1
|
Benichou G, Lancia HH. Intercellular transfer of MHC molecules in T cell alloimmunity and allotransplantation. Biomed J 2024; 47:100749. [PMID: 38797478 PMCID: PMC11414654 DOI: 10.1016/j.bj.2024.100749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024] Open
Abstract
After transplantation of allogeneic tissues and organs, recognition by recipient T cells of donor MHC molecules initiates the pro-inflammatory adaptive immune response leading to allograft rejection. T cell allorecognition has long been known to be mediated via two distinct pathways: the direct pathway in which T cells recognize intact allogeneic MHC molecules displayed on donor cells and the indirect pathway whereby T cells recognize donor MHC peptides processed and presented by recipient antigen-presenting cells (APCs). It is believed that direct allorecognition is the driving force behind early acute allograft rejection while indirect allorecognition is involved in chronic allograft rejection, a progressive condition characterized by graft vasculopathy and tissue fibrosis. Recently, we and others have reported that after transplantation of allogeneic skin and organs, donor MHC molecules are transferred from donor cells to the host's APCs via trogocytosis or extracellular vesicles. Recipient APCs having captured donor MHC molecules can either present them to T cells in their intact form on their surface (semi-direct pathway) or the form of peptides bound to self-MHC molecules (indirect pathway). The present article provides an overview of recent studies evaluating the role of intercellular exchange of MHC molecules in T cell alloimmunity and its contribution to allograft rejection and tolerance.
Collapse
Affiliation(s)
- Gilles Benichou
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, MA, USA.
| | - Hyshem H Lancia
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, MA, USA
| |
Collapse
|
2
|
Hu Y, Wang K, Chen Y, Jin Y, Guo Q, Tang H. Causal relationship between immune cell phenotypes and risk of biliary tract cancer: evidence from Mendelian randomization analysis. Front Immunol 2024; 15:1430551. [PMID: 39050844 PMCID: PMC11266158 DOI: 10.3389/fimmu.2024.1430551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/03/2024] [Indexed: 07/27/2024] Open
Abstract
Background Biliary tract cancer stands as a prevalent illness, posing significant risks to human health, where immune cells are pivotal in both its development and recovery processes. Due to the diverse functionalities exhibited by different immune cell phenotypes within the organism, and the relatively limited research on their relationship with biliary tract cancer, this study employed Mendelian randomization (MR) to explore their potential association, thereby aiding in a better understanding of the causal link between immune cell phenotypes and biliary tract cancer. Methods In this study, the causative association of 731 immunophenotype with biliary tract cancer was established using publicly accessible genome-wide association study (GWAS) genetic data through two-sample MR analysis. Sensitivity analyses assess horizontal pleiotropy and heterogeneity of the study findings. Results Among the 731 immunophenotypes examined, a total of 26 immune cell phenotypes were found to exhibit positive results, indicating a significant association with the risk of biliary tract cancer. We confirmed that among these 26 types of immune cells, there are primarily 13 types of B cells; three types of classical dendritic cells (CDCs), including CD80 on myeloid DC, HLA DR on myeloid DC, and Myeloid DC %DC; one type of mature stage T cell,CD4RA on TD CD4+; six types of regulatory T cells; and three types of myeloid cells.
Collapse
Affiliation(s)
- YaLan Hu
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Kui Wang
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuhua Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yongli Jin
- Department of Anesthesiology, Yanbian University Hospital, Yanji, China
| | - Qiang Guo
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hui Tang
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
3
|
Chen MY, Zhang F, Goedegebuure SP, Gillanders WE. Dendritic cell subsets and implications for cancer immunotherapy. Front Immunol 2024; 15:1393451. [PMID: 38903502 PMCID: PMC11188312 DOI: 10.3389/fimmu.2024.1393451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
Dendritic cells (DCs) play a central role in the orchestration of effective T cell responses against tumors. However, their functional behavior is context-dependent. DC type, transcriptional program, location, intratumoral factors, and inflammatory milieu all impact DCs with regard to promoting or inhibiting tumor immunity. The following review introduces important facets of DC function, and how subset and phenotype can affect the interplay of DCs with other factors in the tumor microenvironment. It will also discuss how current cancer treatment relies on DC function, and survey the myriad ways with which immune therapy can more directly harness DCs to enact antitumor cytotoxicity.
Collapse
Affiliation(s)
- Michael Y. Chen
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Felicia Zhang
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Simon Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, MO, United States
| | - William E. Gillanders
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
4
|
Sheikhlary S, Lopez DH, Moghimi S, Sun B. Recent Findings on Therapeutic Cancer Vaccines: An Updated Review. Biomolecules 2024; 14:503. [PMID: 38672519 PMCID: PMC11048403 DOI: 10.3390/biom14040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer remains one of the global leading causes of death and various vaccines have been developed over the years against it, including cell-based, nucleic acid-based, and viral-based cancer vaccines. Although many vaccines have been effective in in vivo and clinical studies and some have been FDA-approved, there are major limitations to overcome: (1) developing one universal vaccine for a specific cancer is difficult, as tumors with different antigens are different for different individuals, (2) the tumor antigens may be similar to the body's own antigens, and (3) there is the possibility of cancer recurrence. Therefore, developing personalized cancer vaccines with the ability to distinguish between the tumor and the body's antigens is indispensable. This paper provides a comprehensive review of different types of cancer vaccines and highlights important factors necessary for developing efficient cancer vaccines. Moreover, the application of other technologies in cancer therapy is discussed. Finally, several insights and conclusions are presented, such as the possibility of using cold plasma and cancer stem cells in developing future cancer vaccines, to tackle the major limitations in the cancer vaccine developmental process.
Collapse
Affiliation(s)
- Sara Sheikhlary
- Department of Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - David Humberto Lopez
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Sophia Moghimi
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Bo Sun
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| |
Collapse
|
5
|
Singhal S, Rao AS, Stadanlick J, Bruns K, Sullivan NT, Bermudez A, Honig-Frand A, Krouse R, Arambepola S, Guo E, Moon EK, Georgiou G, Valerius T, Albelda SM, Eruslanov EB. Human Tumor-Associated Macrophages and Neutrophils Regulate Antitumor Antibody Efficacy through Lethal and Sublethal Trogocytosis. Cancer Res 2024; 84:1029-1047. [PMID: 38270915 PMCID: PMC10982649 DOI: 10.1158/0008-5472.can-23-2135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/29/2023] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
The clinical benefits of tumor-targeting antibodies (tAb) are modest in solid human tumors. The efficacy of many tAbs is dependent on Fc receptor (FcR)-expressing leukocytes that bind Fc fragments of tAb. Tumor-associated macrophages (TAM) and neutrophils (TAN) represent the majority of FcR+ effectors in solid tumors. A better understanding of the mechanisms by which TAMs and TANs regulate tAb response could help improve the efficacy of cancer treatments. Here, we found that myeloid effectors interacting with tAb-opsonized lung cancer cells used antibody-dependent trogocytosis (ADT) but not antibody-dependent phagocytosis. During this process, myeloid cells "nibbled off" tumor cell fragments containing tAb/targeted antigen (tAg) complexes. ADT was only tumoricidal when the tumor cells expressed high levels of tAg and the effectors were present at high effector-to-tumor ratios. If either of these conditions were not met, which is typical for solid tumors, ADT was sublethal. Sublethal ADT, mainly mediated by CD32hiCD64hi TAM, led to two outcomes: (i) removal of surface tAg/tAb complexes from the tumor that facilitated tumor cell escape from the tumoricidal effects of tAb; and (ii) acquisition of bystander tAgs by TAM with subsequent cross-presentation and stimulation of tumor-specific T-cell responses. CD89hiCD32loCD64lo peripheral blood neutrophils (PBN) and TAN stimulated tumor cell growth in the presence of the IgG1 anti-EGFR Ab cetuximab; however, IgA anti-EGFR Abs triggered the tumoricidal activity of PBN and negated the stimulatory effect of TAN. Overall, this study provides insights into the mechanisms by which myeloid effectors mediate tumor cell killing or resistance during tAb therapy. SIGNIFICANCE The elucidation of the conditions and mechanisms by which human FcR+ myeloid effectors mediate cancer cell resistance and killing during antibody treatment could help develop improved strategies for treating solid tumors.
Collapse
Affiliation(s)
- Sunil Singhal
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Abhishek S. Rao
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jason Stadanlick
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kyle Bruns
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Neil T. Sullivan
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andres Bermudez
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Adam Honig-Frand
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ryan Krouse
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sachinthani Arambepola
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Emily Guo
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Edmund K. Moon
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas
| | - Thomas Valerius
- Department of Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Steven M. Albelda
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Evgeniy B. Eruslanov
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Moussion C, Delamarre L. Antigen cross-presentation by dendritic cells: A critical axis in cancer immunotherapy. Semin Immunol 2024; 71:101848. [PMID: 38035643 DOI: 10.1016/j.smim.2023.101848] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that play a key role in shaping adaptive immunity. DCs have a unique ability to sample their environment, capture and process exogenous antigens into peptides that are then loaded onto major histocompatibility complex class I molecules for presentation to CD8+ T cells. This process, called cross-presentation, is essential for initiating and regulating CD8+ T cell responses against tumors and intracellular pathogens. In this review, we will discuss the role of DCs in cancer immunity, the molecular mechanisms underlying antigen cross-presentation by DCs, the immunosuppressive factors that limit the efficiency of this process in cancer, and approaches to overcome DC dysfunction and therapeutically promote antitumoral immunity.
Collapse
Affiliation(s)
| | - Lélia Delamarre
- Cancer Immunology, Genentech, South San Francisco, CA 94080, USA.
| |
Collapse
|
7
|
Park S, Kim J, Shin JH. Intercellular Transfer of Immune Regulatory Molecules Via Trogocytosis. Results Probl Cell Differ 2024; 73:131-146. [PMID: 39242377 DOI: 10.1007/978-3-031-62036-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Trogocytosis, an active cellular process involving the transfer of plasma membrane and attached cytosol during cell-to-cell contact, has been observed prominently in CD4 T cells interacting with antigen-presenting cells carrying antigen-loaded major histocompatibility complex (MHC) class II molecules. Despite the inherent absence of MHC class II molecules in CD4 T cells, they actively acquire these molecules from encountered antigen-presenting cells, leading to the formation of antigen-loaded MHC class II molecules-dressed CD4 T cells. Subsequently, these dressed CD4 T cells engage in antigen presentation to other CD4 T cells, revealing a dynamic mechanism of immune communication. The transferred membrane proteins through trogocytosis retain their surface localization, thereby altering cellular functions. Concurrently, the donor cells experience a loss of membrane proteins, resulting in functional changes due to the altered membrane properties. This chapter provides a focused exploration into trogocytosis-mediated transfer of immune regulatory molecules and its consequential impact on diverse immune responses.
Collapse
Affiliation(s)
- Soyeon Park
- The interdisciplinary graduate program in integrative biology, Yonsei University, Incheon, South Korea
| | - Jeonghyun Kim
- The interdisciplinary graduate program in integrative biology, Yonsei University, Incheon, South Korea
| | - Jae Hun Shin
- The interdisciplinary graduate program in integrative biology, Yonsei University, Incheon, South Korea.
- Integrative Science and Engineering Division, Underwood International College, Yonsei University, Incheon, South Korea.
| |
Collapse
|
8
|
Grabowska J, Léopold V, Olesek K, Nijen Twilhaar MK, Affandi AJ, Brouwer MC, Jongerius I, Verschoor A, van Kooten C, van Kooyk Y, Storm G, van ‘t Veer C, den Haan JMM. Platelets interact with CD169 + macrophages and cDC1 and enhance liposome-induced CD8 + T cell responses. Front Immunol 2023; 14:1290272. [PMID: 38054006 PMCID: PMC10694434 DOI: 10.3389/fimmu.2023.1290272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023] Open
Abstract
Historically platelets are mostly known for their crucial contribution to hemostasis, but there is growing understanding of their role in inflammation and immunity. The immunomodulatory role of platelets entails interaction with pathogens, but also with immune cells including macrophages and dendritic cells (DCs), to activate adaptive immune responses. In our previous work, we have demonstrated that splenic CD169+ macrophages scavenge liposomes and collaborate with conventional type 1 DCs (cDC1) to induce expansion of CD8+ T cells. Here, we show that platelets associate with liposomes and bind to DNGR-1/Clec9a and CD169/Siglec-1 receptors in vitro. In addition, platelets interacted with splenic CD169+ macrophages and cDC1 and further increased liposome internalization by cDC1. Most importantly, platelet depletion prior to liposomal immunization resulted in significantly diminished antigen-specific CD8+ T cell responses, but not germinal center B cell responses. Previously, complement C3 was shown to be essential for platelet-mediated CD8+ T cell activation during bacterial infection. However, after liposomal vaccination CD8+ T cell priming was not dependent on complement C3. While DCs from platelet-deficient mice exhibited unaltered maturation status, they did express lower levels of CCR7. In addition, in the absence of platelets, CCL5 plasma levels were significantly reduced. Overall, our findings demonstrate that platelets engage in a cross-talk with CD169+ macrophages and cDC1 and emphasize the importance of platelets in induction of CD8+ T cell responses in the context of liposomal vaccination.
Collapse
Affiliation(s)
- Joanna Grabowska
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Valentine Léopold
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Anesthesiology and Critical Care, Paris University, Lariboisière Hospital, Paris, France
- Inserm UMR-S 942, Cardiovascular Markers in Stress Conditions (MASCOT), University of Paris, Paris, France
| | - Katarzyna Olesek
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Maarten K. Nijen Twilhaar
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Alsya J. Affandi
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Mieke C. Brouwer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Ilse Jongerius
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Admar Verschoor
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Department of Otorhinolaryngology, Technische Universität München and Klinikum Rechts der Isar, Munich, Germany
| | - Cees van Kooten
- Department of Medicine, Division of Nephrology and Transplant Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Department of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Cornelis van ‘t Veer
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Joke M. M. den Haan
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| |
Collapse
|
9
|
MacNabb BW, Kline J. MHC cross-dressing in antigen presentation. Adv Immunol 2023; 159:115-147. [PMID: 37996206 DOI: 10.1016/bs.ai.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Dendritic cells (DCs) orchestrate T cell responses by presenting antigenic peptides on major histocompatibility complex (MHC) and providing costimulation and other instructive signals. Professional antigen presenting cells (APCs), including DCs, are uniquely capable of generating and presenting peptide antigens derived from exogenous proteins. In addition to these canonical cross-presentation and MHC-II presentation pathways, APCs can also display exogenous peptide/MHC (p/MHC) acquired from neighboring cells and extracellular vesicles (EVs). This process, known as MHC cross-dressing, has been implicated in the regulation of T cell responses in a variety of in vivo contexts, including allogeneic solid organ transplantation, tumors, and viral infection. Although the occurrence of MHC cross-dressing has been clearly demonstrated, the importance of this antigen presentation mechanism continues to be elucidated. The contribution of MHC cross-dressing to overall antigen presentation has been obfuscated by the fact that DCs express the same MHC alleles as all other cells in the host, making it difficult to distinguish p/MHC generated within the DC from p/MHC acquired from another cell. As a result, much of what is known about MHC cross-dressing comes from studies using allogeneic organ transplantation and bone marrow chimeric mice, though recent development of mice bearing conditional knockout MHC and β2-microglobulin alleles should facilitate substantial progress in the coming years. In this review, we highlight recent advances in our understanding of MHC cross-dressing and its role in activating T cell responses in various contexts, as well as the experimental insights into the mechanism by which it occurs.
Collapse
Affiliation(s)
- Brendan W MacNabb
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| | - Justin Kline
- Department of Medicine, Committee on Immunology, and Committee on Cancer Biology, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
10
|
Schriek P, Villadangos JA. Trogocytosis and cross-dressing in antigen presentation. Curr Opin Immunol 2023; 83:102331. [PMID: 37148582 DOI: 10.1016/j.coi.2023.102331] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 05/08/2023]
Abstract
Antigen (Ag)-presenting cells capture or synthesize Ags that are processed into peptides bound and displayed on the plasma membrane by major histocompatibility complex (MHC) molecules. Here, we review a mechanism that enables cells to present Ag-loaded MHC molecules that they have not produced themselves, namely trogocytosis. During trogocytosis, a cell acquires fragments from another living cell without, in most cases, affecting the viability of the donor cell. The trogocytic cell can incorporate into its own plasma membrane (becoming cross-dressed) proteins acquired from the donor cell, including intact Ag and MHC molecules. Trogocytosis and cross-dressing expand the immunological functions that immune and nonimmune cells are able to carry out, with both beneficial and deleterious consequences.
Collapse
Affiliation(s)
- Patrick Schriek
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia.
| |
Collapse
|
11
|
Cruz FM, Chan A, Rock KL. Pathways of MHC I cross-presentation of exogenous antigens. Semin Immunol 2023; 66:101729. [PMID: 36804685 PMCID: PMC10023513 DOI: 10.1016/j.smim.2023.101729] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/18/2023]
Abstract
Phagocytes, particularly dendritic cells (DCs), generate peptide-major histocompatibility complex (MHC) I complexes from antigens they have collected from cells in tissues and report this information to CD8 T cells in a process called cross-presentation. This process allows CD8 T cells to detect, respond and eliminate abnormal cells, such as cancers or cells infected with viruses or intracellular microbes. In some settings, cross-presentation can help tolerize CD8 T cells to self-antigens. One of the principal ways that DCs acquire tissue antigens is by ingesting this material through phagocytosis. The resulting phagosomes are key hubs in the cross-presentation (XPT) process and in fact experimentally conferring the ability to phagocytize antigens can be sufficient to allow non-professional antigen presenting cells (APCs) to cross-present. Once in phagosomes, exogenous antigens can be cross-presented (XPTed) through three distinct pathways. There is a vacuolar pathway in which peptides are generated and then bind to MHC I molecules within the confines of the vacuole. Ingested exogenous antigens can also be exported from phagosomes to the cytosol upon vesicular rupture and/or possibly transport. Once in the cytosol, the antigen is degraded by the proteasome and the resulting oligopeptides can be transported to MHC I molecule in the endoplasmic reticulum (ER) (a phagosome-to-cytosol (P2C) pathway) or in phagosomes (a phagosome-to-cytosol-to-phagosome (P2C2P) pathway). Here we review how phagosomes acquire the necessary molecular components that support these three mechanisms and the contribution of these pathways. We describe what is known as well as the gaps in our understanding of these processes.
Collapse
Affiliation(s)
- Freidrich M Cruz
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Amanda Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
12
|
MHC-dressing on dendritic cells: Boosting anti-tumor immunity via unconventional tumor antigen presentation. Semin Immunol 2023; 66:101710. [PMID: 36640616 DOI: 10.1016/j.smim.2023.101710] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/21/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Dendritic cells are crucial for anti-tumor immune responses due to their ability to activate cytotoxic effector CD8+ T cells. Canonically, in anti-tumor immunity, dendritic cells activate CD8+ T cells in a process termed cross-presentation. Recent studies have demonstrated that another type of antigen presentation, MHC-dressing, also serves to activate CD8+ T cells against tumor cell-derived antigens. Understanding MHC-dressing's specific contributions to anti-tumor immunity can open up novel therapeutic avenues. In this review, we summarize the early studies that identified MHC-dressing as a relevant antigen presentation pathway before diving into a deeper discussion of the biology of MHC-dressing, focusing in particular on which dendritic cell subsets are most capable of performing MHC-dressing and how MHC-dressing compares to other forms of antigen presentation. We conclude by discussing the implications MHC-dressing has for anti-tumor immunity.
Collapse
|
13
|
Evaluating the Potential Fitness Effects of Chinook Salmon ( Oncorhynchus tshawytscha) Aquaculture Using Non-Invasive Population Genomic Analyses of MHC Nucleotide Substitution Spectra. Animals (Basel) 2023; 13:ani13040593. [PMID: 36830380 PMCID: PMC9951711 DOI: 10.3390/ani13040593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Genetic diversity plays a vital role in the adaptability of salmon to changing environmental conditions that can introduce new selective pressures on populations. Variability among local subpopulations may increase the chance that certain advantageous genes are passed down to future generations to mitigate susceptibility to novel diseases, warming oceans, loss of genetic stocks, and ocean acidification. Class I and II genes of the major histocompatibility complex (MHC) are crucial for the fitness of Chinook salmon due to the role they play in disease and pathogen resistance. The objective of this study was to assess the DNA sequence variability among wild and hatchery populations of Alaskan Chinook salmon at the class I α1 and class II β1 exons of the MHC. We hypothesized that the 96 wild samples taken from the Deshka River would display greater levels of observed heterozygosity (Ho) relative to expected heterozygosity (He) in suggesting that individuals with similar phenotypes mate with one another more frequently than would be expected under random mating patterns. Conversely, since no mate selection occurs in the William Jack Hernandez Sport Fish hatchery, we would not expect to see this discrepancy (He = Ho) in the 96 hatchery fish tested in this study. Alternatively, we hypothesized that post-mating selection is driving higher levels of observed heterozygosity as opposed to mate selection. If this is the case, we will observe higher than expected levels of heterozygosity among hatchery salmon. Both populations displayed higher levels of observed heterozygosity than expected heterozygosity at the Class I and II loci but genetic differentiation between the spatially distinct communities was minimal. Class I sequences showed evidence of balancing selection, despite high rates of non-synonymous substitutions observed, specifically at the peptide binding regions of both MHC genes.
Collapse
|
14
|
Zagorulya M, Spranger S. Once upon a prime: DCs shape cancer immunity. Trends Cancer 2023; 9:172-184. [PMID: 36357313 PMCID: PMC10827483 DOI: 10.1016/j.trecan.2022.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
Abstract
Cytotoxic CD8+ T cells are potent killers of diseased cells, but their functional capacity is often compromised in cancer. The quality of antitumor T cell immunity is determined during T cell priming in the lymph node and further influenced by the local microenvironment of the tumor. Increasing evidence indicates that dendritic cells (DCs) have the capacity to precisely regulate the functional quality of antitumor T cell responses in both locations. In this review, we discuss recent advances in our understanding of how distinct DC-derived signals influence CD8+ T cell differentiation and antitumor functions. Insight into the mechanisms of DC-mediated regulation of antitumor immunity could inspire the development of improved approaches to prevent and reverse T cell dysfunction in cancer.
Collapse
Affiliation(s)
- Maria Zagorulya
- Department of Biology, MIT, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Stefani Spranger
- Department of Biology, MIT, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Ludwig Center at MIT's Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
15
|
Mohapatra AD, Srivastava PK. Assays to Detect Cross-Dressing by Dendritic Cells In Vivo and In Vitro. Methods Mol Biol 2023; 2618:251-264. [PMID: 36905522 DOI: 10.1007/978-1-0716-2938-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The presentation of peptides derived from exogenous antigens on major histocompatibility complex (MHC) class I molecules of antigen-presenting cells (APCs), termed cross-presentation, is crucial for the activation of cytotoxic T-lymphocytes during cell-mediated immune response. Typically, the APCs acquire exogenous antigens by (i) endocytosis of soluble antigens present in their external milieu, or (ii) through phagocytosis of dying/dead cancer cells or infected cells, followed by intracellular processing, before presentation by MHC I on the surface, or (iii) uptake of heat shock protein-peptide complexes generated in the antigen donor cells (3). In a fourth new mechanism, preformed peptide-MHC complexes can be directly transferred from the surface of antigen donor cells (i.e., cancer cells or infected cells) to that of APCs, without the need of further processing, in a process referred to as cross-dressing. Recently, the importance of cross-dressing in dendritic cell-mediated antitumor immunity and antiviral immunity has been demonstrated. Here, we describe a protocol to study cross-dressing of dendritic cells with tumor antigens.
Collapse
Affiliation(s)
- Alok Das Mohapatra
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, USA. .,TScan Therapeutics, Preclinical In Vivo Pharmacology Division, Waltham, MA, USA.
| | - Pramod K Srivastava
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
16
|
Current State of Immunotherapy and Mechanisms of Immune Evasion in Ewing Sarcoma and Osteosarcoma. Cancers (Basel) 2022; 15:cancers15010272. [PMID: 36612267 PMCID: PMC9818129 DOI: 10.3390/cancers15010272] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
We argue here that in many ways, Ewing sarcoma (EwS) is a unique tumor entity and yet, it shares many commonalities with other immunologically cold solid malignancies. From the historical perspective, EwS, osteosarcoma (OS) and other bone and soft-tissue sarcomas were the first types of tumors treated with the immunotherapy approach: more than 100 years ago American surgeon William B. Coley injected his patients with a mixture of heat-inactivated bacteria, achieving survival rates apparently higher than with surgery alone. In contrast to OS which exhibits recurrent somatic copy-number alterations, EwS possesses one of the lowest mutation rates among cancers, being driven by a single oncogenic fusion protein, most frequently EWS-FLI1. In spite these differences, both EwS and OS are allied with immune tolerance and low immunogenicity. We discuss here the potential mechanisms of immune escape in these tumors, including low representation of tumor-specific antigens, low expression levels of MHC-I antigen-presenting molecules, accumulation of immunosuppressive M2 macrophages and myeloid proinflammatory cells, and release of extracellular vesicles (EVs) which are capable of reprogramming host cells in the tumor microenvironment and systemic circulation. We also discuss the vulnerabilities of EwS and OS and potential novel strategies for their targeting.
Collapse
|
17
|
Herbst C, Harshyne LA, Igyártó BZ. Intracellular monitoring by dendritic cells – a new way to stay informed – from a simple scavenger to an active gatherer. Front Immunol 2022; 13:1053582. [PMID: 36389660 PMCID: PMC9647004 DOI: 10.3389/fimmu.2022.1053582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells (DCs) are required for the initiation of the adaptive immune response. Their ability to acquire antigens in the periphery is a critical step in this process. DCs express a wide variety of adhesion molecules and possess an extremely fluid plasma membrane that facilitates scavenging the extracellular environment and capturing material like exosomes, apoptotic bodies, and pathogens. Besides these standard routes, the acquisition of antigens by DCs can be further facilitated by tunneling nanotubes, trogocytosis, and gap junctions. However, in this article, we will argue that this is an incomplete picture, as certain observations in the literature cannot be explained if we assume DCs acquire antigens only through these means. Instead, it is more likely that DCs preferentially use adhesion molecules to form long-lasting cell-cell interactions to actively siphon material from cells they are in direct contact with. It is highly likely that DCs use this mechanism to continually capture membrane and cytosolic material directly from surrounding cells, which they scan to assess the health of the donor cell. Doing so would provide an array of advantages for the host immune system, as it would not be reliant on compromised cells to release antigens into the extracellular milieu. Therefore, we propose updating our view of DC antigen acquisition to include a process of active, contact-dependent capture of material directly from neighboring cell cytosol (cytocytosis), which we would term intracellular monitoring.
Collapse
Affiliation(s)
- Christopher Herbst
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Larry A. Harshyne
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Botond Z. Igyártó
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Botond Z. Igyártó,
| |
Collapse
|
18
|
Mattei F, Andreone S, Spadaro F, Noto F, Tinari A, Falchi M, Piconese S, Afferni C, Schiavoni G. Trogocytosis in innate immunity to cancer is an intimate relationship with unexpected outcomes. iScience 2022; 25:105110. [PMID: 36185368 PMCID: PMC9515589 DOI: 10.1016/j.isci.2022.105110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/04/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Trogocytosis is a cellular process whereby a cell acquires a membrane fragment from a donor cell in a contact-dependent manner allowing for the transfer of surface proteins with functional integrity. It is involved in various biological processes, including cell-cell communication, immune regulation, and response to pathogens and cancer cells, with poorly defined molecular mechanisms. With the exception of eosinophils, trogocytosis has been reported in most immune cells and plays diverse roles in the modulation of anti-tumor immune responses. Here, we report that eosinophils acquire membrane fragments from tumor cells early after contact through the CD11b/CD18 integrin complex. We discuss the impact of trogocytosis in innate immune cells on cancer progression in the context of the evidence that eosinophils can engage in trogocytosis with tumor cells. We also discuss shared and cell-specific mechanisms underlying this process based on in silico modeling and provide a hypothetical molecular model for the stabilization of the immunological synapse operating in granulocytes and possibly other innate immune cells that enables trogocytosis. Trogocytosis in innate immune cells can regulate immune responses to cancer Eosinophils engage in trogocytosis with tumor cells via CD11b/CD18 integrin complex CD11b/CD18 integrin, focal adhesion molecules and actin network enable trogocytosis
Collapse
Affiliation(s)
- Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Sara Andreone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Spadaro
- Core Facilities, Microscopy Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Noto
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Antonella Tinari
- Center for Gender Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mario Falchi
- National HIV/AIDS Research Center (CNAIDS), Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Piconese
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Italy
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Rome, Italy
| | - Claudia Afferni
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- Corresponding author
| |
Collapse
|
19
|
Martinez-Usatorre A, De Palma M. Dendritic cell cross-dressing and tumor immunity. EMBO Mol Med 2022; 14:e16523. [PMID: 35959554 PMCID: PMC9549722 DOI: 10.15252/emmm.202216523] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/27/2022] Open
Abstract
In addition to direct and cross‐presentation, dendritic cells (DCs) can present tumor antigens (TAs) to T cells via a hitherto poorly understood mechanism called “cross‐dressing.” DC cross‐dressing involves the acquisition of preformed peptide‐major histocompatibility class I/II (p‐MHC) complexes from cancer cells. This process has been documented both in cell culture and in tumor models; may occur via the uptake of tumor‐derived extracellular vesicles or the horizontal transfer of plasma membrane fragments from cancer cells to DCs; and can be enhanced through DC engineering for therapeutic applications. In some experimental contexts, DC cross‐dressing may be essential for productive anti‐tumor immunity, possibly owing to the fact that tumor‐derived p‐MHC complexes encompass the full repertoire of immunologically relevant TAs against which primed cytotoxic T cells can exert their tumoricidal activity.
Collapse
Affiliation(s)
- Amaia Martinez-Usatorre
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.,Agora Cancer Research Center, Lausanne, Switzerland.,Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.,Agora Cancer Research Center, Lausanne, Switzerland.,Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| |
Collapse
|
20
|
Rivera CA, Lennon-Duménil AM. Dendritic cells (cross)dress for success. Immunity 2022; 55:965-967. [PMID: 35704996 DOI: 10.1016/j.immuni.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The relevance of cross-dressing as an antigen presentation mechanism in antitumor responses is not fully understood. In this issue of Immunity, MacNabb et al. (2022) report that dendritic cells use cross-dressing as an effective mechanism to trigger CD8+ T cell antitumor immunity.
Collapse
Affiliation(s)
- Claudia A Rivera
- Institut Curie, INSERM U932, PSL Research University, 75005 Paris, France
| | | |
Collapse
|
21
|
MacNabb BW, Tumuluru S, Chen X, Godfrey J, Kasal DN, Yu J, Jongsma MLM, Spaapen RM, Kline DE, Kline J. Dendritic cells can prime anti-tumor CD8 + T cell responses through major histocompatibility complex cross-dressing. Immunity 2022; 55:982-997.e8. [PMID: 35617964 PMCID: PMC9883788 DOI: 10.1016/j.immuni.2022.04.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 11/20/2021] [Accepted: 04/28/2022] [Indexed: 01/31/2023]
Abstract
Antigen cross-presentation, wherein dendritic cells (DCs) present exogenous antigen on major histocompatibility class I (MHC-I) molecules, is considered the primary mechanism by which DCs initiate tumor-specific CD8+ T cell responses. Here, we demonstrate that MHC-I cross-dressing, an antigen presentation pathway in which DCs acquire and display intact tumor-derived peptide:MHC-I molecules, is also important in orchestrating anti-tumor immunity. Cancer cell MHC-I expression was required for optimal CD8+ T cell activation in two subcutaneous tumor models. In vivo acquisition of tumor-derived peptide:MHC-I molecules by DCs was sufficient to induce antigen-specific CD8+ T cell priming. Transfer of tumor-derived human leukocyte antigen (HLA) molecules to myeloid cells was detected in vitro and in human tumor xenografts. In conclusion, MHC-I cross-dressing is crucial for anti-tumor CD8+ T cell priming by DCs. In addition to quantitatively enhancing tumor antigen presentation, MHC cross-dressing might also enable DCs to more faithfully and efficiently mirror the cancer cell peptidome.
Collapse
Affiliation(s)
- Brendan W MacNabb
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Sravya Tumuluru
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| | - Xiufen Chen
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - James Godfrey
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Darshan N Kasal
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Jovian Yu
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Marlieke L M Jongsma
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Douglas E Kline
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Justin Kline
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
22
|
Rother N, Yanginlar C, Pieterse E, Hilbrands L, van der Vlag J. Microparticles in Autoimmunity: Cause or Consequence of Disease? Front Immunol 2022; 13:822995. [PMID: 35514984 PMCID: PMC9065258 DOI: 10.3389/fimmu.2022.822995] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/25/2022] [Indexed: 12/15/2022] Open
Abstract
Microparticles (MPs) are small (100 nm - 1 um) extracellular vesicles derived from the plasma membrane of dying or activated cells. MPs are important mediators of intercellular communication, transporting proteins, nucleic acids and lipids from the parent cell to other cells. MPs resemble the state of their parent cells and are easily accessible when released into the blood or urine. MPs also play a role in the pathogenesis of different diseases and are considered as potential biomarkers. MP isolation and characterization is technically challenging and results in different studies are contradictory. Therefore, uniform guidelines to isolate and characterize MPs should be developed. Our understanding of MP biology and how MPs play a role in different pathological mechanisms has greatly advanced in recent years. MPs, especially if derived from apoptotic cells, possess strong immunogenic properties due to the presence of modified proteins and nucleic acids. MPs are often found in patients with autoimmune diseases where MPs for example play a role in the break of immunological tolerance and/or induction of inflammatory conditions. In this review, we describe the main techniques to isolate and characterize MPs, define the characteristics of MPs generated during cell death, illustrate different mechanism of intercellular communication via MPs and summarize the role of MPs in pathological mechanisms with a particular focus on autoimmune diseases.
Collapse
Affiliation(s)
- Nils Rother
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cansu Yanginlar
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Elmar Pieterse
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Luuk Hilbrands
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
23
|
Lema DA, Jankowska‐Gan E, Nair A, Kanaan SB, Little CJ, Foley DP, Raza Naqvi A, Wang J, Hong S, Nelson JL, Al‐Adra D, Burlingham WJ, Sullivan JA. Cross-decoration of dendritic cells by non-inherited maternal antigen-containing extracellular vesicles: Potential mechanism for PD-L1-based tolerance in cord blood and organ transplantation. Am J Transplant 2022; 22:1329-1338. [PMID: 35143105 PMCID: PMC9235410 DOI: 10.1111/ajt.16970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/10/2021] [Accepted: 01/14/2022] [Indexed: 01/25/2023]
Abstract
Exposure to non-inherited maternal antigens (NIMA) during the fetal period induces lifelong split tolerance to grafts expressing these allo-antigens. In adult mice, the production of extracellular vesicles (EVs) from maternal microchimeric cells causes cross-decoration (XD) of offspring dendritic cells (DC) with NIMA and upregulation of PD-L1, contributing to NIMA tolerance. To see how this may apply to humans, we tested NIMA acquisition by fetal DCS in human cord blood. The average percentage of NIMA-XD among total DCs was 2.6% for myeloid and 4.5% for Plasmacytoid DC. These cells showed higher PD-L1 expression than their non-XD counterparts (mDC: p = .0016; pDC: p = .024). We detected CD9+ EVs bearing NIMA and PD-L1 in cord blood. To determine if this immune regulatory mechanism persists beyond the pregnancy, we analyzed NIMA-expressing kidney and liver transplant recipients. We found donor antigen XD DCs in peripheral blood and graft-infiltrating DCs. As in cord blood, the pattern of donor antigen expression was punctate, and PD-L1 expression was upregulated, likely due to both protein and miRNA acquired from EV. Our findings support a mechanism for split tolerance to NIMAs that develops during pregnancy and is recapitulated in adult transplant recipients.
Collapse
Affiliation(s)
- Diego A. Lema
- Department of SurgeryDivision of TransplantationUniversity of WisconsinMadisonWisconsinUSA
| | - Ewa Jankowska‐Gan
- Department of SurgeryDivision of TransplantationUniversity of WisconsinMadisonWisconsinUSA
| | - Ashita Nair
- Pharmaceutical Sciences DivisionSchool of PharmacyUniversity of WisconsinMadisonWisconsinUSA
| | - Sami B. Kanaan
- Clinical Research DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Christopher J. Little
- Department of SurgeryDivision of TransplantationUniversity of WisconsinMadisonWisconsinUSA
| | - David P. Foley
- Department of SurgeryDivision of TransplantationUniversity of WisconsinMadisonWisconsinUSA
| | - Afsar Raza Naqvi
- Department of PeriodontologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Jianxin Wang
- Pharmaceutical Sciences DivisionSchool of PharmacyUniversity of WisconsinMadisonWisconsinUSA
| | - Seungpyo Hong
- Pharmaceutical Sciences DivisionSchool of PharmacyUniversity of WisconsinMadisonWisconsinUSA
| | - J. Lee Nelson
- Clinical Research DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
- Department of MedicineRheumatology DivisionUniversity of WashingtonSeattleWashingtonUSA
| | - David Al‐Adra
- Department of SurgeryDivision of TransplantationUniversity of WisconsinMadisonWisconsinUSA
| | - William J. Burlingham
- Department of SurgeryDivision of TransplantationUniversity of WisconsinMadisonWisconsinUSA
| | - Jeremy A. Sullivan
- Department of SurgeryDivision of TransplantationUniversity of WisconsinMadisonWisconsinUSA
- Department of AnesthesiologyUniversity of WisconsinMadisonWisconsinUSA
| |
Collapse
|
24
|
Engeroff P, Vogel M. The Potential of Exosomes in Allergy Immunotherapy. Vaccines (Basel) 2022; 10:vaccines10010133. [PMID: 35062793 PMCID: PMC8780385 DOI: 10.3390/vaccines10010133] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
Allergic diseases represent a global health and economic burden of increasing significance. The lack of disease-modifying therapies besides specific allergen immunotherapy (AIT) which is not available for all types of allergies, necessitates the study of novel therapeutic approaches. Exosomes are small endosome-derived vesicles delivering cargo between cells and thus allowing inter-cellular communication. Since immune cells make use of exosomes to boost, deviate, or suppress immune responses, exosomes are intriguing candidates for immunotherapy. Here, we review the role of exosomes in allergic sensitization and inflammation, and we discuss the mechanisms by which exosomes could potentially be used in immunotherapeutic approaches for the treatment of allergic diseases. We propose the following approaches: (a) Mast cell-derived exosomes expressing IgE receptor FcεRI could absorb IgE and down-regulate systemic IgE levels. (b) Tolerogenic exosomes could suppress allergic immune responses via induction of regulatory T cells. (c) Exosomes could promote TH1-like responses towards an allergen. (d) Exosomes could modulate IgE-facilitated antigen presentation.
Collapse
Affiliation(s)
- Paul Engeroff
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), F-75005 Paris, France;
| | - Monique Vogel
- Department of Immunology, University Hospital for Rheumatology, Immunology, and Allergology, 3010 Bern, Switzerland
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Correspondence:
| |
Collapse
|
25
|
Cross-dressing of dendritic cells strengthens antitumor immunity. Trends Cancer 2022; 8:159-160. [DOI: 10.1016/j.trecan.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/23/2022]
|
26
|
Barrera-Avalos C, Briceño P, Valdés D, Imarai M, Leiva-Salcedo E, Rojo LE, Milla LA, Huidobro-Toro JP, Robles-Planells C, Escobar A, Di Virgilio F, Morón G, Sauma D, Acuña-Castillo C. P2X7 receptor is essential for cross-dressing of bone marrow-derived dendritic cells. iScience 2021; 24:103520. [PMID: 34950860 PMCID: PMC8671947 DOI: 10.1016/j.isci.2021.103520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/29/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022] Open
Abstract
T cell activation requires the processing and presentation of antigenic peptides in the context of a major histocompatibility complex (MHC complex). Cross-dressing is a non-conventional antigen presentation mechanism, involving the transfer of preformed peptide/MHC complexes from whole cells, such as apoptotic cells (ACs) to the cell membrane of professional antigen-presenting cells (APCs), such as dendritic cells (DCs). This is an essential mechanism for the induction of immune response against viral antigens, tumors, and graft rejection, which until now has not been clarified. Here we show for first time that the P2X7 receptor (P2X7R) is crucial to induce cross-dressing between ACs and Bone-Marrow DCs (BMDCs). In controlled ex vivo assays, we found that the P2X7R in both ACs and BMDCs is required to induce membrane and fully functional peptide/MHC complex transfer to BMDCs. These findings show that acquisition of ACs-derived preformed antigen/MHC-I complexes by BMDCs requires P2X7R expression. Cross-dressing of antigens to Dendritic Cells (DCs) is dependent of P2X7 receptor The P2X7 receptor must be present in both Dendritic Cells and antigen source The transfer of antigen/MHC-I complexes to DCs is functional and activates T CD8 cells The P2X7 receptor allows Cross-Dressing possibly through a membrane fusion process
Collapse
Affiliation(s)
- Carlos Barrera-Avalos
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Alameda, Santiago 3363, Chile
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, USACH, Alameda 3363 Santiago, Chile
| | - Pedro Briceño
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Daniel Valdés
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Alameda, Santiago 3363, Chile
| | - Mónica Imarai
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Alameda, Santiago 3363, Chile
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, USACH, Alameda 3363 Santiago, Chile
| | - Elías Leiva-Salcedo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Alameda, Santiago 3363, Chile
| | - Leonel E. Rojo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Alameda, Santiago 3363, Chile
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, USACH, Alameda 3363 Santiago, Chile
| | - Luis A. Milla
- Centro de Investigaciones Biomédicas y Aplicadas, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Chile
| | - Juan Pablo Huidobro-Toro
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Alameda, Santiago 3363, Chile
| | - Claudia Robles-Planells
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Alameda, Santiago 3363, Chile
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, USACH, Alameda 3363 Santiago, Chile
| | - Alejandro Escobar
- Laboratorio Biología Celular y Molecular, Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | | | - Gabriel Morón
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología, Córdoba, Argentina
| | - Daniela Sauma
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Corresponding author
| | - Claudio Acuña-Castillo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Alameda, Santiago 3363, Chile
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, USACH, Alameda 3363 Santiago, Chile
- Corresponding author
| |
Collapse
|
27
|
Gołębiewska JE, Wardowska A, Pietrowska M, Wojakowska A, Dębska-Ślizień A. Small Extracellular Vesicles in Transplant Rejection. Cells 2021; 10:2989. [PMID: 34831212 PMCID: PMC8616261 DOI: 10.3390/cells10112989] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/31/2021] [Accepted: 10/31/2021] [Indexed: 12/28/2022] Open
Abstract
Small extracellular vesicles (sEV), which are released to body fluids (e.g., serum, urine) by all types of human cells, may stimulate or inhibit the innate and adaptive immune response through multiple mechanisms. Exosomes or sEV have on their surface many key receptors of immune response, including major histocompatibility complex (MHC) components, identical to their cellular origin. They also exhibit an ability to carry antigen and target leukocytes either via interaction with cell surface receptors or intracellular delivery of inflammatory mediators, receptors, enzymes, mRNAs, and noncoding RNAs. By the transfer of donor MHC antigens to recipient antigen presenting cells sEV may also contribute to T cell allorecognition and alloresponse. Here, we review the influence of sEV on the development of rejection or tolerance in the setting of solid organ and tissue allotransplantation. We also summarize and discuss potential applications of plasma and urinary sEV as biomarkers in the context of transplantation. We focus on the attempts to use sEV as a noninvasive approach to detecting allograft rejection. Preliminary studies show that both sEV total levels and a set of specific molecules included in their cargo may be an evidence of ongoing allograft rejection.
Collapse
Affiliation(s)
- Justyna E. Gołębiewska
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Anna Wardowska
- Department of Physiopathology, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Monika Pietrowska
- Centre for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland;
| | - Anna Wojakowska
- Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznań, Poland;
| | - Alicja Dębska-Ślizień
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| |
Collapse
|
28
|
Elkashif A, Alhashimi M, Sayedahmed EE, Sambhara S, Mittal SK. Adenoviral vector-based platforms for developing effective vaccines to combat respiratory viral infections. Clin Transl Immunology 2021; 10:e1345. [PMID: 34667600 PMCID: PMC8510854 DOI: 10.1002/cti2.1345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Since the development of the first vaccine against smallpox over two centuries ago, vaccination strategies have been at the forefront of significantly impacting the incidences of infectious diseases globally. However, the increase in the human population, deforestation and climate change, and the rise in worldwide travel have favored the emergence of new viruses with the potential to cause pandemics. The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is a cruel reminder of the impact of novel pathogens and the suboptimal capabilities of conventional vaccines. Therefore, there is an urgent need to develop new vaccine strategies that allow the production of billions of doses in a short duration and are broadly protective against emerging and re-emerging infectious diseases. Extensive knowledge of the molecular biology and immunology of adenoviruses (Ad) has favored Ad vectors as platforms for vaccine design. The Ad-based vaccine platform represents an attractive strategy as it induces robust humoral and cell-mediated immune responses and can meet the global demand in a pandemic situation. This review describes the status of Ad vector-based vaccines in preclinical and clinical studies for current and emerging respiratory viruses, particularly coronaviruses, influenza viruses and respiratory syncytial viruses.
Collapse
Affiliation(s)
- Ahmed Elkashif
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | - Marwa Alhashimi
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | - Ekramy E Sayedahmed
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | | | - Suresh K Mittal
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| |
Collapse
|
29
|
Miyake K, Karasuyama H. The Role of Trogocytosis in the Modulation of Immune Cell Functions. Cells 2021; 10:cells10051255. [PMID: 34069602 PMCID: PMC8161413 DOI: 10.3390/cells10051255] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Trogocytosis is an active process, in which one cell extracts the cell fragment from another cell, leading to the transfer of cell surface molecules, together with membrane fragments. Recent reports have revealed that trogocytosis can modulate various biological responses, including adaptive and innate immune responses and homeostatic responses. Trogocytosis is evolutionally conserved from protozoan parasites to eukaryotic cells. In some cases, trogocytosis results in cell death, which is utilized as a mechanism for antibody-dependent cytotoxicity (ADCC). In other cases, trogocytosis-mediated intercellular protein transfer leads to both the acquisition of novel functions in recipient cells and the loss of cellular functions in donor cells. Trogocytosis in immune cells is typically mediated by receptor–ligand interactions, including TCR–MHC interactions and Fcγ receptor-antibody-bound molecule interactions. Additionally, trogocytosis mediates the transfer of MHC molecules to various immune and non-immune cells, which confers antigen-presenting activity on non-professional antigen-presenting cells. In this review, we summarize the recent advances in our understanding of the role of trogocytosis in immune modulation.
Collapse
|
30
|
Nakayama M, Hori A, Toyoura S, Yamaguchi SI. Shaping of T Cell Functions by Trogocytosis. Cells 2021; 10:cells10051155. [PMID: 34068819 PMCID: PMC8151334 DOI: 10.3390/cells10051155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Trogocytosis is an active process whereby plasma membrane proteins are transferred from one cell to the other cell in a cell-cell contact-dependent manner. Since the discovery of the intercellular transfer of major histocompatibility complex (MHC) molecules in the 1970s, trogocytosis of MHC molecules between various immune cells has been frequently observed. For instance, antigen-presenting cells (APCs) acquire MHC class I (MHCI) from allografts, tumors, and virally infected cells, and these APCs are subsequently able to prime CD8+ T cells without antigen processing via the preformed antigen-MHCI complexes, in a process called cross-dressing. T cells also acquire MHC molecules from APCs or other target cells via the immunological synapse formed at the cell-cell contact area, and this phenomenon impacts T cell activation. Compared with naïve and effector T cells, T regulatory cells have increased trogocytosis activity in order to remove MHC class II and costimulatory molecules from APCs, resulting in the induction of tolerance. Accumulating evidence suggests that trogocytosis shapes T cell functions in cancer, transplantation, and during microbial infections. In this review, we focus on T cell trogocytosis and the related inflammatory diseases.
Collapse
|
31
|
Dersh D, Phelan JD, Gumina ME, Wang B, Arbuckle JH, Holly J, Kishton RJ, Markowitz TE, Seedhom MO, Fridlyand N, Wright GW, Huang DW, Ceribelli M, Thomas CJ, Lack JB, Restifo NP, Kristie TM, Staudt LM, Yewdell JW. Genome-wide Screens Identify Lineage- and Tumor-Specific Genes Modulating MHC-I- and MHC-II-Restricted Immunosurveillance of Human Lymphomas. Immunity 2021; 54:116-131.e10. [PMID: 33271120 PMCID: PMC7874576 DOI: 10.1016/j.immuni.2020.11.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/25/2020] [Accepted: 11/06/2020] [Indexed: 12/23/2022]
Abstract
Tumors frequently subvert major histocompatibility complex class I (MHC-I) peptide presentation to evade CD8+ T cell immunosurveillance, though how this is accomplished is not always well defined. To identify the global regulatory networks controlling antigen presentation, we employed genome-wide screening in human diffuse large B cell lymphomas (DLBCLs). This approach revealed dozens of genes that positively and negatively modulate MHC-I cell surface expression. Validated genes clustered in multiple pathways including cytokine signaling, mRNA processing, endosomal trafficking, and protein metabolism. Genes can exhibit lymphoma subtype- or tumor-specific MHC-I regulation, and a majority of primary DLBCL tumors displayed genetic alterations in multiple regulators. We established SUGT1 as a major positive regulator of both MHC-I and MHC-II cell surface expression. Further, pharmacological inhibition of two negative regulators of antigen presentation, EZH2 and thymidylate synthase, enhanced DLBCL MHC-I presentation. These and other genes represent potential targets for manipulating MHC-I immunosurveillance in cancers, infectious diseases, and autoimmunity.
Collapse
Affiliation(s)
- Devin Dersh
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Megan E Gumina
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Boya Wang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jesse H Arbuckle
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jaroslav Holly
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rigel J Kishton
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Tovah E Markowitz
- NIAID Collaborative Bioinformatics Resource, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mina O Seedhom
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nathan Fridlyand
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - George W Wright
- Biometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Da Wei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michele Ceribelli
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Justin B Lack
- NIAID Collaborative Bioinformatics Resource, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Nicholas P Restifo
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Thomas M Kristie
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
32
|
Qin H, Chen Y. Lipid Metabolism and Tumor Antigen Presentation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1316:169-189. [PMID: 33740250 DOI: 10.1007/978-981-33-6785-2_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tumors always evade immune surveillance and block T cell activation in a poorly immunogenic and immunosuppressive environment. Cancer cells and immune cells exhibit metabolic reprogramming in the tumor microenvironment (TME), which intimately links immune cell function and edits tumor immunology. In addition to glucose metabolism, amino acid and lipid metabolism also provide the materials for biological processes crucial in cancer biology and pathology. Furthermore, lipid metabolism is synergistically or negatively involved in the interactions between tumors and the microenvironment and contributes to the regulation of immune cells. Antigen processing and presentation as the initiation of adaptive immune response play a critical role in antitumor immunity. Therefore, a relationship exists between antigen-presenting cells and lipid metabolism in TME. This chapter introduces the updated understandings of lipid metabolism of tumor antigen-presenting cells and describes new directions in the manipulation of immune responses for cancer treatment.
Collapse
Affiliation(s)
- Hong Qin
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Centre for Lipid Research, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yaxi Chen
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Centre for Lipid Research, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
33
|
Plasmacytoid dendritic cells cross-prime naive CD8 T cells by transferring antigen to conventional dendritic cells through exosomes. Proc Natl Acad Sci U S A 2020; 117:23730-23741. [PMID: 32879009 DOI: 10.1073/pnas.2002345117] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although plasmacytoid dendritic cells (pDCs) have been shown to play a critical role in generating viral immunity and promoting tolerance to suppress antitumor immunity, whether and how pDCs cross-prime CD8 T cells in vivo remain controversial. Using a pDC-targeted vaccine model to deliver antigens specifically to pDCs, we have demonstrated that pDC-targeted vaccination led to strong cross-priming and durable CD8 T cell immunity. Surprisingly, cross-presenting pDCs required conventional DCs (cDCs) to achieve cross-priming in vivo by transferring antigens to cDCs. Taking advantage of an in vitro system where only pDCs had access to antigens, we further demonstrated that cross-presenting pDCs were unable to efficiently prime CD8 T cells by themselves, but conferred antigen-naive cDCs the capability of cross-priming CD8 T cells by transferring antigens to cDCs. Although both cDC1s and cDC2s exhibited similar efficiency in acquiring antigens from pDCs, cDC1s but not cDC2s were required for cross-priming upon pDC-targeted vaccination, suggesting that cDC1s played a critical role in pDC-mediated cross-priming independent of their function in antigen presentation. Antigen transfer from pDCs to cDCs was mediated by previously unreported pDC-derived exosomes (pDCexos), that were also produced by pDCs under various conditions. Importantly, all these pDCexos primed naive antigen-specific CD8 T cells only in the presence of bystander cDCs, similarly to cross-presenting pDCs, thus identifying pDCexo-mediated antigen transfer to cDCs as a mechanism for pDCs to achieve cross-priming. In summary, our data suggest that pDCs employ a unique mechanism of pDCexo-mediated antigen transfer to cDCs for cross-priming.
Collapse
|
34
|
Cancer Acidity and Hypertonicity Contribute to Dysfunction of Tumor-Associated Dendritic Cells: Potential Impact on Antigen Cross-Presentation Machinery. Cancers (Basel) 2020; 12:cancers12092403. [PMID: 32847079 PMCID: PMC7565485 DOI: 10.3390/cancers12092403] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 01/21/2023] Open
Abstract
Macrophages (MΦ) and dendritic cells (DC), major players of the mononuclear phagocyte system (MoPh), are potent antigen presenting cells that steadily sense and respond to signals from the surrounding microenvironment, leading to either immunogenic or tolerogenic outcomes. Next to classical MHC-I/MHC-II antigen-presentation pathways described in the vast majority of cell types, a subset of MoPh (CD8+, XCR1+, CLEC9A+, BDCA3+ conventional DCs in human) is endowed with a high competence to cross-present external (engulfed) antigens on MHC-I molecules to CD8+ T-cells. This exceptional DC function is thought to be a crucial crossroad in cytotoxic antitumor immunity and has been extensively studied in the past decades. Biophysical and biochemical fingerprints of tumor micromilieus show significant spatiotemporal differences in comparison to non-neoplastic tissue. In tumors, low pH (mainly due to extracellular lactate accumulation via the Warburg effect and via glutaminolysis) and high oncotic and osmotic pressure (resulting from tumor debris, increased extracellular matrix components but in part also triggered by nutritive aspects) are—despite fluctuations and difficulties in measurement—likely the most constant general hallmarks of tumor microenvironment. Here, we focus on the influence of acidic and hypertonic micromilieu on the capacity of DCs to cross-present tumor-specific antigens. We discuss complex and in part controversial scientific data on the interference of these factors with to date reported mechanisms of antigen uptake, processing and cross-presentation, and we highlight their potential role in cancer immune escape and poor clinical response to DC vaccines.
Collapse
|
35
|
Das Mohapatra A, Tirrell I, Bénéchet AP, Pattnayak S, Khanna KM, Srivastava PK. Cross-dressing of CD8α + Dendritic Cells with Antigens from Live Mouse Tumor Cells Is a Major Mechanism of Cross-priming. Cancer Immunol Res 2020; 8:1287-1299. [PMID: 32759362 DOI: 10.1158/2326-6066.cir-20-0248] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/09/2020] [Accepted: 07/31/2020] [Indexed: 11/16/2022]
Abstract
Live cells are the most abundant sources of antigen in a tumor-bearing host. Here, we used live tumor cells as source of antigens to investigate the mechanism underlying their immunogenicity in murine tumor models. The live tumor cells were significantly more immunogenic than irradiated or apoptotic tumor cells. We examined the interaction of live and apoptotic tumor cells with major subsets of antigen-presenting cells, i.e., CD8α+ dendritic cells (DC), CD8α- DCs, plasmacytoid DCs, and CD169+ macrophages at skin draining lymph nodes. The CD8α+ DCs captured cell-associated antigens from both live and apoptotic tumor cells, whereas CD169+ macrophages picked up cell-associated antigens mostly from apoptotic tumor cells. Trogocytosis and cross-dressing of membrane-associated antigenic material from live tumor cells to CD8α+ DCs was the primary mechanism for cross-priming of tumor antigens upon immunization with live cells. Phagocytosis of apoptotic tumor cells was the primary mechanism for cross-priming of tumor antigens upon immunization with apoptotic or irradiated cells. These findings clarify the mechanism of cross-priming of cancer antigens by DCs, allowing for a greater understanding of antitumor immune responses.
Collapse
Affiliation(s)
- Alok Das Mohapatra
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Isaac Tirrell
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Alexandre P Bénéchet
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Shashmita Pattnayak
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Kamal M Khanna
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Pramod K Srivastava
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, Connecticut.
| |
Collapse
|
36
|
Extracellular Vesicles Mediate B Cell Immune Response and Are a Potential Target for Cancer Therapy. Cells 2020; 9:cells9061518. [PMID: 32580358 PMCID: PMC7349483 DOI: 10.3390/cells9061518] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are increasingly understood to participate directly in many essential aspects of host antitumor immune response. Tumor- and immune-cell-derived EVs function in local and systemic contexts with roles in immune processes including cancer antigen conveyance, immune cell priming and activation, as well as immune escape. Current practice of cancer immunotherapy has de facto focused on eliciting T-cell-mediated cytotoxic responses. Humoral immunity is also known to exert antitumor effects, and B cells have been demonstrated to have functions that extend beyond antibody production to include antigen presentation and activation and modulation of T cells and innate immune effectors. Evidence of B cell response against tumor-associated antigens (TAAs) is observed in early stages of tumorigenesis and in most solid tumor types. It is known that EVs convey diverse TAAs, express antigenic-peptide-loaded MHCs, and complex with circulating plasma antitumoral autoantibodies. In this review, we will consider the relationships between EVs, B cells, and other antigen-presenting cells, especially in relation to TAAs. Understanding the intersection of EVs and the cancer immunome will enable opportunities for developing tumor antigen targets, antitumor vaccines and harnessing the full potential of multiple immune system components for next-generation cancer immunotherapies.
Collapse
|
37
|
Li B, Lu C, Oveissi S, Song J, Xiao K, Zanker D, Duan M, Chen J, Xu H, Zou Q, Wu C, Yewdell JW, Chen W. Host CD8α + and CD103 + dendritic cells prime transplant antigen-specific CD8 + T cells via cross-dressing. Immunol Cell Biol 2020; 98:563-576. [PMID: 32330333 DOI: 10.1111/imcb.12342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 01/16/2023]
Abstract
The participation of dendritic cells (DCs) in CD8+ T-cell-mediated allograft rejection is a long-standing question of great clinical relevance for tissue transplantation. Here, we show that Batf3-/- mice demonstrate delayed allo-skin graft rejection and are deficient in priming allo-specific CD8+ T cells. Batf3-/- mouse priming is restored by transferring either purified CD8α+ or CD103+ DCs, demonstrating the critical role of these cells in alloreactivity. Using Db -restricted antiviral F5 transgenic T-cell receptor T cells, which we demonstrate are alloreactive with H-2Kd , we show that cross-dressing of CD8α+ and CD103+ primes CD8+ T-cell or allo-specific responses in vitro and in vivo. These findings suggest novel strategies for moderating tissue rejection based on interfering with DC cross-dressing or subsequent interaction with T cells.
Collapse
Affiliation(s)
- Bin Li
- The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.,La Trobe Institute for Molecular Science, School of Molecular Science, La Trobe University, Bundoora, VIC, Australia.,National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Chunni Lu
- La Trobe Institute for Molecular Science, School of Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Sara Oveissi
- La Trobe Institute for Molecular Science, School of Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Jing Song
- La Trobe Institute for Molecular Science, School of Molecular Science, La Trobe University, Bundoora, VIC, Australia.,Department of Rheumatology, Second Military Medical University, Shanghai, China
| | - Kun Xiao
- La Trobe Institute for Molecular Science, School of Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Damien Zanker
- La Trobe Institute for Molecular Science, School of Molecular Science, La Trobe University, Bundoora, VIC, Australia.,Peter MacCallum Cancer Centre, Parkville, VIC, Australia
| | - Mubin Duan
- La Trobe Institute for Molecular Science, School of Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Jianxin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Huji Xu
- Department of Rheumatology, Second Military Medical University, Shanghai, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Chao Wu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jonathan W Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Weisan Chen
- La Trobe Institute for Molecular Science, School of Molecular Science, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
38
|
Coughlan L. Factors Which Contribute to the Immunogenicity of Non-replicating Adenoviral Vectored Vaccines. Front Immunol 2020; 11:909. [PMID: 32508823 PMCID: PMC7248264 DOI: 10.3389/fimmu.2020.00909] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/20/2020] [Indexed: 01/12/2023] Open
Abstract
Adenoviral vectors are a safe and potently immunogenic vaccine delivery platform. Non-replicating Ad vectors possess several attributes which make them attractive vaccines for infectious disease, including their capacity for high titer growth, ease of manipulation, safety, and immunogenicity in clinical studies, as well as their compatibility with clinical manufacturing and thermo-stabilization procedures. In general, Ad vectors are immunogenic vaccines, which elicit robust transgene antigen-specific cellular (namely CD8+ T cells) and/or humoral immune responses. A large number of adenoviruses isolated from humans and non-human primates, which have low seroprevalence in humans, have been vectorized and tested as vaccines in animal models and humans. However, a distinct hierarchy of immunological potency has been identified between diverse Ad vectors, which unfortunately limits the potential use of many vectors which have otherwise desirable manufacturing characteristics. The precise mechanistic factors which underlie the profound disparities in immunogenicity are not clearly defined and are the subject of ongoing, detailed investigation. It has been suggested that a combination of factors contribute to the potent immunogenicity of particular Ad vectors, including the magnitude and duration of vaccine antigen expression following immunization. Furthermore, the excessive induction of Type I interferons by some Ad vectors has been suggested to impair transgene expression levels, dampening subsequent immune responses. Therefore, the induction of balanced, but not excessive stimulation of innate signaling is optimal. Entry factor binding or receptor usage of distinct Ad vectors can also affect their in vivo tropism following administration by different routes. The abundance and accessibility of innate immune cells and/or antigen-presenting cells at the site of injection contributes to early innate immune responses to Ad vaccination, affecting the outcome of the adaptive immune response. Although a significant amount of information exists regarding the tropism determinants of the common human adenovirus type-5 vector, very little is known about the receptor usage and tropism of rare species or non-human Ad vectors. Increased understanding of how different facets of the host response to Ad vectors contribute to their immunological potency will be essential for the development of optimized and customized Ad vaccine platforms for specific diseases.
Collapse
|
39
|
Benichou G, Wang M, Ahrens K, Madsen JC. Extracellular vesicles in allograft rejection and tolerance. Cell Immunol 2020; 349:104063. [PMID: 32087929 DOI: 10.1016/j.cellimm.2020.104063] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 01/19/2023]
Abstract
Extracellular vesicles (EVs), including exosomes, ectosomes and apoptotic vesicles, play an essential role in communication between cells of the innate and adaptive immune systems. Recent studies showed that EVs released after transplantation of allogeneic tissues and organs are involved in the immune recognition and response leading to rejection or tolerance in mice. After skin, pancreatic islet, and solid organ transplantation, donor-derived EVs were shown to initiate direct inflammatory alloresponses by T cells leading to acute rejection. This occurred through presentation of intact allogeneic MHC molecules on recipient antigen presenting cells (MHC cross-dressing) and subsequent activation of T cells via semi-direct allorecognition. On the other hand, some studies have documented the role of EVs in maternal tolerance of fetal alloantigens during pregnancy and immune privilege associated with spontaneous tolerance of liver allografts in laboratory rodents. The precise nature of the EVs, which are involved in rejection or tolerance, and the cells which produce them, is still unclear. Nevertheless, several reports showed that EVs released in the blood and urine by allografts can be used as biomarkers of rejection. This article reviews current knowledge on the contribution of EVs in allorecognition by T cells and discusses some mechanisms underlying their influence on T cell alloimmunity in allograft rejection or tolerance.
Collapse
Affiliation(s)
- Gilles Benichou
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
| | - Mengchuan Wang
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Kaitlan Ahrens
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Joren C Madsen
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
40
|
Shalapour S, Karin M. Pas de Deux: Control of Anti-tumor Immunity by Cancer-Associated Inflammation. Immunity 2019; 51:15-26. [PMID: 31315033 DOI: 10.1016/j.immuni.2019.06.021] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022]
Abstract
In many settings, tumor-associated inflammation, supported mainly by innate immune cells, contributes to tumor growth. Initial innate activation triggers secretion of inflammatory, regenerative, and anti-inflammatory cytokines, which in turn shape the adaptive immune response to the tumor. Here, we review the current understanding of the intricate dialog between cancer-associated inflammation and anti-tumor immunity. We discuss the changing nature of these interactions during tumor progression and the impact of the tissue environment on the anti-tumor immune response. In this context, we outline important gaps in current understanding by considering basic research and findings in the clinic. The future of cancer immunotherapy and its utility depend on improved understanding of these interactions and the ability to manipulate them in a predictable and beneficial manner.
Collapse
Affiliation(s)
- Shabnam Shalapour
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Pharmacology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Pharmacology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
41
|
Lema DA, Burlingham WJ. Role of exosomes in tumour and transplant immune regulation. Scand J Immunol 2019; 90:e12807. [PMID: 31282004 PMCID: PMC7050771 DOI: 10.1111/sji.12807] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/30/2019] [Accepted: 07/04/2019] [Indexed: 12/22/2022]
Abstract
Exosomes are a potent means for intercellular communication. However, exosomes have received intensive research focus in immunobiology only relatively recently. Because they transport proteins, lipids and genetic material between cells, they are especially suited to amplify their parental cell's message and overcome the physical constraints of cell-to-cell contact, that is exosome release gives cells the ability to alter distant, non-contiguous cells. As progress is made in this field, it has become increasingly obvious that exosomes are involved in most biological processes. In the immune system, exosomes are fundamental tools used by every immune cell type to fulfil its function and promote inflammation or tolerance. In this review, we first summarize key aspects of immune cell-specific exosomes and their functions. Then, we describe how exosomes have been shown to be indispensable orchestrators of the immune response in two immunological scenarios, namely transplant rejection or tolerance, and tumour evasion or initiation of anti-tumour immune responses.
Collapse
Affiliation(s)
- Diego A Lema
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - William J Burlingham
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
42
|
Gulubova M. Myeloid and Plasmacytoid Dendritic Cells and Cancer - New Insights. Open Access Maced J Med Sci 2019; 7:3324-3340. [PMID: 31949539 PMCID: PMC6953922 DOI: 10.3889/oamjms.2019.735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DCs) use effective mechanisms to combat antigens and to bring about adaptive immune responses through their ability to stimulate näive T cells. At present, four major cell types are categorised as DCs: Classical or conventional (cDCs), Plasmacytoid (pDCs), Langerhans cells (LCs), and monocyte-derived DCs (Mo-DCs). It was suggested that pDCs, CD1c+ DCs and CD141+ DCs in humans are equivalent to mouse pDCs, CD11b+ DCs and CD8α+ DCs, respectively. Human CD141+ DCs compared to mouse CD8α+ DCs have remarkable functional and transcriptomic similarities. Characteristic markers, transcription factors, toll-like receptors, T helpers (Th) polarisation, cytokines, etc. of DCs are discussed in this review. Major histocompatibility complex (MHC) I and II antigen presentation, cross-presentation and Th polarisation are defined, and the dual role of DCs in the tumour is discussed. Human DCs are the main immune cells that orchestrate the immune response in the tumour microenvironment.
Collapse
Affiliation(s)
- Maya Gulubova
- Department of General and Clinical Pathology, Medical Faculty, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
43
|
Kotsias F, Cebrian I, Alloatti A. Antigen processing and presentation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:69-121. [PMID: 31810556 DOI: 10.1016/bs.ircmb.2019.07.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendritic cells are at the center of immune responses. They are defined by their ability to sense the environment, take up and process antigen, migrate to secondary lymphoid organs, where they present antigens to the adaptive immune system. In particular, they present lipids and proteins from pathogens, which they encountered in peripheral tissues, to T cells in order to induce a specific effector immune response. These complex antigens need to be broken down into peptides of a certain length in association with Major Histocompatibility Complex (MHC) molecules. Presentation of MHC/antigen complexes alongside costimulatory molecules and secretion of proinflammatory cytokines will induce an appropriate immune response. This interaction between dendritic cells and T cells takes place at defined locations within secondary lymphoid organs. In this review, we discuss the current knowledge and recent advances on the cellular and molecular mechanisms that underlie antigen processing and the subsequent presentation to T lymphocytes.
Collapse
Affiliation(s)
- Fiorella Kotsias
- Cátedra de Virología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina; Instituto de Investigaciones en Producción Animal (INPA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Ignacio Cebrian
- Facultad de Ciencias Médicas, Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET/Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Andrés Alloatti
- Facultad de Ciencias Médicas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER)-CONICET/Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
44
|
Hain T, Melchior F, Kamenjarin N, Muth S, Weslati H, Clausen BE, Mahnke K, Silva-Vilches C, Schütze K, Sohl J, Radsak MP, Bündgen G, Bopp T, Danckwardt S, Schild H, Probst HC. Dermal CD207-Negative Migratory Dendritic Cells Are Fully Competent to Prime Protective, Skin Homing Cytotoxic T-Lymphocyte Responses. J Invest Dermatol 2019; 139:422-429. [DOI: 10.1016/j.jid.2018.08.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/14/2018] [Accepted: 08/28/2018] [Indexed: 12/17/2022]
|
45
|
Embgenbroich M, Burgdorf S. Current Concepts of Antigen Cross-Presentation. Front Immunol 2018; 9:1643. [PMID: 30061897 PMCID: PMC6054923 DOI: 10.3389/fimmu.2018.01643] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/04/2018] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells have the ability to efficiently present internalized antigens on major histocompatibility complex (MHC) I molecules. This process is termed cross-presentation and is important role in the generation of an immune response against viruses and tumors, after vaccinations or in the induction of immune tolerance. The molecular mechanisms enabling cross-presentation have been topic of intense debate since many years. However, a clear view on these mechanisms remains difficult, partially due to important remaining questions, controversial results and discussions. Here, we give an overview of the current concepts of antigen cross-presentation and focus on a description of the major cross-presentation pathways, the role of retarded antigen degradation for efficient cross-presentation, the dislocation of antigens from endosomal compartment into the cytosol, the reverse transport of proteasome-derived peptides for loading on MHC I and the translocation of the cross-presentation machinery from the ER to endosomes. We try to highlight recent advances, discuss some of the controversial data and point out some of the major open questions in the field.
Collapse
Affiliation(s)
- Maria Embgenbroich
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Sven Burgdorf
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
46
|
Binder RJ. Immunosurveillance of cancer and the heat shock protein-CD91 pathway. Cell Immunol 2018; 343:103814. [PMID: 29784128 DOI: 10.1016/j.cellimm.2018.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/03/2018] [Accepted: 05/15/2018] [Indexed: 12/16/2022]
Abstract
The intracellular functions of heat shock proteins (HSPs) as chaperones of macromolecules are well known. Current observations point to a role of these chaperones in initiating and modulating immune responses to tumors via receptor(s) on dendritic cells. In this article we provide an insight into, and a basis for, the importance of these HSP-mediated immune responses in rejecting nascent and emerging tumors.
Collapse
Affiliation(s)
- Robert J Binder
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| |
Collapse
|
47
|
Extracellular vesicle-mediated MHC cross-dressing in immune homeostasis, transplantation, infectious diseases, and cancer. Semin Immunopathol 2018; 40:477-490. [PMID: 29594331 DOI: 10.1007/s00281-018-0679-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/16/2018] [Indexed: 12/19/2022]
Abstract
Eukaryotic cells employ different types of extracellular vesicles (EVs) to exchange proteins, mRNAs, non-coding regulatory RNAs, carbohydrates, and lipids. Cells of the immune system, in particular antigen (Ag)-presenting cells (APCs), acquire major histocompatibility complex (MHC) class I and II molecules loaded with antigenic peptides from leukocytes and tissue parenchymal and stromal cells, through a mechanism known as MHC cross-dressing. Increasing evidence indicates that cross-dressing of APCs with pre-formed Ag-peptide/MHC complexes (pMHCs) is mediated via passage of clusters of EVs with characteristics of exosomes. A percentage of the transferred EVs remain attached to the acceptor APCs, with the appropriate orientation, at sufficient concentration within localized areas of the plasma membrane, and for sufficient time, so the preformed pMHCs carried by the EVs are presented without further processing, to cognate T cells. Although its biological relevance is not fully understood, numerous studies have demonstrated that MHC cross-dressing of APCs represents a pathway of Ag presentation of acquired pre-formed pMHCs to T cells-alternative to direct and cross-presentation-participate in immune homeostasis and T cell tolerance, cross-regulate alloreactive T cells with different MHC restricted specificities, and is a mechanism of Ag spreading for autologous, allogeneic, microbial, tumor, or vaccine-delivered Ags. Here, we compare MHC cross-dressing with other mechanisms and terminologies used for pMHC transfer, including trogocytosis. We discuss the experimental evidence, mostly from in vitro and ex vivo studies, of the role of MHC cross-dressing of APCs via EVs in positive or negative regulation of T cell immunity in the steady state, transplantation, microbial diseases, and cancer.
Collapse
|
48
|
Lindenbergh MFS, Stoorvogel W. Antigen Presentation by Extracellular Vesicles from Professional Antigen-Presenting Cells. Annu Rev Immunol 2018; 36:435-459. [PMID: 29400984 DOI: 10.1146/annurev-immunol-041015-055700] [Citation(s) in RCA: 268] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The initiation and maintenance of adaptive immunity require multifaceted modes of communication between different types of immune cells, including direct intercellular contact, secreted soluble signaling molecules, and extracellular vesicles (EVs). EVs can be formed as microvesicles directly pinched off from the plasma membrane or as exosomes secreted by multivesicular endosomes. Membrane receptors guide EVs to specific target cells, allowing directional transfer of specific and complex signaling cues. EVs are released by most, if not all, immune cells. Depending on the type and status of their originating cell, EVs may facilitate the initiation, expansion, maintenance, or silencing of adaptive immune responses. This review focusses on EVs from professional antigen-presenting cells, their demonstrated and speculated roles, and their potential for cancer immunotherapy.
Collapse
Affiliation(s)
- Marthe F S Lindenbergh
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, NL-3508 TD Utrecht, The Netherlands;
| | - Willem Stoorvogel
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, NL-3508 TD Utrecht, The Netherlands;
| |
Collapse
|
49
|
Adjuvanting influenza hemagglutinin vaccine with a human pulmonary surfactant-mimicking synthetic compound SF-10 induces local and systemic cell-mediated immunity in mice. PLoS One 2018; 13:e0191133. [PMID: 29370185 PMCID: PMC5784949 DOI: 10.1371/journal.pone.0191133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/28/2017] [Indexed: 02/03/2023] Open
Abstract
We reported previously that intranasal instillation of a synthetic human pulmonary surfactant with a carboxy vinyl polymer as a viscosity improver, named SF-10, shows potent adjuvanticity for humoral immunity in mice and cynomolgus monkeys. SF-10 effectively induces influenza hemagglutinin vaccine (HAv)-specific IgA in nasal and lung washes and IgG in sera with their neutralizing activities. Since CD8+ T cell-mediated protection is an important requirement for adaptive immunity, we investigated in this study the effects of SF-10 with antigen on local and systemic cell-mediated immunity. Nasal instillation of ovalbumin, a model antigen, combined with SF-10 efficiently delivered antigen to mucosal dendritic and epithelial cells and promoted cross-presentation in antigen presenting cells, yielding a high percentage of ovalbumin-specific cytotoxic T lymphocytes in the nasal mucosa, compared with ovalbumin alone. Nasal immunization of HAv-SF-10 also induced HAv-specific cytotoxic T lymphocytes and upregulated granzyme B expression in splenic CD8+ T cells with their high cytotoxicity against target cells pulsed with HA peptide. Furthermore, nasal vaccination of HAv-SF-10 significantly induced higher cytotoxic T lymphocytes-mediated cytotoxicity in the lungs and cervical lymph nodes in the early phase of influenza virus infection compared with HAv alone. Protective immunity induced by HAv-SF-10 against lethal influenza virus infection was partially and predominantly suppressed after depletion of CD8+ and CD4+ T cells (induced by intraperitoneal injection of the corresponding antibodies), respectively, suggesting that CD4+ T cells predominantly and CD8+ T cells partially contribute to the protective immunity in the advanced stage of influenza virus infection. These results suggest that SF-10 promotes effective antigen delivery to antigen presenting cells, activates CD8+ T cells via cross-presentation, and induces cell-mediated immune responses against antigen.
Collapse
|
50
|
EVIR: chimeric receptors that enhance dendritic cell cross-dressing with tumor antigens. Nat Methods 2018; 15:183-186. [PMID: 29355847 PMCID: PMC5833950 DOI: 10.1038/nmeth.4579] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 11/22/2017] [Indexed: 12/21/2022]
Abstract
We describe a lentivirus-encoded chimeric receptor, termed extracellular vesicle (EV)-internalizing receptor (EVIR), which enables the selective uptake of cancer-cell-derived EVs by dendritic cells (DCs). The EVIR enhances DC presentation of EV-associated tumor antigens to CD8+ T cells primarily through MHCI recycling and cross-dressing. EVIRs should facilitate exploring the mechanisms and implications of horizontal transfer of tumor antigens to antigen-presenting cells.
Collapse
|