1
|
Jiacheng D, Jiayue C, Ying G, Shaohua W, Wenhui L, Xinyu H. Research progress and challenges of the PD-1/PD-L1 axis in gliomas. Cell Biosci 2024; 14:123. [PMID: 39334448 PMCID: PMC11437992 DOI: 10.1186/s13578-024-01305-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The emergence of programmed death-1 (PD-1) and programmed death ligand 1 (PD-L1) immunosuppressants provides new therapeutic directions for various advanced malignant cancers. At present, PD-1/PD-L1 immunosuppressants have made significant progress in clinical trials of some gliomas, but PD-1/PD-L1 inhibitors have not yet shown convincing clinical efficacy in gliomas. This article summarizes the research progress of the PD-1 /PD-L1 pathway in gliomas through the following three aspects. It mainly includes the complex expression levels and regulatory mechanisms of PD-1/PD-L1 in the glioma microenvironment, the immune infiltration in glioma immunosuppressive microenvironment, and research progress on the application of PD-1/PD-L1 immunosuppressants in clinical treatment trials for gliomas. This will help to understand the current treatment progress and future research directions better.
Collapse
Affiliation(s)
- Dong Jiacheng
- Department of Neurosurgery, Jilin Provincial Hospital, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin, 130021, China
| | - Cui Jiayue
- Department of Histology and Embryology, The School of Basic Medicine, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130021, China
| | - Guo Ying
- Department of Histology and Embryology, The School of Basic Medicine, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130021, China
| | - Wang Shaohua
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Liu Wenhui
- Department of Histology and Embryology, The School of Basic Medicine, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130021, China
| | - Hong Xinyu
- Department of Neurosurgery, Jilin Provincial Hospital, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin, 130021, China.
| |
Collapse
|
2
|
Alnukhali M, Altabbakh O, Farooqi AA, Pollack A, Daunert S, Deo S, Tao W. Activation of Stimulator of Interferon Genes (STING): Promising Strategy to Overcome Immune Resistance in Prostate Cancer. Curr Med Chem 2024; 31:6556-6571. [PMID: 38347787 PMCID: PMC11497144 DOI: 10.2174/0109298673273303231208071403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 10/19/2024]
Abstract
Prostate cancer (PCa) is the most frequent and second-lethal cancer among men. Despite considerable efforts to explore treatments like autologous cellular immunotherapy and immune checkpoint inhibitors, their success remains limited. The intricate tumor microenvironment (TME) and its interaction with the immune system pose significant challenges in PCa treatment. Consequently, researchers have directed their focus on augmenting the immune system's anti-tumor response by targeting the STimulator of the Interferon Genes (STING) pathway. The STING pathway is activated when foreign DNA is detected in the cytoplasm of innate immune cells, resulting in the activation of endoplasmic reticulum (ER) STING. This, in turn, triggers an augmentation of signaling, leading to the production of type I interferon (IFN) and other pro-inflammatory cytokines. Numerous studies have demonstrated that activation of the STING pathway induces immune system rejection and targeted elimination of PCa cells. Researchers have been exploring various methods to activate the STING pathway, including the use of bacterial vectors to deliver STING agonists and the combination of radiation therapy with STING agonists. Achieving effective radiation therapy with minimal side effects and optimal anti-tumor immune responses necessitates precise adjustments to radiation dosing and fractionation schedules. This comprehensive review discusses promising findings from studies focusing on activating the STING pathway to combat PCa. The STING pathway exhibits the potential to serve as an effective treatment modality for PCa, offering new hope for improving the lives of those affected by this devastating disease.
Collapse
Affiliation(s)
- Mohammed Alnukhali
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Omar Altabbakh
- College of Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL 33759, USA
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), National Institute for Genomics and Advanced Biotechnology, Islamabad 44000, Pakistan
| | - Alan Pollack
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Leonard M. Miller School of Medicine, Clinical and Translational Science Institute, University of Miami, Miami, FL 33136, USA
- The Dr. John T. McDonald Foundation Bionanotechnology Institute, University of Miami, Miami, FL 33136, USA
| | - Sapna Deo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- The Dr. John T. McDonald Foundation Bionanotechnology Institute, University of Miami, Miami, FL 33136, USA
| | - Wensi Tao
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
3
|
Prokhnevska N, Cardenas MA, Valanparambil RM, Sobierajska E, Barwick BG, Jansen C, Reyes Moon A, Gregorova P, delBalzo L, Greenwald R, Bilen MA, Alemozaffar M, Joshi S, Cimmino C, Larsen C, Master V, Sanda M, Kissick H. CD8 + T cell activation in cancer comprises an initial activation phase in lymph nodes followed by effector differentiation within the tumor. Immunity 2023; 56:107-124.e5. [PMID: 36580918 PMCID: PMC10266440 DOI: 10.1016/j.immuni.2022.12.002] [Citation(s) in RCA: 175] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/11/2022] [Accepted: 12/05/2022] [Indexed: 12/29/2022]
Abstract
Improvements in tumor immunotherapies depend on better understanding of the anti-tumor T cell response. By studying human tumor-draining lymph nodes (TDLNs), we found that activated CD8+ T cells in TDLNs shared functional, transcriptional, and epigenetic traits with TCF1+ stem-like cells in the tumor. The phenotype and TCR overlap suggested that these TDLN cells were precursors to tumor-resident stem-like CD8+ T cells. Murine tumor models revealed that tumor-specific CD8+ T cells were activated in TDLNs but lacked an effector phenotype. These stem-like cells migrated into the tumor, where additional co-stimulation from antigen-presenting cells drove effector differentiation. This model of CD8+ T cell activation in response to cancer is different from that of canonical CD8+ T cell activation to acute viruses, and it proposes two stages of tumor-specific CD8+ T cell activation: initial activation in TDLNs and subsequent effector program acquisition within the tumor after additional co-stimulation.
Collapse
Affiliation(s)
| | - Maria A Cardenas
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Rajesh M Valanparambil
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Ewelina Sobierajska
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Benjamin G Barwick
- Winship Cancer Institute of Emory University, Atlanta, GA, USA; Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Caroline Jansen
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Adriana Reyes Moon
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Petra Gregorova
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Luke delBalzo
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Rachel Greenwald
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mehmet Asim Bilen
- Winship Cancer Institute of Emory University, Atlanta, GA, USA; Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mehrdad Alemozaffar
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Shreyas Joshi
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Cara Cimmino
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Christian Larsen
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Viraj Master
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Martin Sanda
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Haydn Kissick
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
4
|
Galustian C, Dalgleish A, Bodman-Smith M, Kusmartsev S, Dasgupta P. Editorial: Immunotherapy for Prostate Cancer – turning the immunological desert into an oasis of hope. Front Oncol 2022; 12:1021870. [PMID: 36158670 PMCID: PMC9495446 DOI: 10.3389/fonc.2022.1021870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Christine Galustian
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- *Correspondence: Christine Galustian, ; Sergei Kusmartsev,
| | - Angus Dalgleish
- Institute for Infection and Immunology, St. George’s, University of London, London, United Kingdom
| | - Mark Bodman-Smith
- Institute for Infection and Immunology, St. George’s, University of London, London, United Kingdom
| | - Sergei Kusmartsev
- Department of Urology, School of Medicine, University of Florida, Gainesville, FL, United States
- *Correspondence: Christine Galustian, ; Sergei Kusmartsev,
| | - Prokar Dasgupta
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
5
|
TCR-induced FOXP3 expression by CD8 + T cells impairs their anti-tumor activity. Cancer Lett 2022; 528:45-58. [PMID: 34973390 DOI: 10.1016/j.canlet.2021.12.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/09/2021] [Accepted: 12/25/2021] [Indexed: 11/23/2022]
Abstract
Adoptive cell transfer therapy using CD8+ T lymphocytes showed promising results eradicating metastatic malignancies. However, several regulatory mechanisms limit its efficacy. We studied the role of the expression of the transcription factor FOXP3 on CD8+ T cell function and anti-tumor immunity. Here we show that suboptimal T cell receptor stimulation of CD8+ T cells upregulates FOXP3 in vitro. Similarly, CD8 T cells transferred into tumor-bearing mice upregulate FOXP3 in vivo. Cell-intrinsic loss of FOXP3 by CD8+ T cells resulted in improved functionality after TCR stimulation and better antitumor responses in vivo. Inhibition of the FOXP3/NFAT interaction likewise improved CD8+ T cell functionality. Transcriptomic analysis of cells after TCR stimulation revealed an enrichment of genes implicated in the response to IFN-γ, IFN-α, inflammatory response, IL-6/JAK/STAT, G2M checkpoint and IL-2/STAT signaling in FOXP3-deficient CD8+ T cells with respect to FOXP3-wt CD8+ T cells. Our results suggest that transient expression of FOXP3 by CD8+ T cells in the tumor microenvironment restrains their anti-tumor activity, with clear implications for improving T cell responses during immunotherapy.
Collapse
|
6
|
Shui Y, Hu X, Hirano H, Kusano K, Tsukamoto H, Li M, Hasumi K, Guo WZ, Li XK. β-glucan from Aureobasidium pullulans augments the anti-tumor immune responses through activated tumor-associated dendritic cells. Int Immunopharmacol 2021; 101:108265. [PMID: 34715491 DOI: 10.1016/j.intimp.2021.108265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022]
Abstract
Dendritic cells (DCs) are recognized as the most potent antigen-presenting cells, capable of priming both naïve and memory T cells. Thus, tumor-resident DCs (tumor-associated DCs: TADCs) play a crucial role in the immune response against tumors. However, TADCs are also well known as a "double-edged sword" because an immunosuppressive environment, such as a tumor microenvironment, maintains the immature and tolerogenic properties of TADCs, resulting in the deterioration of the tumor. Therefore, it is essential to maintain and enhance the anti-tumoral activity of TADCs to aid tumor elimination. This study demonstrated the potential for tumor growth inhibition of Aureobasidium pullulan-derived β-glucan (AP-BG). Administration of AP-BG dramatically limited the development of different types of tumor cell lines transplanted into mice. Examination of the tumor-infiltrating leukocytes revealed that AP-BG caused high expression of co-stimulatory molecules on TADCs and enhanced the production of cytolytic granules as well as pro-inflammatory cytokines by the tumor-resident T cells. Furthermore, the syngeneic mixed lymphoid reaction assay and popliteal lymph node assay showed the significant ability of AP-BG to improve DCs' antigen-specific priming of T cells in vitro and in vivo. Taken together, β-glucan might be an immune-potentiating adjuvant for cancer treatment. This highly widely-used reagent will initiate a new way to activate DC-targeted cancer immune therapy.
Collapse
Affiliation(s)
- Yifang Shui
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Hu
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiroshi Hirano
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Hasumi International Research Foundation, Tokyo, Japan
| | | | - Hirotake Tsukamoto
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Division of Clinical Immunology and Cancer Immunotherapy, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Japan
| | - Mengquan Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Xiao-Kang Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
7
|
Fischbeck AJ, Ruehland S, Ettinger A, Paetzold K, Masouris I, Noessner E, Mendler AN. Tumor Lactic Acidosis: Protecting Tumor by Inhibiting Cytotoxic Activity Through Motility Arrest and Bioenergetic Silencing. Front Oncol 2020; 10:589434. [PMID: 33364193 PMCID: PMC7753121 DOI: 10.3389/fonc.2020.589434] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/20/2020] [Indexed: 12/27/2022] Open
Abstract
Adoptive T cell therapy (ACT) is highly effective in the treatment of hematologic malignancies, but shows limited success in solid tumors. Inactivation of T cells in the tumor milieu is a major hurdle to a wider application of ACT. Cytotoxicity is the most relevant activity for tumor eradication. Here, we document that cytotoxic T cells (CTL) in lactic acidosis exhibited strongly reduced tumor cell killing, which could be compensated partly by increasing the CTL to tumor cell ratio. Lactic acid intervened at multiple steps of the killing process. Lactic acid repressed the number of CTL that performed lytic granule exocytosis (degranulation) in tumor cell co-culture, and, additionally impaired the quality of the response, as judged by the reduced intensity of degranulation and lower secretion of cytotoxins (perforin, granzyme B, granzyme A). CTL in lactic acid switched to a low bioenergetic profile with an inability to metabolize glucose efficiently. They responded to anti-CD3 stimulation poorly with less extracellular acidification rate (ECAR). This might explain their repressed granule exocytosis activity. Using live cell imaging, we show that CTL in lactic acid have reduced motility, resulting in lower field coverage. Many CTL in lactic acidosis did not make contact with tumor cells; however, those which made contact, adhered to the tumor cell much longer than a CTL in normal medium. Reduced motility together with prolonged contact duration hinders serial killing, a defining feature of killing potency, but also locally confines cytotoxic activity, which helps to reduce the risk of collateral organ damage. These activities define lactic acid as a major signaling molecule able to orchestrate the spatial distribution of CTL inside inflamed tissue, such as cancer, as well as moderating their functional response. Lactic acid intervention and strategies to improve T cell metabolic fitness hold promise to improve the clinical efficacy of T cell–based cancer immunotherapy.
Collapse
Affiliation(s)
| | - Svenja Ruehland
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University Munich, Munich, Germany.,Department of Biology II, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Andreas Ettinger
- Institute of Epigenetics and Stem Cells, Helmholtz Center Munich, Munich, Germany
| | | | - Ilias Masouris
- Immunoanalytics, Helmholtz Center Munich, Munich, Germany
| | | | - Anna N Mendler
- Immunoanalytics, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
8
|
Garner H, de Visser KE. Immune crosstalk in cancer progression and metastatic spread: a complex conversation. Nat Rev Immunol 2020; 20:483-497. [PMID: 32024984 DOI: 10.1038/s41577-019-0271-z] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2019] [Indexed: 12/12/2022]
Abstract
Metastatic disease is responsible for approximately 90% of cancer deaths. For successful dissemination and metastasis, cancer cells must evade detection and destruction by the immune system. This process is enabled by factors secreted by the primary tumour that shape both the intratumoural microenvironment and the systemic immune landscape. Here, we review the evidence of aberrant immune cell crosstalk in metastasis formation and the role that primary tumours play in hijacking these interactions in order to enhance their metastatic potential. Moreover, we highlight the intriguing parallels between the inflammatory pathways underlying inflammatory disorders and cancer progression.
Collapse
Affiliation(s)
- Hannah Garner
- Division of Tumour Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Karin E de Visser
- Division of Tumour Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands. .,Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, Netherlands.
| |
Collapse
|
9
|
Noubade R, Majri-Morrison S, Tarbell KV. Beyond cDC1: Emerging Roles of DC Crosstalk in Cancer Immunity. Front Immunol 2019; 10:1014. [PMID: 31143179 PMCID: PMC6521804 DOI: 10.3389/fimmu.2019.01014] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 04/23/2019] [Indexed: 01/03/2023] Open
Abstract
Dendritic cells (DCs) efficiently process and present antigens to T cells, and by integrating environmental signals, link innate and adaptive immunity. DCs also control the balance between tolerance and immunity, and are required for T-cell mediated anti-tumor immunity. One subset of classical DCs, cDC1, are particularly important for eliciting CD8 T cells that can kill tumor cells. cDC1s are superior in antigen cross-presentation, a process of presenting exogenous antigens on MHC class I to activate CD8+ T cells. Tumor-associated cDC1s can transport tumor antigen to the draining lymph node and cross-present tumor antigens, resulting in priming and activation of cytotoxic T cells. Although cross-presenting cDC1s are critical for eliciting anti-tumor T cell responses, the role and importance of other DC subsets in anti-tumor immunity is not as well-characterized. Recent literature in other contexts suggests that critical crosstalk between DC subsets can significantly alter biological outcomes, and these DC interactions likely also contribute significantly to tumor-specific immune responses. Therefore, antigen presentation by cDC1s may be necessary but not sufficient for maximal immune responses against cancer. Here, we discuss recent advances in the understanding of DC subset interactions to maximize anti-tumor immunity, and propose that such interactions should be considered for the development of better DC-targeted immunotherapies.
Collapse
Affiliation(s)
- Rajkumar Noubade
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Sonia Majri-Morrison
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Kristin V Tarbell
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| |
Collapse
|
10
|
Schlenker R, Olguín-Contreras LF, Leisegang M, Schnappinger J, Disovic A, Rühland S, Nelson PJ, Leonhardt H, Harz H, Wilde S, Schendel DJ, Uckert W, Willimsky G, Noessner E. Chimeric PD-1:28 Receptor Upgrades Low-Avidity T cells and Restores Effector Function of Tumor-Infiltrating Lymphocytes for Adoptive Cell Therapy. Cancer Res 2017; 77:3577-3590. [PMID: 28533272 DOI: 10.1158/0008-5472.can-16-1922] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/13/2016] [Accepted: 05/08/2017] [Indexed: 11/16/2022]
Abstract
Inherent intermediate- to low-affinity T-cell receptors (TCR) that develop during the natural course of immune responses may not allow sufficient activation for tumor elimination, making the majority of T cells suboptimal for adoptive T-cell therapy (ATT). TCR affinity enhancement has been implemented to provide stronger T-cell activity but carries the risk of creating undesired cross-reactivity leading to potential serious adverse effects in clinical application. We demonstrate here that engineering of low-avidity T cells recognizing a naturally processed and presented tumor-associated antigen with a chimeric PD-1:28 receptor increases effector function to levels seen with high-avidity T cells of identical specificity. Upgrading the function of low-avidity T cells without changing the TCR affinity will allow a large arsenal of low-avidity T cells previously thought to be therapeutically inefficient to be considered for ATT. PD-1:28 engineering reinstated Th1 function in tumor-infiltrating lymphocytes that had been functionally disabled in the human renal cell carcinoma environment without unleashing undesired Th2 cytokines or IL10. Involved mechanisms may be correlated to restoration of ERK and AKT signaling pathways. In mouse tumor models of ATT, PD-1:28 engineering enabled low-avidity T cells to proliferate stronger and prevented PD-L1 upregulation and Th2 polarization in the tumor milieu. Engineered T cells combined with checkpoint blockade secreted significantly more IFNγ compared with T cells without PD-1:28, suggesting a beneficial combination with checkpoint blockade therapy or other therapeutic strategies. Altogether, the supportive effects of PD-1:28 engineering on T-cell function make it an attractive tool for ATT. Cancer Res; 77(13); 3577-90. ©2017 AACR.
Collapse
Affiliation(s)
- Ramona Schlenker
- Institute of Molecular Immunology, Helmholtz Center Munich, Munich, Germany
| | - Luis Felipe Olguín-Contreras
- Institute of Molecular Immunology, Helmholtz Center Munich, Munich, Germany.,Immunoanalytics Research Group Tissue Control of Immunocytes & Core Facility, Helmholtz Center Munich, Munich, Germany
| | - Matthias Leisegang
- Institute of Immunology, Charité, Campus Buch, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Julia Schnappinger
- Institute of Molecular Immunology, Helmholtz Center Munich, Munich, Germany.,Immunoanalytics Research Group Tissue Control of Immunocytes & Core Facility, Helmholtz Center Munich, Munich, Germany
| | - Anja Disovic
- Institute of Molecular Immunology, Helmholtz Center Munich, Munich, Germany.,Immunoanalytics Research Group Tissue Control of Immunocytes & Core Facility, Helmholtz Center Munich, Munich, Germany
| | - Svenja Rühland
- Ludwig-Maximilian University Munich, Medizinische Klinik und Poliklinik IV, Munich, Germany.,Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilian University Munich, Munich, Germany
| | - Peter J Nelson
- Ludwig-Maximilian University Munich, Medizinische Klinik und Poliklinik IV, Munich, Germany
| | - Heinrich Leonhardt
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilian University Munich, Munich, Germany
| | - Hartmann Harz
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilian University Munich, Munich, Germany
| | | | | | - Wolfgang Uckert
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Institute of Biology, Humboldt University Berlin, Berlin, Germany
| | - Gerald Willimsky
- Institute of Immunology, Charité, Campus Buch, Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elfriede Noessner
- Institute of Molecular Immunology, Helmholtz Center Munich, Munich, Germany. .,Immunoanalytics Research Group Tissue Control of Immunocytes & Core Facility, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
11
|
Hensel JA, Khattar V, Ashton R, Lee C, Siegal GP, Ponnazhagan S. Location of tumor affects local and distant immune cell type and number. Immun Inflamm Dis 2017; 5:85-94. [PMID: 28250928 PMCID: PMC5322166 DOI: 10.1002/iid3.144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Tumors comprise heterogeneous populations of cells, including immune infiltrates that polarize during growth and metastasis. Our preclinical studies on breast cancer (BCa) identified functional differences in myeloid-derived suppressor cells based on tumor microenvironment (TME), prompting variations in host immune response to tumor growth, and dissemination based on tissue type. METHODS In order to understand if such variations existed among other immune cells, and if such alteration occurs in response to tumor growth at the primary site or due to bone dissemination, we characterized immune cells, examining localized growth and in the tibia. In addition, immune cells from the spleen were examined from animals of both tumor locations by flow cytometry. RESULTS The study demonstrates that location of tumor, and not simply the tumor itself, has a definitive role in regulating immune effectors. Among all immune cells characterized, macrophages were decreased and myeloid dendritic cell were increased in both tumor locations. This difference was more evident in subcutaneous tumors. Additionally, spleens from mice with subcutaneous tumors contained greater increases in both macrophages and myeloid dendritic cells than in mice with bone tumors. Furthermore, in subcutaneous tumors there was an increase in CD4+ and CD8+ T-cell numbers, which was also observed in their spleens. CONCLUSIONS These data indicate that alterations in tumor-reactive immune cells are more pronounced at the primary site, and exert a similar change at the major secondary lymphoid organ than in the bone TME. These findings could provide translational insight into designing therapeutic strategies that account for location of metastatic foci.
Collapse
Affiliation(s)
- Jonathan A. Hensel
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Vinayak Khattar
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Reading Ashton
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Carnellia Lee
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Gene P. Siegal
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | | |
Collapse
|
12
|
Zhang X, Zhu S, Li T, Liu YJ, Chen W, Chen J. Targeting immune checkpoints in malignant glioma. Oncotarget 2017; 8:7157-7174. [PMID: 27756892 PMCID: PMC5351697 DOI: 10.18632/oncotarget.12702] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 10/12/2016] [Indexed: 12/31/2022] Open
Abstract
Malignant glioma is the most common and a highly aggressive cancer in the central nervous system (CNS). Cancer immunotherapy, strategies to boost the body's anti-cancer immune responses instead of directly targeting tumor cells, recently achieved great success in treating several human solid tumors. Although once considered "immune privileged" and devoid of normal immunological functions, CNS is now considered a promising target for cancer immunotherapy, featuring the recent progresses in neurobiology and neuroimmunology and a highly immunosuppressive state in malignant glioma. In this review, we focus on immune checkpoint inhibitors, specifically, antagonizing monoclonal antibodies for programmed cell death protein-1 (PD-1), cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), and indoleamine 2,3-dioxygenase (IDO). We discuss advances in the working mechanisms of these immune checkpoint molecules, their status in malignant glioma, and current preclinical and clinical trials targeting these molecules in malignant glioma.
Collapse
Affiliation(s)
- Xuhao Zhang
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Shan Zhu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Tete Li
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Yong-Jun Liu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
- Sanofi Research and Development, Cambridge, MA, USA
| | - Wei Chen
- ADC Biomedical Research Institute, Saint Paul, MN, USA
| | - Jingtao Chen
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| |
Collapse
|
13
|
Gardner A, Ruffell B. Dendritic Cells and Cancer Immunity. Trends Immunol 2016; 37:855-865. [PMID: 27793569 DOI: 10.1016/j.it.2016.09.006] [Citation(s) in RCA: 645] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) are central regulators of the adaptive immune response, and as such are necessary for T-cell-mediated cancer immunity. In particular, antitumoral responses depend on a specialized subset of conventional DCs that transport tumor antigens to draining lymph nodes and cross-present antigen to activate cytotoxic T lymphocytes. DC maturation is necessary to provide costimulatory signals to T cells, but while DC maturation occurs within tumors, it is often insufficient to induce potent immunity, particularly in light of suppressive mechanisms within tumors. Bypassing suppressive pathways or directly activating DCs can unleash a T-cell response, and although clinical efficacy has proven elusive, therapeutic targeting of DCs continues to hold translational potential in combinatorial approaches.
Collapse
Affiliation(s)
- Alycia Gardner
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL, USA
| | - Brian Ruffell
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
14
|
Pasero C, Gravis G, Guerin M, Granjeaud S, Thomassin-Piana J, Rocchi P, Paciencia-Gros M, Poizat F, Bentobji M, Azario-Cheillan F, Walz J, Salem N, Brunelle S, Moretta A, Olive D. Inherent and Tumor-Driven Immune Tolerance in the Prostate Microenvironment Impairs Natural Killer Cell Antitumor Activity. Cancer Res 2016; 76:2153-65. [PMID: 27197252 DOI: 10.1158/0008-5472.can-15-1965] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/22/2015] [Indexed: 11/16/2022]
Abstract
The field of immunotherapy for solid tumors, such as prostate cancer, has been recently focusing on therapies that can counter tumor-mediated immunosuppression. Precise quantification and characterization of the immune infiltrates in tumors is crucial to improve treatment efficacy. Natural killer (NK) cells, major components of the antitumor immune system, have never been isolated from prostate tumors, despite their suspected role in disease progression. Here, we examined the frequency, phenotype, and functions of NK cells infiltrating control and tumor prostate tissues. NK cell infiltrates in prostate tissues were mainly CD56 (NCAM1)-positive and displayed an unexpected immature, but activated, phenotype with low or no cytotoxic potential. Furthermore, we show that TGFβ1 (TGFB1) is highly secreted into the prostate environment and partly mediates the immunosuppressive effects on NK cells. In addition to this basal level of immunotolerance to NK cells, the prostate environment became further resistant to NK cell-mediated immunity upon cancer cell infiltration. Coculture experiments revealed that prostate cancer cells induced the expression of inhibitory receptor (ILT2/LILRB1) and downregulated the expression of activating receptors NKp46 (NCR1), NKG2D (KLRK1), and CD16 (FCGR3) by NK cells, thus preventing their recognition of tumor cells. Notably, blood levels of NKp46 were also decreased in prostate cancer patients and were inversely correlated with levels of prostate-specific antigen, the main prognostic factor in prostate cancer. Our study shows that a strong immunosuppressive environment impairs NK cell function at multiple levels in prostate cancer and provides a rationale for the design of therapies that restore NK cell efficiency in the prostate tumor microenvironment. Cancer Res; 76(8); 2153-65. ©2016 AACR.
Collapse
Affiliation(s)
- Christine Pasero
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068/CNRS U7258, Marseille, France. Institut Paoli-Calmettes, Marseille, France.
| | | | | | - Samuel Granjeaud
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068/CNRS U7258, Marseille, France
| | | | - Palma Rocchi
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068/CNRS U7258, Marseille, France. Institut Paoli-Calmettes, Marseille, France
| | | | | | | | | | | | - Naji Salem
- Institut Paoli-Calmettes, Marseille, France
| | | | | | - Daniel Olive
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068/CNRS U7258, Marseille, France. Institut Paoli-Calmettes, Marseille, France. Aix Marseille Université, Marseille, France.
| |
Collapse
|
15
|
Immunogenicity and efficacy of the novel cancer vaccine based on simian adenovirus and MVA vectors alone and in combination with PD-1 mAb in a mouse model of prostate cancer. Cancer Immunol Immunother 2016; 65:701-13. [PMID: 27052571 PMCID: PMC4880633 DOI: 10.1007/s00262-016-1831-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/22/2016] [Indexed: 11/06/2022]
Abstract
Prostate cancer possesses several characteristics that make it a suitable candidate for immunotherapy; however, prostate cancer vaccines to date demonstrate modest efficacy and low immunogenicity. The goal of the present pre-clinical study was to explore the immunogenic properties and protective efficacy of a novel prostate cancer immunotherapy based on the heterologous prime–boost viral-vectored vaccination platform. The simian adenovirus, ChAdOx1, and modified vaccinia Ankara virus, MVA, encoding a prostate cancer-associated antigen, the six transmembrane epithelial antigen of the prostate 1 (STEAP1), induced strong sustained antigen-specific CD8+ T-cell responses in C57BL/6 and BALB/c male mice. Unexpectedly, the high vaccine immunogenicity translated into relatively low protective efficacy in the murine transplantable and spontaneous models of prostate cancer. A combination of the vaccine with PD-1 blocking antibody significantly improved survival of the animals, with 80 % of mice remaining tumour-free. These results indicate that the ChAdOx1–MVA vaccination regime targeting STEAP1 combined with PD-1 therapy might have high therapeutic potential in the clinic.
Collapse
|
16
|
Abstract
Cross-presentation designates the presentation of exogenous antigens on major histocompatibility complex class I molecules and is essential for the initiation of cytotoxic immune responses. It is now well established that dendritic cells (DCs) are the best cross-presenting cells. In this chapter, we will discuss recent advances in our understanding of the molecular mechanisms of cross-presentation. We will also describe the different DC subsets identified in mouse and human, and their functional specialization for cross-presentation. Finally, we will summarize the current knowledge of the role of cross-presentation in pathological situations.
Collapse
Affiliation(s)
- Elodie Segura
- Institut Curie, Paris Cedex 05, France; INSERM U932, Paris Cedex 05, France.
| | | |
Collapse
|
17
|
Noguchi M, Arai G, Matsumoto K, Naito S, Moriya F, Suekane S, Komatsu N, Matsueda S, Sasada T, Yamada A, Kakuma T, Itoh K. Phase I trial of a cancer vaccine consisting of 20 mixed peptides in patients with castration-resistant prostate cancer: dose-related immune boosting and suppression. Cancer Immunol Immunother 2015; 64:493-505. [PMID: 25662406 PMCID: PMC11028456 DOI: 10.1007/s00262-015-1660-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 01/16/2015] [Indexed: 12/11/2022]
Abstract
The heterogeneity expression of tumor-associated antigens (TAA) and variability of human T cell repertoire suggest that effective cancer vaccine requires induction of a wide breadth of cytotoxic T lymphocyte (CTL) specificities. This can be achieved with vaccines targeting multiple TAA. We evaluated the safety and immune dynamics of a cancer vaccine consisting of 20 mixed peptides (KRM-20) designed to induce CTLs against 12 different TAA in patients with castration-resistant prostate cancer (CRPC). Patients received each of three different randomly assigned doses of KRM-20 (6, 20, or 60 mg) once a week for 6 weeks. KRM-20 was applicable for patients with positive human leukocyte antigen (HLA) A2, A3, A11, A24, A26, A31 or A33 alleles, which cover the majority of the global population. To evaluate the minimum immunological effective dose (MIED), peptide-specific CTL and immunoglobulin G (IgG) responses, and immune suppressive subsets were evaluated during the vaccination. Total of 17 patients was enrolled. No serious adverse drug reactions were encountered. The MIED of KRM-20 in CTL or IgG response calculated by logistic regression model was set as 16 or 1.6 mg, respectively. The frequency of immune suppressive subsets was fewer in the 20 mg cohort than that in 6 or 60 mg cohort. Clinical responses determined by prostate-specific antigen levels were two partial responses (from the 20 mg cohort), five no changes and ten progressive diseases. Twenty milligrams of KRM-20 could be recommended for further studies because of the safety and ability to augment CTL activity.
Collapse
Affiliation(s)
- Masanori Noguchi
- Division of Clinical Research, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fallon J, Tighe R, Kradjian G, Guzman W, Bernhardt A, Neuteboom B, Lan Y, Sabzevari H, Schlom J, Greiner JW. The immunocytokine NHS-IL12 as a potential cancer therapeutic. Oncotarget 2015; 5:1869-84. [PMID: 24681847 PMCID: PMC4039112 DOI: 10.18632/oncotarget.1853] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Targeted delivery of IL-12 might turn this cytokine into a safer, more effective cancer therapeutic. Here we describe a novel immunocytokine, NHS-IL12, consisting of two molecules of IL-12 fused to a tumor necrosis-targeting human IgG1 (NHS76). The addition of the human IgG1 moiety resulted in a longer plasma half-life of NHS-IL12 than recombinant IL-12, and a selective targeting to murine tumors in vivo. Data from both in vitro assays using human PBMCs and in vivo primate studies showed that IFN-gamma production by immune cells is attenuated following treatment with the immunocytokine, suggesting an improved toxicity profile than seen with recombinant IL-12 alone. NHS-IL12 was superior to recombinant IL-12 when evaluated as an anti-tumor agent in three murine tumor models. Mechanistic studies utilizing immune cell subset-depleting antibodies, flow cytometric methods, and in vitro cytotoxicity and ELISA assays all indicated that the anti-tumor effects of NHS-IL12 were primarily CD8+ T cell-dependent and likely IL-12-mediated. Combining NHS-IL12 treatment with a cancer vaccine, radiation, or chemotherapy resulted in greater anti-tumor effects than each individual therapy alone. These preclinical findings provide a rationale for the clinical testing of this immunocytokine, both as a single agent and in combination with vaccines, radiation and chemotherapy.
Collapse
Affiliation(s)
- Jonathan Fallon
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ward-Kavanagh LK, Zhu J, Cooper TK, Schell TD. Whole-body irradiation increases the magnitude and persistence of adoptively transferred T cells associated with tumor regression in a mouse model of prostate cancer. Cancer Immunol Res 2014; 2:777-88. [PMID: 24801834 DOI: 10.1158/2326-6066.cir-13-0164] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adoptive immunotherapy has demonstrated efficacy in a subset of clinical and preclinical studies, but the T cells used for therapy often are rendered rapidly nonfunctional in tumor-bearing hosts. Recent evidence indicates that prostate cancer can be susceptible to immunotherapy, but most studies using autochthonous tumor models demonstrate only short-lived T-cell responses in the tolerogenic prostate microenvironment. Here, we assessed the efficacy of sublethal whole-body irradiation (WBI) to enhance the magnitude and duration of adoptively transferred CD8(+) T cells in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model. We demonstrate that WBI promoted high-level accumulation of granzyme B (GzB, Gzmb)-expressing donor T cells both in lymphoid organs and in the prostate of TRAMP mice. Donor T cells remained responsive to vaccination in irradiated recipients, but a single round of WBI-enhanced adoptive immunotherapy failed to affect significantly the existing disease. Addition of a second round of immunotherapy promoted regression of established disease in half of the treated mice, with no progression observed. Regression was associated with long-term persistence of effector/memory phenotype CD8(+) donor cells. Administration of the second round of adoptive immunotherapy led to reacquisition of GzB expression by persistent T cells from the first transfer. These results indicate that WBI conditioning amplifies tumor-specific T cells in the TRAMP prostate and lymphoid tissue, and suggest that the initial treatment alters the tolerogenic microenvironment to increase antitumor activity by a second wave of donor cells.
Collapse
Affiliation(s)
| | - Junjia Zhu
- Public Health Sciences, Penn State Hershey Cancer Institute, Hershey, Pennsylvania
| | - Timothy K Cooper
- Comparative Medicine, and Pathology, Penn State Hershey College of Medicine; and
| | - Todd D Schell
- Departments of Microbiology and Immunology, Penn State Hershey Cancer Institute, Hershey, Pennsylvania
| |
Collapse
|
20
|
Savage PA, Leventhal DS, Malchow S. Shaping the repertoire of tumor-infiltrating effector and regulatory T cells. Immunol Rev 2014; 259:245-58. [PMID: 24712470 PMCID: PMC4122093 DOI: 10.1111/imr.12166] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many tumors express antigens that can be specifically or selectively recognized by T lymphocytes, suggesting that T-cell-mediated immunity may be harnessed for the immunotherapy of cancer. However, since tumors originate from normal cells and evolve within the context of self-tissues, the immune mechanisms that prevent the autoimmune attack of normal tissues function in parallel to restrict anti-tumor immunity. In particular, the purging of autoreactive T cells and the development of immune-suppressive regulatory T cells (Tregs) are thought to be major barriers impeding anti-tumor immune responses. Here, we discuss current understanding regarding the antigens recognized by tumor-infiltrating T-cell populations, the mechanisms that shape the repertoire of these cells, and the role of the transcription factor autoimmune regulator (Aire) in these processes. Further elucidation of these principles is likely to be critical for optimizing emerging cancer immunotherapies, and for the rational design of novel therapies exhibiting robust anti-tumor activity with limited toxicity.
Collapse
Affiliation(s)
- Peter A. Savage
- Department of Pathology, University of Chicago, Chicago, IL 60637
| | | | - Sven Malchow
- Department of Pathology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
21
|
Bak SP, Barnkob MS, Wittrup KD, Chen J. CD8+ T-cell responses rapidly select for antigen-negative tumor cells in the prostate. Cancer Immunol Res 2014; 1:393-401. [PMID: 24778132 DOI: 10.1158/2326-6066.cir-13-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stimulation of patients' immune systems for the treatment of solid tumors is an emerging therapeutic paradigm. The use of enriched autologous T cells for adoptive cell therapy or vaccination with antigen-loaded dendritic cells have shown clinical efficacy in melanoma and prostate cancer, respectively. However, the long-term effects of immune responses on selection and outgrowth of antigen-negative tumor cells in specific tumor types must be determined to understand and achieve long-term therapeutic effects. In this study, we have investigated the expression of a tumor-specific antigen in situ after treatment with tumor-specific CD8(+) T cells in an autochthonous mouse model of prostate cancer. After T-cell treatment, aggregates of dead antigen-positive tumor cells were concentrated in the lumen of the prostate gland and were eventually eliminated from the prostate tissue. Despite the elimination of antigen-positive tumor cells, prostate tumor continued to grow in T-cell-treated mice. Interestingly, the remaining tumor cells were antigen negative and downregulated MHC class I expression. These results show that CD8(+) T cells are effective in eliminating antigen-bearing prostate tumor cells but they also can select for the outgrowth of antigen-negative tumor cells. These findings provide insights into the requirements for an effective cancer immunotherapy within the prostate that not only induces potent immune responses but also avoids selection and outgrowth of antigen-negative tumor cells.
Collapse
Affiliation(s)
- S Peter Bak
- Authors' Affiliations: Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | | | | |
Collapse
|
22
|
House CD, Hernandez L, Annunziata CM. Recent technological advances in using mouse models to study ovarian cancer. Front Oncol 2014; 4:26. [PMID: 24592355 PMCID: PMC3923136 DOI: 10.3389/fonc.2014.00026] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/28/2014] [Indexed: 12/14/2022] Open
Abstract
Serous epithelial ovarian cancer (SEOC) is the most lethal gynecological cancer in the United States with disease recurrence being the major cause of morbidity and mortality. Despite recent advances in our understanding of the molecular mechanisms responsible for the development of SEOC, the survival rate for women with this disease has remained relatively unchanged in the last two decades. Preclinical mouse models of ovarian cancer, including xenograft, syngeneic, and genetically engineered mice, have been developed to provide a mechanism for studying the development and progression of SEOC. Such models strive to increase our understanding of the etiology and dissemination of ovarian cancer in order to overcome barriers to early detection and resistance to standard chemotherapy. Although there is not a single model that is most suitable for studying ovarian cancer, improvements have led to current models that more closely mimic human disease in their genotype and phenotype. Other advances in the field, such as live animal imaging techniques, allow effective monitoring of the microenvironment and therapeutic efficacy. New and improved preclinical mouse models, combined with technological advances to study such models, will undoubtedly render success of future human clinical trials for patients with SEOC.
Collapse
Affiliation(s)
| | - Lidia Hernandez
- Women's Malignancies Branch, National Cancer Institute , Bethesda, MD , USA
| | | |
Collapse
|
23
|
Liu G, Lu S, Wang X, Page ST, Higano CS, Plymate SR, Greenberg NM, Sun S, Li Z, Wu JD. Perturbation of NK cell peripheral homeostasis accelerates prostate carcinoma metastasis. J Clin Invest 2013; 123:4410-22. [PMID: 24018560 DOI: 10.1172/jci69369] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 07/11/2013] [Indexed: 02/04/2023] Open
Abstract
The activating receptor NK cell group 2 member D (NKG2D) mediates antitumor immunity in experimental animal models. However, whether NKG2D ligands contribute to tumor suppression or progression clinically remains controversial. Here, we have described 2 novel lines of "humanized" bi-transgenic (bi-Tg) mice in which native human NKG2D ligand MHC class I polypeptide-related sequence B (MICB) or the engineered membrane-restricted MICB (MICB.A2) was expressed in the prostate of the transgenic adenocarcinoma of the mouse prostate (TRAMP) model of spontaneous carcinogenesis. Bi-Tg TRAMP/MICB mice exhibited a markedly increased incidence of progressed carcinomas and metastasis, whereas TRAMP/MICB.A2 mice enjoyed long-term tumor-free survival conferred by sustained NKG2D-mediated antitumor immunity. Mechanistically, we found that cancer progression in TRAMP/MICB mice was associated with loss of the peripheral NK cell pool owing to high serum levels of tumor-derived soluble MICB (sMICB). Prostate cancer patients also displayed reduction of peripheral NK cells and high sMIC levels. Our study has not only provided direct evidence in "humanized" mouse models that soluble and membrane-restricted NKG2D ligands pose opposite impacts on cancer progression, but also uncovered a mechanism of sMIC-induced impairment of NK cell antitumor immunity. Our findings suggest that the impact of soluble NKG2D ligands should be considered in NK cell-based cancer immunotherapy and that our unique mouse models should be valuable for therapy optimization.
Collapse
|
24
|
Hess Michelini R, Manzo T, Sturmheit T, Basso V, Rocchi M, Freschi M, Listopad J, Blankenstein T, Bellone M, Mondino A. Vaccine-instructed intratumoral IFN-γ enables regression of autochthonous mouse prostate cancer in allogeneic T-cell transplantation. Cancer Res 2013; 73:4641-52. [PMID: 23749644 DOI: 10.1158/0008-5472.can-12-3464] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vaccination can synergize with transplantation of allogeneic hematopoietic stem cells to cure hematologic malignancies, but the basis for this synergy is not understood to the degree where such approaches could be effective for treating solid tumors. We investigated this issue in a transgenic mouse model of prostate cancer treated by transplantation of a nonmyeloablative MHC-matched, single Y chromosome-encoded, or multiple minor histocompatibility antigen-mismatched hematopoietic cell preparation. Here, we report that tumor-directed vaccination after allogeneic hematopoietic stem cell transplantation and donor lymphocyte infusion is essential for acute graft versus tumor responses, tumor regression, and prolonged survival. Vaccination proved essential for generation of CD8(+) IFN-γ(+) tumor-directed effector cells in secondary lymphoid organs and also for IFN-γ(+) upregulation at the tumor site, which in turn instructed local expression of proinflammatory chemokines and intratumoral recruitment of donor-derived T cells for disease regression. Omitting vaccination, transplanting IFN-γ-deficient donor T cells, or depleting alloreactive T cells all compromised intratumoral IFN-γ-driven inflammation and lymphocyte infiltration, abolishing antitumor responses and therapeutic efficacy of the combined approach. Our findings argue that posttransplant tumor-directed vaccination is critical to effectively direct donor T cells to the tumor site in cooperation with allogeneic hematopoietic cell transplantation.
Collapse
Affiliation(s)
- Rodrigo Hess Michelini
- Lymphocyte Activation Unit, Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Disease, Department of Pathology, San Raffaele Scientific Institute; Università Vita-Salute San Raffaele, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhu Z, Singh V, Watkins SK, Bronte V, Shoe JL, Feigenbaum L, Hurwitz AA. High-avidity T cells are preferentially tolerized in the tumor microenvironment. Cancer Res 2012. [PMID: 23204239 DOI: 10.1158/0008-5472.can-12-1123] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
One obstacle in eliciting potent antitumor immune responses is the induction of tolerance to tumor antigens. TCR(lo) mice bearing a TCR transgene specific for the melanoma antigen tyrosinase-related protein-2 (TRP-2, Dct) harbor T cells that maintain tumor antigen responsiveness but lack the ability to control melanoma outgrowth. We used this model to determine whether higher avidity T cells could control tumor growth without becoming tolerized. As a part of the current study, we developed a second TRP-2-specific TCR transgenic mouse line (TCR(hi)) that bears higher avidity T cells and spontaneously developed autoimmune depigmentation. In contrast to TCR(lo) T cells, which were ignorant of tumor-derived antigen, TCR(hi) T cells initially delayed subcutaneous B16 melanoma tumor growth. However, persistence in the tumor microenvironment resulted in reduced IFN-γ production and CD107a (Lamp1) mobilization, hallmarks of T-cell tolerization. IFN-γ expression by TCR(hi) T cells was critical for upregulation of MHC-I on tumor cells and control of tumor growth. Blockade of PD-1 signals prevented T-cell tolerization and restored tumor immunity. Depletion of tumor-associated dendritic cells (TADC) reduced tolerization of TCR(hi) T cells and enhanced their antitumor activity. In addition, TADCs tolerized TCR(hi) T cells but not TCR(lo) T cells in vitro. Our findings show that T-cell avidity is a critical determinant of not only tumor control but also susceptibility to tolerization in the tumor microenvironment. For this reason, care should be exercised when considering T-cell avidity in designing cancer immunotherapeutics.
Collapse
Affiliation(s)
- Ziqiang Zhu
- Tumor Immunity and Tolerance Section, Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, NCI, Frederick, MD 21702, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Chou CK, Schietinger A, Liggitt HD, Tan X, Funk S, Freeman GJ, Ratliff TL, Greenberg NM, Greenberg PD. Cell-intrinsic abrogation of TGF-β signaling delays but does not prevent dysfunction of self/tumor-specific CD8 T cells in a murine model of autochthonous prostate cancer. THE JOURNAL OF IMMUNOLOGY 2012; 189:3936-46. [PMID: 22984076 DOI: 10.4049/jimmunol.1201415] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Adoptive T cell therapy (ACT) for the treatment of established cancers is actively being pursued in clinical trials. However, poor in vivo persistence and maintenance of antitumor activity of transferred T cells remain major problems. TGF-β is a potent immunosuppressive cytokine that is often expressed at high levels within the tumor microenvironment, potentially limiting T cell-mediated antitumor activity. In this study, we used a model of autochthonous murine prostate cancer to evaluate the effect of cell-intrinsic abrogation of TGF-β signaling in self/tumor-specific CD8 T cells used in ACT to target the tumor in situ. We found that persistence and antitumor activity of adoptively transferred effector T cells deficient in TGF-β signaling were significantly improved in the cancerous prostate. However, over time, despite persistence in peripheral lymphoid organs, the numbers of transferred cells in the prostate decreased and the residual prostate-infiltrating T cells were no longer functional. These findings reveal that TGF-β negatively regulates the accumulation and effector function of transferred self/tumor-specific CD8 T cells and highlight that, when targeting a tumor Ag that is also expressed as a self-protein, additional substantive obstacles are operative within the tumor microenvironment, potentially hampering the success of ACT for solid tumors.
Collapse
Affiliation(s)
- Cassie K Chou
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA 98105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chan SF, Wang HT, Huang KW, Torng PL, Lee HI, Hwang LH. Anti-angiogenic therapy renders large tumors vulnerable to immunotherapy via reducing immunosuppression in the tumor microenvironment. Cancer Lett 2012; 320:23-30. [PMID: 22266191 DOI: 10.1016/j.canlet.2012.01.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 01/12/2012] [Accepted: 01/13/2012] [Indexed: 10/14/2022]
Abstract
We have recently demonstrated that a 4-in-1 gene therapy strategy that contains two anti-angiogenic genes [endostatin and pigment epithelium-derived factor] and two cytokine genes [granulocyte macrophage colony-stimulating factor and interleukin 12] has a considerable antitumor effect on large tumors in a woodchuck hepatoma model. The current study further investigates the underlying mechanisms for the antitumor effect observed by using small rodent models. We found that immunotherapy alone increased immunosuppressive cells in large tumors over time, whereas the anti-angiogenic therapy contained in the 4-in-1 strategy alleviated immunosuppression and made tumors vulnerable to immunotherapy, thus resulting in a synergistic antitumor effect.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Apoptosis/genetics
- Apoptosis/immunology
- Cell Line, Tumor
- Combined Modality Therapy
- Endostatins/biosynthesis
- Endostatins/genetics
- Endostatins/immunology
- Eye Proteins/biosynthesis
- Eye Proteins/genetics
- Eye Proteins/immunology
- Genetic Therapy/methods
- Humans
- Immunotherapy/methods
- Liver Neoplasms, Experimental/blood supply
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/immunology
- Liver Neoplasms, Experimental/therapy
- Lymphocytes, Tumor-Infiltrating/immunology
- Mice
- Mice, Inbred BALB C
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/therapy
- Nerve Growth Factors/biosynthesis
- Nerve Growth Factors/genetics
- Nerve Growth Factors/immunology
- Serpins/biosynthesis
- Serpins/genetics
- Serpins/immunology
- T-Lymphocytes, Regulatory/immunology
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Suit-Fong Chan
- Graduate Institute of Microbiology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Tumors create a unique immunosuppressive microenvironment (tumor microenvironment, TME) whereby leukocytes are recruited into the tumor by various chemokines and growth factors. However, once in the TME, these cells lose the ability to promote anti-tumor immunity and begin to support tumor growth and down-regulate anti-tumor immune responses. Studies on tumor-associated leukocytes have mainly focused on cells isolated from tumor-draining lymph nodes or spleen due to the inherent difficulties in obtaining sufficient cell numbers and purity from the primary tumor. While identifying the mechanisms of cell activation and trafficking through the lymphatic system of tumor bearing mice is important and may give insight to the kinetics of immune responses to cancer, in our experience, many leukocytes, including dendritic cells (DCs), in tumor-draining lymph nodes have a different phenotype than those that infiltrate tumors. Furthermore, we have previously demonstrated that adoptively-transferred T cells isolated from the tumor-draining lymph nodes are not tolerized and are capable of responding to secondary stimulation in vitro unlike T cells isolated from the TME, which are tolerized and incapable of proliferation or cytokine production. Interestingly, we have shown that changing the tumor microenvironment, such as providing CD4(+) T helper cells via adoptive transfer, promotes CD8(+) T cells to maintain pro-inflammatory effector functions. The results from each of the previously mentioned studies demonstrate the importance of measuring cellular responses from TME-infiltrating immune cells as opposed to cells that remain in the periphery. To study the function of immune cells which infiltrate tumors using the Miltenyi Biotech isolation system, we have modified and optimized this antibody-based isolation procedure to obtain highly enriched populations of antigen presenting cells and tumor antigen-specific cytotoxic T lymphocytes. The protocol includes a detailed dissection of murine prostate tissue from a spontaneous prostate tumor model (TRansgenic Adenocarcinoma of the Mouse Prostate -TRAMP) and a subcutaneous melanoma (B16) tumor model followed by subsequent purification of various leukocyte populations.
Collapse
Affiliation(s)
- Stephanie K Watkins
- Tumor Immunity and Tolerance Section, Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, National Cancer Institute - Frederick, USA
| | | | | | | |
Collapse
|
29
|
Mueller M, Reichardt W, Koerner J, Groettrup M. Coencapsulation of tumor lysate and CpG-ODN in PLGA-microspheres enables successful immunotherapy of prostate carcinoma in TRAMP mice. J Control Release 2012; 162:159-66. [PMID: 22709589 DOI: 10.1016/j.jconrel.2012.06.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 06/08/2012] [Accepted: 06/09/2012] [Indexed: 01/26/2023]
Abstract
Biodegradable poly(lactide-co-glycolide) (PLGA) microspheres (MS) deliver antigens and toll like receptor (TLR) ligands to antigen presenting cells (APC) in vitro and in vivo. PLGA-MS-microencapsulated model antigens are efficiently presented on MHC class I and II molecules of dendritic cells and stimulate strong cytotoxic and T helper cell responses enabling the eradication of pre-existing model tumors. The application of tumor lysates as a source of antigen for immunotherapy has so far not been very successful also due to a lack of suitable delivery systems. In this study we used PLGA-MS with co-encapsulated tumor lysates and CpG oligodeoxynucleotides (CpG-ODN) as well as microencapsulated polyI:C in order to elicit anti-tumor responses. Immunization of mice with such mixtures of MS yielded substantial cytotoxic T cell (CTL) responses and interfered with tumor growth in TRAMP mice, a pre-clinical transgenic mouse model of prostate carcinoma, which has previously resisted dendritic cell-based therapy. As an important step towards clinical application of PLGA-MS, we could show that γ-irradiation of PLGA-MS sterilized the MS, without reducing their efficacy in eliciting CTL and anti-tumor responses in subcutaneous tumor grafts. Since PLGA is approved for clinical application, sterilized PLGA-MS containing tumor lysates and TLR ligands hold promise as anti-tumor vaccines against prostate carcinoma in humans.
Collapse
Affiliation(s)
- Marc Mueller
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany.
| | | | | | | |
Collapse
|
30
|
Wang HT, Lee HI, Guo JH, Chen SH, Liao ZK, Huang KW, Torng PL, Hwang LH. Calreticulin promotes tumor lymphocyte infiltration and enhances the antitumor effects of immunotherapy by up-regulating the endothelial expression of adhesion molecules. Int J Cancer 2012; 130:2892-2902. [PMID: 21805477 DOI: 10.1002/ijc.26339] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 07/22/2011] [Indexed: 01/09/2023]
Abstract
Tumor-induced angiogenesis has been shown to suppress immune responses. One mechanism is to suppress leukocyte-endothelial cell interaction by down-regulating the expression of adhesion molecules, such as intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1 and E-selectin on the tumor endothelium, which enables tumor cells to escape immune surveillance. Calreticulin (CRT), a chaperone protein mainly located in the endoplasmic reticulum, has been shown to exert anti-angiogenic activity and inhibit tumor growth. Here, we demonstrate that in addition to inhibiting angiogenesis, CRT also enhances the expression of both ICAM-1 and VCAM-1 on tumor endothelial cells. This expression results in enhanced leukocyte-endothelial cell interactions and increased lymphocyte infiltration into tumors. Therefore, combining intramuscular CRT gene transfer with intratumoral cytokine gene therapies significantly improves the antitumor effects of immunotherapy by markedly increasing the levels of tumor-infiltrating lymphocytes. This combined treatment increased the levels of infiltrating lymphocytes to those achieved using four times the cytokine dosage. The combined therapy also resulted in lower levels of immunosuppressive molecules and higher levels of activated T-cells in the tumor microenvironment than immunotherapy alone. In conclusion, this study describes a new antitumor mechanism of CRT that involves the up-regulation of tumor endothelial adhesion molecules and the enhanced infiltration of tumor-specific lymphocytes. Thus, CRT treatment can make tumor cells more vulnerable to immunotherapy and improve the therapeutic efficacy of immunotherapy.
Collapse
Affiliation(s)
- Hao-Tien Wang
- Graduate Institute of Microbiology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Rigamonti N, Bellone M. Prostate cancer, tumor immunity and a renewed sense of optimism in immunotherapy. Cancer Immunol Immunother 2012; 61:453-68. [PMID: 22331081 PMCID: PMC11028924 DOI: 10.1007/s00262-012-1216-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 01/28/2012] [Indexed: 12/12/2022]
Abstract
The recent FDA approval of the first therapeutic vaccine against prostate cancer has revitalized the public interest in the fields of cancer immunology and immunotherapy. Yet, clinical results are modest. A reason for this limited success may reside in the capacity of the tumor to convert inflammation in a tumor-promoting condition and eventually escape immune surveillance. Here we present the main known interactions between the prostate tumor and the immune system, showing how the malignancy can dodge the immune system by also exerting several immunosuppressive mechanisms. We also discuss experimental and clinical strategies proposed to counteract cancer immune evasion and emphasize the importance of implementing appropriate murine models like the transgenic adenocarcinoma of the mouse prostate model for investigating the biology of prostate cancer and novel immunotherapy approaches against it.
Collapse
Affiliation(s)
- Nicolò Rigamonti
- Cellular Immunology Unit, Program of Immunology, Gene Therapy and Bio-Immunotherapy of Cancer (PIBIC), San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | - Matteo Bellone
- Cellular Immunology Unit, Program of Immunology, Gene Therapy and Bio-Immunotherapy of Cancer (PIBIC), San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
32
|
Bruno TC, Rothwell C, Grosso JF, Getnet D, Yen HR, Durham NM, Netto G, Pardoll DM, Drake CG. Anti-tumor effects of endogenous prostate cancer-specific CD8 T cells in a murine TCR transgenic model. Prostate 2012; 72:514-22. [PMID: 21761425 PMCID: PMC3248615 DOI: 10.1002/pros.21453] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 06/13/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND The CD8 T-cell response to prostate and other cancers is often functionally diminished or absent. This may occur via deletion of tumor-specific T cells, through acquisition of an anergic phenotype, or via active suppression mediated by another population of cells. METHODS We used a double transgenic model in which mice express CD8 T cells specific for a prostate/prostate cancer antigen to study the response of CD8 T cells to evolving autochronous prostate tumors in TRAMP mice. CD8 T cells were analyzed for functionality by measuring IFN-γ production via flow cytometry and via an in vivo CTL killing assay. In addition, pathological scoring of the prostates of the double transgenic mice was compared to scoring of tumor burden prostates of ProTRAMP mice. RESULTS Tumor-specific CD8 T cells were not grossly deleted in these animals, but evidenced a clearly non-functional phenotype. Interestingly, full lytic function was rapidly recovered upon removal from tumor-bearing mice. CONCLUSIONS These data indicate a role for continuous antigen exposure in the maintenance of tumor-specific CD8 T-cell tolerance to prostate cancer.
Collapse
Affiliation(s)
- Tullia C. Bruno
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Cristin Rothwell
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Joseph F. Grosso
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Derese Getnet
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Hung Rong Yen
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Nicholas M. Durham
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - George Netto
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Drew M. Pardoll
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Charles G. Drake
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
33
|
Engelhardt JJ, Boldajipour B, Beemiller P, Pandurangi P, Sorensen C, Werb Z, Egeblad M, Krummel MF. Marginating dendritic cells of the tumor microenvironment cross-present tumor antigens and stably engage tumor-specific T cells. Cancer Cell 2012; 21:402-17. [PMID: 22439936 PMCID: PMC3311997 DOI: 10.1016/j.ccr.2012.01.008] [Citation(s) in RCA: 247] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 11/18/2011] [Accepted: 01/13/2012] [Indexed: 01/22/2023]
Abstract
The nature and site of tumor-antigen presentation to immune T cells by bone-marrow-derived cells within the tumor microenvironment remains unresolved. We generated a fluorescent mouse model of spontaneous immunoevasive breast cancer and identified a subset of myeloid cells with significant similarity to dendritic cells and macrophages that constitutively ingest tumor-derived proteins and present processed tumor antigens to reactive T cells. Using intravital live imaging, we determined that infiltrating tumor-specific T cells engage in long-lived interactions with these cells, proximal to the tumor. In vitro, these cells capture cytotoxic T cells in signaling-competent conjugates but do not support full activation or sustain cytolysis. The spatiotemporal dynamics revealed here implicate nonproductive interactions between T cells and antigen-presenting cells on the tumor margin.
Collapse
Affiliation(s)
- John J. Engelhardt
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Bijan Boldajipour
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Peter Beemiller
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Priya Pandurangi
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Caitlin Sorensen
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Zena Werb
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Mikala Egeblad
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Matthew F. Krummel
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
- Contact: Matthew F. Krummel, Department of Pathology, 513 Parnassus Ave., Box 0511, San Francisco, California 94143, USA. Phone: (415) 514 -3130; Fax: (415) 514-3165;
| |
Collapse
|
34
|
Watkins SK, Hurwitz AA. FOXO3: A master switch for regulating tolerance and immunity in dendritic cells. Oncoimmunology 2012; 1:252-254. [PMID: 22720261 PMCID: PMC3376981 DOI: 10.4161/onci.1.2.18241] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent findings demonstrate that dendritic cells in prostate tumors induce immune tolerance in tumor antigen-specific CD8+ T cells. We propose that DC tolerogenicity can be regulated by expression of Foxo3; silencing Foxo3 expression enhances anti-tumor immune responses and renders FOXO3 a potential target for immunotherapy.
Collapse
Affiliation(s)
- Stephanie K Watkins
- Tumor Immunity and Tolerance Section; Laboratory of Molecular Immunoregulation; Cancer and Inflammation Program; NCI-Frederick; Frederick, MD USA
| | | |
Collapse
|
35
|
Hurwitz AA, Watkins SK. Immune suppression in the tumor microenvironment: a role for dendritic cell-mediated tolerization of T cells. Cancer Immunol Immunother 2012; 61:289-293. [PMID: 22237887 DOI: 10.1007/s00262-011-1181-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 12/01/2011] [Indexed: 02/07/2023]
Abstract
Immune suppression remains a consistent obstacle to successful anti-tumor immune responses. As tumors develop, they create a microenvironment that not only supports tumor growth and metastasis but also reduces potential adaptive immunity to tumor antigens. Among the many components of this tumor microenvironment is a population of dendritic cells which exert profound immune suppressive effects on T cells. In this review, we discuss our recent findings related to these tumor-associated dendritic cells and how targeting them may serve to generate more durable anti-tumor immune responses.
Collapse
Affiliation(s)
- Arthur A Hurwitz
- Tumor Immunity and Tolerance Section, Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, National Cancer Institute, 211 Building 567, 1050 Boyles Street, NCI-Frederick, Frederick, MD, 21702, USA.
| | - Stephanie K Watkins
- Tumor Immunity and Tolerance Section, Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, National Cancer Institute, 211 Building 567, 1050 Boyles Street, NCI-Frederick, Frederick, MD, 21702, USA
| |
Collapse
|
36
|
Foster AD, Sivarapatna A, Gress RE. The aging immune system and its relationship with cancer. ACTA ACUST UNITED AC 2011; 7:707-718. [PMID: 22121388 DOI: 10.2217/ahe.11.56] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The incidence of most common cancers increases with age. This occurs in association with, and is possibly caused by a decline in immune function, termed immune senescence. Although the size of the T-cell compartment is quantitatively maintained into older age, several deleterious changes (including significant changes to T-cell subsets) occur over time that significantly impair immunity. This article highlights some of the recent findings regarding the aging immune system, with an emphasis on the T-cell compartment and its role in cancer.
Collapse
Affiliation(s)
- Anthony D Foster
- National Cancer Institute (NCI), Experimental Transplantation & Immunology Branch (ETIB), 10 Center Dr. 10 CRC, 3-3330 Bethesda, MD 20814, USA
| | | | | |
Collapse
|
37
|
ELISPOT analysis of a new CTL based DNA vaccine for HIV-1 using GM-CSF in DNA prime/peptide boost strategy: GM-CSF induced long-lived memory responses. Immunol Lett 2011; 140:14-20. [DOI: 10.1016/j.imlet.2011.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 05/15/2011] [Accepted: 05/15/2011] [Indexed: 11/19/2022]
|
38
|
Fuertes MB, Kacha AK, Kline J, Woo SR, Kranz DM, Murphy KM, Gajewski TF. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8{alpha}+ dendritic cells. ACTA ACUST UNITED AC 2011; 208:2005-16. [PMID: 21930765 PMCID: PMC3182064 DOI: 10.1084/jem.20101159] [Citation(s) in RCA: 969] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The generation of antitumor CD8+ T cell responses requires type I interferon responsiveness in host antigen-presenting cells Despite lack of tumor control in many models, spontaneous T cell priming occurs frequently in response to a growing tumor. However, the innate immune mechanisms that promote natural antitumor T cell responses are undefined. In human metastatic melanoma, there was a correlation between a type I interferon (IFN) transcriptional profile and T cell markers in metastatic tumor tissue. In mice, IFN-β was produced by CD11c+ cells after tumor implantation, and tumor-induced T cell priming was defective in mice lacking IFN-α/βR or Stat1. IFN signaling was required in the hematopoietic compartment at the level of host antigen-presenting cells, and selectively for intratumoral accumulation of CD8α+ dendritic cells, which were demonstrated to be essential using Batf3−/− mice. Thus, host type I IFNs are critical for the innate immune recognition of a growing tumor through signaling on CD8α+ DCs.
Collapse
Affiliation(s)
- Mercedes B Fuertes
- Department of Pathology and Department of Medicine, Section of Hematology/Oncology, the University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Olurinde MO, Shen CH, Drake A, Bai A, Chen J. Persistence of tumor-infiltrating CD8 T cells is tumor-dependent but antigen-independent. Cell Mol Immunol 2011; 8:415-23. [PMID: 21666707 PMCID: PMC3381361 DOI: 10.1038/cmi.2011.18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 12/20/2022] Open
Abstract
How tumor-infiltrating lymphocytes (TILs) that are tumor-specific but functionally tolerant persist in the antigen-expressing tumor tissue is largely unknown. We have previously developed a modified TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model where prostate cancer cells express the T-cell epitope SIYRYYGL (SIY) recognized by CD8 T cells expressing the 2C T-cell receptor (TCR) (referred to as TRP-SIY mice). In TRP-SIY mice, activated 2C T cells rapidly become tolerant following infiltration into the prostate tumor. In this study, we show that tolerant 2C T cells persist in the prostate tumor of TRP-SIY mice by proliferating slowly in a tumor-dependent, but antigen-, interleukin (IL)-7- and IL-15-independent manner. We also show that disappearance of 2C T cells from the lymphoid organs of TRP-SIY mice are due to antigen-induced T-cell contraction rather than altered trafficking or generalized T-cell depletion in the mice. Finally, we show that clonal T cells unreactive to SIY are equally capable of persisting in the prostate tumor. These findings suggest that while functional tolerance of TILs is induced by antigen, persistence of tolerant TILs in the tumor tissue is mediated by a novel mechanism: slow proliferation independent of antigen and homeostatic cytokines. These results also allow CD8 T-cell survival in the tumor environment to be compared with T-cell survival in chronic infection.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Proliferation
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Flow Cytometry
- Humans
- Immune Tolerance
- Influenza A Virus, H1N1 Subtype
- Interleukin-15/immunology
- Interleukin-7/immunology
- Lymphocyte Activation
- Lymphocytes, Tumor-Infiltrating/cytology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Prostate/immunology
- Prostate/metabolism
- Prostate/pathology
- Prostatic Neoplasms/immunology
- Prostatic Neoplasms/pathology
- Real-Time Polymerase Chain Reaction
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- Transduction, Genetic
Collapse
|
40
|
Abstract
The interaction between the immune system and prostate cancer has been an area of research interest for several decades. The recent U.S. Food and Drug Administration approval of 2 first-in-class proof-of-concept immunotherapies (sipuleucel-T and ipilimumab) has stimulated broader interest in manipulating immunity to fight cancer. In the context of prostate cancer, the immunotherapy strategies that have garnered the most interest are the therapeutic vaccination strategies, exemplified by sipuleucel-T and PROSTVAC-VF, and immune checkpoint blockade of CTLA-4 and PD-1. Improved understanding of the immune responses generated by these strategies and development of predictive biomarkers for patient selection will guide rational combinations of these treatments and provide building blocks for future immunotherapies.
Collapse
Affiliation(s)
- Kenneth F May
- Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| | | | | | | | | |
Collapse
|
41
|
Hirohashi Y, Sato N. Tumor-associated dendritic cells: molecular mechanisms to suppress antitumor immunity. Immunotherapy 2011; 3:945-7. [DOI: 10.2217/imt.11.94] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Evaluation of: Watkins SK, Zhu Z, Riboldi E et al. FOXO3 programs tumor-associated DCs to become tolerogenic in human and murine prostate cancer. J. Clin. Invest. 121(4), 1361–1372 (2011). Tumor-associated dendritic cells (TADCs) have been described as immune-suppressive cells in cancers, and part of the molecular mechanisms has emerged. The transcription factor FOXO3 – one of the tumor suppressors – is overexpressed in TADCs that have been infiltrated in human prostate cancers and TRAMP mouse model of prostate cancers, and induces the expression of immune-suppressive genes including indoleamine-2,3-dioxygenase (IDO1), arginase (ARG1) and TGF-β. Adoptive transfer of T helper cells or silencing of FOXO3 by siRNAs repressed the expression of FOXO3 gene and inhibited the tolerogenicity of TADCs. Therefore, inhibition of FOXO3 signals might be a clue for improvement of cancer immunotherapy.
Collapse
Affiliation(s)
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-ku, Sapporo 060-8556, Japan
| |
Collapse
|
42
|
T cell surveillance of oncogene-induced prostate cancer is impeded by T cell-derived TGF-β1 cytokine. Immunity 2011; 35:123-34. [PMID: 21757379 DOI: 10.1016/j.immuni.2011.04.019] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/31/2011] [Accepted: 04/12/2011] [Indexed: 01/01/2023]
Abstract
Tolerance induction in T cells takes place in most tumors and is thought to account for tumor evasion from immune eradication. Production of the cytokine TGF-β is implicated in immunosuppression, but the cellular mechanism by which TGF-β induces T cell dysfunction remains unclear. With a transgenic model of prostate cancer, we showed that tumor development was not suppressed by the adaptive immune system, which was associated with heightened TGF-β signaling in T cells from the tumor-draining lymph nodes. Blockade of TGF-β signaling in T cells enhanced tumor antigen-specific T cell responses and inhibited tumor development. Surprisingly, T cell- but not Treg cell-specific ablation of TGF-β1 was sufficient to augment T cell cytotoxic activity and blocked tumor growth and metastases. These findings reveal that T cell production of TGF-β1 is an essential requirement for tumors to evade immunosurveillance independent of TGF-β produced by tumors.
Collapse
|
43
|
Manuel ER, Blache CA, Paquette R, Kaltcheva TI, Ishizaki H, Ellenhorn JD, Hensel M, Metelitsa L, Diamond DJ. Enhancement of cancer vaccine therapy by systemic delivery of a tumor-targeting Salmonella-based STAT3 shRNA suppresses the growth of established melanoma tumors. Cancer Res 2011; 71:4183-91. [PMID: 21527558 PMCID: PMC3117077 DOI: 10.1158/0008-5472.can-10-4676] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cancer vaccine therapies have only achieved limited success when focusing on effector immunity with the goal of eliciting robust tumor-specific T-cell responses. More recently, there is an emerging understanding that effective immunity can only be achieved by coordinate disruption of tumor-derived immunosuppression. Toward that goal, we have developed a potent Salmonella-based vaccine expressing codon-optimized survivin (CO-SVN), referred to as 3342Max. When used alone as a therapeutic vaccine, 3342Max can attenuate growth of aggressive murine melanomas overexpressing SVN. However, under more immunosuppressive conditions, such as those associated with larger tumor volumes, we found that the vaccine was ineffective. Vaccine efficacy could be rescued if tumor-bearing mice were treated initially with Salmonella encoding a short hairpin RNA (shRNA) targeting the tolerogenic molecule STAT3 (YS1646-shSTAT3). In vaccinated mice, silencing STAT3 increased the proliferation and granzyme B levels of intratumoral CD4(+) and CD8(+) T cells. The combined strategy also increased apoptosis in tumors of treated mice, enhancing tumor-specific killing of tumor targets. Interestingly, mice treated with YS1646-shSTAT3 or 3342Max alone were similarly unsuccessful in rejecting established tumors, whereas the combined regimen was highly potent. Our findings establish that a combined strategy of silencing immunosuppressive molecules followed by vaccination can act synergistically to attenuate tumor growth, and they offer a novel translational direction to improve tumor immunotherapy.
Collapse
Affiliation(s)
- Edwin R. Manuel
- Division of Translational Vaccine Research, City of Hope, Duarte, California
| | - Céline A. Blache
- Division of Translational Vaccine Research, City of Hope, Duarte, California
| | - Rebecca Paquette
- Division of Translational Vaccine Research, City of Hope, Duarte, California
| | | | - Hidenobu Ishizaki
- Division of Translational Vaccine Research, City of Hope, Duarte, California
| | | | - Michael Hensel
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Leonid Metelitsa
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Don J. Diamond
- Division of Translational Vaccine Research, City of Hope, Duarte, California
| |
Collapse
|
44
|
Sierro SR, Donda A, Perret R, Guillaume P, Yagita H, Levy F, Romero P. Combination of lentivector immunization and low-dose chemotherapy or PD-1/PD-L1 blocking primes self-reactive T cells and induces anti-tumor immunity. Eur J Immunol 2011; 41:2217-28. [DOI: 10.1002/eji.201041235] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 03/14/2011] [Accepted: 04/27/2011] [Indexed: 11/08/2022]
|
45
|
Specific recognition and inhibition of Ewing tumour growth by antigen-specific allo-restricted cytotoxic T cells. Br J Cancer 2011; 104:948-56. [PMID: 21407224 PMCID: PMC3065285 DOI: 10.1038/bjc.2011.54] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background: The development of a successful immunotherapy is hampered by an ineffective T-cell repertoire against tumour antigens and the inability of the patient's immune system to overcome tolerance-inducing mechanisms. Here, we test the specific recognition and lytical potential of allo-restricted CD8+ T cells against Ewing tumour (ET) associated antigens Enhancer of Zeste, Drosophila Homolog 2 (EZH2), and Chondromodulin-I (CHM1) identified through previous microarray analysis. Methods: Following repetitive CHM1319 (VIMPCSWWV) and EZH2666 (YMCSFLFNL) peptide-driven stimulations with HLA-A*0201+ dendritic cells (DC), allo-restricted HLA-A*0201− CD8+ T cells were stained with HLA-A*0201/peptide multimers, sorted and expanded by limiting dilution. Results: Expanded T cells specifically recognised peptide-pulsed target cells or antigen-transfected cells in the context of HLA-A*0201 and killed HLA-A*0201+ ET lines expressing the antigen while HLA-A*0201– ET lines were not affected. Furthermore, adoptively transferred T cells caused significant ET growth delay in Rag2−/−γC−/− mice. Within this context, we identified the CHM1319 peptide as a new candidate target antigen for ET immunotherapy. Conclusion: These results clearly identify the ET-derived antigens, EZH2666 and CHM1319, as suitable targets for protective allo-restricted human CD8+ T-cell responses against non-immunogenic ET and may benefit new therapeutic strategies in ET patients treated with allogeneic stem cell transplantation.
Collapse
|
46
|
Watkins SK, Zhu Z, Riboldi E, Shafer-Weaver KA, Stagliano KE, Sklavos MM, Ambs S, Yagita H, Hurwitz AA. FOXO3 programs tumor-associated DCs to become tolerogenic in human and murine prostate cancer. J Clin Invest 2011; 121:1361-72. [PMID: 21436588 PMCID: PMC3069771 DOI: 10.1172/jci44325] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 01/26/2011] [Indexed: 01/05/2023] Open
Abstract
The limited success of cancer immunotherapy is often attributed to the loss of antigen-specific T cell function in situ. However, the mechanism for this loss of function is unknown. In this study, we describe a population of tumor-associated DCs (TADCs) in both human and mouse prostate cancer that tolerizes and induces suppressive activity in tumor-specific T cells. In tumors from human prostate cancer patients and transgenic adenocarcinoma of the mouse prostate (TRAMP) mice, TADCs expressed elevated levels of FOXO3 and Foxo3, respectively, which correlated with expression of suppressive genes that negatively regulate T cell function. Silencing FOXO3 and Foxo3 with siRNAs abrogated the ability of human and mouse TADCs, respectively, to tolerize and induce suppressive activity by T cells. Silencing Foxo3 in mouse TADCs was also associated with diminished expression of tolerogenic mediators, such as indoleamine-2,3-dioxygenase, arginase, and TGF-β, and upregulated expression of costimulatory molecules and proinflammatory cytokines. Importantly, transfer of tumor-specific CD4+ Th cells into TRAMP mice abrogated TADC tolerogenicity, which was associated with reduced Foxo3 expression. These findings demonstrate that FOXO3 may play a critical role in mediating TADC-induced immune suppression. Moreover, our results identify what we believe to be a novel target for preventing CTL tolerance and enhancing immune responses to cancer by modulating the immunosuppressive activity of TADCs found in the tumor microenvironment.
Collapse
Affiliation(s)
- Stephanie K. Watkins
- Tumor Immunity and Tolerance Section, Laboratory of Molecular Immunoregulation and
Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute-Frederick (NCI-Frederick), Frederick, Maryland, USA.
SAIC-Frederick Inc., Frederick, Maryland, USA.
Breast and Prostate Cancer Unit, Laboratory of Human Carcinogenesis, NCI, Frederick, Maryland, USA.
Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ziqiang Zhu
- Tumor Immunity and Tolerance Section, Laboratory of Molecular Immunoregulation and
Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute-Frederick (NCI-Frederick), Frederick, Maryland, USA.
SAIC-Frederick Inc., Frederick, Maryland, USA.
Breast and Prostate Cancer Unit, Laboratory of Human Carcinogenesis, NCI, Frederick, Maryland, USA.
Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Elena Riboldi
- Tumor Immunity and Tolerance Section, Laboratory of Molecular Immunoregulation and
Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute-Frederick (NCI-Frederick), Frederick, Maryland, USA.
SAIC-Frederick Inc., Frederick, Maryland, USA.
Breast and Prostate Cancer Unit, Laboratory of Human Carcinogenesis, NCI, Frederick, Maryland, USA.
Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kim A. Shafer-Weaver
- Tumor Immunity and Tolerance Section, Laboratory of Molecular Immunoregulation and
Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute-Frederick (NCI-Frederick), Frederick, Maryland, USA.
SAIC-Frederick Inc., Frederick, Maryland, USA.
Breast and Prostate Cancer Unit, Laboratory of Human Carcinogenesis, NCI, Frederick, Maryland, USA.
Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Katherine E.R. Stagliano
- Tumor Immunity and Tolerance Section, Laboratory of Molecular Immunoregulation and
Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute-Frederick (NCI-Frederick), Frederick, Maryland, USA.
SAIC-Frederick Inc., Frederick, Maryland, USA.
Breast and Prostate Cancer Unit, Laboratory of Human Carcinogenesis, NCI, Frederick, Maryland, USA.
Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Martha M. Sklavos
- Tumor Immunity and Tolerance Section, Laboratory of Molecular Immunoregulation and
Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute-Frederick (NCI-Frederick), Frederick, Maryland, USA.
SAIC-Frederick Inc., Frederick, Maryland, USA.
Breast and Prostate Cancer Unit, Laboratory of Human Carcinogenesis, NCI, Frederick, Maryland, USA.
Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Stefan Ambs
- Tumor Immunity and Tolerance Section, Laboratory of Molecular Immunoregulation and
Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute-Frederick (NCI-Frederick), Frederick, Maryland, USA.
SAIC-Frederick Inc., Frederick, Maryland, USA.
Breast and Prostate Cancer Unit, Laboratory of Human Carcinogenesis, NCI, Frederick, Maryland, USA.
Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hideo Yagita
- Tumor Immunity and Tolerance Section, Laboratory of Molecular Immunoregulation and
Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute-Frederick (NCI-Frederick), Frederick, Maryland, USA.
SAIC-Frederick Inc., Frederick, Maryland, USA.
Breast and Prostate Cancer Unit, Laboratory of Human Carcinogenesis, NCI, Frederick, Maryland, USA.
Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Arthur A. Hurwitz
- Tumor Immunity and Tolerance Section, Laboratory of Molecular Immunoregulation and
Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute-Frederick (NCI-Frederick), Frederick, Maryland, USA.
SAIC-Frederick Inc., Frederick, Maryland, USA.
Breast and Prostate Cancer Unit, Laboratory of Human Carcinogenesis, NCI, Frederick, Maryland, USA.
Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
47
|
Gavalas NG, Karadimou A, Dimopoulos MA, Bamias A. Immune response in ovarian cancer: how is the immune system involved in prognosis and therapy: potential for treatment utilization. Clin Dev Immunol 2011; 2010:791603. [PMID: 21318181 PMCID: PMC3034919 DOI: 10.1155/2010/791603] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 12/17/2010] [Indexed: 12/03/2022]
Abstract
Ovarian cancer is one of the leading causes of cancer-related death among women. Resistance to the disease occurs in more than 70% of the cases even after treated with chemotherapy agents such as paclitaxel- and platinum-based agents. The immune system is increasingly becoming a target for intense research in order to study the host's immune response against ovarian cancer. T cell populations, including NK T cells and Tregs, and cytokines have been associated with disease outcome, indicating their increasing clinical significance, having been associated with prognosis and as markers of disease progress, respectively. Harnessing the immune system capacity in order to induce antitumor response remains a major challenge. This paper examines the recent developments in our understanding of the mechanisms of development of the immune response in ovarian cancer as well as its prognostic significance and the existing experience in clinical studies.
Collapse
Affiliation(s)
- Nikos G. Gavalas
- Department of Clinical Therapeutics, Medical School, University of Athens, Alexandra Hospital, 80 Vasilissis Sofias Avenue, 115 28 Athens, Greece
| | - Alexandra Karadimou
- Department of Clinical Therapeutics, Medical School, University of Athens, Alexandra Hospital, 80 Vasilissis Sofias Avenue, 115 28 Athens, Greece
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, Medical School, University of Athens, Alexandra Hospital, 80 Vasilissis Sofias Avenue, 115 28 Athens, Greece
| | - Aristotelis Bamias
- Department of Clinical Therapeutics, Medical School, University of Athens, Alexandra Hospital, 80 Vasilissis Sofias Avenue, 115 28 Athens, Greece
| |
Collapse
|
48
|
Karlou M, Tzelepi V, Efstathiou E. Therapeutic targeting of the prostate cancer microenvironment. Nat Rev Urol 2011; 7:494-509. [PMID: 20818327 DOI: 10.1038/nrurol.2010.134] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Solid tumors can be thought of as multicellular 'organs' that consist of a variety of cells as well as a scaffold of noncellular matrix. Stromal-epithelial crosstalk is integral to prostate cancer progression and metastasis, and androgen signaling is an important component of this crosstalk at both the primary and metastatic sites. Intratumoral production of androgen is an important mechanism of castration resistance and has been the focus of novel therapeutic approaches with promising results. Various other pathways are important for stromal-epithelial crosstalk and represent attractive candidate therapeutic targets. Hedgehog signaling has been associated with tumor progression, growth and survival, while Src family kinases have been implicated in tumor progression and in regulation of cancer cell migration. Fibroblast growth factors and transforming growth factor beta signaling regulate cell proliferation, apoptosis and angiogenesis in the prostate cancer microenvironment. Integrins mediate communication between the cell and the extracellular matrix, enhancing growth, migration, invasion and metastasis of cancer cells. The contribution of stromal-epithelial crosstalk to prostate cancer initiation and progression provides the impetus for combinatorial microenvironment-targeting strategies.
Collapse
Affiliation(s)
- Maria Karlou
- Department of Genitourinary Medical Oncology, David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77230-1439, USA
| | | | | |
Collapse
|
49
|
Regulation of tumor immunity by tumor/dendritic cell fusions. Clin Dev Immunol 2010; 2010:516768. [PMID: 21048993 PMCID: PMC2964897 DOI: 10.1155/2010/516768] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 09/22/2010] [Indexed: 02/07/2023]
Abstract
The goal of cancer vaccines is to induce antitumor immunity that ultimately will reduce tumor burden in tumor environment. Several strategies involving dendritic cells- (DCs)- based vaccine incorporating different tumor-associated antigens to induce antitumor immune responses against tumors have been tested in clinical trials worldwide. Although DCs-based vaccine such as fusions of whole tumor cells and DCs has been proven to be clinically safe and is efficient to enhance antitumor immune responses for inducing effective immune response and for breaking T-cell tolerance to tumor-associated antigens (TAAs), only a limited success has occurred in clinical trials. This paper reviews tumor immune escape and current strategies employed in the field of tumor/DC fusions vaccine aimed at enhancing activation of TAAs-specific cytotoxic T cells in tumor microenvironment.
Collapse
|
50
|
Huang KW, Wu HL, Lin HL, Liang PC, Chen PJ, Chen SH, Lee HI, Su PY, Wu WH, Lee PH, Hwang LH, Chen DS. Combining antiangiogenic therapy with immunotherapy exerts better therapeutical effects on large tumors in a woodchuck hepatoma model. Proc Natl Acad Sci U S A 2010; 107:14769-14774. [PMID: 20679198 PMCID: PMC2930482 DOI: 10.1073/pnas.1009534107] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cytokine and antiangiogenic gene therapies have proved effective in implanted hepatocellular carcinoma (HCC) models in which small tumor burdens were established in small rodents. These models, however, may not reflect human HCCs, which are frequently detected at a stage when tumors are large and multifocal. In addition, HCC in patients is often associated with viral hepatitis. To investigate the effectiveness of a mixture type of gene therapy strategy on large tumor burdens, we used the woodchuck model in which woodchuck hepatitis virus-induced HCCs are large and multifocal, simulating the conditions in humans. Adenoviruses encoding antiangiogenic factors (pigment epithelium-derived factor and endostatin) or cytokines (GM-CSF and IL-12) were delivered via the hepatic artery separately or in combination into woodchuck livers bearing HCCs. Our results showed that the mixture type of strategy, which contained two cytokines and two antiangiogenic factors, had better antitumor effects on large tumors as compared with monotherapy either with antiangiogenic or cytokine genes. The immunotherapy recruited significant levels of CD3(+) T cells that infiltrated the tumors, whereas the antiangiogenesis-based therapy significantly reduced tumor vasculature. The mixture type of gene therapy achieved both effects. In addition, it induced high levels of natural killer cells and apoptotic cells and reduced the levels of immunosuppressive effectors in the tumor regions. Hence, antiangiogenic therapy may provide the advantage of reducing immune tolerance in large tumors, making them more vulnerable to the immune reactions. Our study implies that in the future, the combination therapy may prove effective for the treatment of patients with advanced HCC.
Collapse
Affiliation(s)
- Kai-Wen Huang
- Hepatitis Research Center
- Department of Surgery, and
- Graduate Institute of Clinical Medicine and
| | - Hui-Lin Wu
- Hepatitis Research Center
- Graduate Institute of Clinical Medicine and
| | | | - Po-Chin Liang
- Department of Medical Imaging, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Pei-Jer Chen
- Hepatitis Research Center
- Graduate Institute of Clinical Medicine and
- Graduate Institute of Microbiology, National Taiwan University College of Medicine, Taipei 100, Taiwan; and
| | - Shih-Hui Chen
- Graduate Institute of Microbiology, National Taiwan University College of Medicine, Taipei 100, Taiwan; and
| | - Hsin-I Lee
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan
| | | | | | | | - Lih-Hwa Hwang
- Hepatitis Research Center
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan
| | | |
Collapse
|