1
|
Hernandez-Padilla C, Joosten B, Franco A, Cambi A, van den Dries K, Nain AS. Dendritic cell force-migration coupling on aligned fiber networks. Biophys J 2024; 123:3120-3132. [PMID: 38993114 PMCID: PMC11427780 DOI: 10.1016/j.bpj.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/12/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Dendritic cells (DCs) are antigen-presenting cells that reside in peripheral tissues and are responsible for initiating adaptive immune responses. As gatekeepers of the immune system, DCs need to continuously explore their surroundings, for which they can rapidly move through various types of connective tissue and basement membranes. DC motility has been extensively studied on flat 2D surfaces, yet the influences of a contextual 3D fibrous environment still need to be described. Using ECM-mimicking suspended fiber networks, we show how immature DCs (iDCs) engage in migratory cycles that allow them to transition from persistent migration to slow migratory states. For a subset of iDCs with high migratory potential, we report the organization of protrusions at the front of the cell body, which reverses upon treatment with inflammation agent PGE2. We identify an unusual migratory response to aligned fiber networks, whereby iDCs use filamentous protrusions to attach laterally and exert forces on fibers to migrate independent of fiber alignment. Increasing the fiber diameter from 200 to 500 nm does not significantly affect the migratory response; however, iDCs respond by forming denser actin bundles around larger diameters. Overall, the correlation between force-coupling and random migration of iDCs in aligned fibrous topography offers new insights into how iDCs might move in fibrous environments in vivo.
Collapse
Affiliation(s)
| | - Ben Joosten
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aime Franco
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Alessandra Cambi
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Koen van den Dries
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Amrinder S Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia.
| |
Collapse
|
2
|
Almeida L, van Roey R, Patente TA, Otto F, Veldhuizen T, Ghorasaini M, van Diepen A, Schramm G, Liu J, Idborg H, Korotkova M, Jakobsson PJ, Giera M, Hokke CH, Everts B. High-mannose glycans from Schistosoma mansoni eggs are important for priming of Th2 responses via Dectin-2 and prostaglandin E2. Front Immunol 2024; 15:1372927. [PMID: 38742105 PMCID: PMC11089121 DOI: 10.3389/fimmu.2024.1372927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
The parasitic helminth Schistosoma mansoni is a potent inducer of type 2 immune responses by stimulating dendritic cells (DCs) to prime T helper 2 (Th2) responses. We previously found that S. mansoni soluble egg antigens (SEA) promote the synthesis of Prostaglandin E2 (PGE2) by DCs through ERK-dependent signaling via Dectin-1 and Dectin-2 that subsequently induces OX40L expression, licensing them for Th2 priming, yet the ligands present in SEA involved in driving this response and whether specific targeting of PGE2 synthesis by DCs could affect Th2 polarization are unknown. We here show that the ability of SEA to bind Dectin-2 and drive ERK phosphorylation, PGE2 synthesis, OX40L expression, and Th2 polarization is impaired upon cleavage of high-mannose glycans by Endoglycosidase H treatment. This identifies high-mannose glycans present on glycoproteins in SEA as important drivers of this signaling axis. Moreover, we find that OX40L expression and Th2 induction are abrogated when microsomal prostaglandin E synthase-1 (mPGES) is selectively inhibited, but not when a general COX-1/2 inhibitor is used. This shows that the de novo synthesis of PGE2 is vital for the Th2 priming function of SEA-stimulated DCs as well as points to the potential existence of other COX-dependent lipid mediators that antagonize PGE2-driven Th2 polarization. Lastly, specific PGE2 inhibition following immunization with S. mansoni eggs dampened the egg-specific Th cell response. In summary, our findings provide new insights in the molecular mechanisms underpinning Th2 induction by S. mansoni and identify druggable targets for potential control of helminth driven-Th2 responses.
Collapse
Affiliation(s)
- Luís Almeida
- Centre for Infectious Diseases, Leiden University Medical Centre, Leiden, Netherlands
| | - Ruthger van Roey
- Centre for Infectious Diseases, Leiden University Medical Centre, Leiden, Netherlands
| | | | - Frank Otto
- Centre for Infectious Diseases, Leiden University Medical Centre, Leiden, Netherlands
| | - Tom Veldhuizen
- Centre for Infectious Diseases, Leiden University Medical Centre, Leiden, Netherlands
| | - Mohan Ghorasaini
- Centre for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, Netherlands
| | - Angela van Diepen
- Centre for Infectious Diseases, Leiden University Medical Centre, Leiden, Netherlands
| | - Gabriele Schramm
- Experimental Pneumology, Research Centre Borstel, Borstel, Germany
| | - Jianyang Liu
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Helena Idborg
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marina Korotkova
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Martin Giera
- Centre for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, Netherlands
| | | | - Bart Everts
- Centre for Infectious Diseases, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
3
|
Warner H, Franciosa G, van der Borg G, Coenen B, Faas F, Koenig C, de Boer R, Classens R, Maassen S, Baranov MV, Mahajan S, Dabral D, Bianchi F, van Hilten N, Risselada HJ, Roos WH, Olsen JV, Cano LQ, van den Bogaart G. Atypical cofilin signaling drives dendritic cell migration through the extracellular matrix via nuclear deformation. Cell Rep 2024; 43:113866. [PMID: 38416638 DOI: 10.1016/j.celrep.2024.113866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 10/13/2023] [Accepted: 02/08/2024] [Indexed: 03/01/2024] Open
Abstract
To mount an adaptive immune response, dendritic cells must migrate to lymph nodes to present antigens to T cells. Critical to 3D migration is the nucleus, which is the size-limiting barrier for migration through the extracellular matrix. Here, we show that inflammatory activation of dendritic cells leads to the nucleus becoming spherically deformed and enables dendritic cells to overcome the typical 2- to 3-μm diameter limit for 3D migration through gaps in the extracellular matrix. We show that the nuclear shape change is partially attained through reduced cell adhesion, whereas improved 3D migration is achieved through reprogramming of the actin cytoskeleton. Specifically, our data point to a model whereby the phosphorylation of cofilin-1 at serine 41 drives the assembly of a cofilin-actomyosin ring proximal to the nucleus and enhances migration through 3D collagen gels. In summary, these data describe signaling events through which dendritic cells deform their nucleus and enhance their migratory capacity.
Collapse
Affiliation(s)
- Harry Warner
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Giulia Franciosa
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Guus van der Borg
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Britt Coenen
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Felix Faas
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Claire Koenig
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rinse de Boer
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - René Classens
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sjors Maassen
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Maksim V Baranov
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Shweta Mahajan
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Deepti Dabral
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Frans Bianchi
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Niek van Hilten
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Herre Jelger Risselada
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands; Department of Physics, TU Dortmund, Dortmund, Germany
| | - Wouter H Roos
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Jesper Velgaard Olsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laia Querol Cano
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
4
|
Biernacka Z, Gregorczyk-Zboroch K, Lasocka I, Ostrowska A, Struzik J, Gieryńska M, Toka FN, Szulc-Dąbrowska L. Ectromelia Virus Affects the Formation and Spatial Organization of Adhesive Structures in Murine Dendritic Cells In Vitro. Int J Mol Sci 2023; 25:558. [PMID: 38203729 PMCID: PMC10779027 DOI: 10.3390/ijms25010558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Ectromelia virus (ECTV) is a causative agent of mousepox. It provides a suitable model for studying the immunobiology of orthopoxviruses, including their interaction with the host cell cytoskeleton. As professional antigen-presenting cells, dendritic cells (DCs) control the pericellular environment, capture antigens, and present them to T lymphocytes after migration to secondary lymphoid organs. Migration of immature DCs is possible due to the presence of specialized adhesion structures, such as podosomes or focal adhesions (FAs). Since assembly and disassembly of adhesive structures are highly associated with DCs' immunoregulatory and migratory functions, we evaluated how ECTV infection targets podosomes and FAs' organization and formation in natural-host bone marrow-derived DCs (BMDC). We found that ECTV induces a rapid dissolution of podosomes at the early stages of infection, accompanied by the development of larger and wider FAs than in uninfected control cells. At later stages of infection, FAs were predominantly observed in long cellular extensions, formed extensively by infected cells. Dissolution of podosomes in ECTV-infected BMDCs was not associated with maturation and increased 2D cell migration in a wound healing assay; however, accelerated transwell migration of ECTV-infected cells towards supernatants derived from LPS-conditioned BMDCs was observed. We suggest that ECTV-induced changes in the spatial organization of adhesive structures in DCs may alter the adhesiveness/migration of DCs during some conditions, e.g., inflammation.
Collapse
Affiliation(s)
- Zuzanna Biernacka
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (Z.B.); (K.G.-Z.); (J.S.); (M.G.); (F.N.T.)
| | - Karolina Gregorczyk-Zboroch
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (Z.B.); (K.G.-Z.); (J.S.); (M.G.); (F.N.T.)
| | - Iwona Lasocka
- Department of Biology of Animal Environment, Institute of Animal Science, Warsaw University of Life Sciences, 02-786 Warsaw, Poland;
| | - Agnieszka Ostrowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland;
| | - Justyna Struzik
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (Z.B.); (K.G.-Z.); (J.S.); (M.G.); (F.N.T.)
| | - Małgorzata Gieryńska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (Z.B.); (K.G.-Z.); (J.S.); (M.G.); (F.N.T.)
| | - Felix N. Toka
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (Z.B.); (K.G.-Z.); (J.S.); (M.G.); (F.N.T.)
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis
| | - Lidia Szulc-Dąbrowska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (Z.B.); (K.G.-Z.); (J.S.); (M.G.); (F.N.T.)
| |
Collapse
|
5
|
Barbayianni I, Kanellopoulou P, Fanidis D, Nastos D, Ntouskou ED, Galaris A, Harokopos V, Hatzis P, Tsitoura E, Homer R, Kaminski N, Antoniou KM, Crestani B, Tzouvelekis A, Aidinis V. SRC and TKS5 mediated podosome formation in fibroblasts promotes extracellular matrix invasion and pulmonary fibrosis. Nat Commun 2023; 14:5882. [PMID: 37735172 PMCID: PMC10514346 DOI: 10.1038/s41467-023-41614-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
The activation and accumulation of lung fibroblasts resulting in aberrant deposition of extracellular matrix components, is a pathogenic hallmark of Idiopathic Pulmonary Fibrosis, a lethal and incurable disease. In this report, increased expression of TKS5, a scaffold protein essential for the formation of podosomes, was detected in the lung tissue of Idiopathic Pulmonary Fibrosis patients and bleomycin-treated mice. Τhe profibrotic milieu is found to induce TKS5 expression and the formation of prominent podosome rosettes in lung fibroblasts, that are retained ex vivo, culminating in increased extracellular matrix invasion. Tks5+/- mice are found resistant to bleomycin-induced pulmonary fibrosis, largely attributed to diminished podosome formation in fibroblasts and decreased extracellular matrix invasion. As computationally predicted, inhibition of src kinase is shown to potently attenuate podosome formation in lung fibroblasts and extracellular matrix invasion, and bleomycin-induced pulmonary fibrosis, suggesting pharmacological targeting of podosomes as a very promising therapeutic option in pulmonary fibrosis.
Collapse
Affiliation(s)
- Ilianna Barbayianni
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Paraskevi Kanellopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Dionysios Fanidis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Dimitris Nastos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Eleftheria-Dimitra Ntouskou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Apostolos Galaris
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Vaggelis Harokopos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Pantelis Hatzis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Eliza Tsitoura
- Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Robert Homer
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Naftali Kaminski
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Katerina M Antoniou
- Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Bruno Crestani
- Department of Pulmonology, Bichat-Claude Bernard Hospital, Paris, France
| | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Vassilis Aidinis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece.
| |
Collapse
|
6
|
Wang HJ, Jiang YP, Zhang JY, Tang XQ, Lou JS, Huang XY. Roles of Fascin in Dendritic Cells. Cancers (Basel) 2023; 15:3691. [PMID: 37509352 PMCID: PMC10378208 DOI: 10.3390/cancers15143691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that play a crucial role in activating naive T cells through presenting antigen information, thereby influencing immunity and anti-cancer responses. Fascin, a 55-kDa actin-bundling protein, is highly expressed in mature DCs and serves as a marker protein for their identification. However, the precise role of fascin in intratumoral DCs remains poorly understood. In this review, we aim to summarize the role of fascin in both normal and intratumoral DCs. In normal DCs, fascin promotes immune effects through facilitating DC maturation and migration. Through targeting intratumoral DCs, fascin inhibitors enhance anti-tumor immune activity. These roles of fascin in different DC populations offer valuable insights for future research in immunotherapy and strategies aimed at improving cancer treatments.
Collapse
Affiliation(s)
- Hao-Jie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ya-Ping Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Jun-Ying Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiao-Qi Tang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Jian-Shu Lou
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| |
Collapse
|
7
|
Hamouda AEI, Schalla C, Sechi A, Zenke M, Schneider-Kramann R, Hieronymus T. Met-signaling Controls Dendritic Cell Migration in Skin by Regulating Podosome Formation and Function. J Invest Dermatol 2023:S0022-202X(23)00100-8. [PMID: 36813160 DOI: 10.1016/j.jid.2022.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/28/2022] [Indexed: 02/23/2023]
Abstract
Signaling through the HGF receptor/Met in skin-resident Langerhans cells (LC) and dermal dendritic cells (dDC) is essential for their emigration toward draining lymph nodes upon inflammation-induced activation. Here, we addressed the role of Met-signaling in distinct steps of LC/dDC emigration from the skin by employing a conditional Met-deficient mouse model (Metflox/flox). We found that Met deficiency severely impaired podosome formation in DC and concomitantly decreased the proteolytic degradation of gelatin. Accordingly, Met-deficient LC failed to efficiently cross the extracellular matrix (ECM)-rich basement membrane between the epidermis and dermis. We further observed that HGF-dependent Met activation reduced the adhesion of bone marrow-derived LC to various ECM factors and enhanced the motility of DC in 3D collagen matrices, which was not the case for Met-deficient LC/DC. We found no impact of Met-signaling on the integrin-independent amoeboid migration of DC in response to the c-c chemokine receptor 7 (CCR7) ligand CCL19. Collectively, our data show that the Met-signaling pathway regulates the migratory properties of DC in HGF-dependent and HGF-independent manners.
Collapse
Affiliation(s)
- Ahmed E I Hamouda
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Clinic, Pauwelsstr. 30, 52074 Aachen, Germany; Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany
| | - Carmen Schalla
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Clinic, Pauwelsstr. 30, 52074 Aachen, Germany; Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany; Institute for Cell and Tumor Biology, RWTH Aachen University Clinic, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Antonio Sechi
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Clinic, Pauwelsstr. 30, 52074 Aachen, Germany; Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany; Institute for Cell and Tumor Biology, RWTH Aachen University Clinic, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Martin Zenke
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Clinic, Pauwelsstr. 30, 52074 Aachen, Germany; Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany; Department of Hematology, Oncology, and Stem Cell Transplantation, Department of Medicine IV, RWTH Aachen University Clinic, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Rebekka Schneider-Kramann
- Institute for Cell and Tumor Biology, RWTH Aachen University Clinic, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Thomas Hieronymus
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Clinic, Pauwelsstr. 30, 52074 Aachen, Germany; Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany; Institute for Cell and Tumor Biology, RWTH Aachen University Clinic, Pauwelsstr. 30, 52074 Aachen, Germany.
| |
Collapse
|
8
|
Osorio EY, Uscanga-Palomeque A, Patterson GT, Cordova E, Travi BL, Soong L, Melby PC. Malnutrition-related parasite dissemination from the skin in visceral leishmaniasis is driven by PGE2-mediated amplification of CCR7-related trafficking of infected inflammatory monocytes. PLoS Negl Trop Dis 2023; 17:e0011040. [PMID: 36630476 PMCID: PMC9873180 DOI: 10.1371/journal.pntd.0011040] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/24/2023] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
People are infected with Leishmania donovani when the parasite is deposited in the dermis during the blood meal of the sand fly vector. Most infected people develop a subclinical latent infection, but some develop progressive visceral leishmaniasis. Malnutrition is a risk factor for the development of active VL. We previously demonstrated increased parasite dissemination from the skin to visceral organs in a murine model of malnutrition. Here we investigated the mechanism of early parasite dissemination. After delivery of L. donovani to the skin, we found enhanced capture of parasites by inflammatory monocytes and neutrophils in the skin of malnourished mice. However, parasite dissemination in malnourished mice was driven primarily by infected inflammatory monocytes, which showed increased CCR7 expression, greater intrinsic migratory capacity, and increased trafficking from skin to spleen. PGE2 production, which was increased at the site of skin infection, increased monocyte CCR7 expression and promoted CCR7-related monocyte-mediated early parasite dissemination in malnourished mice. Parasite dissemination in monocytes was reduced by inhibition of PGE2, knockdown or silencing of CCR7 in monocytes, and depletion of inflammatory monocytes through administration of diphtheria toxin to CSFR1-DTR transgenic mice that have monocyte-specific DT receptor expression. CCR7-driven trafficking of infected inflammatory monocytes through the lymph node was accompanied by increased expression of its ligands CCL19 and CCL21. These results show that the CCR7/PGE2 axis is responsible for the increased trafficking of L. donovani-infected inflammatory monocytes from the skin to the spleen in the malnourished host. Undernutrition and production of PGE2 are potential targets to reduce the risk of people developing VL. Nutritional interventions that target improved immune function and reduced PGE2 synthesis should be studied in people at risk of developing VL.
Collapse
Affiliation(s)
- E. Yaneth Osorio
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail: (PCM); (EYO)
| | - Ashanti Uscanga-Palomeque
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Grace T. Patterson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Erika Cordova
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bruno L. Travi
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases and Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases and Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Peter C. Melby
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases and Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail: (PCM); (EYO)
| |
Collapse
|
9
|
Krmeská V, Aggio JB, Nylén S, Wowk PF, Rothfuchs AG. Cyclooxygenase-Derived Prostaglandin E 2 Drives IL-1-Independent Mycobacterium bovis Bacille Calmette-Guérin-Triggered Skin Dendritic Cell Migration to Draining Lymph Node. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2549-2557. [PMID: 35523455 PMCID: PMC9161203 DOI: 10.4049/jimmunol.2100981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/22/2022] [Indexed: 11/19/2022]
Abstract
Inoculation of Mycobacterium bovis Bacille Calmette-Guérin (BCG) in the skin mobilizes local dendritic cells (DC) to the draining lymph node (dLN) in a process that remains incompletely understood. In this study, a mouse model of BCG skin infection was used to investigate mechanisms of skin DC migration to dLNs. We found enhanced transcription of cyclooxygenase (COX)-2 and production of COX-derived PGE2 early after BCG infection in skin. Animals treated with antagonists for COX or the PGE2 receptors EP2 and EP4 displayed a marked reduction in the entry of skin DCs and BCG to dLNs, uncovering an important contribution of COX-derived PGE2 in this migration process. In addition, live BCG bacilli were needed to invoke DC migration through this COX-PGE2 pathway. Having previously shown that IL-1R partially regulates BCG-induced relocation of skin DCs to dLNs, we investigated whether PGE2 release was under control of IL-1. Interestingly, IL-1R ligands IL-1α/β were not required for early transcription of COX-2 or production of PGE2 in BCG-infected skin, suggesting that the DC migration-promoting role of PGE2 is independent of IL-1α/β in our model. In DC adoptive transfer experiments, EP2/EP4, but not IL-1R, was needed on the moving DCs for full-fledged migration, supporting different modes of action for PGE2 and IL-1α/β. In summary, our data highlight an important role for PGE2 in guiding DCs to dLNs in an IL-1–independent manner. BCG-triggered PGE2 release mobilizes skin DCs to the draining lymph node. Migrating DCs use EP2 and EP4 to relocate to the draining lymph node. Live BCG bacilli are needed for PGE2-mediated DC migration.
Collapse
Affiliation(s)
- Veronika Krmeská
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; and
| | - Juliana Bernardi Aggio
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; and.,Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Brazil
| | - Susanne Nylén
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; and
| | - Pryscilla Fanini Wowk
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; and.,Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Brazil
| | | |
Collapse
|
10
|
Choi Y, Sunkara V, Lee Y, Cho YK. Exhausted mature dendritic cells exhibit a slower and less persistent random motility but retain chemotaxis against CCL19. LAB ON A CHIP 2022; 22:377-386. [PMID: 34927189 DOI: 10.1039/d1lc00876e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dendritic cells (DCs), which are immune sentinels in the peripheral tissues, play a number of roles, including patrolling for pathogens, internalising antigens, transporting antigens to the lymph nodes (LNs), interacting with T cells, and secreting cytokines. The well-coordinated migration of DCs under various immunological or inflammatory conditions is therefore essential to ensure an effective immune response. Upon maturation, DCs migrate faster and more persistently than immature DCs (iDCs), which is believed to facilitate CCR7-dependent chemotaxis. It has been reported that lipopolysaccharide-activated DCs produce IL-12 only transiently, and become resistant to further stimulation through exhaustion. However, little is known about the influence of DC exhaustion on cellular motility. Here, we studied the cellular migration of exhausted DCs in tissue-mimicked confined environments. We found that the speed of exhausted matured DCs (xmDCs) decreased significantly compared to active matured DCs (amDCs) and iDCs. In contrast, the speed fluctuation increased compared to that of amDCs and was similar to that of iDCs. In addition, the diffusivity of the xmDCs was significantly lower than that of the amDCs, which implies that DC exhaustion reduces the space exploration ability. Interestingly, CCR7-dependent chemotaxis against CCL19 in xmDCs was not considerably different from that observed in amDCs. Taken together, we report a unique intrinsic cell migration behaviour of xmDCs, which exhibit a slower, less persistent, and less diffusive random motility, which results in the DCs remaining at the site of infection, although a well-preserved CCR7-dependent chemotactic motility is maintained.
Collapse
Affiliation(s)
- Yongjun Choi
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Vijaya Sunkara
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Yeojin Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| |
Collapse
|
11
|
Choi Y, Kwon JE, Cho YK. Dendritic Cell Migration Is Tuned by Mechanical Stiffness of the Confining Space. Cells 2021; 10:3362. [PMID: 34943870 PMCID: PMC8699733 DOI: 10.3390/cells10123362] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/25/2022] Open
Abstract
The coordination of cell migration of immune cells is a critical aspect of the immune response to pathogens. Dendritic cells (DCs), the sentinels of the immune system, are exposed to complex tissue microenvironments with a wide range of stiffnesses. Recent studies have revealed the importance of mechanical cues in immune cell trafficking in confined 3D environments. However, the mechanism by which stiffness modulates the intrinsic motility of immature DCs remains poorly understood. Here, immature DCs were found to navigate confined spaces in a rapid and persistent manner, surveying a wide range when covered with compliant gels mimicking soft tissues. However, the speed and persistence time of random motility were both decreased by confinement in gels with higher stiffness, mimicking skin or diseased, fibrotic tissue. The impact of stiffness of surrounding tissue is crucial because most in vitro studies to date have been based on cellular locomotion when confined by microfabricated polydimethylsiloxane structures. Our study provides evidence for a role for environmental mechanical stiffness in the surveillance strategy of immature DCs in tissues.
Collapse
Affiliation(s)
- Yongjun Choi
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea;
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Korea
| | - Jae-Eun Kwon
- Department of Material Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea;
| | - Yoon-Kyoung Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea;
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Korea
| |
Collapse
|
12
|
Vleeshouwers W, van den Dries K, de Keijzer S, Joosten B, Lidke DS, Cambi A. Characterization of the Signaling Modalities of Prostaglandin E2 Receptors EP2 and EP4 Reveals Crosstalk and a Role for Microtubules. Front Immunol 2021; 11:613286. [PMID: 33643295 PMCID: PMC7907432 DOI: 10.3389/fimmu.2020.613286] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/18/2020] [Indexed: 11/13/2022] Open
Abstract
Prostaglandin E2 (PGE2) is a lipid mediator that modulates the function of myeloid immune cells such as macrophages and dendritic cells (DCs) through the activation of the G protein-coupled receptors EP2 and EP4. While both EP2 and EP4 signaling leads to an elevation of intracellular cyclic adenosine monophosphate (cAMP) levels through the stimulating Gαs protein, EP4 also couples to the inhibitory Gαi protein to decrease the production of cAMP. The receptor-specific contributions to downstream immune modulatory functions are still poorly defined. Here, we employed quantitative imaging methods to characterize the early EP2 and EP4 signaling events in myeloid cells and their contribution to the dissolution of adhesion structures called podosomes, which is a first and essential step in DC maturation. We first show that podosome loss in DCs is primarily mediated by EP4. Next, we demonstrate that EP2 and EP4 signaling leads to distinct cAMP production profiles, with EP4 inducing a transient cAMP response and EP2 inducing a sustained cAMP response only at high PGE2 levels. We further find that simultaneous EP2 and EP4 stimulation attenuates cAMP production, suggesting a reciprocal control of EP2 and EP4 signaling. Finally, we demonstrate that efficient signaling of both EP2 and EP4 relies on an intact microtubule network. Together, these results enhance our understanding of early EP2 and EP4 signaling in myeloid cells. Considering that modulation of PGE2 signaling is regarded as an important therapeutic possibility in anti-tumor immunotherapy, our findings may facilitate the development of efficient and specific immune modulators of PGE2 receptors.
Collapse
Affiliation(s)
- Ward Vleeshouwers
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sandra de Keijzer
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ben Joosten
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Diane S Lidke
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
13
|
Oliveira MMS, Westerberg LS. Cytoskeletal regulation of dendritic cells: An intricate balance between migration and presentation for tumor therapy. J Leukoc Biol 2020; 108:1051-1065. [PMID: 32557835 DOI: 10.1002/jlb.1mr0520-014rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/28/2022] Open
Abstract
Dendritic cells (DCs) are the main players in many approaches for cancer therapy. The idea with DC tumor therapy is to promote activation of tumor infiltrating cytotoxic T cells that kill tumor cells. This requires that DCs take up tumor Ag and present peptides on MHC class I molecules in a process called cross-presentation. For this process to be efficient, DCs have to migrate to the tumor draining lymph node and there activate the machinery for cross-presentation. In this review, we will discuss recent progress in understanding the role of actin regulators for control of DC migration and Ag presentation. The potential to target actin regulators for better DC-based tumor therapy will also be discussed.
Collapse
Affiliation(s)
- Mariana M S Oliveira
- Department of Microbiology Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Lukácsi S, Gerecsei T, Balázs K, Francz B, Szabó B, Erdei A, Bajtay Z. The differential role of CR3 (CD11b/CD18) and CR4 (CD11c/CD18) in the adherence, migration and podosome formation of human macrophages and dendritic cells under inflammatory conditions. PLoS One 2020; 15:e0232432. [PMID: 32365067 PMCID: PMC7197861 DOI: 10.1371/journal.pone.0232432] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/14/2020] [Indexed: 11/19/2022] Open
Abstract
CR3 and CR4, the leukocyte specific β2-integrins, involved in cellular adherence, migration and phagocytosis, are often assumed to have similar functions. Previously however, we proved that under physiological conditions CR4 is dominant in the adhesion to fibrinogen of human monocyte-derived macrophages (MDMs) and dendritic cells (MDDCs). Here, using inflammatory conditions, we provide further evidence that the expression and function of CR3 and CR4 are not identical in these cell types. We found that LPS treatment changes their expression differently on MDMs and MDDCs, suggesting a cell type specific regulation. Using mAb24, specific for the high affinity conformation of CD18, we proved that the activation and recycling of β2-integrins is significantly enhanced upon LPS treatment. Adherence to fibrinogen was assessed by two fundamentally different approaches: a classical adhesion assay and a computer-controlled micropipette, capable of measuring adhesion strength. While both receptors participated in adhesion, we demonstrated that CR4 exerts a dominant role in the strong attachment of MDDCs. Studying the formation of podosomes we found that MDMs retain podosome formation after LPS activation, whereas MDDCs lose this ability, resulting in a significantly reduced adhesion force and an altered cellular distribution of CR3 and CR4. Our results suggest that inflammatory conditions reshape differentially the expression and role of CR3 and CR4 in macrophages and dendritic cells.
Collapse
Affiliation(s)
- Szilvia Lukácsi
- MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Tamás Gerecsei
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
- Nanobiosensorics “Lendület” Group, Institute of Technical Physics and Material Sciences, Centre for Energy Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Katalin Balázs
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | | | - Bálint Szabó
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
- CellSorter Company for Innovations, Budapest, Hungary
| | - Anna Erdei
- MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Zsuzsa Bajtay
- MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
15
|
Akisaka T, Yoshida A. Scattered podosomes and podosomes associated with the sealing zone architecture in cultured osteoclasts revealed by cell shearing, quick freezing, and platinum-replica electron microscopy. Cytoskeleton (Hoboken) 2019; 76:303-321. [PMID: 31162808 DOI: 10.1002/cm.21543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 01/06/2023]
Abstract
Osteoclasts (OCs) can adhere to a variety of substrate surfaces by highly dynamic actin-based cytoskeletal structures termed podosomes. This tight attachment is established by a sealing zone (SZ), which is made of interconnected individual podosomes. Compared with scattered podosomes in various cell types, the architecture of the SZ is still unclear. Especially, ultrastructural studies on the details of the cytoskeletal structure of an OC have been challenging, because the high density of filaments in their podosomes obscure visualization of individual filaments. Therefore, to study this organization in more exact detail, we employed shearing open combined with replica electron microscopy. The present study provides several new details of the podosome and SZ structure, which were previously unrecognized: (a) the SZ consists of recognizable podosomes with a dense actin network of interpodosomal regions characterized by multiple layers of crossing, branching and anastomosing actin filament networks; (b) the Arp2/3 complex is distributed throughout the actin network of podosomes and SZ, indicating that actin polymerization is concentrated at these regions; (c) a close spatial relationship between the podosome and the dorsal membrane; and (d) a network of membranous organelles in close proximity to the podosomes in the SZ. Taken together, the present study reveals that a more complicated interpodosomal actin network among neighboring individual podosomes, which is more complicated than previously thought, appears to form the SZ. Indeed, individual podosomes are not an isolated structural unit from other organelles; and, in turn, their dynamism might affect the surrounding interpodosomal cytoskeletons, membranous organelles, and plasma membrane.
Collapse
Affiliation(s)
- Toshitaka Akisaka
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Atsushi Yoshida
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
16
|
Jia XY, Chang Y, Sun XJ, Wei F, Wu YJ, Dai X, Xu S, Wu HX, Wang C, Yang XZ, Wei W. Regulatory effects of paeoniflorin-6'-O-benzene sulfonate (CP-25) on dendritic cells maturation and activation via PGE2-EP4 signaling in adjuvant-induced arthritic rats. Inflammopharmacology 2019; 27:997-1010. [PMID: 30771056 DOI: 10.1007/s10787-019-00575-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/05/2019] [Indexed: 12/31/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease. Dendritic cells (DCs) are one of the most powerful antigen-presenting cells, and they play an important role in RA pathogenesis. Prostaglandin E2 (PGE2) is a potent lipid mediator that can regulate the maturation and activation of DCs, but the molecular mechanisms have not been elucidated. In this study, both in vitro and in an RA rat model, we investigated the mechanisms involved by focusing on PGE2-mediated signaling and using a novel anti-inflammatory compound, paeoniflorin-6'-O-benzene sulfonate (CP-25). PGE2 combined with tumor necrosis factor-α promoted DC maturation and activation through EP4-cAMP signaling. Treatment with CP-25 increased the endocytic capacity of DCs induced by PGE2. CP-25 inhibited the potency of DCs induced by the EP4 receptor agonist, CAY10598, to stimulate allogeneic T cells. Consistent with these findings, the CAY10598-induced upregulation of DC surface activation markers and production of IL-23 was significantly inhibited by CP-25 in a concentration-dependent manner. In vivo administration of CP-25 alleviated adjuvant arthritis (AA) in rats through inhibition of DC maturation and activation. Our results indicate that PGE2-EP4-cAMP signal hyperfunction can lead to abnormal activation of DC functions, which correlates with the course of disease in AA rats and provides a possible treatment target. The inhibition of DC maturation and activation by CP-25 interference of the PGE2-EP4 pathway may significantly contribute to the immunoregulatory profile of CP-25 when used to treat RA and other immune cell-mediated disorders.
Collapse
MESH Headings
- Adjuvants, Immunologic/adverse effects
- Adjuvants, Pharmaceutic/adverse effects
- Animals
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Arthritis, Rheumatoid/chemically induced
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/metabolism
- Cyclic AMP/metabolism
- Dendritic Cells/drug effects
- Dendritic Cells/metabolism
- Dinoprostone/metabolism
- Glucosides/pharmacology
- Male
- Monoterpenes/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Signal Transduction/drug effects
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Xiao-Yi Jia
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yan Chang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xiao-Jing Sun
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Fang Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Yu-Jing Wu
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xing Dai
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Shu Xu
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Hua-Xun Wu
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Chun Wang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xue-Zhi Yang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
17
|
Alonso F, Spuul P, Kramer IJ, Génot E. [Variations on the theme of podosomes, context matters]. Med Sci (Paris) 2019; 34:1063-1070. [PMID: 30623771 DOI: 10.1051/medsci/2018296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Podosomes are actin-based microdomains connecting the cell with its extracellular matrix. Contractile actin-myosin cables assemble them into a network that constitutes a versatile cellular superstructure. Discovered and extensively described in in vitro conditions, podosomes now appear as major actors of specific physiological processes. They share common characteristics but their morphology and their effect on cell functioning can only be apprehended in specific cellular contexts. We focus here on three cellular processes involving podosomes and discuss their properties in context.
Collapse
Affiliation(s)
- Florian Alonso
- Centre de recherche cardio-thoracique de Bordeaux (Inserm U1045), Université de Bordeaux, Bordeaux Cedex, F-33076 France
| | - Pirjo Spuul
- Department of chemistry and biotechnology, division of gene technology, Tallinn University of Technology, 12618 Tallinn, Estonie
| | - IJsbrand Kramer
- Centre de recherche cardio-thoracique de Bordeaux (Inserm U1045), Université de Bordeaux, Bordeaux Cedex, F-33076 France
| | - Elisabeth Génot
- Centre de recherche cardio-thoracique de Bordeaux (Inserm U1045), Université de Bordeaux, Bordeaux Cedex, F-33076 France
| |
Collapse
|
18
|
Alonso F, Spuul P, Daubon T, Kramer IJ, Génot E. Variations on the theme of podosomes: A matter of context. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:545-553. [PMID: 30594495 DOI: 10.1016/j.bbamcr.2018.12.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/15/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022]
Abstract
Extensive in vitro studies have described podosomes as actin-based structures at the plasma membrane, connecting the cell with its extracellular matrix and endowed with multiple capabilities. Contractile actin-myosin cables assemble them into a network that constitutes a multifaceted cellular superstructure taking different forms - with common characteristics - but manifesting different properties depending on the context of study. Their morphology and their role in cell functioning and behavior are therefore now apprehended in in vivo or in vitro situations relevant to physiological processes. We focus here on three of them, namely: macrophage migration, antigen presentation by dendritic cells and endothelial cell sprouting during angiogenesis to highlight the characteristics of podosomes and their functioning shaped by the microenvironment.
Collapse
Affiliation(s)
- Florian Alonso
- Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, Bordeaux F-33076 Cedex, France
| | - Pirjo Spuul
- Department of Chemistry and Biotechnology, Division of Gene Technology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Thomas Daubon
- Laboratoire de l'Angiogénèse et du Microenvironnement des Cancers (INSERM U1029), Université de Bordeaux, Bordeaux F-33076 Cedex, France
| | - IJsbrand Kramer
- Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, Bordeaux F-33076 Cedex, France
| | - Elisabeth Génot
- Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, Bordeaux F-33076 Cedex, France.
| |
Collapse
|
19
|
Karrich JJ, Romera-Hernández M, Papazian N, Veenbergen S, Cornelissen F, Aparicio-Domingo P, Stenhouse FH, Peddie CD, Hoogenboezem RM, den Hollander CWJ, Gaskell T, Medley T, Boon L, Blackburn CC, Withers DR, Samsom JN, Cupedo T. Expression of Plet1 controls interstitial migration of murine small intestinal dendritic cells. Eur J Immunol 2018; 49:290-301. [PMID: 30537036 PMCID: PMC6492104 DOI: 10.1002/eji.201847671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/30/2018] [Accepted: 12/05/2018] [Indexed: 12/25/2022]
Abstract
Under homeostatic conditions, dendritic cells (DCs) continuously patrol the intestinal lamina propria. Upon antigen encounter, DCs initiate C‐C motif chemokine receptor 7 (CCR7) expression and migrate into lymph nodes to direct T cell activation and differentiation. The mechanistic underpinnings of DC migration from the tissues to lymph nodes have been largely elucidated, contributing greatly to our understanding of DC functionality and intestinal immunity. In contrast, the molecular mechanisms allowing DCs to efficiently migrate through the complex extracellular matrix of the intestinal lamina propria prior to antigen encounter are still incompletely understood. Here we show that small intestinal murine CD11b+CD103+ DCs express Placenta‐expressed transcript 1 (Plet1), a glycophoshatidylinositol (GPI)‐anchored surface protein involved in migration of keratinocytes during wound healing. In the absence of Plet1, CD11b+CD103+ DCs display aberrant migratory behavior, and accumulate in the small intestine, independent of CCR7 responsiveness. RNA‐sequencing indicated involvement of Plet1 in extracellular matrix‐interactiveness, and subsequent in‐vitro migration assays revealed that Plet1 augments the ability of DCs to migrate through extracellular matrix containing environments. In conclusion, our findings reveal that expression of Plet1 facilitates homeostatic interstitial migration of small intestinal DCs.
Collapse
Affiliation(s)
- Julien J Karrich
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Natalie Papazian
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sharon Veenbergen
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ferry Cornelissen
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Frances H Stenhouse
- MRC, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - C Diana Peddie
- MRC, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Remco M Hoogenboezem
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Terri Gaskell
- MRC, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Tanya Medley
- MRC, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | | | - C Clare Blackburn
- MRC, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - David R Withers
- MRC, Centre for Immune Regulation, University of Birmingham, Birmingham, UK
| | - Janneke N Samsom
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tom Cupedo
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
20
|
Debeuf N, Lambrecht BN. Eicosanoid Control Over Antigen Presenting Cells in Asthma. Front Immunol 2018; 9:2006. [PMID: 30233591 PMCID: PMC6131302 DOI: 10.3389/fimmu.2018.02006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022] Open
Abstract
Asthma is a common lung disease affecting 300 million people worldwide. Allergic asthma is recognized as a prototypical Th2 disorder, orchestrated by an aberrant adaptive CD4+ T helper (Th2/Th17) cell immune response against airborne allergens, that leads to eosinophilic inflammation, reversible bronchoconstriction, and mucus overproduction. Other forms of asthma are controlled by an eosinophil-rich innate ILC2 response driven by epithelial damage, whereas in some patients with more neutrophilia, the disease is driven by Th17 cells. Dendritic cells (DCs) and macrophages are crucial regulators of type 2 immunity in asthma. Numerous lipid mediators including the eicosanoids prostaglandins and leukotrienes influence key functions of these cells, leading to either pro- or anti-inflammatory effects on disease outcome. In this review, we will discuss how eicosanoids affect the functions of DCs and macrophages in the asthmatic lung and how this leads to aberrant T cell differentiation that causes disease.
Collapse
Affiliation(s)
- Nincy Debeuf
- Laboratory of Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
21
|
Cougoule C, Lastrucci C, Guiet R, Mascarau R, Meunier E, Lugo-Villarino G, Neyrolles O, Poincloux R, Maridonneau-Parini I. Podosomes, But Not the Maturation Status, Determine the Protease-Dependent 3D Migration in Human Dendritic Cells. Front Immunol 2018; 9:846. [PMID: 29760696 PMCID: PMC5936769 DOI: 10.3389/fimmu.2018.00846] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/05/2018] [Indexed: 01/22/2023] Open
Abstract
Dendritic cells (DC) are professional Antigen-Presenting Cells scattered throughout antigen-exposed tissues and draining lymph nodes, and survey the body for pathogens. Their ability to migrate through tissues, a 3D environment, is essential for an effective immune response. Upon infection, recognition of Pathogen-Associated Molecular Patterns (PAMP) by Toll-like receptors (TLR) triggers DC maturation. Mature DC (mDC) essentially use the protease-independent, ROCK-dependent amoeboid mode in vivo, or in collagen matrices in vitro. However, the mechanisms of 3D migration used by human immature DC (iDC) are still poorly characterized. Here, we reveal that human monocyte-derived DC are able to use two migration modes in 3D. In porous matrices of fibrillar collagen I, iDC adopted the amoeboid migration mode. In dense matrices of gelled collagen I or Matrigel, iDC used the protease-dependent, ROCK-independent mesenchymal migration mode. Upon TLR4 activation by LPS, mDC-LPS lose the capacity to form podosomes and degrade the matrix along with impaired mesenchymal migration. TLR2 activation by Pam3CSK4 resulted in DC maturation, podosome maintenance, and efficient mesenchymal migration. Under all these conditions, when DC used the mesenchymal mode in dense matrices, they formed 3D podosomes at the tip of cell protrusions. Using PGE2, known to disrupt podosomes in DC, we observed that the cells remained in an immature status and the mesenchymal migration mode was abolished. We also observed that, while CCL5 (attractant of iDC) enhanced both amoeboid and mesenchymal migration of iDC, CCL19 and CCL21 (attractants of mDC) only enhanced mDC-LPS amoeboid migration without triggering mesenchymal migration. Finally, we examined the migration of iDC in tumor cell spheroids, a tissue-like 3D environment. We observed that iDC infiltrated spheroids of tumor cells using both migration modes. Altogether, these results demonstrate that human DC adopt the mesenchymal mode to migrate in 3D dense environments, which relies on their capacity to form podosomes independent of their maturation status, paving the way of further investigations on in vivo DC migration in dense tissues and its regulation during infections.
Collapse
Affiliation(s)
- Céline Cougoule
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Claire Lastrucci
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Romain Guiet
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Rémi Mascarau
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Etienne Meunier
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Geanncarlo Lugo-Villarino
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Renaud Poincloux
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
22
|
Ólafsson EB, Varas-Godoy M, Barragan A. Toxoplasma gondii infection shifts dendritic cells into an amoeboid rapid migration mode encompassing podosome dissolution, secretion of TIMP-1, and reduced proteolysis of extracellular matrix. Cell Microbiol 2017; 20. [PMID: 29119662 DOI: 10.1111/cmi.12808] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/10/2017] [Accepted: 11/03/2017] [Indexed: 12/29/2022]
Abstract
Dendritic cells (DCs) infected by Toxoplasma gondii rapidly acquire a hypermigratory phenotype that promotes systemic parasite dissemination by a "Trojan horse" mechanism in mice. Recent paradigms of leukocyte migration have identified the amoeboid migration mode of DCs as particularly suited for rapid locomotion in extracellular matrix and tissues. Here, we have developed a microscopy-based high-throughput approach to assess motility and matrix degradation by Toxoplasma-challenged murine and human DCs. DCs challenged with T. gondii exhibited dependency on metalloproteinase activity for hypermotility and transmigration but, strikingly, also dramatically reduced pericellular proteolysis. Toxoplasma-challenged DCs up-regulated expression and secretion of tissue inhibitor of metalloproteinases-1 (TIMP-1) and their supernatants impaired matrix degradation by naïve DCs and by-stander DCs dose dependently. Gene silencing of TIMP-1 by short hairpin RNA restored matrix degradation activity in Toxoplasma-infected DCs. Additionally, dissolution of podosome structures in parasitised DCs coincided with abrogated matrix degradation. Toxoplasma lysates inhibited pericellular proteolysis in a MyD88-dependent fashion whereas abrogated proteolysis persevered in Toxoplasma-infected MyD88-deficient DCs. This indicated that both TLR/MyD88-dependent and TLR/MyD88-independent signalling pathways mediated podosome dissolution and the abrogated matrix degradation. We report that increased TIMP-1 secretion and cytoskeletal rearrangements encompassing podosome dissolution are features of Toxoplasma-induced hypermigration of DCs with an impact on matrix degradation. Jointly, the data highlight how an obligate intracellular parasite orchestrates key regulatory cellular processes consistent with non-proteolytic amoeboid migration of the vehicle cells that facilitate its dissemination.
Collapse
Affiliation(s)
- Einar B Ólafsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Manuel Varas-Godoy
- Centro de Investigación Biomédica, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
23
|
Mennens SFB, Bolomini-Vittori M, Weiden J, Joosten B, Cambi A, van den Dries K. Substrate stiffness influences phenotype and function of human antigen-presenting dendritic cells. Sci Rep 2017; 7:17511. [PMID: 29235514 PMCID: PMC5727489 DOI: 10.1038/s41598-017-17787-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/30/2017] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) are specialized immune cells that scan peripheral tissues for foreign material or aberrant cells and, upon recognition of such danger signals, travel to lymph nodes to activate T cells and evoke an immune response. For this, DCs travel large distances through the body, encountering a variety of microenvironments with different mechanical properties such as tissue stiffness. While immune-related pathological conditions such as fibrosis or cancer are associated with tissue stiffening, the role of tissue stiffness in regulating key functions of DCs has not been studied yet. Here, we investigated the effect of substrate stiffness on the phenotype and function of DCs by conditioning DCs on polyacrylamide substrates of 2, 12 and 50 kPa. Interestingly, we found that C-type lectin expression on immature DCs (iDCs) is regulated by substrate stiffness, resulting in differential antigen internalization. Furthermore, we show that substrate stiffness affects β2 integrin expression and podosome formation by iDCs. Finally, we demonstrate that substrate stiffness influences CD83 and CCR7 expression on mature DCs, the latter leading to altered chemokine-directed migration. Together, our results indicate that DC phenotype and function are affected by substrate stiffness, suggesting that tissue stiffness is an important determinant for modulating immune responses.
Collapse
Affiliation(s)
- Svenja F B Mennens
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Matteo Bolomini-Vittori
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Jorieke Weiden
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Ben Joosten
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands.
| | - Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
24
|
Paterson EK, Courtneidge SA. Invadosomes are coming: new insights into function and disease relevance. FEBS J 2017; 285:8-27. [PMID: 28548369 DOI: 10.1111/febs.14123] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/09/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022]
Abstract
Invadopodia and podosomes are discrete, actin-based molecular protrusions that form in cancer cells and normal cells, respectively, in response to diverse signaling pathways and extracellular matrix cues. Although they participate in a host of different cellular processes, they share a common functional theme of controlling pericellular proteolytic activity, which sets them apart from other structures that function in migration and adhesion, including focal adhesions, lamellipodia, and filopodia. In this review, we highlight research that explores the function of these complex structures, including roles for podosomes in embryonic and postnatal development, in angiogenesis and remodeling of the vasculature, in maturation of the postsynaptic membrane, in antigen sampling and recognition, and in cell-cell fusion mechanisms, as well as the involvement of invadopodia at multiple steps of the metastatic cascade, and how all of this may apply in the treatment of human disease states. Finally, we explore recent research that implicates a novel role for exosomes and microvesicles in invadopodia-dependent and invadopodia-independent mechanisms of invasion, respectively.
Collapse
Affiliation(s)
- Elyse K Paterson
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Sara A Courtneidge
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA.,Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
25
|
Chi Q, Shan J, Ding X, Yin T, Wang Y, Jia D, Wang G. Smart mechanosensing machineries enable migration of vascular smooth muscle cells in atherosclerosis-relevant 3D matrices. Cell Biol Int 2017; 41:586-598. [PMID: 28328100 DOI: 10.1002/cbin.10764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/19/2017] [Indexed: 11/05/2022]
Abstract
At the early stage of atherosclerosis, neointima is formed due to the migration of vascular smooth muscle cells (VSMCs) from the media to the intima. VSMCs are surrounded by highly adhesive 3D matrices. They take specific strategies to cross various 3D matrices in the media, including heterogeneous collagen and mechanically strong basement membrane. Migration of VSMCs is potentially caused by biomechanical mechanism. Most in vitro studies focus on cell migration on 2D substrates in response to biochemical factors. How the cells move through 3D matrices under the action of mechanosensing machineries remains unexplored. In this review, we propose that several interesting tension-dependent machineries act as "tractor"-posterior myosin II accumulation, and "wrecker"-anterior podosome maintaining, to power VSMCs ahead. VSMCs embedded in 3D matrices may accumulate a minor myosin II isoform, myosin IIB, at the cell rear. Anisotropic myosin IIB distribution creates cell rear, polarizes cell body, pushes the nucleus and reshapes the cell body, and cooperates with a uniformly distributed myosin IIA to propel the cell forward. On the other hand, matrix digestion by podosome further promote the migration when the matrix becomes denser. Actomyosin tension activates Src to induce podosome in soft 3D matrices and retain the podosome integrity to steadily digest the matrix.
Collapse
Affiliation(s)
- Qingjia Chi
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan, Hubei, China
| | - Jieling Shan
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan, Hubei, China
| | - Xiaorong Ding
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR
| | - Tieying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing, China
| | - Yazhou Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing, China
| | - Dongyu Jia
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing, China
| |
Collapse
|
26
|
Xu X, Liu X, Long J, Hu Z, Zheng Q, Zhang C, Li L, Wang Y, Jia Y, Qiu W, Zhou J, Yao W, Zeng Z. Interleukin-10 reorganizes the cytoskeleton of mature dendritic cells leading to their impaired biophysical properties and motilities. PLoS One 2017; 12:e0172523. [PMID: 28234961 PMCID: PMC5325303 DOI: 10.1371/journal.pone.0172523] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/06/2017] [Indexed: 12/16/2022] Open
Abstract
Interlukin-10 (IL-10) is an immunomodulatory cytokine which predominantly induces immune-tolerance. It has been also identified as a major cytokine in the tumor microenvironment that markedly mediates tumor immune escape. Previous studies on the roles of IL-10 in tumor immunosuppression mainly focus on its biochemical effects. But the effects of IL-10 on the biophysical characteristics of immune cells are ill-defined. Dendritic cells (DCs) are the most potent antigen-presenting cells and play a key role in the anti-tumor immune response. IL-10 can affect the immune regulatory functions of DCs in various ways. In this study, we aim to explore the effects of IL-10 on the biophysical functions of mature DCs (mDCs). mDCs were treated with different concentrations of IL-10 and their biophysical characteristics were identified. The results showed that the biophysical properties of mDCs, including electrophoresis mobility, osmotic fragility and deformability, as well as their motilities, were impaired by IL-10. Meanwhile, the cytoskeleton (F-actin) of mDCs was reorganized by IL-10. IL-10 caused the alternations in the expressions of fasin1 and profilin1 as well as the phosphorylation of cofilin1 in a concentration-dependent fashion. Moreover, Fourier transformed infrared resonance data showed that IL-10 made the status of gene transcription and metabolic turnover of mDCs more active. These results demonstrate a new aspect of IL-10's actions on the immune system and represent one of the mechanisms for immune escape of tumors. It may provide a valuable clue to optimize and improve the efficiency of DC-based immunotherapy against cancer.
Collapse
Affiliation(s)
- Xiaoli Xu
- Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, P.R. China
- Engineering Center of Medical Biotechnology Application, Guizhou Medical University, Guiyang, P.R. China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, P.R. China
- Hemorheology Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R.China
| | - Xianmei Liu
- Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, P.R. China
- Engineering Center of Medical Biotechnology Application, Guizhou Medical University, Guiyang, P.R. China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, P.R. China
- Hemorheology Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R.China
| | - Jinhua Long
- Department of Head and Neck, Affiliated Cancer Hospital, Guizhou Medical University, Guiyang, P.R.China
| | - Zuquan Hu
- Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, P.R. China
- Engineering Center of Medical Biotechnology Application, Guizhou Medical University, Guiyang, P.R. China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, P.R. China
| | - Qinni Zheng
- Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, P.R. China
| | - Chunlin Zhang
- Engineering Center of Medical Biotechnology Application, Guizhou Medical University, Guiyang, P.R. China
| | - Long Li
- Department of Nephropathy & Rheumatism, Third Affiliated Hospital, Guizhou Medical University, Duyun, P.R.China
| | - Yun Wang
- Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, P.R. China
- Engineering Center of Medical Biotechnology Application, Guizhou Medical University, Guiyang, P.R. China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, P.R. China
| | - Yi Jia
- Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, P.R. China
- Engineering Center of Medical Biotechnology Application, Guizhou Medical University, Guiyang, P.R. China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, P.R. China
| | - Wei Qiu
- Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, P.R. China
- Engineering Center of Medical Biotechnology Application, Guizhou Medical University, Guiyang, P.R. China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, P.R. China
| | - Jing Zhou
- Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, P.R. China
- Engineering Center of Medical Biotechnology Application, Guizhou Medical University, Guiyang, P.R. China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, P.R. China
| | - Weijuan Yao
- Hemorheology Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R.China
| | - Zhu Zeng
- Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, P.R. China
- Engineering Center of Medical Biotechnology Application, Guizhou Medical University, Guiyang, P.R. China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, P.R. China
| |
Collapse
|
27
|
Hooper KM, Yen JH, Kong W, Rahbari KM, Kuo PC, Gamero AM, Ganea D. Prostaglandin E2 Inhibition of IL-27 Production in Murine Dendritic Cells: A Novel Mechanism That Involves IRF1. THE JOURNAL OF IMMUNOLOGY 2017; 198:1521-1530. [PMID: 28062696 DOI: 10.4049/jimmunol.1601073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/09/2016] [Indexed: 12/20/2022]
Abstract
IL-27, a multifunctional cytokine produced by APCs, antagonizes inflammation by affecting conventional dendritic cells (cDC), inducing IL-10, and promoting development of regulatory Tr1 cells. Although the mechanisms involved in IL-27 induction are well studied, much less is known about the factors that negatively impact IL-27 expression. PGE2, a major immunomodulatory prostanoid, acts as a proinflammatory agent in several models of inflammatory/autoimmune disease, promoting primarily Th17 development and function. In this study, we report on a novel mechanism that promotes the proinflammatory function of PGE2 We showed previously that PGE2 inhibits IL-27 production in murine bone marrow-derived DCs. In this study, we show that, in addition to bone marrow-derived DCs, PGE2 inhibits IL-27 production in macrophages and in splenic cDC, and we identify a novel pathway consisting of signaling through EP2/EP4→induction of cAMP→downregulation of IFN regulatory factor 1 expression and binding to the p28 IFN-stimulated response element site. The inhibitory effect of PGE2 on p28 and irf1 expression does not involve endogenous IFN-β, STAT1, or STAT2, and inhibition of IL-27 does not appear to be mediated through PKA, exchange protein activated by cAMP, PI3K, or MAPKs. We observed similar inhibition of il27p28 expression in vivo in splenic DC following administration of dimethyl PGE2 in conjunction with LPS. Based on the anti-inflammatory role of IL-27 in cDC and through the generation of Tr1 cells, we propose that the PGE2-induced inhibition of IL-27 in activated cDC represents an important additional mechanism for its in vivo proinflammatory functions.
Collapse
Affiliation(s)
- Kirsten M Hooper
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140
| | - Jui-Hung Yen
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN 46202
| | - Weimin Kong
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140
| | - Kate M Rahbari
- Department of Microbiology and Immunology, University of Illinois College of Medicine at Chicago, Chicago, IL 60612; and
| | - Ping-Chang Kuo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN 46202
| | - Ana M Gamero
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140
| | - Doina Ganea
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140;
| |
Collapse
|
28
|
Bujila I, Schwarzer E, Skorokhod O, Weidner JM, Troye-Blomberg M, Östlund Farrants AK. Malaria-derived hemozoin exerts early modulatory effects on the phenotype and maturation of human dendritic cells. Cell Microbiol 2016; 18:413-23. [PMID: 26348250 DOI: 10.1111/cmi.12521] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 09/04/2015] [Accepted: 09/04/2015] [Indexed: 01/15/2023]
Abstract
Plasmodium falciparum (P. falciparum)-induced effects on the phenotype of human dendritic cells (DC) could contribute to poor induction of long-lasting protective immunity against malaria. DC ability to present antigens to naïve T cells, thus initiating adaptive immune responses depends on complex switches in chemokine receptors, production of soluble mediators and expression of molecules enabling antigen-presentation and maturation. To examine the cellular basis of these processes in the context of malaria, we performed detailed analysis of early events following exposure of human monocyte-derived DC to natural hemozoin (nHZ) and the synthetic analog of its heme core, β-hematin. DC exposed to either molecule produced high levels of the inflammatory chemokine MCP-1, showed continuous high expression of the inflammatory chemokine receptor CCR5, no upregulation of the lymphoid homing receptor CCR7 and no cytoskeletal actin redistribution with loss of podosomes. DC partially matured as indicated by increased expression of major histocompatibility complex (MHC) class II and CD86 following nHZ and β-hematin exposure, however there was a lack in expression of the maturation marker CD83 following nHZ but not β-hematin exposure. Overall our data demonstrate that exposure to nHZ partially impairs the capacity of DC to mature, an effect in part differential to β-hematin.
Collapse
Affiliation(s)
- Ioana Bujila
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, Stockholm, 106 91, Sweden
| | - Evelin Schwarzer
- Department of Oncology, University of Torino, Via Santena 5, Turin, 10126, Italy
| | - Oleksii Skorokhod
- Department of Oncology, University of Torino, Via Santena 5, Turin, 10126, Italy
| | - Jessica M Weidner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, Stockholm, 106 91, Sweden
| | - Marita Troye-Blomberg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, Stockholm, 106 91, Sweden
| | - Ann-Kristin Östlund Farrants
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, Stockholm, 106 91, Sweden
| |
Collapse
|
29
|
Osma-Garcia IC, Punzón C, Fresno M, Díaz-Muñoz MD. Dose-dependent effects of prostaglandin E2 in macrophage adhesion and migration. Eur J Immunol 2015; 46:677-88. [PMID: 26631603 DOI: 10.1002/eji.201545629] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 10/08/2015] [Accepted: 11/26/2015] [Indexed: 12/15/2022]
Abstract
Macrophage migration to the focus of infection is a hallmark of the innate immune response. Macrophage spreading, adhesion, and migration through the extracellular matrix require dynamic remodeling of the actin cytoskeleton associated to integrin clustering in podosomes and focal adhesions. Here, we show that prostaglandin E2 (PGE2 ), the main prostaglandin produced by macrophages during inflammation, promote the distinctive dose-dependent formation of podosomes or focal adhesions in macrophages. Low concentrations of PGE2 increased p110γ PI3K expression, phosphorylation of actin-related protein 2, and formation of podosomes, which enhanced macrophage migration in response to chemokines. However, high doses of PGE2 increased phosphorylation of paxillin and focal adhesion kinase, the expression of serine/threonine protein kinase 1, and promoted focal adhesion formation and macrophage adhesion, reducing macrophage chemotaxis. In summary, we describe the dual role of PGE2 as a promoter of macrophage chemotaxis and adhesion, proposing a new model of macrophage migration to the inflammatory focus in the presence of a gradient of PGE2 .
Collapse
Affiliation(s)
- Inés C Osma-Garcia
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen Punzón
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Fresno
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel D Díaz-Muñoz
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
30
|
van Rijn A, Paulis L, te Riet J, Vasaturo A, Reinieren-Beeren I, van der Schaaf A, Kuipers AJ, Schulte LP, Jongbloets BC, Pasterkamp RJ, Figdor CG, van Spriel AB, Buschow SI. Semaphorin 7A Promotes Chemokine-Driven Dendritic Cell Migration. THE JOURNAL OF IMMUNOLOGY 2015; 196:459-68. [DOI: 10.4049/jimmunol.1403096] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 10/28/2015] [Indexed: 01/04/2023]
|
31
|
Vérollet C, Le Cabec V, Maridonneau-Parini I. HIV-1 Infection of T Lymphocytes and Macrophages Affects Their Migration via Nef. Front Immunol 2015; 6:514. [PMID: 26500651 PMCID: PMC4594015 DOI: 10.3389/fimmu.2015.00514] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/22/2015] [Indexed: 12/17/2022] Open
Abstract
The human immunodeficiency virus (HIV-1) disseminates in the body and is found in several organs and tissues. Although HIV-1 mainly targets both CD4+ T lymphocytes and macrophages, it has contrasting effects between these cell populations. HIV-1 infection namely reduces the viability of CD4+ T cells, whereas infected macrophages are long-lived. In addition, the migration of T cells is reduced by the infection, whereas HIV-1 differentially modulates the migration modes of macrophages. In 2-dimensions (2D) assays, infected macrophages are less motile compared to the control counterparts. In 3D environments, macrophages use two migration modes that are dependent on the matrix architecture: amoeboid and mesenchymal migration. HIV-1-infected macrophages exhibit a reduced amoeboid migration but an enhanced mesenchymal migration, via the viral protein Nef. Indeed, the mesenchymal migration involves podosomes, and Nef stabilizes these cell structures through the activation of the tyrosine kinase Hck, which in turn phosphorylates the Wiskott–Aldrich syndrome protein (WASP). WASP is a key player in actin remodeling and cell migration. The reprogramed motility of infected macrophages observed in vitro correlates in vivo with enhanced macrophage infiltration in experimental tumors in Nef-transgenic mice compared to control mice. In conclusion, HIV infection of host target cells modifies their migration capacity; we infer that HIV-1 enhances virus spreading in confined environments by reducing T cells migration, and facilitates virus dissemination into different organs and tissues of the human body by enhancing macrophage mesenchymal migration.
Collapse
Affiliation(s)
- Christel Vérollet
- CNRS UMR 5089, Institut de Pharmacologie et de Biologie Structurale (IPBS) , Toulouse , France ; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université Toulouse III - Paul Sabatier , Toulouse , France
| | - Véronique Le Cabec
- CNRS UMR 5089, Institut de Pharmacologie et de Biologie Structurale (IPBS) , Toulouse , France ; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université Toulouse III - Paul Sabatier , Toulouse , France
| | - Isabelle Maridonneau-Parini
- CNRS UMR 5089, Institut de Pharmacologie et de Biologie Structurale (IPBS) , Toulouse , France ; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université Toulouse III - Paul Sabatier , Toulouse , France
| |
Collapse
|
32
|
Infection by Toxoplasma gondii Induces Amoeboid-Like Migration of Dendritic Cells in a Three-Dimensional Collagen Matrix. PLoS One 2015; 10:e0139104. [PMID: 26406763 PMCID: PMC4583262 DOI: 10.1371/journal.pone.0139104] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/09/2015] [Indexed: 12/02/2022] Open
Abstract
Toxoplasma gondii, an obligate intracellular parasite of humans and other warm-blooded vertebrates, invades a variety of cell types in the organism, including immune cells. Notably, dendritic cells (DCs) infected by T. gondii acquire a hypermigratory phenotype that potentiates parasite dissemination by a ‘Trojan horse’ type of mechanism in mice. Previous studies have demonstrated that, shortly after parasite invasion, infected DCs exhibit hypermotility in 2-dimensional confinements in vitro and enhanced transmigration in transwell systems. However, interstitial migration in vivo involves interactions with the extracellular matrix in a 3-dimensional (3D) space. We have developed a collagen matrix-based assay in a 96-well plate format that allows quantitative locomotion analyses of infected DCs in a 3D confinement over time. We report that active invasion of DCs by T. gondii tachyzoites induces enhanced migration of infected DCs in the collagen matrix. Parasites of genotype II induced superior DC migratory distances than type I parasites. Moreover, Toxoplasma-induced hypermigration of DCs was further potentiated in the presence of the CCR7 chemotactic cue CCL19. Blocking antibodies to integrins (CD11a, CD11b, CD18, CD29, CD49b) insignificantly affected migration of infected DCs in the 3D matrix, contrasting with their inhibitory effects on adhesion in 2D assays. Morphological analyses of infected DCs in the matrix were consistent with the acquisition of an amoeboid-like migratory phenotype. Altogether, the present data show that the Toxoplasma-induced hypermigratory phenotype in a 3D matrix is consistent with integrin-independent amoeboid DC migration with maintained responsiveness to chemotactic and chemokinetic cues. The data support the hypothesis that induction of amoeboid hypermigration and chemotaxis/chemokinesis in infected DCs potentiates the dissemination of T. gondii.
Collapse
|
33
|
Choi SW, Yeon JT, Ryu BJ, Kim KJ, Moon SH, Lee H, Lee MS, Lee SY, Heo JC, Park SJ, Kim SH. Repositioning Potential of PAK4 to Osteoclastic Bone Resorption. J Bone Miner Res 2015; 30:1494-507. [PMID: 25640698 DOI: 10.1002/jbmr.2468] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/19/2015] [Accepted: 01/23/2015] [Indexed: 11/10/2022]
Abstract
Drug repositioning is a rational approach for expanding the use of existing drugs or candidate drugs to treat additional disorders. Here we investigated the possibility of using the anticancer p21-activated kinase 4 (PAK4)-targeted inhibitor PF-3758309 to treat osteoclast-mediated disorders. PAK4 was highly expressed in bone marrow cells and was phosphorylated during their differentiation into osteoclasts, and osteoclast differentiation was significantly inhibited by the dominant negative form of PAK4 and by PF-3758309. Specifically, PF-3758309 significantly inhibited the fusion of preosteoclasts, the podosome formation, and the migration of preosteoclasts. PF-3758309 also had in vivo antiresorptive activity in a lipopolysaccharide-induced bone erosion model and in vitro antiosteoclastogenic activity in the differentiation of human bone marrow-derived cells and peripheral blood mononuclear cells into osteoclasts. These data demonstrate the relevance of PAK4 in osteoclast differentiation and the potential of PAK4 inhibitors for treating osteoclast-related disorders.
Collapse
Affiliation(s)
- Sik-Won Choi
- Laboratory of Translational Therapeutics, Pharmacology Research Center, Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Jeong-Tae Yeon
- Department of Pharmacy, Sunchon National University, Suncheon, South Korea
| | - Byung Jun Ryu
- Laboratory of Translational Therapeutics, Pharmacology Research Center, Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Kwang-Jin Kim
- Department of Pharmacy, Sunchon National University, Suncheon, South Korea
| | - Seong-Hee Moon
- Laboratory of Translational Therapeutics, Pharmacology Research Center, Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Hyuk Lee
- Medicinal Chemistry Research Center, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Myeung Su Lee
- Division of Rheumatology, Department of Internal Medicine, Wonkwang University, Iksan, Jeonbuk, South Korea
| | - Sam Youn Lee
- Department of Cardiac and Thoracic Surgery, Wonkwang University, Iksan, Jeonbuk, South Korea
| | - Jin-Chul Heo
- Pharmacology Research Center, Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Sang-Joon Park
- Department of Histology, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Seong Hwan Kim
- Laboratory of Translational Therapeutics, Pharmacology Research Center, Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| |
Collapse
|
34
|
Saalbach A, Janik T, Busch M, Herbert D, Anderegg U, Simon JC. Fibroblasts support migration of monocyte-derived dendritic cells by secretion of PGE2 and MMP-1. Exp Dermatol 2015; 24:598-604. [PMID: 25865800 DOI: 10.1111/exd.12722] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2015] [Indexed: 12/14/2022]
Abstract
The outcome of a cutaneous immune response is critically dependent upon the ability of dendritic cells (DC) to migrate from skin to the draining lymph nodes - a process that is influenced by the cutaneous tissue microenvironment. Here, the role of fibroblasts - a major component of the dermal microenvironment - on the migratory capacity of monocyte-derived DC (MoDC) was investigated in a 3D collagen I matrix. Indeed, dermal fibroblasts supported the migration of pre-activated MoDC through a 3D collagen I matrix. Activation of human MoDC resulted in the release of TNFα and IL-1β that in turn stimulated MMP-1 (human collagenase) and PGE2 secretion by human dermal fibroblasts. Transmigration assays confirmed the importance of fibroblast-derived MMP-1 and PGE2 for the migration of MoDC through a 3D collagen I matrix. Finally, in mice initiation of inflammation by induction of an irritant contact dermatitis or a psoriasis-like skin inflammation, the expression of the PGE2 generating cox-2 and the mouse collagen I degrading enzyme matrix metalloproteinases (MMP)-13 was strongly up-regulated. Our study indicates that MoDC are able to instruct dermal fibroblasts resulting in enhanced migratory capability of MoDC, thus highlighting the role of a crosstalk of DC with their stromal microenvironment for the control of cutaneous immune responses.
Collapse
Affiliation(s)
- Anja Saalbach
- Department of Dermatology, Venerology and Allergology, Medical Faculty of Leipzig University, Leipzig, Germany
| | - Tobias Janik
- Department of Dermatology, Venerology and Allergology, Medical Faculty of Leipzig University, Leipzig, Germany
| | - Matthias Busch
- Department of Dermatology, Venerology and Allergology, Medical Faculty of Leipzig University, Leipzig, Germany
| | - Diana Herbert
- Department of Dermatology, Venerology and Allergology, Medical Faculty of Leipzig University, Leipzig, Germany
| | - Ulf Anderegg
- Department of Dermatology, Venerology and Allergology, Medical Faculty of Leipzig University, Leipzig, Germany
| | - Jan C Simon
- Department of Dermatology, Venerology and Allergology, Medical Faculty of Leipzig University, Leipzig, Germany
| |
Collapse
|
35
|
Kumar J, Gurav R, Kale V, Limaye L. Exogenous addition of arachidonic acid to the culture media enhances the functionality of dendritic cells for their possible use in cancer immunotherapy. PLoS One 2014; 9:e111759. [PMID: 25369453 PMCID: PMC4219773 DOI: 10.1371/journal.pone.0111759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/30/2014] [Indexed: 11/29/2022] Open
Abstract
The development of dendritic cell based vaccines is a promising approach in cancer immunotherapy. For their successful use in the clinics, the propagation and functionality of DCs is crucial. We earlier established a two-step method for the large scale generation of DCs from umbilical cord blood derived MNCs/CD34+ cells. This work aims at improving their functionality based on the following observations: in vitro generated DCs can be less efficient in migration and other functional activities due to lower eicosanoid levels. The production of eicosanoids from Arachidonic Acid (AA) can be hampered due to suppression of the enzyme phospholipase A2 by IL-4, an essential cytokine required for the differentiation of DCs. We hypothesized that exogenous addition of AA to the culture media during DC generation may result in DCs with improved functionality. DCs were generated with and without AA. The two DC sets were compared by phenotypic analysis, morphology and functional assays like antigen uptake, MLR, CTL assay and in vitro and in vivo migration. Though there were no differences between the two types of DCs in terms of morphology, phenotype and antigen uptake, AA+ DCs exhibited an enhanced in vitro and in vivo migration, T cell stimulatory capacity, CTL activity and significantly higher transcript levels of COX-2. AA+ DCs also show a favorable Th1 cytokine profile than AA- DCs. Thus addition of AA to the culture media is skewing the DCs towards the secretion of more IL-12 and less of IL-10 along with the restoration of eicosanoids levels in a COX-2 mediated pathway thereby enhancing the functionality of these cells to be used as a potent cellular vaccine. Taken together, these findings will be helpful in the better contriving of DC based vaccines for cancer immunotherapy.
Collapse
Affiliation(s)
- Jeetendra Kumar
- Stem Cell Lab., National Centre for Cell Science, Ganeshkhind, Pune, India
| | - Rupali Gurav
- Stem Cell Lab., National Centre for Cell Science, Ganeshkhind, Pune, India
| | - Vaijayanti Kale
- Stem Cell Lab., National Centre for Cell Science, Ganeshkhind, Pune, India
| | - Lalita Limaye
- Stem Cell Lab., National Centre for Cell Science, Ganeshkhind, Pune, India
- * E-mail:
| |
Collapse
|
36
|
Ogawa F, Amano H, Eshima K, Ito Y, Matsui Y, Hosono K, Kitasato H, Iyoda A, Iwabuchi K, Kumagai Y, Satoh Y, Narumiya S, Majima M. Prostanoid induces premetastatic niche in regional lymph nodes. J Clin Invest 2014; 124:4882-94. [PMID: 25271626 DOI: 10.1172/jci73530] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 08/21/2014] [Indexed: 01/17/2023] Open
Abstract
The lymphatic system is an important route for cancer dissemination, and lymph node metastasis (LNM) serves as a critical prognostic determinant in cancer patients. We investigated the contribution of COX-2-derived prostaglandin E2 (PGE2) in the formation of a premetastatic niche and LNM. A murine model of Lewis lung carcinoma (LLC) cell metastasis revealed that COX-2 is expressed in DCs from the early stage in the lymph node subcapsular regions, and COX-2 inhibition markedly suppressed mediastinal LNM. Stromal cell-derived factor-1 (SDF-1) was elevated in DCs before LLC cell infiltration to the lymph nodes, and a COX-2 inhibitor, an SDF-1 antagonist, and a CXCR4 neutralizing antibody all reduced LNM. Moreover, LNM was reduced in mice lacking the PGE2 receptor EP3, and stimulation of cultured DCs with an EP3 agonist increased SDF-1 production. Compared with WT CD11c+ DCs, injection of EP3-deficient CD11c+ DCs dramatically reduced accumulation of SDF-1+CD11c+ DCs in regional LNs and LNM in LLC-injected mice. Accumulation of Tregs and lymph node lymphangiogenesis, which may influence the fate of metastasized tumor cells, was also COX-2/EP3-dependent. These results indicate that DCs induce a premetastatic niche during LNM via COX-2/EP3-dependent induction of SDF-1 and suggest that inhibition of this signaling axis may be an effective strategy to suppress premetastatic niche formation and LNM.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Lewis Lung/secondary
- Celecoxib
- Cell Line, Tumor
- Chemokine CXCL12/metabolism
- Cyclooxygenase 2/metabolism
- Cyclooxygenase 2 Inhibitors/pharmacology
- Dendritic Cells/immunology
- Dinoprostone/physiology
- Drug Screening Assays, Antitumor
- Gene Knockout Techniques
- Lung Neoplasms/immunology
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lymph Nodes/immunology
- Lymph Nodes/pathology
- Lymphangiogenesis
- Lymphatic Metastasis
- Male
- Mice, Knockout
- Neoplasm Transplantation
- Pyrazoles/pharmacology
- Receptors, CXCR4/metabolism
- Receptors, Prostaglandin E, EP3 Subtype/genetics
- Receptors, Prostaglandin E, EP3 Subtype/metabolism
- Signal Transduction
- Sulfonamides/pharmacology
- T-Lymphocytes, Regulatory/immunology
Collapse
|
37
|
Baranov MV, Ter Beest M, van den Bogaart G. Reaching for far-flung antigen: How solid-core podosomes of dendritic cells transform into protrusive structures. Commun Integr Biol 2014; 7:970961. [PMID: 26843902 PMCID: PMC4594491 DOI: 10.4161/cib.29084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 04/28/2014] [Accepted: 04/30/2014] [Indexed: 01/22/2023] Open
Abstract
We recently identified a novel role for podosomes in antigen sampling. Podosomes are dynamic cellular structures that consist of point-like concentrations of actin surrounded by integrins and adaptor proteins such as vinculin and talin. Podosomes establish cellular contact with the extracellular matrix (ECM) and facilitate cell migration via ECM degradation. In our recent paper, we studied podosomes of human dendritic cells (DCs), major antigen presenting cells (APC) that take-up, process, and present foreign antigen to naive T-cells. We employed gelatin-impregnated porous polycarbonate filters to demonstrate that the mechanosensitive podosomes of DCs selectively localize to regions of low-physical resistance such as the filter pores. After degradation of the gelatin, podosomes increasingly protrude into the lumen of these pores. These protrusive podosome-derived structures contain several endocytic and early endosomal markers such as clathrin, Rab5, and VAMP3, and, surprisingly, also contain C-type lectins, a type of pathogen recognition receptors (PRRs). Finally, we performed functional uptake experiments to demonstrate that these PRRs facilitate uptake of antigen from the opposite side of the filter. Our data provide mechanistic insight in how dendritic cells sample for antigen across epithelial barriers for instance from the lumen of the lung and gut.
Collapse
Affiliation(s)
- Maksim V Baranov
- Department of Tumor Immunology; Radboud University Medical Center ; Radboud Institute for Molecular Life Sciences ; Nijmegen, The Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology; Radboud University Medical Center ; Radboud Institute for Molecular Life Sciences ; Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology; Radboud University Medical Center ; Radboud Institute for Molecular Life Sciences ; Nijmegen, The Netherlands
| |
Collapse
|
38
|
Rizzo M, Bayo J, Piccioni F, Malvicini M, Fiore E, Peixoto E, García MG, Aquino JB, Gonzalez Campaña A, Podestá G, Terres M, Andriani O, Alaniz L, Mazzolini G. Low molecular weight hyaluronan-pulsed human dendritic cells showed increased migration capacity and induced resistance to tumor chemoattraction. PLoS One 2014; 9:e107944. [PMID: 25238610 PMCID: PMC4169605 DOI: 10.1371/journal.pone.0107944] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/18/2014] [Indexed: 12/12/2022] Open
Abstract
We have shown that ex vivo pre-conditioning of bone marrow-derived dendritic cells (DC) with low molecular weight hyaluronan (LMW HA) induces antitumor immunity against colorectal carcinoma (CRC) in mice. In the present study we investigated the effects of LMW HA priming on human-tumor-pulsed monocytes-derived dendritic cells (DC/TL) obtained from healthy donors and patients with CRC. LMW HA treatment resulted in an improved maturation state of DC/TL and an enhanced mixed leucocyte reaction activity in vivo. Importantly, pre-conditioning of DC/TL with LMW HA increased their ability to migrate and reduced their attraction to human tumor derived supernatants. These effects were associated with increased CCR7 expression levels in DC. Indeed, a significant increase in migratory response toward CCL21 was observed in LMW HA primed tumor-pulsed monocyte-derived dendritic cells (DC/TL/LMW HA) when compared to LWM HA untreated cells (DC/TL). Moreover, LMW HA priming modulated other mechanisms implicated in DC migration toward lymph nodes such as the metalloproteinase activity. Furthermore, it also resulted in a significant reduction in DC migratory capacity toward tumor supernatant and IL8 in vitro. Consistently, LMW HA dramatically enhanced in vivo DC recruitment to tumor-regional lymph nodes and reduced DC migration toward tumor tissue. This study shows that LMW HA--a poorly immunogenic molecule--represents a promising candidate to improve human DC maturation protocols in the context of DC-based vaccines development, due to its ability to enhance their immunogenic properties as well as their migratory capacity toward lymph nodes instead of tumors.
Collapse
Affiliation(s)
- Manglio Rizzo
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Juan Bayo
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Flavia Piccioni
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Mariana Malvicini
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), CABA, Buenos Aires, Argentina
| | - Esteban Fiore
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Estanislao Peixoto
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Mariana G. García
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), CABA, Buenos Aires, Argentina
| | - Jorge B. Aquino
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), CABA, Buenos Aires, Argentina
| | - Ariel Gonzalez Campaña
- Department of Surgery, Hospital Austral, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Gustavo Podestá
- Department of Surgery, Hospital Austral, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Marcelo Terres
- Department of Surgery, Hospital Austral, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Oscar Andriani
- Department of Surgery, Hospital Austral, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Laura Alaniz
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), CABA, Buenos Aires, Argentina
- CIT NOBA, Universidad Nacional del Noroeste de la Pcia de Bs. As (UNNOBA), Junín, Buenos Aires, Argentina
- * E-mail: (GM); (LA)
| | - Guillermo Mazzolini
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), CABA, Buenos Aires, Argentina
- * E-mail: (GM); (LA)
| |
Collapse
|
39
|
Jia XY, Chang Y, Sun XJ, Dai X, Wei W. The role of prostaglandin E2 receptor signaling of dendritic cells in rheumatoid arthritis. Int Immunopharmacol 2014; 23:163-9. [PMID: 25196430 DOI: 10.1016/j.intimp.2014.08.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 08/16/2014] [Accepted: 08/26/2014] [Indexed: 11/30/2022]
Abstract
Prostaglandin E2 (PGE2), a very potent lipid mediator produced from arachidonic acid (AA) through the action of cyclooxygenase (COX) enzymes, is implicated in the regulation of dendritic cell (DC) functions such as differentiation ability, cytokine-producing capacity, Th-cell polarizing ability, migration and maturation. DCs are the most potent antigen-presenting cells and play major roles in both the induction of primary immune responses and tolerance. It is well established that PGE2 functions significantly in the pathogenesis of rheumatoid arthritis (RA). Although the role of PGE2 in RA has been studied extensively, the effects of PGE2 on DC biology and the role of DCs in RA have not become the focus of investigation until recently. Here, we summarize the latest progress in PGE2 research with respect to DC functions, as well as the role of PGE2 receptor signaling of DCs in the pathogenesis of RA.
Collapse
Affiliation(s)
- Xiao-Yi Jia
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of the Education Ministry of China, Hefei 230032, China; School of Pharmacy, Anhui Xinhua University, Hefei 230088, China.
| | - Yan Chang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of the Education Ministry of China, Hefei 230032, China
| | - Xiao-Jing Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of the Education Ministry of China, Hefei 230032, China
| | - Xing Dai
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of the Education Ministry of China, Hefei 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of the Education Ministry of China, Hefei 230032, China.
| |
Collapse
|
40
|
Gawden-Bone C, West MA, Morrison VL, Edgar AJ, McMillan SJ, Dill BD, Trost M, Prescott A, Fagerholm SC, Watts C. A crucial role for β2 integrins in podosome formation, dynamics and Toll-like-receptor-signaled disassembly in dendritic cells. J Cell Sci 2014; 127:4213-24. [PMID: 25086067 PMCID: PMC4179490 DOI: 10.1242/jcs.151167] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The dynamic properties of podosomes, their ability to degrade the underlying matrix and their modulation by Toll-like receptor (TLR) signaling in dendritic cells (DCs) suggests they have an important role in migration. Integrins are thought to participate in formation and dynamics of podosomes but the multiplicity of integrins in podosomes has made this difficult to assess. We report that murine DCs that lack β2 integrins fail to form podosomes. Re-expression of β2 integrins restored podosomes but not when the membrane proximal or distal NPxF motifs, or when an intervening triplet of threonine residues were mutated. We show that β2 integrins are remarkably long-lived in podosome clusters and form a persistent framework that hosts multiple actin-core-formation events at the same or adjacent sites. When β2 integrin amino acid residues 745 or 756 were mutated from Ser to Ala, podosomes became resistant to dissolution mediated through TLR signaling. TLR signaling did not detectably modulate phosphorylation at these sites but mutation of either residue to phospho-mimetic Asp increased β2 integrin turnover in podosomes, indicating that phosphorylation at one or both sites establishes permissive conditions for TLR-signaled podosome disassembly.
Collapse
Affiliation(s)
- Christian Gawden-Bone
- Division of Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Michele A West
- Division of Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Vicky L Morrison
- University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Alexander J Edgar
- Division of Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Sarah J McMillan
- Division of Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Brian D Dill
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Matthias Trost
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Alan Prescott
- Division of Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Susanna C Fagerholm
- University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Colin Watts
- Division of Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
41
|
Spuul P, Ciufici P, Veillat V, Leclercq A, Daubon T, Kramer IJ, Génot E. Importance of RhoGTPases in formation, characteristics, and functions of invadosomes. Small GTPases 2014; 5:e28195. [PMID: 24967648 DOI: 10.4161/sgtp.28713] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Podosomes and invadopodia (collectively known as invadosomes) are specialized plasma-membrane actin-based microdomains that combine adhesive properties with matrix degrading and/or mechanosensor activities. These organelles have been extensively studied in vitro and current concerted efforts aim at establishing their physiological relevance and subsequent association with human diseases. Proper functioning of the bone, immune, and vascular systems is likely to depend on these structures while their occurrence in cancer cells appears to be linked to tumor metastasis. The elucidation of the mechanisms driving invadosome assembly is a prerequisite to understanding their role in vivo and ultimately to controlling their functions. Adhesive and soluble ligands act via transmembrane receptors that propagate signals to the cytoskeleton via small G proteins of the Rho family, assisted by tyrosine kinases and scaffold proteins to induce invadosome formation and rearrangements. Oncogene expression and cell-cell interactions may also trigger their assembly. Manipulation of the signals that regulate invadosome formation and dynamics could therefore be a strategy to interfere with their functions in a multitude of pathological settings, such as excessive bone breakdown, infections, vascular remodeling, transendothelial diapedesis, and metastasis.
Collapse
Affiliation(s)
- Pirjo Spuul
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - Paolo Ciufici
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - Véronique Veillat
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - Anne Leclercq
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - Thomas Daubon
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - IJsbrand Kramer
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - Elisabeth Génot
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| |
Collapse
|
42
|
Heuzé ML, Vargas P, Chabaud M, Le Berre M, Liu YJ, Collin O, Solanes P, Voituriez R, Piel M, Lennon-Duménil AM. Migration of dendritic cells: physical principles, molecular mechanisms, and functional implications. Immunol Rev 2014; 256:240-54. [PMID: 24117825 DOI: 10.1111/imr.12108] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) constitute a complex cell population that resides in both peripheral tissues and lymphoid organs. Their major function in tissues is to patrol their environment in search of danger-associated antigens to transport to lymph nodes and present to T lymphocytes. This process constitutes the first step of the adaptive immune response and relies on specific DC properties, including a high endocytic capacity as well as efficient motility in confined three-dimensional environments. Although cell motility has been widely studied, little is known on how the geometric characteristics of the environment influence DC migration and function. In this review, we give an overview of the basic physical principles and molecular mechanisms that control DC migration under confinement and discuss how such mechanisms impact the environment-patrolling capacity of DCs.
Collapse
|
43
|
Le Texier L, Durand J, Lavault A, Hulin P, Collin O, Le Bras Y, Cuturi MC, Chiffoleau E. LIMLE, a new molecule over-expressed following activation, is involved in the stimulatory properties of dendritic cells. PLoS One 2014; 9:e93894. [PMID: 24705920 PMCID: PMC3976354 DOI: 10.1371/journal.pone.0093894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 03/10/2014] [Indexed: 11/18/2022] Open
Abstract
Dendritic cells are sentinels of the immune system distributed throughout the body, that following danger signals will migrate to secondary lymphoid organs to induce effector T cell responses. We have identified, in a rodent model of graft rejection, a new molecule expressed by dendritic cells that we have named LIMLE (RGD1310371). To characterize this new molecule, we analyzed its regulation of expression and its function. We observed that LIMLE mRNAs were rapidly and strongly up regulated in dendritic cells following inflammatory stimulation. We demonstrated that LIMLE inhibition does not alter dendritic cell maturation or cytokine production following Toll-like-receptor stimulation. However, it reduces their ability to stimulate effector T cells in a mixed leukocyte reaction or T cell receptor transgenic system. Interestingly, we observed that LIMLE protein localized with actin at some areas under the plasma membrane. Moreover, LIMLE is highly expressed in testis, trachea, lung and ciliated cells and it has been shown that cilia formation bears similarities to formation of the immunological synapse which is required for the T cell activation by dendritic cells. Taken together, these data suggest a role for LIMLE in specialized structures of the cytoskeleton that are important for dynamic cellular events such as immune synapse formation. In the future, LIMLE may represent a new target to reduce the capacity of dendritic cells to stimulate T cells and to regulate an immune response.
Collapse
Affiliation(s)
- Laëtitia Le Texier
- INSERM, U1064, Nantes, France
- CHU Nantes, Institut de Transplantation et de Recherche en Transplantation, ITUN, Nantes, France
- Université de Nantes, Faculté de Médecine, Nantes, France
| | - Justine Durand
- INSERM, U1064, Nantes, France
- CHU Nantes, Institut de Transplantation et de Recherche en Transplantation, ITUN, Nantes, France
- Université de Nantes, Faculté de Médecine, Nantes, France
| | - Amélie Lavault
- INSERM, U1064, Nantes, France
- CHU Nantes, Institut de Transplantation et de Recherche en Transplantation, ITUN, Nantes, France
- Université de Nantes, Faculté de Médecine, Nantes, France
| | | | - Olivier Collin
- Plateforme GenOuest, IRISA-INRIA, Campus de Beaulieu, Rennes, France
| | - Yvan Le Bras
- Plateforme GenOuest, IRISA-INRIA, Campus de Beaulieu, Rennes, France
| | - Maria-Cristina Cuturi
- INSERM, U1064, Nantes, France
- CHU Nantes, Institut de Transplantation et de Recherche en Transplantation, ITUN, Nantes, France
- Université de Nantes, Faculté de Médecine, Nantes, France
| | - Elise Chiffoleau
- INSERM, U1064, Nantes, France
- CHU Nantes, Institut de Transplantation et de Recherche en Transplantation, ITUN, Nantes, France
- Université de Nantes, Faculté de Médecine, Nantes, France
- * E-mail:
| |
Collapse
|
44
|
Baranov M, Ter Beest M, Reinieren-Beeren I, Cambi A, Figdor CG, van den Bogaart G. Podosomes of dendritic cells facilitate antigen sampling. J Cell Sci 2014; 127:1052-1064. [PMID: 24424029 DOI: 10.1242/jcs.141226] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells sample the environment for antigens and play an important role in establishing the link between innate and acquired immunity. Dendritic cells contain mechanosensitive adhesive structures called podosomes that consist of an actin-rich core surrounded by integrins, adaptor proteins and actin network filaments. They facilitate cell migration via localized degradation of extracellular matrix. Here, we show that podosomes of human dendritic cells locate to spots of low physical resistance in the substrate (soft spots) where they can evolve into protrusive structures. Pathogen recognition receptors locate to these protrusive structures where they can trigger localized antigen uptake, processing and presentation to activate T-cells. Our data demonstrate a novel role in antigen sampling for the podosomes of dendritic cells.
Collapse
Affiliation(s)
- Maksim Baranov
- Department of Tumor Immunology Radboud University Medical Centre Radboud Centre for Molecular Life Sciences Geert Grooteplein 28 6525GA Nijmegen The Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology Radboud University Medical Centre Radboud Centre for Molecular Life Sciences Geert Grooteplein 28 6525GA Nijmegen The Netherlands
| | - Inge Reinieren-Beeren
- Department of Tumor Immunology Radboud University Medical Centre Radboud Centre for Molecular Life Sciences Geert Grooteplein 28 6525GA Nijmegen The Netherlands
| | - Alessandra Cambi
- Department of Tumor Immunology Radboud University Medical Centre Radboud Centre for Molecular Life Sciences Geert Grooteplein 28 6525GA Nijmegen The Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology Radboud University Medical Centre Radboud Centre for Molecular Life Sciences Geert Grooteplein 28 6525GA Nijmegen The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology Radboud University Medical Centre Radboud Centre for Molecular Life Sciences Geert Grooteplein 28 6525GA Nijmegen The Netherlands
| |
Collapse
|
45
|
Weidner JM, Barragan A. Tightly regulated migratory subversion of immune cells promotes the dissemination of Toxoplasma gondii. Int J Parasitol 2013; 44:85-90. [PMID: 24184911 DOI: 10.1016/j.ijpara.2013.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/26/2013] [Accepted: 09/17/2013] [Indexed: 01/13/2023]
Abstract
While the spread of Toxoplasma gondii within the infected human or animal host is associated with pathology, the pathways of dissemination have remained enigmatic. From the time point of entry into the gut, to the quiescent chronic infection in the central nervous system, Toxoplasma is detected and surveyed by immune cells that populate the tissues, for example dendritic cells. Paradoxically, this protective migratory function of leukocytes appears to be targeted by Toxoplasma to mediate its dissemination in the organism. Recent findings show that tightly regulated events take place shortly after host cell invasion that promote the migratory activation of infected dendritic cells. Here, we review the emerging knowledge on how this obligate intracellular protozoan orchestrates the subversion of leukocytes to achieve systemic dissemination and reach peripheral organs where pathology manifests.
Collapse
Affiliation(s)
- Jessica M Weidner
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Antonio Barragan
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
46
|
Gerber EE, Gallo EM, Fontana SC, Davis EC, Wigley FM, Huso DL, Dietz HC. Integrin-modulating therapy prevents fibrosis and autoimmunity in mouse models of scleroderma. Nature 2013; 503:126-30. [PMID: 24107997 PMCID: PMC3992987 DOI: 10.1038/nature12614] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 08/28/2013] [Indexed: 12/13/2022]
Abstract
In systemic sclerosis (SSc), a common and aetiologically mysterious form of scleroderma (defined as pathological fibrosis of the skin), previously healthy adults acquire fibrosis of the skin and viscera in association with autoantibodies. Familial recurrence is extremely rare and causal genes have not been identified. Although the onset of fibrosis in SSc typically correlates with the production of autoantibodies, whether they contribute to disease pathogenesis or simply serve as a marker of disease remains controversial and the mechanism for their induction is largely unknown. The study of SSc is hindered by a lack of animal models that recapitulate the aetiology of this complex disease. To gain a foothold in the pathogenesis of pathological skin fibrosis, we studied stiff skin syndrome (SSS), a rare but tractable Mendelian disorder leading to childhood onset of diffuse skin fibrosis with autosomal dominant inheritance and complete penetrance. We showed previously that SSS is caused by heterozygous missense mutations in the gene (FBN1) encoding fibrillin-1, the main constituent of extracellular microfibrils. SSS mutations all localize to the only domain in fibrillin-1 that harbours an Arg-Gly-Asp (RGD) motif needed to mediate cell-matrix interactions by binding to cell-surface integrins. Here we show that mouse lines harbouring analogous amino acid substitutions in fibrillin-1 recapitulate aggressive skin fibrosis that is prevented by integrin-modulating therapies and reversed by antagonism of the pro-fibrotic cytokine transforming growth factor β (TGF-β). Mutant mice show skin infiltration of pro-inflammatory immune cells including plasmacytoid dendritic cells, T helper cells and plasma cells, and also autoantibody production; these findings are normalized by integrin-modulating therapies or TGF-β antagonism. These results show that alterations in cell-matrix interactions are sufficient to initiate and sustain inflammatory and pro-fibrotic programmes and highlight new therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth E Gerber
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Elsherbiny ME, Emara M, Godbout R. Interaction of brain fatty acid-binding protein with the polyunsaturated fatty acid environment as a potential determinant of poor prognosis in malignant glioma. Prog Lipid Res 2013; 52:562-70. [PMID: 23981365 DOI: 10.1016/j.plipres.2013.08.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/29/2013] [Accepted: 08/13/2013] [Indexed: 11/29/2022]
Abstract
Malignant gliomas are the most common adult brain cancers. In spite of aggressive treatment, recurrence occurs in the great majority of patients and is invariably fatal. Polyunsaturated fatty acids are abundant in brain, particularly ω-6 arachidonic acid (AA) and ω-3 docosahexaenoic acid (DHA). Although the levels of ω-6 and ω-3 polyunsaturated fatty acids are tightly regulated in brain, the ω-6:ω-3 ratio is dramatically increased in malignant glioma, suggesting deregulation of fundamental lipid homeostasis in brain tumor tissue. The migratory properties of malignant glioma cells can be modified by altering the ratio of AA:DHA in growth medium, with increased migration observed in AA-rich medium. This fatty acid-dependent effect on cell migration is dependent on expression of the brain fatty acid binding protein (FABP7) previously shown to bind DHA and AA. Increased levels of enzymes involved in eicosanoid production in FABP7-positive malignant glioma cells suggest that FABP7 is an important modulator of AA metabolism. We provide evidence that increased production of eicosanoids in FABP7-positive malignant glioma growing in an AA-rich environment contributes to tumor infiltration in the brain. We discuss pathways and molecules that may underlie FABP7/AA-mediated promotion of cell migration and FABP7/DHA-mediated inhibition of cell migration in malignant glioma.
Collapse
Affiliation(s)
- Marwa E Elsherbiny
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | | | | |
Collapse
|
48
|
Spano A, Barni S, Sciola L. PMA withdrawal in PMA-treated monocytic THP-1 cells and subsequent retinoic acid stimulation, modulate induction of apoptosis and appearance of dendritic cells. Cell Prolif 2013; 46:328-47. [PMID: 23692091 DOI: 10.1111/cpr.12030] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/28/2013] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES To analyse proliferation, differentiation and apoptosis in THP-1 cells after stimulation with phorbol 12-myristate 13-acetate (PMA) and retinoic acid (RA). MATERIALS AND METHODS PMA and RA were used in a three-step-procedure: (i) treatment with 6, 30, 60 nm PMA, that induced initial, intermediate and advanced levels of monocyte-macrophage transition, respectively; (ii) recovery in PMA-free medium; (iii) incubation with 4 μm RA. Cultures were characterized cytokinetically (flow cytometry/bromodeoxyuridine uptake) and immunocytochemically (static cytometry) for expression of CD14, CD11b (monocyte-macrophage) and DC-SIGN (dendritic cell: DCs) markers. RESULTS Some treatments determined appearance of monocyte/macrophage, dendritic and apoptotic phenotypes, percentages of which were related to PMA dose used in step 1, and dependent on presence/absence of PMA and RA. PMA withdrawal induced dedifferentiation and partial restoration of proliferative activity, specially in 6 and 30 nm PMA-derived cells. Recovery in the presence of serum (fundamental to DC appearance) indicated that depending on differentiation level, cell proliferation and apoptosis were inversely correlated. Treatment with 30 nm PMA induced intermediate levels of monocytic-macrophagic differentiation, with expression of alternative means of differentiation and acquisition of DCs without using cytokines, after PMA withdrawal and RA stimulation. CONCLUSIONS Our experimental conditions favoured differentiation, dedifferentiation and transdifferentiational pathways, in monocytic THP-1 cells, the balance of which could be related to both cell proliferation and cell death.
Collapse
Affiliation(s)
- A Spano
- Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy
| | | | | |
Collapse
|
49
|
van den Dries K, Schwartz SL, Byars J, Meddens MBM, Bolomini-Vittori M, Lidke DS, Figdor CG, Lidke KA, Cambi A. Dual-color superresolution microscopy reveals nanoscale organization of mechanosensory podosomes. Mol Biol Cell 2013; 24:2112-23. [PMID: 23637461 PMCID: PMC3694795 DOI: 10.1091/mbc.e12-12-0856] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Podosomes are multimolecular mechanosensory assemblies that coordinate mesenchymal migration of tissue-resident dendritic cells. They have a protrusive actin core and an adhesive ring of integrins and adaptor proteins, such as talin and vinculin. We recently demonstrated that core actin oscillations correlate with intensity fluctuations of vinculin but not talin, suggesting different molecular rearrangements for these components. Detailed information on the mutual localization of core and ring components at the nanoscale is lacking. By dual-color direct stochastic optical reconstruction microscopy, we for the first time determined the nanoscale organization of individual podosomes and their spatial arrangement within large clusters formed at the cell-substrate interface. Superresolution imaging of three ring components with respect to actin revealed that the cores are interconnected and linked to the ventral membrane by radiating actin filaments. In core-free areas, αMβ2 integrin and talin islets are homogeneously distributed, whereas vinculin preferentially localizes proximal to the core and along the radiating actin filaments. Podosome clusters appear as self-organized contact areas, where mechanical cues might be efficiently transduced and redistributed. Our findings call for a reevaluation of the current "core-ring" model and provide a novel structural framework for further understanding the collective behavior of podosome clusters.
Collapse
Affiliation(s)
- K van den Dries
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Interplay between myosin IIA-mediated contractility and actin network integrity orchestrates podosome composition and oscillations. Nat Commun 2013; 4:1412. [PMID: 23361003 PMCID: PMC3562466 DOI: 10.1038/ncomms2402] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 12/19/2012] [Indexed: 12/22/2022] Open
Abstract
Tissue-resident dendritic cells patrol for foreign antigens while undergoing slow mesenchymal migration. Using actomyosin-based structures called podosomes, dendritic cells probe and remodel extracellular matrix topographical cues. Podosomes comprise an actin-rich protrusive core surrounded by an adhesive ring of integrins, cytoskeletal adaptor proteins and actin network filaments. Here we reveal how the integrity and dynamics of protrusive cores and adhesive rings are coordinated by the actomyosin apparatus. Core growth by actin polymerization induces podosome protrusion and provides tension within the actin network filaments. The tension transmitted to the ring recruits vinculin and zyxin and preserves overall podosome integrity. Conversely, myosin IIA contracts the actin network filaments and applies tension to the vinculin molecules bound, counterbalancing core growth and eventually reducing podosome size and protrusion. We demonstrate a previously unrecognized interplay between actin and myosin IIA in podosomes, providing novel mechanistic insights into how actomyosin-based structures allow dendritic cells to sense the extracellular environment.
Collapse
|