1
|
Mahieu L, Van Moll L, De Vooght L, Delputte P, Cos P. In vitro modelling of bacterial pneumonia: a comparative analysis of widely applied complex cell culture models. FEMS Microbiol Rev 2024; 48:fuae007. [PMID: 38409952 PMCID: PMC10913945 DOI: 10.1093/femsre/fuae007] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/29/2024] [Accepted: 02/24/2024] [Indexed: 02/28/2024] Open
Abstract
Bacterial pneumonia greatly contributes to the disease burden and mortality of lower respiratory tract infections among all age groups and risk profiles. Therefore, laboratory modelling of bacterial pneumonia remains important for elucidating the complex host-pathogen interactions and to determine drug efficacy and toxicity. In vitro cell culture enables for the creation of high-throughput, specific disease models in a tightly controlled environment. Advanced human cell culture models specifically, can bridge the research gap between the classical two-dimensional cell models and animal models. This review provides an overview of the current status of the development of complex cellular in vitro models to study bacterial pneumonia infections, with a focus on air-liquid interface models, spheroid, organoid, and lung-on-a-chip models. For the wide scale, comparative literature search, we selected six clinically highly relevant bacteria (Pseudomonas aeruginosa, Mycoplasma pneumoniae, Haemophilus influenzae, Mycobacterium tuberculosis, Streptococcus pneumoniae, and Staphylococcus aureus). We reviewed the cell lines that are commonly used, as well as trends and discrepancies in the methodology, ranging from cell infection parameters to assay read-outs. We also highlighted the importance of model validation and data transparency in guiding the research field towards more complex infection models.
Collapse
Affiliation(s)
- Laure Mahieu
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Laurence Van Moll
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Linda De Vooght
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
2
|
Metz-Zumaran C, Uckeley ZM, Doldan P, Muraca F, Keser Y, Lukas P, Kuropka B, Küchenhoff L, Rastgou Talemi S, Höfer T, Freund C, Cavalcanti-Adam EA, Graw F, Stanifer M, Boulant S. The population context is a driver of the heterogeneous response of epithelial cells to interferons. Mol Syst Biol 2024; 20:242-275. [PMID: 38273161 PMCID: PMC10912784 DOI: 10.1038/s44320-024-00011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024] Open
Abstract
Isogenic cells respond in a heterogeneous manner to interferon. Using a micropatterning approach combined with high-content imaging and spatial analyses, we characterized how the population context (position of a cell with respect to neighboring cells) of epithelial cells affects their response to interferons. We identified that cells at the edge of cellular colonies are more responsive than cells embedded within colonies. We determined that this spatial heterogeneity in interferon response resulted from the polarized basolateral interferon receptor distribution, making cells located in the center of cellular colonies less responsive to ectopic interferon stimulation. This was conserved across cell lines and primary cells originating from epithelial tissues. Importantly, cells embedded within cellular colonies were not protected from viral infection by apical interferon treatment, demonstrating that the population context-driven heterogeneous response to interferon influences the outcome of viral infection. Our data highlights that the behavior of isolated cells does not directly translate to their behavior in a population, placing the population context as one important factor influencing heterogeneity during interferon response in epithelial cells.
Collapse
Affiliation(s)
- Camila Metz-Zumaran
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, 1200 Newell Drive, 32610, Gainesville, FL, USA
- Department of Infectious Disease, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 60120, Heidelberg, Germany
| | - Zina M Uckeley
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, 1200 Newell Drive, 32610, Gainesville, FL, USA
| | - Patricio Doldan
- Department of Infectious Disease, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 60120, Heidelberg, Germany
| | - Francesco Muraca
- Department of Infectious Disease, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 60120, Heidelberg, Germany
| | - Yagmur Keser
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, 1200 Newell Drive, 32610, Gainesville, FL, USA
| | - Pascal Lukas
- BioQuant-Center for Quantitative Biology, Heidelberg University, 60120, Heidelberg, Germany
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Protein Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Leonie Küchenhoff
- BioQuant-Center for Quantitative Biology, Heidelberg University, 60120, Heidelberg, Germany
| | - Soheil Rastgou Talemi
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Freund
- Institute of Chemistry and Biochemistry, Protein Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Elisabetta Ada Cavalcanti-Adam
- Max Planck Institute for Medical Research, Heidelberg, Germany
- Cellular Biomechanics, University of Bayreuth, Bayreuth, Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Frederik Graw
- BioQuant-Center for Quantitative Biology, Heidelberg University, 60120, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
- Department of Medicine 5, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Megan Stanifer
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, 1200 Newell Drive, 32610, Gainesville, FL, USA.
| | - Steeve Boulant
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, 1200 Newell Drive, 32610, Gainesville, FL, USA.
| |
Collapse
|
3
|
Karahashi Y, Cueno ME, Kamio N, Takahashi Y, Takeshita I, Soda K, Maruoka S, Gon Y, Sato S, Imai K. Fusobacterium nucleatum putatively affects the alveoli by disrupting the alveolar epithelial cell tight junction, enlarging the alveolar space, and increasing paracellular permeability. Biochem Biophys Res Commun 2023; 682:216-222. [PMID: 37826945 DOI: 10.1016/j.bbrc.2023.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023]
Abstract
Fusobacterium nucleatum (Fn) is abundant in the human oral cavity and has been associated with periodontal disease, which in-turn has been linked to respiratory disease development. Tight junctions (TJs) line the airway and alveoli surfaces serving as a first line of defense against multiple pathogens. Fn has already been linked to respiratory diseases, however, how Fn affects the alveolar TJ was not fully elucidated. Here, we designed and analyzed a TJ network, grew Fn cells and inoculated it in vitro (16HBE and primary cells) and in vivo (mice lung), measured transepithelial electrical resistance, performed RT-PCR, checked for in vitro cell and mice lung permeability, and determined air space size through morphometric measurements. We found that Fn can potentially affect TJs proteins that are directly exposed to the alveolar surface. Additionally, Fn could possibly cause neutrophil accumulation and an increase in alveolar space. Moreover, Fn putatively may cause an increase in paracellular permeability in the alveoli.
Collapse
Affiliation(s)
- Yukihiro Karahashi
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan; Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan
| | - Marni E Cueno
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan
| | - Noriaki Kamio
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan
| | - Yuwa Takahashi
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan
| | - Ikuko Takeshita
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Kaori Soda
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Shuichiro Maruoka
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Yasuhiro Gon
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Shuichi Sato
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan
| | - Kenichi Imai
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan.
| |
Collapse
|
4
|
Gróf I, Bocsik A, Harazin A, Santa-Maria AR, Vizsnyiczai G, Barna L, Kiss L, Fűr G, Rakonczay Z, Ambrus R, Szabó-Révész P, Gosselet F, Jaikumpun P, Szabó H, Zsembery Á, Deli MA. The Effect of Sodium Bicarbonate, a Beneficial Adjuvant Molecule in Cystic Fibrosis, on Bronchial Epithelial Cells Expressing a Wild-Type or Mutant CFTR Channel. Int J Mol Sci 2020; 21:4024. [PMID: 32512832 PMCID: PMC7312297 DOI: 10.3390/ijms21114024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 12/26/2022] Open
Abstract
Clinical and experimental results with inhaled sodium bicarbonate as an adjuvant therapy in cystic fibrosis (CF) are promising due to its mucolytic and bacteriostatic properties, but its direct effect has not been studied on respiratory epithelial cells. Our aim was to establish and characterize co-culture models of human CF bronchial epithelial (CFBE) cell lines expressing a wild-type (WT) or mutant (deltaF508) CF transmembrane conductance regulator (CFTR) channel with human vascular endothelial cells and investigate the effects of bicarbonate. Vascular endothelial cells induced better barrier properties in CFBE cells as reflected by the higher resistance and lower permeability values. Activation of CFTR by cAMP decreased the electrical resistance in WT but not in mutant CFBE cell layers confirming the presence and absence of functional channels, respectively. Sodium bicarbonate (100 mM) was well-tolerated by CFBE cells: it slightly reduced the impedance of WT but not that of the mutant CFBE cells. Sodium bicarbonate significantly decreased the more-alkaline intracellular pH of the mutant CFBE cells, while the barrier properties of the models were only minimally changed. These observations indicate that sodium bicarbonate is beneficial to deltaF508-CFTR expressing CFBE cells. Thus, sodium bicarbonate may have a direct therapeutic effect on the bronchial epithelium.
Collapse
Affiliation(s)
- Ilona Gróf
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (I.G.); (A.B.); (A.H.); (A.R.S.-M.); (G.V.); (L.B.)
- Doctoral School of Biology, University of Szeged, H-6720 Szeged, Hungary
| | - Alexandra Bocsik
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (I.G.); (A.B.); (A.H.); (A.R.S.-M.); (G.V.); (L.B.)
| | - András Harazin
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (I.G.); (A.B.); (A.H.); (A.R.S.-M.); (G.V.); (L.B.)
| | - Ana Raquel Santa-Maria
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (I.G.); (A.B.); (A.H.); (A.R.S.-M.); (G.V.); (L.B.)
- Doctoral School of Biology, University of Szeged, H-6720 Szeged, Hungary
| | - Gaszton Vizsnyiczai
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (I.G.); (A.B.); (A.H.); (A.R.S.-M.); (G.V.); (L.B.)
| | - Lilla Barna
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (I.G.); (A.B.); (A.H.); (A.R.S.-M.); (G.V.); (L.B.)
- Doctoral School of Biology, University of Szeged, H-6720 Szeged, Hungary
| | - Lóránd Kiss
- Department of Pathophysiology, University of Szeged, H-6725 Szeged, Hungary; (L.K.); (G.F.); (Z.R.J.)
| | - Gabriella Fűr
- Department of Pathophysiology, University of Szeged, H-6725 Szeged, Hungary; (L.K.); (G.F.); (Z.R.J.)
| | - Zoltán Rakonczay
- Department of Pathophysiology, University of Szeged, H-6725 Szeged, Hungary; (L.K.); (G.F.); (Z.R.J.)
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary; (R.A.); (P S.-R.)
| | - Piroska Szabó-Révész
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary; (R.A.); (P S.-R.)
| | - Fabien Gosselet
- Blood-Brain Barrier Laboratory, UR 2465, Artois University, F-62300 Lens, France;
| | - Pongsiri Jaikumpun
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (P.J.); (Á.Z.)
| | - Hajnalka Szabó
- Department of Pediatrics, Fejér County Szent György University Teaching Hospital, H-8000 Székesfehérvár, Hungary;
| | - Ákos Zsembery
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (P.J.); (Á.Z.)
| | - Mária A. Deli
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (I.G.); (A.B.); (A.H.); (A.R.S.-M.); (G.V.); (L.B.)
| |
Collapse
|
5
|
Touzelet O, Broadbent L, Armstrong SD, Aljabr W, Cloutman-Green E, Power UF, Hiscox JA. The Secretome Profiling of a Pediatric Airway Epithelium Infected with hRSV Identified Aberrant Apical/Basolateral Trafficking and Novel Immune Modulating (CXCL6, CXCL16, CSF3) and Antiviral (CEACAM1) Proteins. Mol Cell Proteomics 2020; 19:793-807. [PMID: 32075873 PMCID: PMC7196588 DOI: 10.1074/mcp.ra119.001546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 02/13/2020] [Indexed: 11/19/2022] Open
Abstract
The respiratory epithelium comprises polarized cells at the interface between the environment and airway tissues. Polarized apical and basolateral protein secretions are a feature of airway epithelium homeostasis. Human respiratory syncytial virus (hRSV) is a major human pathogen that primarily targets the respiratory epithelium. However, the consequences of hRSV infection on epithelium secretome polarity and content remain poorly understood. To investigate the hRSV-associated apical and basolateral secretomes, a proteomics approach was combined with an ex vivo pediatric human airway epithelial (HAE) model of hRSV infection (data are available via ProteomeXchange and can be accessed at https://www.ebi.ac.uk/pride/ with identifier PXD013661). Following infection, a skewing of apical/basolateral abundance ratios was identified for several individual proteins. Novel modulators of neutrophil and lymphocyte activation (CXCL6, CSF3, SECTM1 or CXCL16), and antiviral proteins (BST2 or CEACAM1) were detected in infected, but not in uninfected cultures. Importantly, CXCL6, CXCL16, CSF3 were also detected in nasopharyngeal aspirates (NPA) from hRSV-infected infants but not healthy controls. Furthermore, the antiviral activity of CEACAM1 against RSV was confirmed in vitro using BEAS-2B cells. hRSV infection disrupted the polarity of the pediatric respiratory epithelial secretome and was associated with immune modulating proteins (CXCL6, CXCL16, CSF3) never linked with this virus before. In addition, the antiviral activity of CEACAM1 against hRSV had also never been previously characterized. This study, therefore, provides novel insights into RSV pathogenesis and endogenous antiviral responses in pediatric airway epithelium.
Collapse
Affiliation(s)
- Olivier Touzelet
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK; Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7BL, UK
| | - Lindsay Broadbent
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7BL, UK
| | - Stuart D Armstrong
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, L69 7BE, UK
| | - Waleed Aljabr
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK; Biomedical Research Administration, Research Centre, King Fahad Medical City, P.O. Box 59046 Riyadh 11252, Saudi Arabia
| | - Elaine Cloutman-Green
- Microbiology, Virology and Infection Control, Level 4 Camelia Botnar Laboratory, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Ultan F Power
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7BL, UK.
| | - Julian A Hiscox
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, L69 7BE, UK; Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore.
| |
Collapse
|
6
|
Leung C, Wadsworth SJ, Yang SJ, Dorscheid DR. Structural and functional variations in human bronchial epithelial cells cultured in air-liquid interface using different growth media. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1063-L1073. [PMID: 32208929 DOI: 10.1152/ajplung.00190.2019] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The human bronchial epithelium is an important barrier tissue that is damaged or pathologically altered in various acute and chronic respiratory conditions. To represent the epithelial component of respiratory disease, it is essential to use a physiologically relevant model of this tissue. The human bronchial epithelium is a highly organized tissue consisting of a number of specialized cell types. Primary human bronchial epithelial cells (HBEC) can be differentiated into a mucociliated tissue in air-liquid interface (ALI) cultures using appropriately supplemented media under optimized growth conditions. We compared the histology, ciliary length, and function, diffusion, and barrier properties of HBEC from donors with no respiratory disease grown in two different media, PneumaCult-ALI or Bronchial Epithelial Differentiation Medium (BEDM). In the former group, HBEC have a more physiological pseudostratified morphology and mucociliary differentiation, including increased epithelial thickness, intracellular expression of airway-specific mucin protein MUC5AC, and total expression of cilia basal-body protein compared with cells from the same donor grown in the other medium. Baseline expression levels of inflammatory mediators, thymic stromal lymphopoietin (TSLP), soluble ST2, and eotaxin-3 were lower in PneumaCult-ALI. Additionally, the physiological cilia beat frequency and electrical barrier properties with transepithelial electrical resistance were significantly different between the two groups. Our study has shown that these primary cell cultures from the same donor grown in the two media possess variable structural and functional characteristics. Therefore, it is important to objectively validate primary epithelial cell cultures before experimentation to ensure they are appropriate to answer a specific scientific question.
Collapse
Affiliation(s)
- Clarus Leung
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Samuel J Wadsworth
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - S Jasemine Yang
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Delbert R Dorscheid
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Abs V, Bonicelli J, Kacza J, Zizzadoro C, Abraham G. Equine bronchial fibroblasts enhance proliferation and differentiation of primary equine bronchial epithelial cells co-cultured under air-liquid interface. PLoS One 2019; 14:e0225025. [PMID: 31721813 PMCID: PMC6853605 DOI: 10.1371/journal.pone.0225025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/27/2019] [Indexed: 12/31/2022] Open
Abstract
Interaction between epithelial cells and fibroblasts play a key role in wound repair and remodelling in the asthmatic airway epithelium. We present the establishment of a co-culture model using primary equine bronchial epithelial cells (EBECs) and equine bronchial fibroblasts (EBFs). EBFs at passage between 4 and 8 were seeded on the bottom of 24-well plates and treated with mitomycin C at 80% confluency. Then, freshly isolated (P0) or passaged (P1) EBECs were seeded on the upper surface of membrane inserts that had been placed inside the EBF-containing well plates and grown first under liquid-liquid interface (LLI) then under air-liquid interface (ALI) conditions to induce epithelial differentiation. Morphological, structural and functional markers were monitored in co-cultured P0 and P1 EBEC monolayers by phase-contrast microscopy, scanning and transmission electron microscopy, hematoxylin-eosin, immunocytochemistry as well as by measuring the transepithelial electrical resistance (TEER) and transepithelial transport of selected drugs. After about 15–20 days of co-culture at ALI, P0 and P1 EBEC monolayers showed pseudo-stratified architecture, presence of ciliated cells, typically honeycomb-like pattern of tight junction protein 1 (TJP1) expression, and intact selective barrier functions. Interestingly, some notable differences were observed in the behaviour of co-cultured EBECs (adhesion to culture support, growth rate, differentiation rate) as compared to our previously described EBEC mono-culture system, suggesting that cross-talk between epithelial cells and fibroblasts actually takes place in our current co-culture setup through paracrine signalling. The EBEC-EBF co-culture model described herein will offer the opportunity to investigate epithelial-mesenchymal cell interactions and underlying disease mechanisms in the equine airways, thereby leading to a better understanding of their relevance to pathophysiology and treatment of equine and human asthma.
Collapse
Affiliation(s)
- Vanessa Abs
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken, Leipzig, Germany
| | - Jana Bonicelli
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken, Leipzig, Germany
| | - Johannes Kacza
- Saxonian Incubator for Clinical Translation, University of Leipzig, Philipp-Rosenthal-Straße, Leipzig, Germany
| | - Claudia Zizzadoro
- Division of Veterinary Pharmacology and Toxicology, Department of Veterinary Medicine, University of Bari, SP 62 per Casamassima, km, Valenzano (BA), Italy
| | - Getu Abraham
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken, Leipzig, Germany
- * E-mail:
| |
Collapse
|
8
|
Wosen JE, Ilstad-Minnihan A, Co JY, Jiang W, Mukhopadhyay D, Fernandez-Becker NQ, Kuo CJ, Amieva MR, Mellins ED. Human Intestinal Enteroids Model MHC-II in the Gut Epithelium. Front Immunol 2019; 10:1970. [PMID: 31481960 PMCID: PMC6710476 DOI: 10.3389/fimmu.2019.01970] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/05/2019] [Indexed: 01/14/2023] Open
Abstract
The role of intestinal epithelial cells (IECs) in mucosal tolerance and immunity remains poorly understood. We present a method for inducing MHC class II (MHC-II) in human enteroids, "mini-guts" derived from small intestinal crypt stem cells, and show that the intracellular MHC-II peptide-pathway is intact and functional in IECs. Our approach enables human enteroids to be used for novel in vitro studies into IEC MHC-II regulation and function during health and disease.
Collapse
Affiliation(s)
- Jonathan E. Wosen
- Program in Immunology, Department of Pediatrics, Stanford University, Stanford, CA, United States
| | | | - Julia Y. Co
- Division of Infectious Diseases, Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Wei Jiang
- Program in Immunology, Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Dhriti Mukhopadhyay
- Program in Immunology, Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Nielsen Q. Fernandez-Becker
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Calvin J. Kuo
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Manuel R. Amieva
- Division of Infectious Diseases, Department of Pediatrics, Stanford University, Stanford, CA, United States
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Elizabeth D. Mellins
- Program in Immunology, Department of Pediatrics, Stanford University, Stanford, CA, United States
| |
Collapse
|
9
|
Hasan S, Sebo P, Osicka R. A guide to polarized airway epithelial models for studies of host-pathogen interactions. FEBS J 2018; 285:4343-4358. [PMID: 29896776 DOI: 10.1111/febs.14582] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/21/2018] [Accepted: 06/11/2018] [Indexed: 11/28/2022]
Abstract
Mammalian lungs are organs exhibiting the cellular and spatial complexity required for gas exchange to support life. The respiratory epithelium internally lining the airways is susceptible to infections due to constant exposure to inhaled microbes. Biomedical research into respiratory bacterial infections in humans has been mostly carried out using small mammalian animal models or two-dimensional, submerged cultures of undifferentiated epithelial cells. These experimental model systems have considerable limitations due to host specificity of bacterial pathogens and lack of cellular and morphological complexity. This review describes the in vitro differentiated and polarized airway epithelial cells of human origin that are used as a model to study respiratory bacterial infections. Overall, these models recapitulate key aspects of the complexity observed in vivo and can help in elucidating the molecular details of disease processes observed during respiratory bacterial infections.
Collapse
Affiliation(s)
- Shakir Hasan
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| |
Collapse
|
10
|
Hasan S, Kulkarni NN, Asbjarnarson A, Linhartova I, Osicka R, Sebo P, Gudmundsson GH. Bordetella pertussis Adenylate Cyclase Toxin Disrupts Functional Integrity of Bronchial Epithelial Layers. Infect Immun 2018; 86:e00445-17. [PMID: 29203545 PMCID: PMC5820963 DOI: 10.1128/iai.00445-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022] Open
Abstract
The airway epithelium restricts the penetration of inhaled pathogens into the underlying tissue and plays a crucial role in the innate immune defense against respiratory infections. The whooping cough agent, Bordetella pertussis, adheres to ciliated cells of the human airway epithelium and subverts its defense functions through the action of secreted toxins and other virulence factors. We examined the impact of B. pertussis infection and of adenylate cyclase toxin-hemolysin (CyaA) action on the functional integrity of human bronchial epithelial cells cultured at the air-liquid interface (ALI). B. pertussis adhesion to the apical surface of polarized pseudostratified VA10 cell layers provoked a disruption of tight junctions and caused a drop in transepithelial electrical resistance (TEER). The reduction of TEER depended on the capacity of the secreted CyaA toxin to elicit cAMP signaling in epithelial cells through its adenylyl cyclase enzyme activity. Both purified CyaA and cAMP-signaling drugs triggered a decrease in the TEER of VA10 cell layers. Toxin-produced cAMP signaling caused actin cytoskeleton rearrangement and induced mucin 5AC production and interleukin-6 (IL-6) secretion, while it inhibited the IL-17A-induced secretion of the IL-8 chemokine and of the antimicrobial peptide beta-defensin 2. These results indicate that CyaA toxin activity compromises the barrier and innate immune functions of Bordetella-infected airway epithelia.
Collapse
Affiliation(s)
- Shakir Hasan
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | | | | | - Irena Linhartova
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | | |
Collapse
|
11
|
Brune KA, Ferreira F, Mandke P, Chau E, Aggarwal NR, D’Alessio FR, Lambert AA, Kirk G, Blankson J, Drummond MB, Tsibris AM, Sidhaye VK. HIV Impairs Lung Epithelial Integrity and Enters the Epithelium to Promote Chronic Lung Inflammation. PLoS One 2016; 11:e0149679. [PMID: 26930653 PMCID: PMC4773117 DOI: 10.1371/journal.pone.0149679] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/03/2016] [Indexed: 12/23/2022] Open
Abstract
Several clinical studies show that individuals with HIV are at an increased risk for worsened lung function and for the development of COPD, although the mechanism underlying this increased susceptibility is poorly understood. The airway epithelium, situated at the interface between the external environment and the lung parenchyma, acts as a physical and immunological barrier that secretes mucins and cytokines in response to noxious stimuli which can contribute to the pathobiology of chronic obstructive pulmonary disease (COPD). We sought to determine the effects of HIV on the lung epithelium. We grew primary normal human bronchial epithelial (NHBE) cells and primary lung epithelial cells isolated from bronchial brushings of patients to confluence and allowed them to differentiate at an air- liquid interface (ALI) to assess the effects of HIV on the lung epithelium. We assessed changes in monolayer permeability as well as the expression of E-cadherin and inflammatory modulators to determine the effect of HIV on the lung epithelium. We measured E-cadherin protein abundance in patients with HIV compared to normal controls. Cell associated HIV RNA and DNA were quantified and the p24 viral antigen was measured in culture supernatant. Surprisingly, X4, not R5, tropic virus decreased expression of E-cadherin and increased monolayer permeability. While there was some transcriptional regulation of E-cadherin, there was significant increase in lysosome-mediated protein degradation in cells exposed to X4 tropic HIV. Interaction with CXCR4 and viral fusion with the epithelial cell were required to induce the epithelial changes. X4 tropic virus was able to enter the airway epithelial cells but not replicate in these cells, while R5 tropic viruses did not enter the epithelial cells. Significantly, X4 tropic HIV induced the expression of intercellular adhesion molecule-1 (ICAM-1) and activated extracellular signal-regulated kinase (ERK). We demonstrate that HIV can enter airway epithelial cells and alter their function by impairing cell-cell adhesion and increasing the expression of inflammatory mediators. These observed changes may contribute local inflammation, which can lead to lung function decline and increased susceptibility to COPD in HIV patients.
Collapse
Affiliation(s)
- Kieran A. Brune
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Fernanda Ferreira
- Division of Infectious Diseases, Mass General Hospital, Boston, MA, United States of America
| | - Pooja Mandke
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Eric Chau
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Neil R. Aggarwal
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Franco R. D’Alessio
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Allison A. Lambert
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Gregory Kirk
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
- Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD, United States of America
| | - Joel Blankson
- Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD, United States of America
| | - M. Bradley Drummond
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Athe M. Tsibris
- Division of Infectious Diseases, Mass General Hospital, Boston, MA, United States of America
| | - Venkataramana K. Sidhaye
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|
12
|
Yu H, Yang J, Zhou X, Xiao Q, Lü Y, Xia L. High glucose induces dysfunction of airway epithelial barrier through down-regulation of connexin 43. Exp Cell Res 2016; 342:11-9. [PMID: 26902399 DOI: 10.1016/j.yexcr.2016.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 10/22/2022]
Abstract
The airway epithelium is a barrier to the inhaled antigens and pathogens. Connexin 43 (Cx43) has been found to play critical role in maintaining the function of airway epithelial barrier and be involved in the pathogenesis of the diabetic retinal vasculature, diabetes nephropathy and diabetes skin. Hyperglycemia has been shown to be an independent risk factor for respiratory infections. We hypothesize that the down-regulation of Cx43 induced by HG alters the expression of tight junctions (zonula occludens-1 (ZO-1) and occludin) and contributes to dysfunction of airway epithelial barrier, and Cx43 plays a critical role in the process in human airway epithelial cells (16 HBE). We show that high glucose (HG) decreased the expression of ZO-1 and occludin, disassociated interaction between Cx43 and tight junctions, and then increased airway epithelial transepithelial electrical resistance (TER) and permeability by down-regulation of Cx43 in human airway epithelial cells. These observations demonstrate an important role for Cx43 in regulating HG-induced dysfunction of airway epithelial barrier. These findings may bring new insights into the molecular pathogenesis of pulmonary infection related to diabetes mellitus and lead to novel therapeutic intervention for the dysfunction of airway epithelial barrier in chronic inflammatory airway diseases.
Collapse
Affiliation(s)
- Hongmei Yu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Juan Yang
- Division of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangdong Zhou
- Division of Respiratory Medicine, The Affiliated Hospital of Hainan Medical College, Hainan, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Xia
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Brune K, Frank J, Schwingshackl A, Finigan J, Sidhaye VK. Pulmonary epithelial barrier function: some new players and mechanisms. Am J Physiol Lung Cell Mol Physiol 2015; 308:L731-45. [PMID: 25637609 DOI: 10.1152/ajplung.00309.2014] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/27/2015] [Indexed: 12/20/2022] Open
Abstract
The pulmonary epithelium serves as a barrier to prevent access of the inspired luminal contents to the subepithelium. In addition, the epithelium dictates the initial responses of the lung to both infectious and noninfectious stimuli. One mechanism by which the epithelium does this is by coordinating transport of diffusible molecules across the epithelial barrier, both through the cell and between cells. In this review, we will discuss a few emerging paradigms of permeability changes through altered ion transport and paracellular regulation by which the epithelium gates its response to potentially detrimental luminal stimuli. This review is a summary of talks presented during a symposium in Experimental Biology geared toward novel and less recognized methods of epithelial barrier regulation. First, we will discuss mechanisms of dynamic regulation of cell-cell contacts in the context of repetitive exposure to inhaled infectious and noninfectious insults. In the second section, we will briefly discuss mechanisms of transcellular ion homeostasis specifically focused on the role of claudins and paracellular ion-channel regulation in chronic barrier dysfunction. In the next section, we will address transcellular ion transport and highlight the role of Trek-1 in epithelial responses to lung injury. In the final section, we will outline the role of epithelial growth receptor in barrier regulation in baseline, acute lung injury, and airway disease. We will then end with a summary of mechanisms of epithelial control as well as discuss emerging paradigms of the epithelium role in shifting between a structural element that maintains tight cell-cell adhesion to a cell that initiates and participates in immune responses.
Collapse
Affiliation(s)
- Kieran Brune
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - James Frank
- The Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco VA Medical Center, and NCIRE/Veterans Health Research Institute, San Francisco, California
| | - Andreas Schwingshackl
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - James Finigan
- Division of Oncology, Cancer Center, National Jewish Health, Denver, Colorado
| | - Venkataramana K Sidhaye
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland;
| |
Collapse
|
14
|
Cao K, Chen M, Jie X, Wang Y, Li Q, Xu J. H5N1 Virus Hemagglutinin Inhibition of cAMP-Dependent CFTR via TLR4-Mediated Janus Tyrosine Kinase 3 Activation Exacerbates Lung Inflammation. Mol Med 2015; 21:134-42. [PMID: 25587856 PMCID: PMC4461576 DOI: 10.2119/molmed.2014.00189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/12/2015] [Indexed: 01/19/2023] Open
Abstract
The host tolerance mechanisms to avian influenza virus (H5N1) infection that limit tissue injury remain unknown. Emerging evidence indicates that cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent Cl− channel, modulates airway inflammation. Janus tyrosine kinase (JAK) 3, a JAK family member that plays a central role in inflammatory responses, prominently contributes to the dysregulated innate immune response upon H5N1 attachment; therefore, this study aims to elucidate whether JAK3 activation induced by H5N1 hemagglutinin (HA) inhibits cAMP-dependent CFTR channels. We performed short-circuit current, immunohistochemistry and molecular analyses of the airway epithelium in Jak3+/+ and Jak3+/− mice. We demonstrate that H5N1 HA attachment inhibits cAMP-dependent CFTR Cl− channels via JAK3-mediated adenylyl cyclase (AC) suppression, which reduces cAMP production. This inhibition leads to increased nuclear factor-kappa B (NF-κB) signaling and inflammatory responses. H5N1 HA is detected by TLR4 expressed on respiratory epithelial cells, facilitating JAK3 activation. This activation induces the interaction between TLR4 and Gαi protein, which blocks ACs. Our findings provide novel insight into the pathogenesis of acute lung injury via the inhibition of cAMP-dependent CFTR channels, indicating that the administration of cAMP-elevating agents and targeting JAK3 may activate host tolerance to infection for the management of influenza virus–induced fatal pneumonia.
Collapse
Affiliation(s)
- Ke Cao
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Minhui Chen
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiang Jie
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yansheng Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Qiasheng Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jun Xu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
15
|
Morris GE, Bridge JC, Brace LA, Knox AJ, Aylott JW, Brightling CE, Ghaemmaghami AM, Rose FRAJ. A novel electrospun biphasic scaffold provides optimal three-dimensional topography for in vitro co-culture of airway epithelial and fibroblast cells. Biofabrication 2014; 6:035014. [PMID: 24925127 DOI: 10.1088/1758-5082/6/3/035014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Conventional airway in vitro models focus upon the function of individual structural cells cultured in a two-dimensional monolayer, with limited three-dimensional (3D) models of the bronchial mucosa. Electrospinning offers an attractive method to produce defined, porous 3D matrices for cell culture. To investigate the effects of fibre diameter on airway epithelial and fibroblast cell growth and functionality, we manipulated the concentration and deposition rate of the non-degradable polymer polyethylene terephthalate to create fibres with diameters ranging from nanometre to micrometre. The nanofibre scaffold closely resembles the basement membrane of the bronchiole mucosal layer, and epithelial cells cultured at the air-liquid interface on this scaffold showed polarized differentiation. The microfibre scaffold mimics the porous sub-mucosal layer of the airway into which lung fibroblast cells showed good penetration. Using these defined electrospinning parameters we created a biphasic scaffold with 3D topography tailored for optimal growth of both cell types. Epithelial and fibroblast cells were co-cultured onto the apical nanofibre phase and the basal microfibre phase respectively, with enhanced epithelial barrier formation observed upon co-culture. This biphasic scaffold provides a novel 3D in vitro platform optimized to mimic the different microenvironments the cells encounter in vivo on which to investigate key airway structural cell interactions in airway diseases such as asthma.
Collapse
Affiliation(s)
- G E Morris
- Division of Drug Delivery and Tissue Engineering, Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, UK
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Rezaee F, Georas SN. Breaking barriers. New insights into airway epithelial barrier function in health and disease. Am J Respir Cell Mol Biol 2014; 50:857-69. [PMID: 24467704 DOI: 10.1165/rcmb.2013-0541rt] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Epithelial permeability is a hallmark of mucosal inflammation, but the molecular mechanisms involved remain poorly understood. A key component of the epithelial barrier is the apical junctional complex that forms between neighboring cells. Apical junctional complexes are made of tight junctions and adherens junctions and link to the cellular cytoskeleton via numerous adaptor proteins. Although the existence of tight and adherens junctions between epithelial cells has long been recognized, in recent years there have been significant advances in our understanding of the molecular regulation of junctional complex assembly and disassembly. Here we review the current thinking about the structure and function of the apical junctional complex in airway epithelial cells, emphasizing the translational aspects of relevance to cystic fibrosis and asthma. Most work to date has been conducted using cell culture models, but technical advancements in imaging techniques suggest that we are on the verge of important new breakthroughs in this area in physiological models of airway diseases.
Collapse
Affiliation(s)
- Fariba Rezaee
- 1 Division of Pediatric Pulmonary Medicine, Department of Pediatrics, and
| | | |
Collapse
|
17
|
Junkins RD, Carrigan SO, Wu Z, Stadnyk AW, Cowley E, Issekutz T, Berman J, Lin TJ. Mast Cells Protect against Pseudomonas aeruginosa–Induced Lung Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2310-21. [DOI: 10.1016/j.ajpath.2014.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/07/2014] [Accepted: 05/12/2014] [Indexed: 01/09/2023]
|
18
|
Local blockade of epithelial PDL-1 in the airways enhances T cell function and viral clearance during influenza virus infection. J Virol 2013; 87:12916-24. [PMID: 24067957 DOI: 10.1128/jvi.02423-13] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In order to maintain the gas exchange function of the lung following influenza virus infection, a delicate orchestration of positive and negative regulatory pathways must be maintained to attain viral eradication while minimizing local inflammation. The programmed death receptor 1 ligand/programmed death receptor 1 (PDL-1/PD-1) pathway plays an important immunoregulatory role, particularly in the context of T cell function. Here, we have shown that influenza virus infection of primary airway epithelial cells strongly enhances PDL-1 expression and does so in an alpha interferon receptor (IFNAR) signaling-dependent manner. PD-1 is expressed primarily on effector T cells in the lung, compared to effector memory and central memory cells, and shortly after influenza virus infection, an increased number of PD-1(+) T cells are recruited to the airways. Using in vitro cocultures of airway epithelial cells and T cells and in vivo models of influenza virus infection, we have demonstrated that blockade of airway epithelial PDL-1 improves CD8 T cell function, defined by increased production of gamma interferon (IFN-γ) and granzyme B and expression of CD107ab. Furthermore, PDL-1 blockade in the airways served to accelerate influenza virus clearance and enhance infection recovery. Our findings suggest that local manipulation of the PDL-1/PD-1 axis in the airways may represent a therapeutic alternative during acute influenza virus infection.
Collapse
|
19
|
Respiratory syncytial virus infection disrupts monolayer integrity and function in cystic fibrosis airway cells. Viruses 2013; 5:2260-71. [PMID: 24056672 PMCID: PMC3798900 DOI: 10.3390/v5092260] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/12/2013] [Accepted: 09/16/2013] [Indexed: 11/17/2022] Open
Abstract
Background: Respiratory Syncytial Virus (RSV) infection is a common contributor to pulmonary symptoms in children with cystic fibrosis (CF). Here we examined RSV infection in immortalized bronchial epithelial cells (CFBE41o-) expressing wild-type (wt) or F508del cystic fibrosis transmembrane conductance regulator (CFTR), for monolayer integrity and RSV replication. Methods: CFBE41o- monolayers expressing wt or F508del CFTR were grown on permeable supports and inoculated with RSV A2 strain. Control experiments utilized UV-inactivated RSV and heat-killed RSV. Monolayer resistance and RSV production was monitored for up to six days post-infection. Results: Within 24 h, a progressive decrease in monolayer resistance was observed in RSV infected F508del CFBE41o- cells, while the monolayer integrity of RSV infected wt CFTR CFBE41o- cells remained stable. RSV replication was necessary to disrupt F508del CFBE41o- monolayers as UV-irradiated and heat killed RSV had no effect on monolayer integrity, with an earlier and much more pronounced peak in RSV titer noted in F508del relative to wt CFTR-expressing cells. RSV infection of wt CFBE41o- monolayers also resulted in blunting of CFTR response. Conclusions: These findings identify an enhanced sensitivity of CFBE41o- cells expressing F508del CFTR to RSV infection, replication and monolayer disruption independent of the cellular immune response, and provide a novel mechanism by which cystic fibrosis airway epithelia are susceptible to RSV-dependent injury.
Collapse
|
20
|
Woodman LB, Wan WYH, Milone R, Grace K, Sousa A, Williamson R, Brightling CE. Synthetic response of stimulated respiratory epithelium: modulation by prednisolone and iKK2 inhibition. Chest 2013; 143:1656-1666. [PMID: 23238614 PMCID: PMC3673662 DOI: 10.1378/chest.12-1187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background: The airway epithelium plays a central role in wound repair and host defense
and is implicated in the immunopathogenesis of asthma. Whether there are
intrinsic differences between the synthetic capacity of epithelial cells
derived from subjects with asthma and healthy control subjects and how this
mediator release is modulated by antiinflammatory therapy remains uncertain.
We sought to examine the synthetic function of epithelial cells from
different locations in the airway tree from subjects with and without asthma
and to determine the effects of antiinflammatory therapies upon this
synthetic capacity. Methods: Primary epithelial cells were derived from 17 subjects with asthma and 16
control subjects. The release of 13 cytokines and chemokines from nasal,
bronchial basal, and air-liquid interface differentiated epithelial cells
before and after stimulation with IL-1β, IL-1β and
interferon-γ, or Poly-IC (Toll-like receptor 3 agonist) was measured
using MesoScale discovery or enzyme-linked immunosorbent assay, and the
effects of prednisolone and an inhibitor of nuclear factor κ-B2
(IKK2i) were determined. Results: The pattern of release of cytokines and chemokines was significantly
different between nasal, bronchial basal, and differentiated epithelial
cells but not between health and disease. Stimulation of the epithelial
cells caused marked upregulation of most mediators, which were broadly
corticosteroid unresponsive but attenuated by IKK2i. Conclusion: Synthetic capacity of primary airway epithelial cells varied between location
and degree of differentiation but was not disease specific. Activation of
epithelial cells by proinflammatory cytokines and toll-like receptor 3
agonism is attenuated by IKK2i, but not corticosteroids, suggesting that
IKK2i may represent an important novel therapy for asthma.
Collapse
Affiliation(s)
- Lucy Bianca Woodman
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester and Department of Respiratory Medicine, Glenfield Hospital, Leicester, England
| | - Wing Yan Heidi Wan
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester and Department of Respiratory Medicine, Glenfield Hospital, Leicester, England
| | - Roberta Milone
- GlaxoSmithKline, Refractory Respiratory Inflammation DPU, Respiratory CEDD Biomarker Discovery Group, Stevenage, England
| | - Ken Grace
- GlaxoSmithKline, Refractory Respiratory Inflammation DPU, Respiratory CEDD Biomarker Discovery Group, Stevenage, England
| | - Ana Sousa
- GlaxoSmithKline, Refractory Respiratory Inflammation DPU, Respiratory CEDD Biomarker Discovery Group, Stevenage, England
| | - Rick Williamson
- GlaxoSmithKline, Refractory Respiratory Inflammation DPU, Respiratory CEDD Biomarker Discovery Group, Stevenage, England
| | - Christopher Edward Brightling
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester and Department of Respiratory Medicine, Glenfield Hospital, Leicester, England.
| |
Collapse
|
21
|
Toll-like receptor expression and induction of type I and type III interferons in primary airway epithelial cells. J Virol 2013; 87:3261-70. [PMID: 23302870 DOI: 10.1128/jvi.01956-12] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Interferons (IFNs) are a critical component of the first line of antiviral defense. The activation of Toll-like receptors (TLRs) expressed by dendritic cells triggers different signaling cascades that result in the production of large amounts of IFNs. However, the functional consequences of TLR activation and differential IFN production in specific cell populations other than antigen-presenting cells have not yet been fully elucidated. In this study, we investigated TLR expression and polarization in airway epithelial cells (AECs) and the consequences of TLR agonist stimulation for the production of type I (IFN-α/β) and type III (IFN-λ) IFNs. Our results show that the pattern of expression and polarization of all TLRs in primary AEC cultures mirrors that of the human airways ex vivo and is receptor specific. The antiviral TLRs (TLR3, TLR7, and TLR9) are mostly expressed on the apical cell surfaces of epithelial cells in the human trachea and in primary polarized AECs. Type III IFN is the predominant IFN produced by the airway epithelium, and TLR3 is the only TLR that mediates IFN production by AECs, while all TLR agonists tested are capable of inducing AEC activation and interleukin-8 production. In response to influenza virus infection, AECs can produce IFN-λ in an IFNAR- and STAT1-independent manner. Our results emphasize the importance of using primary well-differentiated AECs to study TLR and antiviral responses and provide further insight into the regulation of IFN production during the antiviral response of the lung epithelium.
Collapse
|
22
|
Hirota JA, Knight DA. Human airway epithelial cell innate immunity: relevance to asthma. Curr Opin Immunol 2012; 24:740-6. [PMID: 23089231 DOI: 10.1016/j.coi.2012.08.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 08/22/2012] [Indexed: 01/07/2023]
Abstract
The innate immunity function of the human airway epithelium is responsible for orchestrating defence against inhaled viruses, bacteria, fungi, allergens, pollution, and other environmental insults. Epithelial cells present a mechanically tight, pseudostratified, multi-cell barrier that secretes mucus, surfactants, and anti-microbial peptides to manage minor insults. Secondary to the mechanical impedances, cell surface and cytoplasmic pattern recognition receptors await detection of more aggressive insults. The differentiation state of the airway epithelium contributes to innate immunity by compartmentalizing receptors and mediator production. Activation of innate immune receptors triggers production of interferons, cytokines, and chemokines, which influence adaptive immune responses. Mounting evidence suggests that these responses are aberrant in asthma and may contribute to disease progression and exacerbations. In this review, we discuss the recent evidence supporting these statements, focusing primarily on data generated from using human samples.
Collapse
Affiliation(s)
- Jeremy A Hirota
- UBC James Hogg Research Centre Heart + Lung Institute, St Pauls Hospital, Vancouver, BC, V6Z 1Y6, Canada
| | | |
Collapse
|
23
|
Den Beste KA, Hoddeson EK, Parkos CA, Nusrat A, Wise SK. Epithelial permeability alterations in an in vitro air-liquid interface model of allergic fungal rhinosinusitis. Int Forum Allergy Rhinol 2012; 3:19-25. [PMID: 22927233 DOI: 10.1002/alr.21077] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 05/14/2012] [Accepted: 06/12/2012] [Indexed: 01/21/2023]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is an inflammatory upper-airway disease with numerous etiologies. Patients with a characteristic subtype of CRS, allergic fungal rhinosinusitis (AFRS), display increased expression of T helper 2 (Th2) cytokines and antigen-specific immunoglobulin E (IgE). Various sinonasal inflammatory conditions are associated with alterations in epithelial barrier function. The aim of this study was to compare epithelial permeability and intercellular junctional protein expression among cultured primary sinonasal cells from AFRS patients vs noninflammatory controls. METHODS Epithelial cells isolated from paranasal sinus mucosa of AFRS and noninflammatory control patients were grown to confluence on permeable supports and transitioned to air-liquid interface (ALI). Transepithelial resistance (TER) was measured with a horizontal Ussing chamber to characterize the functional permeability of each cell type. After TER recordings were complete, a panel of intercellular junctional proteins was assessed by Western blot and immunofluorescence labeling followed by confocal microscopy. RESULTS After 12 samples were measured from each group, we observed a 41% mean decrease in TER in AFRS cells (296 ± 89 ohms × cm(2) ) compared to control (503 ± 134 ohms × cm(2) , p = 0.006). TER deficits observed in AFRS were associated with decreased expression of the tight junction proteins occludin and junctional adhesion molecule-A (JAM-A), and increased expression of a leaky tight junction protein claudin-2. CONCLUSION Cultured sinonasal epithelium from AFRS patients displayed increased epithelial permeability and altered expression of intercellular junctional proteins. Given that these cells were not incubated with inflammatory cytokines in vitro, the cultured AFRS epithelial alterations may represent a retained modification in protein expression from the in vivo phenotype.
Collapse
Affiliation(s)
- Kyle A Den Beste
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30308, USA
| | | | | | | | | |
Collapse
|
24
|
Chau E, Galloway JF, Nelson A, Breysse PN, Wirtz D, Searson PC, Sidhaye VK. Effect of modifying quantum dot surface charge on airway epithelial cell uptake in vitro. Nanotoxicology 2012; 7:1143-51. [PMID: 22783847 PMCID: PMC3737271 DOI: 10.3109/17435390.2012.711862] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The respiratory system is one of the portals of entry into the body, and hence inhalation of engineered nanomaterials is an important route of exposure. The broad range of physicochemical properties that influence biological responses necessitate the systematic study to contribute to understanding occupational exposure. Here, we report on the influence of nanoparticle charge and dose on human airway epithelial cells, and show that this platform can be used to evaluate consequences of exposure to engineered nanomaterials.
Collapse
Affiliation(s)
- Eric Chau
- Departments of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Petecchia L, Sabatini F, Usai C, Caci E, Varesio L, Rossi GA. Cytokines induce tight junction disassembly in airway cells via an EGFR-dependent MAPK/ERK1/2-pathway. J Transl Med 2012; 92:1140-8. [PMID: 22584669 DOI: 10.1038/labinvest.2012.67] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Epithelial barrier permeability is altered in inflammatory respiratory disorders by a variety of noxious agents through modifications of the epithelial cell structure that possibly involve tight junction (TJ) organization. To evaluate in vitro whether pro-inflammatory cytokines involved in the pathogenesis of respiratory disorders could alter TJ organization and epithelial barrier integrity, and to characterize the signal transduction pathway involved Calu-3 airway epithelial cells were exposed to TNF-a, IL-4 and IFN-g to assess changes in: (a) TJ assembly, that is, occludin and zonula occludens (ZO)-1 expression and localization, evaluated by confocal microscopy; (b) apoptotic activity, quantified using terminal transferase deoxyuridine triphosphate nick-end labeling staining; (c) epithelial barrier integrity, detected as transmembrane electrical resistance and expressed as G(T) values; (d) epidermal growth factor receptor (EGFR)-dependent mitogenactivated protein (MAP) kinase (MAPK)/extracellular signal-regulated kinases (ERK)1/2 phosphorylation, assessed by western blotting. Exposure to cytokines for 48 h induced a noticeable downregulation of the TJ transmembrane proteins. The degree ZO-1 and occludin colocalization was 62±2% in control cultures and significantly decreased in the presence of TNF-a (47±3%), IL-4 (43±1%) and INF-g (35±3%). Although no apoptosis induction was detected following exposure to cytokines, changes in the epithelial barrier integrity were observed, with a significant enhancement in paracellular conductance. G(T) values were, respectively, 1.030±0.0, 1.300±0.04, 1.260±0.020 and 2.220±0.015 (mS/cm²)1000 in control cultures and in those exposed to TNF-a, IFN-g and IL-4. The involvement of EGFR-dependent MAPK/ERK1/2 signaling pathway in cytokine-induced damage was demonstrated by a significant increase in threonine/tyrosine phosphorylation of ERK1/2, already detectable after 5 min incubation. All these cytokine-induced changes were markedly prevented when Calu-3 cells were cultured in the presence of an EGFR inhibitor (AG1478, 1 μM) or a MAP kinase inhibitor (U0126, 25 μM). In conclusion, cytokine-induced epithelial injury includes TJ disassembly and epithelial barrier permeability alteration and involves the EGFR-dependent MAPK/ERK1/2 signaling pathway.
Collapse
|
26
|
Wansleeben C, Barkauskas CE, Rock JR, Hogan BLM. Stem cells of the adult lung: their development and role in homeostasis, regeneration, and disease. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:131-48. [DOI: 10.1002/wdev.58] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Plasticity and virus specificity of the airway epithelial cell immune response during respiratory virus infection. J Virol 2012; 86:5422-36. [PMID: 22398282 DOI: 10.1128/jvi.06757-11] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Airway epithelial cells (AECs) provide the first line of defense in the respiratory tract and are the main target of respiratory viruses. Here, using oligonucleotide and protein arrays, we analyze the infection of primary polarized human AEC cultures with influenza virus and respiratory syncytial virus (RSV), and we show that the immune response of AECs is quantitatively and qualitatively virus specific. Differentially expressed genes (DEGs) specifically induced by influenza virus and not by RSV included those encoding interferon B1 (IFN-B1), type III interferons (interleukin 28A [IL-28A], IL-28B, and IL-29), interleukins (IL-6, IL-1A, IL-1B, IL-23A, IL-17C, and IL-32), and chemokines (CCL2, CCL8, and CXCL5). Lack of type I interferon or STAT1 signaling decreased the expression and secretion of cytokines and chemokines by the airway epithelium. We also observed strong basolateral polarization of the secretion of cytokines and chemokines by human and murine AECs during infection. Importantly, the antiviral response of human AECs to influenza virus or to RSV correlated with the infection signature obtained from peripheral blood mononuclear cells (PBMCs) isolated from patients with acute influenza or RSV bronchiolitis, respectively. IFI27 (also known as ISG12) was identified as a biomarker of respiratory virus infection in both AECs and PBMCs. In addition, the extent of the transcriptional perturbation in PBMCs correlated with the clinical disease severity. Our results demonstrate that the human airway epithelium mounts virus-specific immune responses that are likely to determine the subsequent systemic immune responses and suggest that the absence of epithelial immune mediators after RSV infection may contribute to explaining the inadequacy of systemic immunity to the virus.
Collapse
|
28
|
Takahashi D, Hase K, Kimura S, Nakatsu F, Ohmae M, Mandai Y, Sato T, Date Y, Ebisawa M, Kato T, Obata Y, Fukuda S, Kawamura YI, Dohi T, Katsuno T, Yokosuka O, Waguri S, Ohno H. The epithelia-specific membrane trafficking factor AP-1B controls gut immune homeostasis in mice. Gastroenterology 2011; 141:621-32. [PMID: 21669204 DOI: 10.1053/j.gastro.2011.04.056] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 04/14/2011] [Accepted: 04/26/2011] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Epithelial cells that cover the intestinal mucosal surface maintain immune homeostasis and tolerance in the gastrointestinal tract. However, little is known about the molecular mechanisms that regulate epithelial immune functions. Epithelial cells are distinct in that they are highly polarized; this polarity is, at least in part, established by the epithelium-specific polarized sorting factor adaptor protein (AP)-1B. We investigated the role of AP-1B-mediated protein sorting in the maintenance of gastrointestinal immune homeostasis. METHODS The role of AP-1B in intestinal immunity was examined in AP-1B-deficient mice (Ap1m2(-/-)) by monitoring their phenotypes, intestinal morphology, and epithelial barrier functions. AP-1B-mediated protein sorting was examined in polarized epithelial cells from AP-1B knockdown and Ap1m2(-/-) mice. RESULTS Ap1m2(-/-) mice developed spontaneous chronic colitis, characterized by accumulation of interleukin-17A-producing, T-helper 17 cells. Deficiency of AP-1B caused epithelial immune dysfunction, such as reduced expression of antimicrobial proteins and impaired secretion of immunoglobulin A. These defects promoted intestinal dysbiosis and increased bacterial translocation within the mucosa. Importantly, AP-1B deficiency led to mistargeting of a subset of basolateral cytokine receptors to the apical plasma membrane in a polarized epithelial cell line and in colonic epithelial cells from mice. AP1M2 expression was reduced significantly in colonic epithelium samples from patients with Crohn's disease. CONCLUSIONS AP-1B is required for proper localization of a subset of cytokine receptors in polarized epithelial cells, which allows them to respond to cytokine signals from underlying lamina propria cells. The AP-1B-mediated protein sorting machinery is required for maintenance of immune homeostasis and prevention of excessive inflammation.
Collapse
Affiliation(s)
- Daisuke Takahashi
- Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dauletbaev N, Eklove D, Mawji N, Iskandar M, Di Marco S, Gallouzi IE, Lands LC. Down-regulation of cytokine-induced interleukin-8 requires inhibition of p38 mitogen-activated protein kinase (MAPK) via MAPK phosphatase 1-dependent and -independent mechanisms. J Biol Chem 2011; 286:15998-6007. [PMID: 21454676 DOI: 10.1074/jbc.m110.205724] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Down-regulation of overabundant interleukin (IL)-8 present in cystic fibrosis (CF) airways could ease excessive neutrophil burden and its deleterious consequences for the lung. IL-8 production in airway epithelial cells, stimulated with e.g. inflammatory cytokines IL-1β and tumor necrosis factor (TNF)-α, is regulated by several signaling pathways including nuclear factor (NF)-κB and p38 mitogen-activated protein kinase (MAPK). We previously demonstrated that the anti-inflammatory drugs dexamethasone and ibuprofen suppress NF-κB; however, only dexamethasone down-regulates cytokine-induced IL-8, highlighting the importance of non-NF-κB mechanisms. Here, we tested the hypothesis that down-regulation of cytokine-induced IL-8 requires modulation of the MAPK phosphatase (MKP)-1/p38 MAPK/mRNA stability pathway. The effects of dexamethasone (5 nm) and ibuprofen (480 μm) on this pathway and IL-8 were studied in CF (CFTE29o-, CFBE41o-) and non-CF (1HAEo-) airway epithelial cells. We observed that dexamethasone, but not ibuprofen, destabilizes IL-8 mRNA and up-regulates MKP-1 mRNA. Further, siRNA silencing of MKP-1, via p38 MAPK, leads to IL-8 overproduction and diminishes the anti-IL-8 potential of dexamethasone. However, MKP-1 overexpression does not significantly alter IL-8 production. By contrast, direct inhibition of p38 MAPK (inhibitor SB203580) efficiently suppresses IL-8 with potency comparable with dexamethasone. Similar to dexamethasone, SB203580 decreases IL-8 mRNA stability. Dexamethasone does not affect p38 MAPK activation, which excludes its effects upstream of p38 MAPK. In conclusion, normal levels of MKP-1 are necessary for a full anti-IL-8 potential of pharmacological agents; however, efficient pharmacological down-regulation of cytokine-induced IL-8 also requires direct effects on p38 MAPK and mRNA stability independently of MKP-1.
Collapse
Affiliation(s)
- Nurlan Dauletbaev
- Research Institute of McGill University Health Centre, Montreal, Quebec, Canada.
| | | | | | | | | | | | | |
Collapse
|
30
|
Manzel LJ, Shi L, O'Shaughnessy PT, Thorne PS, Look DC. Inhibition by cigarette smoke of nuclear factor-κB-dependent response to bacteria in the airway. Am J Respir Cell Mol Biol 2011; 44:155-65. [PMID: 20348206 PMCID: PMC3049229 DOI: 10.1165/rcmb.2009-0454oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Although individuals exposed to cigarette smoke are more susceptible to respiratory infection, the effects of cigarette smoke on pulmonary defense are incompletely understood. Based on the observation that interactions between bacteria and host cells result in the expression of critical defense genes regulated by NF-κB, we hypothesized that cigarette smoke alters NF-κB function. In this study, primary human tracheobronchial epithelial cells were treated with cigarette smoke extract (CSE) and exposed to Haemophilus influenzae, and the effects of CSE on bacteria-induced signaling and gene expression were assessed. CSE inhibited high concentrations of induced NF-κB activation and the consequent expression of defense genes that occurred in airway epithelial cells in response to H. influenzae. This decreased activation of NF-κB was not attributable to cell loss or cytotoxicity. Glutathione augmentation of epithelial cells decreased the effects of CSE on NF-κB-dependent responses, as well as the effects on the inhibitor of κB and the inhibitor of κB kinase, which are upstream NF-κB regulators, suggesting the involvement of reactive oxygen species. The relevance of these findings for lung infection was confirmed using a mouse model of H. influenzae airway infection, in which decreased NF-κB pathway activation, keratinocyte chemoattractant (KC) chemokine expression, and neutrophil recruitment occurred in animals exposed to cigarette smoke. The results indicate that although cigarette smoke can cause inflammation in the lung, exposure to smoke inhibits the robust pulmonary defense response to H. influenzae, thereby providing one explanation for the increased susceptibility to respiratory bacterial infection in individuals exposed to cigarette smoke.
Collapse
Affiliation(s)
- Lori J Manzel
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, 52242-1081, USA
| | | | | | | | | |
Collapse
|
31
|
Sidhaye VK, Chau E, Breysse PN, King LS. Septin-2 mediates airway epithelial barrier function in physiologic and pathologic conditions. Am J Respir Cell Mol Biol 2010; 45:120-6. [PMID: 20870893 DOI: 10.1165/rcmb.2010-0235oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Epithelial cells have the ability to regulate paracellular permeability dynamically in response to extracellular stimuli. With every respiratory effort, airway epithelial cells are exposed to both physiologic as well as pathologic stimuli, and regulation of the epithelial barrier in response to these stimuli is crucial to respiratory function. We report that increased membrane septin-2 localization mediates decreases in paracellular permeability by altering cortical actin arrangement in human airway epithelial cells. This phenomenon occurs in response to both physiologic levels of shear stress and a pathologic stimulus, particular matter exposure. The resulting changes in barrier function in response to septin-2 redistribution have a significant impact on the ability of the apical ligand, epidermal growth factor, to interact with its receptor, epidermal growth factor receptor, which is segregated to the basolateral side in airway epithelial cells. This suggests that the dynamic regulation of the epithelial barrier function is essential in regulating signaling responses to extracellular stimuli. These findings indicate that septin-2 plays a fundamental role in regulating barrier function by altering cortical actin expression.
Collapse
Affiliation(s)
- Venkataramana K Sidhaye
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins Asthma and Allergy Center 4B.64, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA.
| | | | | | | |
Collapse
|
32
|
Modestou MA, Manzel LJ, El-Mahdy S, Look DC. Inhibition of IFN-gamma-dependent antiviral airway epithelial defense by cigarette smoke. Respir Res 2010; 11:64. [PMID: 20504369 PMCID: PMC2890646 DOI: 10.1186/1465-9921-11-64] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 05/26/2010] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Although individuals exposed to cigarette smoke are more susceptible to respiratory infection, the effects of cigarette smoke on lung defense are incompletely understood. Because airway epithelial cell responses to type II interferon (IFN) are critical in regulation of defense against many respiratory viral infections, we hypothesized that cigarette smoke has inhibitory effects on IFN-gamma-dependent antiviral mechanisms in epithelial cells in the airway. METHODS Primary human tracheobronchial epithelial cells were first treated with cigarette smoke extract (CSE) followed by exposure to both CSE and IFN-gamma. Epithelial cell cytotoxicity and IFN-gamma-induced signaling, gene expression, and antiviral effects against respiratory syncytial virus (RSV) were tested without and with CSE exposure. RESULTS CSE inhibited IFN-gamma-dependent gene expression in airway epithelial cells, and these effects were not due to cell loss or cytotoxicity. CSE markedly inhibited IFN-gamma-induced Stat1 phosphorylation, indicating that CSE altered type II interferon signal transduction and providing a mechanism for CSE effects. A period of CSE exposure combined with an interval of epithelial cell exposure to both CSE and IFN-gamma was required to inhibit IFN-gamma-induced cell signaling. CSE also decreased the inhibitory effect of IFN-gamma on RSV mRNA and protein expression, confirming effects on viral infection. CSE effects on IFN-gamma-induced Stat1 activation, antiviral protein expression, and inhibition of RSV infection were decreased by glutathione augmentation of epithelial cells using N-acetylcysteine or glutathione monoethyl ester, providing one strategy to alter cigarette smoke effects. CONCLUSIONS The results indicate that CSE inhibits the antiviral effects of IFN-gamma, thereby presenting one explanation for increased susceptibility to respiratory viral infection in individuals exposed to cigarette smoke.
Collapse
Affiliation(s)
- Modestos A Modestou
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, Iowa 52242-1081, USA
| | | | | | | |
Collapse
|
33
|
LeSimple P, Liao J, Robert R, Gruenert DC, Hanrahan JW. Cystic fibrosis transmembrane conductance regulator trafficking modulates the barrier function of airway epithelial cell monolayers. J Physiol 2010; 588:1195-209. [PMID: 20156845 DOI: 10.1113/jphysiol.2009.182246] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an integral membrane glycoprotein which functions as an anion channel and influences diverse cellular processes. We studied its role in the development of epithelial tightness by expressing wild-type (WT-CFTR) or mutant (Delta F508-CFTR) CFTR in human airway epithelial cell monolayers cultured at the air-liquid interface. Green fluorescent protein (GFP)-tagged WT or Delta F508 constructs were expressed in the CF bronchial cell line CFBE41o(-) using adenoviruses, and the results were compared with those obtained using CFBE41o(-) lines stably complemented with wild-type or mutant CFTR. As predicted, GFP-Delta WT-CFTR reached the apical membrane whereas GFP-F508-CFTR was only detected intracellularly. Although CFTR expression would be expected to reduce transepithelial resistance (TER), expressing GFP-CFTR significantly increased the TER of CFBE41o(-) monolayers whilst GFP-Delta F508-CFTR had no effect. Similar results were obtained with cell lines stably overexpressing Delta F508-CFTR or WT-CFTR. Preincubating Delta F508-CFTR monolayers at 29 degrees C reduced mannitol permeability and restored TER, and the effect on TER was reversible during temperature oscillations. Expression of GFP-Delta F508-CFTR or GFP-WT-CFTR in a cell line already containing endogenous WT-CFTR (Calu-3) did not alter TER. The CFTR- and temperature-dependence of TER were not affected by the CFTR inhibitor CFTR(inh)172 or low-chloride medium; therefore the effect of CFTR on barrier function was unrelated to its ion channel activity. Modulation of TER was blunted but not eliminated by genistein, implying the involvement of tyrosine phosphorylation and other mechanisms. Modulation of CFTR trafficking was correlated with an increase in tight junction depth. The results suggest that CFTR trafficking is required for the normal organisation and function of tight junctions. A reduction in barrier function caused by endoplasmic reticulum retention of Delta F508-CFTR may contribute to fluid hyperabsorption in CF airways.
Collapse
Affiliation(s)
- Pierre LeSimple
- Department of Physiology, McGill University, Montréal, QC, Canada
| | | | | | | | | |
Collapse
|
34
|
Winder AA, Wohlford-Lenane C, Scheetz TE, Nardy BN, Manzel LJ, Look DC, McCray PB. Differential effects of cytokines and corticosteroids on toll-like receptor 2 expression and activity in human airway epithelia. Respir Res 2009; 10:96. [PMID: 19835594 PMCID: PMC2772856 DOI: 10.1186/1465-9921-10-96] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 10/16/2009] [Indexed: 12/18/2022] Open
Abstract
Background The recognition of microbial molecular patterns via Toll-like receptors (TLRs) is critical for mucosal defenses. Methods Using well-differentiated primary cultures of human airway epithelia, we investigated the effects of exposure of the cells to cytokines (TNF-α and IFN-γ) and dexamethasone (dex) on responsiveness to the TLR2/TLR1 ligand Pam3CSK4. Production of IL-8, CCL20, and airway surface liquid antimicrobial activity were used as endpoints. Results Microarray expression profiling in human airway epithelia revealed that first response cytokines markedly induced TLR2 expression. Real-time PCR confirmed that cytokines (TNF-α and IFN-γ), dexamethasone (dex), or cytokines + dex increased TLR2 mRNA abundance. A synergistic increase was seen with cytokines + dex. To assess TLR2 function, epithelia pre-treated with cytokines ± dex were exposed to the TLR2/TLR1 ligand Pam3CSK4 for 24 hours. While cells pre-treated with cytokines alone exhibited significantly enhanced IL-8 and CCL20 secretion following Pam3CSK4, mean IL-8 and CCL20 release decreased in Pam3CSK4 stimulated cells following cytokines + dex pre-treatment. This marked increase in inflammatory gene expression seen after treatment with cytokines followed by the TLR2 ligand did not correlate well with NF-κB, Stat1, or p38 MAP kinase pathway activation. Cytokines also enhanced TLR2 agonist-induced beta-defensin 2 mRNA expression and increased the antimicrobial activity of airway surface liquid. Dex blocked these effects. Conclusion While dex treatment enhanced TLR2 expression, co-administration of dex with cytokines inhibited airway epithelial cell responsiveness to TLR2/TLR1 ligand over cytokines alone. Enhanced functional TLR2 expression following exposure to TNF-α and IFN-γ may serve as a dynamic means to amplify epithelial innate immune responses during infectious or inflammatory pulmonary diseases.
Collapse
Affiliation(s)
- Audra A Winder
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Ciencewicki JM, Brighton LE, Jaspers I. Localization of type I interferon receptor limits interferon-induced TLR3 in epithelial cells. J Interferon Cytokine Res 2009; 29:289-97. [PMID: 19231996 DOI: 10.1089/jir.2008.0075] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Previous studies have shown that influenza infections increase Toll-like receptor 3 (TLR3) expression and that type I interferons (IFNs) may play a role in this response. This study aimed to expand on the role of type I IFNs in the influenza-induced upregulation of TLR3 and determine whether and how the localization of the IFN-alpha/beta receptor (IFNAR) in respiratory epithelial cells could modify IFN-induced responses. Using differentiated primary human airway epithelial cells this study demonstrates that soluble mediators secreted in response to influenza infection upregulate TLR3 expression in naive cells. This response was associated with an upregulation of type I IFNs and stimulation with type I, but not type II, IFNs enhanced TLR3 expression. Interestingly, although influenza infection results in IFN-beta release both toward the apical and basolateral sides of the epithelium, TLR3 expression is only enhanced in cells stimulated with IFN-beta from the basolateral side. Immunohistochemical analysis demonstrates that IFNAR expression is limited to the basolateral side of differentiated human airway epithelial cells. However, non- or poorly differentiated epithelial cells express IFNAR more toward the apical side. These data demonstrate that restricted expression of the IFNAR in the differentiated airway epithelium presents a potential mechanism of regulating type I IFN-induced TLR3 expression.
Collapse
Affiliation(s)
- Jonathan M Ciencewicki
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27599-7310, USA
| | | | | |
Collapse
|
36
|
Halldorsson S, Gudjonsson T, Gottfredsson M, Singh PK, Gudmundsson GH, Baldursson O. Azithromycin maintains airway epithelial integrity during Pseudomonas aeruginosa infection. Am J Respir Cell Mol Biol 2009; 42:62-8. [PMID: 19372247 DOI: 10.1165/rcmb.2008-0357oc] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Tight junctions (TJs) play a key role in maintaining bronchial epithelial integrity, including apical-basolateral polarity and paracellular trafficking. Patients with chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF) often suffer from chronic infections by the opportunistic Gram-negative bacterium Pseudomonas aeruginosa, which produces multiple virulence factors, including rhamnolipids. The macrolide antibiotic azithromycin (azm) has been shown to improve lung function in patients with CF without reducing the bacterial count within the lung. However, the mechanism of this effect is still debated. It has previously been shown that azm increased transepithelial electrical resistance (TER) in a bronchial epithelial cell line. In this study we used an air-liquid interface model of human airway epithelia and measured TER, changes in TJ expression and architecture after exposure to live P. aeruginosa PAO1, and PAO1-Deltarhl which is a PAO1 mutant lacking rhlA and rhlB, which encode key enzymes for rhamnolipid production. In addition, the cells were challenged with bacterial culture medium conditioned by these strains, purified rhamnolipids, or synthetic 3O-C(12)-HSL. Virulence factors secreted by P. aeruginosa reduced TER and caused TJ rearrangement in the bronchial epithelium, exposing the epithelium to further bacterial infiltration. Pretreatment of the bronchial epithelium with azm attenuated this effect and facilitated epithelial recovery. These data suggest that azm protects the bronchial epithelium during P. aeruginosa infection independent of antimicrobial activity, and could explain in part the beneficial results seen in clinical trials of patients with CF.
Collapse
Affiliation(s)
- Skarphedinn Halldorsson
- Institute of Biology, Biomedical Center, University of Iceland, Landspitali, Eiriksgata 5, Reykjavik, Iceland
| | | | | | | | | | | |
Collapse
|
37
|
Manzel LJ, Chin CL, Behlke MA, Look DC. Regulation of bacteria-induced intercellular adhesion molecule-1 by CCAAT/enhancer binding proteins. Am J Respir Cell Mol Biol 2008; 40:200-10. [PMID: 18703796 DOI: 10.1165/rcmb.2008-0104oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Direct interaction between bacteria and epithelial cells may initiate or amplify the airway response through induction of epithelial defense gene expression by nuclear factor-kappaB (NF-kappaB). However, multiple signaling pathways modify NF-kappaB effects to modulate gene expression. In this study, the effects of CCAAT/enhancer binding protein (C/EBP) family members on induction of the leukocyte adhesion glycoprotein intercellular adhesion molecule-1 (ICAM-1) was examined in primary cultures of human tracheobronchial epithelial cells incubated with nontypeable Haemophilus influenzae. Increased ICAM-1 gene transcription in response to H. influenzae required gene sequences located at -200 to -135 in the 5'-flanking region that contain a C/EBP-binding sequence immediately upstream of the NF-kappaB enhancer site. Constitutive C/EBPbeta was found to have an important role in epithelial cell ICAM-1 regulation, while the adjacent NF-kappaB sequence binds the RelA/p65 and NF-kappaB1/p50 members of the NF-kappaB family to induce ICAM-1 expression in response to H. influenzae. The expression of C/EBP proteins is not regulated by p38 mitogen-activated protein kinase activation, but p38 affects gene transcription by increasing the binding of TATA-binding protein to TATA-box-containing gene sequences. Epithelial cell ICAM-1 expression in response to H. influenzae was decreased by expressing dominant-negative protein or RNA interference against C/EBPbeta, confirming its role in ICAM-1 regulation. Although airway epithelial cells express multiple constitutive and inducible C/EBP family members that bind C/EBP sequences, the results indicate that C/EBPbeta plays a central role in modulation of NF-kappaB-dependent defense gene expression in human airway epithelial cells after exposure to H. influenzae.
Collapse
Affiliation(s)
- Lori J Manzel
- University of Iowa Carver College of Medicine, Department of Internal Medicine, 200 Hawkins Drive, C33-GH, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
38
|
Shear stress regulates aquaporin-5 and airway epithelial barrier function. Proc Natl Acad Sci U S A 2008; 105:3345-50. [PMID: 18305162 DOI: 10.1073/pnas.0712287105] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As the interface with the outside world, the airway epithelial barrier is critical to lung defense. Because of respiratory efforts, the airways are exposed to shear stress; however, little is known regarding the effects of shear on epithelial function. We report that low-level shear stress enhances epithelial barrier function, an effect that requires serial activation of the transient receptor potential vanilloid (TRPV) 4 and L-type voltage-gated calcium channel (VGCC) and an increase in intracellular calcium. These changes lead to a selective decrease in aquaporin-5 (AQP5) abundance because of protein internalization and degradation. To determine whether AQP5 plays a role in mediating the shear effects on paracellular permeability, we overexpressed hAQP5 in 16HBE cells, an airway epithelial cell line without endogenous AQP5. We found that AQP5 expression was needed for shear-induced barrier enhancement. These findings have direct relevance to the regulation of epithelial barrier function, membrane permeability, and water homeostasis in the respiratory epithelia.
Collapse
|