1
|
Lin GL, Chang HH, Lin WT, Liou YS, Lai YL, Hsieh MH, Chen PK, Liao CY, Tsai CC, Wang TF, Chu SC, Kau JH, Huang HH, Hsu HL, Sun DS. Dachshund Homolog 1: Unveiling Its Potential Role in Megakaryopoiesis and Bacillus anthracis Lethal Toxin-Induced Thrombocytopenia. Int J Mol Sci 2024; 25:3102. [PMID: 38542074 PMCID: PMC10970148 DOI: 10.3390/ijms25063102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Lethal toxin (LT) is the critical virulence factor of Bacillus anthracis, the causative agent of anthrax. One common symptom observed in patients with anthrax is thrombocytopenia, which has also been observed in mice injected with LT. Our previous study demonstrated that LT induces thrombocytopenia by suppressing megakaryopoiesis, but the precise molecular mechanisms behind this phenomenon remain unknown. In this study, we utilized 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced megakaryocytic differentiation in human erythroleukemia (HEL) cells to identify genes involved in LT-induced megakaryocytic suppression. Through cDNA microarray analysis, we identified Dachshund homolog 1 (DACH1) as a gene that was upregulated upon TPA treatment but downregulated in the presence of TPA and LT, purified from the culture supernatants of B. anthracis. To investigate the function of DACH1 in megakaryocytic differentiation, we employed short hairpin RNA technology to knock down DACH1 expression in HEL cells and assessed its effect on differentiation. Our data revealed that the knockdown of DACH1 expression suppressed megakaryocytic differentiation, particularly in polyploidization. We demonstrated that one mechanism by which B. anthracis LT induces suppression of polyploidization in HEL cells is through the cleavage of MEK1/2. This cleavage results in the downregulation of the ERK signaling pathway, thereby suppressing DACH1 gene expression and inhibiting polyploidization. Additionally, we found that known megakaryopoiesis-related genes, such as FOSB, ZFP36L1, RUNX1, FLI1, AHR, and GFI1B genes may be positively regulated by DACH1. Furthermore, we observed an upregulation of DACH1 during in vitro differentiation of CD34-megakaryocytes and downregulation of DACH1 in patients with thrombocytopenia. In summary, our findings shed light on one of the molecular mechanisms behind LT-induced thrombocytopenia and unveil a previously unknown role for DACH1 in megakaryopoiesis.
Collapse
Affiliation(s)
- Guan-Ling Lin
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan; (G.-L.L.); (H.-H.C.); (P.-K.C.)
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| | - Hsin-Hou Chang
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan; (G.-L.L.); (H.-H.C.); (P.-K.C.)
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| | - Wei-Ting Lin
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| | - Yu-Shan Liou
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| | - Yi-Ling Lai
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| | - Min-Hua Hsieh
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| | - Po-Kong Chen
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan; (G.-L.L.); (H.-H.C.); (P.-K.C.)
| | - Chi-Yuan Liao
- Department of Obstetrics and Gynecology, Mennonite Christian Hospital, Hualien 97004, Taiwan; (C.-Y.L.); (C.-C.T.)
| | - Chi-Chih Tsai
- Department of Obstetrics and Gynecology, Mennonite Christian Hospital, Hualien 97004, Taiwan; (C.-Y.L.); (C.-C.T.)
| | - Tso-Fu Wang
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan; (T.-F.W.); (S.-C.C.)
- Department of Medicine, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Buddhist Tzu Chi Stem Cells Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| | - Sung-Chao Chu
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan; (T.-F.W.); (S.-C.C.)
- Department of Medicine, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Buddhist Tzu Chi Stem Cells Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| | - Jyh-Hwa Kau
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (J.-H.K.); (H.-H.H.); (H.-L.H.)
| | - Hsin-Hsien Huang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (J.-H.K.); (H.-H.H.); (H.-L.H.)
| | - Hui-Ling Hsu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (J.-H.K.); (H.-H.H.); (H.-L.H.)
| | - Der-Shan Sun
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan; (G.-L.L.); (H.-H.C.); (P.-K.C.)
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| |
Collapse
|
2
|
Gao X, Teng T, Liu Y, Ai T, Zhao R, Fu Y, Zhang P, Han J, Zhang Y. Anthrax lethal toxin and tumor necrosis factor-α synergize on intestinal epithelia to induce mouse death. Protein Cell 2024; 15:135-148. [PMID: 37855658 PMCID: PMC10833652 DOI: 10.1093/procel/pwad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023] Open
Abstract
Bacillus anthracis lethal toxin (LT) is a determinant of lethal anthrax. Its function in myeloid cells is required for bacterial dissemination, and LT itself can directly trigger dysfunction of the cardiovascular system. The interplay between LT and the host responses is important in the pathogenesis, but our knowledge on this interplay remains limited. Tumor necrosis factor-α (TNF-α) is a pleiotropic pro-inflammatory cytokine induced by bacterial infections. Since LT accumulates and cytokines, predominantly TNF, amass during B. anthracis infection, co-treatment of TNF + LT in mice was used to mimic in vivo conditions for LT to function in inflamed hosts. Bone marrow transplantation and genetically engineered mice showed unexpectedly that the death of intestinal epithelial cells (IECs) rather than that of hematopoietic cells led to LT + TNF-induced lethality. Inhibition of p38α mitogen-activated protein kinase (MAPK) signaling by LT in IECs promoted TNF-induced apoptosis and necroptosis of IECs, leading to intestinal damage and mouse death. Consistently, p38α inhibition by LT enhanced TNF-mediated cell death in human colon epithelial HT-29 cells. As intestinal damage is one of the leading causes of lethality in anthrax patients, the IEC damage caused by LT + TNF would most likely be a mechanism underneath this clinical manifestation and could be a target for interventions.
Collapse
Affiliation(s)
- Xinhe Gao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Teng Teng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yifei Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Tingting Ai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Rui Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yilong Fu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Peipei Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
- Research Unit of Cellular Stress of CAMS, Xiang’an Hospital of Xiamen University, Cancer Research Center of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
- Laboratory Animal Center, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yingying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
3
|
Ouyang W, Xie T, Fang H, Frucht DM. Development of a New Cell-Based AP-1 Gene Reporter Potency Assay for Anti-Anthrax Toxin Therapeutics. Toxins (Basel) 2023; 15:528. [PMID: 37755954 PMCID: PMC10538138 DOI: 10.3390/toxins15090528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Anthrax toxin is a critical virulence factor of Bacillus anthracis. The toxin comprises protective antigen (PA) and two enzymatic moieties, edema factor (EF) and lethal factor (LF), forming bipartite lethal toxin (LT) and edema toxin (ET). PA binds cellular surface receptors and is required for intracellular translocation of the enzymatic moieties. For this reason, anti-PA antibodies have been developed as therapeutics for prophylaxis and treatment of human anthrax infection. Assays described publicly for the control of anti-PA antibody potency quantify inhibition of LT-mediated cell death or the ET-induced increase in c-AMP levels. These assays do not fully reflect and/or capture the pathological functions of anthrax toxin in humans. Herein, we report the development of a cell-based gene reporter potency assay for anti-PA antibodies based on the rapid LT-induced degradation of c-Jun protein, a pathogenic effect that occurs in human cells. This new assay was developed by transducing Hepa1c1c7 cells with an AP-1 reporter lentiviral construct and has been qualified for specificity, accuracy, repeatability, intermediate precision, and linearity. This assay not only serves as a bioassay for LT activity, but has applications for characterization and quality control of anti-PA therapeutic antibodies or other products that target the AP-1 signaling pathway.
Collapse
Affiliation(s)
- Weiming Ouyang
- Division of Biotechnology Review and Research II, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (T.X.); (H.F.)
| | | | | | - David M. Frucht
- Division of Biotechnology Review and Research II, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (T.X.); (H.F.)
| |
Collapse
|
4
|
Mytych JS, Pan Z, Farris AD. Efferocytosis and Anthrax: Implications for Bacterial Sepsis? JOURNAL OF CELLULAR IMMUNOLOGY 2021; 3:133-139. [PMID: 34708219 PMCID: PMC8547791 DOI: 10.33696/immunology.3.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Joshua S Mytych
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13th St., Oklahoma City, OK 73104, USA.,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC), 940 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| | - Zijian Pan
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13th St., Oklahoma City, OK 73104, USA
| | - A Darise Farris
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13th St., Oklahoma City, OK 73104, USA.,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC), 940 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| |
Collapse
|
5
|
Ouyang W, Frucht DM. Erk1/2 Inactivation-Induced c-Jun Degradation Is Regulated by Protein Phosphatases, UBE2d3, and the C-Terminus of c-Jun. Int J Mol Sci 2021; 22:3889. [PMID: 33918729 PMCID: PMC8070263 DOI: 10.3390/ijms22083889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 11/16/2022] Open
Abstract
Constitutive photomorphogenic 1 (COP1) is the ubiquitin E3 ligase that mediates degradation of c-Jun protein upon Erk1/2 inactivation. It remains unknown how this protein degradation pathway is regulated. In this study, we investigated the roles of protein phosphatases, ubiquitin-conjugating E2 enzymes (UBE2), and an intrinsic motif of c-Jun in regulating this degradation pathway. By using pharmacological inhibitors and/or gene knockdown techniques, we identified protein phosphatase 1 (PP1) and PP2A as the phosphatases and UBE23d as the UBE2 promoting c-Jun degradation, triggered by Erk1/2 inactivation. In addition, we report that the C-terminus of c-Jun protein facilitates its degradation. The addition of a C-terminal tag or deletion of the last four amino acid residues from the C-terminus of c-Jun protects it from degradation under Erk1/2-inactivating conditions. Taken together, this study reveals that the Erk1/2 inactivation-triggered and COP1-mediated c-Jun degradation is extrinsically and intrinsically regulated, providing a new understanding of the mechanisms underlying this protein degradation pathway.
Collapse
Affiliation(s)
- Weiming Ouyang
- Division of Biotechnology Review and Research II, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - David M. Frucht
- Division of Biotechnology Review and Research II, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
6
|
Erk1/2 inactivation promotes a rapid redistribution of COP1 and degradation of COP1 substrates. Proc Natl Acad Sci U S A 2020; 117:4078-4087. [PMID: 32041890 DOI: 10.1073/pnas.1913698117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Anthrax lethal toxin (LT) is a protease virulence factor produced by Bacillus anthracis that is required for its pathogenicity. LT treatment causes a rapid degradation of c-Jun protein that follows inactivation of the MEK1/2-Erk1/2 signaling pathway. Here we identify COP1 as the ubiquitin E3 ligase that is essential for LT-induced c-Jun degradation. COP1 knockdown using siRNA prevents degradation of c-Jun, ETV4, and ETV5 in cells treated with either LT or the MEK1/2 inhibitor, U0126. Immunofluorescence staining reveals that COP1 preferentially localizes to the nuclear envelope, but it is released from the nuclear envelope into the nucleoplasm following Erk1/2 inactivation. At baseline, COP1 attaches to the nuclear envelope via interaction with translocated promoter region (TPR), a component of the nuclear pore complex. Disruption of this COP1-TPR interaction, through Erk1/2 inactivation or TPR knockdown, leads to rapid COP1 release from the nuclear envelope into the nucleoplasm where it degrades COP1 substrates. COP1-mediated degradation of c-Jun protein, combined with LT-mediated blockade of the JNK1/2 signaling pathway, inhibits cellular proliferation. This effect on proliferation is reversed by COP1 knockdown and ectopic expression of an LT-resistant MKK7-4 fusion protein. Taken together, this study reveals that the nuclear envelope acts as a reservoir, maintaining COP1 poised for action. Upon Erk1/2 inactivation, COP1 is rapidly released from the nuclear envelope, promoting the degradation of its nuclear substrates, including c-Jun, a critical transcription factor that promotes cellular proliferation. This regulation allows mammalian cells to respond rapidly to changes in extracellular cues and mediates pathogenic mechanisms in disease states.
Collapse
|
7
|
Chen CW, Hu S, Tsui KH, Hwang GS, Chen ST, Tang TK, Cheng HT, Yu JW, Wang HC, Juang HH, Wang PS, Wang SW. Anti-inflammatory Effects of Gossypol on Human Lymphocytic Jurkat Cells via Regulation of MAPK Signaling and Cell Cycle. Inflammation 2019; 41:2265-2274. [PMID: 30136021 DOI: 10.1007/s10753-018-0868-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gossypol, a natural polyphenolic compound extracted from cottonseed oil, has been reported to possess pharmacological properties via modulation cell cycle and immune signaling pathway. However, whether gossypol has anti-inflammatory effects against phytohemagglutinin (PHA)-induced cytokine secretion in T lymphocytes through similar mechanism remains unclear. Using the T lymphocytes Jurkat cell line, we found that PHA exposure caused dramatic increase in interleukin-2 (IL-2) mRNA expression as well as IL-2 secretion. All of these PHA-stimulated reactions were attenuated in a dose-dependent manner by being pretreated with gossypol. However, gossypol did not show any in vitro cytotoxic effect at doses of 5-20 μM. As a possible mechanism underlying gossypol action, such as pronounced suppression IL-2 release, robust decreased PHA-induced phosphorylation of p38 and c-Jun N-terminal kinase expressions was found with gossypol pretreatment, but not significant phosphorylation of extracellular signal-regulated kinase expression. Furthermore, gossypol could suppress the Jurkat cells' growth, which was associated with increased percentage of G1/S phase and decreased fraction of G2 phase in flow cytometry test. We conclude that gossypol exerts anti-inflammatory effects probably through partial attenuation of mitogen-activated protein kinase (phosphorylated JNK and p38) signaling and cell cycle arrest in Jurkat cells.
Collapse
Affiliation(s)
- Chien-Wei Chen
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Sindy Hu
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ke-Hung Tsui
- Department of Urology, Division of Geriatric Urology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan.,Bioinformation Center, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Guey-Shyang Hwang
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Szu-Tah Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tswen-Kei Tang
- Department of Nursing, National Quemoy University, Kinmen County, Taiwan
| | - Hao-Tsai Cheng
- Division of Gastroenterology, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ju-Wen Yu
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Hsiao-Chiu Wang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Horng-Heng Juang
- Bioinformation Center, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan.,Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Paulus S Wang
- Medical Center of Aging Research, China Medical University Hospital, Taichung, Taiwan, Republic of China. .,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan. .,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China.
| | - Shyi-Wu Wang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China. .,Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
8
|
Hu S, Chen CW, Chen ST, Tsui KH, Tang TK, Cheng HT, Hwang GS, Yu JW, Li YC, Wang PS, Wang SW. Inhibitory effect of berberine on interleukin-2 secretion from PHA-treated lymphocytic Jurkat cells. Int Immunopharmacol 2018; 66:267-273. [PMID: 30502647 DOI: 10.1016/j.intimp.2018.11.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
Abstract
Berberine is an isoquinoline alkaloid isolated from herb plants, such as Cortex phellodendri (Huangbai) and Rhizoma coptidis (Huanglian). Huanglian and Huangbai have been used as "heat-removing" agents. In addition, berberine has been reported to exert anti-inflammatory effect both in vivo and in vitro, where mitogen-activated protein kinase (MAPK) and cyclooxygenase-2 (COX-2) expressions are critically implicated. We herein tested the hypothesis that berberine exerts an anti-inflammatory effect through MAPK and COX-2 signaling pathway in T-cell acute lymphoblastic leukemia (T-ALL). In Jurkat cells, we found that PHA exposure caused elevation on interleukin-2 (IL-2) production in a time-dependent manner. PHA-stimulated reactions were steeply suppressed by berberine, such as IL-2 mRNA expression and protein secretion. However, berberine did not exert any cytotoxic effect at doses of 40 μg/ml. In addition, the possible molecular mechanism of anti-inflammation effect of berberine could be the inhibition of PHA-evoked phosphorylation of p38, since c-Jun N-terminal kinases (JNK) and extracellular signal-regulated kinase (ERK) expressions did not alter. Consistent with above results, berberine inhibition on PHA-induced IL-2 secretion could be reversed by treatment of SB203580, a specific inhibitor of p38-MAPK. Interestingly, upregulation of PHA-induced COX-2 expression was also observed following berberine treatment of Jurkat cells. Furthermore, flow cytometry analysis showed berberine-induced cell cycle arrest at G1 phase after PHA stimulation and decreased percentage of G2/M phase. In conclusion, our study demonstrated that the anti-inflammatory effect of berberine largely potentially results from its ability to attenuate p38 MAPK expression, and does not exclude a positive action of berberine on cell cycle arrest. These results provide an innovative medicine strategy to against or treat T-ALL patients.
Collapse
Affiliation(s)
- Sindy Hu
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Chien-Wei Chen
- Department of Physiology and Pharmacology, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Szu-Tah Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China
| | - Ke-Hung Tsui
- Department of Urology, Division of Geriatric Urology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan, Republic of China; Bioinformation Center, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Tswen-Kei Tang
- Department of Nursing, National Quemoy University, Kinmen County, Taiwan, Republic of China
| | - Hao-Tsai Cheng
- Division of Gastroenterology, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan, Republic of China; Graduate Institute of Clinical Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Guey-Shyang Hwang
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan, Republic of China; Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, Taoyuan, Taiwan, Republic of China
| | - Ju-Wen Yu
- Department of Physiology and Pharmacology, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Yi-Chieh Li
- Department of Physiology and Pharmacology, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Paulus S Wang
- Medical Center of Aging Research, China Medical University Hospital, Taichung, Taiwan, Republic of China; Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan, Republic of China; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China.
| | - Shyi-Wu Wang
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Physiology and Pharmacology, Chang Gung University, Taoyuan, Taiwan, Republic of China.
| |
Collapse
|
9
|
Seshadri S, Allan DSJ, Carlyle JR, Zenewicz LA. Bacillus anthracis lethal toxin negatively modulates ILC3 function through perturbation of IL-23-mediated MAPK signaling. PLoS Pathog 2017; 13:e1006690. [PMID: 29059238 PMCID: PMC5695638 DOI: 10.1371/journal.ppat.1006690] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 11/02/2017] [Accepted: 10/10/2017] [Indexed: 12/30/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax, secretes lethal toxin that down-regulates immune functions. Translocation of B. anthracis across mucosal epithelia is key for its dissemination and pathogenesis. Group 3 innate lymphocytes (ILC3s) are important in mucosal barrier maintenance due to their expression of the cytokine IL-22, a critical regulator of tissue responses and repair during homeostasis and inflammation. We found that B. anthracis lethal toxin perturbed ILC3 function in vitro and in vivo, revealing an unknown IL-23-mediated MAPK signaling pathway. Lethal toxin had no effects on the canonical STAT3-mediated IL-23 signaling pathway. Rather lethal toxin triggered the loss of several MAP2K kinases, which correlated with reduced activation of downstream ERK1/2 and p38, respectively. Inhibition studies showed the importance of MAPK signaling in IL-23-mediated production of IL-22. Our finding that MAPK signaling is required for optimal IL-22 production in ILC3s may lead to new approaches for targeting IL-22 biology.
Collapse
Affiliation(s)
- Sudarshan Seshadri
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - David S. J. Allan
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - James R. Carlyle
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Lauren A. Zenewicz
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
10
|
Ouyang W, Guo P, Fang H, Frucht DM. Anthrax lethal toxin rapidly reduces c-Jun levels by inhibiting c-Jun gene transcription and promoting c-Jun protein degradation. J Biol Chem 2017; 292:17919-17927. [PMID: 28893904 DOI: 10.1074/jbc.m117.805648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/30/2017] [Indexed: 01/01/2023] Open
Abstract
Anthrax is a life-threatening disease caused by infection with Bacillus anthracis, which expresses lethal factor and the receptor-binding protective antigen. These two proteins combine to form anthrax lethal toxin (LT), whose proximal targets are mitogen-activated kinase kinases (MKKs). However, the downstream mediators of LT toxicity remain elusive. Here we report that LT exposure rapidly reduces the levels of c-Jun, a key regulator of cell proliferation and survival. Blockade of proteasome-dependent protein degradation with the 26S proteasome inhibitor MG132 largely restored c-Jun protein levels, suggesting that LT promotes degradation of c-Jun protein. Using the MKK1/2 inhibitor U0126, we further show that MKK1/2-Erk1/2 pathway inactivation similarly reduces c-Jun protein, which was also restored by MG132 pre-exposure. Interestingly, c-Jun protein rebounded to normal levels 4 h following U0126 exposure but not after LT exposure. The restoration of c-Jun in U0126-exposed cells was associated with increased c-Jun mRNA levels and was blocked by inactivation of the JNK1/2 signaling pathway. These results indicate that LT reduces c-Jun both by promoting c-Jun protein degradation via inactivation of MKK1/2-Erk1/2 signaling and by blocking c-Jun gene transcription via inactivation of MKK4-JNK1/2 signaling. In line with the known functions of c-Jun, LT also inhibited cell proliferation. Ectopic expression of LT-resistant MKK2 and MKK4 variants partially restored Erk1/2 and JNK1/2 signaling in LT-exposed cells, enabling the cells to maintain relatively normal c-Jun protein levels and cell proliferation. Taken together, these findings indicate that LT reduces c-Jun protein levels via two distinct mechanisms, thereby inhibiting critical cell functions, including cellular proliferation.
Collapse
Affiliation(s)
- Weiming Ouyang
- From the Division of Biotechnology Review and Research II, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| | - Pengfei Guo
- From the Division of Biotechnology Review and Research II, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| | - Hui Fang
- From the Division of Biotechnology Review and Research II, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| | - David M Frucht
- From the Division of Biotechnology Review and Research II, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| |
Collapse
|
11
|
Cardona-Correa A, Rios-Velazquez C. Profiling lethal factor interacting proteins from human stomach using T7 phage display screening. Mol Med Rep 2016; 13:3797-804. [PMID: 27035230 PMCID: PMC4838128 DOI: 10.3892/mmr.2016.5031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/22/2016] [Indexed: 12/17/2022] Open
Abstract
The anthrax lethal factor (LF) is a zinc dependent metalloproteinase that cleaves the majority of mitogen-activated protein kinase kinases and a member of NOD-like receptor proteins, inducing cell apoptosis. Despite efforts to fully understand the Bacillus anthracis toxin components, the gastrointestinal (GI) anthrax mechanisms have not been fully elucidated. Previous studies demonstrated gastric ulceration, and a substantial bacterial growth rate in Peyer's patches. However, the complete molecular pathways of the disease that results in tissue damage by LF proteolytic activity remains unclear. In the present study, to identify the profile of the proteins potentially involved in GI anthrax, protein-protein interactions were investigated using human stomach T7 phage display (T7PD) cDNA libraries. T7PD is a high throughput technique that allows the expression of cloned DNA sequences as peptides on the phage surface, enabling the selection and identification of protein ligands. A wild type and mutant LF (E687A) were used to differentiate interaction sites. A total of 124 clones were identified from 194 interacting-phages, at both the DNA and protein level, by in silico analysis. Databases revealed that the selected candidates were proteins from different families including lipase, peptidase-A1 and cation transport families, among others. Furthermore, individual T7PD candidates were tested against LF in order to detect their specificity to the target molecule, resulting in 10 LF-interacting peptides. With a minimum concentration of LF for interaction at 1 μg/ml, the T7PD isolated pepsin A3 pre-protein (PAP) demonstrated affinity to both types of LF. In addition, PAP was isolated in various lengths for the same protein, exhibiting common regions following PRALINE alignment. These findings will help elucidate and improve the understanding of the molecular pathogenesis of GI anthrax, and aid in the development of potential therapeutic agents.
Collapse
Affiliation(s)
- Albin Cardona-Correa
- Department of Biology, College of Arts and Sciences, University of Puerto Rico‑Mayagüez, Mayagüez 00681‑9000, PR, USA
| | - Carlos Rios-Velazquez
- Department of Biology, College of Arts and Sciences, University of Puerto Rico‑Mayagüez, Mayagüez 00681‑9000, PR, USA
| |
Collapse
|
12
|
Passive Immunotherapy Protects against Enteric Invasion and Lethal Sepsis in a Murine Model of Gastrointestinal Anthrax. Toxins (Basel) 2015; 7:3960-76. [PMID: 26426050 PMCID: PMC4626714 DOI: 10.3390/toxins7103960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/19/2015] [Indexed: 01/09/2023] Open
Abstract
The principal portal for anthrax infection in natural animal outbreaks is the digestive tract. Enteric exposure to anthrax, which is difficult to detect or prevent in a timely manner, could be exploited as an act of terror through contamination of human or animal food. Our group has developed a novel animal model of gastrointestinal (GI) anthrax for evaluation of disease pathogenesis and experimental therapeutics, utilizing vegetative Bacillus anthracis (Sterne strain) administered to A/J mice (a complement-deficient strain) by oral gavage. We hypothesized that a humanized recombinant monoclonal antibody (mAb) * that neutralizes the protective antigen (PA) component of B. anthracis lethal toxin (LT) and edema toxin (ET) could be an effective treatment. Although the efficacy of this anti-anthrax PA mAb has been shown in animal models of inhalational anthrax, its activity in GI infection had not yet been ascertained. We hereby demonstrate that passive immunotherapy with anti-anthrax PA mAb, administered at the same time as gastrointestinal exposure to B. anthracis, prevents lethal sepsis in nearly all cases (>90%), while a delay of up to forty-eight hours in treatment still greatly reduces mortality following exposure (65%). Moreover, passive immunotherapy protects against enteric invasion, associated mucosal injury and subsequent dissemination by gastrointestinal B. anthracis, indicating that it acts to prevent the initial stages of infection. * Expired raxibacumab being cycled off the Strategic National Stockpile; biological activity confirmed by in vitro assay.
Collapse
|
13
|
Natural cutaneous anthrax infection, but not vaccination, induces a CD4(+) T cell response involving diverse cytokines. Cell Biosci 2015; 5:20. [PMID: 26075052 PMCID: PMC4464127 DOI: 10.1186/s13578-015-0011-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/13/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Whilst there have been a number of insights into the subsets of CD4(+) T cells induced by pathogenic Bacillus anthracis infections in animal models, how these findings relate to responses generated in naturally infected and vaccinated humans has yet to be fully established. We describe the cytokine profile produced in response to T cell stimulation with a previously defined immunodominant antigen of anthrax, lethal factor (LF), domain IV, in cohorts of individuals with a history of cutaneous anthrax, compared with vaccinees receiving the U.K. licenced Anthrax Vaccine Precipitated (AVP) vaccine. FINDINGS We found that immunity following natural cutaneous infection was significantly different from that seen after vaccination. AVP vaccination was found to result in a polarized IFNγ CD4+ T cell response, while the individuals exposed to B. anthracis by natural infection mounted a broader cytokine response encompassing IFNγ, IL-5, -9, -10, -13, -17, and -22. CONCLUSIONS Vaccines seeking to incorporate the robust, long-lasting, CD4 T cell immune responses observed in naturally acquired cutaneous anthrax cases may need to elicit a similarly broad spectrum cellular immune response.
Collapse
|
14
|
Ascough S, Ingram RJ, Chu KK, Reynolds CJ, Musson JA, Doganay M, Metan G, Ozkul Y, Baillie L, Sriskandan S, Moore SJ, Gallagher TB, Dyson H, Williamson ED, Robinson JH, Maillere B, Boyton RJ, Altmann DM. Anthrax lethal factor as an immune target in humans and transgenic mice and the impact of HLA polymorphism on CD4+ T cell immunity. PLoS Pathog 2014; 10:e1004085. [PMID: 24788397 PMCID: PMC4006929 DOI: 10.1371/journal.ppat.1004085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/07/2014] [Indexed: 11/23/2022] Open
Abstract
Bacillus anthracis produces a binary toxin composed of protective antigen (PA) and one of two subunits, lethal factor (LF) or edema factor (EF). Most studies have concentrated on induction of toxin-specific antibodies as the correlate of protective immunity, in contrast to which understanding of cellular immunity to these toxins and its impact on infection is limited. We characterized CD4+ T cell immunity to LF in a panel of humanized HLA-DR and DQ transgenic mice and in naturally exposed patients. As the variation in antigen presentation governed by HLA polymorphism has a major impact on protective immunity to specific epitopes, we examined relative binding affinities of LF peptides to purified HLA class II molecules, identifying those regions likely to be of broad applicability to human immune studies through their ability to bind multiple alleles. Transgenics differing only in their expression of human HLA class II alleles showed a marked hierarchy of immunity to LF. Immunogenicity in HLA transgenics was primarily restricted to epitopes from domains II and IV of LF and promiscuous, dominant epitopes, common to all HLA types, were identified in domain II. The relevance of this model was further demonstrated by the fact that a number of the immunodominant epitopes identified in mice were recognized by T cells from humans previously infected with cutaneous anthrax and from vaccinated individuals. The ability of the identified epitopes to confer protective immunity was demonstrated by lethal anthrax challenge of HLA transgenic mice immunized with a peptide subunit vaccine comprising the immunodominant epitopes that we identified. Anthrax is of concern with respect to human exposure in endemic regions, concerns about bioterrorism and the considerable global burden of livestock infections. The immunology of this disease remains poorly understood. Vaccination has been based on B. anthracis filtrates or attenuated spore-based vaccines, with more recent trials of next-generation recombinant vaccines. Approaches generally require extensive vaccination regimens and there have been concerns about immunogenicity and adverse reactions. An ongoing need remains for rationally designed, effective and safe anthrax vaccines. The importance of T cell stimulating vaccines is inceasingly recognized. An essential step is an understanding of immunodominant epitopes and their relevance across the diverse HLA immune response genes of human populations. We characterized CD4 T cell immunity to anthrax Lethal Factor (LF), using HLA transgenic mice, as well as testing candidate peptide epitopes for binding to a wide range of HLA alleles. We identified anthrax epitopes, noteworthy in that they elicit exceptionally strong immunity with promiscuous binding across multiple HLA alleles and isotypes. T cell responses in humans exposed to LF through either natural anthrax infection or vaccination were also examined. Epitopes identified as candidates were used to protect HLA transgenic mice from anthrax challenge.
Collapse
Affiliation(s)
- Stephanie Ascough
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Rebecca J. Ingram
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, United Kingdom
| | - Karen K. Chu
- Department of Medicine, Imperial College London, London, United Kingdom
| | | | - Julie A. Musson
- Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mehmet Doganay
- Department of Infectious Disease, Erciyes University Hospital, Kayseri, Turkey
| | - Gökhan Metan
- Department of Infectious Disease, Erciyes University Hospital, Kayseri, Turkey
| | - Yusuf Ozkul
- Department of Medical Genetics, Erciyes University Hospital, Kayseri, Turkey
| | - Les Baillie
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | | | - Stephen J. Moore
- BIOMET, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Theresa B. Gallagher
- BIOMET, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Hugh Dyson
- Defence Science Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - E. Diane Williamson
- Defence Science Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - John H. Robinson
- Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bernard Maillere
- CEA, iBiTecS, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), Gif Sur Yvette, France
| | | | - Daniel M. Altmann
- Department of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Ramachandran G. Gram-positive and gram-negative bacterial toxins in sepsis: a brief review. Virulence 2014; 5:213-8. [PMID: 24193365 PMCID: PMC3916377 DOI: 10.4161/viru.27024] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/28/2013] [Accepted: 10/31/2013] [Indexed: 12/31/2022] Open
Abstract
Bacterial sepsis is a major cause of fatality worldwide. Sepsis is a multi-step process that involves an uncontrolled inflammatory response by the host cells that may result in multi organ failure and death. Both gram-negative and gram-positive bacteria play a major role in causing sepsis. These bacteria produce a range of virulence factors that enable them to escape the immune defenses and disseminate to remote organs, and toxins that interact with host cells via specific receptors on the cell surface and trigger a dysregulated immune response. Over the past decade, our understanding of toxins has markedly improved, allowing for new therapeutic strategies to be developed. This review summarizes some of these toxins and their role in sepsis.
Collapse
Affiliation(s)
- Girish Ramachandran
- Center for Vaccine Development; Department of Medicine; University of Maryland School of Medicine; Baltimore, MD USA
| |
Collapse
|
16
|
Ouyang W, Torigoe C, Fang H, Xie T, Frucht DM. Anthrax lethal toxin inhibits translation of hypoxia-inducible factor 1α and causes decreased tolerance to hypoxic stress. J Biol Chem 2013; 289:4180-90. [PMID: 24366872 DOI: 10.1074/jbc.m113.530006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hypoxia is considered to be a contributor to the pathology associated with administration of anthrax lethal toxin (LT). However, we report here that serum lactate levels in LT-treated mice are reduced, a finding inconsistent with the anaerobic metabolism expected to occur during hypoxia. Reduced lactate levels are also observed in the culture supernatants of LT-treated cells. LT inhibits the accumulation of hypoxia-inducible factor (HIF)-1α, a subunit of HIF-1, the master regulator directing cellular responses to hypoxia. The toxin has no effect on the transcription or protein turnover of HIF-1α, but instead it acts to inhibit HIF-1α translation. LT treatment diminishes phosphorylation of eIF4B, eIF4E, and rpS6, critical components of the intracellular machinery required for HIF-1α translation. Moreover, blockade of MKK1/2-ERK1/2, but not p38 or JNK signaling, lowers HIF-1α protein levels in both normoxic and hypoxic conditions, consistent with a role for MKK1 and MKK2 as the major targets of LT responsible for the inhibition of HIF-1α translation. The physiological importance of the LT-induced translation blockade is demonstrated by the finding that LT treatment decreases the survival of hepatocyte cell lines grown in hypoxic conditions, an effect that is overcome by preinduction of HIF-1α. Taken together, these data support a role for LT in dysregulating HIF-1α and thereby disrupting homeostatic responses to hypoxia, an environmental characteristic of certain tissues at baseline and/or during disseminated infection with Bacillus anthracis.
Collapse
Affiliation(s)
- Weiming Ouyang
- From the Division of Monoclonal Antibodies, Office of Biotechnology Products, Office of Pharmaceutical Science, Center for Drug Evaluation and Research, United States Food and Drug Administration, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
17
|
Witsenburg JJ, Glauner H, Müller JP, Groenewoud JMM, Roth G, Böhmer FD, Adjobo-Hermans MJW, Brock R. A quantitative assessment of costimulation and phosphatase activity on microclusters in early T cell signaling. PLoS One 2013; 8:e79277. [PMID: 24205378 PMCID: PMC3813591 DOI: 10.1371/journal.pone.0079277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 09/27/2013] [Indexed: 01/15/2023] Open
Abstract
T cell signaling is triggered through stimulation of the T cell receptor and costimulatory receptors. Receptor activation leads to the formation of membrane-proximal protein microclusters. These clusters undergo tyrosine phosphorylation and organize multiprotein complexes thereby acting as molecular signaling platforms. Little is known about how the quantity and phosphorylation levels of microclusters are affected by costimulatory signals and the activity of specific signaling proteins. We combined micrometer-sized, microcontact printed, striped patterns of different stimuli and simultaneous analysis of different cell strains with image processing protocols to address this problem. First, we validated the stimulation protocol by showing that high expression levels CD28 result in increased cell spreading. Subsequently, we addressed the role of costimulation and a specific phosphotyrosine phosphatase in cluster formation by including a SHP2 knock-down strain in our system. Distinguishing cell strains using carboxyfluorescein succinimidyl ester enabled a comparison within single samples. SHP2 exerted its effect by lowering phosphorylation levels of individual clusters while CD28 costimulation mainly increased the number of signaling clusters and cell spreading. These effects were observed for general tyrosine phosphorylation of clusters and for phosphorylated PLCγ1. Our analysis enables a clear distinction between factors determining the number of microclusters and those that act on these signaling platforms.
Collapse
Affiliation(s)
- J. Joris Witsenburg
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Heike Glauner
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jörg P. Müller
- Institute for Molecular Cell Biology, Jena University Hospital, Jena, Germany
| | - Johannes M. M. Groenewoud
- Department of Medical Technology Assessment, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Günter Roth
- Laboratory for MEMS Applications, Department of Microsystems Engineering (IMTEK), Albert Ludwigs University, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert Ludwigs University, Freiburg, Germany
| | | | - Merel J. W. Adjobo-Hermans
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Roland Brock
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
18
|
Toxin inhibition of antimicrobial factors induced by Bacillus anthracis peptidoglycan in human blood. Infect Immun 2013; 81:3693-702. [PMID: 23876807 DOI: 10.1128/iai.00709-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we describe the capacity of Bacillus anthracis peptidoglycan (BaPGN) to trigger an antimicrobial response in human white blood cells (WBCs). Analysis of freshly isolated human blood cells found that monocytes and neutrophils, but not B and T cells, were highly responsive to BaPGN and produced a variety of cytokines and chemokines. This BaPGN-induced response was suppressed by anthrax lethal toxin (LT) and edema toxin (ET), with the most pronounced effect on human monocytes, and this corresponded with the higher levels of anthrax toxin receptor 1 (ANTXR1) in these cells than in neutrophils. The supernatant from BaPGN-treated cells altered the growth of B. anthracis Sterne, and this effect was blocked by LT, but not by ET. An FtsX mutant of B. anthracis known to be resistant to the antimicrobial effects of interferon-inducible Glu-Leu-Arg (ELR)-negative CXC chemokines was not affected by the BaPGN-induced antimicrobial effects. Collectively, these findings describe a system in which BaPGN triggers expression of antimicrobial factors in human WBCs and reveal a distinctive role, not shared with ET, in LT's capacity to suppress this response.
Collapse
|
19
|
Anthrax lethal toxin and the induction of CD4 T cell immunity. Toxins (Basel) 2012; 4:878-99. [PMID: 23162703 PMCID: PMC3496994 DOI: 10.3390/toxins4100878] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/08/2012] [Accepted: 10/10/2012] [Indexed: 12/27/2022] Open
Abstract
Bacillus anthracis secretes exotoxins which act through several mechanisms including those that can subvert adaptive immunity with respect both to antigen presenting cell and T cell function. The combination of Protective Antigen (PA) and Lethal Factor (LF) forming Lethal Toxin (LT), acts within host cells to down-regulate the mitogen activated protein kinase (MAPK) signaling cascade. Until recently the MAPK kinases were the only known substrate for LT; over the past few years it has become evident that LT also cleaves Nlrp1, leading to inflammasome activation and macrophage death. The predicted downstream consequences of subverting these important cellular pathways are impaired antigen presentation and adaptive immunity. In contrast to this, recent work has indicated that robust memory T cell responses to B. anthracis antigens can be identified following natural anthrax infection. We discuss how LT affects the adaptive immune response and specifically the identification of B. anthracis epitopes that are both immunogenic and protective with the potential for inclusion in protein sub-unit based vaccines.
Collapse
|
20
|
Sun C, Fang H, Xie T, Auth RD, Patel N, Murray PR, Snoy PJ, Frucht DM. Anthrax lethal toxin disrupts intestinal barrier function and causes systemic infections with enteric bacteria. PLoS One 2012; 7:e33583. [PMID: 22438953 PMCID: PMC3306423 DOI: 10.1371/journal.pone.0033583] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 02/16/2012] [Indexed: 11/17/2022] Open
Abstract
A variety of intestinal pathogens have virulence factors that target mitogen activated protein kinase (MAPK) signaling pathways, including Bacillus anthracis. Anthrax lethal toxin (LT) has specific proteolytic activity against the upstream regulators of MAPKs, the MAPK kinases (MKKs). Using a murine model of intoxication, we show that LT causes the dose-dependent disruption of intestinal epithelial integrity, characterized by mucosal erosion, ulceration, and bleeding. This pathology correlates with an LT-dependent blockade of intestinal crypt cell proliferation, accompanied by marked apoptosis in the villus tips. C57BL/6J mice treated with intravenous LT nearly uniformly develop systemic infections with commensal enteric organisms within 72 hours of administration. LT-dependent intestinal pathology depends upon its proteolytic activity and is partially attenuated by co-administration of broad spectrum antibiotics, indicating that it is both a cause and an effect of infection. These findings indicate that targeting of MAPK signaling pathways by anthrax LT compromises the structural integrity of the mucosal layer, serving to undermine the effectiveness of the intestinal barrier. Combined with the well-described immunosuppressive effects of LT, this disruption of the intestinal barrier provides a potential mechanism for host invasion via the enteric route, a common portal of entry during the natural infection cycle of Bacillus anthracis.
Collapse
Affiliation(s)
- Chen Sun
- Laboratory of Cell Biology, Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, United States Food and Drug Administration, Bethesda, Maryland, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Development of an in vitro potency assay for anti-anthrax lethal toxin neutralizing antibodies. Toxins (Basel) 2012; 4:28-41. [PMID: 22347621 PMCID: PMC3277096 DOI: 10.3390/toxins4010028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 12/23/2011] [Accepted: 01/17/2012] [Indexed: 11/16/2022] Open
Abstract
Lethal toxin (LT) of Bacillus anthracis reduces the production of a number of inflammatory mediators, including transcription factors, chemokines and cytokines in various human cell lines, leading to down-regulation of the host inflammatory response. Previously we showed that the reduction of interleukin-8 (IL-8) is a sensitive marker of LT-mediated intoxication in human neutrophil-like NB-4 cells and that IL-8 levels are restored to normality when therapeutic monoclonal antibodies (mAb) with toxin-neutralising (TN) activity are added. We used this information to develop cell-based assays that examine the effects of TN therapeutic mAbs designed to treat LT intoxication and here we extend these findings. We present an in vitro assay based on human endothelial cell line HUVEC jr2, which measures the TN activity of therapeutic anti-LT mAbs using IL-8 as a marker for intoxication. HUVEC jr2 cells have the advantage over NB-4 cells that they are adherent, do not require a differentiation step and can be used in a microtitre plate format and therefore can facilitate high throughput analysis. This human cell-based assay provides a valid alternative to the mouse macrophage assay as it is a more biologically relevant model of the effects of toxin-neutralising antibodies in human infection.
Collapse
|
22
|
Klezovich-Bénard M, Corre JP, Jusforgues-Saklani H, Fiole D, Burjek N, Tournier JN, Goossens PL. Mechanisms of NK cell-macrophage Bacillus anthracis crosstalk: a balance between stimulation by spores and differential disruption by toxins. PLoS Pathog 2012; 8:e1002481. [PMID: 22253596 PMCID: PMC3257302 DOI: 10.1371/journal.ppat.1002481] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 11/28/2011] [Indexed: 01/08/2023] Open
Abstract
NK cells are important immune effectors for preventing microbial invasion and dissemination, through natural cytotoxicity and cytokine secretion. Bacillus anthracis spores can efficiently drive IFN-γ production by NK cells. The present study provides insights into the mechanisms of cytokine and cellular signaling that underlie the process of NK-cell activation by B. anthracis and the bacterial strategies to subvert and evade this response. Infection with non-toxigenic encapsulated B. anthracis induced recruitment of NK cells and macrophages into the mouse draining lymph node. Production of edema (ET) or lethal (LT) toxin during infection impaired this cellular recruitment. NK cell depletion led to accelerated systemic bacterial dissemination. IFN-γ production by NK cells in response to B. anthracis spores was: i) contact-dependent through RAE-1-NKG2D interaction with macrophages; ii) IL-12, IL-18, and IL-15-dependent, where IL-12 played a key role and regulated both NK cell and macrophage activation; and iii) required IL-18 for only an initial short time window. B. anthracis toxins subverted both NK cell essential functions. ET and LT disrupted IFN-γ production through different mechanisms. LT acted both on macrophages and NK cells, whereas ET mainly affected macrophages and did not alter NK cell capacity of IFN-γ secretion. In contrast, ET and LT inhibited the natural cytotoxicity function of NK cells, both in vitro and in vivo. The subverting action of ET thus led to dissociation in NK cell function and blocked natural cytotoxicity without affecting IFN-γ secretion. The high efficiency of this process stresses the impact that this toxin may exert in anthrax pathogenesis, and highlights a potential usefulness for controlling excessive cytotoxic responses in immunopathological diseases. Our findings therefore exemplify the delicate balance between bacterial stimulation and evasion strategies. This highlights the potential implication of the crosstalk between host innate defences and B. anthracis in initial anthrax control mechanisms. NK cells are important immune effectors that perform a surveillance task and react to transformed, stressed, and virally infected cells. They represent a first-line defence against cancer and pathogen invasion. Different pathogens trigger distinct NK-cell activation pathways. The Bacillus anthracis spore is the highly resistant form that enters the host and provokes anthrax. This microbe kills through a combination of acute bacterial infection and devastating toxemia. In the present study, we characterise the crosstalk between NK cells and spores, as well as the strategies used by B. anthracis to evade initial control mechanisms and impact anthrax pathogenesis. Our findings exemplify the spores' property to efficiently drive a high production of IFN-γ by NK cells, as well as the complex pathways used for activation which require both cytokine and cellular signaling. B. anthracis subverts this response through its toxins by paralysing essential NK cell functions. Furthermore, edema toxin from B. anthracis blocks natural cytotoxicity without affecting IFN-γ secretion. The CyaA toxin of Bordetella pertussis possesses the same enzymatic activity and has a similar effect. The high efficiency of these toxins in blocking cytotoxicity in vivo implies possible exploitation of their subverting activity to modulate excessive cytotoxic responses in immunopathological diseases.
Collapse
MESH Headings
- Animals
- Bacillus anthracis/immunology
- Bacterial Toxins/pharmacology
- Cells, Cultured
- Female
- Homeostasis/drug effects
- Homeostasis/immunology
- Immunity, Cellular/drug effects
- Immunity, Cellular/immunology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Macrophage Activation/drug effects
- Macrophage Activation/immunology
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Receptor Cross-Talk/drug effects
- Receptor Cross-Talk/immunology
- Spores, Bacterial/immunology
- Spores, Bacterial/physiology
Collapse
Affiliation(s)
- Maria Klezovich-Bénard
- Laboratoire Pathogénie et Toxi-Infections Bactériennes, Institut Pasteur, Paris, France
- CNRS URA 2172, Paris, France
| | - Jean-Philippe Corre
- Laboratoire Pathogénie et Toxi-Infections Bactériennes, Institut Pasteur, Paris, France
- CNRS URA 2172, Paris, France
| | | | - Daniel Fiole
- Unité Interactions Hôte-Agents Pathogènes, Département de Microbiologie, Institut de Recherche Biomédicale des Armées, La Tronche, France
- Laboratoire Interdisciplinaire de Physique, UMR 5588 CNRS/Université Joseph Fourier, St-Martin-d'Hères, France
| | - Nick Burjek
- Laboratoire Pathogénie et Toxi-Infections Bactériennes, Institut Pasteur, Paris, France
- CNRS URA 2172, Paris, France
| | - Jean-Nicolas Tournier
- Unité Interactions Hôte-Agents Pathogènes, Département de Microbiologie, Institut de Recherche Biomédicale des Armées, La Tronche, France
- École du Val-de-Grâce, Paris, France
| | - Pierre L. Goossens
- Laboratoire Pathogénie et Toxi-Infections Bactériennes, Institut Pasteur, Paris, France
- CNRS URA 2172, Paris, France
- * E-mail:
| |
Collapse
|
23
|
Paccani SR, Baldari CT. T cell targeting by anthrax toxins: two faces of the same coin. Toxins (Basel) 2011; 3:660-71. [PMID: 22069732 PMCID: PMC3202842 DOI: 10.3390/toxins3060660] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/03/2011] [Accepted: 06/07/2011] [Indexed: 12/24/2022] Open
Abstract
Bacillus anthracis, similar to other bacterial pathogens, has evolved effective immune evasion strategies to prolong its survival in the host, thus ensuring the unchecked spread of the infection. This function is subserved by lethal (LT) and edema (ET) toxins, two exotoxins produced by vegetative anthrax bacilli following germination of the spores. The structure of these toxins and the mechanism of cell intoxication are topics covered by other reviews in this issue. Here we shall discuss how B. anthracis uses LT and ET to suppress the immune defenses of the host, focusing on T lymphocytes, the key players in adaptive immunity. We shall also summarize recent findings showing that, depending on its concentration, ET has the ability not only to suppress T cell activation but also to promote the polarization of CD4(+) T cells to the Th2 and Th17 subsets, highlighting the potential use of this toxin as an immunomodulator.
Collapse
Affiliation(s)
- Silvia Rossi Paccani
- Department of Evolutionary Biology, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy;
- Novartis Vaccines, Via Fiorentina 1, 53100 Siena, Italy
- Author to whom correspondence should be addressed; or ; Tel.: +39-0577-234396; Fax: +39-0577-234476
| | - Cosima T. Baldari
- Department of Evolutionary Biology, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| |
Collapse
|
24
|
Xie T, Auth RD, Frucht DM. The effects of anthrax lethal toxin on host barrier function. Toxins (Basel) 2011; 3:591-607. [PMID: 22069727 PMCID: PMC3202839 DOI: 10.3390/toxins3060591] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 06/02/2011] [Accepted: 06/07/2011] [Indexed: 01/08/2023] Open
Abstract
The pathological actions of anthrax toxin require the activities of its edema factor (EF) and lethal factor (LF) enzyme components, which gain intracellular access via its receptor-binding component, protective antigen (PA). LF is a metalloproteinase with specificity for selected mitogen-activated protein kinase kinases (MKKs), but its activity is not directly lethal to many types of primary and transformed cells in vitro. Nevertheless, in vivo treatment of several animal species with the combination of LF and PA (termed lethal toxin or LT) leads to morbidity and mortality, suggesting that LT-dependent toxicity is mediated by cellular interactions between host cells. Decades of research have revealed that a central hallmark of this toxicity is the disruption of key cellular barriers required to maintain homeostasis. This review will focus on the current understanding of the effects of LT on barrier function, highlighting recent progress in establishing the molecular mechanisms underlying these effects.
Collapse
Affiliation(s)
- Tao Xie
- Laboratory of Cell Biology, Division of Monoclonal Antibodies, Office of Biotechnology Products, Office of Pharmaceutical Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
25
|
Fang H, Sun C, Xu L, Owen RJ, Auth RD, Snoy PJ, Frucht DM. Neutrophil Elastase Mediates Pathogenic Effects of Anthrax Lethal Toxin in the Murine Intestinal Tract. THE JOURNAL OF IMMUNOLOGY 2010; 185:5463-7. [DOI: 10.4049/jimmunol.1002471] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Dyer MD, Neff C, Dufford M, Rivera CG, Shattuck D, Bassaganya-Riera J, Murali TM, Sobral BW. The human-bacterial pathogen protein interaction networks of Bacillus anthracis, Francisella tularensis, and Yersinia pestis. PLoS One 2010; 5:e12089. [PMID: 20711500 PMCID: PMC2918508 DOI: 10.1371/journal.pone.0012089] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 07/17/2010] [Indexed: 01/01/2023] Open
Abstract
Background Bacillus anthracis, Francisella tularensis, and Yersinia pestis are bacterial pathogens that can cause anthrax, lethal acute pneumonic disease, and bubonic plague, respectively, and are listed as NIAID Category A priority pathogens for possible use as biological weapons. However, the interactions between human proteins and proteins in these bacteria remain poorly characterized leading to an incomplete understanding of their pathogenesis and mechanisms of immune evasion. Methodology In this study, we used a high-throughput yeast two-hybrid assay to identify physical interactions between human proteins and proteins from each of these three pathogens. From more than 250,000 screens performed, we identified 3,073 human-B. anthracis, 1,383 human-F. tularensis, and 4,059 human-Y. pestis protein-protein interactions including interactions involving 304 B. anthracis, 52 F. tularensis, and 330 Y. pestis proteins that are uncharacterized. Computational analysis revealed that pathogen proteins preferentially interact with human proteins that are hubs and bottlenecks in the human PPI network. In addition, we computed modules of human-pathogen PPIs that are conserved amongst the three networks. Functionally, such conserved modules reveal commonalities between how the different pathogens interact with crucial host pathways involved in inflammation and immunity. Significance These data constitute the first extensive protein interaction networks constructed for bacterial pathogens and their human hosts. This study provides novel insights into host-pathogen interactions.
Collapse
Affiliation(s)
- Matthew D. Dyer
- Virginia Bioinformatics Institute, Blacksburg, Virginia, United States of America
| | - Chris Neff
- Myriad Genetics, Salt Lake City, Utah, United States of America
| | - Max Dufford
- Myriad Genetics, Salt Lake City, Utah, United States of America
| | - Corban G. Rivera
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Donna Shattuck
- Myriad Genetics, Salt Lake City, Utah, United States of America
| | | | - T. M. Murali
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- * E-mail: (TMM); (BWS)
| | - Bruno W. Sobral
- Virginia Bioinformatics Institute, Blacksburg, Virginia, United States of America
- * E-mail: (TMM); (BWS)
| |
Collapse
|
27
|
Abstract
Anthrax is a lethal disease caused by the bacterium Bacillus anthracis. There are three principal forms of the disease in humans-cutaneous, gastrointestinal, and inhalational-depending on the route of exposure. Of these, inhalational anthrax is the most dangerous; it is rapidly fatal; and it has been used as a deadly biological warfare agent in the last decade. Suitable animal models of inhalational anthrax have been utilized to study pathogenesis of disease, investigate bacterial characteristics such as virulence, and test effectiveness of vaccines and therapeutics. To date, mice, guinea pigs, rabbits, and nonhuman primates are the principal animal species used to study inhalational anthrax. Mice are valuable in studying early pathogenesis and bacterial characteristics. Few pathologic changes occur in the mouse models but may include marked bacteremia and lymphocyte destruction in the spleen and mediastinal lymph nodes. Rabbits and guinea pigs rapidly develop fulminate systemic disease, and pathologic findings often include necrotizing lymphadenitis; splenitis; pneumonia; vasculitis; and hemorrhage, congestion, and edema in multiple tissues. Nonhuman primates consistently develop the full range of classic lesions of human inhalational anthrax, including meningitis; lymphadenitis; splenitis; mediastinitis; pneumonia; vasculitis; and hemorrhage, congestion, and edema in multiple tissues. This review focuses on basic characteristics of the bacterium and its products, key aspects of pathogenesis, and the pathologic changes commonly observed in each animal model species.
Collapse
Affiliation(s)
- N A Twenhafel
- Pathology Division, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702, USA.
| |
Collapse
|
28
|
Odumosu O, Nicholas D, Yano H, Langridge W. AB toxins: a paradigm switch from deadly to desirable. Toxins (Basel) 2010; 2:1612-45. [PMID: 22069653 PMCID: PMC3153263 DOI: 10.3390/toxins2071612] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 06/08/2010] [Accepted: 06/23/2010] [Indexed: 11/16/2022] Open
Abstract
To ensure their survival, a number of bacterial and plant species have evolved a common strategy to capture energy from other biological systems. Being imperfect pathogens, organisms synthesizing multi-subunit AB toxins are responsible for the mortality of millions of people and animals annually. Vaccination against these organisms and their toxins has proved rather ineffective in providing long-term protection from disease. In response to the debilitating effects of AB toxins on epithelial cells of the digestive mucosa, mechanisms underlying toxin immunomodulation of immune responses have become the focus of increasing experimentation. The results of these studies reveal that AB toxins may have a beneficial application as adjuvants for the enhancement of immune protection against infection and autoimmunity. Here, we examine similarities and differences in the structure and function of bacterial and plant AB toxins that underlie their toxicity and their exceptional properties as immunomodulators for stimulating immune responses against infectious disease and for immune suppression of organ-specific autoimmunity.
Collapse
Affiliation(s)
- Oludare Odumosu
- Center for Health Disparities and Molecular Medicine, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (O.O.)
- Department of Biochemistry, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (D.N.)
| | - Dequina Nicholas
- Center for Health Disparities and Molecular Medicine, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (O.O.)
- Department of Biochemistry, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (D.N.)
| | - Hiroshi Yano
- Department of Biology, University of Redlands, 1200 East Colton Ave, P.O. Box 3080, Redlands, CA 92373, USA; (H.Y.)
| | - William Langridge
- Center for Health Disparities and Molecular Medicine, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (O.O.)
- Department of Biochemistry, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (D.N.)
- Author to whom correspondence should be addressed; ; Tel.: +1-909-558-1000 (81362); Fax: +1-909-558-0177
| |
Collapse
|
29
|
Chow EMC, Batty S, Mogridge J. Anthrax lethal toxin promotes dephosphorylation of TTP and formation of processing bodies. Cell Microbiol 2009; 12:557-68. [PMID: 19995385 DOI: 10.1111/j.1462-5822.2009.01418.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anthrax lethal toxin (LeTx) is composed of protective antigen (PA) and lethal factor (LF) - PA is the receptor-binding moiety and LF is a protease that cleaves mitogen-activated protein kinase kinases (MAPKKs). LeTx subverts the immune response to Bacillus anthracis in several ways, such as downregulating interleukin-8 (IL-8) by increasing the rate of IL-8 mRNA degradation. Many transcripts are regulated through cis-acting elements that bind proteins that either impede or promote degradation. Some of these RNA-binding proteins are regulated by MAPKs and previous work has demonstrated that interfering with MAPK signalling decreases the half-life of IL-8 mRNA. Here, we have localized a segment within the IL-8 3' untranslated region responsible for LeTx-induced transcript destabilization and show that this is caused by inhibition of the p38, ERK and JNK pathways. TTP, an RNA-binding protein involved in IL-8 mRNA decay, became hypophosphorylated in LeTx-treated cells and knock-down of TTP prevented LeTx from destabilizing the IL-8 transcript. Cells that were treated with LeTx exhibited increased localization of TTP to Processing bodies, which are structures that accumulate transcripts targeted for degradation. We furthermore observed that LeTx promoted the formation of Processing bodies, revealing a link between the toxin and a major mRNA decay pathway.
Collapse
Affiliation(s)
- Edith M C Chow
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada M5S 1A8
| | | | | |
Collapse
|
30
|
Mycobacterium tuberculosis cell wall glycolipids directly inhibit CD4+ T-cell activation by interfering with proximal T-cell-receptor signaling. Infect Immun 2009; 77:4574-83. [PMID: 19651854 DOI: 10.1128/iai.00222-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Immune evasion is required for Mycobacterium tuberculosis to survive in the face of robust adaptive CD4(+) T-cell responses. We have previously shown that M. tuberculosis can indirectly inhibit CD4(+) T cells by suppressing the major histocompatibility complex class II antigen-presenting cell function of macrophages. This study was undertaken to determine if M. tuberculosis could directly inhibit CD4(+) T-cell activation. Murine CD4(+) T cells were purified from spleens by negative immunoaffinity selection followed by flow sorting. Purified CD4(+) T cells were activated for 16 to 48 h with CD3 and CD28 monoclonal antibodies in the presence or absence of M. tuberculosis and its subcellular fractions. CD4(+) T-cell activation was measured by interleukin 2 production, proliferation, and expression of activation markers, all of which were decreased in the presence of M. tuberculosis. Fractionation identified that M. tuberculosis cell wall glycolipids, specifically, phosphatidylinositol mannoside and mannose-capped lipoarabinomannan, were potent inhibitors. Glycolipid-mediated inhibition was not dependent on Toll-like receptor signaling and could be bypassed through stimulation with phorbol 12-myristate 13-acetate and ionomycin. ZAP-70 phosphorylation was decreased in the presence of M. tuberculosis glycolipids, indicating that M. tuberculosis glycolipids directly inhibited CD4(+) T-cell activation by interfering with proximal T-cell-receptor signaling.
Collapse
|
31
|
Moayeri M, Leppla SH. Cellular and systemic effects of anthrax lethal toxin and edema toxin. Mol Aspects Med 2009; 30:439-55. [PMID: 19638283 DOI: 10.1016/j.mam.2009.07.003] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 07/21/2009] [Indexed: 12/21/2022]
Abstract
Anthrax lethal toxin (LT) and edema toxin (ET) are the major virulence factors of anthrax and can replicate the lethality and symptoms associated with the disease. This review provides an overview of our current understanding of anthrax toxin effects in animal models and the cytotoxicity (necrosis and apoptosis) induced by LT in different cells. A brief reexamination of early historic findings on toxin in vivo effects in the context of our current knowledge is also presented.
Collapse
Affiliation(s)
- Mahtab Moayeri
- Bacterial Toxins and Therapeutics Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 33, Room 1W20B, Bethesda, MD 20892, USA.
| | | |
Collapse
|
32
|
Warfel JM, D'Agnillo F. Anthrax lethal toxin enhances IkappaB kinase activation and differentially regulates pro-inflammatory genes in human endothelium. J Biol Chem 2009; 284:25761-71. [PMID: 19620708 DOI: 10.1074/jbc.m109.036970] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Anthrax lethal toxin (LT) was previously shown to enhance transcriptional activity of NF-kappaB in tumor necrosis factor-alpha-activated primary human endothelial cells. Here we show that this LT-mediated increase in NF-kappaB activation is associated with the enhanced degradation of the inhibitory proteins IkappaBalpha and IkappaBbeta but not IkappaBepsilon. Moreover, this was accompanied by enhanced activation of the IkappaB kinase complex (IKK), which is responsible for targeting IkappaB proteins for degradation. Importantly, LT enhancement of IkappaBalpha degradation was completely blocked by a selective IKKbeta inhibitor, whereas IkappaBbeta degradation was attenuated, suggesting a mechanistic link. Consistent with the above data, LT-cotreated cells show elevated phosphorylation of two IKK substrates, IkappaBalpha and p65, both of which were blocked by incubation with the IKKbeta inhibitor. Consistent with NF-kappaB activation, LT increased transcription of the NF-kappaB regulated gene CD40. Conversely, LT inhibited transcription of another NF-kappaB-regulated gene, CCL2. This inhibition was linked to the LT-mediated suppression of another CCL2-regulating transcription factor, AP-1 (activator protein-1). These data suggest that LT-mediated enhancement of NF-kappaB is IKK-dependent, but importantly, the net effect of LT on the transcription of proinflammatory genes is driven by the cumulative effect of LT on the particular set of transcription factors that regulate a given promoter. Together, these findings provide new mechanistic insight on how LT may disrupt the host response to anthrax.
Collapse
Affiliation(s)
- Jason M Warfel
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
33
|
Tournier JN, Rossi Paccani S, Quesnel-Hellmann A, Baldari CT. Anthrax toxins: a weapon to systematically dismantle the host immune defenses. Mol Aspects Med 2009; 30:456-66. [PMID: 19560486 DOI: 10.1016/j.mam.2009.06.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 06/19/2009] [Indexed: 11/24/2022]
Abstract
Successful colonization of the host by bacterial pathogens relies on their capacity to evade the complex and powerful defenses opposed by the host immune system, at least in the initial phases of infection. The two toxins of Bacillus anthracis, lethal toxin and edema toxin, appear to have been shaped by evolution to assist the microorganism in this crucial function, in addition to act as general toxins acting on almost all cell types. Edema toxin causes a consistent elevation of cAMP, an important second messenger the production of which is normally strictly controlled in mammalian cells, whereas lethal toxin cleaves most isoforms of mitogen-activated protein kinase kinases. By disrupting or subverting central modules common to all the principal signaling networks which control immune cell activation, effector function and migration, the anthrax toxins effectively and systematically dismantle both the innate and the adaptive immune defenses of the host. Here, we review the specific effects of the lethal and edema toxins of B. anthracis on the activation and function of phagocytes, dendritic cells and lymphocytes. We also discuss some open issues which should be addressed to gain a comprehensive insight into the complex relationship that B. anthracis establishes with the host.
Collapse
Affiliation(s)
- Jean-Nicolas Tournier
- Unité Interactions Hôte-Pathogène, Département de Biologie des Agents Transmissibles, Centre de Recherches du Service de Santé des Armées, 24 Avenue des Maquis du Grésivaudan, 38702 La Tronche, France
| | | | | | | |
Collapse
|
34
|
Wang X, Barnes PF, Dobos-Elder KM, Townsend JC, Chung YT, Shams H, Weis SE, Samten B. ESAT-6 inhibits production of IFN-gamma by Mycobacterium tuberculosis-responsive human T cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:3668-77. [PMID: 19265145 DOI: 10.4049/jimmunol.0803579] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Mycobacterium tuberculosis early secreted Ag of 6 kDa (ESAT-6) is a potent Ag for human T cells and is a putative vaccine candidate. However, ESAT-6 also contributes to virulence in animal models, mediates cellular cytolysis, and inhibits IL-12 production by mononuclear phagocytes. We evaluated the effects of ESAT-6 and its molecular chaperone, culture filtrate protein of 10 kDa (CFP10), on the capacity of human T cells to produce IFN-gamma and proliferate in response to TCR activation. Recombinant ESAT-6, but not CFP10, markedly inhibited IFN-gamma production by T cells stimulated with M. tuberculosis or with the combination of anti-CD3 and anti-CD28, in a dose-dependent manner. ESAT-6 also inhibited T cell production of IL-17 and TNF-alpha but not IL-2. Preincubation of ESAT-6 with CFP10 under conditions that favor dimer formation did not affect inhibition of IFN-gamma. ESAT-6 decreased IFN-gamma transcription and reduced expression of the transcription factors, ATF-2 and c-Jun, which normally bind to the IFN-gamma proximal promoter and stimulate mRNA expression. ESAT-6 inhibited T cell IFN-gamma secretion through mechanisms that did not involve cellular cytotoxicity or apoptosis. ESAT-6, but not CFP10, bound to T cells and inhibited expression of early activation markers without reducing activation of ZAP70. We conclude that ESAT-6 directly inhibits human T cell responses to mycobacterial Ags by affecting TCR signaling pathways downstream of ZAP70.
Collapse
Affiliation(s)
- Xisheng Wang
- Department of Microbiologyand Immunology, Center for Pulmonary and Infectious Disease Control, University of Texas Health Science Center, Tyler, TX 75708, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Chou PJJ, Newton CA, Perkins I, Friedman H, Klein TW. Suppression of dendritic cell activation by anthrax lethal toxin and edema toxin depends on multiple factors including cell source, stimulus used, and function tested. DNA Cell Biol 2009; 27:637-48. [PMID: 18821847 DOI: 10.1089/dna.2008.0760] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bacillus anthracis produces lethal toxin (LT) and edema toxin (ET), and they suppress the function of LPS-stimulated dendritic cells (DCs). Because DCs respond differently to various microbial stimuli, we compared toxin effects in bone marrow DCs stimulated with either LPS or Legionella pneumophila (Lp). LT, not ET, was more toxic for cells from BALB/c than from C57BL/6 (B6) as measured by 7-AAD uptake; however, ET suppressed CD11c expression. LT suppressed IL-12, IL-6, and TNF-alpha in cells from BALB/c and B6 mice but increased IL-1beta in LPS-stimulated cultures. ET also suppressed IL-12 and TNF-alpha, but increased IL-6 and IL-1beta in Lp-stimulated cells from B6. Regarding maturation marker expression, LT increased MHCII and CD86 while suppressing CD40 and CD80; ET generally decreased marker expression across all groups. We conclude that the suppression of cytokine production by anthrax toxins is dependent on variables, including the source of the DCs, the type of stimulus and cytokine measured, and the individual toxin tested. However, LT and ET enhancement or suppression of maturation marker expression is more related to the marker studied than the stimuli or cell source. Anthrax toxins are not uniformly suppressive of DC function but instead can increase function under defined conditions.
Collapse
Affiliation(s)
- Ping-Jen Joe Chou
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, Florida 33612, USA.
| | | | | | | | | |
Collapse
|
36
|
Midha S, Bhatnagar R. Anthrax protective antigen administered by DNA vaccination to distinct subcellular locations potentiates humoral and cellular immune responses. Eur J Immunol 2009; 39:159-77. [PMID: 19130551 DOI: 10.1002/eji.200838058] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Based on the hypothesis that immune outcome can be influenced by the form of antigen administered and its ability to access various antigen-processing pathways, we targeted the 63 kDa fragment of protective antigen (PA) of Bacillus anthracis to various subcellular locations by DNA chimeras bearing a set of signal sequences. These targeting signals, namely, lysosome-associated membrane protein 1 (LAMP1), tissue plasminogen activator (TPA) and ubiquitin, encoded various forms of PA viz. lysosomal, secreted and cytosolic, respectively. Examination of IgG subclass distribution arising as a result of DNA vaccination indicated a higher IgG1:IgG2a ratio whenever the groups were immunized with chimeras bearing TPA, LAMP1 signals alone or when combined together. Importantly, high end-point titers of IgG antibodies were maintained until 24 wk. It was paralleled by high avidity toxin neutralizing antibodies (TNA) and effective cellular adaptive immunity in the systemic compartment. Anti-PA and TNA titers of approximately 10(5) and approximately 10(3), respectively, provided protection to approximately 90% of vaccinated animals in the group pTPA-PA63-LAMP1. A significant correlation was found between survival percentage and post-challenge anti-PA titers and TNA titers. Overall, immune kinetics pointed that differential processing through various compartments gave rise to qualitative differences in the immune response generated by various chimeras.
Collapse
Affiliation(s)
- Shuchi Midha
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|
37
|
Donaldson DS, Williams NA. Bacterial toxins as immunomodulators. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 666:1-18. [PMID: 20054971 DOI: 10.1007/978-1-4419-1601-3_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacterial toxins are the causative agent at pathology in a variety of diseases. Although not always the primary target of these toxins, many have been shown to have potent immunomodulatory effects, for example, inducing immune responses to co-administered antigens and suppressing activation of immune cells. These abilities of bacterial toxins can be harnessed and used in a therapeutic manner, such as in vaccination or the treatment of autoimmune diseases. Furthermore, the ability of toxins to gain entry to cells can be used in novel bacterial toxin based immuno-therapies in order to deliver antigens into MHC Class I processing pathways. Whether the immunomodulatory properties of these toxins arose in order to enhance bacterial survival within hosts, to aid spread within the population or is pure serendipity, it is interesting to think that these same toxins potentially hold the key to preventing or treating human disease.
Collapse
Affiliation(s)
- David S Donaldson
- Department of Cellular and Molecular Medicine, School of Medicine Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
38
|
Anthrax edema toxin modulates PKA- and CREB-dependent signaling in two phases. PLoS One 2008; 3:e3564. [PMID: 18958164 PMCID: PMC2569206 DOI: 10.1371/journal.pone.0003564] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 09/22/2008] [Indexed: 01/03/2023] Open
Abstract
Background Anthrax edema toxin (EdTx) is an adenylate cyclase which operates in the perinuclear region of host cells. However, the action of EdTx is poorly understood, especially at molecular level. The ability of EdTx to modulate cAMP-dependent signaling was studied in Jurkat T cells and was compared with that of other cAMP-rising agents: Bordetella pertussis adenylate cyclase toxin, cholera toxin and forskolin. Methodology/Principal Findings EdTx caused a prolonged increase of the intracellular cAMP concentration. This led to nuclear translocation of the cAMP-dependent protein kinase (PKA) catalytic subunit, phosphorylation of cAMP response element binding protein (CREB) and expression of a reporter gene under control of the cAMP response element. Neither p90 ribosomal S6 kinase nor mitogen- and stress-activated kinase, which mediate CREB phosphorylation during T cell activation, were involved. The duration of phospho-CREB binding to chromatin correlated with the spatio-temporal rise of cAMP levels. Strikingly, EdTx pre-treated T cells were unresponsive to other stimuli involving CREB phosphorylation such as addition of forskolin or T cell receptor cross-linking. Conclusions/Significance We concluded that, in a first intoxication phase, EdTx induces PKA-dependent signaling, which culminates in CREB phosphorylation and activation of gene transcription. Subsequently CREB phosphorylation is impaired and therefore T cells are not able to respond to cues involving CREB. The present data functionally link the perinuclear localization of EdTx to its intoxication mechanism, indicating that this is a specific feature of its intoxication mechanism.
Collapse
|
39
|
Anthrax lethal toxin suppresses chemokine production in human neutrophil NB-4 cells. Biochem Biophys Res Commun 2008; 374:288-93. [PMID: 18625197 DOI: 10.1016/j.bbrc.2008.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 07/04/2008] [Indexed: 11/22/2022]
Abstract
Microarray analysis was used to investigate the effects of Bacillus anthracis lethal toxin (LT) on human neutrophil-like NB-4 cells to identify markers of intoxication. Genes down-regulated after a 2h LT exposure included those encoding chemokines and transcription factors. Significant decreases in the mRNA of interleukin-8, CCL20, CCL3 and CCL4, which are important chemoattractants for immune cells, were observed using real-time PCR (12.3, 4.0, 4.1 and 2.2-fold (p<0.05), respectively). The decreases were more pronounced at 4 and 8h and were LT-specific. Decreases in chemokine protein levels were evident after 24h and were sensitive to low concentrations of LT. Co-incubation with an anti-lethal factor mAb at 500 and 250ng/ml restored levels of interleukin-8 to 100% and 50%, respectively. The results reveal that LT suppresses the cellular immune response and that this assay is a useful tool for the analysis of toxin-neutralising antibody activity in a biologically relevant system.
Collapse
|
40
|
Xu L, Fang H, Frucht DM. Anthrax lethal toxin increases superoxide production in murine neutrophils via differential effects on MAPK signaling pathways. THE JOURNAL OF IMMUNOLOGY 2008; 180:4139-47. [PMID: 18322225 DOI: 10.4049/jimmunol.180.6.4139] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The combination of lethal factor and its receptor-binding partner, protective Ag, is termed lethal toxin (LT) and has critical pathogenic activity during infection with Bacillus anthracis. We herein report that anthrax LT binds and enters murine neutrophils, leading to the cleavage of mitogen-activated protein kinase kinase/MEK/MAPKK 1-4 and 6, but not mitogen-activated protein kinase kinase 5 and 7. Anthrax LT treatment of neutrophils disrupts signaling to downstream MAPK targets in response to TLR stimulation. Following anthrax LT treatment, ERK family and p38 phosphorylation are nearly completely blocked, but signaling to JNK family members persists in vitro and ex vivo. In contrast to previous reports involving human neutrophils, anthrax LT treatment of murine neutrophils increases their production of superoxide in response to PMA or TLR stimulation in vitro or ex vivo. Although this enhanced superoxide production correlates with effects due to the LT-induced blockade of ERK signaling, it requires JNK signaling that remains largely intact despite the activity of anthrax LT. These findings reveal a previously unrecognized mechanism through which anthrax LT supports a critical proinflammatory response of murine neutrophils.
Collapse
Affiliation(s)
- Lixin Xu
- Division of Monoclonal Antibodies, Office of Biotechnology Products, Office of Pharmaceutical Science, Center for Drug Evaluation and Research, US Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
41
|
Reig N, Jiang A, Couture R, Sutterwala FS, Ogura Y, Flavell RA, Mellman I, van der Goot FG. Maturation modulates caspase-1-independent responses of dendritic cells to Anthrax lethal toxin. Cell Microbiol 2008; 10:1190-207. [PMID: 18194483 PMCID: PMC2861895 DOI: 10.1111/j.1462-5822.2008.01121.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Anthrax lethal toxin (LT) contributes to the immune evasion strategy of Bacillus anthracis by impairing the function of cells of the immune system, such as macrophages and dendritic cells (DCs). Macrophages from certain inbred mice strains undergo rapid death upon LT treatment mediated by caspase-1 activation dependent on Nalp1b, an inflammasome component. Rapid LT-induced death is however, not observed in macrophages from human and many mouse strains. Here, we focused on the responses of various murine DCs to LT. Using a variety of knockout mice, we found that depending on the mouse strain, death of bone marrow-derived DCs and macrophages was mediated either by a fast Nalp1b and caspase-1-dependent, or by a slow caspase-1-independent pathway that was triggered by the impairment of MEK1/2 pathways. Caspase-1-independent death was observed in cells of different genetic backgrounds and interestingly occurred only in immature DCs. Maturation, triggered by different types of stimuli, led to full protection of DCs. These studies illustrate that the cellular damage inflicted by LT depends not only on the innate responses but also on the maturation stage of the cell, which modulates the more general caspase-1-independent responses.
Collapse
Affiliation(s)
- Núria Reig
- Ecole Polytechnique Fédérale de Lausanne, Global Health Institute, Station 15, CH-1015 Lausanne, Switzerland
| | - Aimin Jiang
- Department of Cell Biology, Ludwig Institute for Cancer Research, Yale University School of Medicine, New Haven, CT and Genentech, Inc., South San Francisco, CA
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
| | - Rachael Couture
- Department of Cell Biology, Ludwig Institute for Cancer Research, Yale University School of Medicine, New Haven, CT and Genentech, Inc., South San Francisco, CA
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
| | - Fayyaz S. Sutterwala
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
| | - Yasunori Ogura
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
| | - Richard A. Flavell
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
| | - Ira Mellman
- Department of Cell Biology, Ludwig Institute for Cancer Research, Yale University School of Medicine, New Haven, CT and Genentech, Inc., South San Francisco, CA
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
| | - F. Gisou van der Goot
- Ecole Polytechnique Fédérale de Lausanne, Global Health Institute, Station 15, CH-1015 Lausanne, Switzerland
| |
Collapse
|
42
|
Chapelsky S, Batty S, Frost M, Mogridge J. Inhibition of anthrax lethal toxin-induced cytolysis of RAW264.7 cells by celastrol. PLoS One 2008; 3:e1421. [PMID: 18183301 PMCID: PMC2170518 DOI: 10.1371/journal.pone.0001421] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 12/17/2007] [Indexed: 01/23/2023] Open
Abstract
Background Bacillus anthracis is the bacterium responsible for causing anthrax. The ability of B. anthracis to cause disease is dependent on a secreted virulence factor, lethal toxin, that promotes survival of the bacteria in the host by impairing the immune response. A well-studied effect of lethal toxin is the killing of macrophages, although the molecular mechanisms involved have not been fully characterized. Methodology/Principal Findings Here, we demonstrate that celastrol, a quinone methide triterpene derived from a plant extract used in herbal medicine, inhibits lethal toxin-induced death of RAW264.7 murine macrophages. Celastrol did not prevent cleavage of mitogen activated protein kinase kinase 1, a cytosolic target of the toxin, indicating that it did not inhibit the uptake or catalytic activity of lethal toxin. Surprisingly, celastrol conferred almost complete protection when it was added up to 1.5 h after intoxication, indicating that it could rescue cells in the late stages of intoxication. Since the activity of the proteasome has been implicated in intoxication using other pharmacological agents, we tested whether celastrol blocked proteasome activity. We found that celastrol inhibited the proteasome-dependent degradation of proteins in RAW264.7 cells, but only slightly inhibited proteasome-mediated cleavage of fluorogenic substrates in vitro. Furthermore, celastrol blocked stimulation of IL-18 processing, indicating that celastrol acted upstream of inflammasome activation. Conclusions/Significance This work identifies celastrol as an inhibitor of lethal toxin-mediated macrophage lysis and suggests an inhibitory mechanism involving inhibition of the proteasome pathway.
Collapse
Affiliation(s)
- Sarah Chapelsky
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Sarah Batty
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Mia Frost
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jeremy Mogridge
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
Passalacqua KD, Bergman NH. Bacillus anthracis: interactions with the host and establishment of inhalational anthrax. Future Microbiol 2007; 1:397-415. [PMID: 17661631 DOI: 10.2217/17460913.1.4.397] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Due to its potential as a bioweapon, Bacillus anthracis has received a great deal of attention in recent years, and a significant effort has been devoted to understanding how this organism causes anthrax. There has been a particular focus on the inhalational form of the disease, and studies over the past several years have painted an increasingly complex picture of how B. anthracis enters the mammalian host, survives the host's defense mechanisms, disseminates throughout the body and causes death. This article reviews recent advances in these areas, with a focus on how the bacterium interacts with its host in establishing infection and causing anthrax.
Collapse
Affiliation(s)
- Karla D Passalacqua
- University of Michigan Medical School, Department of Microbiology & Immunology, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
44
|
Ha SD, Ng D, Pelech SL, Kim SO. Critical role of the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase-3 signaling pathway in recovery from anthrax lethal toxin-induced cell cycle arrest and MEK cleavage in macrophages. J Biol Chem 2007; 282:36230-9. [PMID: 17951252 DOI: 10.1074/jbc.m707622200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anthrax lethal toxin (LeTx) is a virulence factor causing immune suppression and toxic shock of Bacillus anthracis infected host. It inhibits cytokine production and cell proliferation/differentiation in various immune cells. This study showed that a brief exposure of LeTx caused a continual MEK1 cleavage and prevented tumor necrosis factor-alpha (TNF) production in response to lipopolysaccharide (LPS) in non-proliferating cells such as human peripheral blood mononuclear cells or mouse primary peritoneal macrophages. In human monocytic cell lines U-937 and THP-1, LeTx induced cell cycle arrest in G0-G1 phase by rapid down-regulation of cyclin D1/D2 and checkpoint kinase 1 through MEK1 inhibition. However, THP-1 cells adaptively adjusted to LeTx and overrode cell cycle arrest by activating the phosphatidylinositol 3-kinase/Akt signaling pathway. Inhibitory Ser-9 phosphorylation of glycogen synthase kinase 3beta (GSK3beta) by Akt prevented proteasome-mediated cyclin D1 degradation and induced cell cycle progress in LeTx-intoxicated THP-1 cells. Recovery from cell cycle arrest was required before recovering from on-going MEK1 cleavage and suppression of TNF production. Furthermore, pretreatment with LeTx or the GSK3-specific inhibitor SB-216763, or transfection with dominant active mutant Akt or degradation-defected mutant cyclin D1 protected cells from LeTx-induced cell cycle arrest, on-going MEK1 cleavage and suppression of TNF production. These results indicate that modulation of phosphatidylinositol 3-kinase/Akt/GSK3beta signaling cascades can be beneficial for protecting or facilitating recovery from cellular LeTx intoxication in cells that depend on basal MEK1 activity for proliferation.
Collapse
Affiliation(s)
- Soon-Duck Ha
- Department of Microbiology and Immunology, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario, Canada N6G 2V4
| | | | | | | |
Collapse
|
45
|
Li Y, Sherer K, Cui X, Eichacker PQ. New insights into the pathogenesis and treatment of anthrax toxin-induced shock. Expert Opin Biol Ther 2007; 7:843-54. [PMID: 17555370 DOI: 10.1517/14712598.7.6.843] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Inhalational Bacillus anthracis infection is a leading bioterrorist health threat in the US today. Lethal (LeTx) and edema toxin production are key to the virulent effects of this lethal bacteria. Recent insights into the structure and function of these toxins have increased the understanding of both the pathogenesis and treatment of anthrax. These are binary type toxins comprised of protective antigen necessary for their cellular uptake and either lethal or edema factors, the toxigenic moieties. Primary cellular receptors for protective antigen have been identified and the processing of the completed toxins clarified. Consistent with the ability of lethal factor to cleave mitogen activated protein kinase kinases, the evidence indicates that an excessive inflammatory response does not contribute to shock with LeTx. Rather, the immunosuppressive effects of LeTx could promote infection; however, direct endothelial dysfunction may have an important role in shock due to LeTx. Recent studies show that edema factor, a potent adenyl cyclase, may have a major role in shock during anthrax and that it may also be immunosuppresive. Therapies under development which target several steps in the cellular uptake and function of these two toxins have been effective in both in vitro and in vivo systems. Understanding how best to apply these agents in combination with conventional treatments should be a goal of future research.
Collapse
MESH Headings
- Adenylyl Cyclases/immunology
- Adenylyl Cyclases/metabolism
- Animals
- Anthrax/complications
- Anthrax/drug therapy
- Anthrax/metabolism
- Anthrax Vaccines/therapeutic use
- Antibodies, Monoclonal/therapeutic use
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Bacillus anthracis/immunology
- Bacillus anthracis/metabolism
- Bacillus anthracis/pathogenicity
- Bacterial Toxins/immunology
- Bacterial Toxins/metabolism
- Endothelium, Vascular/microbiology
- Endothelium, Vascular/physiopathology
- Humans
- Receptors, Peptide/metabolism
- Shock, Septic/drug therapy
- Shock, Septic/metabolism
- Shock, Septic/microbiology
- Shock, Septic/physiopathology
- Virulence
Collapse
Affiliation(s)
- Yan Li
- National Institutes of Health, Critical Care Medicine Department, Clinical Center, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
46
|
Abstract
Infectious microbes face an unwelcoming environment in their mammalian hosts, which have evolved elaborate multicelluar systems for recognition and elimination of invading pathogens. A common strategy used by pathogenic bacteria to establish infection is to secrete protein factors that block intracellular signalling pathways essential for host defence. Some of these proteins also act as toxins, directly causing pathology associated with disease. Bacillus anthracis, the bacterium that causes anthrax, secretes two plasmid-encoded enzymes, LF (lethal factor) and EF (oedema factor), that are delivered into host cells by a third bacterial protein, PA (protective antigen). The two toxins act on a variety of cell types, disabling the immune system and inevitably killing the host. LF is an extraordinarily selective metalloproteinase that site-specifically cleaves MKKs (mitogen-activated protein kinase kinases). Cleavage of MKKs by LF prevents them from activating their downstream MAPK (mitogen-activated protein kinase) substrates by disrupting a critical docking interaction. Blockade of MAPK signalling functionally impairs cells of both the innate and adaptive immune systems and induces cell death in macrophages. EF is an adenylate cyclase that is activated by calmodulin through a non-canonical mechanism. EF causes sustained and potent activation of host cAMP-dependent signalling pathways, which disables phagocytes. Here I review recent progress in elucidating the mechanisms by which LF and EF influence host signalling and thereby contribute to disease.
Collapse
Affiliation(s)
- Benjamin E Turk
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
47
|
Glomski IJ, Corre JP, Mock M, Goossens PL. Cutting Edge: IFN-gamma-producing CD4 T lymphocytes mediate spore-induced immunity to capsulated Bacillus anthracis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:2646-50. [PMID: 17312104 DOI: 10.4049/jimmunol.178.5.2646] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Virulent strains of Bacillus anthracis produce immunomodulating toxins and an antiphagocytic capsule. The toxin component-protective Ag is a key target of the antianthrax immune response that induces production of toxin-neutralizing Abs. Coimmunization with spores enhances the antitoxin vaccine, and inactivated spores alone confer measurable protection. We aimed to identify the mechanisms of protection induced in inactivated-spore immunized mice that function independently of the toxin/antitoxin vaccine system. This goal was addressed with humoral and CD4 T lymphocyte transfer, in vivo depletion of CD4 T lymphocytes and IFN-gamma, and Ab-deficient (muMT(-/-)) or IFN-gamma-insensitive (IFN-gammaR(-/-)) mice. We found that humoral immunity did not protect from nontoxinogenic capsulated bacteria, whereas a cellular immune response by IFN-gamma-producing CD4 T lymphocytes protected mice. These results are the first evidence of protective cellular immunity against capsulated B. anthracis and suggest that future antianthrax vaccines should strive to augment cellular adaptive immunity.
Collapse
Affiliation(s)
- Ian Justin Glomski
- Unité des Toxines et Pathogénie Bactérienne, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
48
|
Hirsh MI, Manov I, Cohen-Kaplan V, Iancu TC. Ultrastructural features of lymphocyte suppression induced by anthrax lethal toxin and treated with chloroquine. J Transl Med 2007; 87:182-8. [PMID: 17179957 DOI: 10.1038/labinvest.3700505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Antibacterial therapy does not fully protect against anthrax because of severe systemic intoxication. Lysosomal processing of anthrax lethal toxin (LTX) is a key event in the disease pathogenesis, and agents interfering with this process, like chloroquine (CQ), may have practical applications. Although LTX is known to induce T-cell suppression, precise mechanisms of this phenomenon are not completely characterized. In the present study, we investigated alterations of lymphocyte ultrastructure caused by LTX and associated with favorable effect of CQ on the LTX-related dysfunction. Peripheral blood lymphocytes were activated via CD3 crosslinking in the presence or absence of LTX and CQ, and examined by transmission electron microscopy, flow cytometry and immunoblotting. Crosslinking of CD3 induced ultrastructural signs of lymphocyte activation, mostly disappeared after LTX treatment. The cell ultrastructure was well preserved in LTX-treated cells, despite dose- and time-dependent inhibition of T-cell function associated with impaired activation of mitogen-activated protein kinase. Regardless of intracellular signaling abnormalities, LTX did not decrease T-cell viability. CQ restored expression of CD69 (P<0.001) and improved phosphorylation of p38 (P=0.022) in LTX-exposed T lymphocytes. The exposure of cells to CQ, with or without LTX, led to appearance of many phagolysosomes with heterogeneous content, possibly representing unprocessed internalized material. In conclusion, LTX suppressed T-cell functions, but did not affect the viability and caused no ultrastructural damage. Ultrastructural observations indicated that CQ reduced harmful effects of LTX, possibly by interfering with lysosomal activity.
Collapse
Affiliation(s)
- Mark I Hirsh
- Laboratory for Shock and Trauma Research, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| | | | | | | |
Collapse
|
49
|
Tournier JN, Quesnel-Hellmann A, Cleret A, Vidal DR. Contribution of toxins to the pathogenesis of inhalational anthrax. Cell Microbiol 2007; 9:555-65. [PMID: 17223930 DOI: 10.1111/j.1462-5822.2006.00866.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Inhalational anthrax is a life-threatening infectious disease of considerable concern, especially as a potential bioterrorism agent. Progress is gradually being made towards understanding the mechanisms used by Bacillus anthracis to escape the immune system and to induce severe septicaemia associated with toxaemia and leading to death. Recent advances in fundamental research have revealed previously unsuspected roles for toxins in various cell types. We summarize here pathological data for animal models and macroscopic histological examination data from recent clinical records, which we link to the effects of toxins. We describe three major steps in infection: (i) an invasion phase in the lung, during which toxins have short-distance effects on lung phagocytes; (ii) a phase of bacillus proliferation in the mediastinal lymph nodes, with local effects of toxins; and (iii) a terminal, diffusion phase, characterized by a high blood bacterial load and by long-distance effects of toxins, leading to host death. The pathophysiology of inhalational anthrax thus involves interactions between toxins and various cell partners, throughout the course of infection.
Collapse
Affiliation(s)
- Jean-Nicolas Tournier
- Pôle interactions hôte-pathogènes, Département de biologie des agents transmissibles, CRSSA, F-38702 La Tronche cedex, France.
| | | | | | | |
Collapse
|
50
|
Sherer K, Li Y, Cui X, Eichacker PQ. Lethal and edema toxins in the pathogenesis of Bacillus anthracis septic shock: implications for therapy. Am J Respir Crit Care Med 2006; 175:211-21. [PMID: 17095744 PMCID: PMC2176088 DOI: 10.1164/rccm.200608-1239cp] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Recent research regarding the structure and function of Bacillus anthracis lethal (LeTx) and edema (ETx) toxins provides growing insights into the pathophysiology and treatment of shock with this lethal bacteria. These are both binary-type toxins composed of protective antigen necessary for their cellular uptake and either lethal or edema factors, the toxigenic moieties. The primary cellular receptors for protective antigen have been identified and constructed and key steps in the extracellular processing and internalization of the toxins clarified. Consistent with the lethal factor's primary action as an intracellular endopeptidase targeting mitogen-activated protein kinase kinases, growing evidence indicates that shock with this toxin does not result from an excessive inflammatory response. In fact, the potent immunosuppressive effects of LeTx may actually contribute to the establishment and persistence of infection. Instead, shock with LeTx may be related to the direct injurious effects of lethal factor on endothelial cell function. Despite the importance of LeTx, very recent studies show that edema factor, a potent adenyl cyclase, has the ability to make a substantial contribution to shock caused by B. anthracis and works additively with LeTx. Furthermore, ETx may contribute to the immunosuppressive effects of LeTx. Therapies under development that target several different steps in the cellular uptake and function of these two toxins have been effective in in vitro and in vivo systems. Understanding how best to apply these agents clinically and how they interact with conventional treatments should be goals for future research.
Collapse
Affiliation(s)
- Kevin Sherer
- Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|