1
|
Nikanjam M, Kato S, Nishizaki D, Barkauskas DA, Pabla S, Nesline MK, Conroy JM, Naing A, Kurzrock R. ICOS and ICOS ligand: expression patterns and outcomes in oncology patients. Ther Adv Med Oncol 2025; 17:17588359251330514. [PMID: 40297627 PMCID: PMC12035295 DOI: 10.1177/17588359251330514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 03/11/2025] [Indexed: 04/30/2025] Open
Abstract
Background Inducible T-cell co-stimulator (ICOS) and its ligand (ICOSL) form a complex, two-faced immune machinery that can lead to both immune stimulation and inhibition. Objective We explored ICOS transcriptomic expression patterns and their relationship with other checkpoints and with outcomes in patients with advanced/metastatic cancers. Design This was a retrospective cohort study. Methods RNA expression for ICOS and other immune checkpoints was quantified by RNA sequencing and stratified by rank values into high (75-100 percentiles) and low (0-24 percentiles). Fischer's exact tests were used for univariate analyses to evaluate independent predictors of ICOS high and logistic regression was used for multivariate analyses. Progression-free survival (PFS) and overall survival (OS) for ICOS high versus not high expression were evaluated using the log-rank test (Kaplan-Meier analysis) and Cox proportional hazards. Results High ICOS (⩾75 percentile RNA rank) was present in 14% of 514 cancers and independently associated with high PD-1 (p = 0.025), PD-L1 (p < 0.0001), and CTLA-4 RNA expression (p < 0.0001) and with patients not having colorectal cancer (p = 0.0009; multivariate analysis). Patterns of ICOS and ICOSL expression varied between and within tumor types. For 217 patients receiving immune checkpoint inhibitors (ICIs), there were no significant differences in PFS or OS between patients with ICOS high versus not-high expression (multivariate analysis). In 272 immunotherapy-naïve patients, OS was also similar between patients with ICOS high versus not-high expression (p = 0.91). Conclusion High ICOS expression was not a prognostic marker and did not independently predict outcomes after ICIs. Variable expression of ICOS/ICOSL between tumors and association of high ICOS with high PD-1, PD-L1, and CTLA-4 suggest that individual tumor immunomic analysis may be required for optimized patient selection in clinical trials targeting the ICOS/ICOSL system, especially when given in combination with ICIs. Trial registration UCSD_PREDICT, NCT02478931.
Collapse
Affiliation(s)
- Mina Nikanjam
- Division of Hematology–Oncology, University of California San Diego, 1200 Garden View Road, La Jolla, CA 92024, USA
| | - Shumei Kato
- Division of Hematology–Oncology, University of California San Diego, La Jolla, CA, USA
| | - Daisuke Nishizaki
- Division of Hematology–Oncology, University of California San Diego, La Jolla, CA, USA
| | - Donald A. Barkauskas
- Biostatistics Division, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | | | - Aung Naing
- Department of Investigational Cancer Therapeutics, MD Anderson Cancer Center, Houston, CA, USA
| | - Razelle Kurzrock
- Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
- WIN Consortium, Chevilly-Larue, France
| |
Collapse
|
2
|
Mallardo D, Fordellone M, Ottaviano M, Marano G, Vitale MG, Mallardo M, Capasso M, De Cristofaro T, Capone M, Meinardi T, Paone M, Sabatelli P, De Filippi R, Cesano A, Cavalcanti E, Caracò C, Warren S, Budillon A, Simeone E, Ascierto PA. ICOSLG Is Associated with Anti-PD-1 and Concomitant Antihistamine Treatment Response in Advanced Melanoma. Int J Mol Sci 2024; 25:12439. [PMID: 39596506 PMCID: PMC11594639 DOI: 10.3390/ijms252212439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
We previously demonstrated that patients with metastatic unresectable stage IIIb-IV melanoma receiving cetirizine (a second-generation H1 antagonist antihistamine) premedication with immunotherapy had better outcomes than those not receiving cetirizine. In this retrospective study, we searched for a gene signature potentially predictive of the response to the addition of cetirizine to checkpoint inhibition (nivolumab or pembrolizumab with or without previous ipilimumab). Transcriptomic analysis showed that inducible T cell costimulator ligand (ICOSLG) expression directly correlated with the disease control rate (DCR) when detected with a loading value > 0.3. A multivariable logistic regression model showed a positive association between the DCR and ICOSLG expression for progression-free survival and overall survival. ICOSLG expression was associated with CD64, a specific marker of M1 macrophages, at baseline in the patient samples who received cetirizine concomitantly with checkpoint inhibitors, but this association was not present in subjects who had not received cetirizine. In conclusion, our results show that the clinical advantage of concomitant treatment with cetirizine during checkpoint inhibition in patients with malignant melanoma is associated with high ICOSLG expression, which could predict the response to immune checkpoint inhibitor blockade.
Collapse
Affiliation(s)
- Domenico Mallardo
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 53, 80131 Naples, Italy; (M.O.); (G.M.); (M.G.V.); (M.M.); (M.C.); (T.D.C.); (M.C.); (T.M.); (M.P.); (P.S.); (E.S.); (P.A.A.)
| | - Mario Fordellone
- Medical Statistics Unit, Universitiy of Campania “Luigi Vanvitelli”, 81100 Naples, Italy;
| | - Margaret Ottaviano
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 53, 80131 Naples, Italy; (M.O.); (G.M.); (M.G.V.); (M.M.); (M.C.); (T.D.C.); (M.C.); (T.M.); (M.P.); (P.S.); (E.S.); (P.A.A.)
| | - Giuseppina Marano
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 53, 80131 Naples, Italy; (M.O.); (G.M.); (M.G.V.); (M.M.); (M.C.); (T.D.C.); (M.C.); (T.M.); (M.P.); (P.S.); (E.S.); (P.A.A.)
| | - Maria Grazia Vitale
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 53, 80131 Naples, Italy; (M.O.); (G.M.); (M.G.V.); (M.M.); (M.C.); (T.D.C.); (M.C.); (T.M.); (M.P.); (P.S.); (E.S.); (P.A.A.)
| | - Mario Mallardo
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 53, 80131 Naples, Italy; (M.O.); (G.M.); (M.G.V.); (M.M.); (M.C.); (T.D.C.); (M.C.); (T.M.); (M.P.); (P.S.); (E.S.); (P.A.A.)
| | - Mariagrazia Capasso
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 53, 80131 Naples, Italy; (M.O.); (G.M.); (M.G.V.); (M.M.); (M.C.); (T.D.C.); (M.C.); (T.M.); (M.P.); (P.S.); (E.S.); (P.A.A.)
| | - Teresa De Cristofaro
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 53, 80131 Naples, Italy; (M.O.); (G.M.); (M.G.V.); (M.M.); (M.C.); (T.D.C.); (M.C.); (T.M.); (M.P.); (P.S.); (E.S.); (P.A.A.)
| | - Mariaelena Capone
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 53, 80131 Naples, Italy; (M.O.); (G.M.); (M.G.V.); (M.M.); (M.C.); (T.D.C.); (M.C.); (T.M.); (M.P.); (P.S.); (E.S.); (P.A.A.)
| | - Teresa Meinardi
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 53, 80131 Naples, Italy; (M.O.); (G.M.); (M.G.V.); (M.M.); (M.C.); (T.D.C.); (M.C.); (T.M.); (M.P.); (P.S.); (E.S.); (P.A.A.)
| | - Miriam Paone
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 53, 80131 Naples, Italy; (M.O.); (G.M.); (M.G.V.); (M.M.); (M.C.); (T.D.C.); (M.C.); (T.M.); (M.P.); (P.S.); (E.S.); (P.A.A.)
| | - Patrizia Sabatelli
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 53, 80131 Naples, Italy; (M.O.); (G.M.); (M.G.V.); (M.M.); (M.C.); (T.D.C.); (M.C.); (T.M.); (M.P.); (P.S.); (E.S.); (P.A.A.)
| | - Rosaria De Filippi
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy;
| | | | - Ernesta Cavalcanti
- Division of Laboratory Medicine, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy;
| | - Corrado Caracò
- Division of Surgery of Melanoma and Skin Cancer, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy;
| | - Sarah Warren
- ESSA Pharma, South San Francisco, CA 94080, USA; (A.C.); (S.W.)
| | - Alfredo Budillon
- Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy;
| | - Ester Simeone
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 53, 80131 Naples, Italy; (M.O.); (G.M.); (M.G.V.); (M.M.); (M.C.); (T.D.C.); (M.C.); (T.M.); (M.P.); (P.S.); (E.S.); (P.A.A.)
| | - Paolo Antonio Ascierto
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 53, 80131 Naples, Italy; (M.O.); (G.M.); (M.G.V.); (M.M.); (M.C.); (T.D.C.); (M.C.); (T.M.); (M.P.); (P.S.); (E.S.); (P.A.A.)
| |
Collapse
|
3
|
Delahousse J, Molina L, Paci A. "Cyclophosphamide and analogues; a matter of dose and schedule for dual anticancer activities". Cancer Lett 2024; 598:217119. [PMID: 39002693 DOI: 10.1016/j.canlet.2024.217119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Cyclophosphamide and ifosfamide are major alkylating agents but their therapeutics uses are limiting by the toxicity due to several toxicities. Indeed conventional chemotherapies are generally used with the maximum tolerated dose. In contrast, metronomic schedule aims to get a minimum dose for efficacy with a good safety. Depending on the dose, their mechanisms of action are different and offer a dual activity: at high dose, cyclophosphamide is mainly used in graft conditioning for its immunosuppressive properties, while at metronomic dose it is used as an immunoactive agent. Currently, at metronomic dose, cyclophosphamide is studied in clinic against various types of cancer, alone or in combination with others anticancer drugs (anti-angiogenic, immune-modulating agents, immune checkpoints blockers, vaccines, radiotherapy, others conventional anticancer agents), as a nth-line or first-line treatment. More than three quarters of clinical studies show promising results, mostly in breast, ovarian and prostate cancers. Taking advantage of the immune system, use dual antitumor action's chemotherapy is clearly a therapeutic strategy that deserves to be confirmed in order to improve the efficacy/toxicity balance of anticancer treatments, and to use CPM or analogues as a standard of care.
Collapse
Affiliation(s)
| | - Leonardo Molina
- Gustave Roussy, Department of Pharmacology, Villejuif, France
| | - Angelo Paci
- Gustave Roussy, Department of Pharmacology, Villejuif, France; Pharmacokinetics Department, Faculté de Pharmacie, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
4
|
Vakrakou AG, Kourepini E, Skordos I, Nieto N, Panoutsakopoulou V, Paschalidis N. Osteopontin Regulates Treg Cell Stability and Function with Implications for Anti-Tumor Immunity and Autoimmunity. Cancers (Basel) 2024; 16:2952. [PMID: 39272810 PMCID: PMC11393878 DOI: 10.3390/cancers16172952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Foxp3-expressing regulatory T (Treg) cells represent the most highly immunosuppressive cell in the tumor microenvironment (TME) that halts effective anti-tumor immunity. Osteopontin (Opn), an extracellular matrix (ECM) glycophosphoprotein, plays key roles in many types of immune-related diseases and is associated with cancer aggressiveness when expressed by tumor cells. However, its role in Foxp3Treg heterogeneity, function, and stability in the TME is poorly defined. We generated mice with a Foxp3-specific deletion of Opn and assessed the ability of Opn-deficient Tregs to suppress inflammation. As these mice aged, they developed a scurfy-like syndrome characterized by aberrant and excessive activation of effector T cells. We evaluated and further confirmed the reduced suppressive capacity of Opn-deficient Tregs in an in vivo suppression assay of colitis. We also found that mice with Opn-deficient Foxp3+ Tregs have enhanced anti-tumor immunity and reduced tumor burden, associated with an unstable Treg phenotype, paralleled by reduced Foxp3 expression in tumor-infiltrating lymphocytes. Finally, we observed reduced Foxp3 and Helios expression in Opn-deficient Tregs compared to wild-type controls after in vitro activation. Our findings indicate that targeting Opn in Tregs reveals vigorous and effective ways of promoting Treg instability and dysfunction in the TME, facilitating anti-tumor immunity.
Collapse
Affiliation(s)
- Aigli G Vakrakou
- Laboratory of Neuroimmunology, First Department of Neurology, Aeginition Hospital, National and Kapodistrian, University of Athens, 21 Papadiamantopoulou, Ilisia, 11528 Athens, Greece
| | - Evangelia Kourepini
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Efessiou Street, 11527 Athens, Greece
| | - Ioannis Skordos
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Efessiou Street, 11527 Athens, Greece
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Vily Panoutsakopoulou
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Efessiou Street, 11527 Athens, Greece
| | - Nikolaos Paschalidis
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Efessiou Street, 11527 Athens, Greece
| |
Collapse
|
5
|
Yan F, Zhu B, Shi K, Zhang Y, Zeng X, Zhang Q, Yang Z, Wang X. Prognostic and therapeutic potential of imbalance between PD-1+CD8 and ICOS+Treg cells in advanced HBV-HCC. Cancer Sci 2024; 115:2553-2564. [PMID: 38877825 PMCID: PMC11309941 DOI: 10.1111/cas.16247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 05/17/2024] [Accepted: 05/31/2024] [Indexed: 06/16/2024] Open
Abstract
Over 50% of patients with hepatitis B virus-associated hepatocellular carcinoma (HBV-HCC) are diagnosed at an advanced stage, which is characterized by immune imbalance between CD8+ T cells and regulatory T (Treg) cells that accelerates disease progression. However, there is no imbalance indicator to predict clinical outcomes. Here, we show that the proportion of CD8+ T cells decreases and Treg cells increases in advanced HBV-HCC patients. During this stage, CD8+ T cells and Treg cells expressed the coinhibitory molecule PD-1 and the costimulatory molecule ICOS, respectively. Additionally, the ratio between PD-1+CD8 and ICOS+Tregs showed significant changes. Patients were further divided into high- and low-ratio groups: PD-1+CD8 and ICOS+Tregs high- (PD-1/ICOShi) and low-ratio (PD-1/ICOSlo) groups according to ratio median. Compared with PD-1/ICOSlo patients, the PD-1/ICOShi group had better clinical prognosis and weaker CD8+ T cells exhaustion, and the T cell-killing and proliferation functions were more conservative. Surprisingly, the small sample analysis found that PD-1/ICOShi patients exhibited a higher proportion of tissue-resident memory T (TRM) cells and had more stable killing capacity and lower apoptosis capacity than PD-1/ICOSlo advanced HBV-HCC patients treated with immune checkpoint inhibitors (ICIs). In conclusion, the ratio between PD-1+CD8 and ICOS+Tregs was associated with extreme immune imbalance and poor prognosis in advanced HBV-HCC. These findings provide significant clinical implications for the prognosis of advanced HBV-HCC and may serve as a theoretical basis for identifying new targets in immunotherapy.
Collapse
Affiliation(s)
- Fengna Yan
- Center for Integrative MedicineBeijing Ditan Hospital, Capital Medical UniversityBeijingChina
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan HospitalCapital Medical UniversityBeijingChina
- Beijing Institute of Infectious DiseasesBeijingChina
| | - Bingbing Zhu
- Center for Integrative MedicineBeijing Ditan Hospital, Capital Medical UniversityBeijingChina
| | - Ke Shi
- Center for Integrative MedicineBeijing Ditan Hospital, Capital Medical UniversityBeijingChina
| | - Yi Zhang
- Center for Integrative MedicineBeijing Ditan Hospital, Capital Medical UniversityBeijingChina
| | - Xuanwei Zeng
- Center for Integrative MedicineBeijing Ditan Hospital, Capital Medical UniversityBeijingChina
| | - Qun Zhang
- Center for Integrative MedicineBeijing Ditan Hospital, Capital Medical UniversityBeijingChina
| | - Zhiyun Yang
- Center for Integrative MedicineBeijing Ditan Hospital, Capital Medical UniversityBeijingChina
| | - Xianbo Wang
- Center for Integrative MedicineBeijing Ditan Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
6
|
Verma S, Bradley MC, Gray J, Dogra P, Caron DP, Maurrasse S, Grunstein E, Waldman E, Jang M, Pethe K, Farber DL, Connors TJ. Distinct Localization, Transcriptional Profiles, and Functionality in Early Life Tonsil Regulatory T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:306-316. [PMID: 38905110 PMCID: PMC11304551 DOI: 10.4049/jimmunol.2300890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/27/2024] [Indexed: 06/23/2024]
Abstract
CD4+ regulatory T cells (Tregs) are key orchestrators of the immune system, fostering the establishment of protective immunity while preventing deleterious responses. Infancy and childhood are crucial periods of rapid immunologic development, but how Tregs mediate immune responses at these earliest timepoints of human life is poorly understood. In this study, we compare blood and tissue (tonsil) Tregs across pediatric and adult subjects to investigate age-related differences in Treg biology. We observed increased FOXP3 expression and proportions of Tregs in tonsil compared with paired blood samples in children. Within tonsil, early life Tregs accumulated in extrafollicular regions with cellular interactions biased toward CD8+ T cells. Tonsil Tregs in both children and adults expressed transcriptional profiles enriched for lineage defining signatures and canonical functionality compared with blood, suggesting tissue as the primary site of Treg activity. Early life tonsil Tregs transcriptional profiles were further defined by pathways associated with activation, proliferation, and polyfunctionality. Observed differences in pediatric tonsil Treg transcriptional signatures were associated with phenotypic differences, high proliferative capacity, and robust production of IL-10 compared with adult Tregs. These results identify tissue as a major driver of Treg identity, provide new insights into developmental differences in Treg biology across the human lifespan, and demonstrate unique functional properties of early life Tregs.
Collapse
Affiliation(s)
- Shivali Verma
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Marissa C Bradley
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Joshua Gray
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Pranay Dogra
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Daniel P Caron
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Sarah Maurrasse
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Eli Grunstein
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Erik Waldman
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Minyoung Jang
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Kalpana Pethe
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Department of Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Thomas J Connors
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| |
Collapse
|
7
|
Swatler J, De Luca M, Rotella I, Lise V, Mazza EMC, Lugli E. CD4+ Regulatory T Cells in Human Cancer: Subsets, Origin, and Molecular Regulation. Cancer Immunol Res 2024; 12:393-399. [PMID: 38562083 DOI: 10.1158/2326-6066.cir-23-0517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/18/2023] [Accepted: 12/20/2023] [Indexed: 04/04/2024]
Abstract
CD4+CD25hiFOXP3+ regulatory T cells (Treg) play major roles in the maintenance of immune tolerance, prevention of inflammation, and tissue homeostasis and repair. In contrast with these beneficial roles, Tregs are abundant in virtually all tumors and have been mechanistically linked to disease progression, metastases development, and therapy resistance. Tregs are thus recognized as a major target for cancer immunotherapy. Compared with other sites in the body, tumors harbor hyperactivated Treg subsets whose molecular characteristics are only beginning to be elucidated. Here, we describe current knowledge of intratumoral Tregs and discuss their potential cellular and tissue origin. Furthermore, we describe currently recognized molecular regulators that drive differentiation and maintenance of Tregs in cancer, with a special focus on those signals regulating their chronic immune activation, with relevant implications for cancer progression and therapy.
Collapse
Affiliation(s)
- Julian Swatler
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan
| | - Marco De Luca
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan
| | - Ivano Rotella
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan
| | - Veronica Lise
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan
| | | | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan
| |
Collapse
|
8
|
Hazrati A, Malekpour K, Khorramdelazad H, Rajaei S, Hashemi SM. Therapeutic and immunomodulatory potentials of mesenchymal stromal/stem cells and immune checkpoints related molecules. Biomark Res 2024; 12:35. [PMID: 38515166 PMCID: PMC10958918 DOI: 10.1186/s40364-024-00580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are used in many studies due to their therapeutic potential, including their differentiative ability and immunomodulatory properties. These cells perform their therapeutic functions by using various mechanisms, such as the production of anti-inflammatory cytokines, growth factors, direct cell-to-cell contact, extracellular vesicles (EVs) production, and mitochondrial transfer. However, mechanisms related to immune checkpoints (ICPs) and their effect on the immunomodulatory ability of MSCs are less discussed. The main function of ICPs is to prevent the initiation of unwanted responses and to regulate the immune system responses to maintain the homeostasis of these responses. ICPs are produced by various types of immune system regulatory cells, and defects in their expression and function may be associated with excessive responses that can ultimately lead to autoimmunity. Also, by expressing different types of ICPs and their ligands (ICPLs), tumor cells prevent the formation and durability of immune responses, which leads to tumors' immune escape. ICPs and ICPLs can be produced by MSCs and affect immune cell responses both through their secretion into the microenvironment or direct cell-to-cell interaction. Pre-treatment of MSCs in inflammatory conditions leads to an increase in their therapeutic potential. In addition to the effect that inflammatory environments have on the production of anti-inflammatory cytokines by MSCs, they can increase the expression of various types of ICPLs. In this review, we discuss different types of ICPLs and ICPs expressed by MSCs and their effect on their immunomodulatory and therapeutic potential.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Samira Rajaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Lv Y, Tian W, Teng Y, Wang P, Zhao Y, Li Z, Tang S, Chen W, Xie R, Lü M, Zhuang Y. Tumor-infiltrating mast cells stimulate ICOS + regulatory T cells through an IL-33 and IL-2 axis to promote gastric cancer progression. J Adv Res 2024; 57:149-162. [PMID: 37086778 PMCID: PMC10918354 DOI: 10.1016/j.jare.2023.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/29/2023] [Accepted: 04/15/2023] [Indexed: 04/24/2023] Open
Abstract
INTRODUCTION In solid tumors, regulatory T cell (Treg) and mast cell perform different roles depending on the microenvironment. Nevertheless, mast cell and Treg-mediated interactions in gastric cancer (GC) are unclear, as are their regulation, function, and clinical significance. OBJECTIVE The present study demonstrated the mechanism of tumor-infiltrating mast cells stimulating ICOS+ regulatory T cells via the IL-33/IL-2 axis to promote the growth of gastric cancer. METHODS Analyses of 98 patients with GC were conducted to examine mast cell counts, ICOS+ Tregs, and the levels of IL-33 or IL-2. Isolated ICOS+ Treg and CD8+ T cell were stimulated, cultured and tested for their functional abilities in vitro and in vivo. RESULTS GC patients exhibited a significantly more production of IL-33 in tumors. Mast cell stimulated by tumor-derived IL-33 exhibited a prolonged lifespan through IL-33 mediated inhibition of apoptosis. Moreover, mast cells stimulated by tumor-derived IL-33 secreted IL-2, which induced Treg expansion. These inducible Tregs displayed an activated immunosuppressive phenotype with positive expression for the inducible T cell co-stimulator (ICOS). In vitro, IL-2 from IL to 33-stimulated mast cells induced increased numbers of ICOS+ Tregs with increased immunosuppressive activity against proliferation and effector function of CD8+ T cell. In vivo, ICOS+ Tregs were treated with anti-IL-2 neutralizing antibody followed by co-injection with CD8+ T cells in GC mouse model, which showed an increased CD8+ T cell infiltration and effector molecules production, meanwhile tumor growth and progression were inhibited. Besides, reduction in GC patient survival was associated with tumor-derived ICOS+ Tregs. CONCLUSION Our results highlight a crosstalk between GC-infiltrating mast cells and ICOS+ Tregs and provide a novel mechanism describing ICOS+ Treg expansion and induction by an IL-33/mast cell/IL-2 signaling axis in GC, and also provide functional evidence that the modulation of this immunosuppressive pathway can attenuate GC-mediated immune tolerance.
Collapse
Affiliation(s)
- Yipin Lv
- Department of Digestive Diseases, The General Hospital of Western Theater Command, Chengdu, Sichuan, China; National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Wenqing Tian
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yongsheng Teng
- The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| | - Pan Wang
- The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| | - Yongliang Zhao
- Department of General Surgery and Centre of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhengyan Li
- Department of General Surgery and Centre of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shanhong Tang
- Department of Digestive Diseases, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Weisan Chen
- La Trobe Institute of Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Rui Xie
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China.
| | - Muhan Lü
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Yuan Zhuang
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China; Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| |
Collapse
|
10
|
Wang B, Song B, Li Y, Zhao Q, Tan B. Mapping spatial heterogeneity in gastric cancer microenvironment. Biomed Pharmacother 2024; 172:116317. [PMID: 38382329 DOI: 10.1016/j.biopha.2024.116317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024] Open
Abstract
Gastric cancer (GC) is difficult to characterize due to its heterogeneity, and the complicated heterogeneity leads to the difficulty of precisely targeted therapy. The spatially heterogeneous composition plays a crucial role in GC onset, progression, treatment efficacy, and drug resistance. In recent years, the technological advancements in spatial omics has shifted our understanding of the tumor microenvironment (TME) from cancer-centered model to a dynamic and variant whole. In this review, we concentrated on the spatial heterogeneity within the primary lesions and between the primary and metastatic lesions of GC through the TME heterogeneity including the tertiary lymphoid structures (TLSs), the uniquely spatial organization. Meanwhile, the immune phenotype based on spatial distribution was also outlined. Furthermore, we recapitulated the clinical treatment in mediating spatial heterogeneity in GC, hoping to provide a systematic view of how spatial information could be integrated into anti-cancer immunity.
Collapse
Affiliation(s)
- Bingyu Wang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Buyun Song
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Yong Li
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Qun Zhao
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China; Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang 050011, China
| | - Bibo Tan
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China; Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang 050011, China.
| |
Collapse
|
11
|
Chu J, Wu Y, Qu Z, Zhuang J, Liu J, Han S, Wu W, Han S. Transcriptional profile and immune infiltration in colorectal cancer reveal the significance of inducible T-cell costimulator as a crucial immune checkpoint molecule. Cancer Med 2024; 13:e7097. [PMID: 38506253 PMCID: PMC10952025 DOI: 10.1002/cam4.7097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 08/25/2023] [Accepted: 02/17/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Emergence of novel immuno-therapeutics has shown promising improvement in the clinical outcome of colorectal cancer (CRC). OBJECTIVE To identify robust immune checkpoints based on expression and immune infiltration profiles of clinical CRC samples. METHODS One dataset from The Cancer Genome Atlas database and two from Gene Expression Omnibus were independently employed for the analysis. Genes associated with overall survival were identified, and distribution of each immune checkpoint with respect to different clinical features was determined to explore key immune checkpoints. Multiple staining methods were used to verify the correlation between key immune checkpoint ICOS and clinical pathological features. Differentially expressed mRNA and long non-coding RNA (lncRNA) were then detected for gene set enrichment analysis and gene set variation analysis to investigate the differentially enriched biological processes between low- and high-expression groups. Significant immune-related mRNAs and lncRNA were subjected to competing endogenous RNA (ceRNA) network analysis. Correlation of inducible T-cell costimulator (ICOS) and top 10 genes in ceRNA network were further considered for validation. RESULTS ICOS was identified from 14 immune checkpoints as the most highly correlated gene with survival and clinical features in CRC. The expression of ICOS protein in the poorly differentiated group was lower than that in the moderately differentiated group, and the expression in different pathological stages was significant. In addition, the expressions of ICOS were negatively correlated with Ki67. A conspicuous number of immune-related pathways were enriched in differentially expressed genes in the ICOS high- and low-expression groups. Integration with immune infiltration data revealed a multitude of differentially expressed immune-related genes enriched for ceRNA network. Furthermore, expression of top 10 genes investigated from ceRNA network showed high correlation with ICOS. CONCLUSION ICOS might serve as a robust immune checkpoint for prognosis with several genes being potential targets of ICOS-directed immunotherapy in CRC.
Collapse
Affiliation(s)
- Jian Chu
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital)HuzhouChina
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouChina
| | - Yinghang Wu
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital)HuzhouChina
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouChina
| | - Zhanbo Qu
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital)HuzhouChina
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouChina
| | - Jing Zhuang
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital)HuzhouChina
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouChina
| | - Jiang Liu
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital)HuzhouChina
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouChina
| | - Shugao Han
- Second Affiliated Hospital of School of MedicineZhejiang UniversityHangzhouChina
| | - Wei Wu
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital)HuzhouChina
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouChina
| | - Shuwen Han
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital)HuzhouChina
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouChina
| |
Collapse
|
12
|
Rakké YS, Buschow SI, IJzermans JNM, Sprengers D. Engaging stimulatory immune checkpoint interactions in the tumour immune microenvironment of primary liver cancers - how to push the gas after having released the brake. Front Immunol 2024; 15:1357333. [PMID: 38440738 PMCID: PMC10910082 DOI: 10.3389/fimmu.2024.1357333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024] Open
Abstract
Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) are the first and second most common primary liver cancer (PLC). For decades, systemic therapies consisting of tyrosine kinase inhibitors (TKIs) or chemotherapy have formed the cornerstone of treating advanced-stage HCC and CCA, respectively. More recently, immunotherapy using immune checkpoint inhibition (ICI) has shown anti-tumour reactivity in some patients. The combination regimen of anti-PD-L1 and anti-VEGF antibodies has been approved as new first-line treatment of advanced-stage HCC. Furthermore, gemcibatine plus cisplatin (GEMCIS) with an anti-PD-L1 antibody is awaiting global approval for the treatment of advanced-stage CCA. As effective anti-tumour reactivity using ICI is achieved in a minor subset of both HCC and CCA patients only, alternative immune strategies to sensitise the tumour microenvironment of PLC are waited for. Here we discuss immune checkpoint stimulation (ICS) as additional tool to enhance anti-tumour reactivity. Up-to-date information on the clinical application of ICS in onco-immunology is provided. This review provides a rationale of the application of next-generation ICS either alone or in combination regimen to potentially enhance anti-tumour reactivity in PLC patients.
Collapse
Affiliation(s)
- Yannick S. Rakké
- Department of Surgery, Erasmus MC-Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Sonja I. Buschow
- Department of Gastroenterology and Hepatology, Erasmus MC-Cancer Institute-University Medical Center, Rotterdam, Netherlands
| | - Jan N. M. IJzermans
- Department of Surgery, Erasmus MC-Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-Cancer Institute-University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
13
|
D'Anniballe VM, Huang MN, Lueck BD, Nicholson LT, McFatridge I, Gunn MD. Antigen-loaded Monocyte Administration and Flt3 Ligand Augment the Antitumor Efficacy of Immune Checkpoint Blockade in a Murine Melanoma Model. J Immunother 2023; 46:333-340. [PMID: 37737688 PMCID: PMC10592023 DOI: 10.1097/cji.0000000000000487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
Undifferentiated monocytes can be loaded with tumor antigens (Ag) and administered intravenously to induce antitumor cytotoxic T lymphocyte (CTL) responses. This vaccination strategy exploits an endogenous Ag cross-presentation pathway, where Ag-loaded monocytes (monocyte vaccines) transfer their Ag to resident splenic dendritic cells (DC), which then stimulate robust CD8 + CTL responses. In this study, we investigated whether monocyte vaccination in combination with CDX-301, a DC-expanding cytokine Fms-like tyrosine kinase 3 ligand (Flt3L), could improve the antitumor efficacy of anti-programmed cell death (anti-PD-1) immune checkpoint blockade. We found that Flt3L expanded splenic DC over 40-fold in vivo and doubled the number of circulating Ag-specific T cells when administered before monocyte vaccination in C57BL/6 mice. In addition, OVA-monocyte vaccination combined with either anti-PD-1, anti-programmed cell death ligand 1 (anti-PD-L1), or anti-cytotoxic T lymphocyte antigen-4 (anti-CTLA-4) suppressed subcutaneous B16/F10-OVA tumor growth to a greater extent than checkpoint blockade alone. When administered together, OVA-monocyte vaccination improved the antitumor efficacy of Flt3L and anti-PD-1 in terms of circulating Ag-specific CD8 + T cell frequency and inhibition of subcutaneous B16/F10-OVA tumor growth. To our knowledge, this is the first demonstration that a cancer vaccine strategy and Flt3L can improve the antitumor efficacy of anti-PD-1. The findings presented here warrant further study of how monocyte vaccines can improve Flt3L and immune checkpoint blockade as they enter clinical trials.
Collapse
Affiliation(s)
- Vincent M D'Anniballe
- Department of Immunology, Duke University Medical Center, Durham, NC
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC
| | | | - Benjamin D Lueck
- Department of Immunology, Duke University Medical Center, Durham, NC
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC
| | | | - Ian McFatridge
- Department of Immunology, Duke University Medical Center, Durham, NC
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Michael D Gunn
- Department of Immunology, Duke University Medical Center, Durham, NC
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC
| |
Collapse
|
14
|
Abdel-Rahman SA, Świderek K, Gabr MT. First-in-class small molecule inhibitors of ICOS/ICOSL interaction as a novel class of immunomodulators. RSC Med Chem 2023; 14:1767-1777. [PMID: 37731692 PMCID: PMC10507805 DOI: 10.1039/d3md00150d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/28/2023] [Indexed: 09/22/2023] Open
Abstract
The interaction of the inducible co-stimulator (ICOS) with its ligand (ICOSL) plays key roles in T-cell differentiation and activation of T-cell to B-cell functions. The ICOS/ICOSL pathway is a validated target for T-cell lymphomas induced by the proliferation of T-follicular helper (Tfh) cells. Moreover, the inhibition of ICOS/ICOSL interaction can decrease the enhancement of immunosuppressive regulatory T cells (Tregs) in both hematologic malignancies and solid tumors. However, targeting ICOS/ICOSL interaction is currently restricted to monoclonal antibodies (mAbs) and there are no small molecules in existence that can block ICOS/ICOSL. To fill this gap, we report herein the first time-resolved fluorescence resonance energy transfer (TR-FRET) assay to evaluate the ability of small molecules to inhibit ICOS/ICOSL interaction. Implementation of the developed TR-FRET assay in high-throughput screening (HTS) of a focused chemical library resulted in the identification of AG-120 as a first-in-class inhibitor of ICOS/ICOSL interaction. We further employed docking studies and molecular dynamics (MD) simulations to identify the plausible mechanism of blocking ICOS/ICOSL complex formation by AG-120. Using the structure-activity relationship (SAR) by catalog approach, we identified AG-120-X with an IC50 value of 4.68 ± 0.47 μM in the ICOS/ICOSL TR-FRET assay. Remarkably, AG-120-X revealed a dose-dependent ability to block ICOS/ICOSL interaction in a bioluminescent cellular assay based on co-culturing Jurkat T cells expressing ICOS and CHO-K1 cells expressing ICOSL. This work will pave the way for future drug discovery efforts aiming at the development of small molecule inhibitors of ICOS/ICOSL interaction as potential therapeutics for cancer as well as other diseases.
Collapse
Affiliation(s)
- Somaya A Abdel-Rahman
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine New York NY 10065 USA
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
| | - Katarzyna Świderek
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I 12071 Castellon Spain
| | - Moustafa T Gabr
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine New York NY 10065 USA
| |
Collapse
|
15
|
Ibrahim YS, Amin AH, Jawhar ZH, Alghamdi MA, Al-Awsi GRL, Shbeer AM, Al-Ghamdi HS, Gabr GA, Ramírez-Coronel AA, Almulla AF. "To be or not to Be": Regulatory T cells in melanoma. Int Immunopharmacol 2023; 118:110093. [PMID: 37023699 DOI: 10.1016/j.intimp.2023.110093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023]
Abstract
In spite of progresses in the therapy of different malignancies, melanoma still remains as one of lethal types of skin tumor. Melanoma is almost easily treatable by surgery alone with higher overall survival rates when it is diagnosed at early stages. However, survival rates are decreased remarkably upon survival if the tumor is progressed to advanced metastatic stages. Immunotherapeutics have been prosperous in the development of anti-tumor responses in patients with melanoma through promotion of the tumor-specific effector T cells in vivo; nonetheless, suitable clinical outcomes have not been satisfactory. One of the underlying causes of the unfavorable clinical outcomes might stem from adverse effects of regulatory T (Treg) cell, which is a prominent mechanism of tumor cells to escape from tumor-specific immune responses. Evidence shows that a poor prognosis and low survival rate in patients with melanoma can be attributed to a higher Treg cell number and function in these subjects. As a result, to promote melanoma-specific anti-tumor responses, depletion of Treg cells appears to be a promising approach; even though the clinical efficacy of different approaches to attain appropriate Treg cell depletion has been inconsistent. Here in this review, the main purpose is to assess the role of Treg cells in the initiation and perpetuation of melanoma and to discuss effective strategies for Treg cell modulation with the aim of melanoma therapy.
Collapse
Affiliation(s)
- Yousif Saleh Ibrahim
- Department of Medical Laboratory Techniques, Al-maarif University College, Ramadi, Al-Anbar, Iraq
| | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq; Clinical Biochemistry Department, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Mohammad A Alghamdi
- Internal Medicine Department, Faculty of Medicine, Albaha University, Saudi Arabia
| | | | - Abdullah M Shbeer
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia
| | - Hasan S Al-Ghamdi
- Internal Medicine Department, Division of Dermatology, Faculty of Medicine, Albaha University, Albaha City, Saudi Arabia
| | - Gamal A Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center, Giza, Egypt.
| | - Andrés Alexis Ramírez-Coronel
- Catholic University of Cuenca, Azogues Campus, Ecuador; University of Palermo, Buenos Aires, Argentina; National University of Education, Azogues, Ecuador; CES University, Colombia
| | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| |
Collapse
|
16
|
Wang B, Zhang Z, Liu W, Tan B. Targeting regulatory T cells in gastric cancer: Pathogenesis, immunotherapy, and prognosis. Biomed Pharmacother 2023; 158:114180. [PMID: 36586241 DOI: 10.1016/j.biopha.2022.114180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Gastric cancer (GC) remains one of the most common malignancies worldwide. Despite immune-checkpoint inhibitors (ICIs) has revolutionized cancer treatment and obtained durable clinical responses, only a fraction of GC patients benefit from it. As an important component of T cells, regulatory T cells (Tregs) play a vital role in the pathogenesis of GC, keep a core balance between immune suppression and autoimmunity, and function as predictive biomarkers for prognosis of GC patients. In this review, we discuss the role of Tregs in the pathogenesis of GC, and targeting Tregs via influencing their transcription factor, migration, co-stimulatory receptors, immune checkpoints, and cytokines. We also focus on the currently important findings of Tregs metabolism including amino acid, fatty acid, and lactic acid metabolism of GC. The emerging role of microbiome and clinical combined therapy in modulating Tregs in GC treatment is also summarized. Meanwhile, this review recapitulates a novel regulator, magnesium, is involved in mediating Tregs in GC. These research advances on Treg-related strategies provide new insights and challenges for GC progression, treatment, and prognosis. And we hope our review can stimulate further discovery and implication of mediators and pathways targeting Tregs.
Collapse
Affiliation(s)
- Bingyu Wang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050011 Shijiazhuang, China
| | - Zaibo Zhang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050011 Shijiazhuang, China
| | - Wenbo Liu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050011 Shijiazhuang, China
| | - Bibo Tan
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050011 Shijiazhuang, China.
| |
Collapse
|
17
|
Shan F, Somasundaram A, Bruno TC, Workman CJ, Vignali DAA. Therapeutic targeting of regulatory T cells in cancer. Trends Cancer 2022; 8:944-961. [PMID: 35853825 PMCID: PMC9588644 DOI: 10.1016/j.trecan.2022.06.008] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/24/2022]
Abstract
The success of immunotherapy in oncology underscores the vital role of the immune system in cancer development. Regulatory T cells (Tregs) maintain a fine balance between autoimmunity and immune suppression. They have multiple roles in the tumor microenvironment (TME) but act particularly in suppressing T cell activation. This review focuses on the detrimental and sometimes beneficial roles of Tregs in tumors, our current understanding of recruitment and stabilization of Tregs within the TME, and current Treg-targeted therapeutics. Research identifying subpopulations of Tregs and their respective functions and interactions within the complex networks of the TME will be crucial to develop the next generation of immunotherapies. Through these advances, Treg-targeted immunotherapy could have important implications for the future of oncology.
Collapse
Affiliation(s)
- Feng Shan
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Ashwin Somasundaram
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA.
| |
Collapse
|
18
|
Wang J, Shi F, Shan A. Transcriptome profile and clinical characterization of ICOS expression in gliomas. Front Oncol 2022; 12:946967. [PMID: 36276141 PMCID: PMC9582985 DOI: 10.3389/fonc.2022.946967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Inducible co-stimulator (ICOS), an immune costimulatory molecule, has been found to play an essential role across various malignancies. This study investigated the transcriptome profile and clinical characterization of ICOS in gliomas. Clinical information and transcriptome data of 301 glioma samples were downloaded from the Chinese Glioma Genome Atlas (CGGA) dataset for analysis (CGGA301 cohort). Furthermore, the results were validated in 697 samples with RNAseq data from the TCGA glioma dataset and 325 gliomas with RNAseq data from the CGGA325 dataset. Immunohistochemistry was performed to evaluate ICOS protein expression across different WHO grades in a tissue microarray (TMA). In addition, single-cell sequencing data from CGGA and GSE 163108 datasets were used to analyze the ICOS expression across different cell types. Statistical analyses and figure production were performed with R-language. We found that ICOS was significantly upregulated in higher-grade, IDH wild type, and mesenchymal subtype of gliomas. Functional enrichment analyses revealed that ICOS was mainly involved in glioma-related immune response. Moreover, ICOS showed a robust correlation with other immune checkpoints, including the PD1/PD-L1/PD-L2 pathway, CTLA4, ICOSL (ICOS ligand), and IDO1. Subsequent Tumor Immune Dysfunction and Exclusion (TIDE) analysis revealed that GBM patients with higher ICOS expression seemed to be more sensitive to ICB therapy. Furthermore, based on seven clusters of metagenes, GSVA identified that ICOS was tightly associated with HCK, LCK, MHC-I, MHC-II, STAT1, and interferon, especially with LCK, suggesting a strong correlation between ICOS and T-cell activity in gliomas. In cell lineage analysis, Higher-ICOS gliomas tended to recruit dendritic cells, monocytes, and macrophages into the tumor microenvironment. Single-cell sequencing analysis indicated that ICOS was highly expressed by regulatory T cells (Tregs), especially in mature Tregs. Finally, patients with higher ICOS had shortened survival. ICOS was an independent prognosticator for glioma patients. In conclusion, higher ICOS is correlated with more malignancy of gliomas and is significantly associated with Treg activity among glioma-related immune responses. Moreover, ICOS could contribute as an independent prognostic factor for gliomas. Our study highlights the role of ICOS in glioma and may facilitate therapeutic strategies targeting ICOS for glioma.
Collapse
Affiliation(s)
- Jin Wang
- *Correspondence: Jin Wang, ; Fei Shi, ; Aijun Shan,
| | - Fei Shi
- *Correspondence: Jin Wang, ; Fei Shi, ; Aijun Shan,
| | - Aijun Shan
- *Correspondence: Jin Wang, ; Fei Shi, ; Aijun Shan,
| |
Collapse
|
19
|
Blair T, Baird J, Bambina S, Kramer G, Gostissa M, Harvey CJ, Gough MJ, Crittenden MR. ICOS is upregulated on T cells following radiation and agonism combined with radiation results in enhanced tumor control. Sci Rep 2022; 12:14954. [PMID: 36056093 PMCID: PMC9440216 DOI: 10.1038/s41598-022-19256-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/26/2022] [Indexed: 01/21/2023] Open
Abstract
Multiple preclinical studies have shown improved outcomes when radiation therapy is combined with immune modulating antibodies. However, to date, many of these promising results have failed to translate to successful clinical studies. This led us to explore additional checkpoint and co-stimulatory pathways that may be regulated by radiation therapy. Here, we demonstrate that radiation increases the expression of inducible T cell co-stimulator (ICOS) on both CD4 and CD8 T cells in the blood following treatment. Moreover, when we combined a novel ICOS agonist antibody with radiation we observed durable cures across multiple tumor models and mouse strains. Depletion studies revealed that CD8 T cells were ultimately required for treatment efficacy, but CD4 T cells and NK cells also partially contributed to tumor control. Phenotypic analysis showed that the combination therapy diminished the increased infiltration of regulatory T cells into the tumor that typically occurs following radiation alone. Finally, we demonstrate in a poorly immunogenic pancreatic tumor model which is resistant to combined radiation and anti-PD1 checkpoint blockade that the addition of this novel ICOS agonist antibody to the treatment regimen results in tumor control. These findings identify ICOS as part of a T cell pathway that is modulated by radiation and targeting this pathway with a novel ICOS antibody results in durable tumor control in preclinical models.
Collapse
Affiliation(s)
- Tiffany Blair
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St, North Pavilion, Suite 2N108, Portland, OR, 97213, USA
| | - Jason Baird
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St, North Pavilion, Suite 2N108, Portland, OR, 97213, USA
| | - Shelly Bambina
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St, North Pavilion, Suite 2N108, Portland, OR, 97213, USA
| | - Gwen Kramer
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St, North Pavilion, Suite 2N108, Portland, OR, 97213, USA
| | - Monica Gostissa
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA, 02139, USA
| | - Christopher J Harvey
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA, 02139, USA
- Phenomic AI, 661 University Ave Suite 1300, Toronto, ON, M5G 0B7, Canada
| | - Michael J Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St, North Pavilion, Suite 2N108, Portland, OR, 97213, USA
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St, North Pavilion, Suite 2N108, Portland, OR, 97213, USA.
- The Oregon Clinic, Portland, OR, 97213, USA.
| |
Collapse
|
20
|
Khan FH, Reza MJ, Shao YF, Perwez A, Zahra H, Dowlati A, Abbas A. Role of exosomes in lung cancer: A comprehensive insight from immunomodulation to theragnostic applications. Biochim Biophys Acta Rev Cancer 2022; 1877:188776. [PMID: 35961620 DOI: 10.1016/j.bbcan.2022.188776] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/18/2022] [Accepted: 08/02/2022] [Indexed: 12/18/2022]
Abstract
Exosomes are 30 to 150 nm-diameter lipid bilayer-enclosed extracellular vesicles that enable cell-to-cell communication through secretion and uptake. The exosomal cargoes contain RNA, lipids, proteins, and metabolites which can be delivered to recipient cells in vivo. In a healthy lung, exosomes facilitate interaction between adaptive and innate immunity and help maintain normal lung physiology. However, tumor-derived exosomes in lung cancer (LC) can, on the other hand, restrict immune cell proliferation, cause apoptosis in activated CD8+ T effector cells, reduce natural killer cell activity, obstruct monocyte differentiation, and promote proliferation of myeloid-derived suppressor and regulatory T cells. In addition, exosomes in the tumor microenvironment may also play a critical role in cancer progression and the development of drug resistance. In this review, we aim to comprehensively examine the current updates on the role of exosomes in lung carcinogenesis and their potential application as a diagnostic, prognostic, and therapeutic tool in lung cancer.
Collapse
Affiliation(s)
- Faizan Haider Khan
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Malik Johid Reza
- College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68131, USA
| | - Yusra Fatima Shao
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Ahmad Perwez
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Honey Zahra
- Department of Anatomy, King George's Medical University, Lucknow, UP 226003, India
| | - Afshin Dowlati
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; University Hospitals Seidman Cancer Center, Cleveland, OH 44106, USA; Developmental Therapeutics Program, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44116, USA.
| | - Ata Abbas
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Developmental Therapeutics Program, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44116, USA.
| |
Collapse
|
21
|
Chocarro L, Bocanegra A, Blanco E, Fernández-Rubio L, Arasanz H, Echaide M, Garnica M, Ramos P, Piñeiro-Hermida S, Vera R, Escors D, Kochan G. Cutting-Edge: Preclinical and Clinical Development of the First Approved Lag-3 Inhibitor. Cells 2022; 11:2351. [PMID: 35954196 PMCID: PMC9367598 DOI: 10.3390/cells11152351] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/19/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized medical practice in oncology since the FDA approval of the first ICI 11 years ago. In light of this, Lymphocyte-Activation Gene 3 (LAG-3) is one of the most important next-generation immune checkpoint molecules, playing a similar role as Programmed cell Death protein 1 (PD-1) and Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4). 19 LAG-3 targeting molecules are being evaluated at 108 clinical trials which are demonstrating positive results, including promising bispecific molecules targeting LAG-3 simultaneously with other ICIs. Recently, a new dual anti-PD-1 (Nivolumab) and anti-LAG-3 (Relatimab) treatment developed by Bristol Myers Squibb (Opdualag), was approved by the Food and Drug Administration (FDA) as the first LAG-3 blocking antibody combination for unresectable or metastatic melanoma. This novel immunotherapy combination more than doubled median progression-free survival (PFS) when compared to nivolumab monotherapy (10.1 months versus 4.6 months). Here, we analyze the large clinical trial responsible for this historical approval (RELATIVITY-047), and discuss the preclinical and clinical developments that led to its jump into clinical practice. We will also summarize results achieved by other LAG-3 targeting molecules with promising anti-tumor activities currently under clinical development in phases I, I/II, II, and III. Opdualag will boost the entry of more LAG-3 targeting molecules into clinical practice, supporting the accumulating evidence highlighting the pivotal role of LAG-3 in cancer.
Collapse
Affiliation(s)
- Luisa Chocarro
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Ana Bocanegra
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Ester Blanco
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdISNA), 31001 Pamplona, Spain
| | - Leticia Fernández-Rubio
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Hugo Arasanz
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
- Medical Oncology Unit, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain;
| | - Miriam Echaide
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Maider Garnica
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Pablo Ramos
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Sergio Piñeiro-Hermida
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Ruth Vera
- Medical Oncology Unit, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain;
| | - David Escors
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Grazyna Kochan
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| |
Collapse
|
22
|
Jiang Z, Zhu H, Wang P, Que W, Zhong L, Li X, Du F. Different subpopulations of regulatory T cells in human autoimmune disease, transplantation, and tumor immunity. MedComm (Beijing) 2022; 3:e137. [PMID: 35474948 PMCID: PMC9023873 DOI: 10.1002/mco2.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/11/2022] Open
Abstract
CD4+CD25+ regulatory T cells (Tregs), a subpopulation of naturally CD4+ T cells that characteristically express transcription factor Forkhead box P3 (FOXP3), play a pivotal role in the maintenance of immune homeostasis and the prevention of autoimmunity. With the development of biological technology, the understanding of plasticity and stability of Tregs has been further developed. Recent studies have suggested that human Tregs are functionally and phenotypically diverse. The functions and mechanisms of different phenotypes of Tregs in different disease settings, such as tumor microenvironment, autoimmune diseases, and transplantation, have gradually become hot spots of immunology research that arouse extensive attention. Among the complex functions, CD4+CD25+FOXP3+ Tregs possess a potent immunosuppressive capacity and can produce various cytokines, such as IL‐2, IL‐10, and TGF‐β, to regulate immune homeostasis. They can alleviate the progression of diseases by resisting inflammatory immune responses, whereas promoting the poor prognosis of diseases by helping cells evade immune surveillance or suppressing effector T cells activity. Therefore, methods for targeting Tregs to regulate their functions in the immune microenvironment, such as depleting them to strengthen tumor immunity or expanding them to treat immunological diseases, need to be developed. Here, we discuss that different subpopulations of Tregs are essential for the development of immunotherapeutic strategies involving Tregs in human diseases.
Collapse
Affiliation(s)
- Zhongyi Jiang
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Haitao Zhu
- Department of Hepatobiliary Surgery The Affiliated Hospital of Guizhou Medical University Guizhou P. R. China
| | - Pusen Wang
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Weitao Que
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Lin Zhong
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Xiao‐Kang Li
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
- Division of Transplantation Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Futian Du
- Department of Hepatobiliary Surgery Weifang People's Hospital Shandong P. R. China
| |
Collapse
|
23
|
Borges TJ, Murakami N, Lape IT, Gassen RB, Liu K, Cai S, Daccache J, Safa K, Shimizu T, Ohori S, Paterson AM, Cravedi P, Azzi J, Sage P, Sharpe A, Li XC, Riella LV. Overexpression of PD-1 on T cells promotes tolerance in cardiac transplantation via an ICOS-dependent mechanism. JCI Insight 2021; 6:142909. [PMID: 34752418 PMCID: PMC8783692 DOI: 10.1172/jci.insight.142909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/04/2021] [Indexed: 12/04/2022] Open
Abstract
The programmed death 1/programmed death ligand 1 (PD-1/PD-L1) pathway is a potent inhibitory pathway involved in immune regulation and is a potential therapeutic target in transplantation. In this study, we show that overexpression of PD-1 on T cells (PD-1 Tg) promotes allograft tolerance in a fully MHC-mismatched cardiac transplant model when combined with costimulation blockade with CTLA-4–Ig. PD-1 overexpression on T cells also protected against chronic rejection in a single MHC II–mismatched cardiac transplant model, whereas the overexpression still allowed the generation of an effective immune response against an influenza A virus. Notably, Tregs from PD-1 Tg mice were required for tolerance induction and presented greater ICOS expression than those from WT mice. The survival benefit of PD-1 Tg recipients required ICOS signaling and donor PD-L1 expression. These results indicate that modulation of PD-1 expression, in combination with a costimulation blockade, is a promising therapeutic target to promote transplant tolerance.
Collapse
Affiliation(s)
- Thiago J Borges
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Naoka Murakami
- Transplantation Research Center, Brigham & Women's Hospital, Boston, United States of America
| | - Isadora T Lape
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Rodrigo B Gassen
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Kaifeng Liu
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Songjie Cai
- Transplantation Research Center, Brigham & Women's Hospital, Boston, United States of America
| | - Joe Daccache
- Transplantation Research Center, Brigham & Women's Hospital, Boston, United States of America
| | - Kassem Safa
- Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Tetsunosuke Shimizu
- Transplantation Research Center, Brigham & Women's Hospital, Boston, United States of America
| | - Shunsuke Ohori
- Transplantation Research Center, Brigham & Women's Hospital, Boston, United States of America
| | - Alison M Paterson
- Department of Immunobiology, Harvard Medical School, Boston, United States of America
| | - Paolo Cravedi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Jamil Azzi
- Transplantation Research Center, Brigham & Women's Hospital, Boston, United States of America
| | - Peter Sage
- Transplantation Research Center, Brigham & Women's Hospital, Boston, United States of America
| | - Arlene Sharpe
- Department of Immunology, Harvard Medical School, Boston, United States of America
| | - Xian C Li
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, United States of America
| | - Leonardo V Riella
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| |
Collapse
|
24
|
Solinas C, Gu-Trantien C, Willard-Gallo K. The rationale behind targeting the ICOS-ICOS ligand costimulatory pathway in cancer immunotherapy. ESMO Open 2021; 5:S2059-7029(20)30002-8. [PMID: 32516116 PMCID: PMC7003380 DOI: 10.1136/esmoopen-2019-000544] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 12/16/2022] Open
Abstract
Inducible T cell costimulator (ICOS, cluster of differentiation (CD278)) is an activating costimulatory immune checkpoint expressed on activated T cells. Its ligand, ICOSL is expressed on antigen-presenting cells and somatic cells, including tumour cells in the tumour microenvironment. ICOS and ICOSL expression is linked to the release of soluble factors (cytokines), induced by activation of the immune response. ICOS and ICOSL binding generates various activities among the diversity of T cell subpopulations, including T cell activation and effector functions and when sustained also suppressive activities mediated by regulatory T cells. This dual role in both antitumour and protumour activities makes targeting the ICOS/ICOSL pathway attractive for enhancement of antitumour immune responses. This review summarises the biological background and rationale for targeting ICOS/ICOSL in cancer together with an overview of the principal ongoing clinical trials that are testing it in combination with anti-cytotoxic T lymphocyte antigen-4 and anti-programmed cell death-1 or anti-programmed cell death ligand-1 based immune checkpoint blockade.
Collapse
Affiliation(s)
- Cinzia Solinas
- Regional Hospital of Valle d'Aosta, Azienda USL Valle d'Aosta, Aosta, Italy
| | - Chunyan Gu-Trantien
- Institute for Medical Immunology, Université Libre de Bruxelles, Bruxelles, Belgium
| | | |
Collapse
|
25
|
Dixit N, Fanton C, Langowski JL, Kirksey Y, Kirk P, Chang T, Cetz J, Dixit V, Kim G, Kuo P, Maiti M, Tang Y, VanderVeen LA, Zhang P, Lee M, Ritz J, Kamihara Y, Ji C, Rubas W, Sweeney TD, Doberstein SK, Zalevsky J. NKTR-358: A novel regulatory T-cell stimulator that selectively stimulates expansion and suppressive function of regulatory T cells for the treatment of autoimmune and inflammatory diseases. J Transl Autoimmun 2021; 4:100103. [PMID: 34041473 PMCID: PMC8141531 DOI: 10.1016/j.jtauto.2021.100103] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 11/04/2022] Open
Abstract
Impaired interleukin-2 (IL-2) production and regulatory T-cell dysfunction have been implicated as immunological mechanisms central to the pathogenesis of multiple autoimmune and inflammatory diseases. NKTR-358, a novel regulatory T-cell stimulator, is an investigational therapeutic that selectively restores regulatory T-cell homeostasis in these diseases. We investigated NKTR-358's selectivity for regulatory T-cells, receptor-binding properties, ex vivo and in vivo pharmacodynamics, ability to suppress conventional T-cell proliferation in mice and non-human primates, and functional activity in a murine model of systemic lupus erythematosus. In vitro, NKTR-358 demonstrated decreased affinity for IL-2Rα, IL-2Rβ, and IL-2Rαβ compared with recombinant human IL-2 (rhIL-2). A single dose of NKTR-358 in cynomolgus monkeys produced a greater than 15-fold increase in regulatory T-cells, and the increase lasted until day 14, while daily rhIL-2 administration for 5 days only elicited a 3-fold increase, which lasted until day 7. Repeated dosing of NKTR-358 over 6 months in cynomolgus monkeys elicited cyclical, robust increases in regulatory T-cells with no loss in drug activity over the course of treatment. Regulatory T-cells isolated from NKTR-358-treated mice displayed a sustained, higher suppression of conventional T-cell proliferation than regulatory T-cells isolated from vehicle-treated mice. NKTR-358 treatment in a mouse model (MRL/MpJ-Faslpr) of systemic lupus erythematosus for 12 weeks maintained elevated regulatory T-cells for the treatment duration and ameliorated disease progression. Together, these results suggest that NKTR-358 has the ability to elicit sustained and preferential proliferation and activation of regulatory T-cells without corresponding effects on conventional T-cells, with improved pharmacokinetics compared with rhIL-2. NKTR-358 is a pegylated IL-2 designed to induce Treg activation and proliferation. This preclinical study compared NKTR-358 vs recombinant IL-2 for effects on Tregs. NKTR-358 induced a greater increase in Treg:CD8+ T cell ratio compared with rhIL-2.
Collapse
Affiliation(s)
- Neha Dixit
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Christie Fanton
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - John L Langowski
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Yolanda Kirksey
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Peter Kirk
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Thomas Chang
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Janet Cetz
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Vidula Dixit
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Grace Kim
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Peiwen Kuo
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Mekhala Maiti
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Yinyan Tang
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Laurie A VanderVeen
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Ping Zhang
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Myong Lee
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Jerome Ritz
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Yusuke Kamihara
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Chunmei Ji
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Werner Rubas
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Theresa D Sweeney
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Stephen K Doberstein
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Jonathan Zalevsky
- Nektar Therapeutics, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| |
Collapse
|
26
|
Lee JB, Ha SJ, Kim HR. Clinical Insights Into Novel Immune Checkpoint Inhibitors. Front Pharmacol 2021; 12:681320. [PMID: 34025438 PMCID: PMC8139127 DOI: 10.3389/fphar.2021.681320] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
The success of immune checkpoint inhibitors (ICIs), notably anti-cytotoxic T lymphocyte associated antigen-4 (CTLA-4) as well as inhibitors of CTLA-4, programmed death 1 (PD-1), and programmed death ligand-1 (PD-L1), has revolutionized treatment options for solid tumors. However, the lack of response to treatment, in terms of de novo or acquired resistance, and immune related adverse events (IRAE) remain as hurdles. One mechanisms to overcome the limitations of ICIs is to target other immune checkpoints associated with tumor microenvironment. Immune checkpoints such as lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin and ITIM domain (TIGIT), T cell immunoglobulin and mucin-domain containing-3 (TIM-3), V-domain immunoglobulin suppressor of T cell activation (VISTA), B7 homolog 3 protein (B7-H3), inducible T cell costimulatory (ICOS), and B and T lymphocyte attenuator (BTLA) are feasible and promising options for treating solid tumors, and clinical trials are currently under active investigation. This review aims to summarize the clinical aspects of the immune checkpoints and introduce novel agents targeting these checkpoints.
Collapse
Affiliation(s)
- Jii Bum Lee
- Division of Hemato-oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, South Korea.,Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, South Korea
| | - Hye Ryun Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
27
|
Huang L, Guo Y, Liu S, Wang H, Zhu J, Ou L, Xu X. Targeting regulatory T cells for immunotherapy in melanoma. MOLECULAR BIOMEDICINE 2021; 2:11. [PMID: 34806028 PMCID: PMC8591697 DOI: 10.1186/s43556-021-00038-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) are essential in the maintenance of immunity, and they are also a key to immune suppressive microenvironment in solid tumors. Many studies have revealed the biology of Tregs in various human pathologies. Here we review recent understandings of the immunophenotypes and suppressive functions of Tregs in melanoma, including Treg recruitment and expansion in a tumor. Tregs are frequently accumulated in melanoma and the ratio of CD8+ T cells versus Tregs in the melanoma is predictive for patient survival. Hence, depletion of Tregs is a promising strategy for the enhancement of anti-melanoma immunity. Many recent studies are aimed to target Tregs in melanoma. Distinguishing Tregs from other immune cells and understanding the function of different subsets of Tregs may contribute to better therapeutic efficacy. Depletion of functional Tregs from the tumor microenvironment has been tested to induce clinically relevant immune responses against melanomas. However, the lack of Treg specific therapeutic antibodies or Treg specific depleting strategies is a big hurdle that is yet to be overcome. Additional studies to fine-tune currently available therapies and more agents that specifically and selectively target tumor infiltrating Tregs in melanoma are urgently needed.
Collapse
Affiliation(s)
- Lili Huang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Yeye Guo
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Shujing Liu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Huaishan Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Jinjin Zhu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Lingling Ou
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
28
|
Recruitment and Expansion of Tregs Cells in the Tumor Environment-How to Target Them? Cancers (Basel) 2021; 13:cancers13081850. [PMID: 33924428 PMCID: PMC8069615 DOI: 10.3390/cancers13081850] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary The immune response against cancer is generated by effector T cells, among them cytotoxic CD8+ T cells that destroy cancer cells and helper CD4+ T cells that mediate and support the immune response. This antitumor function of T cells is tightly regulated by a particular subset of CD4+ T cells, named regulatory T cells (Tregs), through different mechanisms. Even if the complete inhibition of Tregs would be extremely harmful due to their tolerogenic role in impeding autoimmune diseases in the periphery, the targeted blockade of their accumulation at tumor sites or their targeted depletion represent a major therapeutic challenge. This review focuses on the mechanisms favoring Treg recruitment, expansion and stabilization in the tumor microenvironment and the therapeutic strategies developed to block these mechanisms. Abstract Regulatory T cells (Tregs) are present in a large majority of solid tumors and are mainly associated with a poor prognosis, as their major function is to inhibit the antitumor immune response contributing to immunosuppression. In this review, we will investigate the mechanisms involved in the recruitment, amplification and stability of Tregs in the tumor microenvironment (TME). We will also review the strategies currently developed to inhibit Tregs’ deleterious impact in the TME by either inhibiting their recruitment, blocking their expansion, favoring their plastic transformation into other CD4+ T-cell subsets, blocking their suppressive function or depleting them specifically in the TME to avoid severe deleterious effects associated with Treg neutralization/depletion in the periphery and normal tissues.
Collapse
|
29
|
Treatment of solid tumors using bispecific anti-PDL-1/ICOS antibody. Pharm Pat Anal 2021; 10:67-72. [PMID: 33829869 DOI: 10.4155/ppa-2020-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PD-L1 and ICOS are immune control points in cancer and their presence in cancer tends to have a poor prognosis. WO2019122882 patent describes a bispecific antibody that targets PDL-1/ICOS with the potential application of cancer treatment. WO2019122882 patent describes a bispecific antibody with antitumor efficacy in CT26 model through of the depletion of TReg cells and improved ratio of CD8+ T cells: TReg in tumor microenvironment. The anti-PDL-1/ICOS antibody is new; however, only preclinical assays are shown using colon carcinoma model. So far, there are no reports of clinical trials to evaluate the safety, toxicity and efficacy, but it will be of great interest to analyze in the future if this antibody surpasses the action of the combinatorial therapy in cancer.
Collapse
|
30
|
Cook AM, McDonnell A, Millward MJ, Creaney J, Hasani A, McMullen M, Meniawy T, Robinson BWS, Lake RA, Nowak AK. A phase 1b clinical trial optimizing regulatory T cell depletion in combination with platinum-based chemotherapy in thoracic cancers. Expert Rev Anticancer Ther 2021; 21:465-474. [PMID: 33509005 DOI: 10.1080/14737140.2021.1882308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: Single-agent cyclophosphamide can deplete regulatory T-cells (Treg). We aimed to determine optimal dosing and scheduling of oral cyclophosphamide, alongside pemetrexed-based chemotherapy, to deplete Treg in mesothelioma or non-small-cell lung cancer patients.Methods: 31 Patients received pemetrexed ± cisplatin or carboplatin on day 1 of a 21-day cycle (maximum 6 cycles). From cycle two, patients received cyclophosphamide, 50 mg/day, with intrapatient escalation to maximum 100/150 mg/day alternately. Immunological changes were examined by flow cytometry. Primary endpoint was Treg proportion of CD4+ T-cells, with doses tailored to target Treg nadir <4%.Results: Reduction in Treg proportion was observed on day 8 of all cycles, and was not augmented by cyclophosphamide. Few patients achieved the <4% Treg target. Treg proliferation reached nadir one week after chemotherapy, and peaked on day 1 of the subsequent cycle. Efficacy parameters were similar to chemotherapy alone. Seventeen percent of patients ceased cyclophosphamide due to toxicity.Conclusions: Specific Treg depletion to the degree seen with single-agent cyclophosphamide was not observed during pemetrexed-based chemotherapy. This study highlights the poor evidence basis for use of cyclophosphamide as an immunotherapeutic in combination with chemotherapy, and the importance of detailed flow cytometry studies.Trial registration: Clinical trial registration: www.anzctr.org.au identifier is ACTRN12609000260224.
Collapse
Affiliation(s)
- Alistair M Cook
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Crawley, Australia.,National Centre for Asbestos Related Diseases, University of Western Australia, Crawley, Australia
| | - Alison McDonnell
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Crawley, Australia.,National Centre for Asbestos Related Diseases, University of Western Australia, Crawley, Australia
| | - Michael J Millward
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Crawley, Australia.,Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Jenette Creaney
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Crawley, Australia.,National Centre for Asbestos Related Diseases, University of Western Australia, Crawley, Australia
| | - Arman Hasani
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Michelle McMullen
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Tarek Meniawy
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Crawley, Australia.,National Centre for Asbestos Related Diseases, University of Western Australia, Crawley, Australia.,Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Bruce W S Robinson
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Crawley, Australia.,National Centre for Asbestos Related Diseases, University of Western Australia, Crawley, Australia.,Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Richard A Lake
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Crawley, Australia.,National Centre for Asbestos Related Diseases, University of Western Australia, Crawley, Australia
| | - Anna K Nowak
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Crawley, Australia.,National Centre for Asbestos Related Diseases, University of Western Australia, Crawley, Australia.,Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia.,Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Nedlands, Australia
| |
Collapse
|
31
|
Abstract
Mucosal surfaces are distinctive sites exposed to environmental, dietary, and microbial antigens. Particularly in the gut, the host continuously actively adapts via complex interactions between the microbiota and dietary compounds and immune and other tissue cells. Regulatory T cells (Tregs) are critical for tuning the intestinal immune response to self- and non-self-antigens in the intestine. Its importance in intestinal homeostasis is illustrated by the onset of overt inflammation caused by deficiency in Treg generation, function, or stability in the gut. A substantial imbalance in Tregs has been observed in intestinal tissue during pathogenic conditions, when a tightly regulated and equilibrated system becomes dysregulated and leads to unimpeded and chronic immune responses. In this chapter, we compile and critically discuss the current knowledge on the key factors that promote Treg-mediated tolerance in the gut, such as those involved in intestinal Treg differentiation, specificity and suppressive function, and their immunophenotype during health and disease. We also discuss the current state of knowledge on Treg dysregulation in human intestine during pathological states such as inflammatory bowel disease (IBD), necrotizing enterocolitis (NEC), graft-versus-host disease (GVHD), and colorectal cancer (CRC), and how that knowledge is guiding development of Treg-targeted therapies to treat or prevent intestinal disorders.
Collapse
|
32
|
Meneveau MO, Sahli ZT, Lynch KT, Mauldin IS, Slingluff CL. Immunotyping and Quantification of Melanoma Tumor-Infiltrating Lymphocytes. Methods Mol Biol 2021; 2265:515-528. [PMID: 33704737 DOI: 10.1007/978-1-0716-1205-7_36] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The density of tumour-infiltrating lymphocytes (TILs) in melanoma is correlated with improved clinical prognosis; however, standardized TIL immunotyping and quantification protocols are lacking. Herein, we provide a review of the technologies being utilized for the immunotyping and quantification of melanoma TILs.
Collapse
Affiliation(s)
- Max O Meneveau
- Department of Surgery, The University of Virginia Health System, Charlottesville, VA, USA
| | - Zeyad T Sahli
- Department of Surgery, The University of Virginia Health System, Charlottesville, VA, USA
| | - Kevin T Lynch
- Department of Surgery, The University of Virginia Health System, Charlottesville, VA, USA
| | - Ileana S Mauldin
- Department of Surgery, The University of Virginia Health System, Charlottesville, VA, USA
| | - Craig L Slingluff
- Department of Surgery, The University of Virginia Health System, Charlottesville, VA, USA.
| |
Collapse
|
33
|
González-Navajas JM, Fan DD, Yang S, Yang FM, Lozano-Ruiz B, Shen L, Lee J. The Impact of Tregs on the Anticancer Immunity and the Efficacy of Immune Checkpoint Inhibitor Therapies. Front Immunol 2021; 12:625783. [PMID: 33717139 PMCID: PMC7952426 DOI: 10.3389/fimmu.2021.625783] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
Although cancers arise from genetic mutations enabling cells to proliferate uncontrollably, they cannot thrive without failure of the anticancer immunity due in a large part to the tumor environment's influence on effector and regulatory T cells. The field of immune checkpoint inhibitor (ICI) therapy for cancer was born out of the fact that tumor environments paralyze the immune cells that are supposed to clear them by activating the immune checkpoint molecules such as PD-1. While various subsets of effector T cells work collaboratively to eliminate cancers, Tregs enriched in the tumor environment can suppress not only the native anticancer immunity but also diminish the efficacy of ICI therapies. Because of their essential role in suppressing autoimmunity, various attempts to specifically deplete tumor-associated Tregs are currently underway to boost the efficacy of ICI therapies without causing systemic autoimmune responses. A better understanding the roles of Tregs in the anti-cancer immunity and ICI therapies should provide more specific targets to deplete intratumoral Tregs. Here, we review the current understanding on how Tregs inhibit the anti-cancer immunity and ICI therapies as well as the advances in the targeted depletion of intratumoral Tregs.
Collapse
Affiliation(s)
- Jose M. González-Navajas
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario de Alicante, Alicante, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Institute of Health Carlos III, Madrid, Spain
- Department of Pharmacology, Pediatrics and Organic Chemistry, University Miguel Hernández, Elche, Spain
- Institute of Research, Development and Innovation in Healthcare Biotechnology in Elche (IDiBE), University Miguel Hernández, Elche, Spain
- Jose M. González-Navajas
| | - Dengxia Denise Fan
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shuang Yang
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Fengyuan Mandy Yang
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Beatriz Lozano-Ruiz
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario de Alicante, Alicante, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Institute of Health Carlos III, Madrid, Spain
| | - Liya Shen
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jongdae Lee
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Jongdae Lee ;
| |
Collapse
|
34
|
Key Players and Biomarkers of the Adaptive Immune System in the Pathogenesis of Sarcoidosis. Int J Mol Sci 2020; 21:ijms21197398. [PMID: 33036432 PMCID: PMC7582702 DOI: 10.3390/ijms21197398] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022] Open
Abstract
Sarcoidosis is a systemic inflammatory disease characterized by development of granulomas in the affected organs. Sarcoidosis is often a diagnosis of exclusion, and traditionally used tests for sarcoidosis demonstrate low sensitivity and specificity. We propose that accuracy of diagnosis can be improved if biomarkers of altered lymphocyte populations and levels of signaling molecules involved in disease pathogenesis are measured for patterns suggestive of sarcoidosis. These distinctive biomarkers can also be used to determine disease progression, predict prognosis, and make treatment decisions. Many subsets of T lymphocytes, including CD8+ T-cells and regulatory T-cells, have been shown to be dysfunctional in sarcoidosis, and the predominant CD4+ T helper cell subset in granulomas appears to be a strong indicator of disease phenotype and outcome. Studies of altered B cell populations, B cell signaling molecules, and immune complexes in sarcoidosis patients reveal promising biomarkers as well as possible explanations of disease etiology. Furthermore, examined biomarkers raise questions about new treatment methods and sarcoidosis antigens.
Collapse
|
35
|
Sainson RCA, Thotakura AK, Kosmac M, Borhis G, Parveen N, Kimber R, Carvalho J, Henderson SJ, Pryke KL, Okell T, O'Leary S, Ball S, Van Krinks C, Gamand L, Taggart E, Pring EJ, Ali H, Craig H, Wong VWY, Liang Q, Rowlands RJ, Lecointre M, Campbell J, Kirby I, Melvin D, Germaschewski V, Oelmann E, Quaratino S, McCourt M. An Antibody Targeting ICOS Increases Intratumoral Cytotoxic to Regulatory T-cell Ratio and Induces Tumor Regression. Cancer Immunol Res 2020; 8:1568-1582. [PMID: 32999002 DOI: 10.1158/2326-6066.cir-20-0034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/01/2020] [Accepted: 09/18/2020] [Indexed: 11/16/2022]
Abstract
The immunosuppressive tumor microenvironment constitutes a significant hurdle to immune checkpoint inhibitor responses. Both soluble factors and specialized immune cells, such as regulatory T cells (Treg), are key components of active intratumoral immunosuppression. Inducible costimulatory receptor (ICOS) can be highly expressed in the tumor microenvironment, especially on immunosuppressive Treg, suggesting that it represents a relevant target for preferential depletion of these cells. Here, we performed immune profiling of samples from tumor-bearing mice and patients with cancer to demonstrate differential expression of ICOS in immune T-cell subsets in different tissues. ICOS expression was higher on intratumoral Treg than on effector CD8 T cells. In addition, by immunizing an Icos knockout transgenic mouse line expressing antibodies with human variable domains, we selected a fully human IgG1 antibody called KY1044 that bound ICOS from different species. We showed that KY1044 induced sustained depletion of ICOShigh T cells but was also associated with increased secretion of proinflammatory cytokines from ICOSlow effector T cells (Teff). In syngeneic mouse tumor models, KY1044 depleted ICOShigh Treg and increased the intratumoral TEff:Treg ratio, resulting in increased secretion of IFNγ and TNFα by TEff cells. KY1044 demonstrated monotherapy antitumor efficacy and improved anti-PD-L1 efficacy. In summary, we demonstrated that using KY1044, one can exploit the differential expression of ICOS on T-cell subtypes to improve the intratumoral immune contexture and restore an antitumor immune response.
Collapse
Affiliation(s)
| | | | - Miha Kosmac
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | | | - Nahida Parveen
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Rachael Kimber
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Joana Carvalho
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | | | - Kerstin L Pryke
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Tracey Okell
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Siobhan O'Leary
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Stuart Ball
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | | | - Lauriane Gamand
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Emma Taggart
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Eleanor J Pring
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Hanif Ali
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Hannah Craig
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Vivian W Y Wong
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Qi Liang
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | | | | | - Jamie Campbell
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Ian Kirby
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - David Melvin
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | | | | | - Sonia Quaratino
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Matthew McCourt
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| |
Collapse
|
36
|
Fantini MC, Favale A, Onali S, Facciotti F. Tumor Infiltrating Regulatory T Cells in Sporadic and Colitis-Associated Colorectal Cancer: The Red Little Riding Hood and the Wolf. Int J Mol Sci 2020; 21:E6744. [PMID: 32937953 PMCID: PMC7555219 DOI: 10.3390/ijms21186744] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Regulatory T cells represent a class of specialized T lymphocytes that suppress unwanted immune responses and size the activation of the immune system whereby limiting collateral damages in tissues involved by inflammation. In cancer, the accumulation of Tregs is generally associated with poor prognosis. Many lines of evidence indicate that Tregs accumulation in the tumor microenvironment (TME) suppresses the immune response against tumor-associated antigens (TAA), thus promoting tumor progression in non-small cell lung carcinoma (NSLC), breast carcinoma and melanoma. In colorectal cancer (CRC) the effect of Tregs accumulation is debated. Some reports describe the association of high number of Tregs in CRC stroma with a better prognosis while others failed to find any association. These discordant results stem from the heterogeneity of the immune environment generated in CRC in which anticancer immune response may coexists with tumor promoting inflammation. Moreover, different subsets of Tregs have been identified that may exert different effects on cancer progression depending on tumor stage and their location within the tumor mass. Finally, Tregs phenotypic plasticity may be induced by cytokines released in the TME by dysplastic and other tumor-infiltrating cells thus affecting their functional role in the tumor. Here, we reviewed the recent literature about the role of Tregs in CRC and in colitis-associated colorectal cancer (CAC), where inflammation is the main driver of tumor initiation and progression. We tried to explain when and how Tregs can be considered to be the "good" or the "bad" in the colon carcinogenesis process on the basis of the available data concluding that the final effect of Tregs on sporadic CRC and CAC depends on their localization within the tumor, the subtype of Tregs involved and their phenotypic plasticity.
Collapse
Affiliation(s)
- Massimo Claudio Fantini
- Department of Medical Science and Public Health, University of Cagliari, 09042 Cagliari, Italy;
| | - Agnese Favale
- Department of Medical Science and Public Health, University of Cagliari, 09042 Cagliari, Italy;
| | - Sara Onali
- CEMAD-IBD UNIT-Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy;
| | - Federica Facciotti
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy;
| |
Collapse
|
37
|
Li DY, Xiong XZ. ICOS + Tregs: A Functional Subset of Tregs in Immune Diseases. Front Immunol 2020; 11:2104. [PMID: 32983168 PMCID: PMC7485335 DOI: 10.3389/fimmu.2020.02104] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/04/2020] [Indexed: 01/02/2023] Open
Abstract
Recent studies have reported the pathological effect of ICOS+ T cells, but ICOS signals also widely participate in anti-inflammatory responses, particularly ICOS+ regulatory T (Treg) cells. The ICOS signaling pathway endows Tregs with increased generation, proliferation, and survival abilities. Furthermore, there is enough evidence to suggest a superior capacity of ICOS+ Tregs, which is partly attributable to IL-10 induced by ICOS, yet the associated mechanism needs further investigation. In this review, we discuss the complicated role of ICOS+ Tregs in several classical autoimmune diseases, allergic diseases, and cancers and investigate the related therapeutic applications in these diseases. Moreover, we identify ICOS as a potential biomarker for disease treatment and prognostic prediction. In addition, we believe that anti-ICOS/ICOSL monoclonal antibodies exhibit excellent clinical application potential. A thorough understanding of the effect of ICOS+ Tregs and the holistic role of ICOS toward the immune system will help to improve the therapeutic schedule of diseases.
Collapse
Affiliation(s)
- Dan-Yang Li
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian-Zhi Xiong
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Coleman MF, Cozzo AJ, Pfeil AJ, Etigunta SK, Hursting SD. Cell Intrinsic and Systemic Metabolism in Tumor Immunity and Immunotherapy. Cancers (Basel) 2020; 12:cancers12040852. [PMID: 32244756 PMCID: PMC7225951 DOI: 10.3390/cancers12040852] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has shown extraordinary promise at treating cancers otherwise resistant to treatment. However, for ICI therapy to be effective, it must overcome the metabolic limitations of the tumor microenvironment. Tumor metabolism has long been understood to be highly dysregulated, with potent immunosuppressive effects. Moreover, T cell activation and longevity within the tumor microenvironment are intimately tied to T cell metabolism and are required for the long-term efficacy of ICI therapy. We discuss in this review the intersection of metabolic competition in the tumor microenvironment, T cell activation and metabolism, the roles of tumor cell metabolism in immune evasion, and the impact of host metabolism in determining immune surveillance and ICI therapy outcomes. We also discussed the effects of obesity and calorie restriction—two important systemic metabolic perturbations that impact intrinsic metabolic pathways in T cells as well as cancer cells.
Collapse
Affiliation(s)
- Michael F. Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
| | - Alyssa J. Cozzo
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
- Department of Medicine, Duke University, Durham, NC 27705, USA
| | - Alexander J. Pfeil
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
| | - Suhas K. Etigunta
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
| | - Stephen D. Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27516, USA
- Correspondence:
| |
Collapse
|
39
|
CTLA-4 blockade boosts the expansion of tumor-reactive CD8 + tumor-infiltrating lymphocytes in ovarian cancer. Sci Rep 2020; 10:3914. [PMID: 32127601 PMCID: PMC7054305 DOI: 10.1038/s41598-020-60738-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
Adoptive cell therapy (ACT) with autologous tumor-infiltrating lymphocytes (TILs) can induce durable complete tumor regression in patients with advanced melanoma. Efforts are currently underway to expand this treatment modality to other cancer types. In the microenvironment of ovarian cancer, the engagement of co-inhibitory immune checkpoint molecules such as CTLA-4 can lead to the inactivation of TILs. Thus, approaches that directly manipulate co-inhibitory pathways within the tumor microenvironment might improve the expansion of tumor-reactive TILs. The initial expansion of TILs for ACT from tumor fragments provides a window of opportunity to manipulate an intact tumor microenvironment and improve CD8+ T-cell output and TIL tumor reactivity. To exploit this, we used a CTLA-4-blocking antibody, added during the initial TIL culture, and found that the blockade of CTLA-4 favored the propagation of CD8+ TILs from ovarian tumor fragments. Interestingly, adding the CTLA-4 blocking antibody in the initial phase of the TIL culture resulted in more potent anti-tumor TILs in comparison to standard TIL cultures. This phenotype was preserved during the rapid expansion phase. Thus, targeting CTLA-4 within the intact tumor microenvironment of tumor fragments enriches tumor-reactive TILs and may improve clinical outcome of TIL-based ACT in ovarian cancer.
Collapse
|
40
|
Yang H, Ye S, Goswami S, Li T, Wu J, Cao C, Ma J, Lu B, Pei X, Chen Y, Yu J, Xu H, Qiu L, Afridi S, Xiang L, Zhang X. Highly immunosuppressive HLADR hi regulatory T cells are associated with unfavorable outcomes in cervical squamous cell carcinoma. Int J Cancer 2019; 146:1993-2006. [PMID: 31709528 DOI: 10.1002/ijc.32782] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/16/2019] [Accepted: 10/28/2019] [Indexed: 12/21/2022]
Abstract
Regulatory T cells (Tregs) are crucial for the maintenance of peripheral tolerance, but they also limit beneficial responses through cancer-induced immunoediting. The roles of Treg subsets in cervical squamous cell carcinoma (CSCC) are currently unknown. Here, we aimed to perform an extensive study with an increased resolution of the Treg compartment in the peripheral blood and tumor tissues of CSCC patients. We first identified that an HLADRhi Treg population in the peripheral blood was significantly increased in CSCC patients compared to precancer patients and healthy donors. We found that HLADRhi Tregs express high levels of a panel of inhibition and activation markers and the TCR-responsive transcription factors BATF and IRF4. However, this Treg subset showed reduced calcium influx after TCR crosslinking. In addition, HLADRhi Tregs are highly proliferative and vulnerable to apoptosis. Further studies demonstrated that the HLADRhi Tregs display high levels of suppressive activity. Quantitative multiplexed immunohistochemistry revealed that an increase in the number of tumor-infiltrating HLADRhi Tregs is associated with unfavorable classical risk parameters of advanced disease stage and stromal invasion. Context-based quantification revealed that a high frequency of stromal HLADRhi Tregs in patients is significantly associated with worse progression-free survival. In the current study, we characterized a population of highly activated and immunosuppressive HLADRhi Tregs in CSCC patients. An increased HLADRhi Treg frequency may be a potential biomarker to stratify CSCC patients and evaluate therapeutic efficacies in personalized immuno-oncology studies.
Collapse
Affiliation(s)
- Huijuan Yang
- Department of Gynecological Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuang Ye
- Department of Gynecological Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shyamal Goswami
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Teng Li
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jingwen Wu
- Department of Gynecological Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chunmei Cao
- Cancer Institute, Fudan University, Shanghai Cancer Center, Shanghai, China
| | - Jiaqiang Ma
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Bin Lu
- Rudong People's Hospital, Jiangsu, China
| | - Xuan Pei
- Department of Gynecological Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanan Chen
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jing Yu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Huihui Xu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Liwei Qiu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Saifullah Afridi
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,Department of Biological Sciences (DBS), National University of Medical Sciences (NUMS), Secretariat c/o Military Hospital, Adjacent to Armed Force Institute of Cardiology, Rawalpindi, Pakistan
| | - Libing Xiang
- Department of Gynecological Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoming Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
41
|
Amatore F, Gorvel L, Olive D. Role of Inducible Co-Stimulator (ICOS) in cancer immunotherapy. Expert Opin Biol Ther 2019; 20:141-150. [PMID: 31738626 DOI: 10.1080/14712598.2020.1693540] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction: The promotion of antitumor response by targeting co-stimulatory B7 superfamily members has become evident to create a new wave of cancer immunotherapy. Inducible Co-Stimulator (ICOS), which is expressed on activated T cells, gained interest in the translational medicine community.Areas covered: We performed an extensive literature review using the keywords 'ICOS' and 'cancer', and the Clinicaltrials.gov database for early phase clinical trials targeting ICOS. In this review, we highlight the dual role of ICOS in oncogenesis in different malignancies. We summarize the current state of knowledge about ICOS/ICOSL pathway targeting by immunotherapies.Expert opinion: Due to its multifaceted link with anti-tumor immunity, both antagonist and agonist antibodies might be of interest to target the ICOS/ICOSL pathway for tumor treatment. Indeed, ICOS activation might potentiate the effect of an inhibitory checkpoint blockade, while its neutralization could decrease the function of immunosuppressive Tregs and inhibit lymphoid tumor cells expressing Tfh markers.
Collapse
Affiliation(s)
- Florent Amatore
- Centre de recherche en Cancérologie de Marseille, INSERM U1068, CNRS U7258, Aix Marseille Université, Institut Paoli - Calmettes, Marseille, France
| | - Laurent Gorvel
- Centre de recherche en Cancérologie de Marseille, INSERM U1068, CNRS U7258, Aix Marseille Université, Institut Paoli - Calmettes, Marseille, France
| | - Daniel Olive
- Centre de recherche en Cancérologie de Marseille, INSERM U1068, CNRS U7258, Aix Marseille Université, Institut Paoli - Calmettes, Marseille, France
| |
Collapse
|
42
|
Wan M, Ning B, Spiegel S, Lyon CJ, Hu TY. Tumor-derived exosomes (TDEs): How to avoid the sting in the tail. Med Res Rev 2019; 40:385-412. [PMID: 31318078 PMCID: PMC6917833 DOI: 10.1002/med.21623] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/26/2019] [Accepted: 06/13/2019] [Indexed: 02/05/2023]
Abstract
Exosomes are abundantly secreted extracellular vesicles that accumulate in the circulation and are of great interest for disease diagnosis and evaluation since their contents reflects the phenotype of their cell of origin. Tumor‐derived exosomes (TDEs) are of particular interest for cancer diagnosis and therapy, since most tumor demonstrate highly elevated exosome secretion rates and provide specific information about the genotype of a tumor and its response to treatment. TDEs also contain regulatory factors that can alter the phenotypes of local and distant tissue sites and alter immune cell functions to promote tumor progression. The abundance, information content, regulatory potential, in vivo half‐life, and physical durability of exosomes suggest that TDEs may represent a superior source of diagnostic biomarkers and treatment targets than other materials currently under investigation. This review will summarize current information on mechanisms that may differentially regulate TDE biogenesis, TDE effects on the immune system that promote tumor survival, growth, and metastasis, and new approaches understudy to counteract or utilize TDE properties in cancer therapies.
Collapse
Affiliation(s)
- MeiHua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Bo Ning
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Sarah Spiegel
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona.,Virginia G. Piper Biodesign Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Christopher J Lyon
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona.,Virginia G. Piper Biodesign Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Tony Y Hu
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona.,Virginia G. Piper Biodesign Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona
| |
Collapse
|
43
|
Stockis J, Roychoudhuri R, Halim TYF. Regulation of regulatory T cells in cancer. Immunology 2019; 157:219-231. [PMID: 31032905 PMCID: PMC6587396 DOI: 10.1111/imm.13064] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 12/28/2022] Open
Abstract
The inflammatory response to transformed cells forms the cornerstone of natural or therapeutically induced protective immunity to cancer. Regulatory T (Treg) cells are known for their critical role in suppressing inflammation, and therefore can antagonize effective anti-cancer immune responses. As such, Treg cells can play detrimental roles in tumour progression and in the response to both conventional and immune-based cancer therapies. Recent advances in our understanding of Treg cells reveal complex niche-specific regulatory programmes and functions, which are likely to extrapolate to cancer. The regulation of Treg cells is reliant on upstream cues from haematopoietic and non-immune cells, which dictates their genetic, epigenetic and downstream functional programmes. In this review we will discuss how Treg cells are themselves regulated in normal and transformed tissues, and the implications of this cross talk on tumour growth.
Collapse
Affiliation(s)
- Julie Stockis
- CRUK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Rahul Roychoudhuri
- Laboratory of Lymphocyte Signalling and DevelopmentThe Babraham InstituteCambridgeUK
| | | |
Collapse
|
44
|
Expression of costimulatory and inhibitory receptors in FoxP3 + regulatory T cells within the tumor microenvironment: Implications for combination immunotherapy approaches. Adv Cancer Res 2019; 144:193-261. [PMID: 31349899 DOI: 10.1016/bs.acr.2019.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The unprecedented success of immune checkpoint inhibitors has given rise to a rapidly growing number of immuno-oncology agents undergoing preclinical and clinical development and an exponential increase in possible combinations. Defining a clear rationale for combinations by identifying synergies between immunomodulatory pathways has therefore become a high priority. Immunosuppressive regulatory T cells (Tregs) within the tumor microenvironment (TME) represent a major roadblock to endogenous and therapeutic tumor immunity. However, Tregs are also essential for the maintenance of immunological self-tolerance, and share many molecular pathways with conventional T cells including cytotoxic T cells, the primary mediators of tumor immunity. Hence the inability to specifically target and neutralize Tregs within the TME of cancer patients without globally compromising self-tolerance poses a significant challenge. Here we review recent advances in the characterization of tumor-infiltrating Tregs with a focus on costimulatory and inhibitory receptors. We discuss receptor expression patterns, their functional role in Treg biology and mechanistic insights gained from targeting these receptors in preclinical models to evaluate their potential as clinical targets. We further outline a framework of parameters that could be used to refine the assessment of Tregs in cancer patients and increase their value as predictive biomarkers. Finally, we propose modalities to integrate our increasing knowledge on Treg phenotype and function for the rational design of checkpoint inhibitor-based combination therapies. Such combinations have great potential for synergy, as they could concomitantly enhance cytotoxic T cells and inhibit Tregs within the TME, thereby increasing the efficacy of current cancer immunotherapies.
Collapse
|
45
|
Burlion A, Ramos RN, Kc P, Sendeyo K, Corneau A, Ménétrier-Caux C, Piaggio E, Olive D, Caux C, Marodon G. A novel combination of chemotherapy and immunotherapy controls tumor growth in mice with a human immune system. Oncoimmunology 2019; 8:1596005. [PMID: 31143518 PMCID: PMC6527285 DOI: 10.1080/2162402x.2019.1596005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 02/08/2023] Open
Abstract
Mice reconstituted with a human immune system and bearing human tumors represent a promising model for developing novel cancer immunotherapies. Here, we used mass cytometry and multi-parametric flow cytometry to characterize human leukocytes infiltrating a human breast cancer tumor model in immunocompromised NOD.SCID.γc-null mice reconstituted with a human immune system and compared it to samples of breast cancer patients. We observed highly activated human CD4+ and CD8+ T cells in the tumor, as well as minor subsets of innate immune cells in both settings. We also report that ICOS+ CD4+ regulatory T cells (Treg) were enriched in the tumor relative to the periphery in humanized mice and patients, providing a target to affect Treg and tumor growth. Indeed, administration of a neutralizing mAb to human ICOS reduced Treg proportions and numbers and improved CD4 + T cell proliferation in humanized mice. Moreover, a combination of the anti-ICOS mAb with cyclophosphamide reduced tumor growth, and that was associated with an improved CD8 to Treg ratio. Depletion of human CD8+ T cells or of murine myeloid cells marginally affected the effect of the combination therapy. Altogether, our results indicate that a combination of anti-ICOS mAb and chemotherapy controls tumor growth in humanized mice, opening new perspectives for the treatment of breast cancer. One sentence summary: Targeting ICOS in combination with chemotherapy is a promising strategy to improve tumor immunity in humans.
Collapse
Affiliation(s)
- Aude Burlion
- CNRS, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses, CIMI, Sorbonne Université, Paris, France
| | - Rodrigo N Ramos
- INSERM U932, SiRIC Translational Immunotherapy Team, Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Pukar Kc
- CNRS, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses, CIMI, Sorbonne Université, Paris, France
| | - Kélhia Sendeyo
- CNRS, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses, CIMI, Sorbonne Université, Paris, France
| | | | - Christine Ménétrier-Caux
- INSERM 1052, CNRS 5286, Department of Translational Research and Innovation, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, CRCL, Université Claude Bernard Lyon 1, Lyon, France
| | - Eliane Piaggio
- INSERM U932, SiRIC Translational Immunotherapy Team, Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Daniel Olive
- INSERM U1068, CNRS, Institut Paoli - Calmettes, Centre de recherche en Cancérologie de Marseille, CRCM, Aix Marseille Université, Marseille, France
| | - Christophe Caux
- INSERM 1052, CNRS 5286, Department of Translational Research and Innovation, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, CRCL, Université Claude Bernard Lyon 1, Lyon, France
| | - Gilles Marodon
- CNRS, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses, CIMI, Sorbonne Université, Paris, France
| |
Collapse
|
46
|
Foulds GA, Vadakekolathu J, Abdel-Fatah TMA, Nagarajan D, Reeder S, Johnson C, Hood S, Moseley PM, Chan SYT, Pockley AG, Rutella S, McArdle SEB. Immune-Phenotyping and Transcriptomic Profiling of Peripheral Blood Mononuclear Cells From Patients With Breast Cancer: Identification of a 3 Gene Signature Which Predicts Relapse of Triple Negative Breast Cancer. Front Immunol 2018; 9:2028. [PMID: 30254632 PMCID: PMC6141692 DOI: 10.3389/fimmu.2018.02028] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
Background: Interactions between the immune system and tumors are highly reciprocal in nature, leading to speculation that tumor recurrence or therapeutic resistance could be influenced or predicted by immune events that manifest locally, but can be detected systemically. Methods: Multi-parameter flow cytometry was used to examine the percentage and phenotype of natural killer (NK) cells, myeloid-derived suppressor cells (MDSCs), monocyte subsets and regulatory T (Treg) cells in the peripheral blood of of 85 patients with breast cancer (50 of whom were assessed before and after one cycle of anthracycline-based chemotherapy), and 23 controls. Transcriptomic profiles of peripheral blood mononuclear cells (PBMCs) in 23 patients were generated using a NanoString gene profiling platform. Results: An increased percentage of immunosuppressive cells such as granulocytic MDSCs, intermediate CD14++CD16+ monocytes and CD127negCD25highFoxP3+ Treg cells was observed in patients with breast cancer, especially patients with stage 3 and 4 disease, regardless of ER status. Following neoadjuvant chemotherapy, B cell numbers decreased significantly, whereas monocyte numbers increased. Although chemotherapy had no effect on the percentage of Treg, MDSC and NK cells, the expression of inhibitory receptors CD85j, LIAR and NKG2A and activating receptors NKp30 and NKp44 on NK cells increased, concomitant with a decreased expression of NKp46 and DNAM-1 activating receptors. Transcriptomic profiling revealed a distinct group of 3 patients in the triple negative breast cancer (TNBC) cohort who expressed high levels of mRNA encoding genes predominantly involved in inflammation. The analysis of a large transcriptomic dataset derived from the tumors of patients with TNBC revealed that the expression of CD163, CXCR4, THBS1 predicted relapse-free survival. Conclusions: The peripheral blood immunome of patients with breast cancer is influenced by the presence and stage of cancer, but not by molecular subtypes. Furthermore, immune profiling coupled with transcriptomic analyses of peripheral blood cells may identify patients with TNBC that are at risk of relapse after chemotherapy.
Collapse
Affiliation(s)
- Gemma A Foulds
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Jayakumar Vadakekolathu
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Tarek M A Abdel-Fatah
- Clinical Oncology Department, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Divya Nagarajan
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Stephen Reeder
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Catherine Johnson
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Simon Hood
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Paul M Moseley
- Clinical Oncology Department, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Stephen Y T Chan
- Clinical Oncology Department, Nottingham University Hospitals, Nottingham, United Kingdom
| | - A Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Sergio Rutella
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Stephanie E B McArdle
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
47
|
Abstract
INTRODUCTION Regulatory T cells (Treg) characterized by expression of FOXP3 and strong immunosuppressive activity play a key role in regulating homeostasis in health and disease. Areas covered: Human Treg are highly diverse phenotypically and functionally. In the tumor microenvironment (TME), Treg are reprogrammed by the tumor, acquiring an activated phenotype and enhanced suppressor functions. No unique phenotypic markers for Treg accumulating in human tumors exist. Treg are heterogeneous and use numerous mechanisms to mediate suppression, which either silences anti-tumor immune surveillance or prevents tissue damage by activated T cells. Treg plasticity in the TME endows them with dual functionality. Treg frequency in tumors associates either with poor or improved survival. Treg responses to immune checkpoint inhibition (ICI) differ from the restorative effects ICIs induce in other immune cells. Therapies used to silence Treg, including ICIs, are only partly successful. Treg persistence and resistance to depletion are critical for maintaining homeostasis. Expert opinion: Treg emerge as a heterogeneous subset of immunosuppressive T cells, which usually, but not always, favor tumor progression. Treg are also engaged in non-immune activities that benefit the host. Therapeutic silencing of Treg in cancer requires a deeper understanding of Treg activities in human health and disease.
Collapse
Affiliation(s)
- Theresa L Whiteside
- a Departments of Pathology, Immunology and Otolaryngology , University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center , Pittsburgh , PA , USA
| |
Collapse
|
48
|
Chen Q, Mo L, Cai X, Wei L, Xie Z, Li H, Li J, Hu Z. ICOS signal facilitates Foxp3 transcription to favor suppressive function of regulatory T cells. Int J Med Sci 2018; 15:666-673. [PMID: 29910670 PMCID: PMC6001412 DOI: 10.7150/ijms.23940] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/04/2018] [Indexed: 12/16/2022] Open
Abstract
Inducible costimulator (ICOS) plays an important role in the suppressive immunity mediated by regulatory T cells (Tregs), but the molecular regulation mechanism is not well known. Here we performed a study to explore the possible mechanism by which ICOS regulates the suppressive functions and survival of Tregs. This study showed that both the ICOS and CD28 signal could promote the survival of Tregs. However, ICOS but not CD28 improved the suppressive function of Tregs. Mechanistic studies demonstrated that ICOS could induce the transcription activity of Foxp3, by facilitating the nuclear factor of activated T cells (NFAT): Foxp3 over NFAT: activator protein 1 (AP-1). The results of Q-PCR showed that AP1 downstream regulatory genes (IL-2 and IL-6) were down-regulated, and Foxp3 downstream regulatory genes (IL-4, IL-10 and TGF-β) were up-regulated. Further, ICOS promoted anti-apoptosis may be by activating protein kinase B (Akt) signal. These findings demonstrated that ICOS signal could facilitate Foxp3 transcription in favor of survival and suppressive function of Tregs.
Collapse
Affiliation(s)
- Qianmei Chen
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Lijun Mo
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiangsheng Cai
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Lili Wei
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengneng Xie
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongwei Li
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinlong Li
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiming Hu
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
49
|
Bendriss-Vermare N, Gourdin N, Vey N, Faget J, Sisirak V, Labidi-Galy I, Le Mercier I, Goutagny N, Puisieux I, Ménétrier-Caux C, Caux C. Plasmacytoid DC/Regulatory T Cell Interactions at the Center of an Immunosuppressive Network in Breast and Ovarian Tumors. Oncoimmunology 2018. [DOI: 10.1007/978-3-319-62431-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
50
|
Frydrychowicz M, Boruczkowski M, Kolecka-Bednarczyk A, Dworacki G. The Dual Role of Treg in Cancer. Scand J Immunol 2017; 86:436-443. [PMID: 28941312 DOI: 10.1111/sji.12615] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/20/2017] [Indexed: 12/15/2022]
Abstract
Regulatory T cells (Tregs) represent a small subpopulation of CD4+ cells. Tregs are characterized by the expression of transcription factor Forkhead box protein 3 (FoxP3), also known as scurfin. Tregs are modulators of adaptive immune responses and play an important role in maintaining tolerance to self-antigens, providing the suppression associated with tumour microenvironment as well. These immunomodulatory properties are the main reason for the development of numerous therapeutic strategies, designed to inhibit the activity of cancer cells. However, due to Treg subpopulation diversity and its many functional pathways, the role of these cells in the cancer development and progression is still not fully understood.
Collapse
Affiliation(s)
- M Frydrychowicz
- Department of Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - M Boruczkowski
- Department of Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - A Kolecka-Bednarczyk
- Department of Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - G Dworacki
- Department of Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|