1
|
Bhutani B, Sharma V, Ganguly NK, Rana R. Unravelling the modified T cell receptor through Gen-Next CAR T cell therapy in Glioblastoma: Current status and future challenges. Biomed Pharmacother 2025; 186:117987. [PMID: 40117901 DOI: 10.1016/j.biopha.2025.117987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025] Open
Abstract
PURPOSE Despite current technological advancements in the treatment of glioma, immediate alleviation of symptoms can be catered by therapeutic modalities, including surgery, chemotherapy, and combinatorial radiotherapy that exploit aberrations of glioma. Additionally, a small number of target antigens, their heterogeneity, and immune evasion are the potential reasons for developing targeted therapies. This oncologic milestone has catalyzed interest in developing immunotherapies against Glioblastoma to improve overall survival and cure patients with high-grade glioma. The next-gen CAR-T Cell therapy is one of the effective immunotherapeutic strategies in which autologous T cells have been modified to express receptors against GBM and it modulates cytotoxicity. METHODS In this review article, we examine preclinical and clinical outcomes, and limitations as well as present cutting-edge techniques to improve the function of CAR-T cell therapy and explore the possibility of combination therapy. FINDINGS To date, several CAR T-cell therapies are being evaluated in clinical trials for GBM and other brain malignancies and multiple preclinical studies have demonstrated encouraging outcomes. IMPLICATIONS CAR-T cell therapy represents a promising therapeutic paradigm in the treatment of solid tumors but a few limitations include, the blood-brain barrier (BBB), antigen escape, tumor microenvironment (TME), tumor heterogeneity, and its plasticity that suppresses immune responses weakens the ability of this therapy. Additional investigation is required that can accurately identify the targets and reflect the similar architecture of glioblastoma, thus optimizing the efficiency of CAR-T cell therapy; allowing for the selection of patients most likely to benefit from immuno-based treatments.
Collapse
Affiliation(s)
- Bhavya Bhutani
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Vyoma Sharma
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Nirmal Kumar Ganguly
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Rashmi Rana
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India.
| |
Collapse
|
2
|
Rausch L, Kallies A. Molecular Mechanisms Governing CD8 T Cell Differentiation and Checkpoint Inhibitor Response in Cancer. Annu Rev Immunol 2025; 43:515-543. [PMID: 40279308 DOI: 10.1146/annurev-immunol-082223-044122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
CD8 T cells play a critical role in antitumor immunity. However, over time, they often become dysfunctional or exhausted and ultimately fail to control tumor growth. To effectively harness CD8 T cells for cancer immunotherapy, a detailed understanding of the mechanisms that govern their differentiation and function is crucial. This review summarizes our current knowledge of the molecular pathways that regulate CD8 T cell heterogeneity and function in chronic infection and cancer and outlines how T cells respond to therapeutic checkpoint blockade. We explore how T cell-intrinsic and -extrinsic factors influence CD8 T cell differentiation, fate choices, and functional states and ultimately dictate their response to therapy. Identifying cells that orchestrate long-term antitumor immunity and understanding the mechanisms that govern their development and persistence are critical steps toward improving cancer immunotherapy.
Collapse
Affiliation(s)
- Lisa Rausch
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia;
| | - Axel Kallies
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia;
| |
Collapse
|
3
|
Saxena K, Hung SH, Ryu E, Singh S, Zhang Tatarata Q, Zeng Z, Wang Z, Konopleva MY, Yee C. BH3 mimetics augment cytotoxic T cell killing of acute myeloid leukemia via mitochondrial apoptotic mechanism. Cell Death Discov 2025; 11:120. [PMID: 40140361 PMCID: PMC11947210 DOI: 10.1038/s41420-025-02375-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/29/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Adoptive cell therapy (ACT) can address an unmet clinical need for patients with relapsed/refractory acute myeloid leukemia (AML), but its effect is often modest in the setting of high tumor burden. In this study, we postulated that strategies to lower the AML apoptotic threshold will augment T cell killing of AML cells. BH3 mimetics, such as venetoclax, are a clinically approved class of compounds that predispose cells to intrinsic apoptosis by inhibiting anti-apoptotic mitochondrial proteins. We explored the anti-leukemic efficacy of BH3 mimetics combined with WT1-specific CD8+ T cells on AML cell lines and primary samples from patients with a diverse array of disease characteristics to evaluate if lowering the cellular apoptotic threshold via inhibition of anti-apoptotic mitochondrial proteins can increase leukemic cell sensitivity to T cell therapy. We found that the combination approach of BH3 mimetic and CD8+ T cells led to significantly increased killing of established AML lines as well as of adverse-risk primary AML leukemic blast cells. In contrast to the hypothesis that enhanced killing would be due to combined activation of the intrinsic and extrinsic apoptotic pathways, our data suggests that CTL-mediated killing of AML cells was accomplished primarily through activation of the intrinsic/mitochondrial apoptotic pathway. This highly effective combinatorial activity due to convergence on the mitochondrial apoptotic pathway was conserved across multiple AML cell lines and primary samples, suggesting that mitochondrial priming may represent a novel mechanism of optimizing adoptive cell therapy for AML patients.
Collapse
Affiliation(s)
- Kapil Saxena
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Gilead Sciences Inc., Foster City, CA, USA
| | - Shao-Hsi Hung
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Esther Ryu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shailbala Singh
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Zhang Tatarata
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Zhihong Zeng
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhe Wang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Marina Y Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Oncology and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Cassian Yee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
4
|
Kureshi CT, Dougan SK. Cytokines in cancer. Cancer Cell 2025; 43:15-35. [PMID: 39672170 PMCID: PMC11841838 DOI: 10.1016/j.ccell.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/15/2024]
Abstract
Cytokines are proteins used by immune cells to communicate with each other and with cells in their environment. The pleiotropic effects of cytokine networks are determined by which cells express cytokines and which cells express cytokine receptors, with downstream outcomes that can differ based on cell type and environmental cues. Certain cytokines, such as interferon (IFN)-γ, have been clearly linked to anti-tumor immunity, while others, such as the innate inflammatory cytokines, promote oncogenesis. Here we provide an overview of the functional roles of cytokines in the tumor microenvironment. Although we have a sophisticated understanding of cytokine networks, therapeutically targeting cytokine pathways in cancer has been challenging. We discuss current progress in cytokine blockade, cytokine-based therapies, and engineered cytokine therapeutics as emerging cancer treatments of interest.
Collapse
Affiliation(s)
- Courtney T Kureshi
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Balkhi S, Bilato G, De Lerma Barbaro A, Orecchia P, Poggi A, Mortara L. Efficacy of Anti-Cancer Immune Responses Elicited Using Tumor-Targeted IL-2 Cytokine and Its Derivatives in Combined Preclinical Therapies. Vaccines (Basel) 2025; 13:69. [PMID: 39852848 PMCID: PMC11768832 DOI: 10.3390/vaccines13010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Effective cancer therapies must address the tumor microenvironment (TME), a complex network of tumor cells and stromal components, including endothelial, immune, and mesenchymal cells. Durable outcomes require targeting both tumor cells and the TME while minimizing systemic toxicity. Interleukin-2 (IL-2)-based therapies have shown efficacy in cancers such as metastatic melanoma and renal cell carcinoma but are limited by severe side effects. Innovative IL-2-based immunotherapeutic approaches include immunotoxins, such as antibody-drug conjugates, immunocytokines, and antibody-cytokine fusion proteins that enhance tumor-specific delivery. These strategies activate cytotoxic CD8+ T lymphocytes and natural killer (NK) cells, eliciting a potent Th1-mediated anti-tumor response. Modified IL-2 variants with reduced Treg cell activity further improve specificity and reduce immunosuppression. Additionally, IL-2 conjugates with peptides or anti-angiogenic agents offer improved therapeutic profiles. Combining IL-2-based therapies with immune checkpoint inhibitors (ICIs), anti-angiogenic agents, or radiotherapy has demonstrated synergistic potential. Preclinical and clinical studies highlight reduced toxicity and enhanced anti-tumor efficacy, overcoming TME-driven immune suppression. These approaches mitigate the limitations of high-dose soluble IL-2 therapy, promoting immune activation and minimizing adverse effects. This review critically explores advances in IL-2-based therapies, focusing on immunotoxins, immunocytokines, and IL-2 derivatives. Emphasis is placed on their role in combination strategies, showcasing their potential to target the TME and improve clinical outcomes effectively. Also, the use of IL-2 immunocytokines in "in situ" vaccination to relieve the immunosuppression of the TME is discussed.
Collapse
Affiliation(s)
- Sahar Balkhi
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (G.B.); (L.M.)
| | - Giorgia Bilato
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (G.B.); (L.M.)
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20123 Milan, Italy
| | - Andrea De Lerma Barbaro
- Laboratory of Comparative Physiopathology, Department of Biotechnology and Life Sciences, University of Insubria, 20145 Varese, Italy;
| | - Paola Orecchia
- Pathology and Experimental Immunology Operative Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Alessandro Poggi
- SSD Oncologia Molecolare e Angiogenesi, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Lorenzo Mortara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (G.B.); (L.M.)
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20123 Milan, Italy
| |
Collapse
|
6
|
Amaria RN, Komanduri KV, Schoenfeld AJ, Ramsingh G, Burga RA, Jagasia MH. Entering a new era of tumor-infiltrating lymphocyte cell therapy innovation. Cytotherapy 2024:S1465-3249(24)00970-8. [PMID: 40131263 DOI: 10.1016/j.jcyt.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 03/26/2025]
Abstract
The therapeutic potential of adoptive cell therapy using tumor-infiltrating lymphocytes (TIL) has been established in advanced melanoma. In February 2024, lifileucel became the first TIL cell therapy to be approved by the FDA and is indicated for adult patients with advanced melanoma. Although the benefit of TIL cell therapy is best characterized in patients with advanced melanoma, several trials are ongoing investigating its safety and efficacy in other solid tumor indications. Nevertheless, wider applicability and adoption of TIL cell therapy will require continued innovation to provide a safer and more efficacious cell therapy product. Several investigational TIL cell therapy products are in preclinical and early clinical development and are applying novel technologies to overcome key challenges. Herein, we summarize the current state of TIL cell therapy and highlight innovations that may reshape its future.
Collapse
Affiliation(s)
- Rodabe N Amaria
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Krishna V Komanduri
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | | | | | | | | |
Collapse
|
7
|
Yee C, Saxena K, Ryu E, Hung SH, Singh S, Zhang Q, Zeng Z, Wang Z, Konopleva M. BH3 Mimetics Augment Cytotoxic T Cell Killing of Acute Myeloid Leukemia via Mitochondrial Apoptotic Mechanism. RESEARCH SQUARE 2024:rs.3.rs-5307127. [PMID: 39711535 PMCID: PMC11661303 DOI: 10.21203/rs.3.rs-5307127/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Adoptive cell therapy (ACT) can address an unmet clinical need for patients with relapsed/refractory acute myeloid leukemia (AML), but its effect is often modest in the setting of high tumor burden. In this study, we postulated that strategies to lower the AML apoptotic threshold will augment T cell killing of AML cells. BH3 mimetics, such as venetoclax, are a clinically approved class of compounds that predispose cells to intrinsic apoptosis by inhibiting anti-apoptotic mitochondrial proteins. We explored the anti-leukemic efficacy of BH3 mimetics combined with WT1-specific CD8 + T cells on AML cell lines and primary samples from patients with a diverse array of disease characteristics to evaluate if lowering the cellular apoptotic threshold via inhibition of anti-apoptotic mitochondrial proteins can increase leukemic cell sensitivity to T cell therapy. We found that the combination approach of BH3 mimetic and CD8 + T cells led to significantly increased killing of established AML lines as well as of adverse-risk primary AML leukemic blast cells. In contrast to the hypothesis that enhanced killing would be due to combined activation of the intrinsic and extrinsic apoptotic pathways, we found that CTL-mediated killing of AML cells was accomplished primarily through activation of the intrinsic/mitochondrial apoptotic pathway. This highly effective combinatorial activity due to convergence on the same apoptotic pathway was conserved across multiple AML cell lines and primary samples, suggesting that mitochondrial priming may represent a novel mechanism of optimizing adoptive cell therapy for AML patients.
Collapse
Affiliation(s)
- Cassian Yee
- The University of Texas MD Anderson Cancer Center
| | | | - Esther Ryu
- University of Texas MD Anderson Cancer Center
| | | | | | - Qi Zhang
- University of Texas MD Anderson Cancer Center
| | | | - Zhe Wang
- University of Texas MD Anderson Cancer Center
| | | |
Collapse
|
8
|
Qiu X, Li S, Fan T, Zhang Y, Wang B, Zhang B, Zhang M, Zhang L. Advances and prospects in tumor infiltrating lymphocyte therapy. Discov Oncol 2024; 15:630. [PMID: 39514075 PMCID: PMC11549075 DOI: 10.1007/s12672-024-01410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
Tumor-infiltrating lymphocyte (TIL) therapy in adoptive T-cell therapy (ACT) has already caused durable regression in a variety of cancer types due to T-cell persistence, clinical activity, and duration of objective response and safety. TILs are composed of polyclonal effector T-cells specific to heterogenetic tumor antigens, reasonably providing a promising means for tumor therapy. In addition, their expansion in vitro can release them from the suppressive tumor microenvironment. Even though significant advances have been made in the procedure of TIL therapy, from TIL isolation, modification, expansion, and infusion back to the patient to target the tumor, strategy optimization is always ongoing to overcome drawbacks such as a complex process, options for the lineage differentiation status of TILs, and sufficient trafficking of TILs to the tumor. In this review, we summarize the current advances of TIL therapy, raise problem-based optimization strategies, and provide future perspectives on next-generation TIL therapy as a potential avenue for enhancing cell-based immunotherapy.
Collapse
Affiliation(s)
- Xu Qiu
- The Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Shengjun Li
- Clinical Laboratory, Qingdao Women and Children's Hospital, Qingdao, Shandong, China
| | - Tianyu Fan
- The Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Taian City Central Hospital, Taian, Shandong, China
| | - Yue Zhang
- The Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Bin Wang
- The Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Bei Zhang
- The Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Mingzhe Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Zhang
- The Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
9
|
Lecoultre M, Walker PR, El Helali A. Oncolytic virus and tumor-associated macrophage interactions in cancer immunotherapy. Clin Exp Med 2024; 24:202. [PMID: 39196415 PMCID: PMC11358230 DOI: 10.1007/s10238-024-01443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
Oncolytic viruses (OV) are a promising strategy in cancer immunotherapy. Their capacity to promote anti-tumoral immunity locally raises hope that cancers unresponsive to current immunotherapy approaches could be tackled more efficiently. In this context, tumor-associated macrophages (TAM) must be considered because of their pivotal role in cancer immunity. Even though TAM tend to inhibit anti-tumoral responses, their ability to secrete pro-inflammatory cytokines and phagocytose cancer cells can be harnessed to promote therapeutic cancer immunity. OVs have the potential to promote TAM pro-inflammatory functions that favor anti-tumoral immunity. But in parallel, TAM pro-inflammatory functions induce OV clearance in the tumor, thereby limiting OV efficacy and highlighting that the interaction between OV and TAM is a double edge sword. Moreover, engineered OVs were recently developed to modulate specific TAM functions such as phagocytic activity. The potential of circulating monocytes to deliver OV into the tumor after intravenous administration is also emerging. In this review, we will present the interaction between OV and TAM, the potential of engineered OV to modulate specific TAM functions, and the promising role of circulating monocytes in OV delivery to the tumor.
Collapse
Affiliation(s)
- Marc Lecoultre
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, Hong Kong University, Hong Kong, China
- Division of General Internal Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Paul R Walker
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Immunobiology of Brain Tumours Laboratory, Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland
| | - Aya El Helali
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, Hong Kong University, Hong Kong, China.
| |
Collapse
|
10
|
Levin N, Kim SP, Marquardt CA, Vale NR, Yu Z, Sindiri S, Gartner JJ, Parkhurst M, Krishna S, Lowery FJ, Zacharakis N, Levy L, Prickett TD, Benzine T, Ray S, Masi RV, Gasmi B, Li Y, Islam R, Bera A, Goff SL, Robbins PF, Rosenberg SA. Neoantigen-specific stimulation of tumor-infiltrating lymphocytes enables effective TCR isolation and expansion while preserving stem-like memory phenotypes. J Immunother Cancer 2024; 12:e008645. [PMID: 38816232 PMCID: PMC11141192 DOI: 10.1136/jitc-2023-008645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Tumor-infiltrating lymphocytes (TILs) targeting neoantigens can effectively treat a selected set of metastatic solid cancers. However, harnessing TILs for cancer treatments remains challenging because neoantigen-reactive T cells are often rare and exhausted, and ex vivo expansion can further reduce their frequencies. This complicates the identification of neoantigen-reactive T-cell receptors (TCRs) and the development of TIL products with high reactivity for patient treatment. METHODS We tested whether TILs could be in vitro stimulated against neoantigens to achieve selective expansion of neoantigen-reactive TILs. Given their prevalence, mutant p53 or RAS were studied as models of human neoantigens. An in vitro stimulation method, termed "NeoExpand", was developed to provide neoantigen-specific stimulation to TILs. 25 consecutive patient TILs from tumors harboring p53 or RAS mutations were subjected to NeoExpand. RESULTS We show that neoantigenic stimulation achieved selective expansion of neoantigen-reactive TILs and broadened the neoantigen-reactive CD4+ and CD8+ TIL clonal repertoire. This allowed the effective isolation of novel neoantigen-reactive TCRs. Out of the 25 consecutive TIL samples, neoantigenic stimulation enabled the identification of 16 unique reactivities and 42 TCRs, while conventional TIL expansion identified 9 reactivities and 14 TCRs. Single-cell transcriptome analysis revealed that neoantigenic stimulation increased neoantigen-reactive TILs with stem-like memory phenotypes expressing IL-7R, CD62L, and KLF2. Furthermore, neoantigenic stimulation improved the in vivo antitumor efficacy of TILs relative to the conventional OKT3-induced rapid TIL expansion in p53-mutated or KRAS-mutated xenograft mouse models. CONCLUSIONS Taken together, neoantigenic stimulation of TILs selectively expands neoantigen-reactive TILs by frequencies and by their clonal repertoire. NeoExpand led to improved phenotypes and functions of neoantigen-reactive TILs. Our data warrant its clinical evaluation. TRIAL REGISTRATION NUMBER NCT00068003, NCT01174121, and NCT03412877.
Collapse
Affiliation(s)
- Noam Levin
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Sanghyun P Kim
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Charles A Marquardt
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Nolan R Vale
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Zhiya Yu
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Sivasish Sindiri
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Jared J Gartner
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Maria Parkhurst
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Sri Krishna
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Frank J Lowery
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Nikolaos Zacharakis
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Lior Levy
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Todd D Prickett
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Tiffany Benzine
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Satyajit Ray
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Robert V Masi
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Billel Gasmi
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Yong Li
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Rafiqul Islam
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Alakesh Bera
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Stephanie L Goff
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Paul F Robbins
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Steven A Rosenberg
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
11
|
García-García L, G. Sánchez E, Ivanova M, Pastora K, Alcántara-Sánchez C, García-Martínez J, Martín-Antonio B, Ramírez M, González-Murillo Á. Choosing T-cell sources determines CAR-T cell activity in neuroblastoma. Front Immunol 2024; 15:1375833. [PMID: 38601159 PMCID: PMC11004344 DOI: 10.3389/fimmu.2024.1375833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction The clinical success of chimeric antigen receptor-modified T cells (CAR-T cells) for hematological malignancies has not been reproduced for solid tumors, partly due to the lack of cancer-type specific antigens. In this work, we used a novel combinatorial approach consisting of a versatile anti-FITC CAR-T effector cells plus an FITC-conjugated neuroblastoma (NB)-targeting linker, an FITC-conjugated monoclonal antibody (Dinutuximab) that recognizes GD2. Methods We compared cord blood (CB), and CD45RA-enriched peripheral blood leukapheresis product (45RA) as allogeneic sources of T cells, using peripheral blood (PB) as a control to choose the best condition for anti-FITC CAR-T production. Cells were manufactured under two cytokine conditions (IL-2 versus IL-7+IL-15+IL-21) with or without CD3/CD28 stimulation. Immune phenotype, vector copy number, and genomic integrity of the final products were determined for cell characterization and quality control assessment. Functionality and antitumor capacity of CB/45RA-derived anti-FITC CAR-T cells were analyzed in co-culture with different anti-GD2-FITC labeled NB cell lines. Results The IL-7+IL-15+IL-21 cocktail, in addition to co-stimulation signals, resulted in a favorable cell proliferation rate and maintained less differentiated immune phenotypes in both CB and 45RA T cells. Therefore, it was used for CAR-T cell manufacturing and further characterization. CB and CD45RA-derived anti-FITC CAR-T cells cultured with IL-7+IL-15+IL-21 retained a predominantly naïve phenotype compared with controls. In the presence of the NB-FITC targeting, CD4+ CB-derived anti-FITC CAR-T cells showed the highest values of co-stimulatory receptors OX40 and 4-1BB, and CD8+ CAR-T cells exhibited high levels of PD-1 and 4-1BB and low levels of TIM3 and OX40, compared with CAR-T cells form the other sources studied. CB-derived anti-FITC CAR-T cells released the highest amounts of cytokines (IFN-γ and TNF-α) into co-culture supernatants. The viability of NB target cells decreased to 30% when co-cultured with CB-derived CAR-T cells during 48h. Conclusion CB and 45RA-derived T cells may be used as allogeneic sources of T cells to produce CAR-T cells. Moreover, ex vivo culture with IL-7+IL-15+IL-21 could favor CAR-T products with a longer persistence in the host. Our strategy may complement the current use of Dinutuximab in treating NB through its combination with a targeted CAR-T cell approach.
Collapse
Affiliation(s)
- Lorena García-García
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Advanced Therapies Unit, Fundación Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Elena G. Sánchez
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Advanced Therapies Unit, Fundación Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Mariya Ivanova
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Advanced Therapies Unit, Fundación Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Keren Pastora
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Advanced Therapies Unit, Fundación Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Cristina Alcántara-Sánchez
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Advanced Therapies Unit, Fundación Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Jorge García-Martínez
- Advanced Therapies Unit, Fundación Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Department of Progenitor and Cell Therapy Research Group, La Princesa Institute of Health Research, Madrid, Spain
| | - Beatriz Martín-Antonio
- Department of Experimental Hematology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain
| | - Manuel Ramírez
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Advanced Therapies Unit, Fundación Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Department of Progenitor and Cell Therapy Research Group, La Princesa Institute of Health Research, Madrid, Spain
| | - África González-Murillo
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Advanced Therapies Unit, Fundación Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Department of Progenitor and Cell Therapy Research Group, La Princesa Institute of Health Research, Madrid, Spain
| |
Collapse
|
12
|
García-Domínguez DJ, López-Enríquez S, Alba G, Garnacho C, Jiménez-Cortegana C, Flores-Campos R, de la Cruz-Merino L, Hajji N, Sánchez-Margalet V, Hontecillas-Prieto L. Cancer Nano-Immunotherapy: The Novel and Promising Weapon to Fight Cancer. Int J Mol Sci 2024; 25:1195. [PMID: 38256268 PMCID: PMC10816838 DOI: 10.3390/ijms25021195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer is a complex disease that, despite advances in treatment and the greater understanding of the tumor biology until today, continues to be a prevalent and lethal disease. Chemotherapy, radiotherapy, and surgery are the conventional treatments, which have increased the survival for cancer patients. However, the complexity of this disease together with the persistent problems due to tumor progression and recurrence, drug resistance, or side effects of therapy make it necessary to explore new strategies that address the challenges to obtain a positive response. One important point is that tumor cells can interact with the microenvironment, promoting proliferation, dissemination, and immune evasion. Therefore, immunotherapy has emerged as a novel therapy based on the modulation of the immune system for combating cancer, as reflected in the promising results both in preclinical studies and clinical trials obtained. In order to enhance the immune response, the combination of immunotherapy with nanoparticles has been conducted, improving the access of immune cells to the tumor, antigen presentation, as well as the induction of persistent immune responses. Therefore, nanomedicine holds an enormous potential to enhance the efficacy of cancer immunotherapy. Here, we review the most recent advances in specific molecular and cellular immunotherapy and in nano-immunotherapy against cancer in the light of the latest published preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Daniel J. García-Domínguez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain; (D.J.G.-D.); (S.L.-E.); (G.A.); (C.J.-C.); (R.F.-C.); (N.H.)
- Institute of Biomedicine of Seville, IBiS, 41013 Seville, Spain;
| | - Soledad López-Enríquez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain; (D.J.G.-D.); (S.L.-E.); (G.A.); (C.J.-C.); (R.F.-C.); (N.H.)
| | - Gonzalo Alba
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain; (D.J.G.-D.); (S.L.-E.); (G.A.); (C.J.-C.); (R.F.-C.); (N.H.)
| | - Carmen Garnacho
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain;
| | - Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain; (D.J.G.-D.); (S.L.-E.); (G.A.); (C.J.-C.); (R.F.-C.); (N.H.)
| | - Rocío Flores-Campos
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain; (D.J.G.-D.); (S.L.-E.); (G.A.); (C.J.-C.); (R.F.-C.); (N.H.)
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Luis de la Cruz-Merino
- Institute of Biomedicine of Seville, IBiS, 41013 Seville, Spain;
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Department of Medicine, University of Seville, 41009 Seville, Spain
| | - Nabil Hajji
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain; (D.J.G.-D.); (S.L.-E.); (G.A.); (C.J.-C.); (R.F.-C.); (N.H.)
- Cancer Division, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain; (D.J.G.-D.); (S.L.-E.); (G.A.); (C.J.-C.); (R.F.-C.); (N.H.)
- Institute of Biomedicine of Seville, IBiS, 41013 Seville, Spain;
- Clinical Biochemistry Service, Hospital Universitario Virgen Macarena, University of Seville, 41009 Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain; (D.J.G.-D.); (S.L.-E.); (G.A.); (C.J.-C.); (R.F.-C.); (N.H.)
- Institute of Biomedicine of Seville, IBiS, 41013 Seville, Spain;
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Clinical Biochemistry Service, Hospital Universitario Virgen Macarena, University of Seville, 41009 Seville, Spain
| |
Collapse
|
13
|
Ma M, Xie Y, Liu J, Wu L, Liu Y, Qin X. Biological effects of IL-21 on immune cells and its potential for cancer treatment. Int Immunopharmacol 2024; 126:111154. [PMID: 37977064 DOI: 10.1016/j.intimp.2023.111154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023]
Abstract
Interleukin-21 (IL-21), a member of the IL-2 cytokine family, is one of the most important effector and messenger molecules in the immune system. Produced by various immune cells, IL-21 has pleiotropic effects on innate and adaptive immune responses via regulation of natural killer, T, and B cells. An anti-tumor role of IL-21 has also been reported in the literature, as it may support cell proliferation or on the contrary induce growth arrest or apoptosis of the tumor cell. Anti-tumor effect of IL-21 enhances when combined with other agents that target tumor cells, immune regulatory circuits, or other immune-enhancing molecules. Therefore, understanding the biology of IL-21 in the tumor microenvironment (TME) and reducing its systemic toxic and side effects is crucial to ensure the maximum benefits of anti-tumor treatment strategies. In this review, we provide a comprehensive overview on the biological functions, roles in tumors, and the recent advances in preclinical and clinical research of IL-21 in tumor immunotherapy.
Collapse
Affiliation(s)
- Meichen Ma
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Xie
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lina Wu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yong Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
14
|
Mc Laughlin AM, Milligan PA, Yee C, Bergstrand M. Model-informed drug development of autologous CAR-T cell therapy: Strategies to optimize CAR-T cell exposure leveraging cell kinetic/dynamic modeling. CPT Pharmacometrics Syst Pharmacol 2023; 12:1577-1590. [PMID: 37448343 PMCID: PMC10681459 DOI: 10.1002/psp4.13011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023] Open
Abstract
Autologous Chimeric antigen receptor (CAR-T) cell therapy has been highly successful in the treatment of aggressive hematological malignancies and is also being evaluated for the treatment of solid tumors as well as other therapeutic areas. A challenge, however, is that up to 60% of patients do not sustain a long-term response. Low CAR-T cell exposure has been suggested as an underlying factor for a poor prognosis. CAR-T cell therapy is a novel therapeutic modality with unique kinetic and dynamic properties. Importantly, "clear" dose-exposure relationships do not seem to exist for any of the currently approved CAR-T cell products. In other words, dose increases have not led to a commensurate increase in the measurable in vivo frequency of transferred CAR-T cells. Therefore, alternative approaches beyond dose titration are needed to optimize CAR-T cell exposure. In this paper, we provide examples of actionable variables - design elements in CAR-T cell discovery, development, and clinical practice, which can be modified to optimize autologous CAR-T cell exposure. Most of these actionable variables can be assessed throughout the various stages of discovery and development as part of a well-informed research and development program. Model-informed drug development approaches can enable such study and program design choices from discovery through to clinical practice and can be an important contributor to cell therapy effectiveness and efficiency.
Collapse
Affiliation(s)
| | | | - Cassian Yee
- Department of Melanoma Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Department of ImmunologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | | |
Collapse
|
15
|
Giles JR, Globig AM, Kaech SM, Wherry EJ. CD8 + T cells in the cancer-immunity cycle. Immunity 2023; 56:2231-2253. [PMID: 37820583 PMCID: PMC11237652 DOI: 10.1016/j.immuni.2023.09.005] [Citation(s) in RCA: 134] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
CD8+ T cells are end effectors of cancer immunity. Most forms of effective cancer immunotherapy involve CD8+ T cell effector function. Here, we review the current understanding of T cell function in cancer, focusing on key CD8+ T cell subtypes and states. We discuss factors that influence CD8+ T cell differentiation and function in cancer through a framework that incorporates the classic three-signal model and a fourth signal-metabolism-and also consider the impact of the tumor microenvironment from a T cell perspective. We argue for the notion of immunotherapies as "pro-drugs" that act to augment or modulate T cells, which ultimately serve as the drug in vivo, and for the importance of overall immune health in cancer treatment and prevention. The progress in understanding T cell function in cancer has and will continue to improve harnessing of the immune system across broader tumor types to benefit more patients.
Collapse
Affiliation(s)
- Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna-Maria Globig
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Eivary SHA, Kheder RK, Najmaldin SK, Kheradmand N, Esmaeili SA, Hajavi J. Implications of IL-21 in solid tumor therapy. Med Oncol 2023; 40:191. [PMID: 37249661 DOI: 10.1007/s12032-023-02051-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023]
Abstract
Cancer, the most deadly disease, is known as a recent dilemma worldwide. Presently different treatments are used for curing cancers, especially solid cancers. Because of the immune-enhancing functions of cytokine, IL-21 as a cytokine may have new possibilities to manipulate the immune system in disease conditions, as it stimulates NK and CTL functions and drives IgG antibody production. Indeed, IL-21 has been revealed to elicit antitumor-immune responses in several tumor models. Combining IL-21 with other agents, which target tumor cells, immune-regulatory circuits, or other immune-enhancing molecules enhances this activity. The exciting breakthrough in the results obtained in pre-clinical situations has led to the early outset of present developing clinical trials in cancer patients. In the paper, we have reviewed the function of IL-21 in solid tumor immunotherapy.
Collapse
Affiliation(s)
- Seyed Hossein Abtahi Eivary
- Department of Medical Sciences of Laboratory, Infectious Diseases Research Center, School of Para-Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ramiar Kamal Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania, Sulaymaniyah, Iraq
| | - Soran K Najmaldin
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Nahid Kheradmand
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Jafar Hajavi
- Department of Basic Sciences, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Science, Gonabad, Iran.
| |
Collapse
|
17
|
Yu L, Lanqing G, Huang Z, Xin X, Minglin L, Fa-hui L, Zou H, Min J. T cell immunotherapy for cervical cancer: challenges and opportunities. Front Immunol 2023; 14:1105265. [PMID: 37180106 PMCID: PMC10169584 DOI: 10.3389/fimmu.2023.1105265] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/27/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer cellular immunotherapy has made inspiring therapeutic effects in clinical practices, which brings new hope for the cure of cervical cancer. CD8+T cells are the effective cytotoxic effector cells against cancer in antitumor immunity, and T cells-based immunotherapy plays a crucial role in cellular immunotherapy. Tumor infiltrated Lymphocytes (TIL), the natural T cells, is approved for cervical cancer immunotherapy, and Engineered T cells therapy also has impressive progress. T cells with natural or engineered tumor antigen binding sites (CAR-T, TCR-T) are expanded in vitro, and re-infused back into the patients to eradicate tumor cells. This review summarizes the preclinical research and clinical applications of T cell-based immunotherapy for cervical cancer, and the challenges for cervical cancer immunotherapy.
Collapse
Affiliation(s)
- Lingfeng Yu
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Gong Lanqing
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyu Huang
- School of Arts and Sciences, Brandeis University, Boston, MA, United States
| | - Xiaoyan Xin
- School of Arts and Sciences, Brandeis University, Boston, MA, United States
| | - Liang Minglin
- School of Arts and Sciences, Brandeis University, Boston, MA, United States
| | - Lv Fa-hui
- Department of Obstetrics and Gynecology, The Second People’s Hospital of Hefei, Hefei, Anhui, China
| | - Hongmei Zou
- Department of Obstetrics, Qianjiang Central Hospital, Qianjiang, Hubei, China
| | - Jie Min
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Baulu E, Gardet C, Chuvin N, Depil S. TCR-engineered T cell therapy in solid tumors: State of the art and perspectives. SCIENCE ADVANCES 2023; 9:eadf3700. [PMID: 36791198 PMCID: PMC9931212 DOI: 10.1126/sciadv.adf3700] [Citation(s) in RCA: 166] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/06/2023] [Indexed: 05/25/2023]
Abstract
T cell engineering has changed the landscape of cancer immunotherapy. Chimeric antigen receptor T cells have demonstrated a remarkable efficacy in the treatment of B cell malignancies in hematology. However, their clinical impact on solid tumors has been modest so far. T cells expressing an engineered T cell receptor (TCR-T cells) represent a promising therapeutic alternative. The target repertoire is not limited to membrane proteins, and intrinsic features of TCRs such as high antigen sensitivity and near-to-physiological signaling may improve tumor cell detection and killing while improving T cell persistence. In this review, we present the clinical results obtained with TCR-T cells targeting different tumor antigen families. We detail the different methods that have been developed to identify and optimize a TCR candidate. We also discuss the challenges of TCR-T cell therapies, including toxicity assessment and resistance mechanisms. Last, we share some perspectives and highlight future directions in the field.
Collapse
Affiliation(s)
- Estelle Baulu
- Centre de Recherche en Cancérologie de Lyon, Lyon, France
- ErVaccine Technologies, Lyon, France
| | - Célia Gardet
- Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | | | - Stéphane Depil
- Centre de Recherche en Cancérologie de Lyon, Lyon, France
- ErVaccine Technologies, Lyon, France
- Centre Léon Bérard, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
19
|
Expansion of KRAS hotspot mutations reactive T cells from human pancreatic tumors using autologous T cells as the antigen-presenting cells. Cancer Immunol Immunother 2022; 72:1301-1313. [PMID: 36436020 DOI: 10.1007/s00262-022-03335-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/18/2022] [Indexed: 11/28/2022]
Abstract
Adoptive cell therapy (ACT) with expanded tumor-infiltrating lymphocytes (TIL) or TCR gene-modified T cells (TCR-T) that recognize mutant KRAS neo-antigens can mediate tumor regression in patients with advanced pancreatic ductal adenocarcinoma (PDAC) (Tran et al in N Engl J Med, 375:2255-2262, 2016; Leidner et al in N Engl J Med, 386:2112-2119, 2022). The mutant KRAS-targeted ACT holds great potential to achieve durable clinical responses for PDAC, which has had no meaningful improvement over 40 years. However, the wide application of mutant KRAS-centric ACT is currently limited by the rarity of TIL that recognize the mutant KRAS. In addition, PDAC is generally recognized as a poorly immunogenic tumor, and TILs in PDAC are less abundant than in immunogenic tumors such as melanoma. To increase the success rate of TIL production, we adopted a well-utilized K562-based artificial APC (aAPC) that expresses 4-1BBL as the costimulatory molecules to enhance the TIL production from PDCA. However, stimulation with K562-based aAPC led to a rapid loss of specificity to mutant KRAS. To selectively expand neo-antigen-specific T cells, particularly mKRAS, from the TILs, we used tandem mini gene-modified autologous T cells (TMG-T) as the novel aAPC. Using this modified IVS protocol, we successfully generated TIL cultures specifically reactive to mKRAS (G12V). We believe that autologous TMG-T cells provide a reliable source of autologous APC to expand a rare population of neoantigen-specific T cells in TILs.
Collapse
|
20
|
Sun Y, Zhang Z, Zhang C, Zhang N, Wang P, Chu Y, Chard Dunmall LS, Lemoine NR, Wang Y. An effective therapeutic regime for treatment of glioma using oncolytic vaccinia virus expressing IL-21 in combination with immune checkpoint inhibition. Mol Ther Oncolytics 2022; 26:105-119. [PMID: 35795092 PMCID: PMC9233193 DOI: 10.1016/j.omto.2022.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 05/13/2022] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant tumor in the brain, accounting for 51.4% of all primary brain tumors. GBM has a highly immunosuppressive tumor microenvironment (TME) and, as such, responses to immunotherapeutic strategies are poor. Vaccinia virus (VV) is an oncolytic virus that has shown tremendous therapeutic effect in various tumor types. In addition to its directly lytic effect on tumor cells, it has an ability to enhance immune cell infiltration into the TME allowing for improved immune control over the tumor. Here, we used a new generation of VV expressing the therapeutic payload interleukin-21 to treat murine GL261 glioma models. After both intratumoral and intravenous delivery, virus treatment induced remodeling of the TME to promote a robust anti-tumor immune response that resulted in control over tumor growth and long-term survival in both subcutaneous and orthotopic mouse models. Treatment efficacy was significantly improved in combination with systemic α-PD1 therapy, which is ineffective as a standalone treatment but synergizes with oncolytic VV to enhance therapeutic outcomes. Importantly, this study also revealed the upregulation of stem cell memory T cell populations after the virus treatment that exert strong and durable anti-tumor activity.
Collapse
Affiliation(s)
- Yijie Sun
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Zhe Zhang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Chenglin Zhang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Na Zhang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Pengju Wang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Yongchao Chu
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Louisa S. Chard Dunmall
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Nicholas R. Lemoine
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Yaohe Wang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| |
Collapse
|
21
|
T Cell Roles and Activity in Chronic Sclerosing Sialadenitis as IgG4-Related Disease: Current Concepts in Immunopathogenesis. Autoimmune Dis 2022; 2022:5689883. [PMID: 35769404 PMCID: PMC9236833 DOI: 10.1155/2022/5689883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
IgG4-related disease is a multiorgan immunological fibroinflammatory disorder characterized by lymphoplasmacytic infiltration and fibrosis in multiple organs accompanied by high serum IgG4 levels. The salivary glands are the most common organs involved in this disease. Recently, chronic sclerosing sialadenitis affecting salivary glands, formerly known as Küttner's tumor, and Mikulicz's disease have been classified as a class of IgG4-related diseases. The etiopathobiology of IgG4-related disease is not fully understood. It has recently been hypothesized that the inflammatory and fibrotic process and the increased serum IgG4+ levels in IgG4-related disease are the result of an interaction between B cells and T helper cells, suggesting that T cells may play a key role in the pathogenesis of this disease. The aim of this review is to discuss the proposed roles of different T cell subsets in the pathogenesis of IgG4-related disease focusing on their roles in immunopathogenesis of IgG4-related sialadenitis.
Collapse
|
22
|
The generation and application of antigen-specific T cell therapies for cancer and viral-associated disease. Mol Ther 2022; 30:2130-2152. [PMID: 35149193 PMCID: PMC9171249 DOI: 10.1016/j.ymthe.2022.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/27/2021] [Accepted: 02/03/2022] [Indexed: 11/23/2022] Open
Abstract
Immunotherapy with antigen-specific T cells is a promising, targeted therapeutic option for patients with cancer as well as for immunocompromised patients with virus infections. In this review, we characterize and compare current manufacturing protocols for the generation of T cells specific to viral and non-viral tumor-associated antigens. Specifically, we discuss: (1) the different methodologies to expand virus-specific T cell and non-viral tumor-associated antigen-specific T cell products, (2) an overview of the immunological principles involved when developing such manufacturing protocols, and (3) proposed standardized methodologies for the generation of polyclonal, polyfunctional antigen-specific T cells irrespective of donor source. Ex vivo expanded cells have been safely administered to treat numerous patients with virus-associated malignancies, hematologic malignancies, and solid tumors. Hence, we have performed a comprehensive review of the clinical trial results evaluating the safety, feasibility, and efficacy of these products in the clinic. In summary, this review seeks to provide new insights regarding antigen-specific T cell technology to benefit a rapidly expanding T cell therapy field.
Collapse
|
23
|
Gene Engineering T Cells with T-Cell Receptor for Adoptive Therapy. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2453:209-229. [PMID: 35622329 DOI: 10.1007/978-1-0716-2115-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Prior to clinical testing of adoptive T-cell therapy with T-cell receptor (TCR)-engineered T cells, TCRs need to be retrieved, annotated, gene-transferred, and extensively tested in vitro to accurately assess specificity and sensitivity of target recognition. Here, we present a fundamental series of protocols that cover critical preclinical parameters, thereby enabling the selection of candidate TCRs for clinical testing.
Collapse
|
24
|
Wei F, Cheng XX, Xue JZ, Xue SA. Emerging Strategies in TCR-Engineered T Cells. Front Immunol 2022; 13:850358. [PMID: 35432319 PMCID: PMC9006933 DOI: 10.3389/fimmu.2022.850358] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy of cancer has made tremendous progress in recent years, as demonstrated by the remarkable clinical responses obtained from adoptive cell transfer (ACT) of patient-derived tumor infiltrating lymphocytes, chimeric antigen receptor (CAR)-modified T cells (CAR-T) and T cell receptor (TCR)-engineered T cells (TCR-T). TCR-T uses specific TCRS optimized for tumor engagement and can recognize epitopes derived from both cell-surface and intracellular targets, including tumor-associated antigens, cancer germline antigens, viral oncoproteins, and tumor-specific neoantigens (neoAgs) that are largely sequestered in the cytoplasm and nucleus of tumor cells. Moreover, as TCRS are naturally developed for sensitive antigen detection, they are able to recognize epitopes at far lower concentrations than required for CAR-T activation. Therefore, TCR-T holds great promise for the treatment of human cancers. In this focused review, we summarize basic, translational, and clinical insights into the challenges and opportunities of TCR-T. We review emerging strategies used in current ACT, point out limitations, and propose possible solutions. We highlight the importance of targeting tumor-specific neoAgs and outline a strategy of combining neoAg vaccines, checkpoint blockade therapy, and adoptive transfer of neoAg-specific TCR-T to produce a truly tumor-specific therapy, which is able to penetrate into solid tumors and resist the immunosuppressive tumor microenvironment. We believe such a combination approach should lead to a significant improvement in cancer immunotherapies, especially for solid tumors, and may provide a general strategy for the eradication of multiple cancers.
Collapse
Affiliation(s)
- Fang Wei
- Genetic Engineering Laboratory, School of Biological & Environmental Engineering, Xi'An University, Xi'An, China
| | - Xiao-Xia Cheng
- Genetic Engineering Laboratory, School of Biological & Environmental Engineering, Xi'An University, Xi'An, China
| | - John Zhao Xue
- Genetic Engineering Laboratory, School of Biological & Environmental Engineering, Xi'An University, Xi'An, China
| | - Shao-An Xue
- Genetic Engineering Laboratory, School of Biological & Environmental Engineering, Xi'An University, Xi'An, China
| |
Collapse
|
25
|
Gupta YH, Khanom A, Acton SE. Control of Dendritic Cell Function Within the Tumour Microenvironment. Front Immunol 2022; 13:733800. [PMID: 35355992 PMCID: PMC8960065 DOI: 10.3389/fimmu.2022.733800] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
The tumour microenvironment (TME) presents a major block to anti-tumour immune responses and to effective cancer immunotherapy. The inflammatory mediators such as cytokines, chemokines, growth factors and prostaglandins generated in the TME alter the phenotype and function of dendritic cells (DCs) that are critical for a successful adaptive immune response against the growing tumour. In this mini review we discuss how tumour cells and the surrounding stroma modulate DC maturation and trafficking to impact T cell function. Fibroblastic stroma and the associated extracellular matrix around tumours can also provide physical restrictions to infiltrating DCs and other leukocytes. We discuss interactions between the inflammatory TME and infiltrating immune cell function, exploring how the inflammatory TME affects generation of T cell-driven anti-tumour immunity. We discuss the open question of the relative importance of antigen-presentation site; locally within the TME versus tumour-draining lymph nodes. Addressing these questions will potentially increase immune surveillance and enhance anti-tumour immunity.
Collapse
Affiliation(s)
- Yukti Hari Gupta
- Stromal Immunology Laboratory, MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | | | - Sophie E. Acton
- Stromal Immunology Laboratory, MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| |
Collapse
|
26
|
Tumor RNA transfected DCs derived from iPS cells elicit cytotoxicity against cancer cells induced from colorectal cancer patients in vitro. Sci Rep 2022; 12:3295. [PMID: 35228610 PMCID: PMC8885822 DOI: 10.1038/s41598-022-07305-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/04/2022] [Indexed: 12/11/2022] Open
Abstract
Significant efficacy of induced pluripotent stem cells (iPSCs) in generating DCs for cancer vaccine therapy was suggested in our previous studies. In clinical application of DC vaccine therapy, however, few DC vaccine systems have shown strong clinical response. To enhance immunogenicity in the DC vaccine, we transfected patient-derived iPSDCs with in vitro transcriptional RNA (ivtRNA), which was obtained from tumors of three patients with colorectal cancer. We investigated iPSDCs-ivtRNA which were induced by transfecting ivtRNA obtained from tumors of three colorectal cancer patients, and examined its antitumor effect. Moreover, we analyzed neoantigens expressed in colorectal cancer cells and examined whether iPSDCs-ivtRNA induced cytotoxic T lymphocytes (CTLs) against the predicted neoantigens. CTLs activated by iPSDCs-ivtRNA exhibited cytotoxic activity against the tumor spheroids in all three patients with colorectal cancer. Whole-exome sequencing revealed 1251 nonsynonymous mutations and 2155 neoantigens (IC50 < 500 nM) were predicted. For IFN-γ ELISPOT assay, these candidate neoantigens were further prioritised and 12 candidates were synthesized. IFN-γ ELISPOT assay revealed that the CTLs induced by iPSDCs-ivtRNA responded to one of the candidate neoantigens. In vitro CTLs obtained by transfecting tumor-derived RNA into iPSDCs derived from three patients with colorectal cancer showed potent tumor-specific killing effect.
Collapse
|
27
|
Taefehshokr S, Parhizkar A, Hayati S, Mousapour M, Mahmoudpour A, Eleid L, Rahmanpour D, Fattahi S, Shabani H, Taefehshokr N. Cancer immunotherapy: Challenges and limitations. Pathol Res Pract 2021; 229:153723. [PMID: 34952426 DOI: 10.1016/j.prp.2021.153723] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023]
Abstract
Although cancer immunotherapy has taken center stage in mainstream oncology inducing complete and long-lasting tumor regression, only a subset of patients receiving treatment respond and others relapse after an initial response. Different tumor types respond differently, and even in cancer types that respond (hot tumors), we still observe tumors that are unresponsive (cold tumors), suggesting the presence of resistance. Hence, the development of intrinsic or acquired resistance is a big challenge for the cancer immunotherapy field. Resistance to immunotherapy, including checkpoint inhibitors, CAR-T cell therapy, oncolytic viruses, and recombinant cytokines arises due to cancer cells employing several mechanisms to evade immunosurveillance.
Collapse
Affiliation(s)
- Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Aram Parhizkar
- Faculty of Natural Science, Tabriz University, Tabriz, Iran
| | - Shima Hayati
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Morteza Mousapour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Amin Mahmoudpour
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Liliane Eleid
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom
| | - Dara Rahmanpour
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahand Fattahi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Hadi Shabani
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
28
|
Tang Y, Zhang AXJ, Chen G, Wu Y, Gu W. Prognostic and therapeutic TILs of cervical cancer-Current advances and future perspectives. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:410-430. [PMID: 34553029 PMCID: PMC8430272 DOI: 10.1016/j.omto.2021.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cervical cancer is a top lethal cancer for women worldwide. Although screening and vaccination programs are available in many countries, resulting in the decline of new cases, this is not true for developing countries where there are many new cases and related deaths. Cancer immunotherapy through adaptive cell therapy (ACT) has been applied in clinics, but now much attention is focused on autogenic tumor-infiltrating lymphocyte (TIL)-based therapy, which has shown more specificity and better ability to inhibit tumor growth. Data from melanoma and cervical cancers confirm that tumor-specific T cells in TILs can be expanded for more specific and effective ACT. Moreover, TILs are derived from individual patients and are ready to home back to kill tumor cells after patient infusion, aligning well with personalized and precision medicine. In addition to therapy, TIL cell types and numbers are good indicators of host immune response to the tumor, and thus they have significant values in prognosis. Because of the special relationship with human papillomavirus (HPV) infection, cervical cancer has some specialties in TIL-based prognosis and therapy. In this review, we summarize the recent advances in the prognostic significance of TILs and TIL-based therapy for cervical cancer and discuss related perspectives.
Collapse
Affiliation(s)
- Ying Tang
- Institute of Tumor, Guangzhou University of Chinese Medicine, Guangzhou, China.,Gillion ITM Research Institute, Guangzhou Hongkeyuan, Guangzhou, China
| | - Anne X J Zhang
- Gillion ITM Research Institute, Guangzhou Hongkeyuan, Guangzhou, China
| | - Guangyu Chen
- Gillion ITM Research Institute, Guangzhou Hongkeyuan, Guangzhou, China
| | - Yanheng Wu
- Gillion ITM Research Institute, Guangzhou Hongkeyuan, Guangzhou, China
| | - Wenyi Gu
- Gillion ITM Research Institute, Guangzhou Hongkeyuan, Guangzhou, China.,Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
29
|
Basar R, Uprety N, Ensley E, Daher M, Klein K, Martinez F, Aung F, Shanley M, Hu B, Gokdemir E, Nunez Cortes AK, Mendt M, Reyes Silva F, Acharya S, Laskowski T, Muniz-Feliciano L, Banerjee PP, Li Y, Li S, Melo Garcia L, Lin P, Shaim H, Yates SG, Marin D, Kaur I, Rao S, Mak D, Lin A, Miao Q, Dou J, Chen K, Champlin RE, Shpall EJ, Rezvani K. Generation of glucocorticoid-resistant SARS-CoV-2 T cells for adoptive cell therapy. Cell Rep 2021; 36:109432. [PMID: 34270918 PMCID: PMC8260499 DOI: 10.1016/j.celrep.2021.109432] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/15/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022] Open
Abstract
Adoptive cell therapy with virus-specific T cells has been used successfully to treat life-threatening viral infections, supporting application of this approach to coronavirus disease 2019 (COVID-19). We expand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) T cells from the peripheral blood of COVID-19-recovered donors and non-exposed controls using different culture conditions. We observe that the choice of cytokines modulates the expansion, phenotype, and hierarchy of antigenic recognition by SARS-CoV-2 T cells. Culture with interleukin (IL)-2/4/7, but not under other cytokine-driven conditions, results in more than 1,000-fold expansion in SARS-CoV-2 T cells with a retained phenotype, function, and hierarchy of antigenic recognition compared with baseline (pre-expansion) samples. Expanded cytotoxic T lymphocytes (CTLs) are directed against structural SARS-CoV-2 proteins, including the receptor-binding domain of Spike. SARS-CoV-2 T cells cannot be expanded efficiently from the peripheral blood of non-exposed controls. Because corticosteroids are used for management of severe COVID-19, we propose an efficient strategy to inactivate the glucocorticoid receptor gene (NR3C1) in SARS-CoV-2 CTLs using CRISPR-Cas9 gene editing.
Collapse
Affiliation(s)
- Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nadima Uprety
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emily Ensley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kimberly Klein
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fernando Martinez
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fleur Aung
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mayra Shanley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bingqian Hu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elif Gokdemir
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ana Karen Nunez Cortes
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mayela Mendt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francia Reyes Silva
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sunil Acharya
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tamara Laskowski
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luis Muniz-Feliciano
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pinaki P Banerjee
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ye Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sufang Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luciana Melo Garcia
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Lin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hila Shaim
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, USA
| | - Sean G Yates
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | - David Marin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Indreshpal Kaur
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sheetal Rao
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Duncan Mak
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Angelique Lin
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Miao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jinzhuang Dou
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard E Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
30
|
Abdelbaky SB, Ibrahim MT, Samy H, Mohamed M, Mohamed H, Mustafa M, Abdelaziz MM, Forrest ML, Khalil IA. Cancer immunotherapy from biology to nanomedicine. J Control Release 2021; 336:410-432. [PMID: 34171445 DOI: 10.1016/j.jconrel.2021.06.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 02/06/2023]
Abstract
With the significant drawbacks of conventional cancer chemotherapeutics, cancer immunotherapy has demonstrated the ability to eradicate cancer cells and circumvent multidrug resistance (MDR) with fewer side effects than traditional cytotoxic therapies. Various immunotherapeutic agents have been investigated for that purpose including checkpoint inhibitors, cytokines, monoclonal antibodies and cancer vaccines. All these agents aid immune cells to recognize and engage tumor cells by acting on tumor-specific pathways, antigens or cellular targets. However, immunotherapeutics are still associated with some concerns such as off-target side effects and poor pharmacokinetics. Nanomedicine may resolve some limitations of current immunotherapeutics such as localizing delivery, controlling release and enhancing the pharmacokinetic profile. Herein, we discuss recent advances of immunotherapeutic agents with respect to their development and biological mechanisms of action, along with the advantages that nanomedicine strategies lend to immunotherapeutics by possibly improving therapeutic outcomes and minimizing side effects.
Collapse
Affiliation(s)
- Salma B Abdelbaky
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Molecular, Cellular, and Developmental Biology, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, United States of America
| | - Mayar Tarek Ibrahim
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States of America
| | - Hebatallah Samy
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Menatalla Mohamed
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Hebatallah Mohamed
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Mahmoud Mustafa
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt
| | - Moustafa M Abdelaziz
- Department of Bioengineering, School of Engineering, The University of Kansas, Lawrence, KS 66045, USA
| | - M Laird Forrest
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66047, USA.
| | - Islam A Khalil
- Department of Pharmaceutics, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th of October, Giza 12582, Egypt.
| |
Collapse
|
31
|
Zhao Y, Zhang Z, Lei W, Wei Y, Ma R, Wen Y, Wei F, Fan J, Xu Y, Chen L, Lyu K, Lin H, Wen W, Sun W. IL-21 Is an Accomplice of PD-L1 in the Induction of PD-1-Dependent Treg Generation in Head and Neck Cancer. Front Oncol 2021; 11:648293. [PMID: 34026621 PMCID: PMC8131831 DOI: 10.3389/fonc.2021.648293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Regulatory T cells (Tregs) are immunosuppressive cells involved in antitumor immunity. However, the regulation of Treg generation by inflammation in the tumor microenvironment has not been carefully investigated. Here, we demonstrated that IL-21-polarized inflammation was enriched in the tumor microenvironment in head and neck squamous cell carcinoma (HNSCC) and that IL-21 could promote PD-L1-induced Treg generation in a PD-1-dependent manner. Moreover, generated Tregs showed a greater ability to suppress the proliferation of tumor-associated antigen (TAA)-specific T cells than naturally occurring Tregs. Importantly, an anti-PD-1 antibody could inhibit only Treg expansion induced by clinical tumor explants with high expression of IL-21/PD-L1. In addition, neutralizing IL-21 could enhance the anti-PD-1 antibody-mediated inhibitory effect on Treg expansion. Furthermore, simultaneous high expression of IL-21 and PD-L1 was associated with more Treg infiltrates and predicted reduced overall and disease-free survival in patients with HNSCC. These findings indicate that IL-21 in the tumor microenvironment may promote PD-L1-induced, Treg-mediated immune escape in a PD-1-dependent manner and that an IL-21 neutralization strategy may enhance PD-1 blockade-based antitumor immunotherapy by targeting Treg-mediated immune evasion in patients with high expression of IL-21 and PD-L1.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangzhou Key Laboratory of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiyu Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangzhou Key Laboratory of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenbin Lei
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangzhou Key Laboratory of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yi Wei
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangzhou Key Laboratory of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Renqiang Ma
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangzhou Key Laboratory of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yihui Wen
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangzhou Key Laboratory of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fanqin Wei
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangzhou Key Laboratory of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Fan
- Department of Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Yang Xu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangzhou Key Laboratory of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lin Chen
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangzhou Key Laboratory of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kexing Lyu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangzhou Key Laboratory of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hanqing Lin
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangzhou Key Laboratory of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weiping Wen
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangzhou Key Laboratory of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Sun
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangzhou Key Laboratory of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Wang N, Wang J, Zhang Z, Cao H, Yan W, Chu Y, Chard Dunmall LS, Wang Y. A novel vaccinia virus enhances anti-tumor efficacy and promotes a long-term anti-tumor response in a murine model of colorectal cancer. Mol Ther Oncolytics 2021; 20:71-81. [PMID: 33575472 PMCID: PMC7851495 DOI: 10.1016/j.omto.2020.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of mortality and morbidity in the world, and there remains an urgent need to develop long-lasting therapies to treat CRC and prevent recurrence in patients. Oncolytic virus therapy (OVT) has demonstrated remarkable efficacy in a number of different cancer models. Here, we report a novel vaccinia virus (VV)-based OVT for treatment of CRC. The novel VV, based on the recently reported novel VVLΔTKΔN1L virus, was armed with the pleiotropic cytokine interleukin-21 (IL-21) to enhance anti-tumor immune responses stimulated after viral infection of tumor cells. Compared with an unarmed virus, VVLΔTKΔN1L-mIL-21 had a superior anti-tumor efficacy in murine CMT93 subcutaneous CRC models in vivo, mediated mainly by CD8+ T cells. Treatment resulted in development of long-term immunity against CMT93 tumor cells, as evidenced by prevention of disease recurrence. These results demonstrate that VVLΔTKΔN1L-mIL-21 is a promising therapeutic agent for treatment of CRC.
Collapse
Affiliation(s)
- Na Wang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Jiwei Wang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Zhe Zhang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Hua Cao
- ENT Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Wenli Yan
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Yongchao Chu
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Louisa S. Chard Dunmall
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Yaohe Wang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| |
Collapse
|
33
|
Schroeder BA, Black RG, Spadinger S, Zhang S, Kohli K, Cao J, Mantilla JG, Conrad EU, Riddell SR, Jones RL, Yee C, Pollack SM. Histiocyte predominant myocarditis resulting from the addition of interferon gamma to cyclophosphamide-based lymphodepletion for adoptive cellular therapy. J Immunother Cancer 2021; 8:jitc-2019-000247. [PMID: 32269142 PMCID: PMC7254118 DOI: 10.1136/jitc-2019-000247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Background Adoptive cellular therapy (ACT) is a promising treatment for synovial sarcoma (SS) with reported response rates of over 50%. However, more work is needed to obtain deeper and more durable responses. SS has a ‘cold’ tumor immune microenvironment with low levels of major histocompatibility complex (MHC) expression and few T-cell infiltrates, which could represent a barrier toward successful treatment with ACT. We previously demonstrated that both MHC expression and T-cell infiltration can be increased using systemic interferon gamma (IFN-γ), which could improve the efficacy of ACT for SS. Case presentation We launched a phase I trial incorporating four weekly doses of IFN-γ in an ACT regimen of high-dose cyclophosphamide (HD Cy), NY-ESO-1-specific T cells, and postinfusion low-dose interleukin (IL)-2. Two patients were treated. While one patient had significant tumor regression and resultant clinical benefit, the other patient suffered a fatal histiocytic myocarditis. Therefore, this cohort was terminated for safety concerns. Conclusion We describe a new and serious toxicity of immunotherapy from IFN-γ combined with HD Cy-based lymphodepletion and low-dose IL-2. While IFN-γ should not be used concurrently with HD Cy or with low dose IL-2, IFN-γ may still be important in sensitizing SS for ACT. Future studies should avoid using IFN-γ during the immediate period before/after cell infusion. Trial registration numbers NCT04177021, NCT01957709, and NCT03063632.
Collapse
Affiliation(s)
- Brett A Schroeder
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Virginia Mason Medical Center, Seattle, Washington, USA
| | - Ralph Graeme Black
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Sydney Spadinger
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Shihong Zhang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Karan Kohli
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jianhong Cao
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jose G Mantilla
- Pathology, University of Washington Medical Center, Seattle, Washington, USA
| | - Ernest U Conrad
- Orthopedic Surgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Stanley R Riddell
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Oncology, University of Washington Medical Center, Seattle, Washington, USA
| | - Robin L Jones
- Sarcoma, Royal Marsden Hospital NHS Trust, London, UK
| | - Cassian Yee
- Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Seth M Pollack
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA .,Oncology, University of Washington Medical Center, Seattle, Washington, USA
| |
Collapse
|
34
|
Marelli G, Chard Dunmall LS, Yuan M, Di Gioia C, Miao J, Cheng Z, Zhang Z, Liu P, Ahmed J, Gangeswaran R, Lemoine N, Wang Y. A systemically deliverable Vaccinia virus with increased capacity for intertumoral and intratumoral spread effectively treats pancreatic cancer. J Immunother Cancer 2021; 9:e001624. [PMID: 33500259 PMCID: PMC7839893 DOI: 10.1136/jitc-2020-001624] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Pancreatic cancer remains one of the most lethal cancers and is refractory to immunotherapeutic interventions. Oncolytic viruses are a promising new treatment option, but current platforms demonstrate limited efficacy, especially for inaccessible and metastatic cancers that require systemically deliverable therapies. We recently described an oncolytic vaccinia virus (VV), VVLΔTKΔN1L, which has potent antitumor activity, and a regime to enhance intravenous delivery of VV by pharmacological inhibition of pharmacological inhibition of PI3 Kinase δ (PI3Kδ) to prevent virus uptake by macrophages. While these platforms improve the clinical prospects of VV, antitumor efficacy must be improved. METHODS VVLΔTKΔN1L was modified to improve viral spread within and between tumors via viral B5R protein modification, which enhanced production of the extracellular enveloped virus form of VV. Antitumor immunity evoked by viral treatment was improved by arming the virus with interleukin-21, creating VVL-21. Efficacy, functional activity and synergy with α-programmed cell death protein 1 (α-PD1) were assessed after systemic delivery to murine and Syrian hamster models of pancreatic cancer. RESULTS VVL-21 could reach tumors after systemic delivery and demonstrated antitumor efficacy in subcutaneous, orthotopic and disseminated models of pancreatic cancer. The incorporation of modified B5R improved intratumoural accumulation of VV. VVL-21 treatment increased the numbers of effector CD8+ T cells within the tumor, increased circulating natural killer cells and was able to polarize macrophages to an M1 phenotype in vivo and in vitro. Importantly, treatment with VVL-21 sensitized tumors to the immune checkpoint inhibitor α-PD1. CONCLUSIONS Intravenously administered VVL-21 successfully remodeled the suppressive tumor-microenvironment to promote antitumor immune responses and improve long-term survival in animal models of pancreatic cancer. Importantly, treatment with VVL-21 sensitized tumors to the immune checkpoint inhibitor α-PD1. Combination of PI3Kδ inhibition, VVL-21 and α-PD1 creates an effective platform for treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Giulia Marelli
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Louisa S Chard Dunmall
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ming Yuan
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Carmela Di Gioia
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jinxin Miao
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, People's Republic of China
| | - Zhenguo Cheng
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhongxian Zhang
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Liu
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jahangir Ahmed
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Rathi Gangeswaran
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Nicholas Lemoine
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Yaohe Wang
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
- National Centre for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
35
|
Chen X, Jiang S, Zhou Z, Xu X, Ying S, Du L, Qiu K, Xu Y, Wu J, Wang X. Increased expression of interleukin-21-inducible genes in minor salivary glands are associated with primary Sjögren’s syndrome disease characteristics. Rheumatology (Oxford) 2020; 60:2979-2989. [DOI: 10.1093/rheumatology/keaa695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/24/2020] [Indexed: 01/31/2023] Open
Abstract
Abstract
Objective
To determine the upregulation of IL-21-inducible genes in minor salivary glands (MSGs) in 28 primary SS (pSS) patients and 12 non-pSS subjects and correlate it with disease characteristics.
Methods
RNA sequencing was utilized to compare IL-21-inducible genes expression in the MSGs between pSS and non-pSS subjects. The subgroups were characterized according to the IL-21 score calculated by seven IL-21-inducible genes. Furthermore, the disease characteristics and transcripts implicated in hypoxia and interferon signalling were assessed in two pSS subgroups.
Results
We observed that the expression of the IL-21-inducible genes (IL-21, IL-21R, JAK3, STAT1, HLA-B, CCR7 and CXCL10), the so-called IL-21 signature genes, was significantly increased in pSS patients. The upregulation of JAK3 expression may be induced by hypomethylation of the JAK3 promoter in pSS patients and putatively associated with POU2F2. The patients with increased IL-21 signature gene expression showed an increased EULAR Sjögren’s Syndrome Disease Activity Index score and increased enrichment of B cells, memory B cells, CD4+ T cells and CD8+ T cells. Furthermore, the IL-21 scores in the anti-SSA+, SSB+, ANA+ and high IgG samples were higher than those in the respective antibody-negative samples and normal IgG. In addition, we found both hypoxia and IFN-relevant genes showed strong correlation with IL-21 signature gene expression, indicating their interaction in pSS.
Conclusion
IL-21 signature gene was associated with typical disease characteristics in pSS, which provides insight into the contribution of the IL-21 signalling pathway to the pathogenesis of the disease and might provide a novel treatment strategy for this subtype of pSS.
Collapse
Affiliation(s)
- Xiaomin Chen
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shan Jiang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zihao Zhou
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xin Xu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Senhong Ying
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Lifeng Du
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Kairui Qiu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yesha Xu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jinyu Wu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaobing Wang
- Department of Rheumatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
36
|
Rollins MR, Spartz EJ, Stromnes IM. T Cell Receptor Engineered Lymphocytes for Cancer Therapy. ACTA ACUST UNITED AC 2020; 129:e97. [PMID: 32432843 DOI: 10.1002/cpim.97] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
T lymphocytes are capable of specific recognition and elimination of target cells. Physiological antigen recognition is mediated by the T cell receptor (TCR), which is an alpha beta heterodimer comprising the products of randomly rearranged V, D, and J genes. The exquisite specificity and functionality of T cells can be leveraged for cancer therapy: specifically, the adoptive transfer of T cells that express tumor-reactive TCRs can induce regression of solid tumors in patients with advanced cancer. However, the isolation and expression of a tumor antigen-specific TCRs is a highly involved process that requires identifying an immunogenic epitope, ensuring human cells are of the correct haplotype, performing a laborious T cell expansion process, and carrying out downstream TCR sequencing and cloning. Recent advances in single-cell sequencing have begun to streamline this process. This protocol synthesizes and expands upon methodologies to generate, isolate, and engineer human T cells with tumor-reactive TCRs for adoptive cell therapy. Though this process is perhaps more arduous than the alternative strategy of using chimeric antigen receptors (CARs) for engineering, the ability to target intracellular proteins using TCRs substantially increases the types of antigens that can be safely targeted. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Generation of human autologous dendritic cells from monocytes Basic Protocol 2: In vitro priming and expansion of human antigen-specific T cells Basic Protocol 3: Cloning of antigen-specific T cell receptors based on single-cell VDJ sequencing data Basic Protocol 4: Validation of T cell receptor expression and functionality in vitro Basic Protocol 5: Rapid expansion of T cell receptor-transduced T cells and human T cell clones.
Collapse
Affiliation(s)
- Meagan R Rollins
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Ellen J Spartz
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Ingunn M Stromnes
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota.,Center for Genome Engineering, University of Minnesota Medical School, Minneapolis, Minnesota.,Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
37
|
Bradley SD, Talukder AH, Lai I, Davis R, Alvarez H, Tiriac H, Zhang M, Chiu Y, Melendez B, Jackson KR, Katailiha A, Sonnemann HM, Li F, Kang Y, Qiao N, Pan BF, Lorenzi PL, Hurd M, Mittendorf EA, Peterson CB, Javle M, Bristow C, Kim M, Tuveson DA, Hawke D, Kopetz S, Wolff RA, Hwu P, Maitra A, Roszik J, Yee C, Lizée G. Vestigial-like 1 is a shared targetable cancer-placenta antigen expressed by pancreatic and basal-like breast cancers. Nat Commun 2020; 11:5332. [PMID: 33087697 PMCID: PMC7577998 DOI: 10.1038/s41467-020-19141-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
Cytotoxic T lymphocyte (CTL)-based cancer immunotherapies have shown great promise for inducing clinical regressions by targeting tumor-associated antigens (TAA). To expand the TAA landscape of pancreatic ductal adenocarcinoma (PDAC), we performed tandem mass spectrometry analysis of HLA class I-bound peptides from 35 PDAC patient tumors. This identified a shared HLA-A*0101 restricted peptide derived from co-transcriptional activator Vestigial-like 1 (VGLL1) as a putative TAA demonstrating overexpression in multiple tumor types and low or absent expression in essential normal tissues. Here we show that VGLL1-specific CTLs expanded from the blood of a PDAC patient could recognize and kill in an antigen-specific manner a majority of HLA-A*0101 allogeneic tumor cell lines derived not only from PDAC, but also bladder, ovarian, gastric, lung, and basal-like breast cancers. Gene expression profiling reveals VGLL1 as a member of a unique group of cancer-placenta antigens (CPA) that may constitute immunotherapeutic targets for patients with multiple cancer types.
Collapse
MESH Headings
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Breast Neoplasms/genetics
- Breast Neoplasms/immunology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/therapy
- Cell Line, Tumor
- Cytotoxicity, Immunologic
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/immunology
- Female
- Gene Expression Profiling
- HLA-A1 Antigen/immunology
- Humans
- Immunotherapy, Adoptive
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/therapy
- Placenta/immunology
- Pregnancy
- Prognosis
- T-Lymphocytes, Cytotoxic/immunology
- Transcription Factors/genetics
- Transcription Factors/immunology
- Pancreatic Neoplasms
Collapse
Affiliation(s)
- Sherille D Bradley
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Amjad H Talukder
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Ivy Lai
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Rebecca Davis
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Hector Alvarez
- Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Herve Tiriac
- Cold Spring Harbor Laboratory Cancer Center, Cold Spring Harbor, NY, USA
| | - Minying Zhang
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Yulun Chiu
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Brenda Melendez
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Kyle R Jackson
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Arjun Katailiha
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Heather M Sonnemann
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Fenge Li
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Yaan Kang
- Department of Surgical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Na Qiao
- Department of Breast Surgery Research, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Bih-Fang Pan
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Mark Hurd
- Ahmed Center for Pancreatic Cancer Research, UT MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Milind Javle
- Department of Gastrointestinal Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher Bristow
- Center for Co-clinical Trials, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Kim
- Department of Surgical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - David A Tuveson
- Cold Spring Harbor Laboratory Cancer Center, Cold Spring Harbor, NY, USA
| | - David Hawke
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Robert A Wolff
- Department of Gastrointestinal Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Pathology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Jason Roszik
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Cassian Yee
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA.
- Department of Immunology, UT MD Anderson Cancer Center, Houston, TX, USA.
| | - Gregory Lizée
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA.
- Department of Immunology, UT MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
38
|
Hübbe ML, Jæhger DE, Andresen TL, Andersen MH. Leveraging Endogenous Dendritic Cells to Enhance the Therapeutic Efficacy of Adoptive T-Cell Therapy and Checkpoint Blockade. Front Immunol 2020; 11:578349. [PMID: 33101304 PMCID: PMC7546347 DOI: 10.3389/fimmu.2020.578349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/26/2020] [Indexed: 01/15/2023] Open
Abstract
Adoptive cell therapy (ACT), based on treatment with autologous tumor infiltrating lymphocyte (TIL)-derived or genetically modified chimeric antigen receptor (CAR) T cells, has become a potentially curative therapy for subgroups of patients with melanoma and hematological malignancies. To further improve response rates, and to broaden the applicability of ACT to more types of solid malignancies, it is necessary to explore and define strategies that can be used as adjuvant treatments to ACT. Stimulation of endogenous dendritic cells (DCs) alongside ACT can be used to promote epitope spreading and thereby decrease the risk of tumor escape due to target antigen downregulation, which is a common cause of disease relapse in initially responsive ACT treated patients. Addition of checkpoint blockade to ACT and DC stimulation might further enhance response rates by counteracting an eventual inactivation of infused and endogenously primed tumor-reactive T cells. This review will outline and discuss therapeutic strategies that can be utilized to engage endogenous DCs alongside ACT and checkpoint blockade, to strengthen the anti-tumor immune response.
Collapse
Affiliation(s)
- Mie Linder Hübbe
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Copenhagen, Denmark
| | - Ditte Elisabeth Jæhger
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Thomas Lars Andresen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Copenhagen, Denmark
| |
Collapse
|
39
|
Wagner J, Wickman E, DeRenzo C, Gottschalk S. CAR T Cell Therapy for Solid Tumors: Bright Future or Dark Reality? Mol Ther 2020; 28:2320-2339. [PMID: 32979309 DOI: 10.1016/j.ymthe.2020.09.015] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 01/07/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has garnered significant excitement due to its success for hematological malignancies in clinical studies leading to the US Food and Drug Administration (FDA) approval of three CD19-targeted CAR T cell products. In contrast, the clinical experience with CAR T cell therapy for solid tumors and brain tumors has been less encouraging, with only a few patients achieving complete responses. Clinical and preclinical studies have identified multiple "roadblocks," including (1) a limited array of targetable antigens and heterogeneous antigen expression, (2) limited T cell fitness and survival before reaching tumor sites, (3) an inability of T cells to efficiently traffic to tumor sites and penetrate physical barriers, and (4) an immunosuppressive tumor microenvironment. Herein, we review these challenges and discuss strategies that investigators have taken to improve the effector function of CAR T cells for the adoptive immunotherapy of solid tumors.
Collapse
Affiliation(s)
- Jessica Wagner
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Elizabeth Wickman
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Christopher DeRenzo
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
40
|
Basar R, Uprety N, Ensley E, Daher M, Klein K, Martinez F, Aung F, Shanley M, Hu B, Gokdemir E, Mendt M, Silva FR, Acharya S, Laskowski T, Muniz-Feliciano L, Banerjee P, Li Y, Li S, Garcia LM, Lin P, Shaim H, Yates SG, Marin D, Kaur I, Rao S, Mak D, Lin A, Miao Q, Dou J, Chen K, Champlin R, Shpall EJ, Rezvani K. Generation of glucocorticoid resistant SARS-CoV-2 T-cells for adoptive cell therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32995792 DOI: 10.1101/2020.09.15.298547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adoptive cell therapy with viral-specific T cells has been successfully used to treat life-threatening viral infections, supporting the application of this approach against COVID-19. We expanded SARS-CoV-2 T-cells from the peripheral blood of COVID-19-recovered donors and non-exposed controls using different culture conditions. We observed that the choice of cytokines modulates the expansion, phenotype and hierarchy of antigenic recognition by SARS-CoV-2 T-cells. Culture with IL-2/4/7 but not other cytokine-driven conditions resulted in >1000 fold expansion in SARS-CoV-2 T-cells with a retained phenotype, function and hierarchy of antigenic recognition when compared to baseline (pre-expansion) samples. Expanded CTLs were directed against structural SARS-CoV-2 proteins, including the receptor-binding domain of Spike. SARS-CoV-2 T-cells could not be efficiently expanded from the peripheral blood of non-exposed controls. Since corticosteroids are used for the management of severe COVID-19, we developed an efficient strategy to inactivate the glucocorticoid receptor gene ( NR3C1 ) in SARS-CoV-2 CTLs using CRISPR-Cas9 gene editing.
Collapse
|
41
|
Lazarski CA, Datar AA, Reynolds EK, Keller MD, Bollard CM, Hanley PJ. Identification of new cytokine combinations for antigen-specific T-cell therapy products via a high-throughput multi-parameter assay. Cytotherapy 2020; 23:65-76. [PMID: 32921560 DOI: 10.1016/j.jcyt.2020.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 12/26/2022]
Abstract
Infusion of viral-specific T cells (VSTs) is an effective treatment for viral infection after stem cell transplant. Current manufacturing approaches are rapid, but growth conditions can still be further improved. To optimize VST cell products, the authors designed a high-throughput flow cytometry-based assay using 40 cytokine combinations in a 96-well plate to fully characterize T-cell viability, function, growth and differentiation. Peripheral blood mononuclear cells (PBMCs) from six consenting donors were seeded at 100 000 cells per well with pools of cytomegalovirus peptides from IE1 and pp65 and combinations of IL-15, IL-6, IL-21, interferon alpha, IL-12, IL-18, IL-4 and IL-7. Ten-day cultures were tested by 13-color flow cytometry to evaluate viable cell count, lymphocyte phenotype, memory markers and interferon gamma (IFNγ) and tumor necrosis factor alpha (TNFα) expression. Combinations of IL-15/IL-6 and IL-4/IL-7 were optimal for the expansion of viral-specific CD3+ T cells, (18-fold and 14-fold, respectively, compared with unstimulated controls). CD8+ T cells expanded 24-fold in IL-15/IL-6 and 9-fold in IL-4/IL-7 cultures (P < 0.0001). CD4+ T cells expanded 27-fold in IL-4/IL-7 and 15-fold in IL-15/IL-6 (P < 0.0001). CD45RO+ CCR7- effector memory (CD45RO+ CCR7- CD3+), central memory (CD45RO+ CCR7+ CD3+), terminal effector (CD45RO- CCR7- CD3+), and naive (CD45RO- CCR7+ CD3+). T cells were the preponderant cells (76.8% and 72.3% in IL-15/IL-6 and IL-15/IL-7 cultures, respectively). Cells cultured in both cytokine conditions were potent, with 19.4% of CD3+ cells cultured in IL-15/IL-6 producing IFNγ (7.6% producing both TNFα and IFNγ) and 18.5% of CD3+ cells grown in IL-4/IL-7 producing IFNγ (9% producing both TNFα and IFNγ). This study shows the utility of this single-plate assay to rapidly identify optimal growth conditions for VST manufacture using only 107 PBMCs.
Collapse
Affiliation(s)
- Christopher A Lazarski
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Anushree A Datar
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Emily K Reynolds
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Michael D Keller
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA; Division of Allergy and Immunology, Children's National Hospital, Washington, DC, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA; Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, USA; The George Washington University Cancer Center, Washington, DC, USA
| | - Patrick J Hanley
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA; Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, USA; The George Washington University Cancer Center, Washington, DC, USA.
| |
Collapse
|
42
|
Mondino A, Manzo T. To Remember or to Forget: The Role of Good and Bad Memories in Adoptive T Cell Therapy for Tumors. Front Immunol 2020; 11:1915. [PMID: 32973794 PMCID: PMC7481451 DOI: 10.3389/fimmu.2020.01915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
The generation of immunological memory is a hallmark of adaptive immunity by which the immune system "remembers" a previous encounter with an antigen expressed by pathogens, tumors, or normal tissues; and, upon secondary encounters, mounts faster and more effective recall responses. The establishment of T cell memory is influenced by both cell-intrinsic and cell-extrinsic factors, including genetic, epigenetic and environmental triggers. Our current knowledge of the mechanisms involved in memory T cell differentiation has instructed new opportunities to engineer T cells with enhanced anti-tumor activity. The development of adoptive T cell therapy has emerged as a powerful approach to cure a subset of patients with advanced cancers. Efficacy of this approach often requires long-term persistence of transferred T cell products, which can vary according to their origin and manufacturing conditions. Host preconditioning and post-transfer supporting strategies have shown to promote their engraftment and survival by limiting the competition with a hostile tumor microenvironment and between pre-existing immune cell subsets. Although in the general view pre-existing memory can confer a selective advantage to adoptive T cell therapy, here we propose that also "bad memories"-in the form of antigen-experienced T cell subsets-co-evolve with consequences on newly transferred lymphocytes. In this review, we will first provide an overview of selected features of memory T cell subsets and, then, discuss their putative implications for adoptive T cell therapy.
Collapse
Affiliation(s)
- Anna Mondino
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Teresa Manzo
- Department of Experimental Oncology, IRCCS European Institute of Oncology, Milan, Italy
| |
Collapse
|
43
|
Wang J, Hasan F, Frey AC, Li HS, Park J, Pan K, Haymaker C, Bernatchez C, Lee DA, Watowich SS, Yee C. Histone Deacetylase Inhibitors and IL21 Cooperate to Reprogram Human Effector CD8 + T Cells to Memory T Cells. Cancer Immunol Res 2020; 8:794-805. [PMID: 32213626 PMCID: PMC7269845 DOI: 10.1158/2326-6066.cir-19-0619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/27/2019] [Accepted: 03/17/2020] [Indexed: 12/18/2022]
Abstract
Clinical response rates after adoptive cell therapy (ACT) are highly correlated with in vivo persistence of the infused T cells. However, antigen-specific T cells found in tumor sites are often well-differentiated effector cells with limited persistence. Central memory CD8+ T cells, capable of self-renewal, represent desirable ACT products. We report here that exposure to a histone deacetylase inhibitor (HDACi) and IL21 could reprogram differentiated human CD8+ T cells into central memory-like T cells. Dedifferentiation of CD8+ T cells was initiated by increased H3 acetylation and chromatin accessibility at the CD28 promoter region. This led to IL21-mediated pSTAT3 binding to the CD28 region, and subsequent upregulation of surface CD28 and CD62L (markers of central memory T cells). The reprogrammed cells exhibited enhanced proliferation in response to both IL2 and IL15, and a stable memory-associated transcriptional signature (increased Lef1 and Tcf7). Our findings support the application of IL21 and HDACi for the in vitro generation of highly persistent T-cell populations that can augment the efficacy of adoptively transferred T cells.
Collapse
Affiliation(s)
- Junmei Wang
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Farah Hasan
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amanda C Frey
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington
| | - Haiyan S Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jungsun Park
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ke Pan
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cara Haymaker
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chantale Bernatchez
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dean A Lee
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephanie S Watowich
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cassian Yee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
44
|
Luo XH, Meng Q, Liu Z, Paraschoudi G. Generation of high-affinity CMV-specific T cells for adoptive immunotherapy using IL-2, IL-15, and IL-21. Clin Immunol 2020; 217:108456. [PMID: 32376504 DOI: 10.1016/j.clim.2020.108456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
Cytomegalovirus (CMV) infection remains a life-threatening condition in individuals with a suppressed immune system. CMV may also represent a clinically relevant target for immune responses in CMV-positive malignancies. We established a protocol to expand CMV-specific T cells (CMV-T) using peripheral blood mononuclear cells (PBMCs). PBMCs from 16 HLA-A*0201 donors were cultured with a cytokine cocktail comprising IL-2/IL-15/IL-21 along with overlapping peptides from CMV-pp65. Ten days later, T cells were stimulated with anti-CD3 (OKT3) and irradiated autologous PBMCs. CMV-T were detected by HLA-A*0201 CMV-pp65NLVPMVATV wild type and q226a mutant tetramers (for high-affinity T cells), intracellular cytokine staining, a CD107a mobilization assays as well as IFN-γ and TNF-α production in cell culture supernatants. We reliably obtained 50.25 ± 27.27% of CD8+ and 22.08 ± 21.83% of CD4+ T cells post-CMV-pp65 stimulation of PBMCs with a Th1-polarized phenotype and decreased Th2/Th17 responses. Most CD3 + CD8 + tetramer+ T cells were effector-memory cells, particularly among high-affinity CMV-T (q226a CMV-tetramer+). High-affinity CMV-T cells, compared to WT-tetramer+ cells, expressed higher IL-21R and lower FasL post-stimulation with CMV-pp65. The IL-2/IL-15/IL-21 cocktail also promoted CCR6 and CXCR3 expression necessary for T-cell migration into tissues. We have optimized methods for generating high-affinity CMV-specific T cells that can be used for adoptive cellular therapy in clinical practice.
Collapse
Affiliation(s)
- Xiao-Hua Luo
- Therapeutic immunology unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China.
| | - Qingda Meng
- Therapeutic immunology unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zhenjiang Liu
- Therapeutic immunology unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Georgia Paraschoudi
- Therapeutic immunology unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
45
|
Mitra A, Andrews MC, Roh W, De Macedo MP, Hudgens CW, Carapeto F, Singh S, Reuben A, Wang F, Mao X, Song X, Wani K, Tippen S, Ng KS, Schalck A, Sakellariou-Thompson DA, Chen E, Reddy SM, Spencer CN, Wiesnoski D, Little LD, Gumbs C, Cooper ZA, Burton EM, Hwu P, Davies MA, Zhang J, Bernatchez C, Navin N, Sharma P, Allison JP, Wargo JA, Yee C, Tetzlaff MT, Hwu WJ, Lazar AJ, Futreal PA. Spatially resolved analyses link genomic and immune diversity and reveal unfavorable neutrophil activation in melanoma. Nat Commun 2020; 11:1839. [PMID: 32296058 PMCID: PMC7160105 DOI: 10.1038/s41467-020-15538-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 03/11/2020] [Indexed: 12/16/2022] Open
Abstract
Complex tumor microenvironmental (TME) features influence the outcome of cancer immunotherapy (IO). Here we perform immunogenomic analyses on 67 intratumor sub-regions of a PD-1 inhibitor-resistant melanoma tumor and 2 additional metastases arising over 8 years, to characterize TME interactions. We identify spatially distinct evolution of copy number alterations influencing local immune composition. Sub-regions with chromosome 7 gain display a relative lack of leukocyte infiltrate but evidence of neutrophil activation, recapitulated in The Cancer Genome Atlas (TCGA) samples, and associated with lack of response to IO across three clinical cohorts. Whether neutrophil activation represents cause or consequence of local tumor necrosis requires further study. Analyses of T-cell clonotypes reveal the presence of recurrent priming events manifesting in a dominant T-cell clonotype over many years. Our findings highlight the links between marked levels of genomic and immune heterogeneity within the physical space of a tumor, with implications for biomarker evaluation and immunotherapy response.
Collapse
Affiliation(s)
- Akash Mitra
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Quantitative Sciences Graduate Training Program, Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Miles C Andrews
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Whijae Roh
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Courtney W Hudgens
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Fernando Carapeto
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shailbala Singh
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alexandre Reuben
- Department of Thoracic Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Feng Wang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xizeng Mao
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xingzhi Song
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Khalida Wani
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Samantha Tippen
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kwok-Shing Ng
- Institute for Personalized Cancer Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Aislyn Schalck
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Eveline Chen
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sangeetha M Reddy
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Diana Wiesnoski
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Latasha D Little
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Curtis Gumbs
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Elizabeth M Burton
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chantale Bernatchez
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nicholas Navin
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - James P Allison
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jennifer A Wargo
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cassian Yee
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | - Michael T Tetzlaff
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wen-Jen Hwu
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alexander J Lazar
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - P Andrew Futreal
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
46
|
Deng S, Sun Z, Qiao J, Liang Y, Liu L, Dong C, Shen A, Wang Y, Tang H, Fu YX, Peng H. Targeting tumors with IL-21 reshapes the tumor microenvironment by proliferating PD-1intTim-3-CD8+ T cells. JCI Insight 2020; 5:132000. [PMID: 32271164 DOI: 10.1172/jci.insight.132000] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 03/04/2020] [Indexed: 12/18/2022] Open
Abstract
The lack of sufficient functional tumor-infiltrating lymphocytes in the tumor microenvironment (TME) is one of the primary indications for the poor prognosis of patients with cancer. In this study, we developed an Erbitux-based IL-21 tumor-targeting fusion protein (Erb-IL21) to prolong the half-life and improve the antitumor efficacy of IL-21. Compared with Erb-IL2, Erb-IL21 demonstrated much lower toxicity in vivo. Mechanistically, Erb-IL21 selectively expanded functional cytotoxic T lymphocytes but not dysfunctional CD8+ T cells in the TME. We observed that the IL-21-mediated antitumor effect largely depended on the existing intratumoral CD8+ T cells, instead of newly migrated CD8+ T cells. Furthermore, Erb-IL21 overcame checkpoint blockade resistance in mice with advanced tumors. Our study reveals that Erb-IL21 can target IL-21 to tumors and maximize the antitumor potential of checkpoint blockade by expending a subset of tumor antigen-specific CD8+ T cells to achieve effective tumor control.
Collapse
Affiliation(s)
- Sisi Deng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhichen Sun
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jian Qiao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yong Liang
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Longchao Liu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chunbo Dong
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Aijun Shen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yang Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hong Tang
- Institute Pasteur of Shanghai Chinese Academy of Sciences, Shanghai, China
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hua Peng
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
47
|
Rahimi Kalateh Shah Mohammad G, Ghahremanloo A, Soltani A, Fathi E, Hashemy SI. Cytokines as potential combination agents with PD-1/PD-L1 blockade for cancer treatment. J Cell Physiol 2020; 235:5449-5460. [PMID: 31970790 DOI: 10.1002/jcp.29491] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022]
Abstract
Immunotherapy has caused a paradigm shift in the treatment of several malignancies, particularly the blockade of programmed death-1 (PD-1) and its specific receptor/ligand PD-L1 that have revolutionized the treatment of a variety of malignancies, but significant durable responses only occur in a small percentage of patients, and other patients failed to respond to the treatment. Even those who initially respond can ultimately relapse despite maintenance treatment, there is considerable potential for synergistic combinations of immunotherapy and chemotherapy agents with immune checkpoint inhibitors into conventional cancer treatments. The clinical experience in the use of cytokines in the clinical setting indicated the efficiency of cytokine therapy in cancer immunotherapy. Combinational approaches to enhancing PD-L1/PD-1 pathways blockade efficacy with several cytokines such as interleukin (IL)-2, IL-15, IL-21, IL-12, IL-10, and interferon-α (IFN-α) may result in additional benefits. In this review, the current state of knowledge about PD-1/PD-L1 inhibitors, the date in the literature to ascertain the combination of anti-PD-1/PD-L1 antibodies with cytokines is discussed. Finally, it is noteworthy that novel therapeutic approaches based on the efficient combination of recombinant cytokines with the PD-L1/PD-1 blockade therapy can enhance antitumor immune responses against various malignancies.
Collapse
Affiliation(s)
| | - Atefeh Ghahremanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Soltani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Esmat Fathi
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
48
|
Abstract
As a specifically programmable, living immunotherapeutic drug, chimeric antigen receptor (CAR)-modified T cells are providing an alternative treatment option for a broad variety of diseases including so far refractory cancer. By recognizing a tumor-associated antigen, the CAR triggers an anti-tumor response of engineered patient's T cells achieving lasting remissions in the treatment of leukemia and lymphoma. During the last years, significant progress was made in optimizing the CAR design, in manufacturing CAR-engineered T cells, and in the clinical management of patients showing promise to establish adoptive CAR T cell therapy as an effective treatment option in the forefront.
Collapse
Affiliation(s)
- Astrid Holzinger
- RCI Regensburg Center for Interventional Immunology, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Germany
- Chair Genetic Immunotherapy, RCI c/o University Hospital Regensburg, Regensburg, Germany
| | - Hinrich Abken
- RCI Regensburg Center for Interventional Immunology, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Germany.
- Chair Genetic Immunotherapy, RCI c/o University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
49
|
Ligeiro D, Rao M, Maia A, Castillo M, Beltran A, Maeurer M. B Cells in the Gastrointestinal Tumor Microenvironment with a Focus on Pancreatic Cancer: Opportunities for Precision Medicine? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1273:175-195. [PMID: 33119882 DOI: 10.1007/978-3-030-49270-0_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We review state-of-the-art in translational and clinical studies focusing on the tumor microenvironment (TME) with a focus on tumor-infiltrating B cells (TIBs). The TME is a dynamic matrix of mutations, immune-regulatory networks, and distinct cell-to-cell interactions which collectively impact on disease progress. We discuss relevant findings concerning B cells in pancreatic cancer, the concepts of "bystander" B cells, the role of antigen-specific B cells contributing to augmenting anticancer-directed immune responses, the role of B cells as prognostic markers for response to checkpoint inhibitors (ICBs), and the potential use in adoptive cell tumor-infiltrating lymphocyte (TIL) products.
Collapse
Affiliation(s)
- Dário Ligeiro
- Immunogenetics Unit, Lisbon Centre for Blood and Transplantation (Instituto Português do Sangue e Transplantação, IPST), Lisbon, Portugal
| | - Martin Rao
- Immunosurgery Unit, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Andreia Maia
- Department of Pathology, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Mireia Castillo
- Department of Pathology, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Antonio Beltran
- Department of Pathology, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Markus Maeurer
- Immunosurgery Unit, Champalimaud Center for the Unknown, Lisbon, Portugal.
- I Med Clinical University of Mainz, Mainz, Germany.
| |
Collapse
|
50
|
Shao F, Zheng P, Yu D, Zhou Z, Jia L. Follicular helper T cells in type 1 diabetes. FASEB J 2019; 34:30-40. [PMID: 31914661 DOI: 10.1096/fj.201901637r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/09/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Feng Shao
- Department of Metabolism & Endocrinology The Second Xiangya HospitalCentral South University Changsha China
- Key Laboratory of Diabetes Immunology Central South University, Ministry of Education, National Clinical Research Center for Metabolic Diseases Changsha China
| | - Peilin Zheng
- Department of Endocrinology, Shenzhen People’s Hospital The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology Shenzhen China
| | - Di Yu
- The University of Queensland Diamantina Institute, Translational Research Institute Brisbane Queensland Australia
- Shandong Analysis and Test Center Shandong Academy of Sciences Jinan China
- China‐Australia Centre for Personalised Immunology Shanghai Renji Hospital Shanghai Jiaotong University School of Medicine Shanghai China
| | - Zhiguang Zhou
- Department of Metabolism & Endocrinology The Second Xiangya HospitalCentral South University Changsha China
- Key Laboratory of Diabetes Immunology Central South University, Ministry of Education, National Clinical Research Center for Metabolic Diseases Changsha China
| | - Lijing Jia
- Department of Endocrinology, Shenzhen People’s Hospital The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology Shenzhen China
| |
Collapse
|