1
|
Meng H, Zhou J, Wang M, Zheng M, Xing Y, Wang Y. SARS-CoV-2 Papain-like Protease Negatively Regulates the NLRP3 Inflammasome Pathway and Pyroptosis by Reducing the Oligomerization and Ubiquitination of ASC. Microorganisms 2023; 11:2799. [PMID: 38004809 PMCID: PMC10673202 DOI: 10.3390/microorganisms11112799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
The interaction of viruses with hosts is complex, especially so with the antiviral immune systems of hosts, and the underlying mechanisms remain perplexing. Infection with SARS-CoV-2 may result in cytokine syndrome in the later stages, reflecting the activation of the antiviral immune response. However, viruses also encode molecules to negatively regulate the antiviral immune systems of hosts to achieve immune evasion and benefit viral replication during the early stage of infection. It has been observed that the papain-like protease (PLP) encoded by coronavirus could negatively regulate the host's IFNβ innate immunity. In this study, we first found that eight inflammasome-related genes were downregulated in CD14+ monocytes from COVID-19 patients. Subsequently, we observed that SARS-CoV-2 PLP negatively regulated the NLRP3 inflammasome pathway, inhibited the secretion of IL-1β, and decreased the caspase-1-mediated pyroptosis of human monocytes. The mechanisms for this may arise because PLP coimmunoprecipitates with ASC, reduces ASC ubiquitination, and inhibits ASC oligomerization and the formation of ASC specks. These findings suggest that PLP may inhibit strong immune defenses and provide the maximum advantage for viral replication. This research may allow us to better understand the flex function of CoV-encoding proteases and provide a new perspective on the innate immune responses against SARS-CoV-2 and other viruses.
Collapse
Affiliation(s)
- Huan Meng
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Chaoyang District, Beijing 100015, China
- Bioinformatics Center of Academy of Military Medicine Science, Beijing 100850, China
| | - Jianglin Zhou
- Bioinformatics Center of Academy of Military Medicine Science, Beijing 100850, China
| | - Mingyu Wang
- Bioinformatics Center of Academy of Military Medicine Science, Beijing 100850, China
| | - Mei Zheng
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Chaoyang District, Beijing 100015, China
| | - Yaling Xing
- Bioinformatics Center of Academy of Military Medicine Science, Beijing 100850, China
| | - Yajie Wang
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Chaoyang District, Beijing 100015, China
| |
Collapse
|
2
|
Patlola SR, Donohoe G, McKernan DP. Counting the Toll of Inflammation on Schizophrenia-A Potential Role for Toll-like Receptors. Biomolecules 2023; 13:1188. [PMID: 37627253 PMCID: PMC10452856 DOI: 10.3390/biom13081188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Toll-like receptors (TLRs) are a family of pattern recognition receptors (PRRs) that are ubiquitously expressed in the human body. They protect the brain and central nervous system from self and foreign antigens/pathogens. The immune response elicited by these receptors culminates in the release of cytokines, chemokines, and interferons causing an inflammatory response, which can be both beneficial and harmful to neurodevelopment. In addition, the detrimental effects of TLR activation have been implicated in multiple neurodegenerative diseases such as Alzheimer's, multiple sclerosis, etc. Many studies also support the theory that cytokine imbalance may be involved in schizophrenia, and a vast amount of literature showcases the deleterious effects of this imbalance on cognitive performance in the human population. In this review, we examine the current literature on TLRs, their potential role in the pathogenesis of schizophrenia, factors affecting TLR activity that contribute towards the risk of schizophrenia, and lastly, the role of TLRs and their impact on cognitive performance in schizophrenia.
Collapse
Affiliation(s)
- Saahithh Redddi Patlola
- Department of Pharmacology & Therapeutics, School of Medicine, University of Galway, H91 TK33 Galway, Ireland;
| | - Gary Donohoe
- School of Psychology, University of Galway, H91 TK33 Galway, Ireland;
| | - Declan P. McKernan
- Department of Pharmacology & Therapeutics, School of Medicine, University of Galway, H91 TK33 Galway, Ireland;
| |
Collapse
|
3
|
Rasa SMM, Annunziata F, Krepelova A, Nunna S, Omrani O, Gebert N, Adam L, Käppel S, Höhn S, Donati G, Jurkowski TP, Rudolph KL, Ori A, Neri F. Inflammaging is driven by upregulation of innate immune receptors and systemic interferon signaling and is ameliorated by dietary restriction. Cell Rep 2022; 39:111017. [PMID: 35767948 DOI: 10.1016/j.celrep.2022.111017] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/28/2022] [Accepted: 06/07/2022] [Indexed: 12/27/2022] Open
Abstract
Aging is characterized by a chronic low-grade inflammation known as inflammaging in multiple tissues, representing a risk factor for age-related diseases. Dietary restriction (DR) is the best-known non-invasive method to ameliorate aging in many organisms. However, the molecular mechanism and the signaling pathways that drive inflammaging across different tissues and how they are modulated by DR are not yet understood. Here we identify a multi-tissue gene network regulating inflammaging. This network is characterized by chromatin opening and upregulation in the transcription of innate immune system receptors and by activation of interferon signaling through interferon regulatory factors, inflammatory cytokines, and Stat1-mediated transcription. DR ameliorates aging-induced alterations of chromatin accessibility and RNA transcription of the inflammaging gene network while failing to rescue those alterations on the rest of the genome. Our results present a comprehensive understanding of the molecular network regulating inflammation in aging and DR and provide anti-inflammaging therapeutic targets.
Collapse
Affiliation(s)
| | | | - Anna Krepelova
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany; Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Suneetha Nunna
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Omid Omrani
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Nadja Gebert
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Lisa Adam
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Sandra Käppel
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Sven Höhn
- School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK
| | - Giacomo Donati
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | | | | | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Francesco Neri
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany; Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
| |
Collapse
|
4
|
Gao Y, Hu JH, Liang XD, Chen J, Liu CC, Liu YY, Cheng Y, Go YY, Zhou B. Curcumin inhibits classical swine fever virus replication by interfering with lipid metabolism. Vet Microbiol 2021; 259:109152. [PMID: 34146894 DOI: 10.1016/j.vetmic.2021.109152] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/06/2021] [Indexed: 11/26/2022]
Abstract
Although previous reports have shown that Curcumin inhibits many viruses, including some important members of different genera of Flaviviridae family (Japanese encephalitis virus, dengue virus and hepatitis C virus), the antiviral activity of curcumin against Classical swine fever virus (CSFV), which belongs to Pestivirus genus, is still unclear. In this study, we found that curcumin inhibited CSFV replication in a dose-dependent manner, but had no effect on virus adsorption and entry. Furthermore, the results showed that curcumin inhibited the expression of FASN, one of the key enzymes of fatty acid synthesis pathway, thereby, causing the reduction of the production of LDs upon infection. To this end, we detected transcription factor 6 (ATF6), the key factor of regulating lipid metabolism along with other related molecules (CHOP and GPR78) and found that curcumin significantly impaired the gene synthesis of ATF6, while CSFV infection promoted ATF6 expression. Therefore, it is confirmed that curcumin inhibited CSFV replication by interfere lipid metabolism. In addition, our subsequent studies found that curcumin played an antiviral role by promoting the innate immune independent of NF-κB signaling pathway. Taken together, our finding highlights that curcumin is a potential candidate drug against CSFV for controlling CSF.
Collapse
Affiliation(s)
- Ya Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jia-Huan Hu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Dong Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jing Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chun-Chun Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ya-Yun Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yan Cheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yun Young Go
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong, China
| | - Bin Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
5
|
Krump NA, Wang R, Liu W, Yang JF, Ma T, You J. Merkel Cell Polyomavirus Infection Induces an Antiviral Innate Immune Response in Human Dermal Fibroblasts. J Virol 2021; 95:e0221120. [PMID: 33883226 PMCID: PMC8437356 DOI: 10.1128/jvi.02211-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/13/2021] [Indexed: 02/08/2023] Open
Abstract
Merkel cell polyomavirus (MCPyV) infects most of the human population asymptomatically, but in rare cases it leads to a highly aggressive skin cancer called Merkel cell carcinoma (MCC). MCC incidence is much higher in aging and immunocompromised populations. The epidemiology of MCC suggests that dysbiosis between the host immune response and the MCPyV infectious cycle could contribute to the development of MCPyV-associated MCC. Insufficient restriction of MCPyV by normal cellular processes, for example, could promote the incidental oncogenic MCPyV integration events and/or entry into the original cell of MCC. Progress toward understanding MCPyV biology has been hindered by its narrow cellular tropism. Our discovery that primary human dermal fibroblasts (HDFs) support MCPyV infection has made it possible to closely model cellular responses to different stages of the infectious cycle. The present study reveals that the onset of MCPyV replication and early gene expression induces an inflammatory cytokine and interferon-stimulated gene (ISG) response. The cGAS-STING pathway, in coordination with NF-κB, mediates induction of this innate immune gene expression program. Further, silencing of cGAS or NF-κB pathway factors led to elevated MCPyV replication. We also discovered that the PYHIN protein IFI16 localizes to MCPyV replication centers but does not contribute to the induction of ISGs. Instead, IFI16 upregulates inflammatory cytokines in response to MCPyV infection by an alternative mechanism. The work described herein establishes a foundation for exploring how changes to the skin microenvironment induced by aging or immunodeficiency might alter the fate of MCPyV and its host cell to encourage carcinogenesis. IMPORTANCE MCC has a high rate of mortality and an increasing incidence. Immune-checkpoint therapies have improved the prognosis of patients with metastatic MCC. Still, a significant proportion of the patients fail to respond to immune-checkpoint therapies or have a medical need for iatrogenic immune-suppression. A greater understanding of MCPyV biology could inform targeted therapies for MCPyV-associated MCC. Moreover, cellular events preceding MCC oncogenesis remain largely unknown. The present study aims to explore how MCPyV interfaces with innate immunity during its infectious cycle. We describe how MCPyV replication and/or transcription elicit an innate immune response via cGAS-STING, NF-κB, and IFI16. We also explore the effects of this response on MCPyV replication. Our findings illustrate how healthy cellular conditions may allow low-level infection that evades immune destruction until highly active replication is restricted by host responses. Conversely, pathological conditions could result in unbridled MCPyV replication that licenses MCC tumorigenesis.
Collapse
Affiliation(s)
- Nathan A. Krump
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ranran Wang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - June F. Yang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tongcui Ma
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Chiarini A, Armato U, Hu P, Dal Prà I. CaSR Antagonist (Calcilytic) NPS 2143 Hinders the Release of Neuroinflammatory IL-6, Soluble ICAM-1, RANTES, and MCP-2 from Aβ-Exposed Human Cortical Astrocytes. Cells 2020; 9:cells9061386. [PMID: 32498476 PMCID: PMC7349863 DOI: 10.3390/cells9061386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
Available evidence shows that human cortical neurons’ and astrocytes’ calcium-sensing receptors (CaSRs) bind Amyloid-beta (Aβ) oligomers triggering the overproduction/oversecretion of several Alzheimer’s disease (AD) neurotoxins—effects calcilytics suppress. We asked whether Aβ•CaSR signaling might also play a direct pro-neuroinflammatory role in AD. Cortical nontumorigenic adult human astrocytes (NAHAs) in vitro were untreated (controls) or treated with Aβ25–35 ± NPS 2143 (a calcilytic) and any proinflammatory agent in their protein lysates and growth media assayed via antibody arrays, enzyme-linked immunosorbent assays (ELISAs), and immunoblots. Results show Aβ•CaSR signaling upregulated the synthesis and release/shedding of proinflammatory interleukin (IL)-6, intercellular adhesion molecule-1 (ICAM-1) (holoprotein and soluble [s] fragment), Regulated upon Activation, normal T cell Expressed and presumably Secreted (RANTES), and monocyte chemotactic protein (MCP)-2. Adding NPS 2143 (i) totally suppressed IL-6′s oversecretion while remarkably reducing the other agents’ over-release; and (ii) more effectively than Aβ alone increased over controls the four agents’ distinctive intracellular accumulation. Conversely, NPS 2143 did not alter Aβ-induced surges in IL-1β, IL-3, IL-8, and IL-16 secretion, consequently revealing their Aβ•CaSR signaling-independence. Finally, Aβ25–35 ± NPS 2143 treatments left unchanged MCP-1′s and TIMP-2′s basal expression. Thus, NAHAs Aβ•CaSR signaling drove four proinflammatory agents’ over-release that NPS 2143 curtailed. Therefore, calcilytics would also abate NAHAs’ Aβ•CaSR signaling direct impact on AD’s neuroinflammation.
Collapse
Affiliation(s)
- Anna Chiarini
- Human Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics and Gynecology, Medical School, University of Verona, Veneto, 37134 Verona, Italy; (U.A.); (P.H.)
- Correspondence: (A.C.); (I.D.P.); Tel.: +39-045-802-7646 (A.C.); +39-045-802-7161 (I.D.P)
| | - Ubaldo Armato
- Human Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics and Gynecology, Medical School, University of Verona, Veneto, 37134 Verona, Italy; (U.A.); (P.H.)
- Burns Department, Shenzhen Second People’s Hospital, University of Shenzhen, Shenzhen 518000, China
| | - Peng Hu
- Human Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics and Gynecology, Medical School, University of Verona, Veneto, 37134 Verona, Italy; (U.A.); (P.H.)
| | - Ilaria Dal Prà
- Human Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics and Gynecology, Medical School, University of Verona, Veneto, 37134 Verona, Italy; (U.A.); (P.H.)
- Burns Department, Shenzhen Second People’s Hospital, University of Shenzhen, Shenzhen 518000, China
- Correspondence: (A.C.); (I.D.P.); Tel.: +39-045-802-7646 (A.C.); +39-045-802-7161 (I.D.P)
| |
Collapse
|
7
|
Hyvärinen T, Hagman S, Ristola M, Sukki L, Veijula K, Kreutzer J, Kallio P, Narkilahti S. Co-stimulation with IL-1β and TNF-α induces an inflammatory reactive astrocyte phenotype with neurosupportive characteristics in a human pluripotent stem cell model system. Sci Rep 2019; 9:16944. [PMID: 31729450 PMCID: PMC6858358 DOI: 10.1038/s41598-019-53414-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022] Open
Abstract
Astrocyte reactivation has been discovered to be an important contributor to several neurological diseases. In vitro models involving human astrocytes have the potential to reveal disease-specific mechanisms of these cells and to advance research on neuropathological conditions. Here, we induced a reactive phenotype in human induced pluripotent stem cell (hiPSC)-derived astrocytes and studied the inflammatory natures and effects of these cells on human neurons. Astrocytes responded to interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) treatment with a typical transition to polygonal morphology and a shift to an inflammatory phenotype characterized by altered gene and protein expression profiles. Astrocyte-secreted factors did not exert neurotoxic effects, whereas they transiently promoted the functional activity of neurons. Importantly, we engineered a novel microfluidic platform designed for investigating interactions between neuronal axons and reactive astrocytes that also enables the implementation of a controlled inflammatory environment. In this platform, selective stimulation of astrocytes resulted in an inflammatory niche that sustained axonal growth, further suggesting that treatment induces a reactive astrocyte phenotype with neurosupportive characteristics. Our findings show that hiPSC-derived astrocytes are suitable for modeling astrogliosis, and the developed in vitro platform provides promising novel tools for studying neuron-astrocyte crosstalk and human brain disease in a dish.
Collapse
Affiliation(s)
- Tanja Hyvärinen
- NeuroGroup, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sanna Hagman
- NeuroGroup, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mervi Ristola
- NeuroGroup, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Lassi Sukki
- Micro and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Katariina Veijula
- NeuroGroup, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Joose Kreutzer
- Micro and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pasi Kallio
- Micro and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Susanna Narkilahti
- NeuroGroup, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
8
|
Wu M, Skaug B, Bi X, Mills T, Salazar G, Zhou X, Reveille J, Agarwal SK, Blackburn MR, Mayes MD, Assassi S. Interferon regulatory factor 7 (IRF7) represents a link between inflammation and fibrosis in the pathogenesis of systemic sclerosis. Ann Rheum Dis 2019; 78:1583-1591. [PMID: 31439591 PMCID: PMC7167109 DOI: 10.1136/annrheumdis-2019-215208] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 01/23/2023]
Abstract
OBJECTIVES There is considerable evidence that implicates dysregulation of type I interferon signalling (or type I IFN signature) in the pathogenesis of systemic sclerosis (SSc). Interferon regulatory factor 7 (IRF7) has been recognised as a master regulator of type I IFN signalling. The objective of this study was to elucidate the role of IRF7 in dermal fibrosis and SSc pathogenesis. METHODS SSc and healthy control skin biopsies were investigated to determine IRF7 expression and activation. The role of IRF7 in fibrosis was investigated using IRF7 knockout (KO) mice in the bleomycin-induced and TSK/+mouse models. In vitro experiments with dermal fibroblasts from patients with SSc and healthy controls were performed. RESULTS IRF7 expression was significantly upregulated and activated in SSc skin tissue and explanted SSc dermal fibroblasts compared with unaffected, matched controls. Moreover, IRF7 expression was stimulated by IFN-α in dermal fibroblasts. Importantly, IRF7 co-immunoprecipitated with Smad3, a key mediator of transforming growth factor (TGF)-β signalling, and IRF7 knockdown reduced profibrotic factors in SSc fibroblasts. IRF7 KO mice demonstrated attenuated dermal fibrosis and inflammation compared with wild-type mice in response to bleomycin. Specifically, hydroxyproline content, dermal thickness as well as Col1a2, ACTA2 and interleukin-6 mRNA levels were significantly attenuated in IRF7 KO mice skin tissue. Furthermore, IRF7 KO in TSK/+mice attenuated hydroxyproline content, subcutaneous hypodermal thickness, Col1a2 mRNA as well as α-smooth muscle actin and fibronectin expression. CONCLUSIONS IRF7 is upregulated in SSc skin, interacts with Smad3 and potentiates TGF-β-mediated fibrosis, and therefore may represent a promising therapeutic target in SSc.
Collapse
Affiliation(s)
- Minghua Wu
- Division of Rheumatology and Clinical Immunogenetics, Department of Internal Medicine, University of Texas McGovern Medical School at Houston, Houston, Texas, USA
| | - Brian Skaug
- Division of Rheumatology and Clinical Immunogenetics, Department of Internal Medicine, University of Texas McGovern Medical School at Houston, Houston, Texas, USA
| | - Xiongjie Bi
- First Affiliated Hospital of Guangxi University of Science And Technology, Liuzhou, Guangxi, China
| | - Tingting Mills
- Department of Biochemistry and Molecular Biology, University of Texas McGovern Medical School at Houston, Houston, Texas, USA
| | - Gloria Salazar
- Division of Rheumatology and Clinical Immunogenetics, Department of Internal Medicine, University of Texas McGovern Medical School at Houston, Houston, Texas, USA
| | - Xiaodong Zhou
- Division of Rheumatology and Clinical Immunogenetics, Department of Internal Medicine, University of Texas McGovern Medical School at Houston, Houston, Texas, USA
| | - John Reveille
- Division of Rheumatology and Clinical Immunogenetics, Department of Internal Medicine, University of Texas McGovern Medical School at Houston, Houston, Texas, USA
| | - Sandeep K Agarwal
- Department of Medicine, Section of Immunology, Allergy and Rheumatology, Baylor College of Medicine, Houston, Texas, USA
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, University of Texas McGovern Medical School at Houston, Houston, Texas, USA
| | - Maureen D Mayes
- Division of Rheumatology and Clinical Immunogenetics, Department of Internal Medicine, University of Texas McGovern Medical School at Houston, Houston, Texas, USA
| | - Shervin Assassi
- Division of Rheumatology and Clinical Immunogenetics, Department of Internal Medicine, University of Texas McGovern Medical School at Houston, Houston, Texas, USA
| |
Collapse
|
9
|
Aarreberg LD, Esser-Nobis K, Driscoll C, Shuvarikov A, Roby JA, Gale M. Interleukin-1β Induces mtDNA Release to Activate Innate Immune Signaling via cGAS-STING. Mol Cell 2019; 74:801-815.e6. [PMID: 30952515 DOI: 10.1016/j.molcel.2019.02.038] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/11/2019] [Accepted: 02/27/2019] [Indexed: 12/11/2022]
Abstract
Interleukin-1 beta (IL-1β) is a pleiotropic mediator of inflammation and is produced in response to a wide range of stimuli. During infection, IL-1β production occurs in parallel with the onset of innate antimicrobial defenses, but the contribution of IL-1β signaling to cell-intrinsic immunity is not defined. Here, we report that exogenous IL-1β induces interferon regulatory factor 3 (IRF3) activation in human myeloid, fibroblast, and epithelial cells. IRF3 activation by IL-1β is dependent upon the DNA-sensing pathway adaptor, stimulator of interferon genes (STING), through the recognition of cytosolic mtDNA by cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS). IL-1β treatment results in interferon (IFN) production and activation of IFN signaling to direct a potent innate immune response that restricts dengue virus infection. This study identifies a new function for IL-1β in the onset or enhancement of cell-intrinsic immunity, with important implications for cGAS-STING in integrating inflammatory and microbial cues for host defense.
Collapse
Affiliation(s)
- Lauren D Aarreberg
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Katharina Esser-Nobis
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Connor Driscoll
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Andrey Shuvarikov
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Justin A Roby
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
10
|
An introduction to innate immunity in the central nervous system. ROLE OF INFLAMMATION IN ENVIRONMENTAL NEUROTOXICITY 2019. [DOI: 10.1016/bs.ant.2018.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Aarreberg LD, Wilkins C, Ramos HJ, Green R, Davis MA, Chow K, Gale M. Interleukin-1β Signaling in Dendritic Cells Induces Antiviral Interferon Responses. mBio 2018; 9:e00342-18. [PMID: 29559569 PMCID: PMC5874908 DOI: 10.1128/mbio.00342-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 02/20/2018] [Indexed: 01/01/2023] Open
Abstract
Induction of interferon beta (IFN-β), IFN-stimulated genes (ISGs), and inflammatory responses is critical for control of viral infection. We recently identified an essential linkage of stimulation of the inflammatory cytokine interleukin-1β (IL-1β) and induction of ISGs that function as host restriction pathways against the emerging flavivirus West Nile virus (WNV) in vivo Here we utilized ex vivo global transcriptome analysis of primary dendritic cells, known targets of WNV replication, to define gene signatures required for this IL-1β-driven antiviral response. Dendritic cells that were deficient in IL-1 receptor signaling showed dysregulation of cell-intrinsic defense genes and loss of viral control during WNV infection. Surprisingly, we found that in wild-type cells, IL-1β treatment, in the absence of infection, drove the transcription of IFN-β and ISGs at late times following treatment. Expression of these antiviral innate immune genes was dependent on the transcription factor IFN regulatory factor 3 (IRF3) and appears to reflect a general shift in IL-1β signaling from an early inflammatory response to a late IFN-mediated response. These data demonstrate that inflammatory and antiviral signals integrate to control viral infection in myeloid cells through a process of IL-1β-to-IRF3 signaling crosstalk. Strategies to exploit these cytokines in the activation of host defense programs should be investigated as novel therapeutic approaches against individual pathogens.IMPORTANCE West Nile virus is an emerging mosquito-borne flavivirus that can result in serious illness, neuropathology, and death in infected individuals. Currently, there are no vaccines or therapies for human use against West Nile virus. Immune control of West Nile virus infection requires inflammatory and antiviral responses, though the effect that each arm of this response has on the other is unclear. The significance of our research is in defining how virus-induced inflammatory responses regulate critical antiviral immune programs for effective control of West Nile virus infection. These data identify essential mechanisms of immune control that can inform therapeutic efforts against West Nile virus, with potential efficacy against other neuroinvasive viruses.
Collapse
Affiliation(s)
- Lauren D Aarreberg
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Courtney Wilkins
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Hilario J Ramos
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Richard Green
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Michael A Davis
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kwan Chow
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
12
|
The opioid antagonist, β-funaltrexamine, inhibits NF-κB signaling and chemokine expression in human astrocytes and in mice. Eur J Pharmacol 2015; 762:193-201. [PMID: 26007645 DOI: 10.1016/j.ejphar.2015.05.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 01/12/2023]
Abstract
Opioid-immune crosstalk occurs when opioid drugs alter the activity of the immune system. In this study, the opioid antagonist β-funaltrexamine (β-FNA) decreases the expression and release of an inflammatory chemokine, interferon-γ inducible protein-10 (CXCL10) from normal human astrocytes stimulated by interleukin 1β (IL-1β). β-FNA decreased CXCL10 by an unknown action that did not involve the mu opioid receptor (MOR). As IL-1β acts through its receptor to activate NF-κB/MAPK signaling pathways which leads to CXCL10 expression and release, key steps in the IL-1β signaling pathways were examined following β-FNA treatment. IL-1β-induced activation of p38 mitogen-activated protein kinases (p38 MAPK) was inhibited by β-FNA as shown by decreased p38 MAPK phosphorylation in treated cells. β-FNA also decreased the levels of activated subunits of NF-κB (p50 and p65) in treated astrocytes. The impact of β-FNA was also observed in proteins that act to negatively regulate NF-κB signaling. IL-1β upregulated the expression of A20, a ubiquitin (Ub)-editing enzyme that dampens NF-κB signaling by altering ubiquination patterns on IL-1 receptor second messengers, and the increase in A20 was significantly inhibited by β-FNA treatment. Inhibition of the Ub-activating enzyme E1 by the inhibitor PYR41 also decreased CXCL10 release, like β-FNA, and concurrent treatment with both PYR41 and β-FNA inhibited CXCL10 more than did either agent alone. In mice, lipopolysaccharide-induced CXCL10 expression in the brain was inhibited by treatment with β-FNA. These findings suggest that β-FNA exerts an anti-inflammatory action in vitro and in vivo that is MOR-independent and possibly due to the alkylating ability of β-FNA.
Collapse
|
13
|
Schanz A, Baston-Büst DM, Heiss C, Beyer IM, Krüssel JS, Hess AP. Interferon stimulated gene 15 expression at the human embryo-maternal interface. Arch Gynecol Obstet 2014; 290:783-9. [PMID: 24996384 DOI: 10.1007/s00404-014-3290-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/21/2014] [Indexed: 11/24/2022]
Abstract
PURPOSE In early pregnancy the dialogue between maternal endometrium and embryo is a key process in establishing a receptive decidua and placental network. Decidual ISG15 induction is thought to promote pregnancy maintenance and development. ISG15 is involved in RNA splicing, cytoskeletal organization, stress response and further intracellular processes. METHODS ISG15 expression was examined immunohistologically in paraffin-embedded human placental and decidual tissue samples of all pregnancy trimesters on adjacent sections (first trimester n = 5, second n = 5, third n = 3). Samples were processed using a protocol applying a rabbit polyclonal ISG15 antibody. A mouse monoclonal cytokeratin seven antibody was utilized to identify the different placental departments and decidual glands. Staining results and anatomical features were evaluated blindly with strict rating criteria. RESULTS ISG15 expression was identified in first and second trimester tissue samples. ISG15 localized especially to the extravillous cytotrophoblasts in the maternal wall and in maternal blood vessel. Expression was detected in cytotrophoblast progenitor cells in the placental villi and the cell column with a maximum in the first trimester. The syncytial layer stained positive in first and second trimester samples. Third trimester samples showed no expression of ISG15 at all. CONCLUSIONS ISG15 abundance in the human placenta is an interesting finding, with implications for placental development, fetal growth and potential defense mechanism against infections. The maximal expression of ISG15 in the first and second trimester of pregnancy suggests that ISG function is needed when placental and embryo development is enormous and embryo susceptibility to external influences is high.
Collapse
Affiliation(s)
- Andrea Schanz
- Department of Obstetrics, Gynecology and REI (UniKiD), Medical Faculty, Medical Center University of Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany,
| | | | | | | | | | | |
Collapse
|
14
|
Zhao W, Xu D, Cai G, Zhu X, Qian M, Liu W, Cui Z. Spatiotemporal pattern of RNA-binding motif protein 3 expression after spinal cord injury in rats. Cell Mol Neurobiol 2014; 34:491-9. [PMID: 24570111 PMCID: PMC11488955 DOI: 10.1007/s10571-014-0033-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 01/24/2014] [Indexed: 12/19/2022]
Abstract
RNA-binding motif protein 3 (RBM3) belongs to a very small group of cold inducible proteins with anti-apoptotic and proliferative functions. To elucidate the expression and possible function of RBM3 in central nervous system (CNS) lesion and repair, we performed a spinal cord injury (SCI) model in adult rats. Western blot analysis revealed that RBM3 level significantly increased at 1 day after damage, and then declined during the following days. Immunohistochemistry further confirmed that RBM3 immunoactivity was expressed at low levels in gray and white matters in normal condition and increased at 1 day after SCI. Besides, double immunofluorescence staining showed RBM3 was primarily expressed in the neurons and a few of astrocytes in the normal group. While after injury, the expression of RBM3 increased both in neurons and astrocytes at 1 day. We also examined the expression profiles of proliferating cell nuclear antigen (PCNA) and active caspase-3 in injured spinal cords by western blot. Importantly, double immunofluorescence staining revealed that cell proliferation evaluated by PCNA appeared in many RBM3-expressing cells and rare caspase-3 was observed in RBM3-expressing cells at 1 day after injury. Our data suggested that RBM3 might play important roles in CNS pathophysiology after SCI.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong, 226001 People’s Republic of China
- Department of Neurosurgery, The Second Affiliated Hospital of Nantong University, Nantong, 226001 People’s Republic of China
| | - Dawei Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong, 226001 People’s Republic of China
| | - Gang Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Nantong University, Nantong, 226001 People’s Republic of China
| | - Xinhui Zhu
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong, 226001 People’s Republic of China
| | - Ming Qian
- Department of Neurosurgery, The Second Affiliated Hospital of Nantong University, Nantong, 226001 People’s Republic of China
| | - Wei Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong, 226001 People’s Republic of China
| | - Zhiming Cui
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong, 226001 People’s Republic of China
| |
Collapse
|
15
|
Zhang D, Yue Y, Jiang S, Li A, Guo A, Wu X, Xia X, Cheng H, Zhang J, Tao T, Gu X. GART expression in rat spinal cord after injury and its role in inflammation. Brain Res 2014; 1564:41-51. [DOI: 10.1016/j.brainres.2014.03.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 03/05/2014] [Accepted: 03/28/2014] [Indexed: 11/29/2022]
|
16
|
Owens T, Khorooshi R, Wlodarczyk A, Asgari N. Interferons in the central nervous system: A few instruments play many tunes. Glia 2013; 62:339-55. [DOI: 10.1002/glia.22608] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Trevor Owens
- Department of Neurobiology Research, Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| | - Reza Khorooshi
- Department of Neurobiology Research, Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| | - Agnieszka Wlodarczyk
- Department of Neurobiology Research, Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| | - Nasrin Asgari
- Department of Neurobiology Research, Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
- Department of Neurology; Vejle Hospital; Denmark
| |
Collapse
|
17
|
Chen X, Yao Y, Guan J, Chen X, Zhang F. Up-regulation of FoxN4 expression in adult spinal cord after injury. J Mol Neurosci 2013; 52:403-9. [PMID: 24217796 PMCID: PMC3924027 DOI: 10.1007/s12031-013-0166-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/28/2013] [Indexed: 11/26/2022]
Abstract
FoxN4 (forkhead box N4), which is a transcription factor involved in developing spinal cord and spinal neurogenesis, implied important roles in the central nervous system (CNS). However, its expression and function in the adult CNS lesion are still unclear. In this study, we established a spinal cord injury (SCI) model in adult rats and investigated the expression of FoxN4 in the spinal cord. Western blot analysis revealed that FoxN4 was present in normal spinal cord. It gradually increased, peaked at day 3 after SCI, and then decreased during the following days. Immunohistochemistry further confirmed that FoxN4 was expressed at low levels in gray and white matters in normal condition and increased after SCI. Double immunofluorescence staining showed that FoxN4 is located on neurons and astrocytes, and FoxN4 expression was increased progressively in reactive astrocytes within the vicinity of the lesion, predominately in the white matter. In addition, almost all FoxN4-positive cells also expressed nestin or PCNA. Our data suggested that FoxN4 might play important roles in CNS pathophysiology after SCI.
Collapse
Affiliation(s)
- Xiangdong Chen
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Yu Yao
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Junjie Guan
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Xiaoqing Chen
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Feng Zhang
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| |
Collapse
|
18
|
Frazão JB, Errante PR, Condino-Neto A. Toll-like receptors' pathway disturbances are associated with increased susceptibility to infections in humans. Arch Immunol Ther Exp (Warsz) 2013; 61:427-43. [PMID: 24057516 DOI: 10.1007/s00005-013-0243-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 08/04/2013] [Indexed: 01/03/2023]
Abstract
Toll-like receptors (TLRs) sense microbial products and play an important role in innate immunity. Currently, 11 members of TLRs have been identified in humans, with important function in host defense in early steps of the inflammatory response. TLRs are present in the plasma membrane (TLR1, TLR2, TLR4, TLR5, TLR6) and endosome (TLR3, TLR7, TLR8, TLR9) of leukocytes. TLRs and IL-1R are a family of receptors related to the innate immune response that contain an intracellular domain known as the Toll-IL-1R (TIR) domain that recruits the TIR-containing cytosolic adapters MyD88, TRIF, TIRAP and TRAM. The classical pathway results in the activation of both nuclear factor κB and MAPKs via the IRAK complex, with two active kinases (IRAK-1 and IRAK-4) and two non-catalytic subunits (IRAK-2 and IRAK-3/M). The classical pro-inflammatory TLR signaling pathway leads to the synthesis of inflammatory cytokines and chemokines, such as IL-1β, IL-6, IL-8, IL-12 and TNF-α. In humans, genetic defects have been identified that impair signaling of the TLR pathway and this may result in recurrent pyogenic infections, as well as virus and fungi infections. In this review, we discuss the main mechanisms of microbial recognition and the defects involving TLRs.
Collapse
Affiliation(s)
- Josias Brito Frazão
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, 1730, Lineu Prestes Avenue, São Paulo, SP, 05508-000, Brazil,
| | | | | |
Collapse
|
19
|
Sheng WS, Hu S, Feng A, Rock RB. Reactive oxygen species from human astrocytes induced functional impairment and oxidative damage. Neurochem Res 2013; 38:2148-59. [PMID: 23918204 DOI: 10.1007/s11064-013-1123-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 07/19/2013] [Accepted: 07/30/2013] [Indexed: 12/28/2022]
Abstract
Reactive oxygen species (ROS) have been shown to be a contributor to aging and disease. ROS also serve as a trigger switch for signaling cascades leading to corresponding cellular and molecular events. In the central nervous system (CNS), microglial cells are likely the main source of ROS production. However, activated astrocytes also appear to be capable of generating ROS. In this study we investigated ROS production in human astrocytes stimulated with interleukin (IL)-1β and interferon (IFN)-γ and its potential harmful effects. Although IFN-γ alone had no effect, it potentiated IL-1β-induced ROS production in a time-dependent manner. One of the sources of ROS in IL-1β-activated astrocytes was from increased superoxide production in mitochondria accompanied by enhanced manganese superoxide dismutase and inhibited catalase expression. NADPH oxidase (NOX) may also contribute to ROS production as astrocytes express NOX isoforms. Glutamate uptake, which represents one of the most important methods of astrocytes to prevent excitotoxicity, was down-regulated in IL-1β-activated astrocytes, and was further suppressed in the presence of IFN-γ; IFN-γ itself exerted minimal effect. Elevated levels of 8-isoprostane in IL-1β ± IFN-γ-activated human astrocytes indicate downstream lipid peroxidation. Pretreatment with diphenyleneiodonium abolished the IL-1β ± IFN-γ-induced ROS production, restored glutamate uptake function and reduced 8-isoprostane to near control levels suggesting that ROS contributes to the dysfunction of activated astrocytes. These results support the notion that dampening activated human astrocytes to maintain the redox homeostasis is vital to preserve their neuroprotective potential in the CNS.
Collapse
Affiliation(s)
- Wen S Sheng
- Department of Medicine, The Center for Infectious Diseases & Microbiology Translational Research (CIDMTR), University of Minnesota Medical School, Minneapolis, MN, 55455, USA,
| | | | | | | |
Collapse
|
20
|
Fang Y, Zhong L, Lin M, Zhou X, Jing H, Ying M, Luo P, Yang B, He Q. MEK/ERK dependent activation of STAT1 mediates dasatinib-induced differentiation of acute myeloid leukemia. PLoS One 2013; 8:e66915. [PMID: 23825585 PMCID: PMC3692534 DOI: 10.1371/journal.pone.0066915] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/10/2013] [Indexed: 12/17/2022] Open
Abstract
Dasatinib (BMS-354825) is a FDA-approved multitargeted kinase inhibitor of BCR/ABL and Src kinases. It is now used in the treatment of chronic myelogenous leukemia (CML) with resistance or intolerance to prior therapies, including imatinib. Here we report a novel effect of dasatinib on inducing the differentiation of acute myeloid leukemia (AML) cells through MEK/ERK-dependent activation of signal transducer and activator of transcription 1 (STAT1). We found that dasatinib could induce the differentiation of AML cells as demonstrated by the expression of differentiation marker CD11b, G0/G1 phase arrest and decreased ratio of nucleus to cytoplasm. Of note, dasatinib induced robust phosphorylation of STAT1 both at Tyr701 and Ser727 as well as the redistribution of STAT1 from the cytoplasm to the nucleus, thus leading to the transcription of STAT1-targeted genes. Knocking down STAT1 expression by shRNA significantly attenuated dasatinib-induced differentiation, indicating an important role of STAT1 in myeloid maturation. We further found that dasatinib-induced activation of STAT1 was regulated by the MEK/ERK kinases. The phosporylation of MEK and ERK occurred rapidly upon dasatinib treatment and increased progressively as differentiation was induced. MEK inhibitors PD98059 and U0216 not only inhibited the phosphorylation of STAT1, but also abrogated dasatinib-induced myeloid differentiation, suggesting that MEK/ERK dependent phosphorylation of STAT1 might be indispensable for the differentiating effect of dasatinib in AML cells. Taken together, our study suggests that STAT1 is an important mediator in dasatinib-induced differentiation of AML cells, whose activation requires the activation of MEK/ERK cascades.
Collapse
Affiliation(s)
- Yanfen Fang
- Institute of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Like Zhong
- Institute of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Meihua Lin
- Institute of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinglu Zhou
- Institute of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Jing
- Institute of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Meidan Ying
- Institute of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Peihua Luo
- Institute of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bo Yang
- Institute of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail: (QH); (BY)
| | - Qiaojun He
- Institute of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail: (QH); (BY)
| |
Collapse
|
21
|
Interferon regulatory factor 3 alters glioma inflammatory and invasive properties. J Neurooncol 2013; 113:185-94. [PMID: 23512614 DOI: 10.1007/s11060-013-1109-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 03/11/2013] [Indexed: 12/17/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common, highly malignant primary tumor of the brain with poor prognosis. Even with the improved therapy regimen including temozolomide, the average survival rate is less than 2 years. Additional approaches to therapy targeting multiple aspects of glioma progression are in need. In the present work, we have tested the possibility that upregulation of the transcription factor interferon regulatory factor 3 (IRF3) can inhibit glioma invasiveness, proliferation and production of pro-inflammatory and pro-angiogenic factors in cultures of malignant glioma cell lines (U271, U87 and SNB-19). IRF3 is an essential transcription factor involved in TLR3/4-mediated signaling and generation of type I interferons. Although IRF3 has been suggested as a potential tumor suppressor gene, its role in glioma remains uninvestigated. In this study, we find that human glioma immune activation is potently elicited by a cytokine combination, IL-1/IFNγ (or poly IC), but not by bacterial lipopolysaccharide (LPS), similar to primary human astrocytes. GBM biopsy specimens show little detectable IRF3 immunoreactivity, and in vitro adenovirus-mediated IRF3 gene transfer in glioma cells modulates IL-1/IFNγ-induced cytokine and chemokine genes, resulting in upregulation of IFNβ and IP-10 (IRF3-stimulated genes) and downregulation of proinflammatory and angiogenic genes including IL-8, TNFα and VEGF (IRF3-represssed genes). Cytokines (IL-1β and TNFα) also induce the expression of miR-155 and miR-155*, the microRNAs crucial in immunity and inflammation-induced oncogenesis and this is dose-dependently suppressed by IRF3. Importantly, IRF3 also inhibits glioma proliferation, migration and invasion. Together, these data suggest that IRF3 can suppress glioma progression. Agents that promote IRF3 activation and expression (such as IRF3 gene transfer) could be explored as potential future therapy.
Collapse
|
22
|
Cao M, Tan X, Jin W, Zheng H, Xu W, Rui Y, Li L, Cao J, Wu X, Cui G, Ke K, Gao Y. Upregulation of Ras homolog enriched in the brain (Rheb) in lipopolysaccharide-induced neuroinflammation. Neurochem Int 2013; 62:406-17. [PMID: 23391520 DOI: 10.1016/j.neuint.2013.01.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 12/16/2012] [Accepted: 01/26/2013] [Indexed: 12/16/2022]
Abstract
Ras homolog enriched in the brain (Rheb) is a homolog of Ras GTPase that regulates cell growth, proliferation, and cell cycle via mammalian target of rapamycin (mTOR). Recently, it has been confirmed that Rheb activation not only promotes cellular proliferation and differentiation but also enhances cellular apoptosis in response to diverse toxic stimuli. However, the function of Rheb in the central nervous system (CNS) is still with limited understanding. To elaborate whether Rheb was involved in CNS injury, we performed a neuroinflammatory model by lipopolysaccharide (LPS) lateral ventral injection in adult rats. Upregulation of Rheb was observed in the brain cortex by performing western blotting and immunohistochemistry. Double immunofluorescent staining demonstrated that Rheb was mainly in active astrocytes and neurons. PCNA and active caspase-3 were upregulated, and co-labeling with Rheb, which indicated that Rheb might be relevant to astrocytic proliferation and neuronal apoptosis following the inflammatory response by LPS-induced. Furthermore, we also found that the expression profiles of cyclinD1 and CDK4 were parallel with that of Rheb in a time-space dependent manner. Finally, knocking down Rheb by siRNA and treatment with rapamycin or lovastatin showed that not only astrocytic proliferation decreased but also neuronal protection. Based on our data, we suggested that Rheb might play an important role in physiological and pathological functions following neuroinflammation caused by LPS, which might provide a potential target to the treatment of neuroinflammation.
Collapse
Affiliation(s)
- Maohong Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tarassishin L, Loudig O, Bauman A, Shafit-Zagardo B, Suh HS, Lee SC. Interferon regulatory factor 3 inhibits astrocyte inflammatory gene expression through suppression of the proinflammatory miR-155 and miR-155*. Glia 2012; 59:1911-22. [PMID: 22170100 DOI: 10.1002/glia.21233] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Astrocytes, together with microglia and macrophages, participate in innate inflammatory responses in the CNS. Although inflammatory mediators such as interferons generated by astrocytes may be critical in the defense of the CNS, sustained unopposed cytokine signaling could result in harmful consequences. Interferon regulatory factor 3 (IRF3) is a transcription factor required for IFNβ production and antiviral immunity. Most cells express low levels of IRF3 protein, and the transcriptional mechanism that upregulates IRF3 expression is not known. In this study, we explored the consequence of adenovirus-mediated IRF3 gene transfer (Ad-IRF3) in primary human astrocytes. We show that IRF3 transgene expression suppresses proinflammatory cytokine gene expression upon challenge with IL-1/IFNγ and alters astrocyte activation phenotype from a proinflammatory to an anti-inflammatory one, akin to an M1-M2 switch in macrophages. This was accompanied by the rescue of neurons from cytokine-induced death in glial-neuronal co-cultures. Furthermore, Ad-IRF3 suppressed the expression of microRNA-155 and its star-form partner miR-155*, immunoregulatory miRNAs highly expressed in multiple sclerosis lesions. Astrocyte miR-155/miR155* were induced by cytokines and TLR ligands with a distinct hierarchy and involved in proinflammatory cytokine gene induction by targeting suppressor of cytokine signaling 1, a negative regulator of cytokine signaling and potentially other factors. Our results demonstrate a novel proinflammatory role for miR-155/miR-155* in human astrocytes and suggest that IRF3 can suppress neuroinflammation through regulating immunomodulatory miRNA expression. © 2011 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Leonid Tarassishin
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Involvement of CtBP2 in LPS-induced microglial activation. J Mol Histol 2012; 43:327-34. [DOI: 10.1007/s10735-012-9399-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/04/2012] [Indexed: 12/30/2022]
|
25
|
FOXJ2 expression in rat spinal cord after injury and its role in inflammation. J Mol Neurosci 2012; 47:158-65. [PMID: 22246994 DOI: 10.1007/s12031-011-9704-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 12/30/2011] [Indexed: 02/06/2023]
Abstract
Foxj2 (forkhead box J2), a novel member of the forkhead/HNF3 family, binds DNA with a dual sequence specificity. It may play a role in maintenance and survival of developing and adult neurons. However, its expression and function in the central nervous system lesion are still unclear. In this study, we performed a spinal cord injury (SCI) model in adult Sprague-Dawley rats and investigated the dynamic changes of Foxj2 expression in the spinal cord. Western blot analysis revealed that Foxj2 was present in normal spinal cord. It gradually increased, reached a peak at day 5 after SCI, and then declined during the following days. Double immunofluorescence staining revealed wide expression of Foxj2, which is detected in neurons and astrocytes. After injury, Foxj2 expression was increased predominantly in astrocytes, which highly expressed proliferating cell nuclear antigen, a marker for proliferating cells. And knockdown of Foxj2 in cultured primary astrocytes by siRNA showed that Foxj2 played an important role in lipopolysaccharide-induced inflammatory responses. These results suggested that Foxj2 may be involved in the pathophysiology of SCI, and further research is needed to have a good understanding of its function and mechanism.
Collapse
|
26
|
González-Navajas JM, Lee J, David M, Raz E. Immunomodulatory functions of type I interferons. Nat Rev Immunol 2012; 12:125-35. [PMID: 22222875 PMCID: PMC3727154 DOI: 10.1038/nri3133] [Citation(s) in RCA: 773] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interferon-α (IFNα) and IFNβ, collectively known as type I IFNs, are the major effector cytokines of the host immune response against viral infections. However, the production of type I IFNs is also induced in response to bacterial ligands of innate immune receptors and/or bacterial infections, indicating a broader physiological role for these cytokines in host defence and homeostasis than was originally assumed. The main focus of this Review is the underappreciated immunomodulatory functions of type I IFNs in health and disease. We discuss their function in the regulation of innate and adaptive immune responses, the response to bacterial ligands, inflammasome activation, intestinal homeostasis and inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- José M González-Navajas
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0663, USA.
| | | | | | | |
Collapse
|
27
|
Tarassishin L, Suh HS, Lee SC. Interferon regulatory factor 3 plays an anti-inflammatory role in microglia by activating the PI3K/Akt pathway. J Neuroinflammation 2011; 8:187. [PMID: 22208359 PMCID: PMC3259120 DOI: 10.1186/1742-2094-8-187] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 12/30/2011] [Indexed: 12/11/2022] Open
Abstract
Background Microglia are the principal cells involved in the innate immune response in the CNS. Activated microglia produce a number of proinflammatory cytokines implicated in neurotoxicity but they also are a major source of anti-inflammatory cytokines, antiviral proteins and growth factors. Therefore, an immune therapy aiming at suppressing the proinflammatory phenotype while enhancing the anti-inflammatory, growth promoting phenotype would be of great benefit. In the current study, we tested the hypothesis that interferon regulatory factor 3 (IRF3), a transcription factor required for the induction of IFNβ following TLR3 or TLR4 activation, is critical to the microglial phenotype change from proinflammatory to anti-inflammatory, and that this phenotype change can be greatly facilitated by IRF3 gene transfer. Methods Cultures of primary human fetal microglia were transduced with IRF3 using recombinant adenovirus (Ad-IRF3) and subjected to microarray analysis, real-time PCR, immunoblotting and ELISA to determine inflammatory gene expression. Two different types of immune stimuli were tested, the TLR ligands, poly IC (PIC) and LPS, and the proinflammatory cytokines, IL-1/IFNγ. In addition, the role of the PI3K/Akt pathway was examined by use of a pharmacological inhibitor, LY294002. Results Our results show that Ad-IRF3 suppressed proinflammatory genes (IL-1α, IL-1β, TNFα, IL-6, IL-8 and CXCL1) and enhanced anti-inflammatory genes (IL-1 receptor antagonist, IL-10 and IFNβ) in microglia, regardless of the cell stimuli applied. Furthermore, Ad-IRF3 activated Akt, and LY294002 reversed the effects of Ad-IRF3 on microglial inflammatory gene expression. pAkt was critical in LPS- or PIC-induced production of IL-10 and IL-1ra. Significantly, microglial IFNβ protein production was also dependent on pAkt and required both Ad-IRF3 and immunological stimuli (PIC > IL-1/IFNγ). pAkt played much less prominent and variable roles in microglial proinflammatory gene expression. This anti-inflammatory promoting role of PI3K/Akt appeared to be specific to microglia, since astrocyte proinflammatory gene expression (as well as IFNβ expression) required PI3K/Akt. Conclusions Our results show a novel anti-inflammatory role for the PI3K/Akt signaling pathway in microglia. They further suggest that IRF3 gene therapy could facilitate the microglial phenotype switch from proinflammatory ("M1-like") to anti-inflammatory and immunomodulatory ("M2-like"), in part, by augmenting the level of pAkt.
Collapse
Affiliation(s)
- Leonid Tarassishin
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | | | |
Collapse
|
28
|
α-Synuclein potentiates interleukin-1β-induced CXCL10 expression in human A172 astrocytoma cells. Neurosci Lett 2011; 507:133-6. [PMID: 22178859 DOI: 10.1016/j.neulet.2011.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/29/2011] [Accepted: 12/02/2011] [Indexed: 02/01/2023]
Abstract
Neuroinflammation and neuronal degeneration observed in Parkinson's disease (PD) has been attributed in part to glial-mediated events. Increased expression of proinflammatory cytokines and abnormal accumulation of the neuronal protein, α-synuclein in the brain are also characteristic of PD. While increasing evidence suggests that astrocytes contribute to neuroinflammation and dopaminergic neuronal degeneration associated with PD, there remains much to learn about these astroglial-mediated events. Therefore, we investigated the in vitro effects of interleukin-1β (IL-1β) and α-synuclein on astroglial expression of interferon-γ inducible protein-10 (CXCL10), a proinflammatory and neurotoxic chemokine. IL-1β-induced CXCL10 protein expression was potentiated by co-exposure to α-synuclein. α-Synuclein did not significantly affect IL-1β-induced CXCL10 mRNA expression, but did mediate increased CXCL10 mRNA stability, which may explain, in part, the increased levels of secreted CXCL10 protein. Future investigations are warranted to more fully define the mechanism by which α-synuclein enhances IL-1β-induced astroglial CXCL10 expression. These findings highlight the importance of α-synuclein in modulating inflammatory events in astroglia. These events may be particularly relevant to the pathology of CNS disorders involving α-synuclein accumulation, including PD and HIV-1 associated dementia.
Collapse
|
29
|
Wu X, Li J, Chen C, Yan Y, Jiang S, Wu X, Shao B, Xu J, Kang L, Huang Y, Zhu L, Ji Y, Gao Y. Involvement of CLEC16A in activation of astrocytes after LPS treated. Neurochem Res 2011; 37:5-14. [PMID: 22002632 DOI: 10.1007/s11064-011-0581-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/09/2011] [Accepted: 08/10/2011] [Indexed: 01/27/2023]
Abstract
CLEC16A, C-type lectin domain family 16, member A was recently found to be associated with inflation process in the autoimmune diseases. In this study, we elucidated the dynamic expression changes and localization of CLEC16A in lipopolysaccharide (LPS)-induced neuroinflammatory processes in adult rats. CLEC16A expression was strongly induced in active astrocytes in inflamed cerebral cortex. In vitro studies indicated that the up-regulation of CLEC16A may be involved in the subsequent astrocyte activation following LPS challenge. And Knock-down of CLEC16A in cultured primary astrocytes by siRNA showed that CLEC16A was required for the activation of astrocytes induced by LPS. Collectively, these results suggested CLEC16A may be important in host defense in astrocyte-mediated immune response. Understanding the cell signal pathway may provide a novel strategy against inflammatory and immune reaction in neuroinflammtion in CNS.
Collapse
Affiliation(s)
- Xinmin Wu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gao J, Wang Y, Xing Q, Yan J, Senthil M, Akmal Y, Kowolik CM, Kang J, Lu DM, Zhao M, Lin Z, Cheng CHK, Yip MLR, Yim JH. Identification of a natural compound by cell-based screening that enhances interferon regulatory factor-1 activity and causes tumor suppression. Mol Cancer Ther 2011; 10:1774-83. [PMID: 21817116 DOI: 10.1158/1535-7163.mct-11-0304] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transcription factor interferon regulatory factor-1 (IRF-1) is induced by many tumor-suppressive stimuli and can mediate antiproliferative and proapoptotic effects in cancer cells. Thus, identifying agents that enhance IRF-1 activity may be an effective approach to cancer therapy. A cell-based screening assay was developed to identify extracts and compounds that could enhance IRF-1 activity, using an IRF-1-dependent luciferase reporter cell line. Through this approach, we identified a natural product extract and a known active component of this extract, baicalein, which causes a marked increase in IRF-1-dependent reporter gene expression and IRF-1 protein, with modulation of known IRF-1 targets PUMA and cyclin D1. Baicalein causes suppression of growth in vitro in multiple cancer cell lines in the low micromolar range. IRF-1 plays a role in this growth suppression as shown by significant resistance to growth suppression in a breast cancer cell line stably transfected with short hairpin RNA against IRF-1. Finally, intraperitoneal administration of baicalein by repeated injection causes inhibition of growth in both xenogeneic and syngeneic mouse models of cancer without toxicity to the animals. These findings indicate that identifying enhancers of IRF-1 activity may have utility in anticancer therapies and that cell-based screening for activation of transcription factors can be a useful approach for drug discovery.
Collapse
Affiliation(s)
- Jinbo Gao
- Department of Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Suh HS, Choi S, Khattar P, Choi N, Lee SC. Histone deacetylase inhibitors suppress the expression of inflammatory and innate immune response genes in human microglia and astrocytes. J Neuroimmune Pharmacol 2010; 5:521-32. [PMID: 20157787 PMCID: PMC3115474 DOI: 10.1007/s11481-010-9192-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 01/14/2010] [Indexed: 12/22/2022]
Abstract
Histone deacetylase inhibitors (HDACi) have been proposed as therapies for certain cancers and as an anti-reservoir therapy for HIV+ individuals with highly active anti-retroviral therapy, yet their roles in glial inflammatory and innate antiviral gene expression have not been defined. In this study, we examined the effects of two non-selective HDACi, trichostatin A and valproic acid, on antiviral and cytokine gene expression in primary human microglia and astrocytes stimulated with TLR3 or TLR4 ligand. HDACi potently suppressed the expression of innate antiviral molecules such as IFNβ, interferon-simulated genes, and proteins involved in TLR3/TLR4 signaling. HDACi also suppressed microglial and astrocytic cytokine and chemokine gene expression, but with different effects on different groups of cytokines. These results have important implications for the clinical use of HDACi.
Collapse
Affiliation(s)
- Hyeon-Sook Suh
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
32
|
González-Navajas JM, Law J, Nguyen KP, Bhargava M, Corr MP, Varki N, Eckmann L, Hoffman HM, Lee J, Raz E. Interleukin 1 receptor signaling regulates DUBA expression and facilitates Toll-like receptor 9-driven antiinflammatory cytokine production. ACTA ACUST UNITED AC 2010; 207:2799-807. [PMID: 21115691 PMCID: PMC3005235 DOI: 10.1084/jem.20101326] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The interleukin 1 receptor (IL-1R) and the Toll-like receptors (TLRs) are highly homologous innate immune receptors that provide the first line of defense against infection. We show that IL-1R type I (IL-1RI) is essential for TLR9-dependent activation of tumor necrosis factor receptor-associated factor 3 (TRAF3) and for production of the antiinflammatory cytokines IL-10 and type I interferon (IFN). Noncanonical K63-linked ubiquitination of TRAF3, which is essential for type I IFN and IL-10 production, was impaired in Il1r1(-/-) CD11c(+) dendritic cells. In contrast, degradative ubiquitination of TRAF3 was not affected in the absence of IL-1R1 signaling. Deubiquitinating enzyme A (DUBA), which selectively cleaves K63-linked ubiquitin chains from TRAF3, was up-regulated in the absence of IL-1R1 signaling. DUBA short interference RNA augmented the TLR9-dependent type I IFN response. Mice deficient in IL-1RI signaling showed reduced expression of IL-10 and type I IFN and increased susceptibility to dextran sulphate sodium-induced colitis and failed to mount a protective type I IFN response after TLR9 ligand (CpG) administration. Our data identifies a new molecular pathway by which IL-1 signaling attenuates TLR9-mediated proinflammatory responses.
Collapse
|
33
|
Rubio N, Palomo M, Alcami A. Interferon-alpha/beta genes are up-regulated in murine brain astrocytes after infection with Theiler's murine encephalomyelitis virus. J Interferon Cytokine Res 2010; 30:253-62. [PMID: 20038206 DOI: 10.1089/jir.2009.0050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This article reports the production of interferon alpha/beta (IFN-alpha/beta) by SJL/J mouse brain astrocyte cultures infected with Theiler's murine encephalomyelitis virus (TMEV). cRNA from mock- and TMEV-infected SJL/J astrocytes was hybridized to the Affymetrix whole murine genome DNA microarray. Analysis revealed the up-regulation of 3 sequences coding for the IFN-alpha/beta domain. Increased expression of mRNA coding for IFN-alpha was shown by conventional RT-PCR and quantitative real-time RT-PCR. According to ELISA, the concentration of IFN-alpha in the supernatants of infected astrocyte cultures varied with the multiplicity of infection and post-infection time. The IFN-alpha/beta secreted was biologically active, as shown by a virus-based IFN bioassay involving Cocal virus and TMEV infection. The contribution to total interferon activity was 29% +/- 3.0% for IFN-alpha and 52% +/- 3.6% for IFN-beta. IFN-alpha/beta was induced by whole TMEV virions; induction was not achieved with either purified isolated virion capsid proteins or UV-inactivated virus. Further, induction was inhibited by specific anti-TMEV antibodies. The receptor for IFN-alpha/beta, which is absent in uninfected astrocytes, was up-regulated after infection, as suggested by DNA hybridization analysis. The brains of infected mice contained IFN-alpha/beta mRNA during the acute encephalitis phase, peaking at day 5 post-infection. Our findings could have significance for human diseases such as viral encephalitis and multiple sclerosis.
Collapse
|
34
|
Ashley RL, Henkes LE, Bouma GJ, Pru JK, Hansen TR. Deletion of the Isg15 gene results in up-regulation of decidual cell survival genes and down-regulation of adhesion genes: implication for regulation by IL-1beta. Endocrinology 2010; 151:4527-36. [PMID: 20660068 DOI: 10.1210/en.2010-0166] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ubiquitin homolog interferon stimulated gene 15 (ISG15) is up-regulated in the endometrium in response to pregnancy in primates, ruminants, pigs, and mice. ISG15 covalently attaches to intracellular proteins (isgylation) and regulates numerous intracellular responses. We hypothesized that ISG15 depletion (Isg15(-/-)) alters decidual tissue gene expression and that IL-1beta induces ISG15 expression and isgylation in cultured murine decidual explants and human uterine fibroblasts (HuFs). After studying the reproductive phenotype, contrary to earlier reports, up to 50% of the fetuses die between 7.5 and 12.5 d post coitum (dpc) in Isg15(-/-) mothers when mated to Isg15(-/-) fathers. Using microarray analysis, over 500 genes are differentially regulated in 7.5 dpc deciduas from Isg15(-/-) compared with Isg15(+/+) mice. The gene for interferon-inducible protein 202b, which functions in cell-survival mechanisms, was up-regulated (mRNA and protein) in deciduas from Isg15(-/-) mice. Culture of Isg15(+/+) mouse decidual explants (7.5 dpc) with IL-1beta decreased Isg15 mRNA but increased free and conjugated ISG15. In predecidual HuF cells, IL-1beta treatment increased ISG15 mRNA and isgylation. Additionally, IL-1beta up-regulated expression of enzymes (HERC5, UBCH8) that coordinate the covalent conjugation of ISG15 to target proteins, as well as the gene that encodes the deisglyation enzyme UBP43 in HuF cells. In conclusion, deletion of Isg15 gene results in 50% fetal loss after 7.5 dpc, which can be explained through differential decidual gene expression that is functionally tied to cell survival and adhesion pathways. This fetal death also might relate to impaired IL-1beta signaling, because ISG15 and isgylation are induced by IL-1beta in human and murine endometrial stromal cells.
Collapse
Affiliation(s)
- Ryan L Ashley
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | |
Collapse
|
35
|
Qiu F, Maniar A, Diaz MQ, Chapoval AI, Medvedev AE. Activation of cytokine-producing and antitumor activities of natural killer cells and macrophages by engagement of Toll-like and NOD-like receptors. Innate Immun 2010; 17:375-87. [PMID: 20682587 DOI: 10.1177/1753425910372000] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Macrophages and natural killer (NK) cells are important antitumor effectors by virtue of their ability to produce cytokines, chemokines and interferons (IFNs) and to mediate tumor cytotoxicity. Little is known about the impact of Toll-like receptor (TLR) and nucleotide binding and oligomerization domain (NOD)-like receptor (NLR) pathways on NK cell functions, and the role of TLRs and NLRs in macrophage activation is incompletely understood. In this study, we examined the capacities of expressed TLRs and NLRs to elicit cytokine production in human NK cells and THP1 macrophages, and to activate NK cytotoxicity against the squamous cell carcinoma of head and neck cell line Tu167 and erythroleukemia K562 cells. We found that NK cells express high levels of NOD2, NLRP3, TLR3, TLR7, and TLR9, while NOD1 was expressed at low levels. All tested NLR and TLR agonists potentiated NK cytotoxicity against Tu167 cells, whereas only poly (I:C) increased NK cytotoxicity against K562 cells. Poly (I:C) and Escherichia coli RNA markedly up-regulated TNF-α and IFN-γ expression in the NK92 cell line and human CD56(+)CD3(-) primary NK cells. High levels of NOD2, TLR7 and TLR9 proteins were observed in human THP1 cells, followed by TLR3, NOD1, and NLRP3. Stimulation of NLRP3 with E. coli RNA led to the highest induction of TNF-α, IL-6, IL-12p40, RANTES and IFN-β, whereas TLR7, TLR3, TLR9, NOD1 and NOD2 agonists had lower effects. Our data reveal involvement of TLRs and NLRs in potentiation of antitumor cytotoxicity and cytokine-producing activities of human NK cells and macrophages.
Collapse
Affiliation(s)
- Fu Qiu
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
36
|
Borjabad A, Brooks AI, Volsky DJ. Gene expression profiles of HIV-1-infected glia and brain: toward better understanding of the role of astrocytes in HIV-1-associated neurocognitive disorders. J Neuroimmune Pharmacol 2010; 5:44-62. [PMID: 19697136 PMCID: PMC3107560 DOI: 10.1007/s11481-009-9167-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 07/27/2009] [Indexed: 12/17/2022]
Abstract
Astrocytes are the major cellular component of the central nervous system (CNS), and they play multiple roles in brain development, normal brain function, and CNS responses to pathogens and injury. The functional versatility of astrocytes is linked to their ability to respond to a wide array of biological stimuli through finely orchestrated changes in cellular gene expression. Dysregulation of gene expression programs, generally by chronic exposure to pathogenic stimuli, may lead to dysfunction of astrocytes and contribute to neuropathogenesis. Here, we review studies that employ functional genomics to characterize the effects of HIV-1 and viral pathogenic proteins on cellular gene expression in astrocytes in vitro. We also present the first microarray analysis of primary mouse astrocytes exposed to HIV-1 in culture. In spite of different experimental conditions and microarray platforms used, comparison of the astrocyte array data sets reveals several common gene-regulatory changes that may underlie responses of these cells to HIV-1 and its proteins. We also compared the transcriptional profiles of astrocytes with those obtained in analyses of brain tissues of patients with HIV-1 dementia and macaques infected with simian immunodeficiency virus (SIV). Notably, many of the gene characteristics of responses to HIV-1 in cultured astrocytes were also altered in HIV-1 or SIV-infected brains. Functional genomics, in conjunction with other approaches, may help clarify the role of astrocytes in HIV-1 neuropathogenesis.
Collapse
Affiliation(s)
- Alejandra Borjabad
- Molecular Virology Division, St. Luke's-Roosevelt Hospital Center, 432 West 58th Street, Antenucci Building, Room 709, New York, NY 10019, USA
| | | | | |
Collapse
|
37
|
Langley RR, Fan D, Guo L, Zhang C, Lin Q, Brantley EC, McCarty JH, Fidler IJ. Generation of an immortalized astrocyte cell line from H-2Kb-tsA58 mice to study the role of astrocytes in brain metastasis. Int J Oncol 2009; 35:665-72. [PMID: 19724901 DOI: 10.3892/ijo_00000378] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Astrocytes play a critical role in maintaining cerebral homeostasis and their dysregulation is thought to contribute to the pathogenesis of several diseases, including brain cancer and metastasis. Similar to the human disease, we found that lung and melanoma metastases in the mouse brain are accompanied by a reactive gliosis. To begin to study the biology of astrocytes and examine how these cells might contribute to metastasis formation and progression in the brain, we generated a conditionally immortal astrocyte cell line from H-2Kb-tsA58 mice. Astrocytes grown in culture expressed glial fibrillary acid protein (GFAP), glutamate receptor 1, and the N-methyl-D-aspartate (NMDA) receptor. Astrocytes also expressed the glial-specific transporters excitatory amino acid transporter 1 (EAAT1) and EAAT2. Astrocytes grown under permissive conditions (33 degrees C) expressed SV40 large T antigen and had a doubling time of 36 h, whereas expression of SV40 large T antigen was negligible in astrocytes grown at 37 degrees C for 72 h, which coincided with a plateau in cell division. In a co-culture assay with human lung adenocarcinoma cells (PC14-PE6), astrocytes activated programs in the tumor cells that signal for cell division and survival. Hence, the immortalized cell line will be useful for studying the role of astrocytes in disease processes in the brain, such as metastasis.
Collapse
Affiliation(s)
- Robert R Langley
- Department of Cancer Biology, Unit 173, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Suh HS, Zhao ML, Choi N, Belbin TJ, Brosnan CF, Lee SC. TLR3 and TLR4 are innate antiviral immune receptors in human microglia: role of IRF3 in modulating antiviral and inflammatory response in the CNS. Virology 2009; 392:246-59. [PMID: 19646728 DOI: 10.1016/j.virol.2009.07.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 06/22/2009] [Accepted: 07/01/2009] [Indexed: 01/12/2023]
Abstract
In the CNS, microglia are the primary targets of HIV infection. In this study, we investigated the effect of activation of the innate antiviral receptors TLR3 and TLR4 on HIV infection of primary human microglia, as well as microglial cell signaling and gene expression. Ligands for both TLR3 and TLR4 potently inhibited HIV replication in microglia through a pathway requiring IRF3. Surprisingly, a remarkably similar pattern of cell signaling and gene expression was observed in TLR3- and TLR4-activated microglia, suggesting a relatively minor role for MyD88 following TLR4 activation in these cells. HIV did not activate IRF3 but rather decreased IRF3 protein, indicating that HIV does not activate TLR3 or RIG-like helicases in microglia. Taken together, these results indicate that activation of TLR3 or TLR4 will elicit antiviral immunity, in addition to inducing proinflammatory responses. We suggest that a balanced expression between inflammatory and innate immune genes might be achieved by IRF3 over-expression.
Collapse
Affiliation(s)
- Hyeon-Sook Suh
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
39
|
Nikolskaya T, Nikolsky Y, Serebryiskaya T, Zvereva S, Sviridov E, Dezso Z, Rahkmatulin E, Brennan RJ, Yankovsky N, Bhattacharya SK, Agapova O, Hernandez MR, Shestopalov VI. Network analysis of human glaucomatous optic nerve head astrocytes. BMC Med Genomics 2009; 2:24. [PMID: 19426536 PMCID: PMC2705386 DOI: 10.1186/1755-8794-2-24] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 05/09/2009] [Indexed: 12/01/2022] Open
Abstract
Background Astrocyte activation is a characteristic response to injury in the central nervous system, and can be either neurotoxic or neuroprotective, while the regulation of both roles remains elusive. Methods To decipher the regulatory elements controlling astrocyte-mediated neurotoxicity in glaucoma, we conducted a systems-level functional analysis of gene expression, proteomic and genetic data associated with reactive optic nerve head astrocytes (ONHAs). Results Our reconstruction of the molecular interactions affected by glaucoma revealed multi-domain biological networks controlling activation of ONHAs at the level of intercellular stimuli, intracellular signaling and core effectors. The analysis revealed that synergistic action of the transcription factors AP-1, vitamin D receptor and Nuclear Factor-kappaB in cross-activation of multiple pathways, including inflammatory cytokines, complement, clusterin, ephrins, and multiple metabolic pathways. We found that the products of over two thirds of genes linked to glaucoma by genetic analysis can be functionally interconnected into one epistatic network via experimentally-validated interactions. Finally, we built and analyzed an integrative disease pathology network from a combined set of genes revealed in genetic studies, genes differentially expressed in glaucoma and closely connected genes/proteins in the interactome. Conclusion Our results suggest several key biological network modules that are involved in regulating neurotoxicity of reactive astrocytes in glaucoma, and comprise potential targets for cell-based therapy.
Collapse
Affiliation(s)
- Tatiana Nikolskaya
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina Str, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Protection against viral infections is critically dependent upon the early production of significant levels of type 1 interferons and the expression of interferon-stimulated genes that function as the effectors of innate antiviral immunity. Activation of Toll-like receptors on cells of the immune system is known to play an important role in this process. In this chapter we review evidence for a role of TLRs in innate immune responses against viral infections of the central nervous system. By far the most extensive literature pertains to TLR3. Data from various laboratories have shown that TLR3 is expressed in cells endogenous to the CNS, particularly in astrocytes and microglia. Triggering TLR3 by synthetic dsRNA, poly I:C effectively induces innate antiviral responses as well as boosts adaptive immune responses. Additional experiments show cooperative responses between TLRs (3, 7/8 and 9) in mounting an effective antiviral immune response in the periphery. Perhaps the most exciting data are from patient populations that document the critical role that specific TLRs play in specific CNS infections. Studies also suggest that inappropriate activation of the TLRs can result in a pathogenic outcome rather than a protective one. Since TLR ligands are being actively considered for their antiviral and potential adjuvant effects, this will be an important issue to address in the context of the CNS environment.
Collapse
Affiliation(s)
- Hyeon-Sook Suh
- Department of Pathology (Neuropathology), Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
41
|
Pinteaux E, Trotter P, Simi A. Cell-specific and concentration-dependent actions of interleukin-1 in acute brain inflammation. Cytokine 2008; 45:1-7. [PMID: 19026559 DOI: 10.1016/j.cyto.2008.10.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/15/2008] [Accepted: 10/10/2008] [Indexed: 01/03/2023]
Abstract
Interleukin (IL)-1 is a pivotal pro-inflammatory cytokine and an important mediator of both acute and chronic central nervous system (CNS) injuries. Despite intense research in CNS IL-1 biology over the past two decades, its precise mechanism of action in inflammatory responses to acute brain disorders remains largely unknown. In particular, much effort has been focussed on using in vitro approaches to better understand the cellular and signalling mechanisms of actions of IL-1, yet some discrepancies in the literature regarding the effects produced by IL-1beta in in vitro paradigms of injury still exist, particularly as to whether IL-1 exerts neurotoxic or neuroprotective effects. Here we aim to review the cell-specific and concentration-dependent actions of IL-1 in brain cells, to depict the mechanism by which this cytokine induces neurotoxicity or neuroprotection in acute brain injury.
Collapse
Affiliation(s)
- Emmanuel Pinteaux
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.
| | | | | |
Collapse
|
42
|
Qin H, Niyongere SA, Lee SJ, Baker BJ, Benveniste EN. Expression and functional significance of SOCS-1 and SOCS-3 in astrocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:3167-76. [PMID: 18713987 PMCID: PMC2836124 DOI: 10.4049/jimmunol.181.5.3167] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Astrocytes play a number of important physiological roles in CNS homeostasis. Inflammation stimulates astrocytes to secrete cytokines and chemokines that guide macrophages/microglia and T cells to sites of injury/inflammation. Herein, we describe how these processes are controlled by the suppressor of cytokine signaling (SOCS) proteins, a family of proteins that negatively regulate adaptive and innate immune responses. In this study, we describe that the immunomodulatory cytokine IFN-beta induces SOCS-1 and SOCS-3 expression in primary astrocytes at the transcriptional level. SOCS-1 and SOCS-3 transcriptional activity is induced by IFN-beta through IFN-gamma activation site (GAS) elements within their promoters. Studies in STAT-1alpha-deficient astrocytes indicate that STAT-1alpha is required for IFN-beta-induced SOCS-1 expression, while STAT-3 small interfering RNA studies demonstrate that IFN-beta-induced SOCS-3 expression relies on STAT-3 activation. Specific small interfering RNA inhibition of IFN-beta-inducible SOCS-1 and SOCS-3 in astrocytes enhances their proinflammatory responses to IFN-beta stimulation, such as heightened expression of the chemokines CCL2 (MCP-1), CCL3 (MIP-1alpha), CCL4 (MIP-1beta), CCL5 (RANTES), and CXCL10 (IP-10), and promoting chemotaxis of macrophages and CD4(+) T cells. These results indicate that IFN-beta induces SOCS-1 and SOCS-3 in primary astrocytes to attenuate its own chemokine-related inflammation in the CNS.
Collapse
Affiliation(s)
- Hongwei Qin
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | | | |
Collapse
|
43
|
Abstract
Although interferon-beta is the most popular treatment for multiple sclerosis, its mechanism of action remains enigmatic. In this issue of Immunity, Prinz et al. (2008) elucidate an intriguing portrait of the pleiotropic effects of type 1 interferons in taming brain inflammation.
Collapse
Affiliation(s)
- Robert C Axtell
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
44
|
BMP signaling through BMPRIA in astrocytes is essential for proper cerebral angiogenesis and formation of the blood-brain-barrier. Mol Cell Neurosci 2008; 38:417-30. [PMID: 18501628 DOI: 10.1016/j.mcn.2008.04.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 04/03/2008] [Accepted: 04/04/2008] [Indexed: 11/21/2022] Open
Abstract
Bone morphogenetic protein (BMP) signaling is involved in differentiation of neural precursor cells into astrocytes, but its contribution to angiogenesis is not well characterized. This study examines the role of BMP signaling through BMP type IA receptor (BMPRIA) in early neural development using a conditional knockout mouse model, in which Bmpr1a is selectively disrupted in telencephalic neural stem cells. The conditional mutant mice show a significant increase in the number of cerebral blood vessels and the level of vascular endothelial growth factor (VEGF) is significantly upregulated in the mutant astrocytes. The mutant mice also show leakage of immunoglobulin around cerebral microvessels in neonatal mice, suggesting a defect in formation of the blood-brain-barrier. In addition, astrocytic endfeet fail to encircle cortical blood vessels in the mutant mice. These results suggest that BMPRIA signaling in astrocytes regulates the expression of VEGF for proper cerebrovascular angiogenesis and has a role on in the formation of the blood-brain-barrier.
Collapse
|
45
|
Reimer T, Brcic M, Schweizer M, Jungi TW. poly(I:C) and LPS induce distinct IRF3 and NF-kappaB signaling during type-I IFN and TNF responses in human macrophages. J Leukoc Biol 2008; 83:1249-57. [PMID: 18252870 DOI: 10.1189/jlb.0607412] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Macrophages play major roles in the onset of immune responses and inflammation by inducing a variety of cytokines such as TNF and IFN-beta. The pathogen-associated molecular pattern, polyinosinic-polycytidylic acid [poly(I:C)], and LPS were used to study type-I IFN and TNF responses in human macrophages. Additionally, activation of the key signaling pathways, IFN-regulatory factor 3 (IRF3) and NF-kappaB, were studied. We found that TNF production occurred rapidly after LPS stimulation. LPS induced a strong IFN-beta mRNA response within a short time-frame, which subsided at 8 h. The IFN-stimulated genes (ISGs), ISG56 and IFN-inducible protein 10, were strongly induced by LPS. These responses were associated with NF-kappaB and IRF3 activation, as shown by IRF3 dimerization and by nuclear translocation assays. poly(I:C), on the other hand, induced a strong and long-lasting (>12 h) IFN-beta mRNA and protein response, particularly when transfected, whereas only a protracted TNF response was observed when poly(I:C) was transfected. However, these responses were induced in the absence of detectable IRF3 and NF-kappaB signaling. Thus, in human macrophages, poly(I:C) treatment induces a distinct cytokine response when compared with murine macrophages. Additionally, a robust IFN-beta response can be induced in the absence of detectable IRF3 activation.
Collapse
Affiliation(s)
- Thornik Reimer
- Institute of Veterinary Virology, University of Bern, Laenggassstrasse 122, Bern CH-3001, Switzerland.
| | | | | | | |
Collapse
|
46
|
Suh HS, Zhao ML, Rivieccio M, Choi S, Connolly E, Zhao Y, Takikawa O, Brosnan CF, Lee SC. Astrocyte indoleamine 2,3-dioxygenase is induced by the TLR3 ligand poly(I:C): mechanism of induction and role in antiviral response. J Virol 2007; 81:9838-50. [PMID: 17626075 PMCID: PMC2045380 DOI: 10.1128/jvi.00792-07] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO) is the first and rate-limiting enzyme in the kynurenine pathway of tryptophan catabolism and has been implicated in neurotoxicity and suppression of the antiviral T-cell response in HIV encephalitis (HIVE). Here we show that the Toll-like receptor 3 (TLR3) ligand poly(I:C) (PIC) induces the expression of IDO in human astrocytes. PIC was less potent than gamma interferon (IFN-gamma) but more potent than IFN-beta in inducing IDO. PIC induction of IDO was mediated in part by IFN-beta but not IFN-gamma, and both NF-kappaB and interferon regulatory factor 3 (IRF3) were required. PIC also upregulated TLR3, thereby augmenting the primary (IFN-beta) and secondary (IDO and viperin) response genes upon subsequent stimulation with PIC. In HIVE, the transcripts for TLR3, IFN-beta, IDO, and viperin were increased and IDO immunoreactivity was detected in reactive astrocytes as well as macrophages and microglia. PIC caused suppression of intracellular replication of human immunodeficiency virus pseudotyped with vesicular stomatitis virus G protein and human cytomegalovirus in a manner dependent on IRF3 and IDO. The involvement of IDO was demonstrated by partial but significant reversal of the PIC-mediated antiviral effect by IDO RNA interference and/or tryptophan supplementation. Importantly, the cytokine interleukin-1 abolished IFN-gamma-induced IDO enzyme activity in a nitric oxide-dependent manner without suppressing protein expression. Our results demonstrate that IDO is an innate antiviral protein induced by double-stranded RNA and suggest a therapeutic utility for PIC in human viral infections. They also show that IDO activity can be dissociated from protein expression, indicating that the local central nervous system cytokine and nitric oxide environment determines IDO function.
Collapse
MESH Headings
- Astrocytes/enzymology
- Astrocytes/immunology
- Astrocytes/virology
- Cells, Cultured
- Cytokines/immunology
- Cytokines/pharmacology
- Cytomegalovirus/genetics
- Cytomegalovirus/immunology
- Cytomegalovirus Infections/enzymology
- Cytomegalovirus Infections/genetics
- Cytomegalovirus Infections/immunology
- Encephalitis, Viral/enzymology
- Encephalitis, Viral/genetics
- Encephalitis, Viral/immunology
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/genetics
- Gene Expression Regulation, Enzymologic/immunology
- HIV Infections/enzymology
- HIV Infections/genetics
- HIV Infections/immunology
- HIV-1/genetics
- HIV-1/immunology
- Humans
- Indoleamine-Pyrrole 2,3,-Dioxygenase/biosynthesis
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology
- Interferon Inducers/pharmacology
- Interferon Regulatory Factor-3/immunology
- Interferon Regulatory Factor-3/metabolism
- Kynurenine/genetics
- Kynurenine/immunology
- Kynurenine/metabolism
- Ligands
- Macrophages/enzymology
- Macrophages/immunology
- Macrophages/virology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Microglia/enzymology
- Microglia/immunology
- Microglia/virology
- NF-kappa B/immunology
- NF-kappa B/metabolism
- Nitric Oxide/immunology
- Nitric Oxide/metabolism
- Oxidoreductases Acting on CH-CH Group Donors
- Poly I-C/pharmacology
- Proteins/immunology
- Proteins/metabolism
- Toll-Like Receptor 3/agonists
- Toll-Like Receptor 3/immunology
- Toll-Like Receptor 3/metabolism
- Tryptophan/immunology
- Tryptophan/metabolism
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/metabolism
- Virus Replication/drug effects
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
Affiliation(s)
- Hyeon-Sook Suh
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kim SK, Fouts AE, Boothroyd JC. Toxoplasma gondii dysregulates IFN-gamma-inducible gene expression in human fibroblasts: insights from a genome-wide transcriptional profiling. THE JOURNAL OF IMMUNOLOGY 2007; 178:5154-65. [PMID: 17404298 DOI: 10.4049/jimmunol.178.8.5154] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite that persists for the life of a mammalian host. The parasite's ability to block the potent IFN-gamma response may be one of the key mechanisms that allow Toxoplasma to persist. Using a genome-wide microarray analysis, we show here a complete dysregulation of IFN-gamma-inducible gene expression in human fibroblasts infected with Toxoplasma. Notably, 46 of the 127 IFN-gamma-responsive genes were induced and 19 were suppressed in infected cells before they were exposed to IFN-gamma, indicating that other stimuli produced during infection may also regulate these genes. Following IFN-gamma treatment, none of the 127 IFN-gamma-responsive genes could be significantly induced in infected cells. Immunofluorescence assays showed at single-cell levels that infected cells, regardless of which Toxoplasma strain was used, could not be activated by IFN-gamma to up-regulate the expression of IFN regulatory factor 1, a transcription factor that is under the direct control of STAT1, whereas uninfected cells in the same culture expressed IFN regulatory factor 1 normally in response to IFN-gamma. STAT1 trafficked to the nucleus normally and indistinguishably in all uninfected and infected cells treated with IFN-gamma, indicating that the inhibitory effects of Toxoplasma infection likely occur via blocking STAT1 transcriptional activity in the nucleus. In contrast, a closely related apicomplexan, Neospora caninum, was unable to inhibit IFN-gamma-induced gene expression. A differential ability to interfere with the IFN-gamma response may, in part, account for the differences in the pathogenesis seen among Toxoplasma and Neospora parasite strains.
Collapse
Affiliation(s)
- Seon-Kyeong Kim
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
48
|
Chu TT, Fink MY, Mong JA, John G, Auger AP, Ge Y, Sealfon SC. Effective use of microarrays in neuroendocrine research. J Neuroendocrinol 2007; 19:145-61. [PMID: 17280588 DOI: 10.1111/j.1365-2826.2006.01523.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The development of microarray technology makes it possible to simultaneously assay the expression level of hundreds to tens of thousands of mRNA transcripts in one experiment. Genome-wide transcriptional analysis has increasing importance for many areas of neuroendocrinology research. The expense and technical complexity of microarray experiments can make it difficult to navigate the terrain of rival platforms and technologies. In this review, we provide a practical view and comparison of various microarray technologies. Affymetrix arrays, high-density cDNA arrays, membrane arrays and experimental design and data analysis are all discussed by researchers currently using these techniques to study gene regulation in neuroendocrine tissues.
Collapse
Affiliation(s)
- T T Chu
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Farina C, Aloisi F, Meinl E. Astrocytes are active players in cerebral innate immunity. Trends Immunol 2007; 28:138-45. [PMID: 17276138 DOI: 10.1016/j.it.2007.01.005] [Citation(s) in RCA: 965] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 01/02/2007] [Accepted: 01/19/2007] [Indexed: 02/06/2023]
Abstract
Innate immunity is a constitutive component of the central nervous system (CNS) and relies strongly on resident myeloid cells, the microglia. However, evidence is emerging that the most abundant glial cell population of the CNS, the astrocyte, participates in the local innate immune response triggered by a variety of insults. Astrocytes display an array of receptors involved in innate immunity, including Toll-like receptors, nucleotide-binding oligomerization domains, double-stranded RNA-dependent protein kinase, scavenger receptors, mannose receptor and components of the complement system. Following activation, astrocytes are endowed with the ability to secrete soluble mediators, such as CXCL10, CCL2, interleukin-6 and BAFF, which have an impact on both innate and adaptive immune responses. The role of astrocytes in inflammation and tissue repair is elaborated by recent in vivo studies employing cell-type specific gene targeting.
Collapse
Affiliation(s)
- Cinthia Farina
- Neuroimmunology and Neuromuscular Disorders Unit, National Neurological Institute Carlo Besta, 20133 Milan, Italy.
| | | | | |
Collapse
|
50
|
Carroll-Anzinger D, Al-Harthi L. Gamma interferon primes productive human immunodeficiency virus infection in astrocytes. J Virol 2007; 80:541-4. [PMID: 16352578 PMCID: PMC1317538 DOI: 10.1128/jvi.80.1.541-544.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Considerable controversy exists over whether astrocytes can support human immunodeficiency virus (HIV) infection. We evaluated the impact of three cytokines critical to the development of HIV neuropathogenesis, gamma interferon (IFN-gamma), granulocyte-macrophage colony-stimulating factor, and tumor necrosis factor alpha, on priming astrocytes for HIV infection. We demonstrate that IFN-gamma was the most potent in its ability to facilitate substantial productive HIV infection of an astroglioma cell line (U87MG) and human fetal astrocytes (HFA). The mechanism of IFN-gamma-mediated priming of HIV in HFA is unlikely to be at the level of up-regulation of receptors and coreceptors relevant to HIV entry. These data demonstrate that cytokine priming can alter HIV replication in astrocytes.
Collapse
Affiliation(s)
- Deborah Carroll-Anzinger
- Rush University Medical Center, Department of Immunology/Microbiology, 1735 W. Harrison Street, 614 Cohn, Chicago, IL 60612, USA
| | | |
Collapse
|