidation. It also reduced levels of malondialdehyde (MDA); increased mitochondria efficiency and ATP production; stimulated mRNA, total, and nuclear levels of Nrf2; increased levels of glutathione (GSH), heme oxygenase (HO-1), superoxide dismutase (SOD), and catalase (CAT); but reduced the expression and nuclear translocation of NF-κB and levels of tumor-necrosis factor-α (TNF-α) and interleukin-6 (IL-6). These effects were concomitant with increased activities of AMPK in the LVs of the control and STZ-diabetic rats. Treatment with CC abolished all these protective effects of AKBA. In conclusion, AKBA protects against DC in rats, mainly by activating the AMPK-dependent control of insulin release, cardiac metabolism, and antioxidant and anti-inflammatory effects.
Collapse
|
10
|
D’Amico R, Impellizzeri D, Cordaro M, Siracusa R, Interdonato L, Crupi R, Gugliandolo E, Macrì F, Di Paola D, Peritore AF, Fusco R, Cuzzocrea S, Di Paola R. Regulation of Apoptosis and Oxidative Stress by Oral Boswellia Serrata Gum Resin Extract in a Rat Model of Endometriosis. Int J Mol Sci 2022; 23:ijms232315348. [PMID: 36499679 PMCID: PMC9736785 DOI: 10.3390/ijms232315348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/09/2022] Open
Abstract
Endometriosis (EMS) is a gynecological disease characterized by inflammation, oxidative stress, and apoptosis dysregulation. This study aims to evaluate the effect of Boswellia serrata gum resin extract (BS) on the endometriotic lesions in a rat model of endometriosis. We divided female rats into three groups, including Sham, EMS, EMS + BS. In the EMS and EMS + BS groups, pathology was induced and after 7 days by the abdominal high-frequency ultrasound (hfUS) analysis the presence of the endometriotic lesions was confirmed. Subsequently, the EMS + BS group was administered with BS (100 mg/Kg) daily for another 7 days. At the end of the experiment, the hfUS analysis was repeated and the animals were sacrificed to evaluate the size and histoarchitecture of the endometriotic implants. Pelvic ultrasound showed increased size of the endometriotic lesions in the Endo group, while BS administration reduced the lesion size. The macroscopic analysis confirmed the reduced area and volume of the endometriotic lesions of the EMS + BS group. The histological analysis showed reduced characteristic of ectopic stroma and glands in the animals treated with BS. Western blot analyses were conducted to evaluate the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. BS increases the expression of Nfr2 in the nucleus and the expression of its downstream antioxidant proteins NQO-1 and HO-1. Moreover, it reduced lipid peroxidation and increased glutathione (GSH) levels, and glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities. BS administration also restored the impaired apoptotic pathway in the lesions by reducing Bcl-2 expression and increasing Bax and cleaved caspase 9 levels. The BS apoptotic effect was also confirmed by the cleavage of PARP, another specific marker of apoptosis, and by the TUNEL assay. Our results show that BS administration resulted in an effective and coordinated suppression of Endo owing to its antioxidant and antiapoptotic activities.
Collapse
Affiliation(s)
- Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| | - Francesco Macrì
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| | - Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
- Correspondence:
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| |
Collapse
|
11
|
Gong Y, Jiang X, Yang S, Huang Y, Hong J, Ma Y, Fang X, Fang Y, Wu J. The Biological Activity of 3-O-Acetyl-11-keto-β-Boswellic Acid in Nervous System Diseases. Neuromolecular Med 2022; 24:374-384. [PMID: 35303275 PMCID: PMC8931781 DOI: 10.1007/s12017-022-08707-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/02/2022] [Indexed: 12/29/2022]
Abstract
Frankincense is a hard gelatinous resin exuded by Boswellia serrata. It contains a complex array of components, of which acetyl-11-keto-beta-boswellic acid (AKBA), a pentacyclic triterpenoid of the resin class, is the main active component. AKBA has a variety of physiological actions, including anti-infection, anti-tumor, and antioxidant effects. The use of AKBA for the treatment of mental diseases has been documented as early as ancient Greece. Recent studies have found that AKBA has anti-aging and other neurological effects, suggesting its potential for the treatment of neurological diseases. This review focuses on nervous system-related diseases, summarizes the functions and mechanisms of AKBA in promoting nerve repair and regeneration after injury, protecting against ischemic brain injury and aging, inhibiting neuroinflammation, ameliorating memory deficits, and alleviating neurotoxicity, as well as having anti-glioma effects and relieving brain edema. The mechanisms by which AKBA functions in different diseases and the relationships between dosage and biological effects are discussed in depth with the aim of increasing understanding of AKBA and guiding its use for the treatment of nervous system diseases.
Collapse
Affiliation(s)
- Yuqing Gong
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, and Key Laboratory of Inflammation and Immunoregulation of Hangzhou, Hangzhou Normal University, No. 2318, Yuhang Tang Road, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Xinyi Jiang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, and Key Laboratory of Inflammation and Immunoregulation of Hangzhou, Hangzhou Normal University, No. 2318, Yuhang Tang Road, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Suibi Yang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, and Key Laboratory of Inflammation and Immunoregulation of Hangzhou, Hangzhou Normal University, No. 2318, Yuhang Tang Road, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Yue Huang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, and Key Laboratory of Inflammation and Immunoregulation of Hangzhou, Hangzhou Normal University, No. 2318, Yuhang Tang Road, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Jinhui Hong
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, and Key Laboratory of Inflammation and Immunoregulation of Hangzhou, Hangzhou Normal University, No. 2318, Yuhang Tang Road, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Yanxiu Ma
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, and Key Laboratory of Inflammation and Immunoregulation of Hangzhou, Hangzhou Normal University, No. 2318, Yuhang Tang Road, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Xin Fang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, and Key Laboratory of Inflammation and Immunoregulation of Hangzhou, Hangzhou Normal University, No. 2318, Yuhang Tang Road, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Yong Fang
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, 150081, China.
| | - Jing Wu
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, and Key Laboratory of Inflammation and Immunoregulation of Hangzhou, Hangzhou Normal University, No. 2318, Yuhang Tang Road, Hangzhou, 310000, Zhejiang, People's Republic of China.
| |
Collapse
|
12
|
Marefati N, Beheshti F, Etemadizadeh P, Hosseini M, Anaeigoudari A. Gum resin extract of Boswellia serrata attenuates lipopolysaccharide-induced inflammation and oxidative damage in hepatic and renal tissues of rats. Asian Pac J Trop Biomed 2022; 12:20-25. [DOI: 10.4103/2221-1691.333210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Objective:
To explore the effect of ethyl acetate gum resin extract of Boswellia serrata on lipopolysaccharide (LPS) induced inflammation and oxidative damage in hepatic and renal tissues of rats.
Methods:
The rats were divided into four groups: control, LPS, LPS+Boswellia serrata extracts (100 mg/kg and 200 mg/kg). LPS (1 mg/kg) and the extract (100 and 200 mg/kg, 30 min before LPS) were administered intraperitoneally for 3 weeks. The levels of liver enzymes, albumin, total protein, creatinine, blood urea nitrogen (BUN), interleukin (IL)-6, malondialdehyde (MDA), and total thiol groups and superoxide dismutase (SOD) and catalase (CAT) activities were measured.
Results:
The levels of liver enzymes, creatinine, and BUN, IL-6, MDA in the LPS group were markedly increased (P<0.001) while albumin, total protein, and total thiol concentration, as well as SOD and CAT activities, were decreased compared with the control group (P<0.05 or 0.01). Boswellia serrata extracts diminished the levels of liver enzymes, creatinine, BUN, IL-6, and MDA (P<0.01 and P<0.001), and elevated the concentration of total protein and total thiol and SOD and CAT activities (P<0.05 or 0.01).
Conclusions:
The ethyl acetate gum resin extract of Boswellia serrata reduces LPS-induced inflammatory reactions and oxidative damage, thus ameliorating hepatic and renal function.
Collapse
|
13
|
Dodda S, Madireddy RK, Alluri VK, Golakoti T, Sengupta K. Safety assessment of a novel water-soluble extract of Boswellia serrata gum resin: acute toxicity, 90-day sub-chronic toxicity, Ames' bacterial reverse mutation, and in vivo micronucleus assays. Toxicol Mech Methods 2021; 32:362-372. [PMID: 34886755 DOI: 10.1080/15376516.2021.2012545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Boswellia serrata gum resin extracts have demonstrated potential benefits in alleviating joint pain and discomfort of osteoarthritis. The major objective of the present study was to assess the safety of a water-soluble B. serrata gum resin extract (LI51202F1) in diverse models of acute oral, acute dermal, primary dermal irritation, eye irritation, and 90-day sub-chronic repeated dose toxicity studies, as well as Ames' bacterial reverse mutation assay and in vivo micronucleus assay. The acute oral and dermal toxicity studies in Sprague Dawley (SD) rats demonstrated that the median lethal dose (LD50) of LI51202F1 is >2000 mg/kg body weight (BW). The acute dermal and eye irritation tests in New Zealand white rabbits exhibited that LI51202F1 is non-irritating to the skin and mildly irritating to the eyes, respectively. The 90-days sub-chronic repeated oral dose study demonstrated that the LI51202F1-treated male and female SD rats did not show signs of toxicity on their BW, food intake, organ weights, thyroid hormones, and on the clinical pathology, gross pathology, and histopathological assessments. In male and female rats, the no-observed-adverse-effect level (NOAEL) of LI51202F1 was 500 mg/kg/day, the highest tested dose in the study. The results of the bacterial reverse mutation assay in Salmonella typhimurium TA98, TA100, TA1535, TA1537, and Escherichia coli WP2uvrA (pKM101) strains in the presence or absence of S9 metabolic activation system and a micro-nucleus assay in mouse bone marrow erythrocytes demonstrated that LI51202F1 is neither mutagenic nor clastogenic. In conclusion, under the conditions of these studies, LI51202F1 demonstrated broad-spectrum safety.
Collapse
|
14
|
Renda G, Gökkaya İ, Şöhretoğlu D. Immunomodulatory properties of triterpenes. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2021; 21:537-563. [PMID: 34812259 PMCID: PMC8600492 DOI: 10.1007/s11101-021-09785-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/19/2021] [Indexed: 05/05/2023]
Abstract
The immune system is one of the main defence mechanisms of the human body. Inadequacy of this system or immunodeficiency results in increased risk of infections and tumours, whereas over-activation of the immune system causes allergic or autoimmune disorders. A well-balanced immune system is important for protection and for alleviation of these diseases. There is a growing interest to maintain a well-balanced immune system, especially after the Covid-19 pandemic. Many biological extracts, as well as natural products, have become popular due to their wide array of immunomodulatory effects and influence on the immune system. Triterpenes, one of the secondary metabolite groups of medicinal plants, exhibit immunomodulatory properties by various mechanisms. Different triterpenes, including components of commonly consumed plants, can promote some protection and alleviation of disease symptoms linked with immune responses and thus enhance overall well-being. This review aims to highlight the efficacy of triterpenes in light of the available literature evidence regarding the immunomodulatory properties of triterpenes. We have reviewed widely investigated immunomodulatory triterpenes; oleanolic acid, glycyrrhizin, glycyrrhetinic acid, pristimerin, ursolic acid, boswellic acid, celastrol, lupeol, betulin, betulinic acid, ganoderic acid, cucumarioside, and astragalosides which have important immunoregulatory properties. In spite of many preclinical and clinical trials were conducted on triterpenes related to their immunoregulatory actions, current studies have several limitations. Therefore, especially more clinical studies with optimal design is essential.
Collapse
Affiliation(s)
- Gülin Renda
- Department of Pharmacognosy, Faculty of Pharmacy, Karadeniz Technical University, 61100 Trabzon, Turkey
| | - İçim Gökkaya
- Department of Pharmacognosy, Faculty of Pharmacy, Karadeniz Technical University, 61100 Trabzon, Turkey
| | - Didem Şöhretoğlu
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, 06100 Sıhhiye, Ankara Turkey
| |
Collapse
|
15
|
Effects of Herbal Medicines on Nipple Fissures: A Systematic Review. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.111321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Context: As a prevalent problem on the first days of childbirth, nipple fissures can cause pain and discomfort and lead to the early cessation of breastfeeding. Effectively treating this complication is therefore crucial. This systematic review investigated the effects of herbal medicines on the treatment of nipple fissures. Data Sources: Keywords such as “treatment”, “nipple fissure”, “fissure”, “medicinal plants”, “sore nipple” and “herbal ingredients” were used individually and in combination to extract relevant articles published by March 2020 from English databases, i.e., Science Direct, PubMed, Scopus and Google Scholar. The Persian equivalents of these keywords were used for extracting articles from Google Scholar, SID and Magiran. The selected articles were qualitatively evaluated using the checklist issued by Consolidated Standard of Reporting Trials (CONSORT) in 2017. Results: Out of 132 articles retrieved, 10 eligible ones were included in this study. Investigating the full text of the articles found herbal medicines such as purslane, Aloe vera, olive oil, frankincense, Pistacia atlantica, curcumin and Ziziphus jujuba effective in treating nipple fissures. Conclusions: Given the effects of herbal medicines on treating nipple fissures, it is recommended that comprehensive studies be conducted on different forms and doses of these compounds.
Collapse
|
16
|
Gomaa AA, Mohamed HS, Abd-Ellatief RB, Gomaa MA. Boswellic acids/Boswellia serrata extract as a potential COVID-19 therapeutic agent in the elderly. Inflammopharmacology 2021; 29:1033-1048. [PMID: 34224069 PMCID: PMC8256410 DOI: 10.1007/s10787-021-00841-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/20/2021] [Indexed: 12/14/2022]
Abstract
The most severe cases of COVID-19, and the highest rates of death, are among the elderly. There is an urgent need to search for an agent to treat the disease and control its progression. Boswellia serrata is traditionally used to treat chronic inflammatory diseases of the lung. This review aims to highlight currently published research that has shown evidence of potential therapeutic effects of boswellic acids (BA) and B. serrata extract against COVID-19 and associated conditions. We reviewed the published information up to March 2021. Studies were collected through a search of online electronic databases (academic libraries such as PubMed, Scopus, Web of Science, and Egyptian Knowledge Bank). Several recent studies reported that BAs and B. serrata extract are safe agents and have multiple beneficial activities in treating similar symptoms experienced by patients with COVID-19. Because of the low oral bioavailability and improvement of buccal/oral cavity hygiene, traditional use by chewing B. serrata gum may be more beneficial than oral use. It is the cheapest option for a lot of poorer people. The promising effect of B. serrata and BA can be attributed to its antioxidant, anti-inflammatory, immunomodulatory, cardioprotective, anti-platelet aggregation, antibacterial, antifungal, and broad antiviral activity. B. serrata and BA act by multiple mechanisms. The most common mechanism may be through direct interaction with IκB kinases and inhibiting nuclear factor-κB-regulated gene expression. However, the most recent mechanism proposed that BA not only inhibited the formation of classical 5-lipoxygenase products but also produced anti-inflammatory LOX-isoform-selective modulators. In conclusion a small to moderate dose B. serrata extract may be useful in the enhancing adaptive immune response in mild to moderate symptoms of COVID-19. However, large doses of BA may be beneficial in suppressing uncontrolled activation of the innate immune response. More clinical results are required to determine with certainty whether there is sufficient evidence of the benefits against COVID-19.
Collapse
Affiliation(s)
- Adel A Gomaa
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Hamdy S Mohamed
- Department of Internal Medicine, Faculty of Medicine, Sohage University, Sohâg, Egypt
| | | | - Mohamed A Gomaa
- Department of Plastic Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
17
|
Analysis of Boswellic Acid Contents and Related Pharmacological Activities of Frankincense-Based Remedies That Modulate Inflammation. Pharmaceuticals (Basel) 2021; 14:ph14070660. [PMID: 34358086 PMCID: PMC8308689 DOI: 10.3390/ph14070660] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/31/2022] Open
Abstract
Extracts of frankincense, the gum resin of Boswellia species, have been extensively used in traditional folk medicine since ancient times and are still of great interest as promising anti-inflammatory remedies in Western countries. Despite their common therapeutic use and the intensive pharmacological research including studies on active ingredients, modes of action, bioavailability, pharmacokinetics, and clinical efficacy, frankincense preparations are available as nutraceuticals but have not yet approved as a drug on the market. A major issue of commercially available frankincense nutraceuticals is the striking differences in their composition and quality, especially related to the content of boswellic acids (BAs) as active ingredients, mainly due to the use of material from divergent Boswellia species but also because of different work-up and extraction procedures. Here, we assessed three frequently used frankincense-based preparations for their BA content and the interference with prominent pro-inflammatory actions and targets that have been proposed, that is, 5-lipoxygenase and leukotriene formation in human neutrophils, microsomal prostaglandin E2 synthase-1, and inflammatory cytokine secretion in human blood monocytes. Our data reveal striking differences in the pharmacological efficiencies of these preparations in inflammation-related bioassays which obviously correlate with the amounts of BAs they contain. In summary, high-quality frankincense extracts display powerful anti-inflammatory effectiveness against multiple targets which can be traced back to BAs as bioactive ingredients.
Collapse
|
18
|
Asl SS, Jalili C, Artimani T, Ramezani M, Mirzaei F. Inflammasome can Affect Adult Neurogenesis: A Review Article. Open Neurol J 2021. [DOI: 10.2174/1874205x02115010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adult neurogenesis is the process of producing new neurons in the adult brain and is limited to two major areas: the hippocampal dentate gyrus and the Subventricular Zone (SVZ). Adult neurogenesis is affected by some physiological, pharmacological, and pathological factors. The inflammasome is a major signalling platform that regulates caspase-1 and induces proinflammatory cytokines production such as interleukin-1β (IL1-β) and IL-18.
Inflammasomes may be stimulated through multiple signals, and some of these signaling factors can affect neurogenesis. In the current review, “adult neurogenesis and inflammasome” were searched in PubMed, Scopus, and Google Scholar. Reviewing various research works showed correlations between inflammasome and neurogenesis by different intermediate factors, such as interferons (IFN), interleukins (IL), α-synuclein, microRNAs, and natural compounds. Concerning the significant role of neurogenesis in the health of the nervous system and memory, understanding factors inducing neurogenesis is crucial for identifying new therapeutic aims. Hence in this review, we will discuss the different mechanisms by which inflammasome influences adult neurogenesis.
Collapse
|
19
|
Zhang J, Zhao J, Sun Y, Liang Y, Zhao J, Zou H, Zhang T, Ren L. GR-mediated anti-inflammation of α-boswellic acid: Insights from in vitro and in silico studies. Food Chem Toxicol 2021; 155:112379. [PMID: 34197882 DOI: 10.1016/j.fct.2021.112379] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022]
Abstract
Although multiple bioactivities of α-boswellic acid have been reported, the molecular mechanism of its anti-inflammatory action is not yet clear. Hence, glucocorticoid receptor (GR)-mediated anti-inflammation of α-boswellic acid was investigated in this work. Fluorescence polarization assay suggested that α-boswellic acid bound to GR with IC50 value of 658.00 ± 0.21 μM. Upon binding to α-boswellic acid, GR translocated from cytoplasm into nucleus of HeLa cells, facilitating sequential transcriptional regulation of GR-related genes. Luciferase reporter assay suggested that α-boswellic acid lacked GR transcriptional activity, indicating its potential as a dissociative GR ligand. Interestingly, α-boswellic acid selectively modulated the anti-inflammatory gene CBG (marker for GR transrepression), while leaving the "side-effect" gene TAT (marker for GR transactivation) unaffected in HepG2 cells. Furthermore, α-boswellic acid inhibited lipopolysaccharide-stimulated cytokines production in U937 macrophages, confirming its anti-inflammation property in vitro. Molecular docking showed that both hydrogen-bonding and hydrophobic interactions helped to stabilize α-boswellic acid-GR binding. Their binding stability was further confirmed in a 70-ns dynamics simulation. In summary, α-boswellic acid could bind to and translocate GR but did not induce glucocorticoid response element-mediated transcription. Since α-boswellic acid showed the dissociated characteristic that separated transrepression from transactivation, it might be a selective GR modulator against inflammatory disorders.
Collapse
Affiliation(s)
- Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jiarui Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yantong Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
20
|
Abdel-Tawab M. Considerations to Be Taken When Carrying Out Medicinal Plant Research-What We Learn from an Insight into the IC 50 Values, Bioavailability and Clinical Efficacy of Exemplary Anti-Inflammatory Herbal Components. Pharmaceuticals (Basel) 2021; 14:437. [PMID: 34066427 PMCID: PMC8148151 DOI: 10.3390/ph14050437] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Medicinal plants represent a big reservoir for discovering new drugs against all kinds of diseases including inflammation. In spite the large number of promising anti-inflammatory plant extracts and isolated components, research on medicinal plants proves to be very difficult. Based on that background this review aims to provide a summarized insight into the hitherto known pharmacologically active concentrations, bioavailability, and clinical efficacy of boswellic acids, curcumin, quercetin and resveratrol. These examples have in common that the achieved plasma concentrations were found to be often far below the determined IC50 values in vitro. On the other hand demonstrated therapeutic effects suggest a necessity of rethinking our pharmacokinetic understanding. In this light this review discusses the value of plasma levels as pharmacokinetic surrogates in comparison to the more informative value of tissue concentrations. Furthermore the need for new methodological approaches is addressed like the application of combinatorial approaches for identifying and pharmacokinetic investigations of active multi-components. Also the physiological relevance of exemplary in vitro assays and absorption studies in cell-line based models is discussed. All these topics should be ideally considered to avoid inaccurate predictions for the efficacy of herbal components in vivo and to unlock the "black box" of herbal mixtures.
Collapse
Affiliation(s)
- Mona Abdel-Tawab
- Central Laboratory of German Pharmacists, Carl-Mannich-Str. 20, 65760 Eschborn, Germany; ; Tel.: +49-6196-937-955
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
21
|
Schmiech M, Ulrich J, Lang SJ, Büchele B, Paetz C, St-Gelais A, Syrovets T, Simmet T. 11-Keto-α-Boswellic Acid, a Novel Triterpenoid from Boswellia spp. with Chemotaxonomic Potential and Antitumor Activity against Triple-Negative Breast Cancer Cells. Molecules 2021; 26:molecules26020366. [PMID: 33445710 PMCID: PMC7828217 DOI: 10.3390/molecules26020366] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Boswellic acids, and particularly 11-keto-boswellic acids, triterpenoids derived from the genus Boswellia (Burseraceae), are known for their anti-inflammatory and potential antitumor efficacy. Although boswellic acids generally occur as α-isomers (oleanane type) and β-isomers (ursane type), 11-keto-boswellic acid (KBA) was found only as the β-isomer, β-KBA. Here, the existence and natural occurrence of the respective α-isomer, 11-keto-α-boswellic acid (α-KBA), is demonstrated for the first time. Initially, α-KBA was synthesized and characterized by high-resolution mass spectrometry (HR-MS) and nuclear magnetic resonance (NMR) spectroscopy, and a highly selective, sensitive, and accurate high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) method was developed by Design of Experiments (DoE) using a pentafluorophenyl stationary phase. This method allowed the selective quantification of individual 11-keto-boswellic acids and provided evidence for α-KBA in Boswellia spp. oleogum resins. The contents of α-KBA as well as further boswellic acids and the composition of essential oils were used to chemotaxonomically classify 41 Boswellia oleogum resins from 9 different species. Moreover, α-KBA exhibited cytotoxicity against three treatment-resistant triple-negative breast cancer (TNBC) cell lines in vitro and also induced apoptosis in MDA-MB-231 xenografts in vivo. The respective β-isomer and the acetylated form demonstrate higher cytotoxic efficacies against TNBC cells. This provides further insights into the structure-activity relationship of boswellic acids and could support future developments of potential anti-inflammatory and antitumor drugs.
Collapse
Affiliation(s)
- Michael Schmiech
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany; (M.S.); (J.U.); (S.J.L.); (B.B.)
| | - Judith Ulrich
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany; (M.S.); (J.U.); (S.J.L.); (B.B.)
| | - Sophia Johanna Lang
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany; (M.S.); (J.U.); (S.J.L.); (B.B.)
| | - Berthold Büchele
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany; (M.S.); (J.U.); (S.J.L.); (B.B.)
| | - Christian Paetz
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;
| | | | - Tatiana Syrovets
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany; (M.S.); (J.U.); (S.J.L.); (B.B.)
- Correspondence: (T.S.); (T.S.); Tel.: +49-731-500-65604 (T.S.); +49-731-500-65600 (T.S.)
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany; (M.S.); (J.U.); (S.J.L.); (B.B.)
- Correspondence: (T.S.); (T.S.); Tel.: +49-731-500-65604 (T.S.); +49-731-500-65600 (T.S.)
| |
Collapse
|
22
|
Optimization and Pharmacokinetic Study of Boswellic Acid–Loaded Chitosan-Guggul Gum Nanoparticles Using Box-Behnken Experimental Design. J Pharm Innov 2021. [DOI: 10.1007/s12247-020-09527-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Brendler T, Al‐Harrasi A, Bauer R, Gafner S, Hardy ML, Heinrich M, Hosseinzadeh H, Izzo AA, Michaelis M, Nassiri‐Asl M, Panossian A, Wasser SP, Williamson EM. Botanical drugs and supplements affecting the immune response in the time of
COVID
‐19: Implications for research and clinical practice. Phytother Res 2020; 35:3013-3031. [DOI: 10.1002/ptr.7008] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Thomas Brendler
- Department of Botany and Plant Biotechnology University of Johannesburg Johannesburg South Africa
- Plantaphile Collingswood New Jersey USA
| | - Ahmed Al‐Harrasi
- Natural and Medical Sciences Research Centre University of Nizwa Nizwa Oman
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy University of Graz Graz Austria
| | | | - Mary L. Hardy
- Association of Integrative and Holistic Medicine San Diego California USA
| | - Michael Heinrich
- Research Group ‘Pharmacognosy and Phytotherapy’, UCL School of Pharmacy University of London London UK
- Graduate Institute of Integrated Medicine, College of Chinese Medicine China Medical University Taichung Taiwan
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Angelo A. Izzo
- Department of Pharmacy, School of Medicine University of Naples Federico II Naples Italy
| | - Martin Michaelis
- Industrial Biotechnology Centre and School of Biosciences University of Kent Canterbury UK
| | - Marjan Nassiri‐Asl
- Department of Pharmacology, School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
- Neurobiology Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | | | - Solomon P. Wasser
- Institute of Evolution and Department of Evolutionary and Environmental Biology University of Haifa Haifa Israel
| | | |
Collapse
|
24
|
Karra AG, Tziortziou M, Kylindri P, Georgatza D, Gorgogietas VA, Makiou A, Krokida A, Tsialtas I, Kalousi FD, Papadopoulos GE, Papadopoulou KΚ, Psarra AMG. Boswellic acids and their derivatives as potent regulators of glucocorticoid receptor actions. Arch Biochem Biophys 2020; 695:108656. [PMID: 33127380 DOI: 10.1016/j.abb.2020.108656] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 12/20/2022]
Abstract
Glucocorticoid (GCs) hormones exert their actions via their cognate steroid receptors the Glucocorticoid Receptors (GR), by genomic or non-genomic mechanisms of actions. GCs regulate many cellular functions among them growth, metabolism, immune response and apoptosis. Due to their cell type specific induction of apoptosis GCs are used for the treatment of certain type of cancer. In addition, due to their anti-inflammatory actions, GCs are among the most highly prescribed drug to treat chronic inflammatory disorders, albeit to the many adverse side effects arising by their long term and high doses use. Thus, there is a high need for selective glucocorticoid receptor agonist - modulators (SEGRA- SGRMs) as effective as classic GCs, but with a reduced side effect profile. Boswellic acids (BAs) are triterpenes that show structural similarities with GCs and exhibit anti-inflammatory and anti-cancer activities. In this study we examined whether BA alpha and beta and certain BAs derivatives exert their actions, at least in part, through the regulation of GR activities. Applying docking analysis we found that BAs can bind stably into the deacylcortivazol (DAC) accommodation pocket of GR. Moreover we showed that certain boswellic acids derivatives induce glucocorticoid receptor nuclear translocation, no activation of GRE dependent luciferase gene expression, and suppression of the TNF-α induced NF-κB transcriptional activation in GR positive HeLa and HEK293 cells, but not in low GR level COS-7 cells. Furthermore, certain boswellic acids compounds exert antagonistic effect on the DEX-induced GR transcriptional activation and induce cell type specific mitochondrial dependent apoptosis. Our results indicate that certain BAs are potent selective glucocorticoid receptor regulators and could have great potential for therapeutic use.
Collapse
Affiliation(s)
- Aikaterini G Karra
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Maria Tziortziou
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Paraskevi Kylindri
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Dimitra Georgatza
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Vyron A Gorgogietas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Anthi Makiou
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Afroditi Krokida
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Ioannis Tsialtas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Foteini D Kalousi
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | | | | | - Anna-Maria G Psarra
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece.
| |
Collapse
|
25
|
Aldahlawi AM, Alzahrani AT, Elshal MF. Evaluation of immunomodulatory effects of Boswellia sacra essential oil on T-cells and dendritic cells. BMC Complement Med Ther 2020; 20:352. [PMID: 33213426 PMCID: PMC7678202 DOI: 10.1186/s12906-020-03146-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/02/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Boswellia sacra resin has been commonly used as analgesic, antimicrobial, and anti-inflammatory properties, which reflect its immunomodulatory activity. Dendritic cells (DCs) are specialized antigen-presenting cells (APCs) and sentinel cells that regulate the immune response. This study aims at investigating whether crude essential oil extracted from Boswellia sacra resin (BSEO), has a potential effect on the phenotype and functions of human monocyte-derived DCs. METHODS Oil extract from the resin of Boswellia sacra was prepared by hydrodistillation using a custom made hydrodistiller. BSEO-mediated cell viability has been initially studied on human skin dermis cells (HSD) and DC precursors using quantitative and qualitative assays before applying on DCs. Human DCs were generated from differentiated peripheral blood monocytes cultured in media containing both GM-CSF and IL-4. DCs were exposed to 5 μg/mL or 10 μg/mL of BSEO in vitro. Morphological, phonotypical, and functional properties studied with microscopy, flow cytometry, and ELISA. RESULTS Crude BSEO was found to interfere with the maturation and differentiation of DCs from precursor cells in the presence or absence of lipopolysaccharide (LPS). BSEO-treated DCs, cultured in the presence of LPS, reduced the ability of allogeneic T cells to proliferate compared to that co-cultured with LPS-stimulated DCs only. In addition, the endocytic capacity and secretion of IL-10 by DCs treated with BSEO was enhanced in comparison to LPS treated cells. Analysis of the chemical composition of BESO using GC-MS (Clarus 500 GC/MS, PerkinElmer, Shelton, CT) revealed the presence of compounds with several biological activities including antibacterial, antioxidant, and anti-inflammatory properties. CONCLUSION Results indicated that BSEO deviates the differentiation of monocytes into immature DCs. Furthermore, stimulation of immature DCs with BSEO was unable to generate full DC maturation. However, these findings may potentially be employed to generate DCs with tolerogenic properties that are able to induce tolerance in diseases with hypersensitivity, autoimmunity as well as transplantation.
Collapse
Affiliation(s)
- Alia M Aldahlawi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
- Immunology Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Amani T Alzahrani
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed F Elshal
- Molecular Biology Department, Genetic Engineering and Biotechnology Institute, University of Sadat City, Sadat City, Egypt.
| |
Collapse
|
26
|
Liu Y, Yang S, Wang K, Lu J, Bao X, Wang R, Qiu Y, Wang T, Yu H. Cellular senescence and cancer: Focusing on traditional Chinese medicine and natural products. Cell Prolif 2020; 53:e12894. [PMID: 32881115 PMCID: PMC7574878 DOI: 10.1111/cpr.12894] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is the principal cause of death and a dominant public health problem which seriously threatening human life. Among various ways to treat cancer, traditional Chinese medicine (TCM) and natural products have outstanding anti‐cancer effects with their unique advantages of high efficiency and minimal side effects. Cell senescence is a physiological process of cell growth stagnation triggered by stress, which is an important line of defence against tumour development. In recent years, active ingredients of TCM and natural products, as an interesting research hotspot, can induce cell senescence to suppress the occurrence and development of tumours, by inhibiting telomerase activity, triggering DNA damage, inducing SASP, and activating or inactivating oncogenes. In this paper, the recent research progress on the main compounds derived from TCM and natural products that play anti‐cancer roles by inducing cell senescence is systematically reviewed, aiming to provide a reference for the clinical treatment of pro‐senescent cancer.
Collapse
Affiliation(s)
- Yiman Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shenshen Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kailong Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jia Lu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaomei Bao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Tao Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haiyang Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
27
|
Zimmermann-Klemd AM, Reinhardt JK, Nilsu T, Morath A, Falanga CM, Schamel WW, Huber R, Hamburger M, Gründemann C. Boswellia carteri extract and 3-O-acetyl-alpha-boswellic acid suppress T cell function. Fitoterapia 2020; 146:104694. [PMID: 32712132 DOI: 10.1016/j.fitote.2020.104694] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022]
Abstract
Resins from various Boswellia species have a long track record in different cultures as a treatment for inflammatory diseases. This study was designed to provide evidence for the anti-inflammatory capacity and medicinal use of Boswellia carteri (Burseraceae). A dichloromethane (DCM) extract of B. carteri gum resin and isolated compounds thereof were immunologically characterized. Flow cytometric-based analysis was performed to investigate the impact of B. carteri extract on proliferation, viability, and function of anti-CD3 and anti-CD28 activated human primary T cells. The secretion level of IL-2 and IFN-γ was determined by a bead array-based flow cytometric technique. HPLC-based activity profiling of the B. carteri extract identified active compounds. The impact of B. carteri extract and isolated compounds on the IL-2 transcription factor activity was addressed using specially designed Jurkat reporter cells. The extract of B. carteri suppressed the proliferation of human primary T lymphocytes in vitro in a concentration-dependent manner, without inducing cytotoxicity. Thereby, the B. carteri extract further reduced the degranulation capacity and cytokine secretion of stimulated human T cells. Transcription factor analysis showed that the immunosuppressive effects of the extract are based on specific NFAT-conditioned suppression within T cell signaling. Through HPLC-based activity profiling of the extract, 3-O-acetyl-alpha-boswellic acid was identified as the compound responsible for the NFAT-based mechanism. The recent study presents a scientific base for the immunosuppressive effects of B. carteri gum resin extract including a mode-of-action via the NFAT-conditioned suppression of T lymphocyte proliferation. The immunosuppressive effects of 3-O-acetyl-alpha-boswellic acid are depicted for the first time.
Collapse
Affiliation(s)
- Amy M Zimmermann-Klemd
- Center for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jakob K Reinhardt
- Pharmaceutical Biology, Pharmacenter, University of Basel, Basel, Switzerland
| | - Thanasan Nilsu
- Kamnoetvidya Science Academy, Wang Chan, Rayong, Thailand
| | - Anna Morath
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Chiara M Falanga
- Center for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang W Schamel
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roman Huber
- Center for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Hamburger
- Pharmaceutical Biology, Pharmacenter, University of Basel, Basel, Switzerland
| | - Carsten Gründemann
- Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
28
|
Yu G, Xiang W, Zhang T, Zeng L, Yang K, Li J. Effectiveness of Boswellia and Boswellia extract for osteoarthritis patients: a systematic review and meta-analysis. BMC Complement Med Ther 2020; 20:225. [PMID: 32680575 PMCID: PMC7368679 DOI: 10.1186/s12906-020-02985-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/09/2020] [Indexed: 11/19/2022] Open
Abstract
Background Osteoarthritis (OA) is the commonest form of inflammatory joint disease. Unfortunately, to date, there is no appropriate treatment for OA. Boswellia serrata was considered as a potent anti-inflammatory, anti-arthritic and analgesic agent that may be a drug for OA. Methods In this meta-analysis, data from randomized controlled trials were obtained to assess the effects of Boswellia or its extract versus placebo or western medicine in patients with OA. The primary outcomes included visual analogue score (VAS), WOMAC pain, WOMAC stiffness, WOMAC function and lequesne index. Result Seven trials involving 545 patients were included. Compared with the control group, Boswellia and its extract may relieve the pain [VAS: (WMD -8.33; 95% CI -11.19, − 5.46; P<0.00001); WOMAC pain: (WMD -14.22; 95% CI -22.34, − 6.09; P = 0. 0006)] and stiffness [WOMAC stiffness: (WMD -10.04; 95% CI -15.86, − 4.22; P = 0. 0007)], and improve the joint’s function [WOMAC function: (WMD -10.75; 95% CI -15.06, − 6.43; P<0. 00001); lequesne index: (WMD -2.27; 95% CI -3.08, − 1.45; P<0. 00001)]. Conclusion Based on current evidence, Boswellia and its extract may be an effective and safe treatment option for patient with OA, and the recommended duration of treatment with Boswellia and its extract is at least 4 weeks.
Collapse
Affiliation(s)
- Ganpeng Yu
- The Department of Orthopaedics, People's Hospital of Ningxiang City, Ningxiang, 410600, Hunan Province, China.
| | - Wang Xiang
- Graduate College, Guilin Medical University, Guilin, Guangxi Province, China.,Department of Rheumatology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Province, China
| | - Tianqing Zhang
- Graduate College, University of South China, Hengyang, Hunan Province, China.,Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Liuting Zeng
- Graduate College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Jun Li
- The Department of Orthopaedics, People's Hospital of Ningxiang City, Ningxiang, 410600, Hunan Province, China.
| |
Collapse
|
29
|
Halim SA, Khan A, Csuk R, Al-Rawahi A, Al-Harrasi A. Diterpenoids and Triterpenoids From Frankincense Are Excellent Anti-psoriatic Agents: An in silico Approach. Front Chem 2020; 8:486. [PMID: 32671018 PMCID: PMC7330179 DOI: 10.3389/fchem.2020.00486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
Psoriasis is a chronic autoimmune disease that affects 2–3% of the global population and requires an effective treatment. Frankincense has been long known for its potent anti-inflammatory activities. In this study, a structural bioinformatics approach was used to evaluate the efficacy of individual active components of frankincense, macrocyclic diterpenoid derivatives (1-27), and boswellic acids (28-46) in the treatment of psoriasis. Initially, major druggable targets of psoriasis were identified. Subsequently, structure-based screening was employed by using three different docking algorithms and scoring functions (MOE, AutoDock Vina, and MVD) for the target fishing of compounds against 18 possible targets of psoriasis. Janus Kinase 1, 2, 3 (JAK 1/2/3), eNOS, iNOS, interleukin-17 (IL-17), and Tumor necrosis factor-α (TNF-α) were identified as the preferred molecular targets for these compounds. This computational analysis reflects that frankincense diterpenoids and triterpenoids can serve as excellent anti-psoriatic agents by targeting major cytokines (TNF-α, IL-17, IL-13, IL-23, and IL-36γ,) exacerbated in psoriasis, and inflammatory pathways particularly JAK1/2/3, eNOS, iNOS, MAPK2, and IFNγ. The results were compared with the reported experimental findings which correlates well with our in-silico verdicts.
Collapse
Affiliation(s)
- Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Rene Csuk
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|
30
|
Lv M, Zhuang X, Zhang Q, Cheng Y, Wu D, Wang X, Qiao T. Acetyl-11-keto-β-boswellic acid enhances the cisplatin sensitivity of non-small cell lung cancer cells through cell cycle arrest, apoptosis induction, and autophagy suppression via p21-dependent signaling pathway. Cell Biol Toxicol 2020; 37:209-228. [PMID: 32562082 PMCID: PMC8012341 DOI: 10.1007/s10565-020-09541-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023]
Abstract
Cisplatin-based therapy is a widely used chemotherapeutic regimen for non-small cell lung cancer (NSCLC); however, drug resistance limits its efficacy. Acetyl-11-keto-β-boswellic acid (AKBA), a bioactive compound from frankincense, has been shown to exert anti-cancer effects. The aim of this study is to explore the potential of AKBA in combination with cisplatin as a new regimen for NSCLC. CCK8 assay and clone formation assay were used to determine the effects of AKBA in combination with cisplatin on cell viability of NSCLC cell lines. A three-dimensional spherification assay was used to simulate in vivo tumor formation. Flow cytometry was performed to examine cell cycle distribution and the percentages of apoptotic cells. The associated proteins and mRNA of cell cycle, apoptosis, and autophagy were measured by western blotting and real-time fluorescence quantitative PCR. Immunofluorescence assay was used to test apoptotic nuclei and autolysosome. Small interfering RNA experiments were used to silence the expression of p21. Combination treatment of AKBA and cisplatin inhibited cell viability, clone formation, and three-dimensional spherification, enhanced G0/G1 phase arrest, increased the percentages of apoptotic cells, and decreased the ratio of positive autolysosomes, compared with cisplatin alone. AKBA in combination with cisplatin suppressed the protein expressions of cyclin A2, cyclin E1, p-cdc2, CDK4, Bcl-xl, Atg5, and LC3A/B, and upregulated p27 and p21 mRNA levels in A549 cells. Downregulation of p21 decreased G0/G1 phase arrest and the percentages of apoptotic cells, and promoted autophagy in NSCLC A549 cells. Our study demonstrates that AKBA enhances the cisplatin sensitivity of NSCLC cells and that the mechanisms involve G0/G1 phase arrest, apoptosis induction, and autophagy suppression via targeting p21-dependent signaling pathway.
Collapse
Affiliation(s)
- Minghe Lv
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Jinshan District, Shanghai, 201508, China
| | - Xibing Zhuang
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Jinshan District, Shanghai, 201508, China
| | - Qi Zhang
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Jinshan District, Shanghai, 201508, China
| | - Yunfeng Cheng
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Jinshan District, Shanghai, 201508, China
| | - Duojiao Wu
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Jinshan District, Shanghai, 201508, China
| | - Xiangdong Wang
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Jinshan District, Shanghai, 201508, China
| | - Tiankui Qiao
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Jinshan District, Shanghai, 201508, China.
| |
Collapse
|
31
|
|
32
|
Jiang X, Liu Y, Zhang G, Lin S, Yuan N, Wu J, Yan X, Ma Y, Ma M. Acetyl-11-keto-β-boswellic Acid Inhibits Precancerous Breast Lesion MCF-10AT Cells via Regulation of LINC00707/miR-206 that Reduces Estrogen Receptor-α. Cancer Manag Res 2020; 12:2301-2314. [PMID: 32273767 PMCID: PMC7108719 DOI: 10.2147/cmar.s238051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 02/20/2020] [Indexed: 12/21/2022] Open
Abstract
Purpose Acetyl-11-keto-β-boswellic acid (AKBA) has therapeutic effects on a range of diseases, including tumours. lncRNAs, as competing endogenous RNAs (ceRNAs), can interact with miRNAs to regulate the expression of target genes, which can affect the development of tumors. Here, we examined the effects of AKBA on breast precancerous lesions MCF-10AT cells. Methods The expression profiles of breast cancer (BC) tissue were collated from The Cancer Genome Atlas (TCGA), and the lncRNA-miRNA-mRNA ceRNA network was constructed. AKBA targets were predicted by network pharmacology. The expression of long intergenic nonprotein-coding RNA 707 (LINC00707), miR-206 and ER-α was determined by qRT-PCR. Cell viability, apoptosis and cycle were assessed by CCK-8 and flow cytometry. Protein levels were measured by Western blotting. Results A total of 3205 differentially expressed mRNAs, 104 miRNAs, and 605 lncRNAs were identified. The ceRNA network consisting of 9 lncRNAs, 15 miRNAs and 82 mRNAs was constructed. We found that LINC00707 was up-regulated and miR-206 was down-regulated in MCF-10AT cells. Transfected si-LINC00707 could inhibit cell proliferation, induce cell apoptosis and cycle arrest of MCF-10AT cells. In addition, network pharmacology predicted that AKBA may regulate the ESR1 in the treatment of BC. Our research demonstrated that AKBA could induce cell apoptosis and G1-phase arrest and inhibit ER-α expression via LINC00707/miR-206 in MCF-10AT cells. Conclusion AKBA inhibited MCF-10AT cells via regulation of LINC00707/miR-206 that reduces ER-α.
Collapse
Affiliation(s)
- Xuefeng Jiang
- College of Traditional Chinese Medicine of Jinan University, Guangzhou, People's Republic of China
| | - Yusheng Liu
- College of Traditional Chinese Medicine of Jinan University, Guangzhou, People's Republic of China
| | - Guijuan Zhang
- The First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
| | - Shujun Lin
- College of Traditional Chinese Medicine of Jinan University, Guangzhou, People's Republic of China
| | - Naijun Yuan
- College of Traditional Chinese Medicine of Jinan University, Guangzhou, People's Republic of China
| | - Jieyan Wu
- College of Traditional Chinese Medicine of Jinan University, Guangzhou, People's Republic of China
| | - Xianxin Yan
- College of Traditional Chinese Medicine of Jinan University, Guangzhou, People's Republic of China
| | - Yi Ma
- Institute of Biomedicine and Department of Cellular Biology, Jinan University, Guangzhou, People's Republic of China
| | - Min Ma
- College of Traditional Chinese Medicine of Jinan University, Guangzhou, People's Republic of China.,The First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|
33
|
The therapeutic potential of Aurora kinases targeting in glioblastoma: from preclinical research to translational oncology. J Mol Med (Berl) 2020; 98:495-512. [PMID: 32219470 DOI: 10.1007/s00109-020-01895-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Abstract
Glioblastoma is the most common aggressive primary brain tumor. Standard care includes maximal safe surgical resection, radiation, and chemotherapy with temozolomide. However, the impact of this therapeutic approach on patient survival is disappointing and poor outcomes are frequently observed. Therefore, new therapeutic targets are needed to treat this potentially deadly tumor. Aurora kinases are one of today's most sought-after classes of therapeutic targets to glioblastoma therapy. They are a family of proteins composed of three members: Aurora-A, Aurora-B, and Aurora-C that play different roles in the cell division through regulation of chromosome segregation. Deregulation of these genes has been reported in glioblastoma and a progressive number of studies have shown that inhibition of these proteins could be a promising strategy for the treatment of this tumor. This review discusses the preclinical and early clinical findings on the potential use of the Aurora kinases as new targets for the treatment of glioblastoma. KEY MESSAGES: GBM is a very aggressive tumor with limited therapeutic options. Aurora kinases are a family of serine/threonine kinases implicated in GBM pathology. Aurora kinases are critical for glioblastoma cell growth, apoptosis, and chemoresistance. Inhibition of Aurora kinases has a synergistic or sensitizing effect with chemotherapy drugs, radiotherapy, or with other targeted molecules in GBM. Several Aurora kinase inhibitors are currently in clinical trials.
Collapse
|
34
|
Lv M, Shao S, Zhang Q, Zhuang X, Qiao T. Acetyl-11-Keto-β-Boswellic Acid Exerts the Anti-Cancer Effects via Cell Cycle Arrest, Apoptosis Induction and Autophagy Suppression in Non-Small Cell Lung Cancer Cells. Onco Targets Ther 2020; 13:733-744. [PMID: 32158225 PMCID: PMC6986255 DOI: 10.2147/ott.s236346] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
Objective Acetyl-11-keto-β-boswellic acid (AKBA) is a triterpenoid, which is the main component of boswellic acid from Boswellia Serrata, a medicinal plant that has shown immense potential in anti-cancer therapy. This study aims to explore the roles and molecular mechanisms of AKBA on cell behavior in non-small cell lung cancer (NSCLC) cells. Materials and Methods The effects of AKBA on the cell viability in A549, H460, H1299, and BEAS-2B cells were determined by the CCK-8 assay. The colony formation assay was used to identify the effects of AKBA on cell proliferation. Potential roles of AKBA in regulating the cell cycle, apoptosis, and autophagy in A549 were evaluated by flow cytometry, Western blotting, reverse transcription-polymerase chain reaction (PCR) and immunofluorescence (IF). Results AKBA reduced cell viability in A549, H460, H1299, and BEAS-2B. In A549 cells, AKBA suppressed the clone formation, arrested the cell cycle at the G0/G1 phase, induced cellular apoptosis. We found that AKBA suppressed the formation of autolysosome, and decreased the expression levels of Beclin-1, LC3A/B-I, and LC3A/B-II proteins. Furthermore, AKBA also inhibited the expression levels of PI3K/Akt signaling pathway proteins. Conclusion AKBA exerts the anti-cancer effects via cell cycle arrest, apoptosis induction, and autophagy suppression in NSCLC cells. This body of evidence supports the potential of AKBA as a promising drug in the treatment of NSCLC.
Collapse
Affiliation(s)
- Minghe Lv
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Shali Shao
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Qi Zhang
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Xibing Zhuang
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Tiankui Qiao
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| |
Collapse
|
35
|
Olajide OA, Sarker SD. Anti-inflammatory natural products. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2020:153-177. [DOI: 10.1016/bs.armc.2020.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
36
|
Plant-Derived Molecules α-Boswellic Acid Acetate, Praeruptorin-A, and Salvianolic Acid-B Have Age-Related Differential Effects in Young and Senescent Human Fibroblasts In Vitro. Molecules 2019; 25:molecules25010141. [PMID: 31905790 PMCID: PMC6982785 DOI: 10.3390/molecules25010141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 11/20/2022] Open
Abstract
Testing and screening of plant-derived molecules on normal human cells in vitro is a widely used approach for discovering their eventual health beneficial effects for human ageing and longevity. As little is known about age-associated differential effects of such molecules, here we report that young (<25% replicative lifespan completed) and near-senescent (>90% replicative lifespan completed) human skin fibroblasts exposed for 1–15 days to a wide range of concentrations (0.1–100 μM) of the three selected phytochemicals, namely α-boswellic acid acetate (ABC), praeruptorin-A (PTA), and salvianolic acid-B (SAB) had age-related differential effects. The parameters studied were the metabolic activity (MTT assay), cellular morphological phenotype, one-step growth characteristics, expression of genes involved in the cell cycle regulation and cytokine network genes, protein levels of p53, cytosolic superoxide dismutase (SOD1) and microtubule-associated protein 1A/1B-light chain 3 (LC3), and the extent of protein carbonylation and protein aggregation as a sign of oxidative stress. All three compounds showed biphasic hormetic dose response by stimulating cell growth, survival and metabolic activity at low doses (up to 1 μM), while showing inhibitory effects at high doses (>10 μM). Furthermore, the response of early passage young cells was different from that of the late passage near-senescent cells, especially with respect to the expression of cell cycle-related and inflammation-related genes. Such studies have importance with respect to the use of low doses of such molecules as health-promoting and/or ageing-interventions through the phenomenon of hormesis.
Collapse
|
37
|
Role of Jumpstart Nutrition®, a Dietary Supplement, to Ameliorate Calcium-to-Phosphorus Ratio and Parathyroid Hormone of Patients with Osteoarthritis. Med Sci (Basel) 2019; 7:medsci7120105. [PMID: 31766751 PMCID: PMC6950452 DOI: 10.3390/medsci7120105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 11/26/2022] Open
Abstract
The aim of this study was to use Jumpstart Nutrition® bone supplementing combination with vitamin-K2 and coenzyme-Q10 characterized by an innovative delivery system that improves bioavailability of calcium-to-phosphorus ratio (CPR) and parathyroid hormone (PTH) in the management of osteoarthritis (OA). This eight-week registry included 108 patients treated for symptomatic OA confirmed with radiological images. On top of that, 63 patients used Jumpstart Nutrition® supplement, mainly prepared with calcium, phosphorus, coenzyme-Q10, vitamin-K2, vitamin-D2, vitamin-C, folic acid, curcumin and boswellic acids. Rescue medication was also recommended. Patients’ pain and functional capacity through outcome measures—knee-injury osteoarthritis outcome scale (KOOS) and Karnofsky performance scale (KPS), biomarkers such as levels of CPR, PTH and 25-hydroxy-vitamin-D were evaluated for the groups with and without supplement using appropriate kits. After eight weeks, the levels of CPR and PTH were all significantly improved (p < 0.001), fewer subjects had to use rescue medication (p < 0.05) and variation of pain and functional capacity under KOOS and KPS (p < 0.05) of the patients in the supplement group compared to controls. This registry study indicates that Jumpstart Nutrition® can be used safely for effective management of OA patients for the amelioration of CPR, PTH and functional activities confirmed with biomarkers and radiological images correlated with the Kellgren-Lawrance scale.
Collapse
|
38
|
Schmiech M, Lang SJ, Ulrich J, Werner K, Rashan LJ, Syrovets T, Simmet T. Comparative Investigation of Frankincense Nutraceuticals: Correlation of Boswellic and Lupeolic Acid Contents with Cytokine Release Inhibition and Toxicity against Triple-Negative Breast Cancer Cells. Nutrients 2019; 11:E2341. [PMID: 31581678 PMCID: PMC6836131 DOI: 10.3390/nu11102341] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/22/2019] [Accepted: 09/26/2019] [Indexed: 12/24/2022] Open
Abstract
For centuries, frankincense extracts have been commonly used in traditional medicine, and more recently, in complementary medicine. Therefore, frankincense constituents such as boswellic and lupeolic acids are of considerable therapeutic interest. Sixteen frankincense nutraceuticals were characterized by high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS), revealing major differences in boswellic and lupeolic acid compositions and total contents, which varied from 0.4% to 35.7%. Frankincense nutraceuticals significantly inhibited the release of proinflammatory cytokines, such as TNF-α, IL-6, and IL-8, by LPS-stimulated peripheral blood mononuclear cells (PBMC) and whole blood. Moreover, boswellic and lupeolic acid contents correlated with TNF-α, IL-1β, IL-6, IL-8, and IL-10 inhibition. The nutraceuticals also exhibited toxicity against the human triple-negative breast cancer cell lines MDA-MB-231, MDA-MB-453, and CAL-51 in vitro. Nutraceuticals with total contents of boswellic and lupeolic acids >30% were the most active ones against MDA-MB-231 with a half maximal inhibitory concentration (IC50) ≤ 7.0 µg/mL. Moreover, a frankincense nutraceutical inhibited tumor growth and induced apoptosis in vivo in breast cancer xenografts grown on the chick chorioallantoic membrane (CAM). Among eight different boswellic and lupeolic acids tested, β-ABA exhibited the highest cytotoxicity against MDA-MB-231 with an IC50 = 5.9 µM, inhibited growth of cancer xenografts in vivo, and released proinflammatory cytokines. Its content in nutraceuticals correlated strongly with TNF-, IL-6, and IL-8 release inhibition.
Collapse
Affiliation(s)
- Michael Schmiech
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany.
| | - Sophia J Lang
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany.
| | - Judith Ulrich
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany.
| | - Katharina Werner
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany.
| | - Luay J Rashan
- Medicinal Plants Division, Research Center, Dhofar University, Salalah 211, Oman.
| | - Tatiana Syrovets
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany.
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|
39
|
Ammon HPT. Boswellic extracts and 11-keto-ß-boswellic acids prevent type 1 and type 2 diabetes mellitus by suppressing the expression of proinflammatory cytokines. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 63:153002. [PMID: 31301539 DOI: 10.1016/j.phymed.2019.153002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Type 1 diabetes is an autoimmune disease directed to the pancreatic islets where inflammation leads to the death of insulin-producing ß cells and insulin deficiency. Type 2 diabetes, which is closely related to overweight, is characterized by insulin resistance. In both cases, proinflammatory cytokines play an important role by causing insulitis and insulin resistance. The gum resin of Boswellia species and its pharmacologically active compounds, including 11-keto-ß-boswellic acids have been shown to suppress the expression of proinflammatory cytokines in various immune-competent cells. PURPOSE To review the present evidence of the therapeutic effects of boswellic extracts (BE) and/or 11-keto-ß-boswellic acids in the prevention/treatment of diabetes mellitus and to provide comprehensive insights into the underlying molecular mechanisms. METHODS This review considers all available informations from preclinical and clinical studies concerning BEs, 11-keto-ß-boswellic acids, proinflammatory cytokines and diabetes mellitus collected via electronic search (PubMed) and related publications of the author. RESULTS Type 1 diabetes: Studies in mice with autoimmune diabetes revealed that in the model of multiple injections of low doses of streptozotocin (MLD-STZ), an extract of the gum resin of Boswellia serrata and 11-keto-ß-boswellic acid (KBA) suppressed the increase in proinflammatory cytokines in the blood, infiltration of lymphocytes into pancreatic islets and increase in blood glucose. In a second model, i.e. the nonobese diabetic (NOD) mouse, KBA prevented the infiltration of lymphocytes into pancreatic islets. Regarding the clinical effects, a case report provided evidence that BE suppressed the blood levels of tyrosine phosphatase antibody (IA2-A), a marker for insulitis, in a patient with late-onset autoimmune diabetes of the adult (LADA). Type 2 diabetes: In a preclinical study in rats where obesity was alimentary induced, the administration of BE significantly reduced food intake, overweight, proinflammatory cytokines such as interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) and ameliorated the parameters of glucose and lipid metabolism. Similar results were obtained in a second animal study, where type 2 diabetes was induced by a combination of a high-fat/high-fructose diet and a single dose of streptozotocin. Two clinical trials with patients with type 2 diabetes receiving the resin of Boswellia serrata demonstrated improvement in the blood glucose, HbA1c and lipid parameters. CONCLUSION Preclinical and clinical data suggest that BE and/or 11-keto-ß-boswellic acids by inhibiting the expression of proinflammatory cytokines from immune-competent cells, may prevent insulitis and insulin resistance in type 1 and type 2 diabetes, respectively, and therefore may be an option in the treatment/prevention of type 1 and type 2 diabetes. It is hypothesized that molecularly, BE and 11-keto-ß-boswellic acids act via interference with the IκB kinase/Nuclear Transcription Factor-κB (IKK/NF-κB) signaling pathway through inhibition of the phosphorylation activity of IKK. However, further investigations and well-designed clinical studies are required.
Collapse
Affiliation(s)
- H P T Ammon
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, D-72076 Tübingen, Germany.
| |
Collapse
|
40
|
Roy NK, Parama D, Banik K, Bordoloi D, Devi AK, Thakur KK, Padmavathi G, Shakibaei M, Fan L, Sethi G, Kunnumakkara AB. An Update on Pharmacological Potential of Boswellic Acids against Chronic Diseases. Int J Mol Sci 2019; 20:ijms20174101. [PMID: 31443458 PMCID: PMC6747466 DOI: 10.3390/ijms20174101] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
Natural compounds, in recent years, have attracted significant attention for their use in the prevention and treatment of diverse chronic diseases as they are devoid of major toxicities. Boswellic acid (BA), a series of pentacyclic triterpene molecules, is isolated from the gum resin of Boswellia serrata and Boswellia carteri. It proved to be one such agent that has exhibited efficacy against various chronic diseases like arthritis, diabetes, asthma, cancer, inflammatory bowel disease, Parkinson’s disease, Alzheimer’s, etc. The molecular targets attributed to its wide range of biological activities include transcription factors, kinases, enzymes, receptors, growth factors, etc. The present review is an attempt to demonstrate the diverse pharmacological uses of BA, along with its underlying molecular mechanism of action against different ailments. Further, this review also discusses the roadblocks associated with the pharmacokinetics and bioavailability of this promising compound and strategies to overcome those limitations for developing it as an effective drug for the clinical management of chronic diseases.
Collapse
Affiliation(s)
- Nand Kishor Roy
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Amrita Khwairakpam Devi
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Ganesan Padmavathi
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Lu Fan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
41
|
Alluri VK, Dodda S, Kilari EK, Golakoti T, Sengupta K. Toxicological Assessment of a Standardized Boswellia serrata Gum Resin Extract. Int J Toxicol 2019; 38:423-435. [PMID: 31234670 DOI: 10.1177/1091581819858069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The acidic and non-acidic fractions of Boswellia serrata gum resin extracts were combined to prepare a unique product, LI13019F1 (Serratrin). The present series of studies evaluated LI13019F1 for acute and subchronic (28-day) toxicity in Wistar rats and acute dermal and eye irritation in New Zealand white rabbits. The mutagenicity and clastogenicity of LI13019F1 were evaluated in bacteria and mouse bone marrow erythrocytes, respectively. All studies were performed following the Organization for Economic Co-operation and Development guidelines. Acute oral and acute dermal toxicity studies did not show mortality or signs of toxicity in Wistar rats at a limit dose of 2,000 mg/kg LI13019F1. LI13019F1 did not cause irritation to the skin or the eyes of New Zealand white rabbits. In a repeated dose 28-day oral toxicity study, LI13019F1-treated Wistar rats did not show dose-related signs of toxicity on their body weights, organ weights, and on the hematology and clinical chemistry parameters. The estimated no observed adverse effect level for LI13019F1 was 1,000 mg/kg/day in both male and female rats. The bacterial reverse mutation test and a micronucleus assay in mouse bone marrow erythrocytes revealed that LI13019F1 was neither mutagenic nor clastogenic. Together, the present observations demonstrate a broad-spectrum safety of LI13019F1.
Collapse
Affiliation(s)
| | | | - Eswar Kumar Kilari
- Department of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, India.,AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, India
| | | | | |
Collapse
|
42
|
Comparative Analysis of Pentacyclic Triterpenic Acid Compositions in Oleogum Resins of Different Boswellia Species and Their In Vitro Cytotoxicity against Treatment-Resistant Human Breast Cancer Cells. Molecules 2019; 24:molecules24112153. [PMID: 31181656 PMCID: PMC6600171 DOI: 10.3390/molecules24112153] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 01/18/2023] Open
Abstract
Pentacyclic triterpenic acids from oleogum resins of Boswellia species are of considerable therapeutic interest. Yet, their pharmaceutical development is hampered by uncertainties regarding botanical identification and the complexity of triterpenic acid mixtures. Here, a highly sensitive, selective, and accurate method for the simultaneous quantification of eight boswellic and lupeolic acids by high-performance liquid chromatography with tandem mass spectrometry detection (HPLC-MS/MS) was developed. The method was applied to the comparative analysis of 41 oleogum resins of the species B. sacra, B. dalzielli, B. papyrifera, B. serrata, B. carterii, B. neglecta, B. rivae, B. frereana, and B. occulta. Multivariate statistical analysis of the data revealed differences in the triterpenic acid composition that could be assigned to distinct Boswellia species and to their geographic growth location. Extracts of the oleogum resins exhibited cytotoxicity against the human, treatment-resistant, metastatic breast cancer cell line MDA-MB-231. Extracts from B. sacra were the most potent ones with an average IC50 of 8.3 ± 0.6 µg/mL. The oleogum resin of the B. sacra was further fractionated to enrich different groups of substances. The cytotoxic efficacy against the cancer cells correlates positively with the contents of pentacyclic triterpenic acids in Boswellia extracts.
Collapse
|
43
|
Acetyl-11-keto-β-boswellic acid suppresses docetaxel-resistant prostate cancer cells in vitro and in vivo by blocking Akt and Stat3 signaling, thus suppressing chemoresistant stem cell-like properties. Acta Pharmacol Sin 2019; 40:689-698. [PMID: 30171201 DOI: 10.1038/s41401-018-0157-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/03/2018] [Indexed: 12/16/2022]
Abstract
Acquired docetaxel-resistance of prostate cancer (PCa) remains a clinical obstacle due to the lack of effective therapies. Acetyl-11-keto-β-boswellic acid (AKBA) is a pentacyclic triterpenic acid isolated from the fragrant gum resin of the Boswellia serrata tree, which has shown intriguing antitumor activity against human cell lines established from PCa, colon cancer, malignant glioma, and leukemia. In this study, we examined the effects of AKBA against docetaxel-resistant PCa in vitro and in vivo as well as its anticancer mechanisms. We showed that AKBA dose-dependently inhibited cell proliferation and induced cell apoptosis in docetaxel-resistant PC3/Doc cells; its IC50 value in anti-proliferation was ∼17 μM. Furthermore, AKBA dose-dependently suppressed the chemoresistant stem cell-like properties of PC3/Doc cells, evidenced by significant decrease in the ability of mammosphere formation and down-regulated expression of a number of stemness-associated genes. The activation of Akt and Stat3 signaling pathways was remarkably enhanced in PC3/Doc cells, which contributed to their chemoresistant stem-like phenotype. AKBA (10-30 μM) dose-dependently suppressed the activation of Akt and Stat3 signaling pathways in PC3/Doc cells. In contrast, overexpression of Akt and Stat3 significantly attenuated the inhibition of AKBA on PC3/Doc cell proliferation. In docetaxel-resistant PCa homograft mice, treatment with AKBA significantly suppresses the growth of homograft RM-1/Doc, equivalent to its human PC3/Doc, but did not decrease their body weight. In summary, we demonstrate that AKBA inhibits the growth inhibition of docetaxel-resistant PCa cells in vitro and in vivo via blocking Akt and Stat3 signaling, thus suppressing their cancer stem cell-like properties.
Collapse
|
44
|
Semeraro F, Morescalchi F, Cancarini A, Russo A, Rezzola S, Costagliola C. Diabetic retinopathy, a vascular and inflammatory disease: Therapeutic implications. DIABETES & METABOLISM 2019; 45:517-527. [PMID: 31005756 DOI: 10.1016/j.diabet.2019.04.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/04/2019] [Accepted: 04/07/2019] [Indexed: 12/13/2022]
Abstract
Diabetic retinopathy (DR) is the most common microvascular complication of diabetes and the leading cause of visual impairment in the working-age population in the Western world. Diabetic macular oedema (DME) is one of the major complications of DR. Therapy with intravitreal injections of anti-vascular endothelial growth factor (anti-VEGF) drugs has become the gold standard treatment for DR and its complications. However, these drugs have no effect on the pathogenesis of DR and must be administered frequently via invasive intravitreal injections over many years. Thus, there is a pressing need to develop new therapeutic strategies to improve the treatment of this devastating disease. Indeed, an increasing volume of data supports the role of the inflammatory process in the pathogenesis of DR itself and its complications, including both increased retinal vascular permeability and neovascularization. Inflammation may also contribute to retinal neurodegeneration. Evidence that low-grade inflammation plays a critical role in the pathogenesis of DME has opened up new pathways and targets for the development of improved treatments. Anti-inflammatory compounds such as intravitreal glucocorticoids, topical non-steroidal anti-inflammatory drugs (NSAIDs), antioxidants, inflammatory molecule inhibitors, renin-angiotensin system (RAS) blockers and natural anti-inflammatory therapies may all be considered to reduce the rate of administration of antineovascularization agents in the treatment of DR. This report describes the current state of knowledge of the potential role of anti-inflammatory drugs in controlling the onset and evolution of DR and DME.
Collapse
Affiliation(s)
- F Semeraro
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - F Morescalchi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - A Cancarini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - A Russo
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - S Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - C Costagliola
- Department of Medicine and Health Sciences 'V. Tiberio', University of Molise, Via Francesco De Sanctis 1, 86100 Campobasso, Italy.
| |
Collapse
|
45
|
Majeed M, Majeed S, Narayanan NK, Nagabhushanam K. A pilot, randomized, double-blind, placebo-controlled trial to assess the safety and efficacy of a novel Boswellia serrata extract in the management of osteoarthritis of the knee. Phytother Res 2019; 33:1457-1468. [PMID: 30838706 PMCID: PMC6681146 DOI: 10.1002/ptr.6338] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 01/28/2019] [Accepted: 02/10/2019] [Indexed: 01/20/2023]
Abstract
A double-blind, placebo-controlled human trial was conducted to evaluate the safety and efficacy of a standardized oral supplementation of Boswellin®, a novel extract of Boswellia serrata extract (BSE) containing 3-acetyl-11-keto-β-boswellic acid (AKBBA) with β-boswellic acid (BBA). A total of 48 patients with osteoarthritis (OA) of the knee were randomized and allocated to the BSE and placebo groups for intervention. Patients were administered BSE or placebo for a period of 120 days. The trial results revealed that BSE treatment significantly improved the physical function of the patients by reducing pain and stiffness compared with placebo. Radiographic assessments showed improved knee joint gap and reduced osteophytes (spur) confirming the efficacy of BSE treatment. BSE also significantly reduced the serum levels of high-sensitive C-reactive protein, a potential inflammatory marker associated with OA of the knee. No serious adverse events were reported. This is the first study with BSE conducted for a period of 120 days, longer than any other previous clinical trial on patients with OA of the knee. The findings provide evidence that biologically active constituents of BSE, namely, AKBBA and BBA, act synergistically to exert anti-inflammatory/anti-arthritic activity showing improvement in physical and functional ability and reducing the pain and stiffness.
Collapse
Affiliation(s)
- Muhammed Majeed
- Sami Labs Limited, Research & Development Division, Bangalore, India.,Sabinsa Corporation, Research & Development Division, Payson, Utah.,Sabinsa Corporation, Research & Development Division, East Windsor, New Jersey
| | - Shaheen Majeed
- Sabinsa Corporation, Research & Development Division, Payson, Utah
| | | | | |
Collapse
|
46
|
Prasher P, Mudila H, Sharma M, Khati B. Developmental perspectives of the drugs targeting enzyme-instigated inflammation: a mini review. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02315-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Ning Z, Wang C, Liu Y, Song Z, Ma X, Liang D, Liu Z, Lu A. Integrating Strategies of Herbal Metabolomics, Network Pharmacology, and Experiment Validation to Investigate Frankincense Processing Effects. Front Pharmacol 2018; 9:1482. [PMID: 30618770 PMCID: PMC6305425 DOI: 10.3389/fphar.2018.01482] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/03/2018] [Indexed: 12/15/2022] Open
Abstract
In-depth research on processing can promote the globalization of processed herbs. The purpose of this study is to propose an improved strategy for processing effect investigation. Frankincense and processed frankincense were used as research subjects. First, high-speed countercurrent chromatography (HSCCC) and preparation high-performance liquid chromatography (PHPLC) techniques were used for major compounds isolation and minor compounds concentration. Processed frankincense was subjected to two stepwise solvent systems, namely, n-hexane:ethanol:water (6:5:1) and n-hexane:methyl-acetate:acetonitrile:water (4:4:3:4), to yield 12 fractions, and 18 compounds were further separated. Second, a comprehensive metabolomic analysis conducted by ultrahigh-performance liquid-chromatography/electrospray-ionization mass spectrometry (UHPLC-Qtof-MS) coupled with multivariate statistics was performed to fully characterize the chemical components and discover the potential biomarkers between frankincense and processed frankincense. In total, 81 metabolites, including the 18 separated compounds, were selected as potential biomarkers between frankincense and processed frankincense among 153 detected compounds for their VIP values of greater than one. The tirucallane-type compounds and components with 9,11-dehydro structures clearly occurred at high levels in the processed frankincense, while lupine-type compounds and those with 11-keto structures were significantly higher in frankincense. Then, a network pharmacology model was constructed to decipher the potential mechanisms of processing. Intestinal absorption properties prediction indicated the possibility of processing-related absorption enhancement. A systematic analysis of the constructed networks showed that the C-T network was constructed with 18 potential biomarkers and 69 targets. TNF and IL-1β were among the top-ranked and were linked by 8 and 7 pathways, which were mainly involved in inflammation. The arachidonic acid metabolism pathway exhibited the highest number of target connections. Finally, the prediction was validated experimentally by an intestinal permeability and efficacy assay. The experiments provided convincing evidence that processed frankincense harbored stronger inhibition effects toward TNF-α-, IL-1β- and arachidonic acid-induced platelet aggregation. The processing procedure leads to changes of the chemical metabolites, which triggers the enhancement of absorption and cure efficiency. The global change of the metabolites, absorption and pharmacological effects of processing were depicted in a systematic manner.
Collapse
Affiliation(s)
- Zhangchi Ning
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chun Wang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiqian Song
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinling Ma
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongrui Liang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenli Liu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
48
|
Kunnumakkara AB, Banik K, Bordoloi D, Harsha C, Sailo BL, Padmavathi G, Roy NK, Gupta SC, Aggarwal BB. Googling the Guggul (Commiphora and Boswellia) for Prevention of Chronic Diseases. Front Pharmacol 2018; 9:686. [PMID: 30127736 PMCID: PMC6087759 DOI: 10.3389/fphar.2018.00686] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/06/2018] [Indexed: 12/14/2022] Open
Abstract
Extensive research during last 2 decades has revealed that most drugs discovered today, although costs billions of dollars for discovery, and yet they are highly ineffective in their clinical response. For instance, the European Medicines Agency has approved 68 anti-cancer drugs, and out of which 39 has reached the market level with no indication of increased survival nor betterment of quality of life. Even when drugs did improve survival rate compared to available treatment strategies, most of these were found to be clinically insignificant. This is a fundamental problem with modern drug discovery which is based on thinking that most chronic diseases are caused by alteration of a single gene and thus most therapies are single gene-targeted therapies. However, extensive research has revealed that most chronic diseases are caused by multiple gene products. Although most drugs designed by man are mono-targeted therapies, however, those designed by "mother nature" and have been used for thousands of years, are "multi-targeted" therapies. In this review, we examine two agents that have been around for thousands of years, namely "guggul" from Commiphora and Boswellia. Although we are all familiar with the search engine "google," this is another type of "guggul" that has been used for centuries and being explored for its various biological activities. The current review summarizes the traditional uses, chemistry, in vitro and in vivo biological activities, molecular targets, and clinical trials performed with these agents.
Collapse
Affiliation(s)
- Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Kishore Banik
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Choudhary Harsha
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Bethsebie L. Sailo
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Ganesan Padmavathi
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Nand K. Roy
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Subash C. Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
49
|
Li W, Liu J, Fu W, Zheng X, Ren L, Liu S, Wang J, Ji T, Du G. 3-O-acetyl-11-keto-β-boswellic acid exerts anti-tumor effects in glioblastoma by arresting cell cycle at G2/M phase. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:132. [PMID: 29970196 PMCID: PMC6029111 DOI: 10.1186/s13046-018-0805-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 06/20/2018] [Indexed: 12/31/2022]
Abstract
Background Glioblastoma (GBM) is the most common, malignant, and lethal primary brain tumor in adults accounting for about 50% of all gliomas. Up to now, the chemotherapy approaches for GBM were limited. 3-O-acetyl-11-keto-β-boswellic acid (AKBA), the major active ingredient of the gum resin from Boswellia serrata and Boswellia carteri Birdw., was reported to inhibit the growth of many types of cancer cells; however, the underlying mechanism of its anticancer effects are still unclear. Methods The effects of AKBA on cell viability and its cytotoxicity were determined using CCK8 and LDH kits respectively. The EdU-DNA synthesis assay was used to evaluate inhibition of cell proliferation by AKBA. The role of AKBA in glioblastoma cell functions such as migration/invasion, and colony formation was evaluated using transwell chambers and soft agar, respectively. Flow cytometry and western blotting were used to detect AKBA-induced apoptosis. Potential mechanisms of AKBA action were explored by RNA sequencing and the identified hub genes were validated by real-time quantitative PCR and western blotting. Finally, the in vivo anti-tumor activity of AKBA was evaluated against a human glioblastoma cell line, U87-MG, in a xenograft mouse model. Results AKBA inhibited cell proliferation, caused the release of LDH, decreased DNA synthesis, and inhibited the migration, invasion, and colony formation of U251 and U87-MG human glioblastoma cell lines. AKBA increased apoptosis as well as the activity of caspase 3/7 and the protein expression of cleaved-caspase 3 and cleaved PARP, while decreasing mitochondrial membrane potential. RNA-sequencing analyses showed that AKBA suppressed the expression of pRB, FOXM1, Aurora A, PLK1, CDC25C, p-CDK1, cyclinB1, Aurora B, and TOP2A while increasing the expression of p21 and GADD45A. These findings were validated by qRT-PCR and western blotting. The data are consistent with a mechanism in which AKBA arrested the cell cycle in glioblastoma cells at the G2/M phase by regulating the p21/FOXM1/cyclin B1 pathway, inhibited mitosis by downregulating the Aurora B/TOP2A pathway, and induced mitochondrial-dependent apoptosis. Oral administration of AKBA (100 mg/kg) significantly suppressed the tumorigenicity of U87-MG cells in a xenograft mouse model. Conclusions Taken together, these results suggest that AKBA (molecular weight, 512.7 Da) might be a promising chemotherapy drug in the treatment of GBM. Electronic supplementary material The online version of this article (10.1186/s13046-018-0805-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jinyi Liu
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.,Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650500, China
| | - Weiqi Fu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Shiwei Liu
- Department of Endocrinology, Shanxi DAYI Hospital, Shanxi Medical University, Taiyuan, 030002, Shanxi, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China. .,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| | - Tengfei Ji
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China. .,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
50
|
Bertocchi M, Isani G, Medici F, Andreani G, Tubon Usca I, Roncada P, Forni M, Bernardini C. Anti-Inflammatory Activity of Boswellia serrata Extracts: An In Vitro Study on Porcine Aortic Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2504305. [PMID: 30046370 PMCID: PMC6036794 DOI: 10.1155/2018/2504305] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/11/2018] [Indexed: 11/24/2022]
Abstract
This study is aimed at investigating the cytotoxicity, anti-inflammatory, and angiogenic activities of two Boswellia serrata extracts on primary culture of porcine aortic endothelial cells (pAECs). Chemical characterization of a dry extract (extract A) and a hydroenzymatic extract (extract G) of B. serrata was performed by HPLC using pure boswellic acids (BAs) as standard. In cultured pAECs, extract G improved cell viability, following LPS challenge, in a dose-dependent manner and did not show any toxic effect. On the other hand, extract A was toxic at higher doses and restored pAEC viability after LPS challenge only at lower doses. Pure BAs, used at the same concentrations as those determined in the phytoextracts, did not contrast LPS-induced cytotoxicity. Extract A showed proangiogenic properties at the lowest dose, and the same result was observed using pure AKBA at the corresponding concentration, whereas extract G did not show any effect on the migration capacity of endothelial cells. In conclusion, an anti-inflammatory activity of B. serrata extracts on endothelial cells was reported, though cytotoxicity or proliferative stimulation can occur instead of a protective effect, depending on the dose and the formulation.
Collapse
Affiliation(s)
- Martina Bertocchi
- Department of Veterinary Medical Sciences-DIMEVET, University of Bologna, Ozzano Emilia, Bologna 40064, Italy
| | - Gloria Isani
- Department of Veterinary Medical Sciences-DIMEVET, University of Bologna, Ozzano Emilia, Bologna 40064, Italy
| | - Federica Medici
- Department of Veterinary Medical Sciences-DIMEVET, University of Bologna, Ozzano Emilia, Bologna 40064, Italy
| | - Giulia Andreani
- Department of Veterinary Medical Sciences-DIMEVET, University of Bologna, Ozzano Emilia, Bologna 40064, Italy
| | - Irvin Tubon Usca
- Department of Veterinary Medical Sciences-DIMEVET, University of Bologna, Ozzano Emilia, Bologna 40064, Italy
| | - Paola Roncada
- Department of Veterinary Medical Sciences-DIMEVET, University of Bologna, Ozzano Emilia, Bologna 40064, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences-DIMEVET, University of Bologna, Ozzano Emilia, Bologna 40064, Italy
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences-DIMEVET, University of Bologna, Ozzano Emilia, Bologna 40064, Italy
| |
Collapse
|