1
|
Bacsa B, Hopl V, Derler I. Synthetic Biology Meets Ca 2+ Release-Activated Ca 2+ Channel-Dependent Immunomodulation. Cells 2024; 13:468. [PMID: 38534312 PMCID: PMC10968988 DOI: 10.3390/cells13060468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Many essential biological processes are triggered by the proximity of molecules. Meanwhile, diverse approaches in synthetic biology, such as new biological parts or engineered cells, have opened up avenues to precisely control the proximity of molecules and eventually downstream signaling processes. This also applies to a main Ca2+ entry pathway into the cell, the so-called Ca2+ release-activated Ca2+ (CRAC) channel. CRAC channels are among other channels are essential in the immune response and are activated by receptor-ligand binding at the cell membrane. The latter initiates a signaling cascade within the cell, which finally triggers the coupling of the two key molecular components of the CRAC channel, namely the stromal interaction molecule, STIM, in the ER membrane and the plasma membrane Ca2+ ion channel, Orai. Ca2+ entry, established via STIM/Orai coupling, is essential for various immune cell functions, including cytokine release, proliferation, and cytotoxicity. In this review, we summarize the tools of synthetic biology that have been used so far to achieve precise control over the CRAC channel pathway and thus over downstream signaling events related to the immune response.
Collapse
Affiliation(s)
- Bernadett Bacsa
- Division of Medical Physics und Biophysics, Medical University of Graz, A-8010 Graz, Austria;
| | - Valentina Hopl
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
2
|
Lee M, Jeong H, Lee C, Lee MJ, Delmo BR, Heo WD, Shin JH, Park Y. High-resolution assessment of multidimensional cellular mechanics using label-free refractive-index traction force microscopy. Commun Biol 2024; 7:115. [PMID: 38245624 PMCID: PMC10799850 DOI: 10.1038/s42003-024-05788-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
A critical requirement for studying cell mechanics is three-dimensional assessment of cellular shapes and forces with high spatiotemporal resolution. Traction force microscopy with fluorescence imaging enables the measurement of cellular forces, but it is limited by photobleaching and a slow acquisition speed. Here, we present refractive-index traction force microscopy (RI-TFM), which simultaneously quantifies the volumetric morphology and traction force of cells using a high-speed illumination scheme with 0.5-Hz temporal resolution. Without labelling, our method enables quantitative analyses of dry-mass distributions and shear (in-plane) and normal (out-of-plane) tractions of single cells on the extracellular matrix. When combined with a constrained total variation-based deconvolution algorithm, it provides 0.55-Pa shear and 1.59-Pa normal traction sensitivity for a 1-kPa hydrogel substrate. We demonstrate its utility by assessing the effects of compromised intracellular stress and capturing the rapid dynamics of cellular junction formation in the spatiotemporal changes in non-planar traction components.
Collapse
Affiliation(s)
- Moosung Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141, South Korea
- Institute for Functional Matter and Quantum Technologies, Universität Stuttgart, 70569, Stuttgart, Germany
| | - Hyuntae Jeong
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Chaeyeon Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Mahn Jae Lee
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141, South Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Benedict Reve Delmo
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea.
- KAIST Institute for the BioCentury (KIB), KAIST, Jaejeo, Daejeon, 34141, South Korea.
| | - Jennifer H Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea.
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea.
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141, South Korea.
- Tomocube Inc., Daejeon, 34109, South Korea.
| |
Collapse
|
3
|
Corre B, El Janati Elidrissi Y, Duval J, Quilhot M, Lefebvre G, Ecomard S, Lemaître F, Garcia Z, Bohineust A, Russo E, Bousso P. Integration of intermittent calcium signals in T cells revealed by temporally patterned optogenetics. iScience 2023; 26:106068. [PMID: 36824271 PMCID: PMC9942117 DOI: 10.1016/j.isci.2023.106068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/28/2022] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
T cells become activated following one or multiple contacts with antigen-presenting cells. Calcium influx is a key signaling event elicited during these cellular interactions; however, it is unclear whether T cells recall and integrate calcium signals elicited during temporally separated contacts. To study the integration of calcium signals, we designed a programmable, multiplex illumination strategy for temporally patterned optogenetics (TEMPO). We found that a single round of calcium elevation was insufficient to promote nuclear factor of activated T cells (NFAT) activity and cytokine production in a T cell line. However, robust responses were detected after a second identical stimulation even when signals were separated by several hours. Our results suggest the existence of a biochemical memory of calcium signals in T cells that favors signal integration during temporally separated contacts and promote cytokine production. As illustrated here, TEMPO is a versatile approach for dissecting temporal integration in defined signaling pathways.
Collapse
Affiliation(s)
- Béatrice Corre
- Dynamics of Immune Responses Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, 75015 Paris, France
| | - Yassine El Janati Elidrissi
- Dynamics of Immune Responses Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, 75015 Paris, France
| | - Justine Duval
- Dynamics of Immune Responses Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, 75015 Paris, France
| | - Mailys Quilhot
- Dynamics of Immune Responses Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, 75015 Paris, France
| | - Gaëtan Lefebvre
- Dynamics of Immune Responses Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, 75015 Paris, France
| | - Solène Ecomard
- Dynamics of Immune Responses Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, 75015 Paris, France
| | - Fabrice Lemaître
- Dynamics of Immune Responses Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, 75015 Paris, France
| | - Zacarias Garcia
- Dynamics of Immune Responses Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, 75015 Paris, France
| | - Armelle Bohineust
- Dynamics of Immune Responses Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, 75015 Paris, France
| | - Erica Russo
- Dynamics of Immune Responses Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, 75015 Paris, France
| | - Philippe Bousso
- Dynamics of Immune Responses Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, 75015 Paris, France,Corresponding author
| |
Collapse
|
4
|
Betzer O, Gao Y, Shamul A, Motiei M, Sadan T, Yehuda R, Atkins A, Cohen CJ, Shen M, Shi X, Popovtzer R. Multifunctional nanoprobe for real-time in vivo monitoring of T cell activation. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 46:102596. [PMID: 36031044 DOI: 10.1016/j.nano.2022.102596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Genetically engineered T cells are a powerful new modality for cancer immunotherapy. However, their clinical application for solid tumors is challenging, and crucial knowledge on cell functionality in vivo is lacking. Here, we fabricated a nanoprobe composed of dendrimers incorporating a calcium sensor and gold nanoparticles, for dual-modal monitoring of engineered T cells within a solid tumor. T cells engineered to express a melanoma-specific T-cell receptor and loaded with the nanoprobe were longitudinally monitored within melanoma xenografts in mice. Fluorescent imaging of the nanoprobe's calcium sensor revealed increased intra-tumoral activation of the T cells over time, up to 24 h. Computed tomography imaging of the nanoprobe's gold nanoparticles revealed the cells' intra-tumoral distribution pattern. Quantitative analysis revealed the intra-tumoral T cell quantities. Thus, this nanoprobe reveals intra-tumoral persistence, penetration and functional status of genetically engineered T cells, which can advance T cell-based immunotherapy and promote next-generation live cell imaging.
Collapse
Affiliation(s)
- Oshra Betzer
- The Alexander Kofkin Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel; Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Yue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Astar Shamul
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Menachem Motiei
- The Alexander Kofkin Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel; Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Tamar Sadan
- The Alexander Kofkin Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Ronen Yehuda
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Ayelet Atkins
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Cyrille J Cohen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.
| | - Rachela Popovtzer
- The Alexander Kofkin Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel; Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel.
| |
Collapse
|
5
|
Jacobelli J, Buser AE, Heiden DL, Friedman RS. Autoimmunity in motion: Mechanisms of immune regulation and destruction revealed by in vivo imaging. Immunol Rev 2022; 306:181-199. [PMID: 34825390 PMCID: PMC9135487 DOI: 10.1111/imr.13043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 11/30/2022]
Abstract
Autoimmunity arises when mechanisms of immune tolerance fail. Here we discuss mechanisms of T cell activation and tolerance and the dynamics of the autoimmune response at the site of disease. Live imaging of autoimmunity provides the ability to analyze immune cell dynamics at the single-cell level within the complex intact environment where disease occurs. These analyses have revealed mechanisms of T cell activation and tolerance in the lymph nodes, mechanisms of T cell entry into sites of autoimmune disease, and mechanisms leading to pathogenesis or protection in the autoimmune lesions. The overarching conclusions point to stable versus transient T cell antigen presenting cell interactions dictating the balance between T cell activation and tolerance, and T cell restimulation as a driver of pathogenesis at the site of autoimmunity. Findings from models of multiple sclerosis and type 1 diabetes are highlighted, however, the results have implications for basic mechanisms of T cell regulation during immune responses, tumor immunity, and autoimmunity.
Collapse
Affiliation(s)
- Jordan Jacobelli
- Barbara Davis Center for Diabetes, Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Alan E. Buser
- Barbara Davis Center for Diabetes, Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Dustin L. Heiden
- Barbara Davis Center for Diabetes, Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Rachel S. Friedman
- Barbara Davis Center for Diabetes, Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
6
|
Nakandakari-Higa S, Jacobsen JT. In Vivo Imaging of Tfh Cells. Methods Mol Biol 2022; 2380:15-27. [PMID: 34802118 DOI: 10.1007/978-1-0716-1736-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Germinal centers (GCs) are microanatomical structures in secondary lymphoid organs where B cells undergo affinity maturation for antigen during the course of an immune response. This process is driven by a subset of T cells termed T follicular helper cells (Tfh) that through a multistep process gain access to the GC niche within the B cell follicle. This protocol details how to study Tfh behavior in vivo, on a single cell level, using two-photon intravital microscopy of the murine popliteal lymph node.
Collapse
Affiliation(s)
| | - Johanne T Jacobsen
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
7
|
Intravital and high-content multiplex imaging of the immune system. Trends Cell Biol 2021; 32:406-420. [PMID: 34920936 PMCID: PMC9018524 DOI: 10.1016/j.tcb.2021.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022]
Abstract
Highly motile and functionally diverse immune cells orchestrate effective immune responses through complex and dynamic cooperative behavior. Multiphoton intravital microscopy (MP-IVM) presents a unique and powerful tool to study the coordinated action of immune cell interactions in situ. Here, we review the current state of intravital microscopy in deepening our understanding of the immune system and discuss its fundamental limitations. In addition, we draw insights from recent technical advances in multiplex static tissue-imaging methods and propose an approach that could enable simultaneous visualization of cellular dynamics, deep phenotyping, and transcriptional states through a new type of correlative microscopy that combines these imaging technologies with advances in complex data analysis.
Collapse
|
8
|
Dijkgraaf FE, Toebes M, Hoogenboezem M, Mertz M, Vredevoogd DW, Matos TR, Teunissen MBM, Luiten RM, Schumacher TN. Labeling and tracking of immune cells in ex vivo human skin. Nat Protoc 2020; 16:791-811. [PMID: 33349704 DOI: 10.1038/s41596-020-00435-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/06/2020] [Indexed: 11/09/2022]
Abstract
Human skin harbors various immune cells that are crucial for the control of injury and infection. However, the current understanding of immune cell function within viable human skin tissue is limited. We developed an ex vivo imaging approach in which fresh skin biopsies are mounted and then labeled with nanobodies or antibodies against cell surface markers on tissue-resident memory CD8+ T cells, other immune cells of interest, or extracellular tissue components. Subsequent longitudinal imaging allows one to describe the dynamic behavior of human skin-resident cells in situ. In addition, this strategy can be used to study immune cell function in murine skin. The ability to follow the spatiotemporal behavior of CD8+ T cells and other immune cells in skin, including their response to immune stimuli, provides a platform to investigate physiological immune cell behavior and immune cell behavior in skin diseases. The mounting, staining and imaging of skin samples requires ~1.5 d, and subsequent tracking analysis requires a minimum of 1 d. The optional production of fluorescently labeled nanobodies takes ~5 d.
Collapse
Affiliation(s)
- Feline E Dijkgraaf
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Mireille Toebes
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Marjolijn Mertz
- BioImaging Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - David W Vredevoogd
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Tiago R Matos
- Department of Dermatology and Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Marcel B M Teunissen
- Department of Dermatology and Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Rosalie M Luiten
- Department of Dermatology and Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Ton N Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Sanz-Ortega L, Rojas JM, Barber DF. Improving Tumor Retention of Effector Cells in Adoptive Cell Transfer Therapies by Magnetic Targeting. Pharmaceutics 2020; 12:E812. [PMID: 32867162 PMCID: PMC7557387 DOI: 10.3390/pharmaceutics12090812] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Adoptive cell transfer therapy is a promising anti-tumor immunotherapy in which effector immune cells are transferred to patients to treat tumors. However, one of its main limitations is the inefficient trafficking of inoculated effector cells to the tumor site and the small percentage of effector cells that remain activated when reaching the tumor. Multiple strategies have been attempted to improve the entry of effector cells into the tumor environment, often based on tumor types. It would be, however, interesting to develop a more general approach, to improve and facilitate the migration of specific activated effector lymphoid cells to any tumor type. We and others have recently demonstrated the potential for adoptive cell transfer therapy of the combined use of magnetic nanoparticle-loaded lymphoid effector cells together with the application of an external magnetic field to promote the accumulation and retention of lymphoid cells in specific body locations. The aim of this review is to summarize and highlight the recent findings in the field of magnetic accumulation and retention of effector cells in tumors after adoptive transfer, and to discuss the possibility of using this approach for tumor targeting with chimeric antigen receptor (CAR) T-cells.
Collapse
Affiliation(s)
- Laura Sanz-Ortega
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine, Karolinska Institute, 14183 Stockholm, Sweden;
| | - José Manuel Rojas
- Animal Health Research Centre (CISA)-INIA, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28130 Madrid, Spain;
| | - Domingo F. Barber
- Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, 28049 Madrid, Spain
| |
Collapse
|
10
|
Regulatory T cells suppress Th17 cell Ca 2+ signaling in the spinal cord during murine autoimmune neuroinflammation. Proc Natl Acad Sci U S A 2020; 117:20088-20099. [PMID: 32732436 PMCID: PMC7443932 DOI: 10.1073/pnas.2006895117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
T lymphocyte motility and interaction dynamics with other immune cells are vital determinants of immune responses. Regulatory T (Treg) cells prevent autoimmune disorders by suppressing excessive lymphocyte activity, but how interstitial motility patterns of Treg cells limit neuroinflammation is not well understood. We used two-photon microscopy to elucidate the spatial organization, motility characteristics, and interactions of endogenous Treg and Th17 cells together with antigen-presenting cells (APCs) within the spinal cord leptomeninges in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Th17 cells arrive before the onset of clinical symptoms, distribute uniformly during the peak, and decline in numbers during later stages of EAE. In contrast, Treg cells arrive after Th17 cells and persist during the chronic phase. Th17 cells meander widely, interact with APCs, and exhibit cytosolic Ca2+ transients and elevated basal Ca2+ levels before the arrival of Treg cells. In contrast, Treg cells adopt a confined, repetitive-scanning motility while contacting APCs. These locally confined but highly motile Treg cells limit Th17 cells from accessing APCs and suppress Th17 cell Ca2+ signaling by a mechanism that is upstream of store-operated Ca2+ entry. Finally, Treg cell depletion increases APC numbers in the spinal cord and exaggerates ongoing neuroinflammation. Our results point to fundamental differences in motility characteristics between Th17 and Treg cells in the inflamed spinal cord and reveal three potential cellular mechanisms by which Treg cells regulate Th17 cell effector functions: reduction of APC density, limiting access of Th17 cells to APCs, and suppression of Th17 Ca2+ signaling.
Collapse
|
11
|
Bohineust A, Garcia Z, Corre B, Lemaître F, Bousso P. Optogenetic manipulation of calcium signals in single T cells in vivo. Nat Commun 2020; 11:1143. [PMID: 32123168 PMCID: PMC7051981 DOI: 10.1038/s41467-020-14810-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/30/2020] [Indexed: 12/16/2022] Open
Abstract
By offering the possibility to manipulate cellular functions with spatiotemporal control, optogenetics represents an attractive tool for dissecting immune responses. However, applying these approaches to single cells in vivo remains particularly challenging for immune cells that are typically located in scattering tissues. Here, we introduce an improved calcium actuator with sensitivity allowing for two-photon photoactivation. Furthermore, we identify an actuator/reporter combination that permits the simultaneous manipulation and visualization of calcium signals in individual T cells in vivo. With this strategy, we document the consequences of defined patterns of calcium signals on T cell migration, adhesion, and chemokine release. Manipulation of individual immune cells in vivo should open new avenues for establishing the functional contribution of single immune cells engaged in complex reactions. The ability to manipulate and monitor calcium signaling in cells in vivo would provide insights into signaling in an endogenous context. Here the authors develop a two-photon-responsive calcium actuator and reporter combination to monitor the effect of calcium actuation on T cell migration, adhesion and chemokine release in vivo.
Collapse
Affiliation(s)
- Armelle Bohineust
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, INSERM U1223, 75015, Paris, France
| | - Zacarias Garcia
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, INSERM U1223, 75015, Paris, France
| | - Béatrice Corre
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, INSERM U1223, 75015, Paris, France
| | - Fabrice Lemaître
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, INSERM U1223, 75015, Paris, France
| | - Philippe Bousso
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, INSERM U1223, 75015, Paris, France.
| |
Collapse
|
12
|
Friedmann KS, Bozem M, Hoth M. Calcium signal dynamics in T lymphocytes: Comparing in vivo and in vitro measurements. Semin Cell Dev Biol 2019; 94:84-93. [PMID: 30630031 DOI: 10.1016/j.semcdb.2019.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/18/2018] [Accepted: 01/05/2019] [Indexed: 02/06/2023]
Abstract
Amplitude and kinetics of intracellular Ca2+ signals ([Ca2+]int) determine many immune cell functions. To mimic in vivo changes of [Ca2+]int in human immune cells, two approaches may be best suited: 1) Analyze primary human immune cells taken from blood under conditions resembling best physiological or pathophysiological conditions. 2.) Analyze the immune system in vivo or ex vivo in explanted tissue from small vertebrate animals, such as mice. With the help of genetically encoded Ca2+ indicators and intravital microscopy, [Ca2+]int have been investigated in murine T lymphocytes (T cells) in vivo during the last five years and in explanted lymph node (LN) during the last 10 years. There are several important reasons to compare [Ca2+]int measured in primary murine T lymphocytes in vivo and in vitro with [Ca2+]int measured in primary human T lymphocytes in vitro. First, how do human and murine data compare? Second, how do in vivo and in vitro data compare? Third, can in vitro data predict in vivo data? The last point is particularly important considering the many technical challenges that limit in vivo measurements and to reduce the number of animals sacrificed. This review summarizes and compares the results of the available publications on in vivo and in vitro [Ca2+]int measurements in T lymphocytes stimulated focally by antigen-presenting cells (APC) after forming an immunological synapse.
Collapse
Affiliation(s)
- Kim S Friedmann
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, Homburg, Germany
| | - Monika Bozem
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, Homburg, Germany
| | - Markus Hoth
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, Homburg, Germany.
| |
Collapse
|
13
|
Martín-Cófreces NB, Vicente-Manzanares M, Sánchez-Madrid F. Adhesive Interactions Delineate the Topography of the Immune Synapse. Front Cell Dev Biol 2018; 6:149. [PMID: 30425987 PMCID: PMC6218456 DOI: 10.3389/fcell.2018.00149] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/11/2018] [Indexed: 01/04/2023] Open
Abstract
T cells form adhesive contacts with antigen-presenting cells (APCs) as part of the normal surveillance process that occurs in lymph nodes and other tissues. Most of these adhesive interactions are formed by integrins that interact with ligands expressed on the surface of the APC. The interactive strength of integrins depends on their degree of membrane proximity as well as intracellular signals that dictate the conformation of the integrin. Integrins appear in different conformations that endow them with different affinities for their ligand(s). Integrin conformation and thus adhesive strength between the T cell and the APC is tuned by intracellular signals that are turned on by ligation of the T cell receptor (TCR) and chemokine receptors. During the different stages of the process, integrins, the TCR and chemokine receptors may be interconnected by the actin cytoskeleton underneath the plasma membrane, forming a chemical and physical network that facilitates the spatiotemporal dynamics, positioning, and function of these receptors and supports cell-cell adhesion during T cell activation, allowing it to perform its effector function.
Collapse
Affiliation(s)
- Noa Beatriz Martín-Cófreces
- Servicio de Inmunología, Instituto de Investigación Sanitaria Princesa (IP), Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Miguel Vicente-Manzanares
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer, CIC-IBMCC (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Instituto de Investigación Sanitaria Princesa (IP), Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
14
|
Dong TX, Othy S, Greenberg ML, Jairaman A, Akunwafo C, Leverrier S, Yu Y, Parker I, Dynes JL, Cahalan MD. Intermittent Ca 2+ signals mediated by Orai1 regulate basal T cell motility. eLife 2017; 6:27827. [PMID: 29239723 PMCID: PMC5747518 DOI: 10.7554/elife.27827] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022] Open
Abstract
Ca2+ influx through Orai1 channels is crucial for several T cell functions, but a role in regulating basal cellular motility has not been described. Here, we show that inhibition of Orai1 channel activity increases average cell velocities by reducing the frequency of pauses in human T cells migrating through confined spaces, even in the absence of extrinsic cell contacts or antigen recognition. Utilizing a novel ratiometric genetically encoded cytosolic Ca2+ indicator, Salsa6f, which permits real-time monitoring of cytosolic Ca2+ along with cell motility, we show that spontaneous pauses during T cell motility in vitro and in vivo coincide with episodes of cytosolic Ca2+ signaling. Furthermore, lymph node T cells exhibited two types of spontaneous Ca2+ transients: short-duration 'sparkles' and longer duration global signals. Our results demonstrate that spontaneous and self-peptide MHC-dependent activation of Orai1 ensures random walk behavior in T cells to optimize immune surveillance.
Collapse
Affiliation(s)
- Tobias X Dong
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, United States
| | - Shivashankar Othy
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, United States
| | - Milton L Greenberg
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, United States
| | - Amit Jairaman
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, United States
| | - Chijioke Akunwafo
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, United States
| | - Sabrina Leverrier
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, United States
| | - Ying Yu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, United States
| | - Ian Parker
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, United States.,Department of Neurobiology and Behavior, University of California, Irvine, Irvine, United States
| | - Joseph L Dynes
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, United States
| | - Michael D Cahalan
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, United States.,Institute for Immunology, University of California, Irvine, Irvine, United States
| |
Collapse
|
15
|
Glass DG, McAlinden N, Millington OR, Wright AJ. A minimally invasive optical trapping system to understand cellular interactions at onset of an immune response. PLoS One 2017; 12:e0188581. [PMID: 29220398 PMCID: PMC5722315 DOI: 10.1371/journal.pone.0188581] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/09/2017] [Indexed: 02/02/2023] Open
Abstract
T-cells and antigen presenting cells are an essential part of the adaptive immune response system and how they interact is crucial in how the body effectively fights infection or responds to vaccines. Much of the experimental work studying interaction forces between cells has looked at the average properties of bulk samples of cells or applied microscopy to image the dynamic contact between these cells. In this paper we present a novel optical trapping technique for interrogating the force of this interaction and measuring relative interaction forces at the single-cell level. A triple-spot optical trap is used to directly manipulate the cells of interest without introducing foreign bodies such as beads to the system. The optical trap is used to directly control the initiation of cell-cell contact and, subsequently to terminate the interaction at a defined time point. The laser beam power required to separate immune cell pairs is determined and correlates with the force applied by the optical trap. As proof of concept, the antigen-specific increase in interaction force between a dendritic cell and a specific T-cell is demonstrated. Furthermore, it is demonstrated that this interaction force is completely abrogated when T-cell signalling is blocked. As a result the potential of using optical trapping to interrogate cellular interactions at the single cell level without the need to introduce foreign bodies such as beads is clearly demonstrated.
Collapse
Affiliation(s)
- David G. Glass
- Institute of Photonics, SUPA, The University of Strathclyde, Glasgow, United Kingdom
- Strathclyde Institute of Pharmacy and Biomedical Sciences, The University of Strathclyde, Glasgow, United Kingdom
| | - Niall McAlinden
- Institute of Photonics, SUPA, The University of Strathclyde, Glasgow, United Kingdom
| | - Owain R. Millington
- Strathclyde Institute of Pharmacy and Biomedical Sciences, The University of Strathclyde, Glasgow, United Kingdom
| | - Amanda J. Wright
- Optics and Photonics Group, Department of Electrical and Electronic Engineering, The University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Visualizing context-dependent calcium signaling in encephalitogenic T cells in vivo by two-photon microscopy. Proc Natl Acad Sci U S A 2017; 114:E6381-E6389. [PMID: 28716943 DOI: 10.1073/pnas.1701806114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In experimental autoimmune encephalitis (EAE), autoimmune T cells are activated in the periphery before they home to the CNS. On their way, the T cells pass through a series of different cellular milieus where they receive signals that instruct them to invade their target tissues. These signals involve interaction with the surrounding stroma cells, in the presence or absence of autoantigens. To portray the serial signaling events, we studied a T-cell-mediated model of EAE combining in vivo two-photon microscopy with two different activation reporters, the FRET-based calcium biosensor Twitch1 and fluorescent NFAT. In vitro activated T cells first settle in secondary (2°) lymphatic tissues (e.g., the spleen) where, in the absence of autoantigen, they establish transient contacts with stroma cells as indicated by sporadic short-lived calcium spikes. The T cells then exit the spleen for the CNS where they first roll and crawl along the luminal surface of leptomeningeal vessels without showing calcium activity. Having crossed the blood-brain barrier, the T cells scan the leptomeningeal space for autoantigen-presenting cells (APCs). Sustained contacts result in long-lasting calcium activity and NFAT translocation, a measure of full T-cell activation. This process is sensitive to anti-MHC class II antibodies. Importantly, the capacity to activate T cells is not a general property of all leptomeningeal phagocytes, but varies between individual APCs. Our results identify distinct checkpoints of T-cell activation, controlling the capacity of myelin-specific T cells to invade and attack the CNS. These processes may be valuable therapeutic targets.
Collapse
|
17
|
Lodygin D, Flügel A. Intravital real-time analysis of T-cell activation in health and disease. Cell Calcium 2017; 64:118-129. [DOI: 10.1016/j.ceca.2016.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 01/27/2023]
|
18
|
Serrano D, Ghobadi F, Boulay G, Ilangumaran S, Lavoie C, Ramanathan S. GTPase of the Immune-Associated Nucleotide Protein 5 Regulates the Lysosomal Calcium Compartment in T Lymphocytes. Front Immunol 2017; 8:94. [PMID: 28223986 PMCID: PMC5293772 DOI: 10.3389/fimmu.2017.00094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/19/2017] [Indexed: 12/20/2022] Open
Abstract
T lymphocytes from Gimap5lyp/lyp rats carrying a recessive mutation in the GTPase of immune-associated protein 5 (Gimap5) gene undergo spontaneous apoptosis. Molecular mechanisms underlying this survival defect are not yet clear. We have shown that Gimap5lyp/lyp T lymphocytes display reduced calcium influx following T cell antigen receptor (TCR) stimulation that was associated with impaired buffering of calcium by mitochondria. Here, we investigated the subcellular localization of GIMAP5 and its influence on Ca2+ response in HEK293T cells and T lymphocytes. The more abundantly expressed GIMAP5v2 localizes to the lysosome and certain endosomal vesicles. Gimap5lyp/lyp T lymphocytes showed increased accumulation of calcium in the lysosomes as evidenced by Gly-Phe β-naphthylamide (GPN) triggered Ca2+ release. As a corollary, GPN-induced Ca2+ flux was decreased in HEK293T cells expressing GIMAP5v2. Strikingly, TCR stimulation of rat, mouse, and human T lymphocytes increased lysosomal calcium content. Overall, our findings show that lysosomes modulate cellular Ca2+ response during T cell activation and that GIMAP5 regulates the lysosomal Ca2+ compartment in T lymphocytes.
Collapse
Affiliation(s)
- Daniel Serrano
- Immunology Division, Department of Pediatrics, Université de Sherbrooke , Sherbrooke, QC , Canada
| | - Farnaz Ghobadi
- Immunology Division, Department of Pediatrics, Université de Sherbrooke , Sherbrooke, QC , Canada
| | - Guylain Boulay
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de recherche clinique, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Subburaj Ilangumaran
- Immunology Division, Department of Pediatrics, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de recherche clinique, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christine Lavoie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de recherche clinique, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sheela Ramanathan
- Immunology Division, Department of Pediatrics, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de recherche clinique, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
19
|
Okada T, Takahashi S, Ishida A, Ishigame H. In vivo multiphoton imaging of immune cell dynamics. Pflugers Arch 2016; 468:1793-1801. [PMID: 27659161 PMCID: PMC5138265 DOI: 10.1007/s00424-016-1882-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 12/20/2022]
Abstract
Multiphoton imaging has been utilized to analyze in vivo immune cell dynamics over the last 15 years. Particularly, it has deepened the understanding of how immune responses are organized by immune cell migration and interactions. In this review, we first describe the following technical advances in recent imaging studies that contributed to the new findings on the regulation of immune responses and inflammation. Improved multicolor imaging of immune cell behavior has revealed that their interactions are spatiotemporally coordinated to achieve efficient and long-term immunity. The use of photoactivatable and photoconvertible fluorescent proteins has increased duration and volume of cell tracking, even enabling the analysis of inter-organ migration of immune cells. In addition, visualization of immune cell activation using biosensors for intracellular calcium concentration and signaling molecule activities has started to give further mechanistic insights. Then, we also introduce recent imaging analyses of interactions between immune cells and non-immune cells including endothelial, fibroblastic, epithelial, and nerve cells. It is argued that future imaging studies that apply updated technical advances to analyze interactions between immune cells and non-immune cells will be important for thorough physiological understanding of the immune system.
Collapse
Affiliation(s)
- Takaharu Okada
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan.
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan.
| | - Sonoko Takahashi
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan
| | - Azusa Ishida
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan
| | - Harumichi Ishigame
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
20
|
Capece T, Kim M. The Role of Lymphatic Niches in T Cell Differentiation. Mol Cells 2016; 39:515-23. [PMID: 27306645 PMCID: PMC4959015 DOI: 10.14348/molcells.2016.0089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/21/2016] [Accepted: 05/24/2016] [Indexed: 11/27/2022] Open
Abstract
Long-term immunity to many viral and bacterial pathogens requires CD8(+) memory T cell development, and the induction of long-lasting CD8(+) memory T cells from a naïve, undifferentiated state is a major goal of vaccine design. Formation of the memory CD8(+) T cell compartment is highly dependent on the early activation cues received by naïve CD8(+) T cells during primary infection. This review aims to highlight the cellularity of various niches within the lymph node and emphasize recent evidence suggesting that distinct types of T cell activation and differentiation occur within different immune contexts in lymphoid organs.
Collapse
Affiliation(s)
- Tara Capece
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642,
USA
| | - Minsoo Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642,
USA
| |
Collapse
|
21
|
Comrie WA, Burkhardt JK. Action and Traction: Cytoskeletal Control of Receptor Triggering at the Immunological Synapse. Front Immunol 2016; 7:68. [PMID: 27014258 PMCID: PMC4779853 DOI: 10.3389/fimmu.2016.00068] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 02/12/2016] [Indexed: 01/03/2023] Open
Abstract
It is well known that F-actin dynamics drive the micron-scale cell shape changes required for migration and immunological synapse (IS) formation. In addition, recent evidence points to a more intimate role for the actin cytoskeleton in promoting T cell activation. Mechanotransduction, the conversion of mechanical input into intracellular biochemical changes, is thought to play a critical role in several aspects of immunoreceptor triggering and downstream signal transduction. Multiple molecules associated with signaling events at the IS have been shown to respond to physical force, including the TCR, costimulatory molecules, adhesion molecules, and several downstream adapters. In at least some cases, it is clear that the relevant forces are exerted by dynamics of the T cell actomyosin cytoskeleton. Interestingly, there is evidence that the cytoskeleton of the antigen-presenting cell also plays an active role in T cell activation, by countering the molecular forces exerted by the T cell at the IS. Since actin polymerization is itself driven by TCR and costimulatory signaling pathways, a complex relationship exists between actin dynamics and receptor activation. This review will focus on recent advances in our understanding of the mechanosensitive aspects of T cell activation, paying specific attention to how F-actin-directed forces applied from both sides of the IS fit into current models of receptor triggering and activation.
Collapse
Affiliation(s)
- William A Comrie
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| |
Collapse
|
22
|
van Panhuys N. TCR Signal Strength Alters T-DC Activation and Interaction Times and Directs the Outcome of Differentiation. Front Immunol 2016; 7:6. [PMID: 26834747 PMCID: PMC4725058 DOI: 10.3389/fimmu.2016.00006] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/08/2016] [Indexed: 12/13/2022] Open
Abstract
The ability of CD4+ T cells to differentiate into effector subsets underpins their ability to shape the immune response and mediate host protection. During T cell receptor-induced activation of CD4+ T cells, both the quality and quantity of specific activatory peptide/MHC ligands have been shown to control the polarization of naive CD4+ T cells in addition to co-stimulatory and cytokine-based signals. Recently, advances in two--photon microscopy and tetramer-based cell tracking methods have allowed investigators to greatly extend the study of the role of TCR signaling in effector differentiation under in vivo conditions. In this review, we consider data from recent in vivo studies analyzing the role of TCR signal strength in controlling the outcome of CD4+ T cell differentiation and discuss the role of TCR in controlling the critical nature of CD4+ T cell interactions with dendritic cells during activation. We further propose a model whereby TCR signal strength controls the temporal aspects of T-DC interactions and the implications for this in mediating the downstream signaling events, which influence the transcriptional and epigenetic regulation of effector differentiation.
Collapse
Affiliation(s)
- Nicholas van Panhuys
- Division of Experimental Biology, Sidra Medical and Research Center , Doha , Qatar
| |
Collapse
|
23
|
Le Borgne M, Raju S, Zinselmeyer BH, Le VT, Li J, Wang Y, Miller MJ, Shaw AS. Real-Time Analysis of Calcium Signals during the Early Phase of T Cell Activation Using a Genetically Encoded Calcium Biosensor. THE JOURNAL OF IMMUNOLOGY 2016; 196:1471-9. [PMID: 26746192 DOI: 10.4049/jimmunol.1502414] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/10/2015] [Indexed: 02/07/2023]
Abstract
Proper T cell activation is promoted by sustained calcium signaling downstream of the TCR. However, the dynamics of calcium flux after stimulation with an APC in vivo remain to be fully understood. Previous studies focusing on T cell motility suggested that the activation of naive T cells in the lymph node occurs in distinct phases. In phase I, T cells make multiple transient contacts with dendritic cells before entering a phase II, where they exist in stable clusters with dendritic cells. It has been suggested that T cells signal during transient contacts of phase I, but this has never been shown directly. Because time-dependent loss of calcium dyes from cells hampers long-term imaging of cells in vivo after antigenic stimulation, we generated a knock-in mouse expressing a modified form of the Cameleon fluorescence resonance energy transfer reporter for intracellular calcium and examined calcium flux both in vitro and in situ. In vitro, we observed transient, oscillatory, and sustained calcium flux after contact with APC, but these behaviors were not affected by the type of APC or Ag quantity, but were, however, moderately dependent on Ag quality. In vivo, we found that during phase I, T cells exhibit weak calcium fluxes and detectable changes in cell motility. This demonstrates that naive T cells signal during phase I and support the hypothesis that accumulated calcium signals are required to signal the beginning of phase II.
Collapse
Affiliation(s)
- Marie Le Borgne
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110
| | - Saravanan Raju
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Bernd H Zinselmeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Viet T Le
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - JiaJia Li
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Yingxiao Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093; and
| | - Mark J Miller
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Andrey S Shaw
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110;
| |
Collapse
|
24
|
Wolf IMA, Diercks BP, Gattkowski E, Czarniak F, Kempski J, Werner R, Schetelig D, Mittrücker HW, Schumacher V, von Osten M, Lodygin D, Flügel A, Fliegert R, Guse AH. Frontrunners of T cell activation: Initial, localized Ca2+ signals mediated by NAADP and the type 1 ryanodine receptor. Sci Signal 2015; 8:ra102. [PMID: 26462735 DOI: 10.1126/scisignal.aab0863] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The activation of T cells is the fundamental on switch for the adaptive immune system. Ca(2+) signaling is essential for T cell activation and starts as initial, short-lived, localized Ca(2+) signals. The second messenger nicotinic acid adenine dinucleotide phosphate (NAADP) forms rapidly upon T cell activation and stimulates early Ca(2+) signaling. We developed a high-resolution imaging technique using multiple fluorescent Ca(2+) indicator dyes to characterize these early signaling events and investigate the channels involved in NAADP-dependent Ca(2+) signals. In the first seconds of activation of either primary murine T cells or human Jurkat cells with beads coated with an antibody against CD3, we detected Ca(2+) signals with diameters close to the limit of detection and that were close to the activation site at the plasma membrane. In Jurkat cells in which the ryanodine receptor (RyR) was knocked down or in primary T cells from RyR1(-/-) mice, either these early Ca(2+) signals were not detected or the number of signals was markedly reduced. Local Ca(2+) signals observed within 20 ms upon microinjection of Jurkat cells with NAADP were also sensitive to RyR knockdown. In contrast, TRPM2 (transient receptor potential channel, subtype melastatin 2), a potential NAADP target channel, was not required for the formation of initial Ca(2+) signals in primary T cells. Thus, through our high-resolution imaging method, we characterized early Ca(2+) release events in T cells and obtained evidence for the involvement of RyR and NAADP in such signals.
Collapse
Affiliation(s)
- Insa M A Wolf
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Björn-Philipp Diercks
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Ellen Gattkowski
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Frederik Czarniak
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Jan Kempski
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - René Werner
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Daniel Schetelig
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Hans-Willi Mittrücker
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Valéa Schumacher
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Manuel von Osten
- Institute for Multiple Sclerosis Research, Department of Neuroimmunology, Gemeinnützige Hertie-Stiftung and University Medical Center Göttingen, Waldweg 33, 37073 Göttingen, Germany. Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
| | - Dimitri Lodygin
- Institute for Multiple Sclerosis Research, Department of Neuroimmunology, Gemeinnützige Hertie-Stiftung and University Medical Center Göttingen, Waldweg 33, 37073 Göttingen, Germany. Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
| | - Alexander Flügel
- Institute for Multiple Sclerosis Research, Department of Neuroimmunology, Gemeinnützige Hertie-Stiftung and University Medical Center Göttingen, Waldweg 33, 37073 Göttingen, Germany. Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
| | - Ralf Fliegert
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Andreas H Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
25
|
Chen XL, Serrano D, Mayhue M, Hoebe K, Ilangumaran S, Ramanathan S. GIMAP5 Deficiency Is Associated with Increased AKT Activity in T Lymphocytes. PLoS One 2015; 10:e0139019. [PMID: 26440416 PMCID: PMC4595448 DOI: 10.1371/journal.pone.0139019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/07/2015] [Indexed: 01/05/2023] Open
Abstract
Long-term survival of T lymphocytes in quiescent state is essential to maintain their cell numbers in secondary lymphoid organs. In mice and in rats, the loss of functional GTPase of the immune associated nucleotide binding protein 5 (GIMAP5) causes peripheral T lymphopenia due to spontaneous death of T cells. The underlying mechanism responsible for the disruption of quiescence in Gimap5 deficient T cells remains largely unknown. In this study, we show that loss of functional Gimap5 results in increased basal activation of mammalian target of rapamycin (mTOR), independent of protein phosphatase 2A (PP2A) or AMP-activated protein kinase (AMPK). Our results suggest that the constitutive activation of the phosphoinositide 3-kinase (PI3K) pathway may be one of the consequences of the absence of functional GIMAP5.
Collapse
Affiliation(s)
- Xi-Lin Chen
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Daniel Serrano
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Marian Mayhue
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Kasper Hoebe
- Department of Pediatrics, Division of Cellular and Molecular Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States of America
| | - Subburaj Ilangumaran
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
- Centre de Recherche Clinique, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Sheela Ramanathan
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
- Centre de Recherche Clinique, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
- * E-mail:
| |
Collapse
|
26
|
Miederer AM, Alansary D, Schwär G, Lee PH, Jung M, Helms V, Niemeyer BA. A STIM2 splice variant negatively regulates store-operated calcium entry. Nat Commun 2015; 6:6899. [PMID: 25896806 PMCID: PMC4411291 DOI: 10.1038/ncomms7899] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 03/11/2015] [Indexed: 02/01/2023] Open
Abstract
Cellular homeostasis relies upon precise regulation of Ca(2+) concentration. Stromal interaction molecule (STIM) proteins regulate store-operated calcium entry (SOCE) by sensing Ca(2+) concentration in the ER and forming oligomers to trigger Ca(2+) entry through plasma membrane-localized Orai1 channels. Here we characterize a STIM2 splice variant, STIM2.1, which retains an additional exon within the region encoding the channel-activating domain. Expression of STIM2.1 is ubiquitous but its abundance relative to the more common STIM2.2 variant is dependent upon cell type and highest in naive T cells. STIM2.1 knockdown increases SOCE in naive CD4(+) T cells, whereas knockdown of STIM2.2 decreases SOCE. Conversely, overexpression of STIM2.1, but not STIM2.2, decreases SOCE, indicating its inhibitory role. STIM2.1 interaction with Orai1 is impaired and prevents Orai1 activation, but STIM2.1 shows increased affinity towards calmodulin. Our results imply STIM2.1 as an additional player tuning Orai1 activation in vivo.
Collapse
Affiliation(s)
- Anna-Maria Miederer
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Building 48, Homburg 66421, Germany
| | - Dalia Alansary
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Building 48, Homburg 66421, Germany
| | - Gertrud Schwär
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Building 48, Homburg 66421, Germany
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg 66421, Germany
| | - Po-Hsien Lee
- Center for Bioinformatics, Saarland University, Campus E2 1, R. 315, PO Box 151150, Saarbrücken 66041, Germany
| | - Martin Jung
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Building 44, Homburg 66421, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Campus E2 1, R. 315, PO Box 151150, Saarbrücken 66041, Germany
| | - Barbara A. Niemeyer
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Building 48, Homburg 66421, Germany
| |
Collapse
|
27
|
Kveberg L, Sudworth A, Todros-Dawda I, Inngjerdingen M, Vaage JT. Functional characterization of a conserved pair of NKR-P1 receptors expressed by NK cells and T lymphocytes in liver and gut. Eur J Immunol 2014; 45:501-12. [PMID: 25382546 DOI: 10.1002/eji.201444710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 10/01/2014] [Accepted: 11/05/2014] [Indexed: 11/07/2022]
Abstract
Natural killer cell receptor protein 1 (NKR-P1) molecules are C-type lectin-like receptors modulating cellular responses toward target cells expressing C-type lectin-like related (Clr) molecules. Although the function of the prototypic rat NKR-P1A receptor and its inhibitory counterpart NKR-P1B are known, little is known about NKR-P1F and NKR-P1G apart from their promiscuity for Clr ligands. Here we generated mAbs against both receptors for phenotypic and functional analyses in rat tissues. NKR-P1F induced redirected lysis and robust Ca(2+) signaling in NK cells, which were prevented by simultaneous engagement of NKR-P1G. NKR-P1G also inhibited NK-cell lysis of Clr transfectants. NKR-P1F was expressed by most NK cells and NKR-P1A(+) T cells in all tissues analyzed, and by many NKR-P1A(-) intestinal T cells, while NKR-P1G was expressed by subsets of these cells with highest prevalence in gut and liver. In the intraepithelial compartment, the proportion of NKR-P1A(+) and NKR-P1F(+) cells was high at birth and thereafter declined, while NKR-P1B(+) and NKR-P1G(+) cells increased with age. Expression levels were also modulated by cytokines, with an increase of NKR-P1B and NKR-P1G induced by inflammatory cytokines, and a reduction of NKR-P1A by TGF-β. The physiological impact of NKR-P1 receptors might thus be dependent on age, tissue, and inflammatory status.
Collapse
Affiliation(s)
- Lise Kveberg
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | | | | | | |
Collapse
|
28
|
Shulman Z, Gitlin AD, Weinstein JS, Lainez B, Esplugues E, Flavell RA, Craft JE, Nussenzweig MC. Dynamic signaling by T follicular helper cells during germinal center B cell selection. Science 2014; 345:1058-62. [PMID: 25170154 DOI: 10.1126/science.1257861] [Citation(s) in RCA: 291] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
T follicular helper (T(FH)) cells select high-affinity, antibody-producing B cells for clonal expansion in germinal centers (GCs), but the nature of their interaction is not well defined. Using intravital imaging, we found that selection is mediated by large but transient contacts between T(FH) and GC B cells presenting the highest levels of cognate peptide bound to major histocompatibility complex II. These interactions elicited transient and sustained increases in T(FH) intracellular free calcium (Ca(2+)) that were associated with T(FH) cell coexpression of the cytokines interleukin-4 and -21. However, increased intracellular Ca(2+) did not arrest TFH cell migration. Instead, T(FH) cells remained motile and continually scanned the surface of many GC B cells, forming short-lived contacts that induced selection through further repeated transient elevations in intracellular Ca(2+).
Collapse
Affiliation(s)
- Ziv Shulman
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Alexander D Gitlin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Jason S Weinstein
- Department of Internal Medicine (Rheumatology), School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Begoña Lainez
- Department of Internal Medicine (Rheumatology), School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Enric Esplugues
- Department of Immunobiology, School of Medicine, Yale University New Haven, CT 06520, USA
| | - Richard A Flavell
- Department of Immunobiology, School of Medicine, Yale University New Haven, CT 06520, USA. Howard Hughes Medical Institute (HHMI)
| | - Joseph E Craft
- Department of Internal Medicine (Rheumatology), School of Medicine, Yale University, New Haven, CT 06520, USA. Department of Immunobiology, School of Medicine, Yale University New Haven, CT 06520, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA. Howard Hughes Medical Institute (HHMI).
| |
Collapse
|
29
|
Munoz MA, Biro M, Weninger W. T cell migration in intact lymph nodes in vivo. Curr Opin Cell Biol 2014; 30:17-24. [PMID: 24907445 DOI: 10.1016/j.ceb.2014.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 04/04/2014] [Accepted: 05/02/2014] [Indexed: 01/09/2023]
Abstract
In the lymph node, T cells migrate rapidly and with striking versatility in a continuous scan for antigen presenting dendritic cells. The scanning process is greatly facilitated by the lymph node structure and composition. In vivo imaging has been instrumental in deciphering the spatiotemporal dynamics of intranodal T cell migration in both health and disease. Here we review recent developments in uncovering the migration modes employed by T cells in the lymph node, the underlying molecular mechanisms, and the scanning strategies utilised by T cells to ensure a timely response to antigenic stimuli.
Collapse
Affiliation(s)
- Marcia A Munoz
- Centenary Institute of Cancer Medicine and Cell Biology, Immune Imaging Program, Locked Bag 6, Newtown, NSW 2042, Australia
| | - Maté Biro
- Centenary Institute of Cancer Medicine and Cell Biology, Immune Imaging Program, Locked Bag 6, Newtown, NSW 2042, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Wolfgang Weninger
- Centenary Institute of Cancer Medicine and Cell Biology, Immune Imaging Program, Locked Bag 6, Newtown, NSW 2042, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia.
| |
Collapse
|
30
|
Roybal KT, Sinai P, Verkade P, Murphy RF, Wülfing C. The actin-driven spatiotemporal organization of T-cell signaling at the system scale. Immunol Rev 2014; 256:133-47. [PMID: 24117818 DOI: 10.1111/imr.12103] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
T cells are activated through interaction with antigen-presenting cells (APCs). During activation, receptors and signaling intermediates accumulate in diverse spatiotemporal distributions. These distributions control the probability of signaling interactions and thus govern information flow through the signaling system. Spatiotemporally resolved system-scale investigation of signaling can extract the regulatory information thus encoded, allowing unique insight into the control of T-cell function. Substantial technical challenges exist, and these are briefly discussed herein. While much of the work assessing T-cell spatiotemporal organization uses planar APC substitutes, we focus here on B-cell APCs with often stark differences. Spatiotemporal signaling distributions are driven by cell biologically distinct structures, a large protein assembly at the interface center, a large invagination, the actin-supported interface periphery as extended by smaller individual lamella, and a newly discovered whole-interface actin-driven lamellum. The more than 60 elements of T-cell activation studied to date are dynamically distributed between these structures, generating a complex organization of the signaling system. Signal initiation and core signaling prefer the interface center, while signal amplification is localized in the transient lamellum. Actin dynamics control signaling distributions through regulation of the underlying structures and drive a highly undulating T-cell/APC interface that imposes substantial constraints on T-cell organization. We suggest that the regulation of actin dynamics, by controlling signaling distributions and membrane topology, is an important rheostat of T-cell signaling.
Collapse
Affiliation(s)
- Kole T Roybal
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | |
Collapse
|
31
|
Babich A, Burkhardt JK. Coordinate control of cytoskeletal remodeling and calcium mobilization during T-cell activation. Immunol Rev 2014; 256:80-94. [PMID: 24117814 DOI: 10.1111/imr.12123] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ca(2+) mobilization and cytoskeletal reorganization are key hallmarks of T-cell activation, and their interdependence has long been recognized. Recent advances in the field have elucidated the molecular pathways that underlie these events and have revealed several points of intersection. Ca(2+) signaling can be divided into two phases: initial events leading to release of Ca(2+) from endoplasmic reticulum stores, and a second phase involving STIM 1 (stromal interaction molecule 1) clustering and CRAC (calcium release activated calcium) channel activation. Cytoskeletal dynamics promote both phases. During the first phase, the actin cytoskeleton promotes mechanotransduction and serves as a dynamic scaffold for microcluster assembly. Proteins that drive actin polymerization such as WASp (Wiskott-Aldrich syndrome protein) and HS1 (hematopoietic lineage cell-specific protein 1) promote signaling through PLCγ1 (phospholipase Cγ1) and release of Ca(2+) from endoplasmic reticulum stores. During the second phase, the WAVE (WASP-family verprolin homologous protein) complex and the microtubule cytoskeleton promote STIM 1 clustering at sites of plasma membrane apposition, opening Orai channels. In addition, gross cell shape changes and organelle movements buffer local Ca(2+) levels, leading to sustained Ca(2+) mobilization. Conversely, elevated intracellular Ca(2+) activates cytoskeletal remodeling. This can occur indirectly, via calpain activity, and directly, via Ca(2+) -dependent cytoskeletal regulatory proteins such as myosin II and L-plastin. While it is true that the cytoskeleton regulates Ca(2+) responses and vice versa, interdependence between Ca(2+) and the cytoskeleton also encompasses signaling events that occur in parallel, downstream of shared intermediates. Inositol cleavage by PLCγ1 simultaneously triggers both endoplasmic reticulum store release and diacylglycerol-dependent microtubule organizing center reorientation, while depleting the pool of phosphatidylinositol-4,5-bisphosphate, an activator of multiple actin-regulatory proteins. The close interdependence of Ca(2+) signaling and cytoskeletal dynamics in T cells provides positive feedback mechanisms for T-cell activation and allows for finely tuned responses to extracellular cues.
Collapse
Affiliation(s)
- Alexander Babich
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
32
|
Intravital imaging of donor allogeneic effector and regulatory T cells with host dendritic cells during GVHD. Blood 2014; 123:1604-14. [PMID: 24415540 DOI: 10.1182/blood-2013-09-526020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Graft-versus-host disease (GVHD) is a systemic inflammatory response due to the recognition of major histocompatibility complex disparity between donor and recipient after hematopoietic stem cell transplantation (HSCT). T-cell activation is critical to the induction of GVHD, and data from our group and others have shown that regulatory T cells (Tregs) prevent GVHD when given at the time of HSCT. Using multiphoton laser scanning microscopy, we examined the single cell dynamics of donor T cells and dendritic cells (DCs) with or without Tregs postallogeneic transplantation. We found that donor conventional T cells (Tcons) spent very little time screening host DCs. Tcons formed stable contacts with DCs very early after transplantation and only increased velocity in the lymph node at 20 hours after transplant. We also observed that Tregs reduced the interaction time between Tcons and DCs, which was dependent on the generation of interleukin 10 by Tregs. Imaging using inducible Tregs showed similar disruption of Tcon-DC contact. Additionally, we found that donor Tregs induce host DC death and down-regulate surface proteins required for donor T-cell activation. These data indicate that Tregs use multiple mechanisms that affect host DC numbers and function to mitigate acute GVHD.
Collapse
|
33
|
Niggli V. Insights into the mechanism for dictating polarity in migrating T-cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 312:201-70. [PMID: 25262243 DOI: 10.1016/b978-0-12-800178-3.00007-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review is focused on mechanisms of chemokine-induced polarization of T-lymphocytes. Polarization involves, starting from spherical cells, formation of a morphologically and functionally different rear (uropod) and front (leading edge). This polarization is required for efficient random and directed T-cell migration. The addressed topics concern the specific location of cell organelles and of receptors, signaling molecules, and cytoskeletal proteins in chemokine-stimulated polarized T-cells. In chemokine-stimulated, polarized T-cells, specific proteins, signaling molecules and organelles show enrichment either in the rear, the midzone, or the front; different from the random location in spherical resting cells. Possible mechanisms involved in this asymmetric location will be discussed. A major topic is also the functional role of proteins and cell organelles in T-cell polarization and migration. Specifically, the roles of adhesion and chemokine receptors, cytoskeletal proteins, signaling molecules, scaffolding proteins, and membrane microdomains in these processes will be discussed. The polarity which is established during contact formation of T-cells with antigen-presenting cells is not discussed in detail.
Collapse
Affiliation(s)
- Verena Niggli
- Institute of Pathology, University of Bern, Bern, Switzerland.
| |
Collapse
|
34
|
Randriamampita C, Lellouch AC. Imaging early signaling events in T lymphocytes with fluorescent biosensors. Biotechnol J 2013; 9:203-12. [PMID: 24166755 DOI: 10.1002/biot.201300195] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/09/2013] [Accepted: 10/07/2013] [Indexed: 11/10/2022]
Abstract
Many recent advances in our understanding of T lymphocyte functions in adaptive immunity are derived from sophisticated imaging techniques used to visualize T lymphocyte behavior in vitro and in vivo. A current challenge is to couple such imaging techniques with methods that will allow researchers to visualize signaling phenomenon at the single-cell level. Fluorescent biosensors, either synthetic or genetically encoded, are emerging as important tools for revealing the spatio-temporal regulation of intracellular biochemical events, such as specific enzyme activities or fluctuations in metabolites. In this review, we revisit the development of fluorescent Ca(2+) sensors with which the first experiments visualizing T lymphocyte activation at the single-cell were performed, and which have since become routine tools in immunology. We then examine a number of examples of how fluorescence resonance energy transfer (FRET)-based biosensors have been developed and applied to T lymphocyte migration, adhesion and T-cell receptor (TCR)-mediated signal transduction. These include the study of small GTPases such as RhoA, Rac and Rap1, the tyrosine kinases Lck and ZAP-70, and metabolites such as cAMP and Ca(2+) . Future development and use of biosensors should allow immunologists to reconcile the vast wealth of existing biochemical data concerning T-cell functions with the power of dynamic live-cell imaging.
Collapse
Affiliation(s)
- Clotilde Randriamampita
- CNRS UMR8104, Institut Cochin, Paris, France; INSERM U567, Institut Cochin, Paris, France; Paris Descartes University, Institut Cochin, Paris, France.
| | | |
Collapse
|
35
|
Melichar HJ, Ross JO, Herzmark P, Hogquist KA, Robey EA. Distinct temporal patterns of T cell receptor signaling during positive versus negative selection in situ. Sci Signal 2013; 6:ra92. [PMID: 24129702 DOI: 10.1126/scisignal.2004400] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The recognition by the T cell receptor (TCR) of self-peptides presented by the major histocompatibility complex (MHC) on antigen-presenting cells, such as dendritic cells and thymic epithelial cells, controls T cell fate in the thymus, with weak TCR signals inducing survival (positive selection) and stronger signals inducing death (negative selection). In vitro studies indicate that peptide ligands that induce positive selection stimulate a low, but sustained, pattern of TCR signaling; however, the temporal pattern of TCR signaling in MHC class I-restricted thymocytes (thymocytes that are presented with peptides by MHC class I) in the thymus, under conditions that support positive selection, is unknown. We addressed this question by examining intracellular Ca(2+) dynamics and migratory changes in thymocytes undergoing positive and negative selection in thymic slices. Brief, serial signaling events that were separated by migratory periods and low cytosolic Ca(2+) concentrations correlated with the positive selection of MHC class I-restricted thymocytes, whereas sustained Ca(2+) signaling and the arrest of thymocytes were associated with negative selection. Low-avidity peptides and the presentation of peptides by cortical thymic epithelial cells, rather than dendritic cells, failed to induce strong migratory arrest of thymocytes, which led to transient TCR signaling. Thus, we provide a comparison of positive and negative selection signals in situ and suggest that the absence of strong stop signals distinguishes between positive and negative selection.
Collapse
Affiliation(s)
- Heather J Melichar
- 1Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
36
|
Salles A, Billaudeau C, Sergé A, Bernard AM, Phélipot MC, Bertaux N, Fallet M, Grenot P, Marguet D, He HT, Hamon Y. Barcoding T cell calcium response diversity with methods for automated and accurate analysis of cell signals (MAAACS). PLoS Comput Biol 2013; 9:e1003245. [PMID: 24086124 PMCID: PMC3784497 DOI: 10.1371/journal.pcbi.1003245] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 08/15/2013] [Indexed: 01/24/2023] Open
Abstract
We introduce a series of experimental procedures enabling sensitive calcium monitoring in T cell populations by confocal video-microscopy. Tracking and post-acquisition analysis was performed using Methods for Automated and Accurate Analysis of Cell Signals (MAAACS), a fully customized program that associates a high throughput tracking algorithm, an intuitive reconnection routine and a statistical platform to provide, at a glance, the calcium barcode of a population of individual T-cells. Combined with a sensitive calcium probe, this method allowed us to unravel the heterogeneity in shape and intensity of the calcium response in T cell populations and especially in naive T cells, which display intracellular calcium oscillations upon stimulation by antigen presenting cells. The adaptive immune response to pathogen invasion requires the stimulation of lymphocytes by antigen-presenting cells. We hypothesized that investigating the dynamics of the T lymphocyte activation by monitoring intracellular calcium fluctuations might help explain the high specificity and selectivity of this phenomenon. However, the quantitative and exhaustive analysis of calcium fluctuations by video microscopy in the context of cell-to-cell contact is a tough challenge. To tackle this, we developed a complete solution named MAAACS (Methods for Automated and Accurate Analysis of Cell Signals), in order to automate the detection, cell tracking, raw data ordering and analysis of calcium signals. Our algorithm revealed that, when in contact with antigen-presenting cells, T lymphocytes generate oscillating calcium signals and not a massive and sustained calcium response as was originally thought. We anticipate our approach providing many more new insights into the molecular mechanisms triggering adaptive immunity.
Collapse
Affiliation(s)
- Audrey Salles
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
| | - Cyrille Billaudeau
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
| | - Arnauld Sergé
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
- * E-mail: (AS); (YH)
| | - Anne-Marie Bernard
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
| | - Marie-Claire Phélipot
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
| | - Nicolas Bertaux
- Institut Fresnel, Centre National de la Recherche Scientifique (CNRS) UMR7249, Marseille, France
- École Centrale Marseille, Technopôle de Château-Gombert, Marseille, France
| | - Mathieu Fallet
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
| | - Pierre Grenot
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
| | - Didier Marguet
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
| | - Hai-Tao He
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
| | - Yannick Hamon
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
- * E-mail: (AS); (YH)
| |
Collapse
|
37
|
Waite JC, Vardhana S, Shaw PJ, Jang JE, McCarl CA, Cameron TO, Feske S, Dustin ML. Interference with Ca(2+) release activated Ca(2+) (CRAC) channel function delays T-cell arrest in vivo. Eur J Immunol 2013; 43:3343-54. [PMID: 23939929 DOI: 10.1002/eji.201243255] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 07/20/2013] [Accepted: 08/08/2013] [Indexed: 11/05/2022]
Abstract
Entry of lymphocytes into secondary lymphoid organs (SLOs) involves intravascular arrest and intracellular calcium ion ([Ca(2+)]i) elevation. TCR activation triggers increased [Ca(2+)]i and can arrest T-cell motility in vitro. However, the requirement for [Ca(2+)]i elevation in arresting T cells in vivo has not been tested. Here, we have manipulated the Ca(2+) release-activated Ca(2+) (CRAC) channel pathway required for [Ca(2+)]i elevation in T cells through genetic deletion of stromal interaction molecule (STIM) 1 or by expression of a dominant-negative ORAI1 channel subunit (ORAI1-DN). Interestingly, the absence of CRAC did not interfere with homing of naïve CD4(+) T cells to SLOs and only moderately reduced crawling speeds in vivo. T cells expressing ORAI1-DN lacked TCR activation induced [Ca(2+)]i elevation, yet arrested motility similar to control T cells in vitro. In contrast, antigen-specific ORAI1-DN T cells had a twofold delayed onset of arrest following injection of OVA peptide in vivo. CRAC channel function is not required for homing to SLOs, but enhances spatiotemporal coordination of TCR signaling and motility arrest.
Collapse
Affiliation(s)
- Janelle C Waite
- Program in Molecular Pathogenesis, Helen L. and Martin S. Kimmel Center for Biology and Medicine of the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Mitchell JS, Burbach BJ, Srivastava R, Fife BT, Shimizu Y. Multistage T cell-dendritic cell interactions control optimal CD4 T cell activation through the ADAP-SKAP55-signaling module. THE JOURNAL OF IMMUNOLOGY 2013; 191:2372-83. [PMID: 23918975 DOI: 10.4049/jimmunol.1300107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Ag-specific interactions between T cells and dendritic cells progress through dynamic contact stages in vivo consisting of early long-term stable contacts and later confined, yet motile, short-lived contacts. The signaling pathways that control in vivo interaction dynamics between T cells and dendritic cells during priming remain undefined. Adhesion and degranulation promoting adapter protein (ADAP) is a multifunctional adapter that regulates "inside-out" signaling from the TCR to integrins. Using two-photon microscopy, we demonstrate that, in the absence of ADAP, CD4 T cells make fewer early-stage stable contacts with Ag-laden dendritic cells, and the interactions are characterized by brief repetitive contacts. Furthermore, ADAP-deficient T cells show reduced contacts at the late motile contact phase and display less confinement around dendritic cells. The altered T cell interaction dynamics in the absence of ADAP are associated with defective early proliferation and attenuated TCR signaling in vivo. Regulation of multistage contact behaviors and optimal T cell signaling involves the interaction of ADAP with the adapter src kinase-associated phosphoprotein of 55 kDa (SKAP55). Thus, integrin activation by the ADAP-SKAP55-signaling module controls the stability and duration of T cell-dendritic cell contacts during the progressive phases necessary for optimal T cell activation.
Collapse
Affiliation(s)
- Jason S Mitchell
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
39
|
Real-time in vivo analysis of T cell activation in the central nervous system using a genetically encoded calcium indicator. Nat Med 2013; 19:778-83. [PMID: 23685843 DOI: 10.1038/nm.3180] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 11/27/2012] [Indexed: 12/12/2022]
Abstract
To study T cell activation in vivo in real time, we introduced a newly developed fluorescence resonance energy transfer-based, genetically encoded calcium indicator into autoantigen-specific and non-autoantigen-specific CD4(+) T cells. Using two-photon microscopy, we explored the responses of retrovirally transduced calcium indicator-expressing T cells to antigen in the lymph nodes and the central nervous system. In lymph nodes, the administration of exogenous antigen caused an almost immediate arrest of T cells around antigen-presenting cells and an instant rise of cytosolic calcium. In contrast, encephalitogenic T cells entering the leptomeningeal space, one main portal into the central nervous system parenchyma during experimental autoimmune encephalomyelitis, showed elevated intracellular calcium concentrations while still meandering through the space. This approach enabled us to follow the migration and activation patterns of T cells in vivo during the course of the disease.
Collapse
|
40
|
Giegold O, Ogrissek N, Richter C, Schröder M, Herrero San Juan M, Pfeilschifter JM, Radeke HH. CXCL9 Causes Heterologous Desensitization of CXCL12-Mediated Memory T Lymphocyte Activation. THE JOURNAL OF IMMUNOLOGY 2013; 190:3696-705. [DOI: 10.4049/jimmunol.1101293] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Abstract
Ten years ago, in 2002, the introduction of dynamic in vivo imaging to immunologists set a new standard for studying immune responses. In particular, two-photon imaging has provided tremendous insights into immune cell dynamics in various contexts, including infection, cancer, transplantation and autoimmunity. Whereas initial studies were restricted to the migration of and interactions between immune cells, recent advances are bringing intravital imaging to a new level in which cell dynamics and function can be investigated simultaneously. These exciting developments further broaden the applications of immunoimaging and provide unprecedented opportunities to probe and decode immune cell communication in situ.
Collapse
|
42
|
Pesic M, Bartholomäus I, Kyratsous NI, Heissmeyer V, Wekerle H, Kawakami N. 2-photon imaging of phagocyte-mediated T cell activation in the CNS. J Clin Invest 2013; 123:1192-201. [PMID: 23454769 DOI: 10.1172/jci67233] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/06/2012] [Indexed: 12/31/2022] Open
Abstract
Autoreactive T cells can infiltrate the CNS to cause disorders such as multiple sclerosis. In order to visualize T cell activation in the CNS, we introduced a truncated fluorescent derivative of nuclear factor of activated T cells (NFAT) as a real-time T cell activation indicator. In experimental autoimmune encephalomyelitis, a rat model of multiple sclerosis, we tracked T cells interacting with structures of the vascular blood-brain barrier (BBB). 2-photon imaging documented the cytoplasmic-nuclear translocation of fluorescent NFAT, indicative of calcium-dependent activation of the T cells in the perivascular space, but not within the vascular lumen. The activation was related to contacts with the local antigen-presenting phagocytes and was noted only in T cells with a high pathogenic potential. T cell activation implied the presentation of an autoantigen, as the weakly pathogenic T cells, which remained silent in the untreated hosts, were activated upon instillation of exogenous autoantigen. Activation did not cogently signal long-lasting arrest, as individual T cells were able to sequentially contact fresh APCs. We propose that the presentation of local autoantigen by BBB-associated APCs provides stimuli that guide autoimmune T cells to the CNS destination, enabling them to attack the target tissue.
Collapse
Affiliation(s)
- Marija Pesic
- Max Planck Institute of Neurobiology, Department of Neuroimmunology, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Marangoni F, Murooka TT, Manzo T, Kim EY, Carrizosa E, Elpek NM, Mempel TR. The transcription factor NFAT exhibits signal memory during serial T cell interactions with antigen-presenting cells. Immunity 2013; 38:237-49. [PMID: 23313588 DOI: 10.1016/j.immuni.2012.09.012] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 09/27/2012] [Indexed: 01/12/2023]
Abstract
Interactions with antigen-presenting cells (APCs) interrupt T cell migration through tissues and trigger signaling pathways that converge on the activation of transcriptional regulators, including nuclear factor of activated T cells (NFAT), which control T cell function and differentiation. Both stable and unstable modes of cognate T cell-APC interactions have been observed in vivo, but the functional significance of unstable, serial contacts has remained unclear. Here we used multiphoton intravital microscopy in lymph nodes and tumors to show that while NFAT nuclear import was fast (t(1/2 max)∼1 min), nuclear export was slow (t(1/2)∼20 min) in T cells. During delayed export, nuclear NFAT constituted a short-term imprint of transient TCR signals and remained transcriptionally active for the T cell tolerance gene Egr2, but not for the effector gene Ifng, which required continuous TCR triggering for expression. This provides a potential mechanistic basis for the observation that a predominance of unstable APC interactions correlates with the induction of T cell tolerance.
Collapse
Affiliation(s)
- Francesco Marangoni
- The Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Gérard A, Beemiller P, Friedman RS, Jacobelli J, Krummel MF. Evolving immune circuits are generated by flexible, motile, and sequential immunological synapses. Immunol Rev 2013; 251:80-96. [PMID: 23278742 PMCID: PMC3539221 DOI: 10.1111/imr.12021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The immune system is made up of a diverse collection of cells, each of which has distinct sets of triggers that elicit unique and overlapping responses. It is correctly described as a 'system' because its overall properties (e.g. 'tolerance', 'allergy') emerge from multiple interactions of its components cells. To mobilize a response where needed, the majority of the cells of the system are obligatorily highly motile and so must communicate with one another over both time and space. Here, we discuss the flexibility of the primary immunological synapse (IS) with respect to motility. We then consider the primary IS as an initiating module that licenses 'immunological circuits': the latter consisting of two or more cell-cell synaptic interactions. We discuss how two or three component immunological circuits interact might with one another in sequence and how the timing, stoichiometry, milieu, and duration of assembly of immunological circuits are likely to be key determinants in the emergent outcome and thus the system-wide immune response. An evolving consideration of immunological circuits, with an emphasis on the cell-cell modules that complement T-antigen-presenting cell interaction, provides a fundamental starting point for systems analysis of the immune response.
Collapse
Affiliation(s)
- Audrey Gérard
- Department of Pathology, University of California, San Francisco, CA 94143-0511, USA
| | | | | | | | | |
Collapse
|
45
|
GTPase of the immune-associated nucleotide-binding protein 5 (GIMAP5) regulates calcium influx in T-lymphocytes by promoting mitochondrial calcium accumulation. Biochem J 2012; 449:353-64. [DOI: 10.1042/bj20120516] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mature T-lymphocytes undergo spontaneous apoptosis in the biobreeding diabetes-prone strain of rats due to the loss of the functional GIMAP5 (GTPase of the immune-associated nucleotide-binding protein 5) protein. The mechanisms underlying the pro-survival function of GIMAP5 in T-cells have not yet been elucidated. We have previously shown that GIMAP5 deficiency in T-cells impairs Ca2+ entry via plasma membrane channels following exposure to thapsigargin or stimulation of the T-cell antigen receptor. In the present study we report that this reduced Ca2+ influx in GIMAP5-deficient T-cells is associated with the inability of their mitochondria to sequester Ca2+ following capacitative entry, which is required for sustained Ca2+ influx via the plasma membrane channels. Consistent with a role for GIMAP5 in regulating mitochondrial Ca2+, overexpression of GIMAP5 in HEK (human embryonic kidney)-293 cells resulted in increased Ca2+ accumulation within the mitochondria. Disruption of microtubules, but not the actin cytoskeleton, abrogated mitochondrial Ca2+ sequestration in primary rat T-cells, whereas both microtubules and actin cytoskeleton were needed for the GIMAP5-mediated increase in mitochondrial Ca2+ in HEK-293 cells. Moreover, GIMAP5 showed partial colocalization with tubulin in HEK-293 cells. On the basis of these findings, we propose that the pro-survival function of GIMAP5 in T-lymphocytes may be linked to its requirement to facilitate microtubule-dependent mitochondrial buffering of Ca2+ following capacitative entry.
Collapse
|
46
|
Herz J, Zinselmeyer BH, McGavern DB. Two-photon imaging of microbial immunity in living tissues. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2012; 18:730-741. [PMID: 22846498 PMCID: PMC3771356 DOI: 10.1017/s1431927612000281] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The immune system is highly evolved and can respond to infection throughout the body. Pathogenspecific immune cells are usually generated in secondary lymphoid tissues (e.g., spleen, lymph nodes) and then migrate to sites of infection where their functionality is shaped by the local milieu. Because immune cells are so heavily influenced by the infected tissue in which they reside, it is important that their interactions and dynamics be studied in vivo. Two-photon microscopy is a powerful approach to study host-immune interactions in living tissues, and recent technical advances in the field have enabled researchers to capture movies of immune cells and infectious agents operating in real time. These studies have shed light on pathogen entry and spread through intact tissues as well as the mechanisms by which innate and adaptive immune cells participate in thwarting infections. This review focuses on how two-photon microscopy can be used to study tissue-specific immune responses in vivo, and how this approach has advanced our understanding of host-immune interactions following infection.
Collapse
|
47
|
Germain RN, Robey EA, Cahalan MD. A decade of imaging cellular motility and interaction dynamics in the immune system. Science 2012; 336:1676-81. [PMID: 22745423 PMCID: PMC3405774 DOI: 10.1126/science.1221063] [Citation(s) in RCA: 288] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To mount an immune response, lymphocytes must recirculate between the blood and lymph nodes, recognize antigens upon contact with specialized presenting cells, proliferate to expand a small number of clonally relevant lymphocytes, differentiate to antibody-producing plasma cells or effector T cells, exit from lymph nodes, migrate to tissues, and engage in host-protective activities. All of these processes involve motility and cellular interactions--events that were hidden from view until recently. Introduced to immunology by three papers in this journal in 2002, in vivo live-cell imaging studies are revealing the behavior of cells mediating adaptive and innate immunity in diverse tissue environments, providing quantitative measurement of cellular motility, interactions, and response dynamics. Here, we review themes emerging from such studies and speculate on the future of immunoimaging.
Collapse
Affiliation(s)
- Ronald N. Germain
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ellen A. Robey
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720
| | - Michael D. Cahalan
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697
| |
Collapse
|
48
|
Moreau HD, Lemaître F, Terriac E, Azar G, Piel M, Lennon-Dumenil AM, Bousso P. Dynamic in situ cytometry uncovers T cell receptor signaling during immunological synapses and kinapses in vivo. Immunity 2012; 37:351-63. [PMID: 22683126 DOI: 10.1016/j.immuni.2012.05.014] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 02/22/2012] [Accepted: 05/03/2012] [Indexed: 01/03/2023]
Abstract
Upon antigen recognition, T cells form either static (synapses) or migratory (kinapses) contacts with antigen-presenting cells. Addressing whether synapses and kinapses result in distinct T cell receptor (TCR) signals has been hampered by the inability to simultaneously assess T cell phenotype and behavior. Here, we introduced dynamic in situ cytometry (DISC), a combination of intravital multiphoton imaging and flow cytometry-like phenotypic analysis. Taking advantage of CD62L shedding as a marker of early TCR signaling, we examined how T cells sense TCR ligands of varying affinities in vivo. We uncovered three modes of antigen recognition: synapses with the strongest TCR signals, kinapses with robust signaling, and kinapses with weak signaling. As illustrated here, the DISC approach should provide unique opportunities to link immune cell behavior to phenotype and function in vivo.
Collapse
Affiliation(s)
- Hélène D Moreau
- Institut Pasteur, Dynamics of Immune Responses Unit, 75015 Paris, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Wolden-Kirk H, Overbergh L, Christesen HT, Brusgaard K, Mathieu C. Vitamin D and diabetes: its importance for beta cell and immune function. Mol Cell Endocrinol 2011; 347:106-20. [PMID: 21889571 DOI: 10.1016/j.mce.2011.08.016] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 08/08/2011] [Accepted: 08/12/2011] [Indexed: 02/06/2023]
Abstract
Experimental evidence indicates that vitamin D may play a role in the defense against type 1 diabetes (T1D) as well as type 2 diabetes (T2D). Epidemiological data have established a link between vitamin D deficiency and an increased incidence of both T1D and T2D, whereas early and long-term vitamin D supplementation may decrease the risk of these disorders. The protective effects of vitamin D are mediated through the regulation of several components such as the immune system and calcium homeostasis. However, an increasing amount of evidence suggests that vitamin D also affects beta cells directly thereby rendering them more resistant to the types of cellular stress encountered during T1D and T2D. This review evaluates the role of vitamin D signaling in the pathogenesis of T1D and T2D with a special emphasis on the direct effects of vitamin D on pancreatic beta cells.
Collapse
Affiliation(s)
- Heidi Wolden-Kirk
- Laboratory of Experimental Medicine and Endocrinology, University Hospital Gasthuisberg, Catholic University of Leuven, B-3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
50
|
Matheu MP, Cahalan MD, Parker I. General approach to adoptive transfer and cell labeling for immunoimaging. Cold Spring Harb Protoc 2011; 2011:pdb.prot5565. [PMID: 21285265 DOI: 10.1101/pdb.prot5565] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
INTRODUCTIONImaging the single-cell dynamics of the immune system within an intact environment requires the ability to look deep inside tissues and organisms with spatial and temporal resolutions adequate to track cell morphology, motility, and signaling processes, all while minimizing perturbation of the system under study. Fluorescence techniques are highly suited for this purpose, permitting both labeling of specific cells, organelles, or proteins and functional readout of physiological events, and two-photon microscopy allows these processes to be visualized within native tissue environments. Adoptive transfer, as described here, is the generally preferred method for introducing labeled cells of interest into a host animal for immunoimaging. Cells are derived from a donor animal with a genetic background identical to that of the host and can either be endogenously fluorescent (e.g., isolated from a transgenic mouse expressing the fluorescent protein) or can be labeled before transfer. Typically, transferring 2-6 × 106 labeled cells of a given type results in an appropriate cell density for two-photon imaging.
Collapse
|