1
|
Li F, Zhang X, Xu J, Zhang Y, Li G, Yang X, Deng G, Dai Y, Liu B, Kosan C, Chen X, Cai Y. SIRT7 remodels the cytoskeleton via RAC1 to enhance host resistance to Mycobacterium tuberculosis. mBio 2024; 15:e0075624. [PMID: 39287444 PMCID: PMC11481912 DOI: 10.1128/mbio.00756-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Phagocytosis of Mycobacterium tuberculosis (Mtb) followed by its integration into the matured lysosome is critical in the host defense against tuberculosis. How Mtb escapes this immune attack remains elusive. In this study, we unveiled a novel regulatory mechanism by which SIRT7 regulates cytoskeletal remodeling by modulating RAC1 activation. We discovered that SIRT7 expression was significantly reduced in CD14+ monocytes of TB patients. Mtb infection diminished SIRT7 expression by macrophages at both the mRNA and protein levels. SIRT7 deficiency impaired actin cytoskeleton-dependent macrophage phagocytosis, LC3II expression, and bactericidal activity. In a murine tuberculosis model, SIRT7 deficiency detrimentally impacted host resistance to Mtb, while Sirt7 overexpression significantly increased the host defense against Mtb, as determined by bacterial burden and inflammatory-histopathological damage in the lung. Mechanistically, we demonstrated that SIRT7 limits Mtb infection by directly interacting with and activating RAC1, through which cytoskeletal remodeling is modulated. Therefore, we concluded that SIRT7, in its role regulating cytoskeletal remodeling through RAC1, is critical for host responses during Mtb infection and proposes a potential target for tuberculosis treatment.IMPORTANCETuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant global health issue. Critical to macrophages' defense against Mtb is phagocytosis, governed by the actin cytoskeleton. Previous research has revealed that Mtb manipulates and disrupts the host's actin network, though the specific mechanisms have been elusive. Our study identifies a pivotal role for SIRT7 in this context: Mtb infection leads to reduced SIRT7 expression, which, in turn, diminishes RAC1 activation and consequently impairs actin-dependent phagocytosis. The significance of our research is that SIRT7 directly engages with and activates Rac Family Small GTPase 1 (RAC1), thus promoting effective phagocytosis and the elimination of Mtb. This insight into the dynamic between host and pathogen in TB not only broadens our understanding but also opens new avenues for therapeutic development.
Collapse
Affiliation(s)
- Fuxiang Li
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, Germany
| | - Ximeng Zhang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
| | - Jinjin Xu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
| | - Yue Zhang
- School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen, China
| | - Guo Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Xirui Yang
- Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Guofang Deng
- Guangdong Key Lab for Diagnosis & Treatment of Emerging Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Youchao Dai
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI), National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, Shenzhen University, Shenzhen, China
| | - Christian Kosan
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, Germany
| | - Xinchun Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
| | - Yi Cai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
2
|
Alemifar A, Burnette K, Jandres B, Hurt S, Tse HM, Robinson JL. Electrospun Fiber Surface Roughness Modulates Human Monocyte-Derived Macrophage Phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610568. [PMID: 39282362 PMCID: PMC11398424 DOI: 10.1101/2024.08.30.610568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Injuries to fibrous connective tissues have very little capacity for self-renewal and exhibit poor healing after injury. Phenotypic shifts in macrophages play a vital role in mediating the healing response, creating an opportunity to design immunomodulatory biomaterials which control macrophage polarization and promote regeneration. In this study, electrospun poly(-caprolactone) fibers with increasing surface roughness (SR) were produced by increasing relative humidity and inducing vapor-induced phase separation during the electrospinning process. The impact of surface roughness on macrophage phenotype was assessed using human monocyte-derived macrophages in vitro and in vivo using B6.Cg-Tg(Csf1r-EGFP)1Hume/J (MacGreen) mice. In vitro experiments showed that macrophages cultured on mesh with increasing SR exhibited decreased release of both pro- and anti-inflammatory cytokines potentially driven by increased protein adsorption and biophysical impacts on the cells. Further, increasing SR led to an increase in the expression of the pro-regenerative cell surface marker CD206 relative to the pro-inflammatory marker CD80. Mesh with increasing SR were implanted subcutaneously in MacGreen mice, again showing an increase in the ratio of cells expressing CD206 to those expressing CD80 visualized by immunofluorescence. SR on implanted biomaterials is sufficient to drive macrophage polarization, demonstrating a simple feature to include in biomaterial design to control innate immunity.
Collapse
Affiliation(s)
- Aidan Alemifar
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington
- Bioengineering Graduate Program, University of Kansas
| | - KaLia Burnette
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center
| | - Bryan Jandres
- Department of Biochemistry, University of Washington
| | - Samuel Hurt
- Department of Chemical and Petroleum Engineering, University of Kansas
| | - Hubert M Tse
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center
| | - Jennifer L Robinson
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington
- Department of Mechanical Engineering, University of Washington
| |
Collapse
|
3
|
Zhu Y, Chen Y, Xu J, Zu Y. Unveiling the Potential of Migrasomes: A Machine-Learning-Driven Signature for Diagnosing Acute Myocardial Infarction. Biomedicines 2024; 12:1626. [PMID: 39062199 PMCID: PMC11274667 DOI: 10.3390/biomedicines12071626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Recent studies have demonstrated that the migrasome, a newly functional extracellular vesicle, is potentially significant in the occurrence, progression, and diagnosis of cardiovascular diseases. Nonetheless, its diagnostic significance and biological mechanism in acute myocardial infarction (AMI) have yet to be fully explored. METHODS To remedy this gap, we employed an integrative machine learning (ML) framework composed of 113 ML combinations within five independent AMI cohorts to establish a predictive migrasome-related signature (MS). To further elucidate the biological mechanism underlying MS, we implemented single-cell RNA sequencing (scRNA-seq) of cardiac Cd45+ cells from AMI-induced mice. Ultimately, we conducted mendelian randomization (MR) and molecular docking to unveil the therapeutic effectiveness of MS. RESULTS MS demonstrated robust predictive performance and superior generalization, driven by the optimal combination of Stepglm and Lasso, on the expression of nine migrasome genes (BMP1, ITGB1, NDST1, TSPAN1, TSPAN18, TSPAN2, TSPAN4, TSPAN7, TSPAN9, and WNT8A). Notably, ITGB1 was found to be predominantly expressed in cardiac macrophages in AMI-induced mice, mechanically regulating macrophage transformation between anti-inflammatory and pro-inflammatory. Furthermore, we showed a positive causality between genetic predisposition towards ITGB1 expression and AMI risk, positioning it as a causative gene. Finally, we showed that ginsenoside Rh1, which interacts closely with ITGB1, could represent a novel therapeutic approach for repressing ITGB1. CONCLUSIONS Our MS has implications in forecasting and curving AMI to inform future diagnostic and therapeutic strategies for AMI.
Collapse
Affiliation(s)
- Yihao Zhu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yuxi Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jiajin Xu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yao Zu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-Gang Special Area, Shanghai 201306, China
| |
Collapse
|
4
|
Li Z, Tan S, Qi L, Chen Y, Liu H, Liu X, Sha Z. Genome-wide characterization of integrin (ITG) gene family and their expression profiling in half-smooth tongue sole (Cynoglossus semilaevis) upon Vibrio anguillarum infection. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101099. [PMID: 37327728 DOI: 10.1016/j.cbd.2023.101099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/10/2023] [Accepted: 05/25/2023] [Indexed: 06/18/2023]
Abstract
Integrins (ITGs) are transmembrane heterodimer receptors with ITGα subunit and ITGβ subunit, participating in various physiological processes, including immunity. At present, systematic research on ITGs in teleost is scarce, especially in half-smooth tongue sole (Cynoglossus semilaevis). In this study, a set of 28 ITG genes in half-smooth tongue sole have been identified and characterized. The phylogenetic analysis showed that ITGα and ITGβ subunits were respectively classified into five and two clusters, consistent with previous studies. The selection pressure analysis indicated that most of ITG genes were under purifying selection, except for ITGα11b and ITGαL with positive selection. The expression profiles of eight selected ITG genes, including ITGα1, ITGα5, ITGα8, ITGα11, ITGβ1, ITGβ2, ITGβ3, and ITGβ8, were analyzed in healthy tissues and after infection with Vibrio anguillarum, revealed their implications in immune response. The study provided a comprehensive characterization and expression analysis of ITG genes in half-smooth tongue sole, setting a solid foundation for further functional studies and promising potential in disease control.
Collapse
Affiliation(s)
- Zhujun Li
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Suxu Tan
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Longjiang Qi
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Yadong Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Hongning Liu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Xinbao Liu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Zhenxia Sha
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
5
|
Chen H, Wang M, Zhang H, Wang H, Zhou L, Zhong Z, Cao L, Lian C, Sun Y, Li C. microRNAs facilitate comprehensive responses of Bathymodiolinae mussel against symbiotic and nonsymbiotic bacteria stimulation. FISH & SHELLFISH IMMUNOLOGY 2021; 119:420-431. [PMID: 34687882 DOI: 10.1016/j.fsi.2021.10.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/08/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Bathymodiolinae mussels are dominant species in cold seeps and hydrothermal vents and could harbor endosymbionts in gill bacteriocytes. However, mechanisms underlying the symbiosis have remained largely undisclosed for years. In the present study, the global expression pattern of immune-related genes and miRNAs were surveyed in Gigantidas platifrons during bacterial challenges using enriched symbiotic methane oxidation bacteria MOBs or nonsymbiotic Vibrio. As a result, multiple pattern recognition receptors were found differentially expressed at 12 h and 24 h post bacteria challenges and distinctly clustered between stimulations. Dozens of immune effectors along with signal transducers were also modulated simultaneously during MOB or Vibrio challenge. A total of 459 miRNAs were identified in the gill while some were differentially expressed post MOB or nonsymbiotic bacteria challenge. A variety of immune-related genes were annotated as target genes of aforesaid differentially expressed miRNAs. As a result, biological processes including the immune recognition, lysosome activity and bacteria engulfment were suggested to be dynamically modulated by miRNAs in either symbiotic or nonsymbiotic bacteria challenge. It was suggested that G. platifrons mussels could maintain a robust immune response against invading pathogens while establishing symbiosis with chemosynthetic bacteria with the orchestra of immune-related genes and miRNAs.
Collapse
Affiliation(s)
- Hao Chen
- Center of Deep Sea Research, And CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Minxiao Wang
- Center of Deep Sea Research, And CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Huan Zhang
- Center of Deep Sea Research, And CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Hao Wang
- Center of Deep Sea Research, And CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Li Zhou
- Center of Deep Sea Research, And CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhaoshan Zhong
- Center of Deep Sea Research, And CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Lei Cao
- Center of Deep Sea Research, And CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chao Lian
- Center of Deep Sea Research, And CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yan Sun
- Center of Deep Sea Research, And CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chaolun Li
- Center of Deep Sea Research, And CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 10049, China.
| |
Collapse
|
6
|
Fountain A, Inpanathan S, Alves P, Verdawala MB, Botelho RJ. Phagosome maturation in macrophages: Eat, digest, adapt, and repeat. Adv Biol Regul 2021; 82:100832. [PMID: 34717137 DOI: 10.1016/j.jbior.2021.100832] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022]
Abstract
Phagocytosis is a dynamic process that requires an intricate interplay between phagocytic receptors, membrane lipids, and numerous signalling proteins and their effectors, to coordinate the engulfment of a bound particle. These particles are diverse in their physico-chemical properties such as size and shape and include bacteria, fungi, apoptotic cells, living tumour cells, and abiotic particles. Once engulfed, these particles are enclosed within a phagosome, which undergoes a striking transformation referred to as phagosome maturation, which will ultimately lead to the processing and degradation of the enclosed particulate. In this review, we focus on recent advancements in phagosome maturation in macrophages, highlighting new discoveries and emerging themes. Such advancements include identification of new GTPases and their effectors and the intricate spatio-temporal dynamics of phosphoinositides in governing phagosome maturation. We then explore phagosome fission and recycling, the emerging role of membrane contact sites, and delve into mechanisms of phagosome resolution to recycle and reform lysosomes. We further illustrate how phagosome maturation is context-dependent, subject to the type of particle, phagocytic receptors, the phagocytes and their state of activation during phagocytosis. Lastly, we discuss how phagosomes serve as signalling platforms to help phagocytes adapt to their environmental conditions. Overall, this review aims to cover recent findings, identify emerging themes, and highlight current challenges and directions to improve our understanding of phagosome maturation in macrophages.
Collapse
Affiliation(s)
- Aaron Fountain
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada; Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada
| | - Subothan Inpanathan
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada; Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada
| | - Patris Alves
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada; Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada
| | - Munira B Verdawala
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada
| | - Roberto J Botelho
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada; Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada.
| |
Collapse
|
7
|
Abstract
Tissue-resident macrophages are present in most tissues with developmental, self-renewal, or functional attributes that do not easily fit into a textbook picture of a plastic and multifunctional macrophage originating from hematopoietic stem cells; nor does it fit a pro- versus anti-inflammatory paradigm. This review presents and discusses current knowledge on the developmental biology of macrophages from an evolutionary perspective focused on the function of macrophages, which may aid in study of developmental, inflammatory, tumoral, and degenerative diseases. We also propose a framework to investigate the functions of macrophages in vivo and discuss how inherited germline and somatic mutations may contribute to the roles of macrophages in diseases.
Collapse
Affiliation(s)
- Nehemiah Cox
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Maria Pokrovskii
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Rocio Vicario
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
8
|
Tertrais M, Bigot C, Martin E, Poincloux R, Labrousse A, Maridonneau-Parini I. Phagocytosis is coupled to the formation of phagosome-associated podosomes and a transient disruption of podosomes in human macrophages. Eur J Cell Biol 2021; 100:151161. [PMID: 33836409 DOI: 10.1016/j.ejcb.2021.151161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/08/2021] [Accepted: 03/29/2021] [Indexed: 01/10/2023] Open
Abstract
Phagocytosis consists in ingestion and digestion of large particles, a process strictly dependent on actin re-organization. Using synchronized phagocytosis of IgG-coated latex beads (IgG-LB), zymosan or serum opsonized-zymosan, we report the formation of actin structures on both phagocytic cups and closed phagosomes in human macrophages. Their lifespan, size, protein composition and organization are similar to podosomes. Thus, we called these actin structures phagosome-associated podosomes (PAPs). Concomitantly to the formation of PAPs, a transient disruption of podosomes occurred at the ventral face of macrophages. Similarly to podosomes, which are targeted by vesicles containing proteases, the presence of PAPs correlated with the maturation of phagosomes into phagolysosomes. The ingestion of LB without IgG did not trigger PAPs formation, did not lead to podosome disruption and maturation to phagolysosomes, suggesting that these events are linked together. Although similar to podosomes, we found that PAPs differed by being resistant to the Arp2/3 inhibitor CK666. Thus, we describe a podosome subtype which forms on phagosomes where it probably serves several tasks of this multifunctional structure.
Collapse
Affiliation(s)
- Margot Tertrais
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Claire Bigot
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Emmanuel Martin
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Renaud Poincloux
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Arnaud Labrousse
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
9
|
Zhu P, Wang H, Zeng Q. Comparative transcriptome reveals the response of oriental river prawn (Macrobrachium nipponense) to sulfide toxicity at molecular level. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 230:105700. [PMID: 33285378 DOI: 10.1016/j.aquatox.2020.105700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/13/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Aquatic environmental pollutants have various impacts on aquaculture. Specifically, sulfide has been established as being toxic to aquatic animals including the oriental river prawn Macrobrachium nipponense. In response, the hepatopancreas has been broadly studied, as it plays a pivotal role in arthropod nutrient digestion and absorption, energy supply, and organ development as well as in crustacean immunity. However, the underlying molecular mechanisms of hepatopancreas's response to sulfide toxicity are still poorly understand. Herein, we used Nova-seq 6000 platform to conduct a comparative transcriptome analysis of gene expression profiles in the hepatopancreas of M. nipponense, while it was under the influence of a semi-lethal sulfide concentration (3.20 mg/L at 48 h). A total of 139 million raw reads were obtained, in which 67,602 transcripts were clustered into 37,041 unigenes for further analysis. After constant sulfide exposure for 48 h, 235 differentially expressed genes, i.e., DEGs (151 up-regulated and 84 down-regulated) were identified in the sulfide treatment group (TGHP) compared with the control group (CGHP). We used GO and KEGG databases to annotate all the DEGs into 1180 functions and 123 pathways, respectively. The metabolic pathways included proximal tubule bicarbonate reclamation, sulfur metabolism, glycolysis and gluconeogenesis, and the TCA cycle; while immune-related pathways contained Ras, Rap1, focal adhesion and platelet activation. Additionally, apoptosis-involved pathways e.g., lysosome, also exhibited remarkable alteration in the presence of sulfide stress. Notably, responses to external stimuli and detoxification genes- such as GSKIP, CRT2, APOD, TRET1, CYP4C3 and HR39- were significantly altered by the sulfide stress, indicating that significant toxicity was transferred through energy metabolism, growth, osmoregulatory processes and immunity. Finally, we demonstrated that in the present of sulfide stress, M. nipponense altered the expression of detoxification- and extracellular stimulation-related genes, and displayed positive resistance via tight junction activation and lysosome pathways. The results of these novel experiments shed light on the hepatopancreas's molecular response to sulfide stress resistance and the corresponding adaptation mechanism; and enable us to identify several potential biomarkers for further studies.
Collapse
Affiliation(s)
- Peng Zhu
- Department of Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China.
| | - Hui Wang
- Department of Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China.
| | - Qifan Zeng
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Science, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
10
|
Li XP, Zhang J. A live attenuated Edwardsiella tarda vaccine induces immunological expression pattern in Japanese flounder (Paralichthys olivaceus) in the early phase of immunization. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108872. [PMID: 32814144 DOI: 10.1016/j.cbpc.2020.108872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/03/2020] [Accepted: 08/09/2020] [Indexed: 12/29/2022]
Abstract
A previous study showed that an attenuated Edwardsiella tarda strain, TXhfq, as a live vaccine could elicit protective immune effects in fish against E. tarda infection. In the current study, in order to clarify the molecular mechanism of fish immune response at the early stage after TXhfq vaccination, RNA-Seq technology was used to compare the transcriptomes of skin, intestine, and spleen between bath-vaccinated and unvaccinated Japanese flounder (Paralichthys olivaceus). An average of 46.6 million clean reads per library was obtained, ~88.04% of which were successfully mapped to the reference genome, and approximately 24,600 genes were detected in each sample. A total of 565, 878, and 1258 differential expression genes (DEGs) were found in skin, intestine, and spleen, respectively, including 1263 up-regulated genes and 1438 down-regulated genes. The DEGs exhibited different characteristics in each tissue. One hundred and sixteen DEGs belonging to six immune related categories were scrutinized, i.e., inflammatory factors, cytokines, complement and coagulation system, mucins, phagocytosis, and antigen processing and presentation. A protein-protein interaction network was constructed to get the interaction network between immune genes during the early stage of immunization. The top six hub genes highly regulated by TXhfq formed complicated interaction relationship with each other, which were involved in immune processes, notably inflammation and phagocytosis. Our results provide valuable information for the understanding of the immune mechanism underlying the protection of live attenuated vaccines in fish.
Collapse
Affiliation(s)
- Xue-Peng Li
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; School of Ocean, Yantai University, Yantai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jian Zhang
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; School of Ocean, Yantai University, Yantai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
11
|
Mao F, Mu H, Wong NK, Liu K, Song J, Qiu J, Lin Y, Zhang X, Xu D, Xiang Z, Li J, Zhang Y, Yu Z. Hemocyte phagosomal proteome is dynamically shaped by cytoskeleton remodeling and interorganellar communication with endoplasmic reticulum during phagocytosis in a marine invertebrate, Crassostrea gigas. Sci Rep 2020; 10:6577. [PMID: 32313134 PMCID: PMC7171069 DOI: 10.1038/s41598-020-63676-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022] Open
Abstract
Phagosomes are task-force organelles of innate immune systems, and evolutionary diversity and continuity abound in the protein machinery executing this coordinately regulated process. In order to clarify molecular mechanisms underlying phagocytosis, we studied phagocyte response to beads and Vibrio species, using hemocytes of the Pacific oysters (Crassostrea gigas) as a marine invertebrate model. Phagosomes from different stages of phagocytosis were isolated by density-gradient centrifugation, and more than 400 phagosome-associated proteins were subsequently identified via high-throughput quantitative proteomics. In modeling key networks of phagosomal proteins, our results support the essential roles of several processes driving phagosome formation and maturation, including cytoskeleton remodeling and signal transduction by Rab proteins. Several endoplasmic reticulum (ER)-associated proteins were identified, while live cell imaging confirms an apparent intimate interaction between the ER and phagosomes. In further quantitative proteomic analysis, the signal transducers CgRhoGDI and CgPI4K were implicated. Through experimental validation, CgRhoGDI was shown to negatively regulate actin cytoskeleton remodeling in the formation of oyster phagosomes, while CgPI4K signaling drives phagosome maturation and bacterial killing. Our current work illustrates the diversity and dynamic interplay of phagosomal proteins, providing a framework for better understanding host-microbe interactions during phagosome activities in under-examined invertebrate species.
Collapse
Affiliation(s)
- Fan Mao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Huawei Mu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Nai-Kei Wong
- Department of Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Kunna Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jingchen Song
- College of Oceanology, South China Agricultural University, Guangzhou, China
| | - Jianwen Qiu
- Croucher Institute for Environmental Sciences and the Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yue Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Xiangyu Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Duo Xu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Zhiming Xiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China. .,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, Guangzhou, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
| | - Ziniu Yu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China. .,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, Guangzhou, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
| |
Collapse
|
12
|
Wang G, Na S, Qin L. Uncovering the cellular and humoral immune responses of Antheraea pernyi hemolymph to Antheraea pernyi nucleopolyhedrovirus infection by transcriptome analysis. J Invertebr Pathol 2019; 166:107205. [DOI: 10.1016/j.jip.2019.107205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 01/20/2023]
|
13
|
Bae DJ, Seo J, Kim SY, Park SY, Do Yoo J, Pyo JH, Cho W, Cho JY, Kim S, Kim IS. ArhGAP12 plays dual roles in Stabilin-2 mediated efferocytosis: Regulates Rac1 basal activity and spatiotemporally turns off the Rac1 to orchestrate phagosome maturation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1595-1607. [PMID: 31301364 DOI: 10.1016/j.bbamcr.2019.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022]
Abstract
The rapid and precise clearance of apoptotic cells (efferocytosis) involves a series of phagocytic processes through which apoptotic cells are recognized, engulfed, and degraded within phagocytes. The Rho-family GTPases critically rearrange the cytoskeleton for these phagocytic processes, but we know little about the mechanisms by which regulatory proteins control the spatiotemporal activities of the Rho-family GTPases. Here, we identify ArhGAP12 as a functional GTPase-activating protein (GAP) of Rac1 during Stabilin-2 mediated efferocytosis. ArhGAP12 constitutively forms a complex with the phosphatidylserine receptor, Stabilin-2, via direct interaction with the downstream protein, GULP, but is released from the complex when Stabilin-2 interacts with apoptotic cells. When the phagocytic cup is closed and the apoptotic cell is surrounded by the phagosomal membrane, ArhGAP12 localizes to the phagocytic cup via a specific interaction with phosphatidylinositol-4,5-bisphosphate, which is transiently biosynthesized in the phagocytic cup. Down-regulation of ArhGAP12 results in sustained Rac1 activity, arrangement of F-actin, and delayed phagosome-lysosome fusion. Our results collectively suggest that ArhGAP12 carries dual roles in Stabilin-2 mediated efferocytosis: it binds to GULP/Stabilin-2 and switches off Rac1 basal activity and switches on the Rac1 by releasing itself from the complex. In addition, the spatiotemporal membrane targeting of ArhGAP12 inactivates Rac1 in a time-specific and spatially coordinated manner to orchestrate phagosome maturation. This may shed light on how other RhoGAPs spatiotemporally inactivate Rac or Cdc42 during phagocytosis by various cells, in different circumstances.
Collapse
Affiliation(s)
- Dong-Jun Bae
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea; ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 138-736, Republic of Korea
| | - Junyoung Seo
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Sang-Yeob Kim
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea; ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 138-736, Republic of Korea; Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Seung-Yoon Park
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju 780-714, Republic of Korea
| | - Jae Do Yoo
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Jae-Hoon Pyo
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Wonhwa Cho
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Je-Yoel Cho
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Soyoun Kim
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea.
| | - In-San Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea; KU-KIST school, Korea University, Seoul 136-701, Republic of Korea.
| |
Collapse
|
14
|
Hawk CS, Coelho C, Oliveira DSLD, Paredes V, Albuquerque P, Bocca AL, Correa Dos Santos A, Rusakova V, Holemon H, Silva-Pereira I, Felipe MSS, Yagita H, Nicola AM, Casadevall A. Integrin β1 Promotes the Interaction of Murine IgG3 with Effector Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:2782-2794. [PMID: 30894426 PMCID: PMC6759214 DOI: 10.4049/jimmunol.1701795] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/22/2019] [Indexed: 01/22/2023]
Abstract
Abs exert several of their effector functions by binding to cell surface receptors. For murine IgG3 (mIgG3), the identity of its receptors (and the very existence of a receptor) is still under debate, as not all mIgG3 functions can be explained by interaction with FcγRI. This implies the existence of an alternate receptor, whose identity we sought to pinpoint. We found that blockage of integrin β1 selectively hampered binding of mIgG3 to macrophages and mIgG3-mediated phagocytosis. Manganese, an integrin activator, increased mIgG3 binding to macrophages. Blockage of FcγRI or Itgb1 inhibited binding of different mIgG3 Abs to variable extents. Our results are consistent with the notion that Itgb1 functions as part of an IgG receptor complex. Given the more ancient origin of integrins in comparison with FcγR, this observation could have far-ranging implications for our understanding of the evolution of Ab-mediated immunity as well as in immunity to microorganisms, pathogenesis of autoimmune diseases, and Ab engineering.
Collapse
Affiliation(s)
- Carolyn Saylor Hawk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Carolina Coelho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | | | - Verenice Paredes
- Faculty of Medicine, University of Brasília, Brasília, DF 70910-900, Brazil
- Karan Technologies Research and Development, Brasília, DF 70632-200, Brazil
| | | | | | | | | | | | - Ildinete Silva-Pereira
- Institute of Biological Sciences, University of Brasília, Brasília, DF 70910-900, Brazil
| | - Maria Sueli Soares Felipe
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, DF 70790-160, Brazil; and
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - André Moraes Nicola
- Faculty of Medicine, University of Brasília, Brasília, DF 70910-900, Brazil;
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205;
| |
Collapse
|
15
|
Lee TJ, Nair M, Banasavadi-Siddegowda Y, Liu J, Nallanagulagari T, Jaime-Ramirez AC, Guo JY, Quadri H, Zhang J, Bockhorst KH, Aghi MK, Carbonell WS, Kaur B, Yoo JY. Enhancing Therapeutic Efficacy of Oncolytic Herpes Simplex Virus-1 with Integrin β1 Blocking Antibody OS2966. Mol Cancer Ther 2019; 18:1127-1136. [PMID: 30926634 DOI: 10.1158/1535-7163.mct-18-0953] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/01/2018] [Accepted: 03/20/2019] [Indexed: 02/06/2023]
Abstract
Integrin β1 receptor, expressed on the surface of tumor cells and macrophages in the tumor microenvironment (TME), has been implicated in both tumor progression and resistance to multiple modalities of therapy. OS2966 is the first clinical-ready humanized monoclonal antibody to block integrin β1 and was recently orphan designated by the FDA Office of Orphan Products Development. Here, we tested therapeutic potential of OS2966-mediated integrin β1 blockade to enhance the efficacy of oncolytic herpes simplex virus-1 (oHSV) through evaluation of virus replication, tumor cell killing efficiency, effect on the antiviral signaling pathway, co-culture assays of oHSV-infected cells with macrophages, and in vivo bioluminescence imaging on mammary fat pad triple-negative breast cancer xenograft and subcutaneous and intracranial glioma xenografts. OS2966 treatment decreased interferon signaling and proinflammatory cytokine induction in oHSV-treated tumor cells and inhibited migration of macrophages, resulting in enhanced oHSV replication and cytotoxicity. OS2966 treatment also significantly enhanced oHSV replication and oHSV-mediated antitumor efficacy in orthotopic xenograft models, including triple-negative breast cancer and glioblastoma. The results demonstrated the synergistic potential of the combinatory treatment approach with OS2966 to improve antitumor efficacy of conventional oHSV therapy.
Collapse
Affiliation(s)
- Tae Jin Lee
- The Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Mitra Nair
- The Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Yeshavanth Banasavadi-Siddegowda
- The Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas.,Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, Maryland
| | - Joseph Liu
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Tejaswini Nallanagulagari
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Biochemistry and Microbiology Majors, The Ohio State University, Columbus, Ohio
| | - Alena Cristina Jaime-Ramirez
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jeffrey Yunhua Guo
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Biology Major, The Ohio State University, Columbus, Ohio
| | | | - Jianying Zhang
- Center for Biostatistics, Department of Biomedical Informatics, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Kurt H Bockhorst
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, Texas
| | - Manish K Aghi
- University of California at San Francisco, California
| | | | - Balveen Kaur
- The Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Ji Young Yoo
- The Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
16
|
Yang FM, Zuo Y, Zhou W, Xia C, Hahm B, Sullivan M, Cheng J, Chang HM, Yeh ET. sNASP inhibits TLR signaling to regulate immune response in sepsis. J Clin Invest 2018; 128:2459-2472. [PMID: 29733298 PMCID: PMC5983344 DOI: 10.1172/jci95720] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 03/16/2018] [Indexed: 01/10/2023] Open
Abstract
Many Toll-like receptors (TLRs) signal through TNF receptor-associated factor 6 (TRAF6) to activate innate immune responses. Here, we show that somatic nuclear autoantigenic sperm protein (sNASP) binds to TRAF6 to prevent TRAF6 autoubiquitination in unstimulated macrophages. Following LPS stimulation, a complex consisting of sNASP, TRAF6, IRAK4, and casein kinase 2 (CK2) is formed. CK2 phosphorylates sNASP at serine 158, allowing sNASP to dissociate from TRAF6. Free TRAF6 is then autoubiquitinated, followed by activation of downstream signaling pathways. In sNasp S158A knockin (S158A-KI) mice, LPS-treated macrophages could not phosphorylate sNASP, which remained bound to TRAF6. S158A-KI mice were more susceptible to sepsis due to a marked reduction in IL-1β, TNF-α, and IFN-γ production accompanied by an inability to clear bacteria and recruit leukocytes. Furthermore, phosphorylation-regulated release of sNASP from TRAF6 is observed following activation of TLR-1, -2, -4, -5, and -6. Thus, sNASP is a negative regulator of TLR signaling to modulate the innate immune response.
Collapse
Affiliation(s)
- Feng-Ming Yang
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Yong Zuo
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhou
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuan Xia
- Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | - Bumsuk Hahm
- Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | - Mark Sullivan
- Department of Microbiology and Immunology, University of Rochester, School of Medicine and Dentistry, Rochester, New York, USA
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui-Ming Chang
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Edward T.H. Yeh
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
17
|
Fei D, Meng X, Yu W, Yang S, Song N, Cao Y, Jin S, Dong L, Pan S, Zhao M. Fibronectin (FN) cooperated with TLR2/TLR4 receptor to promote innate immune responses of macrophages via binding to integrin β1. Virulence 2018; 9:1588-1600. [PMID: 30272511 PMCID: PMC7000207 DOI: 10.1080/21505594.2018.1528841] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 09/04/2018] [Accepted: 09/18/2018] [Indexed: 11/26/2022] Open
Abstract
Macrophages could adhere to extracellular matrix molecules(ECM) to induce the expression of pro-inflammatory mediators and phagocytosis that contribute to the pathogenesis of pulmonary infection diseases. Fibronectin (FN) is a large glycoprotein capable of interacting with various ECM molecules produced by a variety of cell types and involved in cell attachment and chemotaxis. However, it is unknown whether FN regulates the expression of pro-inflammatory mediators and phagocytosis of macrophages in the injured lung tissue. Here, we investigated the interaction between FN and integrin β1 in macrophages, which promotes toll-like receptor 2/4 (TLR2/TLR4) signaling pathways to enhance expression of pro-inflammatory mediators and phagocytosis by macrophages. Our results show that lipopolysaccharide (LPS), lipoteichoic acid (LTA) and peptidoglycan (PGN) significantly increase FN expression of macrophages; FN substantially enhances interleukin 6 (IL-6), tumor necrosis factor-α (TNFα), ras-related C3 botulinum toxin substrate 1/2 (Rac1/2), and cell division control protein 42 homolog (Cdc42) expression and phagocytosis of macrophages. However, FN could not enhance pro-inflammatory cytokines and phagocytosis of macrophages induced by LPS and PGN in integrin β1-/- macrophages. Furthermore, applied integrin β1 blocking peptide abrogated the effects that FN promotes innate immune responses of macrophages to LPS and PGN. Those data indicated that the enhanced pro-inflammatory mediators and phagocytosis of macrophages by FN-integrin β1 signal was through co-operating with TLR2/TLR4 signaling. This study suggests that FN play an essential role in the pathogenesis of pulmonary infection disease.
Collapse
Affiliation(s)
- Dongsheng Fei
- Department of ICU, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xianglin Meng
- Department of ICU, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Yu
- Department of ICU, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Songlin Yang
- Department of ICU, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ning Song
- Department of ICU, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanhui Cao
- Department of ICU, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Songgen Jin
- Department of ICU, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lina Dong
- Department of Ultrasound in Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangha Pan
- The Key Hepatosplenic Surgery Laboratory, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingyan Zhao
- Department of ICU, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
18
|
Macrophage C-type lectin is essential for phagosome maturation and acidification during Escherichia coli -induced peritonitis. Biochem Biophys Res Commun 2017; 493:1491-1497. [DOI: 10.1016/j.bbrc.2017.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 11/22/2022]
|
19
|
Zhang Y, Mei S, Zhou Y, Yang D, Pan T, Chen Z, Wang Q. TIPE2 negatively regulates mycoplasma pneumonia-triggered immune response via MAPK signaling pathway. Sci Rep 2017; 7:13319. [PMID: 29042627 PMCID: PMC5645323 DOI: 10.1038/s41598-017-13825-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/29/2017] [Indexed: 12/23/2022] Open
Abstract
Excessive immune responses played an important role in pathophysiology of mycoplasma pneumonia (MP) infection. Tumor necrosis factor-α-induced protein 8-like 2 (TIPE2) is a negative regulator of immune response. This study investigated the expression change of TIPE2 and its role in immune defense against MP infection, as well as the underlying mechanisms. Expressions of TIPE2 both in patients and in macrophages in vitro after MP infection were measured. We further studied cytokine production and mitogen-activated protein kinase (MAPK) signaling function in macrophages with interfered expression of TIPE2 upon MP infection. A significant decrease of TIPE2 mRNA expression was observed in peripheral blood mononuclear cells (PBMCs) from MP patients, which was correlated with the severity of infection. Accordingly we found down-regulation of TIPE2 expression in macrophages after MP infection. In vitro study further suggested that TIPE2 jeopardized inflammatory cytokine production trigged by MP infection via inhibiting MAPK signaling pathway. These findings provided evidences of the novel function of TIPE2 in anti-MP immunity and its possible clinical utility related clinical significance.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310051, P. R. China
| | - Shufen Mei
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310051, P. R. China.,Departement of Pediatrics, Red Cross Hospital of Hangzhou, Hangzhou, 310003, P. R. China
| | - Yunlian Zhou
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310051, P. R. China
| | - Dehua Yang
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310051, P. R. China
| | - Ting Pan
- Institute of Immunology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zhimin Chen
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310051, P. R. China.
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University, Hangzhou, 310058, P. R. China.
| |
Collapse
|
20
|
Lou J, Li X, Huang W, Liang J, Zheng M, Xu T, Lyu J, Li D, Xu Q, Jin X, Fu G, Wang D, Lu L. SNX10 promotes phagosome maturation in macrophages and protects mice against Listeria monocytogenes infection. Oncotarget 2017; 8:53935-53947. [PMID: 28903313 PMCID: PMC5589552 DOI: 10.18632/oncotarget.19644] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/13/2017] [Indexed: 12/29/2022] Open
Abstract
Listeria monocytogenes (L. monocytogenes), which is a facultative intracellular bacterial pathogen that causes listeriosis, is widely used to study the mammalian immune response to infection. After phagocytosis by professional phagocytes, L. monocytogenes is initially contained within phagosomes, which mature into phagolysosomes, where the bacteria are degraded. Although phagocytosis and subsequent phagosome maturation is essential for the clearance of infectious microbial pathogens, the underlying regulatory mechanisms are still unclear. SNX10 (Sorting nexin 10) has the simplest structure of the SNX family and has been reported to regulate endosomal morphology, which might be crucial for macrophage function, including phagocytosis and digestion of pathogens, inflammatory response, and antigen presentation. Our results showed that SNX10 expression was upregulated following L. monocytogenes infection in macrophages. It was also revealed that SNX10 promoted phagosome maturation by recruiting the Mon1-Ccz1 complex to endosomes and phagosomes. As a result, SNX10 deficiency decreased the bacterial killing ability of macrophages, and SNX10-deficient mice showed increased susceptibility to L. monocytogenes infection in vivo. Thus, this study revealed an essential role of SNX10 in controlling bacterial infection.
Collapse
Affiliation(s)
- Jun Lou
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiawei Li
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Huang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Liang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingzhu Zheng
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Xu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Lyu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Li
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Qin Xu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuexiao Jin
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Guotong Fu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Di Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Linrong Lu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
21
|
Abstract
During an innate immune response, myeloid cells undergo complex morphological adaptations in response to inflammatory cues, which allow them to exit the vasculature, enter the tissues, and destroy invading pathogens. The actin and microtubule cytoskeletons are central to many of the most essential cellular functions including cell division, cell morphology, migration, intracellular trafficking, and signaling. Cytoskeletal structure and regulation are crucial for many myeloid cell functions, which require rapid and dynamic responses to extracellular signals. In this chapter, we review the roles of the actin and microtubule cytoskeletons in myeloid cells, focusing primarily on their roles in chemotaxis and phagocytosis. The role of myeloid cell cytoskeletal defects in hematological disorders is highlighted throughout.
Collapse
|
22
|
Su BC, Lin WC, Huang HN, Chen JY. Recombinant expression of Epinephelus lanceolatus serum amyloid A (ElSAA) and analysis of its macrophage modulatory activities. FISH & SHELLFISH IMMUNOLOGY 2017; 64:276-286. [PMID: 28323212 DOI: 10.1016/j.fsi.2017.03.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/10/2017] [Accepted: 03/16/2017] [Indexed: 06/06/2023]
Abstract
Serum amyloid A (SAA) is an acute-phase protein that plays a crucial role in the inflammatory response. In this study, we identified an SAA homolog from Epinephelus lanceolatus (ElSAA). Molecular characterization revealed that ElSAA contains a fibronectin-like motif that is typical of SAAs. Recombinant ElSAA protein (rElSAA) was produced in E. coli BL21 (DE3) cells and purified as a soluble protein. To analyze its biological activity, mouse Raw264.7 macrophage cells were treated with various concentrations of rElSAA. Expression of several inflammation-related cytokines, including tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, IL-6, and IL-10, was induced by rElSAA. This protein also triggered macrophage differentiation, as evidenced by increases in cell size and complexity. To determine whether rElSAA regulates macrophage polarization, we assessed gene expression of M1 and M2 markers. The results demonstrated that rElSAA induced the expression of both M1 and M2 markers, suggesting that it promotes the differentiation of macrophages into a mixed M1/M2 phenotype. To evaluate whether rElSAA enhances phagocytosis via an opsonization-dependent mechanism, GFP-labeled E. coli cells were pretreated with rElSAA, followed by incubation with Raw264.7 cells. Flow cytometry was used to monitor the phagocytic uptake of GFP-labeled E. coli by macrophages. Surprisingly, incubating E. coli with rElSAA did not enhance bacterial uptake by macrophages. However, preincubating Raw264.7 cells with various concentrations of rElSAA, followed by infection with E. coli (multiplicity of infection = 20 or 40), resulted in a clear enhancement of macrophage phagocytic capacity. In conclusion, we have identified SAA from E. lanceolatus and have demonstrated that rElSAA promotes inflammatory cytokine production and macrophage differentiation. In addition, rElSAA enhances phagocytosis of bacteria by macrophages via an opsonization-independent mechanism.
Collapse
Affiliation(s)
- Bor-Chyuan Su
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan 262, Taiwan
| | - Wen-Chun Lin
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan 262, Taiwan
| | - Han-Ning Huang
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan 262, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan 262, Taiwan.
| |
Collapse
|
23
|
Chen L, Song Y, He L, Wan X, Lai L, Dai F, Liu Y, Wang Q. MicroRNA-223 Promotes Type I Interferon Production in Antiviral Innate Immunity by Targeting Forkhead Box Protein O3 (FOXO3). J Biol Chem 2016; 291:14706-16. [PMID: 27226534 DOI: 10.1074/jbc.m115.700252] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Indexed: 12/21/2022] Open
Abstract
Effective recognition of viral infection and subsequent triggering of antiviral innate immune responses are essential for the host antiviral defense, which is tightly regulated by multiple regulators, including microRNAs. Previous reports have shown that some microRNAs are induced during virus infection and participate in the regulation of the innate antiviral response. However, whether the type I IFN response is regulated by miR-223 is still unknown. Here, we reported that vesicular stomatitis virus (VSV) infection induced significant up-regulation of miR-223 in murine macrophages. We observed that miR-223 overexpression up-regulated type I IFN expression levels in VSV-infected macrophages. We also demonstrated that miR-223 directly targets FOXO3 to regulate the type I IFN production. Furthermore, type I IFN, which is triggered by VSV infection, is responsible for the up-regulation of miR-223, thus forming a positive regulatory loop for type I IFN production. Our results uncovered a novel mechanism of miR-223-mediated regulation of type I IFN production in the antiviral innate immunity for the first time.
Collapse
Affiliation(s)
- Luoquan Chen
- From the Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yinjing Song
- From the Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Li He
- From the Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaopeng Wan
- From the Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lihua Lai
- From the Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Feng Dai
- From the Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yang Liu
- From the Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qingqing Wang
- From the Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
24
|
Schlesinger M, Bendas G. Contribution of very late antigen-4 (VLA-4) integrin to cancer progression and metastasis. Cancer Metastasis Rev 2015; 34:575-91. [DOI: 10.1007/s10555-014-9545-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Chigaev A, Smagley Y, Sklar LA. Carbon monoxide down-regulates α4β1 integrin-specific ligand binding and cell adhesion: a possible mechanism for cell mobilization. BMC Immunol 2014; 15:52. [PMID: 25367365 PMCID: PMC4221689 DOI: 10.1186/s12865-014-0052-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/21/2014] [Indexed: 01/13/2023] Open
Abstract
Background Carbon monoxide (CO), a byproduct of heme degradation, is attracting growing attention from the scientific community. At physiological concentrations, CO plays a role as a signal messenger that regulates a number of physiological processes. CO releasing molecules are under evaluation in preclinical models for the management of inflammation, sepsis, ischemia/reperfusion injury, and organ transplantation. Because of our discovery that nitric oxide signaling actively down-regulates integrin affinity and cell adhesion, and the similarity between nitric oxide and CO-dependent signaling, we studied the effects of CO on integrin signaling and cell adhesion. Results We used a cell permeable CO releasing molecule (CORM-2) to elevate intracellular CO, and a fluorescent Very Late Antigen-4 (VLA-4, α4β1-integrin)-specific ligand to evaluate the integrin state in real-time on live cells. We show that the binding of the ligand can be rapidly down-modulated in resting cells and after inside-out activation through several Gαi-coupled receptors. Moreover, cell treatment with hemin, a natural source of CO, resulted in comparable VLA-4 ligand dissociation. Inhibition of VLA-4 ligand binding by CO had a dramatic effect on cell-cell interaction in a VLA-4/VCAM-1-dependent cell adhesion system. Conclusions We conclude that the CO signaling pathway can rapidly down-modulate binding of the VLA-4 -specific ligand. We propose that CO-regulated integrin deactivation provides a basis for modulation of immune cell adhesion as well as rapid cell mobilization, for example as shown for splenic monocytes in response to surgically induced ischemia of the myocardium.
Collapse
Affiliation(s)
- Alexandre Chigaev
- Department of Pathology and University of New Mexico Cancer Center, Albuquerque 87131, NM, USA.
| | | | | |
Collapse
|
26
|
Xu Y, Jin H, Yang X, Wang L, Su L, Liu K, Gu Q, Xu X. MicroRNA-93 inhibits inflammatory cytokine production in LPS-stimulated murine macrophages by targeting IRAK4. FEBS Lett 2014; 588:1692-8. [PMID: 24642374 DOI: 10.1016/j.febslet.2014.03.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 01/01/2023]
Abstract
Endotoxin-induced uveitis (EIU) is an animal model of acute ocular inflammation for the study of human endogenous anterior uveitis. The mechanisms accounting for the development of ocular inflammation remain hazy. MicroRNAs (mi-RNAs) have been proposed as novel regulators of inflammation. It remains unclear whether a microRNA-mediated regulatory mechanism is involved in LPS-induced EIU. In this study, we report that miR-93 expression in the eyes of EIU rats and LPS-stimulated macrophages is significantly decreased. We also show that miR-93 inhibits NF-κB activation and pro-inflammatory cytokines by targeting IRAK4 expression. We further demonstrate that miR-93 inhibits IRAK4 expression by binding directly to the 3'-UTR of IRAK4. Our findings suggest that miR-93 is a negative regulator of the immune response in EIU.
Collapse
Affiliation(s)
- Yan Xu
- Department of Ophthalmology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China; Shanghai Key Laboratory of Fundus Disease, Shanghai, People's Republic of China
| | - Huiyi Jin
- Department of Ophthalmology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China; Shanghai Key Laboratory of Fundus Disease, Shanghai, People's Republic of China
| | - Xiaolu Yang
- Department of Ophthalmology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China; Shanghai Key Laboratory of Fundus Disease, Shanghai, People's Republic of China
| | - Lili Wang
- Department of Ophthalmology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China; Shanghai Key Laboratory of Fundus Disease, Shanghai, People's Republic of China
| | - Li Su
- Department of Ophthalmology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China; Shanghai Key Laboratory of Fundus Disease, Shanghai, People's Republic of China
| | - Kun Liu
- Department of Ophthalmology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China; Shanghai Key Laboratory of Fundus Disease, Shanghai, People's Republic of China
| | - Qing Gu
- Department of Ophthalmology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China; Shanghai Key Laboratory of Fundus Disease, Shanghai, People's Republic of China
| | - Xun Xu
- Department of Ophthalmology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China; Shanghai Key Laboratory of Fundus Disease, Shanghai, People's Republic of China.
| |
Collapse
|
27
|
Satori CP, Henderson MM, Krautkramer EA, Kostal V, Distefano MM, Arriaga EA. Bioanalysis of eukaryotic organelles. Chem Rev 2013; 113:2733-811. [PMID: 23570618 PMCID: PMC3676536 DOI: 10.1021/cr300354g] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chad P. Satori
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Michelle M. Henderson
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Elyse A. Krautkramer
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Vratislav Kostal
- Tescan, Libusina trida 21, Brno, 623 00, Czech Republic
- Institute of Analytical Chemistry ASCR, Veveri 97, Brno, 602 00, Czech Republic
| | - Mark M. Distefano
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Edgar A. Arriaga
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| |
Collapse
|
28
|
Lai L, Song Y, Liu Y, Chen Q, Han Q, Chen W, Pan T, Zhang Y, Cao X, Wang Q. MicroRNA-92a negatively regulates Toll-like receptor (TLR)-triggered inflammatory response in macrophages by targeting MKK4 kinase. J Biol Chem 2013; 288:7956-7967. [PMID: 23355465 DOI: 10.1074/jbc.m112.445429] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Toll-like receptors (TLRs) play a critical role in the initiation of immune responses against invading pathogens. MicroRNAs have been shown to be important regulators of TLR signaling. In this study, we have found that the stimulation of multiple TLRs rapidly reduced the levels of microRNA-92a (miRNA-92a) and some other members of the miRNA-92a family in macrophages. miR-92a mimics significantly decreased, whereas miR-92a knockdown increased, the activation of the JNK/c-Jun pathway and the production of inflammatory cytokines in macrophages when stimulated with ligands for TLR4. Furthermore, mitogen-activated protein kinase kinase 4 (MKK4), a kinase that activates JNK/stress-activated protein kinase, was found to be directly targeted by miR-92a. Similar to the effects of the miR-92a mimics, knockdown of MKK4 inhibited the activation of JNK/c-Jun signaling and the production of TNF-α and IL-6. In conclusion, we have demonstrated that TLR-mediated miR-92a reduction feedback enhances TLR-triggered production of inflammatory cytokines in macrophages, thus outlining new mechanisms for fine-tuning the TLR-triggered inflammatory response.
Collapse
Affiliation(s)
- Lihua Lai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yinjing Song
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yang Liu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qingyun Chen
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Quan Han
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Weilin Chen
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ting Pan
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuanyuan Zhang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xuetao Cao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China; National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
29
|
Mochizuki A, Takami M, Miyamoto Y, Nakamaki T, Tomoyasu S, Kadono Y, Tanaka S, Inoue T, Kamijo R. Cell adhesion signaling regulates RANK expression in osteoclast precursors. PLoS One 2012; 7:e48795. [PMID: 23139818 PMCID: PMC3490906 DOI: 10.1371/journal.pone.0048795] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/01/2012] [Indexed: 11/30/2022] Open
Abstract
Cells with monocyte/macrophage lineage expressing receptor activator of NF-κB (RANK) differentiate into osteoclasts following stimulation with the RANK ligand (RANKL). Cell adhesion signaling is also required for osteoclast differentiation from precursors. However, details of the mechanism by which cell adhesion signals induce osteoclast differentiation have not been fully elucidated. To investigate the participation of cell adhesion signaling in osteoclast differentiation, mouse bone marrow-derived macrophages (BMMs) were used as osteoclast precursors, and cultured on either plastic cell culture dishes (adherent condition) or the top surface of semisolid methylcellulose gel loaded in culture tubes (non-adherent condition). BMMs cultured under the adherent condition differentiated into osteoclasts in response to RANKL stimulation. However, under the non-adherent condition, the efficiency of osteoclast differentiation was markedly reduced even in the presence of RANKL. These BMMs retained macrophage characteristics including phagocytic function and gene expression profile. Lipopolysaccharide (LPS) and tumor necrosis factor –αTNF-α activated the NF-κB-mediated signaling pathways under both the adherent and non-adherent conditions, while RANKL activated the pathways only under the adherent condition. BMMs highly expressed RANK mRNA and protein under the adherent condition as compared to the non-adherent condition. Also, BMMs transferred from the adherent to non-adherent condition showed downregulated RANK expression within 24 hours. In contrast, transferring those from the non-adherent to adherent condition significantly increased the level of RANK expression. Moreover, interruption of cell adhesion signaling by echistatin, an RGD-containing disintegrin, decreased RANK expression in BMMs, while forced expression of either RANK or TNFR-associated factor 6 (TRAF6) in BMMs induced their differentiation into osteoclasts even under the non-adherent condition. These results suggest that cell adhesion signaling regulates RANK expression in osteoclast precursors.
Collapse
Affiliation(s)
- Ayako Mochizuki
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
- Department of Oral Physiology, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Masamichi Takami
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
- * E-mail:
| | - Yoichi Miyamoto
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Tsuyoshi Nakamaki
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Shigeru Tomoyasu
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Yuho Kadono
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Tomio Inoue
- Department of Oral Physiology, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| |
Collapse
|
30
|
Chen Q, Wang H, Liu Y, Song Y, Lai L, Han Q, Cao X, Wang Q. Inducible microRNA-223 down-regulation promotes TLR-triggered IL-6 and IL-1β production in macrophages by targeting STAT3. PLoS One 2012; 7:e42971. [PMID: 22937006 PMCID: PMC3427313 DOI: 10.1371/journal.pone.0042971] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 07/16/2012] [Indexed: 01/27/2023] Open
Abstract
MicroRNAs are small non-coding RNA molecules that regulate gene expression by either translational inhibition or mRNA degradation. MicroRNAs play pivotal roles in the regulation of both innate and adaptive immune responses, including TLR-triggered inflammatory response. Here we reported that the expression of microRNA-223 (miR-223) was significantly decreased in murine macrophages during activation by lipopolysaccharide (LPS) or poly (I∶C) stimulation. The inducible miR-223 down-regulation resulted in the activation of signal transducer and activator of transcription 3 (STAT3), which is directly targeted by miR-223, thus promoting the production of pro-inflammatory cytokines IL-6 and IL-1β, but not TNF-α. Interestingly, IL-6 was found to be a main factor in inducing the decrease in miR-223 expression after LPS stimulation, which formed a positive feedback loop to regulate IL-6 and IL-1β. Herein, our findings provide a new explanation characterizing the molecular mechanism responsible for the regulation of IL-6 production after TLR-triggered macrophage activation.
Collapse
Affiliation(s)
- Qingyun Chen
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Hui Wang
- Medical College of Chinese People's Armed Police Force, Tianjin, People's Republic of China
| | - Yang Liu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yinjing Song
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Lihua Lai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Quan Han
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xuetao Cao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, People's Republic of China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
31
|
Chigaev A, Sklar LA. Aspects of VLA-4 and LFA-1 regulation that may contribute to rolling and firm adhesion. Front Immunol 2012; 3:242. [PMID: 22876249 PMCID: PMC3410440 DOI: 10.3389/fimmu.2012.00242] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/18/2012] [Indexed: 01/21/2023] Open
Abstract
Very Late Antigen-4 (CD49d/CD29, alpha4 beta1) and Lymphocyte Function-associated Antigen-1 (CD11a/CD18, alphaL beta2) integrins are representatives of a large family of adhesion receptors widely expressed on immune cells. They participate in cell recruitment to sites of inflammation, as well as multiple immune cell interactions. A unique feature of integrins is that integrin-dependent cell adhesion can be rapidly and reversibly modulated in response to cell signaling, because of a series of conformational changes within the molecule, which include changes in the affinity of the ligand binding pocket, molecular extension (unbending) and others. Here, we provide a concise comparative analysis of the conformational regulation of the two integrins with specific attention to the physiological differences between these molecules. We focus on recent data obtained using a novel technology, based on small fluorescent ligand-mimicking probes for the detection of integrin conformation in real-time on live cells at natural receptor abundance.
Collapse
Affiliation(s)
- Alexandre Chigaev
- Department of Pathology and Cancer Center, University of New Mexico Health Sciences Center, Albuquerque NM, USA
| | | |
Collapse
|
32
|
Sayedyahossein S, Nini L, Irvine TS, Dagnino L. Essential role of integrin‐linked kinase in regulation of phagocytosis in keratinocytes. FASEB J 2012; 26:4218-29. [DOI: 10.1096/fj.12-207852] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Samar Sayedyahossein
- Department of Physiology and PharmacologyUniversity of Western OntarioLondonOntarioCanada
- Children's Health Research InstituteLondonOntarioCanada
- Lawson Health Research InstituteLondonOntarioCanada
| | - Lylia Nini
- Department of Physiology and PharmacologyUniversity of Western OntarioLondonOntarioCanada
- Children's Health Research InstituteLondonOntarioCanada
- Lawson Health Research InstituteLondonOntarioCanada
| | - Timothy S. Irvine
- Department of Physiology and PharmacologyUniversity of Western OntarioLondonOntarioCanada
- Children's Health Research InstituteLondonOntarioCanada
- Lawson Health Research InstituteLondonOntarioCanada
| | - Lina Dagnino
- Department of Physiology and PharmacologyUniversity of Western OntarioLondonOntarioCanada
- Department of PaediatricsUniversity of Western OntarioLondonOntarioCanada
- Children's Health Research InstituteLondonOntarioCanada
- Lawson Health Research InstituteLondonOntarioCanada
| |
Collapse
|
33
|
Jiang K, He B, Lai L, Chen Q, Liu Y, Guo Q, Wang Q. Cyclosporine A inhibits breast cancer cell growth by downregulating the expression of pyruvate kinase subtype M2. Int J Mol Med 2012; 30:302-8. [PMID: 22580449 DOI: 10.3892/ijmm.2012.989] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/09/2012] [Indexed: 01/12/2023] Open
Abstract
The high proliferative rate of tumor cells leads to metabolic needs distinct from those of their normal counterparts. An embryonic- and tumor-specific isoform of the enzyme pyruvate kinase M2 (PKM2) is overexpressed in cancer cells to increase the use of glycolytic intermediates for macromolecular biosynthesis and tumor growth. We report that Cyclosporin A (CsA) can regulate the expression and activity of PKM2 in breast cancer cell lines MCF-7, MDA-MB-435 and MDA-MB-231. PKM2 was found to be highly expressed in the three breast cancer cell lines compared to normal primary breast cells. Treatment with CsA inhibited the viability of breast cancer cells in a time- and dose-dependent manner. CsA significantly downregulated the expression of PKM2 in breast cancer cells and decreased adenosine triphosphate (ATP) synthesis, which induced cancer cells to undergo necrosis. Furthermore, the growth suppression effect of CsA was impaired in MCF-7 cells when they were transfected with the PKM2 overexpression plasmid, suggesting that CsA was an effective inhibitor of PKM2-dependent proliferation of breast cancer cells. These results may provide new insights into the mechanism of CsA in cancer therapy.
Collapse
Affiliation(s)
- Kai Jiang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | | | | | | | | | | | | |
Collapse
|
34
|
Liu Y, Lai L, Chen Q, Song Y, Xu S, Ma F, Wang X, Wang J, Yu H, Cao X, Wang Q. MicroRNA-494 is required for the accumulation and functions of tumor-expanded myeloid-derived suppressor cells via targeting of PTEN. THE JOURNAL OF IMMUNOLOGY 2012; 188:5500-10. [PMID: 22544933 DOI: 10.4049/jimmunol.1103505] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) potently suppress the anti-tumor immune responses and also orchestrate the tumor microenvironment that favors tumor angiogenesis and metastasis. The molecular networks regulating the accumulation and functions of tumor-expanded MDSCs are largely unknown. In this study, we identified microRNA-494 (miR-494), whose expression was dramatically induced by tumor-derived factors, as an essential player in regulating the accumulation and activity of MDSCs by targeting of phosphatase and tensin homolog (PTEN) and activation of the Akt pathway. TGF-β1 was found to be the main tumor-derived factor responsible for the upregulation of miR-494 in MDSCs. Expression of miR-494 not only enhanced CXCR4-mediated MDSC chemotaxis but also altered the intrinsic apoptotic/survival signal by targeting of PTEN, thus contributing to the accumulation of MDSCs in tumor tissues. Consequently, downregulation of PTEN resulted in increased activity of the Akt pathway and the subsequent upregulation of MMPs for facilitation of tumor cell invasion and metastasis. Knockdown of miR-494 significantly reversed the activity of MDSCs and inhibited the tumor growth and metastasis of 4T1 murine breast cancer in vivo. Collectively, our findings reveal that TGF-β1-induced miR-494 expression in MDSCs plays a critical role in the molecular events governing the accumulation and functions of tumor-expanded MDSCs and might be identified as a potential target in cancer therapy.
Collapse
Affiliation(s)
- Yang Liu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Segura M. Fisher scientific award lecture - the capsular polysaccharides of Group B Streptococcus and Streptococcus suis differently modulate bacterial interactions with dendritic cells. Can J Microbiol 2012; 58:249-60. [PMID: 22356626 DOI: 10.1139/w2012-003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Infections with encapsulated bacteria cause serious clinical problems. Besides being poorly immunogenic, the bacterial capsular polysaccharide (CPS) cloaks antigenic proteins, allowing bacterial evasion of the host immune system. Despite the clinical significance of bacterial CPS and its suggested role in the pathogenesis of the infection, the mechanisms underlying innate and, critically, adaptive immune responses to encapsulated bacteria have not been fully elucidated. As such, we became interested in studying the CPS of two similar, but unique, streptococcal species: Group B Streptococcus (GBS) and Streptococcus suis . Both streptococci are well encapsulated, some capsular types are more virulent than others, and they can cause severe meningitis and septicemia. For both pathogens, the CPS is considered the major virulence factor. Finally, these two streptococci are the sole Gram-positive bacteria possessing sialic acid in their capsules. GBS type III is a leading cause of neonatal invasive infections. Streptococcus suis type 2 is an important swine and emerging zoonotic pathogen in humans. We recently characterized the S. suis type 2 CPS. It shares common structural elements with GBS, but sialic acid is α2,6-linked to galactose rather than α2,3-linked. Differential sialic acid expression by pathogens might result in modulation of immune cell activation and, consequently, may affect the immuno-pathogenesis of these bacterial infections. Here, we review and compare the interactions of these two sialylated encapsulated bacteria with dendritic cells, known as the most potent antigen-presenting cells linking innate and adaptive immunity. We further address differences between dendritic cells and professional phagocytes, such as macrophages and neutrophils, in their interplay with these encapsulated pathogens. Elucidation of the molecular and cellular basis of the impact of CPS composition on bacterial interactions with immune cells is critical for mechanistic understanding of anti-CPS responses. Knowledge generated will help to advance the development of novel, more effective anti-CPS vaccines and improved immunotherapies.
Collapse
Affiliation(s)
- Mariela Segura
- Laboratory of Immunology, Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, QC J2S 2M2, Canada.
| |
Collapse
|
36
|
Bian L, Strzyz P, Jonsson IM, Erlandsson M, Hellvard A, Brisslert M, Ohlsson C, Ambartsumian N, Grigorian M, Bokarewa M. S100A4 deficiency is associated with efficient bacterial clearance and protects against joint destruction during Staphylococcal infection. J Infect Dis 2011; 204:722-30. [PMID: 21844298 DOI: 10.1093/infdis/jir369] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Efficient host defense mechanisms are crucial for survival in sepsis and septic arthritis. S100 proteins are reported to have proinflammatory and bactericidal properties. The aim of this study was to investigate the role of S100A4 in staphylococcal arthritis. METHODS S100A4 knockout mice (S100A4KO) and wild-type counterparts (WT) were intravenously and intra-articularly challenged with Staphylococcus aureus strain LS-1. Clinical and morphological signs of arthritis and sepsis, phagocytosis, bone mineral density (BMD), and bone metabolism were then monitored in S100A4 and WT mice. RESULTS S100A4KO mice had a lower bacterial load in the kidneys than WT mice (P < .05) but developed more severe clinical signs of arthritis (P < .001) and had higher levels of interleukin 6 and L-selectin (P = .002). S100A4KO mice had fewer morphological signs of synovitis and cartilage/bone destruction following intra-articular instillation of bacteria. S100A4KO mice were protected from loss of BMD and had lower levels of RANKL, MMP3, and MMP9 (P < .05). S100A4 was not bactericidal in vitro. CONCLUSIONS In staphylococcal infection, S100A4 regulates bacterial clearance as well as systemic and local inflammatory responses.
Collapse
Affiliation(s)
- Li Bian
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
MicroRNA-98 negatively regulates IL-10 production and endotoxin tolerance in macrophages after LPS stimulation. FEBS Lett 2011; 585:1963-8. [DOI: 10.1016/j.febslet.2011.05.029] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/03/2011] [Accepted: 05/10/2011] [Indexed: 12/16/2022]
|
38
|
Role of fibronectin-binding proteins A and B in in vitro cellular infections and in vivo septic infections by Staphylococcus aureus. Infect Immun 2011; 79:2215-23. [PMID: 21422173 DOI: 10.1128/iai.00133-11] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Fibronectin-binding protein A (FnBPA) and FnBPB are important adhesins for Staphylococcus aureus infection. We constructed fnbA and/or fnbB mutant strains from S. aureus SH1000, which possesses intact rsbU, and studied the role of these adhesins in in vitro and in vivo infections. In intravenous infection, all fnb mutants caused a remarkable reduction in the colonization rate in kidneys and the mortality rate of mice. fnbB mutant caused a more severe decrease in body weight than that caused by fnbA mutant. Serum levels of interleukin-6 and nuclear factor κB (NF-κB) activation in spleen cells were remarkably reduced in fnbA or fnbA fnbB mutant infections; however, there was no significant reduction in fnbB mutant infections. In in vitro cellular infection, FnBPA was shown to be indispensable for adhesion to and internalization by nonprofessional phagocytic cells upon ingestion by inflammatory macrophages and NF-κB activation. However, both FnBPs were required for efficient cellular responses. The results showed that FnBPA is more important for in vitro and in vivo infections; however, cooperation between FnBPA and FnBPB is indispensable for the induction of severe infection resulting in septic death.
Collapse
|
39
|
Marion S, Hoffmann E, Holzer D, Le Clainche C, Martin M, Sachse M, Ganeva I, Mangeat P, Griffiths G. Ezrin promotes actin assembly at the phagosome membrane and regulates phago-lysosomal fusion. Traffic 2011; 12:421-37. [PMID: 21210911 DOI: 10.1111/j.1600-0854.2011.01158.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phagosome maturation is defined as the process by which phagosomes fuse sequentially with endosomes and lysosomes to acquire an acidic pH and hydrolases that degrade ingested particles. While the essential role of actin cytoskeleton remodeling during particle internalization is well established, its role during the later stages of phagosome maturation remains largely unknown. We have previously shown that purified mature phagosomes assemble F-actin at their membrane, and that the ezrin-radixin-moesin (ERM) proteins ezrin and moesin participate in this process. Moreover, we provided evidence that actin assembly on purified phagosomes stimulates their fusion with late endocytic compartments in vitro. In this study, we further investigated the role of ezrin in phagosome maturation. We engineered a structurally open form of ezrin and demonstrated that ezrin binds directly to the actin assembly promoting factor N-WASP (Neural Wiskott-Aldrich Syndrome Protein) by its FERM domain. Using a cell-free system, we found that ezrin stimulates F-actin assembly on purified phagosomes by recruiting the N-WASP-Arp2/3 machinery. Accordingly, we showed that the down-regulation of ezrin activity in macrophages by a dominant-negative approach caused reduced F-actin accumulation on maturing phagosomes. Furthermore, using fluorescence and electron microscopy, we found that ezrin is required for the efficient fusion between phagosomes and lysosomes. Live-cell imaging analysis supported the notion that ezrin is necessary for the fusogenic process itself, promoting the transfer of the lysosome content into the phagosomal lumen.
Collapse
Affiliation(s)
- Sabrina Marion
- Department of Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mason FM, Heimsath EG, Higgs HN, Soderling SH. Bi-modal regulation of a formin by srGAP2. J Biol Chem 2010; 286:6577-86. [PMID: 21148482 DOI: 10.1074/jbc.m110.190397] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The maintenance of rapid and efficient actin dynamics in vivo requires coordination of filament assembly and disassembly. This regulation requires temporal and spatial integration of signaling pathways by protein complexes. However, it remains unclear how these complexes form and then regulate the actin cytoskeleton. Here, we identify a srGAP2 and formin-like 1 (FMNL1, also known as FRL1 or FRLα) complex whose assembly is regulated by Rac signaling. Our data suggest srGAP2 regulates FMNL1 in two ways; 1) Rac-mediated activation of FMNL1 leads to the recruitment of srGAP2, which contains a Rac-specific GAP domain; 2) the SH3 domain of srGAP2 binds the formin homology 1 domain of FMNL1 to inhibit FMNL1-mediated actin severing. Thus, srGAP2 can efficiently terminate the upstream activating Rac signal while also opposing an important functional output of FMNL1, namely actin severing. We also show that FMNL1 and srGAP2 localize to the actin-rich phagocytic cup of macrophage-derived cells, suggesting the complex may regulate this Rac- and actin-driven process in vivo. We propose that after Rac-dependent activation of FMNL1, srGAP2 mediates a potent mechanism to limit the duration of Rac action and inhibit formin activity during rapid actin dynamics.
Collapse
Affiliation(s)
- Frank M Mason
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
41
|
Abstract
To delineate the role of specific members of β₁ integrins in stress erythropoiesis in the adult, we compared the response to phenylhydrazine stress in 3 genetically deficient models. The survival of β₁-conditionally deficient mice after phenylhydrazine is severely compromised because of their inability to mount a successful life saving splenic erythroid response, a phenotype reproduced in β₁(Δ/Δ) reconstituted animals. The response of bone marrow to phenylhydrazine-induced stress was, unlike that of spleen, appropriate in terms of progenitor cell expansion and mobilization to peripheral blood although late differentiation defects qualitatively similar to those in spleen were present in bone marrow. In contrast to β₁-deficient mice, α₄(Δ/Δ) mice showed only a kinetic delay in recovery and similar to β₁(Δ/Δ), terminal maturation defects in both bone marrow and spleen, which were not present in VCAM-1(Δ/Δ) mice. Convergence of information from these comparative studies lends new insight to the distinct in vivo roles of α₄ and α₅ integrins in erythroid stress, suggesting that the presence of mainly α₅β₁ integrin in all hematopoietic progenitor cells interacting with splenic microenvironmental ligands/cells is instrumental for their survival and accumulation during hemolytic stress, whereas presence of α₄ or of both α₅ and α₄, is important for completion of terminal maturation steps.
Collapse
|
42
|
Bhalla S, Shiratsuchi H, Craig DH, Basson MD. beta(1)-integrin mediates pressure-stimulated phagocytosis. Am J Surg 2009; 198:611-616. [PMID: 19887187 PMCID: PMC2774901 DOI: 10.1016/j.amjsurg.2009.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 07/02/2009] [Accepted: 07/02/2009] [Indexed: 02/02/2023]
Abstract
BACKGROUND Extracellular pressure alterations in infection, inflammation, or positive pressure ventilation may influence macrophage phagocytosis. We hypothesized that pressure modulates beta1-integrins to stimulate phagocytosis. METHODS We assayed fibroblast phagocytosis of fluorescent latex beads at ambient or 20 mm Hg increased pressure, and macrophage integrin phosphorylation by Western blot. RESULTS Pressure did not alter phagocytosis in beta(1)-integrin null GD25 fibroblasts, but stimulated phagocytosis in fibroblasts expressing wild-type beta(1)-integrin. In phorbol myristate acetate-differentiated THP-1 macrophages, pressure stimulated beta(1)-integrin T788/789 phosphorylation, but not S785 phosphorylation. Furthermore, pressure stimulated phagocytosis in cells expressing an inactivating S785A point mutation or a T788D substitution to mimic a constitutively phosphorylated threonine, but not in cells expressing an inactivating TT788/9AA mutation. CONCLUSIONS The effects of pressure on phagocytosis are not limited to macrophages but generalize to other phagocytic cells. These results suggest that pressure stimulates phagocytosis via increasing beta(1)-integrin T789 phosphorylation. Interventions that target beta(1)-integrin threonine 789 phosphorylation may modulate phagocytic function.
Collapse
Affiliation(s)
- Sean Bhalla
- Department of Surgery, John D Dingell VA Medical Center, Detroit, MI, USA
| | | | | | | |
Collapse
|
43
|
Deuretzbacher A, Czymmeck N, Reimer R, Trülzsch K, Gaus K, Hohenberg H, Heesemann J, Aepfelbacher M, Ruckdeschel K. Beta1 integrin-dependent engulfment of Yersinia enterocolitica by macrophages is coupled to the activation of autophagy and suppressed by type III protein secretion. THE JOURNAL OF IMMUNOLOGY 2009; 183:5847-60. [PMID: 19812190 DOI: 10.4049/jimmunol.0804242] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Autophagy is a central lysosomal degradation process that is essential for the maintenance of cellular homeostasis. Autophagy has furthermore emerged as integral part of the host immune response. Autophagic processes promote the separation and degradation of intracellular microorganisms which contributes to the development of innate and adaptive immunity. Some pathogenic microbes have therefore evolved mechanisms to evade or impede autophagy. We analyzed the effects of the enteropathogenic bacterium Yersinia enterocolitica on autophagy in macrophages. Yersiniae use a number of defined adhesins and secreted proteins to manipulate host immune responses. Our results showed that Y. enterocolitica defective in type III protein secretion efficiently activated autophagy in macrophages. Autophagy was mediated by the Yersinia adhesins invasin and YadA and particularly depended on the engagement of beta(1) integrin receptors. Several autophagy-related events followed beta(1) integrin-mediated engulfment of the bacteria including the formation of autophagosomes, processing of the marker protein LC3, redistribution of GFP-LC3 to bacteria-containing vacuoles, and the segregation of intracellular bacteria by autophagosomal compartments. These results provide direct evidence for the linkage of beta(1) integrin-mediated phagocytosis and autophagy induction. Multiple microbes signal through integrin receptors, and our results suggest a general principle by which the sensing of an extracellular microbe triggers autophagy. Owing to the importance of autophagy as host defense response, wild-type Y. enterocolitica suppressed autophagy by mobilizing type III protein secretion. The subversion of autophagy may be part of the Y. enterocolitica virulence strategy that supports bacterial survival when beta(1) integrin-dependent internalization and autophagy activation by macrophages are deleterious for the pathogen.
Collapse
Affiliation(s)
- Anne Deuretzbacher
- Institute for Medical Microbiology, Virology, and Hygiene, University Medical Center Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kasorn A, Alcaide P, Jia Y, Subramanian KK, Sarraj B, Li Y, Loison F, Hattori H, Silberstein LE, Luscinskas WF, Luo HR. Focal adhesion kinase regulates pathogen-killing capability and life span of neutrophils via mediating both adhesion-dependent and -independent cellular signals. THE JOURNAL OF IMMUNOLOGY 2009; 183:1032-43. [PMID: 19561112 DOI: 10.4049/jimmunol.0802984] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Various neutrophil functions such as phagocytosis, superoxide production, and survival are regulated by integrin signaling. Despite the essential role of focal adhesion kinase (FAK) in mediating this signaling pathway, its exact function in neutrophils is ill defined. In this study, we investigated the role of FAK in neutrophils using a myeloid-specific conditional FAK knockout mouse. As reported in many other cell types, FAK is required for regulation of focal adhesion dynamics when neutrophils adhere to fibronectin or ICAM-1. Adhesion on VCAM-1-coated surfaces and chemotaxis after adhesion were not altered in FAK null neutrophils. In addition, we observed significant reduction in NADPH oxidase-mediated superoxide production and complement-mediated phagocytosis in FAK null neutrophils. As a result, these neutrophils displayed decreased pathogen killing capability both in vitro and in vivo in a mouse peritonitis model. In adherent cells, the defects associated with FAK deficiency are likely due to suppression of phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) signaling and chemoattractant-elicited calcium signaling. Disruption of FAK also reduced chemoattractant-elicited superoxide production in suspended neutrophils in the absence of cell adhesion. This may be solely caused by suppression of PtdIns(3,4,5)P3 signaling in these cells, because the fMLP-elicited calcium signal was not altered. Consistent with decreased PtdIns(3,4,5)P3/Akt signaling in FAK null neutrophils, we also observed accelerated spontaneous death in these cells. Taken together, our results revealed previously unrecognized roles of FAK in neutrophil function and provided a potential therapeutic target for treatment of a variety of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Anongnard Kasorn
- Department of Community Medicine, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Recent advances in understanding the molecular basis of group B Streptococcus virulence. Expert Rev Mol Med 2008; 10:e27. [PMID: 18803886 DOI: 10.1017/s1462399408000811] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Group B Streptococcus commonly colonises healthy adults without symptoms, yet under certain circumstances displays the ability to invade host tissues, evade immune detection and cause serious invasive disease. Consequently, Group B Streptococcus remains a leading cause of neonatal pneumonia, sepsis and meningitis. Here we review recent information on the bacterial factors and mechanisms that direct host-pathogen interactions involved in the pathogenesis of Group B Streptococcus infection. New research on host signalling and inflammatory responses to Group B Streptococcus infection is summarised. An understanding of the complex interplay between Group B Streptococcus and host provides valuable insight into pathogen evolution and highlights molecular targets for therapeutic intervention.
Collapse
|