1
|
Akgul A, Freguia CF, Maddaloni M, Hoffman C, Voigt A, Nguyen CQ, Fanger NA, Fanger GR, Pascual DW. Treatment with a Lactococcus lactis that chromosomally express E. coli cfaI mitigates salivary flow loss in a Sjögren's syndrome-like disease. Sci Rep 2023; 13:19489. [PMID: 37945636 PMCID: PMC10636062 DOI: 10.1038/s41598-023-46557-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
Sjögren's Syndrome (SjS) results in loss of salivary and lacrimal gland excretion due to an autoimmune attack on these secretory glands. Conventional SjS treatments address the symptoms, but not the cause of disease. Recognizing this deficit of treatments to reverse SjS disease, studies were pursued using the fimbriae from enterotoxigenic E. coli, colonization factor antigen I (CFA/I), which has anti-inflammatory properties. To determine if CFA/I fimbriae could attenuate SjS-like disease in C57BL/6.NOD-Aec1Aec2 (SjS) females, the Lactococcus lactis (LL) 301 strain was developed to chromosomally express the cfaI operon. Western blot analysis confirmed CFA/I protein expression, and this was tested in SjS females at different stages of disease. Repeated dosing with LL 301 proved effective in mitigating salivary flow loss and in reducing anti-nuclear antibodies (ANA) and inflammation in the submandibular glands (SMGs) in SjS females and in restoring salivary flow in diseased mice. LL 301 treatment reduced proinflammatory cytokine production with concomitant increases in TGF-β+ CD25+ CD4+ T cells. Moreover, LL 301 treatment reduced draining lymph and SMG follicular T helper (Tfh) cell levels and proinflammatory cytokines, IFN-γ, IL-6, IL-17, and IL-21. Such evidence points to the therapeutic capacity of CFA/I protein to suppress SjS disease and to have restorative properties in combating autoimmune disease.
Collapse
Affiliation(s)
- Ali Akgul
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | | | - Massimo Maddaloni
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | - Carol Hoffman
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | - Alexandria Voigt
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | - Cuong Q Nguyen
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | | | | | - David W Pascual
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
2
|
Uceda S, Echeverry-Alzate V, Reiriz-Rojas M, Martínez-Miguel E, Pérez-Curiel A, Gómez-Senent S, Beltrán-Velasco AI. Gut Microbial Metabolome and Dysbiosis in Neurodegenerative Diseases: Psychobiotics and Fecal Microbiota Transplantation as a Therapeutic Approach-A Comprehensive Narrative Review. Int J Mol Sci 2023; 24:13294. [PMID: 37686104 PMCID: PMC10487945 DOI: 10.3390/ijms241713294] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The comprehensive narrative review conducted in this study delves into the mechanisms of communication and action at the molecular level in the human organism. The review addresses the complex mechanism involved in the microbiota-gut-brain axis as well as the implications of alterations in the microbial composition of patients with neurodegenerative diseases. The pathophysiology of neurodegenerative diseases with neuronal loss or death is analyzed, as well as the mechanisms of action of the main metabolites involved in the bidirectional communication through the microbiota-gut-brain axis. In addition, interventions targeting gut microbiota restructuring through fecal microbiota transplantation and the use of psychobiotics-pre- and pro-biotics-are evaluated as an opportunity to reduce the symptomatology associated with neurodegeneration in these pathologies. This review provides valuable information and facilitates a better understanding of the neurobiological mechanisms to be addressed in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sara Uceda
- BRABE Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Víctor Echeverry-Alzate
- BRABE Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Manuel Reiriz-Rojas
- BRABE Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Esther Martínez-Miguel
- Health Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Ana Pérez-Curiel
- Health Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Silvia Gómez-Senent
- Health Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | | |
Collapse
|
3
|
Grund M, Choi SJ, Powell L, Lukomski S. Intranasal immunization with a Bucl8-based vaccine ameliorates bacterial burden and pathological inflammation, and promotes an IgG2a/b dominant response in an outbred mouse model of Burkholderia infection. Front Immunol 2023; 14:1177650. [PMID: 37545515 PMCID: PMC10399622 DOI: 10.3389/fimmu.2023.1177650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Burkholderia pseudomallei is a gram-negative bacterium that is the etiological agent of the tropical disease melioidosis. Currently, there is no licensed vaccine for melioidosis, but numerous candidates are being tested for protective efficacy and characterization of the elicited immune response. Our lab has previously reported the immunogenicity of a Bucl8-protein-based peptide antigen, designated L1-CRM197 (Cross-reacting material 197). When given subcutaneously, this vaccine formulation promoted a strong Th2 (IgG1) antibody response, however immunization did not protect from death. In this study, we hypothesized that an intranasally administered L1-CRM197 vaccine would induce protective mucosal immunity. To evaluate vaccine efficacy, we developed a surrogate Burkholderia infection model that employs outbred CD-1 mice which imitates the immunogenetic diversity of humans. Mice were immunized with either L1-CRM197 adjuvanted with fluorinated cyclic diguanosine monophosphate (FCDG) or with FCDG-only control. These mice were then challenged intranasally with an infectious dose of a luminescent strain of B. thailandensis E264 two weeks post-immunization, and correlates of protection were assessed in euthanized mice on days 1, 2, 3, and 7 post-infection. Overall, intranasal vaccination, compared to subcutaneous administration, induced a stronger Th1 (IgG2a/2b) to Th2 (IgG1) antibody response and promoted anti-L1 nasal, pulmonary, and systemic IgA. Additionally, sera IgG from L1-CRM197-vaccinated mice recognized whole-cell B. thailandensis and B. pseudomallei, a select agent exempt strain Bp82. Vaccination ameliorated disease indicators, including luminescent signal and bacterial cell counts, weight and temperature loss, and organ weight, which negatively correlated with IgG2a antibody levels and mucosa-stimulating cytokines IL-13 and IL-9. L1-CRM197-vaccinated mice also had earlier resolution of inflammatory and tissue-damaging cytokines compared to the FCDG-only controls. These results suggest a balanced humoral and cell-mediated response, along with mucosa-based immunity are beneficial for protection. Future efforts should further assess mucosal cellular and humoral mechanisms of protection and test such protection, using aerosolized B. pseudomallei select agent strain(s).
Collapse
Affiliation(s)
| | | | | | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
4
|
Hoffman K, Brownell Z, Doyle WJ, Ochoa-Repáraz J. The immunomodulatory roles of the gut microbiome in autoimmune diseases of the central nervous system: Multiple sclerosis as a model. J Autoimmun 2023; 137:102957. [PMID: 36435700 PMCID: PMC10203067 DOI: 10.1016/j.jaut.2022.102957] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
Abstract
The gut-associated lymphoid tissue is a primary activation site for immune responses to infection and immunomodulation. Experimental evidence using animal disease models suggests that specific gut microbes significantly regulate inflammation and immunoregulatory pathways. Furthermore, recent clinical findings indicate that gut microbes' composition, collectively named gut microbiota, is altered under disease state. This review focuses on the functional mechanisms by which gut microbes promote immunomodulatory responses that could be relevant in balancing inflammation associated with autoimmunity in the central nervous system. We also propose therapeutic interventions that target the composition of the gut microbiota as immunomodulatory mechanisms to control neuroinflammation.
Collapse
Affiliation(s)
- Kristina Hoffman
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA
| | - Zackariah Brownell
- Department of Biological Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - William J Doyle
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA
| | - Javier Ochoa-Repáraz
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA.
| |
Collapse
|
5
|
Cossu D, Yokoyama K, Sakanishi T, Sechi LA, Hattori N. Bacillus Calmette-Guérin Tokyo-172 vaccine provides age-related neuroprotection in actively induced and spontaneous experimental autoimmune encephalomyelitis models. Clin Exp Immunol 2023; 212:70-80. [PMID: 36745025 PMCID: PMC10081113 DOI: 10.1093/cei/uxad015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/29/2022] [Accepted: 02/03/2023] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis is the most common immune-mediated disorder affecting the central nervous system in young adults but still has no cure. Bacillus Calmette-Guérin (BCG) vaccine is reported to have non-specific anti-inflammatory effects and therapeutic benefits in autoimmune disorders including multiple sclerosis. However, the precise mechanism of action of BCG and the host immune response to it remain unclear. In this study, we aimed to investigate the efficacy of the BCG Tokyo-172 vaccine in suppressing experimental autoimmune encephalomyelitis (EAE). Groups of young and mature adult female C57BL/6J mice were BCG-vaccinated 1 month prior or 6 days after active EAE induction using myelin oligodendrocyte glycoprotein (MOG)35-55 peptide. Another group of 2D2 TCRMOG transgenic female mice was BCG-vaccinated before and after the onset of spontaneous EAE. BCG had an age-associated protective effect against active EAE only in wild-type mice vaccinated 1 month before EAE induction. Furthermore, the incidence of spontaneous EAE was significantly lower in BCG vaccinated 2D2 mice than in non-vaccinated controls. Protection against EAE was associated with reduced splenic T-cell proliferation in response to MOG35-55 peptide together with high frequency of CD8+ interleukin-10-secreting T cells in the spleen. In addition, microglia and astrocytes isolated from BCG-vaccinated mice showed polarization to anti-inflammatory M2 and A2 phenotypes, respectively. Our data provide new insights into the cell-mediated and humoral immune mechanisms underlying BCG vaccine-induced neuroprotection, potentially useful for developing better strategies for the treatment of MS.
Collapse
Affiliation(s)
- Davide Cossu
- Department of Biomedical Sciences, Sassari University, Sassari, Italy
- Department of Neurology, Juntendo University, Tokyo, Japan
- Juntendo University, Biomedical Research Core Facilities, Tokyo, Japan
| | | | | | - Leonardo A Sechi
- Department of Biomedical Sciences, Sassari University, Sassari, Italy
- SC Microbiologia AOU Sassari, Sassari, Italy
| | | |
Collapse
|
6
|
Dikiy S, Rudensky AY. Principles of regulatory T cell function. Immunity 2023; 56:240-255. [PMID: 36792571 DOI: 10.1016/j.immuni.2023.01.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 02/16/2023]
Abstract
Regulatory T (Treg) cells represent a distinct lineage of cells of the adaptive immune system indispensable for forestalling fatal autoimmune and inflammatory pathologies. The role of Treg cells as principal guardians of the immune system can be attributed to their ability to restrain all currently recognized major types of inflammatory responses through modulating the activity of a wide range of cells of the innate and adaptive immune system. This broad purview over immunity and inflammation is afforded by the multiple modes of action Treg cells exert upon their diverse molecular and cellular targets. Beyond the suppression of autoimmunity for which they were originally recognized, Treg cells have been implicated in tissue maintenance, repair, and regeneration under physiologic and pathologic conditions. Herein, we discuss the current and emerging understanding of Treg cell effector mechanisms in the context of the basic properties of Treg cells that endow them with such functional versatility.
Collapse
Affiliation(s)
- Stanislav Dikiy
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA.
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
7
|
Shete A, Bhat M, Sawant J, Deshpande S. Both N- and C-terminal domains of galectin-9 are capable of inducing HIV reactivation despite mediating differential immunomodulatory functionalities. Front Immunol 2022; 13:994830. [PMID: 36569879 PMCID: PMC9772452 DOI: 10.3389/fimmu.2022.994830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Background The shock-and-kill strategy for HIV cure requires the reactivation of latent HIV followed by the killing of the reactivated cellular reservoir. Galectin-9, an immunomodulatory protein, is shown to induce HIV reactivation as well as contribute to non-AIDS- and AIDS-defining events. The protein is prone to cleavage by inflammatory proteases at its linker region separating the N- and C-terminal carbohydrate-binding domains (N- and C-CRDs) which differ in their binding specificities. It is important to study the activity of its cleaved as well as uncleaved forms in mediating HIV reactivation and immunomodulation in order to understand their role in HIV pathogenesis and their further utilization for the shock-and-kill strategy. Methodology The PBMCs of HIV patients on virally suppressive ART (n = 11) were stimulated using 350 nM of the full-length protein and N- and C-CRDs of Gal-9. HIV reactivation was determined by analyzing gag RNA copies using qPCR using isolated CD4 cells and intracellular P24 staining of PBMCs by flow cytometry. Cytokine responses induced by the full-length protein and N- and C-CRDs of Gal-9 were also assessed by flow cytometry, Luminex, and gene expression assays. Changes in T helper cell gene expression pattern after the stimulation were also determined by real-time PCR array. Results Both N- and C-CRDs of galectin-9 induced HIV reactivation in addition to the full-length galectin-9 protein. The two domains elicited higher cytokine responses than the full-length protein, possibly capable of mediating higher perturbations in the immune system if used for HIV reactivation. N-CRD was found to induce the development of Treg cells, whereas C-CRD inhibited the induction of Treg cells. Despite this, both domains elicited IL-10 secretory response although targeting different CD4 cell phenotypes. Conclusion N- and C-CRDs were found to induce HIV reactivation similar to that of the full-length protein, indicating their possible usefulness in the shock-and-kill strategy. The study indicated an anti-inflammatory role of N-CRD versus the proinflammatory properties of C-CRD of galectin-9 in HIV infection.
Collapse
|
8
|
Kotschenreuther K, Yan S, Kofler DM. Migration and homeostasis of regulatory T cells in rheumatoid arthritis. Front Immunol 2022; 13:947636. [PMID: 36016949 PMCID: PMC9398455 DOI: 10.3389/fimmu.2022.947636] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/20/2022] [Indexed: 12/17/2022] Open
Abstract
Regulatory T (Treg) cells are garnering increased attention in research related to autoimmune diseases, including rheumatoid arthritis (RA). They play an essential role in the maintenance of immune homeostasis by restricting effector T cell activity. Reduced functions and frequencies of Treg cells contribute to the pathogenesis of RA, a common autoimmune disease which leads to systemic inflammation and erosive joint destruction. Treg cells from patients with RA are characterized by impaired functions and by an altered phenotype. They show increased plasticity towards Th17 cells and a reduced suppressive capacity. Besides the suppressive function of Treg cells, their effectiveness is determined by their ability to migrate into inflamed tissues. In the past years, new mechanisms involved in Treg cell migration have been identified. One example of such a mechanism is the phosphorylation of vasodilator-stimulated phosphoprotein (VASP). Efficient migration of Treg cells requires the presence of VASP. IL-6, a cytokine which is abundantly present in the peripheral blood and in the synovial tissue of RA patients, induces posttranslational modifications of VASP. Recently, it has been shown in mice with collagen-induced arthritis (CIA) that this IL-6 mediated posttranslational modification leads to reduced Treg cell trafficking. Another protein which facilitates Treg cell migration is G-protein-signaling modulator 2 (GPSM2). It modulates G-protein coupled receptor functioning, thereby altering the cellular activity initiated by cell surface receptors in response to extracellular signals. The almost complete lack of GPSM2 in Treg cells from RA patients contributes to their reduced ability to migrate towards inflammatory sites. In this review article, we highlight the newly identified mechanisms of Treg cell migration and review the current knowledge about impaired Treg cell homeostasis in RA.
Collapse
Affiliation(s)
- Konstantin Kotschenreuther
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Shuaifeng Yan
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David M. Kofler
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- *Correspondence: David M. Kofler,
| |
Collapse
|
9
|
Ghosh R, Mitra P, Kumar PVSNK, Goyal T, Sharma P. T helper cells in depression: central role of Th17 cells. Crit Rev Clin Lab Sci 2021; 59:19-39. [PMID: 34592888 DOI: 10.1080/10408363.2021.1965535] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Depression is one of the most common neuropsychiatric disorders in the world. While conventional pharmaceutical therapy targets monoaminergic pathway dysfunction, it has not been totally successful in terms of positive outcomes, remission, and preventing relapses. There is an increasing amount of evidence that neuroinflammation may play a significant part in the pathophysiology of depression. Among the key components of the neuroinflammatory pathways already known to be active are the T helper (Th) cells, especially Th17 cells. While various preclinical and clinical studies have reported increased levels of Th17 cells in both serum and brain tissue of laboratory model animals, contradictory results have argued against a pertinent role of Th17 cells in depression. Recent studies have also revealed a role for more pathogenic and inflammatory subsets of Th17 in depression, as well as IL-17A and Th17 cells in non-responsiveness to conventional antidepressant therapy. Despite recent advances, there is still a significant knowledge gap concerning the exact mechanism by which Th17 cells influence neuroinflammation in depression. This review first provides a short introduction to the major findings that led to the discovery of the role of Th cells in depression. The major subsets of Th cells known to be involved in neuroimmunology of depression, such as Th1, Th17, and T regulatory cells, are subsequently described, with an in-depth discussion on current knowledge about Th17 cells in depression.
Collapse
Affiliation(s)
- Raghumoy Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Prasenjit Mitra
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - P V S N Kiran Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Taru Goyal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| |
Collapse
|
10
|
Yeung SSH, Ho YS, Chang RCC. The role of meningeal populations of type II innate lymphoid cells in modulating neuroinflammation in neurodegenerative diseases. Exp Mol Med 2021; 53:1251-1267. [PMID: 34489558 PMCID: PMC8492689 DOI: 10.1038/s12276-021-00660-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023] Open
Abstract
Recent research into meningeal lymphatics has revealed a never-before appreciated role of type II innate lymphoid cells (ILC2s) in modulating neuroinflammation in the central nervous system (CNS). To date, the role of ILC2-mediated inflammation in the periphery has been well studied. However, the exact distribution of ILC2s in the CNS and therefore their putative role in modulating neuroinflammation in neurodegenerative diseases such as Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease (PD), and major depressive disorder (MDD) remain highly elusive. Here, we review the current evidence of ILC2-mediated modulation of neuroinflammatory cues (i.e., IL-33, IL-25, IL-5, IL-13, IL-10, TNFα, and CXCL16-CXCR6) within the CNS, highlight the distribution of ILC2s in both the periphery and CNS, and discuss some challenges associated with cell type-specific targeting that are important for therapeutics. A comprehensive understanding of the roles of ILC2s in mediating and responding to inflammatory cues may provide valuable insight into potential therapeutic strategies for many dementia-related disorders.
Collapse
Affiliation(s)
- Sherry Sin-Hang Yeung
- grid.194645.b0000000121742757Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Yuen-Shan Ho
- grid.16890.360000 0004 1764 6123School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR China
| | - Raymond Chuen-Chung Chang
- grid.194645.b0000000121742757Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China ,grid.194645.b0000000121742757State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| |
Collapse
|
11
|
Regulatory T Cells and Inflammatory Mediators in Autoimmune Disease. J Invest Dermatol 2021; 142:774-780. [PMID: 34284898 DOI: 10.1016/j.jid.2021.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 12/22/2022]
Abstract
Regulatory T cells (Tregs) play a critical role in regulating tissue inflammation. Reduced Treg numbers and/or suppressive function contribute to autoimmune disease. Tregs can adopt the transcriptional programming of T helper (Th) type-1/2/17 cells to optimally suppress these subsets. Under specific conditions, these Th-like Tregs lose suppressive capacity and release proinflammatory cytokines to promote inflammation. This Treg plasticity depends on inflammatory mediators in the local environment. In this study, we review how cytokines impact Treg function and may contribute to autoimmune disease. A comprehensive understanding of Th-like Tregs may elucidate novel and more focused therapeutic approaches.
Collapse
|
12
|
Azimzadeh M, Mahmoodi M, Kazemi M, Hakemi MG, Jafarinia M, Eslami A, Salehi H, Amirpour N. The immunoregulatory and neuroprotective effects of human adipose derived stem cells overexpressing IL-11 and IL-13 in the experimental autoimmune encephalomyelitis mice. Int Immunopharmacol 2020; 87:106808. [PMID: 32693359 DOI: 10.1016/j.intimp.2020.106808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/29/2020] [Accepted: 07/11/2020] [Indexed: 02/05/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelination disease in the central nervous system (CNS) characterized by incomplete endogenous remyelination in the chronic phase. A shift of the balance between pro and anti-inflammatory cytokines is one of the important markers in the pathogenesis of MS. This study aimed to evaluate the effects of human adipose derived stem cells (hADSCs) overexpressing interleukin 11 and interleukin 13 (IL-11, 13-hADSCs) on the experimental autoimmune encephalomyelitis (EAE), an animal model of MS.12 days after immunization of C57Bl/6 female mice with MOG35-55 and initial clinical symptoms appearance, the IL-11, 13-hADSCs were injected via the tail vein into the EAE mice. Then, the mice were sacrificed at 30 days post-immunization (DPI) and the spinal cords of experimental groups were extracted for histopathological and real-time RT-PCR studies.The results indicated that the clinical scores and mononuclear cells infiltration into the spinal cords of EAE mice were significantly reduced in mice treated with IL-11, 13-hADSCs. Likewise, the remyelination and oligodendrogenesis were significantly enhanced in the mentioned treatment group. Real-time results demonstrated that pro/anti-inflammatory cytokine genes expression was reversed in IL-11, 13-hADSCs treatment group in comparison to the untreated EAE group.Expression of IL-11 as a neurotrophic cytokine and IL-13 as an anti-inflammatory cytokine by hADSCs could increase the immunomodulatory and neuroprotective effects of hADSCs and be a powerful candidate in stem cell therapy for future treatment of MS.
Collapse
Affiliation(s)
- Maryam Azimzadeh
- Department of Anatomical Science, School Of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Merat Mahmoodi
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Morteza Jafarinia
- Department of Immunology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Asma Eslami
- Department of Immunology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical Science, School Of Medicine, Isfahan University of Medical Science, Isfahan, Iran.
| | - Noushin Amirpour
- Department of Anatomical Science, School Of Medicine, Isfahan University of Medical Science, Isfahan, Iran.
| |
Collapse
|
13
|
Eslami A, Dehbashi M, Ashja-Arvan M, Salehi H, Azimzadeh M, Ganjalikhani-Hakemi M. Assessment of ability of human adipose derived stem cells for long term overexpression of IL-11 and IL-13 as therapeutic cytokines. Cytotechnology 2020; 72:773-784. [PMID: 32935166 PMCID: PMC7547926 DOI: 10.1007/s10616-020-00421-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/02/2020] [Indexed: 02/05/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) are a type of mesenchymal stem cells with the therapeutic effects that make them one of the best sources for cell therapy. In this study, we aimed to assess the ability of human ADSCs for constant expression of IL-11 and IL-13, simultaneously. In this study, the characterized hADSCs were transduced with a lentiviral vector (PCDH-513B) containing IL-11 and IL-13 genes, and the ability of long-term expression of the transgenes was evaluated by ELISA technique on days 15, 45 and 75 after transduction. Our results indicated a high rate of transduction (more than 90%) in the isolated hADSCs. Our data showed the highest rate of expression on days 75 after transduction which was 242.67 pg/ml for IL-11 and 303.6 pg/ml for IL-13 compared with 35.2 pg/ml and 35.6 pg/ml in untreated cells, respectively (p = 0.001). Besides, MTT assay showed transduction of hADSCs with lentiviral viruses containing IL-11 and IL-13 had no adverse effect on hADSCs proliferation (p-value = 0.89). Finally, we successfully constructed a hADSC population stably overexpressing IL-11 as the neurotrophic cytokine and IL-13 as the anti-inflammatory cytokine and this transduced cells can be used for further studies in EAE mice model.
Collapse
Affiliation(s)
- Asma Eslami
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Moein Dehbashi
- Division of Genetics, Department of Cell and Molecular Biology, Faculty of Biological Sciences and Technologies, University of Isfahan, 81746-73441 Isfahan, Iran
| | - Mehnoosh Ashja-Arvan
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Azimzadeh
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
14
|
Nelson AS, Maddaloni M, Abbott JR, Hoffman C, Akgul A, Ohland C, Gharaibeh RZ, Jobin C, Brusko TM, Pascual DW. Oral therapy with colonization factor antigen I prevents development of type 1 diabetes in Non-obese Diabetic mice. Sci Rep 2020; 10:6156. [PMID: 32273533 PMCID: PMC7145799 DOI: 10.1038/s41598-020-62881-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/21/2020] [Indexed: 01/09/2023] Open
Abstract
Antigen (Ag)-specific tolerization prevents type 1 diabetes (T1D) in non-obese diabetic (NOD) mice but proved less effective in humans. Several auto-Ags are fundamental to disease development, suggesting T1D etiology is heterogeneous and may limit the effectiveness of Ag-specific therapies to distinct disease endotypes. Colonization factor antigen I (CFA/I) fimbriae from Escherichia coli can inhibit autoimmune diseases in murine models by inducing bystander tolerance. To test if Ag-independent stimulation of regulatory T cells (Tregs) can prevent T1D onset, groups of NOD mice were orally treated with Lactococcus lactis (LL) expressing CFA/I. LL-CFA/I treatment beginning at 6 weeks of age reduced disease incidence by 50% (p < 0.05) and increased splenic Tregs producing both IL-10 and IFN-γ 8-fold (p < 0.005) compared to LL-vehicle treated controls. To further describe the role of these Tregs in preventing T1D, protective phenotypes were examined at different time-points. LL-CFA/I treatment suppressed splenic TNF-α+CD8+ T cells 6-fold at 11 weeks (p < 0.005) and promoted a distinct microbiome. At 17 weeks, IFN-γ+CD4+ T cells were suppressed 10-fold (p < 0.005), and at 30 weeks, pancreatic Tbet+CD4+ T cells were suppressed (p < 0.05). These results show oral delivery of modified commensal organisms, such as LL-CFA/I, may be harnessed to restrict Th1 cell-mediated immunity and protect against T1D.
Collapse
Affiliation(s)
- Andrew S. Nelson
- 0000 0004 1936 8091grid.15276.37Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL United States
| | - Massimo Maddaloni
- 0000 0004 1936 8091grid.15276.37Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL United States
| | - Jeffrey R. Abbott
- 0000 0004 1936 8091grid.15276.37Department of Comparative, Diagnostic, and Population Medicine, University of Florida, Gainesville, FL United States
| | - Carol Hoffman
- 0000 0004 1936 8091grid.15276.37Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL United States
| | - Ali Akgul
- 0000 0004 1936 8091grid.15276.37Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL United States
| | - Christina Ohland
- 0000 0004 1936 8091grid.15276.37Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL United States
| | - Raad Z. Gharaibeh
- 0000 0004 1936 8091grid.15276.37Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL United States
| | - Christian Jobin
- 0000 0004 1936 8091grid.15276.37Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL United States ,0000 0004 1936 8091grid.15276.37Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL United States
| | - Todd M. Brusko
- 0000 0004 1936 8091grid.15276.37Department of Pathology, Immunology, & Laboratory Medicine, University of Florida Diabetes Institute, University of Florida, Gainesville, FL United States
| | - David W. Pascual
- 0000 0004 1936 8091grid.15276.37Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL United States
| |
Collapse
|
15
|
Radhakrishnan RK, Thandi RS, Tripathi D, Paidipally P, McAllister MK, Mulik S, Samten B, Vankayalapati R. BCG vaccination reduces the mortality of Mycobacterium tuberculosis-infected type 2 diabetes mellitus mice. JCI Insight 2020; 5:133788. [PMID: 32161191 DOI: 10.1172/jci.insight.133788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetes is a significant risk factor for the development of active tuberculosis. In this study, we used a mouse model of type 2 diabetes mellitus (T2DM) to determine the effect of prior Bacillus Calmette-Guérin (BCG) vaccination on immune responses to Mycobacterium tuberculosis (Mtb) infection. We found that, at 6-7 months after Mtb infection, 90% of the Mtb-infected T2DM mice died, whereas only 50% of BCG-vaccinated T2DM-Mtb-infected mice died. Moreover, 40% of the PBS-treated uninfected T2DM mice and 30% of the uninfected BCG-vaccinated T2DM mice died, whereas all uninfected and infected nondiabetic mice survived. BCG vaccination was less effective in reducing the lung bacterial burden of Mtb-infected T2DM mice compared with Mtb-infected nondiabetic mice. BCG vaccination significantly reduced lung inflammation in Mtb-infected T2DM mice compared with that of unvaccinated T2DM mice infected with Mtb. Furthermore, reduced mortality of BCG-vaccinated Mtb-infected T2DM mice is associated with expansion of IL-13-producing CXCR3+ Tregs in the lungs of Mtb-infected T2DM mice. Recombinant IL-13 and Tregs from BCG-vaccinated Mtb-infected T2DM mice converted proinflammatory M1 macrophages to antiinflammatory M2 macrophages. Our findings suggest a potentially novel role for BCG in preventing excess inflammation and mortality in T2DM mice infected with Mtb.
Collapse
|
16
|
Schirmer L, Hoornaert C, Le Blon D, Eigel D, Neto C, Gumbleton M, Welzel PB, Rosser AE, Werner C, Ponsaerts P, Newland B. Heparin-based, injectable microcarriers for controlled delivery of interleukin-13 to the brain. Biomater Sci 2020; 8:4997-5004. [DOI: 10.1039/d0bm01249a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The anti-inflammatory cytokine IL-13 can be loaded and released from heparin-based cryogel biomaterials for sustained delivery to the brain.
Collapse
|
17
|
Kolosowska N, Keuters MH, Wojciechowski S, Keksa-Goldsteine V, Laine M, Malm T, Goldsteins G, Koistinaho J, Dhungana H. Peripheral Administration of IL-13 Induces Anti-inflammatory Microglial/Macrophage Responses and Provides Neuroprotection in Ischemic Stroke. Neurotherapeutics 2019; 16:1304-1319. [PMID: 31372938 PMCID: PMC6985054 DOI: 10.1007/s13311-019-00761-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Neuroinflammation is strongly induced by cerebral ischemia. The early phase after the onset of ischemic stroke is characterized by acute neuronal injury, microglial activation, and subsequent infiltration of blood-derived inflammatory cells, including macrophages. Therefore, modulation of the microglial/macrophage responses has increasingly gained interest as a potential therapeutic approach for the ischemic stroke. In our study, we investigated the effects of peripherally administered interleukin 13 (IL-13) in a mouse model of permanent middle cerebral artery occlusion (pMCAo). Systemic administration of IL-13 immediately after the ischemic insult significantly reduced the lesion volume, alleviated the infiltration of CD45+ leukocytes, and promoted the microglia/macrophage alternative activation within the ischemic region, as determined by arginase 1 (Arg1) immunoreactivity at 3 days post-ischemia (dpi). Moreover, IL-13 enhanced the expression of M2a alternative activation markers Arg1 and Ym1 in the peri-ischemic (PI) area, as well as increased plasma IL-6 and IL-10 levels at 3 dpi. Furthermore, IL-13 treatment ameliorated gait disturbances at day 7 and 14 and sensorimotor deficits at day 14 post-ischemia, as analyzed by the CatWalk gait analysis system and adhesive removal test, respectively. Finally, IL-13 treatment decreased neuronal cell death in a coculture model of neuroinflammation with RAW 264.7 macrophages. Taken together, delivery of IL-13 enhances microglial/macrophage anti-inflammatory responses in vivo and in vitro, decreases ischemia-induced brain cell death, and improves sensory and motor functions in the pMCAo mouse model of cerebral ischemia.
Collapse
Affiliation(s)
- Natalia Kolosowska
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Meike H. Keuters
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Sara Wojciechowski
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Velta Keksa-Goldsteine
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mika Laine
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tarja Malm
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Gundars Goldsteins
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Neuroscience Center, HiLIFE, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290 Finland
| | - Hiramani Dhungana
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
DuBois JC, Ray AK, Gruber RC, Zhang Y, Aflakpui R, Macian-Juan F, Shafit-Zagardo B. Akt3-Mediated Protection Against Inflammatory Demyelinating Disease. Front Immunol 2019; 10:1738. [PMID: 31404142 PMCID: PMC6669559 DOI: 10.3389/fimmu.2019.01738] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 07/09/2019] [Indexed: 12/30/2022] Open
Abstract
Akt is a serine/threonine protein kinase that plays a major role in regulating multiple cellular processes. While the isoforms Akt1 and Akt2 are involved in apoptosis and insulin signaling, respectively, the role for Akt3 remains uncertain. Akt3 is predominantly expressed in the brain, and total deletion of Akt3 in mice results in a reduction in brain size and neurodegeneration following injury. Previously, we found that Akt3-/- mice have a significantly worse clinical course during myelin-oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), an animal model in which autoreactive immune cells enter the CNS, resulting in inflammation, demyelination, and axonal injury. Spinal cords of Akt3-/- mice are severely demyelinated and have increased inflammation compared to WT, suggesting a neuroprotective role for Akt3 during EAE. To specifically address the role of Akt3 in neuroinflammation and maintaining neuronal integrity, we used several mouse strains with different manipulations to Akt3. During EAE, Akt3 Nmf350 mice (with enhanced Akt3 kinase activity) had lower clinical scores, a lag in disease onset, a delay in the influx of inflammatory cells into the CNS, and less axonal damage compared to WT mice. A significant increased efficiency of differentiation toward FOXP3 expressing iTregs was also observed in Akt3 Nmf350 mice relative to WT. Mice with a conditional deletion of Akt3 in CD4+ T-cells had an earlier onset of EAE symptoms, increased inflammation in the spinal cord and brain, and had fewer FOXP3+ cells and FOXP3 mRNA expression. No difference in EAE outcome was observed when Akt3 expression was deleted in neurons (Syn1-CKO). These results indicate that Akt3 signaling in T-cells and not neurons is necessary for maintaining CNS integrity during an inflammatory demyelinating disease.
Collapse
MESH Headings
- Animals
- Biomarkers
- Demyelinating Diseases/etiology
- Demyelinating Diseases/metabolism
- Demyelinating Diseases/pathology
- Disease Models, Animal
- Disease Susceptibility
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Fluorescent Antibody Technique
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Immunohistochemistry
- Immunophenotyping
- Mice
- Mice, Knockout
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction
- Spinal Cord/immunology
- Spinal Cord/metabolism
- Spinal Cord/pathology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Juwen C. DuBois
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Alex K. Ray
- Department of Microbiology and Immunology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ross C. Gruber
- Multiple Sclerosis and Neuroinflammation Research, Sanofi, Framingham, MA, United States
| | - Yongwei Zhang
- Department of Cell Biology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ranee Aflakpui
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Fernando Macian-Juan
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Bridget Shafit-Zagardo
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
19
|
Chen H, Ma X, Liu Y, Ma L, Chen Z, Lin X, Si L, Ma X, Chen X. Gut Microbiota Interventions With Clostridium butyricum and Norfloxacin Modulate Immune Response in Experimental Autoimmune Encephalomyelitis Mice. Front Immunol 2019; 10:1662. [PMID: 31428083 PMCID: PMC6689973 DOI: 10.3389/fimmu.2019.01662] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/03/2019] [Indexed: 12/22/2022] Open
Abstract
Gut microbiota has been proposed as an important environmental factor which can intervene and modulate central nervous system autoimmunity. Here, we altered the composition of gut flora with Clostridium butyricum and norfloxacin in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. We found that appropriate C. butyricum (5.0 × 106 CFU/mL intragastrically daily, staring at weaning period of age) and norfloxacin (5 mg/kg intragastrically daily, 1 week prior to EAE induction) treatment could both ameliorate EAE although there are obvious differences in gut microbiota composition between these two interventions. C. butyricum increased while norfloxacin decreased the abundance and diversity of the gut microbiota in EAE mice, and both of the treatments decreased firmicutes/bacteroidetes ratio. In the genus level, C. butyricum treatment increased the abundance of Prevotella while Akkermansia and Allobaculum increased in norfloxacin treatment. Moreover, both interventions reduced Desulfovibroneceae and Ruminococcus species. Although there was discrepancy in the gut microbiota composition with the two interventions, C. butyricum and norfloxacin treatment both reduced Th17 response and increased Treg response in the gastrointestinal tract and extra-gastrointestinal organ systems in EAE mice. And the reduced activity of p38 mitogen-activated kinase and c-Jun N-terminal kinase signaling in spinal cord could be observed in the two interventions. The results suggested that manipulation of gut microbiota interventions should take factors such as timing, duration, and dosage into consideration. The discrepancy in the gut microbiota composition and the similar protective T cells response of C. butyricum and norfloxacin implies that achieving intestinal microecology balance by promoting and/or inhibiting the gut microbiota contribute to the well-being of immune response in EAE mice.
Collapse
Affiliation(s)
- Hao Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaomeng Ma
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yingying Liu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lili Ma
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhaoyu Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiuli Lin
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lei Si
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xueying Ma
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Interleukin-4 and Interleukin-13 Exacerbate Neurotoxicity of Prothrombin Kringle-2 in Cortex In Vivo via Oxidative Stress. Int J Mol Sci 2019; 20:ijms20081927. [PMID: 31010119 PMCID: PMC6515094 DOI: 10.3390/ijms20081927] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 11/17/2022] Open
Abstract
The present study investigated the effects of activated microglia-derived interleukin-4 (IL-4) and IL-13 on neurodegeneration in prothrombin kringle-2 (pKr-2)-treated rat cortex. pKr-2 was unilaterally injected into the Sprague–Dawley rat cerebral cortex and IL-4 and IL-13 neutralizing antibody was used to block the function of IL-4 and IL-13. Immunohistochemical analysis showed a significant loss of NeuN+ and Nissl+ cells and an increase of OX-42+ cells in the cortex at seven days post pKr-2. The levels of IL-4 and IL-13 expression were upregulated in the activated microglia as early as 12 hours post pKr-2 and sustained up to seven days post pKr-2. Neutralization by IL-4 or IL-13 antibodies (NA) significantly increased neuronal survival in pKr-2-treated rat cortex in vivo by suppressing microglial activation and the production of reactive oxygen species, as analyzed by immunohisotochemistry and hydroethidine histochemistry. These results suggest that IL-4 and IL-13 that were endogenously expressed from reactive microglia may play a critical role on neuronal death by regulating oxidative stress during the neurodegenerative diseases, such as Alzheimer’s disease and dementia.
Collapse
|
21
|
Proto JD, Doran AC, Gusarova G, Yurdagul A, Sozen E, Subramanian M, Islam MN, Rymond CC, Du J, Hook J, Kuriakose G, Bhattacharya J, Tabas I. Regulatory T Cells Promote Macrophage Efferocytosis during Inflammation Resolution. Immunity 2018; 49:666-677.e6. [PMID: 30291029 PMCID: PMC6192849 DOI: 10.1016/j.immuni.2018.07.015] [Citation(s) in RCA: 290] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/05/2018] [Accepted: 07/25/2018] [Indexed: 12/13/2022]
Abstract
Regulatory T (Treg) cell responses and apoptotic cell clearance (efferocytosis) represent critical arms of the inflammation resolution response. We sought to determine whether these processes might be linked through Treg-cell-mediated enhancement of efferocytosis. In zymosan-induced peritonitis and lipopolysaccharide-induced lung injury, Treg cells increased early in resolution, and Treg cell depletion decreased efferocytosis. In advanced atherosclerosis, where defective efferocytosis drives disease progression, Treg cell expansion improved efferocytosis. Mechanistic studies revealed the following sequence: (1) Treg cells secreted interleukin-13 (IL-13), which stimulated IL-10 production in macrophages; (2) autocrine-paracrine signaling by IL-10 induced Vav1 in macrophages; and (3) Vav1 activated Rac1 to promote apoptotic cell engulfment. In summary, Treg cells promote macrophage efferocytosis during inflammation resolution via a transcellular signaling pathway that enhances apoptotic cell internalization. These findings suggest an expanded role of Treg cells in inflammation resolution and provide a mechanistic basis for Treg-cell-enhancement strategies for non-resolving inflammatory diseases.
Collapse
Affiliation(s)
- Jonathan D Proto
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Amanda C Doran
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Galina Gusarova
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Arif Yurdagul
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Erdi Sozen
- Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Biochemistry, Marmara University, Istanbul, Turkey
| | | | - Mohammad N Islam
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | - Jasper Du
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Jaime Hook
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - George Kuriakose
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Jahar Bhattacharya
- Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Ira Tabas
- Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
22
|
Hamzei Taj S, Le Blon D, Hoornaert C, Daans J, Quarta A, Praet J, Van der Linden A, Ponsaerts P, Hoehn M. Targeted intracerebral delivery of the anti-inflammatory cytokine IL13 promotes alternative activation of both microglia and macrophages after stroke. J Neuroinflammation 2018; 15:174. [PMID: 29866203 PMCID: PMC5987479 DOI: 10.1186/s12974-018-1212-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/21/2018] [Indexed: 12/27/2022] Open
Abstract
Background Subtle adjustment of the activation status of CNS resident microglia and peripheral macrophages, to promote their neuroprotective and neuroregenerative functions, may facilitate research towards curing neurodegenerative disorders. In the present study, we investigated whether targeted intracerebral delivery of the anti-inflammatory cytokine interleukin (IL)13, by means of transplanting IL13-expressing mesenchymal stem cells (IL13-MSCs), can promote a phenotypic switch in both microglia and macrophages during the pro-inflammatory phase in a mouse model of ischemic stroke. Methods We used the CX3CR1eGFP/+ CCR2RFP/+ transgenic mouse model to separately recognize brain-resident microglia from infiltrated macrophages. Quantitative immunohistochemical analyses were applied to characterize polarization phenotypes of both cell types. Results Distinct behaviors of both cell populations were noted dependent on the anatomical site of the lesion. Immunohistochemistry revealed that mice grafted with IL13-MSCs, in contrast to non-grafted and MSC-grafted control mice, were able to drive recruited microglia and macrophages into an alternative activation state, as visualized by a significant increase of Arg-1 and a noticeable decrease of MHC-II expression at day 14 after ischemic stroke. Interestingly, both Arg-1 and MHC-II were expressed more abundantly in macrophages than in microglia, further confirming the distinct behavior of both cell populations. Conclusions The current data highlight the importance of controlled and localized delivery of the anti-inflammatory cytokine IL13 for modulation of both microglia and macrophage responses after ischemic stroke, thereby providing pre-clinical rationale for the application of L13-MSCs in future investigations of neurodegenerative disorders. Electronic supplementary material The online version of this article (10.1186/s12974-018-1212-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Somayyeh Hamzei Taj
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Gleuelerstrasse 50, D-50931, Köln, Germany
| | - Debbie Le Blon
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Chloé Hoornaert
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Jasmijn Daans
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Alessandra Quarta
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Jelle Praet
- Bio-Imaging Laboratory, University of Antwerp, Antwerp, Belgium
| | | | - Peter Ponsaerts
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Mathias Hoehn
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Gleuelerstrasse 50, D-50931, Köln, Germany. .,Department of Radiology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
23
|
Gut Microbiota in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: Current Applications and Future Perspectives. Mediators Inflamm 2018; 2018:8168717. [PMID: 29805314 PMCID: PMC5902007 DOI: 10.1155/2018/8168717] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/22/2018] [Accepted: 03/04/2018] [Indexed: 12/19/2022] Open
Abstract
The gut environment and gut microbiome dysbiosis have been demonstrated to significantly influence a range of disorders in humans, including obesity, diabetes, rheumatoid arthritis, and multiple sclerosis (MS). MS is an autoimmune disease affecting the central nervous system (CNS). The etiology of MS is not clear, and it should involve both genetic and extrinsic factors. The extrinsic factors responsible for predisposition to MS remain elusive. Recent studies on MS and its animal model, experimental autoimmune encephalomyelitis (EAE), have found that gastrointestinal microbiota may play an important role in the pathogenesis of MS/EAE. Thus, gut microbiome adjustment may be a future direction of treatment in MS. In this review, we discuss the characteristics of the gut microbiota, the connection between the brain and the gut, and the changes in gut microbiota in MS/EAE, and we explore the possibility of applying microbiota therapies in patients with MS.
Collapse
|
24
|
Kim SM, McIlwraith EK, Chalmers JA, Belsham DD. Palmitate Induces an Anti-Inflammatory Response in Immortalized Microglial BV-2 and IMG Cell Lines that Decreases TNFα Levels in mHypoE-46 Hypothalamic Neurons in Co-Culture. Neuroendocrinology 2018; 107:387-399. [PMID: 30352432 DOI: 10.1159/000494759] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/23/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND OBJECTIVES Elevated levels of saturated fatty acids (SFA) induce a state of neuroinflammation in the hypothalamus. It has been suggested that microglia sense palmitate, a prevalent circulating SFA, and act as mediators of this inflammatory process by communicating with neurons, particularly those involved in appetite regulation. In this study, we examined the inflammatory response to palmitate in immortalized microglial cell lines, BV-2 and IMG, and the subsequent effects on inflammatory gene expression in a model of NPY/AgRP neurons, mHypoE-46. METHODS The BV-2 cells were treated with 50 µM palmitate for 4 and 24 h, and the transcriptional regulation of markers for inflammation and cellular stress was assessed using an RT2 Profiler PCR Array. Select genes were verified with qRT-PCR. The BV-2 and IMG cells were then co-cultured using 1.0-µm cell culture inserts with an immortalized hypothalamic cell line, mHypoE-46, to investigate potential intercellular communication between microglia and neurons. RESULTS We found that palmitate increased the mRNA levels of specific inflammatory genes, and a general anti-inflammatory profile was revealed in the microglia cells. The mRNA changes in TNFα at 4 and 24 h in BV-2 cells were abrogated with the toll-like receptor 4 (TLR4) inhibitor, TAK-242, indicating the involvement of TLR4. Co-culture of mHypoE-46 neurons with microglia pre-treated with palmitate resulted in repression of TNFα expression in the hypothalamic neurons. As palmitate significantly increased IL-13 expression in microglia, the effect of this cytokine was tested in mHypoE-46 neurons. The addition of IL-13 to neuronal cultures normalized the palmitate-mediated increase in IL-6 and AgRP expression, suggesting that microglia may protect surrounding neurons, at least in part, through the release of IL-13. CONCLUSIONS These results suggest a potential anti-inflammatory role of microglia towards the palmitate-induced neuroinflammation, and potentially energy homeostasis, in hypothalamic neurons.
Collapse
Affiliation(s)
- Stephanie M Kim
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Emma K McIlwraith
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer A Chalmers
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Denise D Belsham
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario,
- Departments of Medicine and Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, Ontario,
| |
Collapse
|
25
|
Cell-Based Delivery of Interleukin-13 Directs Alternative Activation of Macrophages Resulting in Improved Functional Outcome after Spinal Cord Injury. Stem Cell Reports 2017; 7:1099-1115. [PMID: 27974221 PMCID: PMC5161742 DOI: 10.1016/j.stemcr.2016.11.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/10/2016] [Accepted: 11/10/2016] [Indexed: 01/19/2023] Open
Abstract
The therapeutic effects of mesenchymal stem cell (MSC) transplantation following spinal cord injury (SCI) to date have been limited. Therefore, we aimed to enhance the immunomodulatory properties of MSCs via continuous secretion of the anti-inflammatory cytokine interleukin-13 (IL-13). By using MSCs as carriers of IL-13 (MSC/IL-13), we investigated their therapeutic potential, compared with non-engineered MSCs, in a mouse model of SCI. We show that transplanted MSC/IL-13 significantly improve functional recovery following SCI, and also decrease lesion size and demyelinated area by more than 40%. Further histological analyses in CX3CR1EGFP/+ CCR2RFP/+ transgenic mice indicated that MSC/IL-13 significantly decrease the number of resident microglia and increase the number of alternatively activated macrophages. In addition, the number of macrophage-axon contacts in MSC/IL-13-treated mice was decreased by 50%, suggesting a reduction in axonal dieback. Our data provide evidence that transplantation of MSC/IL-13 leads to improved functional and histopathological recovery in a mouse model of SCI.
Collapse
|
26
|
Saresella M, Mendozzi L, Rossi V, Mazzali F, Piancone F, LaRosa F, Marventano I, Caputo D, Felis GE, Clerici M. Immunological and Clinical Effect of Diet Modulation of the Gut Microbiome in Multiple Sclerosis Patients: A Pilot Study. Front Immunol 2017; 8:1391. [PMID: 29118761 PMCID: PMC5661395 DOI: 10.3389/fimmu.2017.01391] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/09/2017] [Indexed: 12/30/2022] Open
Abstract
Pathogenesis of autoimmune disorders, including multiple sclerosis (MS), has been linked to an alteration of the resident microbial commensal community and of the interplay between the microbiota and the immune system. Dietary components such as fiber, acting on microbiota composition, could, in principle, result in immune modulation and, thus, could be used to obtain beneficial outcomes for patients. We verified this hypothesis in a pilot study involving two groups of clinically similar relapsing-remitting (RR) MS patients who had undergone either a high-vegetable/low-protein diet (HV/LP diet group; N = 10) or a "Western Diet" (WD group; N = 10) for at least 12 months. Gut microbiota composition, analyzed by 16 S V4 rRNA gene sequencing and immunological profiles, was examined after a minimum of 12 months of diet. Results showed that, in the HV/LP diet group compared to the WD group: (1) Lachnospiraceae family was significantly more abundant; (2) IL-17-producing T CD4+ lymphocytes (p = 0.04) and PD-1 expressing T CD4+ lymphocytes (p = 0.0004) were significantly decreased; and (3) PD-L1 expressing monocytes (p = 0.009) were significantly increased. In the HV/LP diet group, positive correlations between Lachnospiraceae and both CD14+/IL-10+ and CD14+/TGFβ+monocytes (RSp = 0.707, p = 0.05, and RSp = 0.73, p = 0.04, respectively), as well as between Lachnospiraceae and CD4+/CD25+/FoxP3+ T lymphocytes (RSp = 0.68, p = 0.02) were observed. Evaluation of clinical parameters showed that in the HV/LP diet group alone the relapse rate during the 12 months follow-up period and the Expanded Disability Status Scale score at the end of the study period were significantly reduced. Diet modulates dysbiosis and improves clinical parameters in MS patients by increasing anti-inflammatory circuits. Because Lachnospiraceae favor Treg differentiation as well as TGFβ and IL-10 production this effect could be associated with an increase of these bacteria in the microbiota.
Collapse
Affiliation(s)
- Marina Saresella
- Laboratory of Molecular Medicine and Biotechnology, Don Gnocchi Foundation, IRCCS, Milan, Italy
| | - Laura Mendozzi
- Department of Neurology, Don Gnocchi Foundation, IRCCS, Milan, Italy
| | - Valentina Rossi
- Department of Neurology, Don Gnocchi Foundation, IRCCS, Milan, Italy
| | - Franca Mazzali
- Department of Neurology, Don Gnocchi Foundation, IRCCS, Milan, Italy
| | - Federica Piancone
- Laboratory of Molecular Medicine and Biotechnology, Don Gnocchi Foundation, IRCCS, Milan, Italy
| | - Francesca LaRosa
- Laboratory of Molecular Medicine and Biotechnology, Don Gnocchi Foundation, IRCCS, Milan, Italy
| | - Ivana Marventano
- Laboratory of Molecular Medicine and Biotechnology, Don Gnocchi Foundation, IRCCS, Milan, Italy
| | - Domenico Caputo
- Department of Neurology, Don Gnocchi Foundation, IRCCS, Milan, Italy
| | - Giovanna E Felis
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Mario Clerici
- Laboratory of Molecular Medicine and Biotechnology, Don Gnocchi Foundation, IRCCS, Milan, Italy.,Department of Physiopathology and Transplants, University of Milano, Milan, Italy
| |
Collapse
|
27
|
Benedek G, Zhang J, Nguyen H, Kent G, Seifert HA, Davin S, Stauffer P, Vandenbark AA, Karstens L, Asquith M, Offner H. Estrogen protection against EAE modulates the microbiota and mucosal-associated regulatory cells. J Neuroimmunol 2017; 310:51-59. [PMID: 28778445 PMCID: PMC5570519 DOI: 10.1016/j.jneuroim.2017.06.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/19/2017] [Indexed: 01/22/2023]
Abstract
Sex hormones promote immunoregulatory effects on multiple sclerosis. In the current study we evaluated the composition of the gut microbiota and the mucosal-associated regulatory cells in estrogen or sham treated female mice before and after autoimmune encephalomyelitis (EAE) induction. Treatment with pregnancy levels of estrogen induces changes in the composition and diversity of gut microbiota. Additionally, estrogen prevents EAE-associated changes in the gut microbiota and might promote the enrichment of bacteria that are associated with immune regulation. Our results point to a possible cross-talk between the sex hormones and the gut microbiota, which could promote neuroprotection.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Estrogens/therapeutic use
- Feces/microbiology
- Female
- Interleukin-10/genetics
- Interleukin-10/metabolism
- Intestines/drug effects
- Intestines/microbiology
- Leukocytes/drug effects
- Lymph Nodes/drug effects
- Lymph Nodes/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microbiota/drug effects
- Mucous Membrane/drug effects
- Mucous Membrane/pathology
- Myelin-Oligodendrocyte Glycoprotein/toxicity
- Peptide Fragments/toxicity
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Spinal Cord/pathology
- Time Factors
Collapse
Affiliation(s)
- Gil Benedek
- Neuroimmunology Research, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd, Portland, OR 97239, USA; Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Jun Zhang
- Neuroimmunology Research, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd, Portland, OR 97239, USA; Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Ha Nguyen
- Neuroimmunology Research, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd, Portland, OR 97239, USA; Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Gail Kent
- Neuroimmunology Research, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd, Portland, OR 97239, USA; Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Hilary A Seifert
- Neuroimmunology Research, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd, Portland, OR 97239, USA; Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Sean Davin
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Patrick Stauffer
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Arthur A Vandenbark
- Neuroimmunology Research, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd, Portland, OR 97239, USA; Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; Department of Molecular Microbiology & Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Lisa Karstens
- Division of Bioinformatics and Computational Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; Division of Urogynecology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Mark Asquith
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Halina Offner
- Neuroimmunology Research, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd, Portland, OR 97239, USA; Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
| |
Collapse
|
28
|
Barik S, Ellis JS, Cascio JA, Miller MM, Ukah TK, Cattin-Roy AN, Zaghouani H. IL-4/IL-13 Heteroreceptor Influences Th17 Cell Conversion and Sensitivity to Regulatory T Cell Suppression To Restrain Experimental Allergic Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2017; 199:2236-2248. [PMID: 28801358 DOI: 10.4049/jimmunol.1700372] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/21/2017] [Indexed: 01/04/2023]
Abstract
IL-4 and IL-13 have been defined as anti-inflammatory cytokines that can counter myelin-reactive T cells and modulate experimental allergic encephalomyelitis. However, it is not known whether endogenous IL-4 and IL-13 contribute to the maintenance of peripheral tolerance and whether their function is coordinated with T regulatory cells (Tregs). In this study, we used mice in which the common cytokine receptor for IL-4 and IL-13, namely the IL-4Rα/IL-13Rα1 (13R) heteroreceptor (HR), is compromised and determined whether the lack of signaling by endogenous IL-4 and IL-13 through the HR influences the function of effector Th1 and Th17 cells in a Treg-dependent fashion. The findings indicate that mice-deficient for the HR (13R-/-) are more susceptible to experimental allergic encephalomyelitis than mice sufficient for the HR (13R+/+) and develop early onset and more severe disease. Moreover, Th17 cells from 13R-/- mice had reduced ability to convert to Th1 cells and displayed reduced sensitivity to suppression by Tregs relative to Th17 effectors from 13R+/+ mice. These observations suggest that IL-4 and IL-13 likely operate through the HR and influence Th17 cells to convert to Th1 cells and to acquire increased sensitivity to suppression, leading to control of immune-mediated CNS inflammation. These previously unrecognized findings shed light on the intricacies underlying the contribution of cytokines to peripheral tolerance and control of autoimmunity.
Collapse
Affiliation(s)
- Subhasis Barik
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Jason S Ellis
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Jason A Cascio
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Mindy M Miller
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Tobechukwu K Ukah
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Alexis N Cattin-Roy
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Habib Zaghouani
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212; .,Department of Child Health, University of Missouri School of Medicine, Columbia, MO 65212; and.,Department of Neurology, University of Missouri School of Medicine, Columbia, MO 65212
| |
Collapse
|
29
|
Fleck AK, Schuppan D, Wiendl H, Klotz L. Gut-CNS-Axis as Possibility to Modulate Inflammatory Disease Activity-Implications for Multiple Sclerosis. Int J Mol Sci 2017; 18:E1526. [PMID: 28708108 PMCID: PMC5536015 DOI: 10.3390/ijms18071526] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 12/15/2022] Open
Abstract
In the last decade the role of environmental factors as modulators of disease activity and progression has received increasing attention. In contrast to classical environmental modulators such as exposure to sun-light or fine dust pollution, nutrition is an ideal tool for a personalized human intervention. Various studies demonstrate a key role of dietary factors in autoimmune diseases including Inflammatory Bowel Disease (IBD), rheumatoid arthritis or inflammatory central nervous system (CNS) diseases such as Multiple Sclerosis (MS). In this review we discuss the connection between diet and inflammatory processes via the gut-CNS-axis. This axis describes a bi-directional communication system and comprises neuronal signaling, neuroendocrine pathways and modulation of immune responses. Therefore, the gut-CNS-axis represents an emerging target to modify CNS inflammatory activity ultimately opening new avenues for complementary and adjunctive treatment of autoimmune diseases such as MS.
Collapse
Affiliation(s)
- Ann-Katrin Fleck
- Department of Neurology, University Hospital Muenster, 48149 Muenster, Germany.
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Heinz Wiendl
- Department of Neurology, University Hospital Muenster, 48149 Muenster, Germany.
| | - Luisa Klotz
- Department of Neurology, University Hospital Muenster, 48149 Muenster, Germany.
| |
Collapse
|
30
|
Ukah TK, Cattin-Roy AN, Chen W, Miller MM, Barik S, Zaghouani H. On the Role IL-4/IL-13 Heteroreceptor Plays in Regulation of Type 1 Diabetes. THE JOURNAL OF IMMUNOLOGY 2017. [PMID: 28646042 DOI: 10.4049/jimmunol.1700410] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes (T1D) manifests when the insulin-producing pancreatic β cells are destroyed as a consequence of an inflammatory process initiated by lymphocytes of the immune system. The NOD mouse develops T1D spontaneously and serves as an animal model for human T1D. The IL-4Rα/IL-13Rα1 heteroreceptor (HR) serves both IL-4 and IL-13 cytokines, which are believed to function as anti-inflammatory cytokines in T1D. However, whether the HR provides a responsive element to environmental (i.e., physiologic) IL-4/IL-13 in the regulation of peripheral tolerance and the development of T1D has yet to be defined. In this study, NOD mice deficient for the HR have been generated by means of IL-13Rα1 gene disruption and used to determine whether such deficiency affects the development of T1D. Surprisingly, the findings indicate that NOD mice lacking the HR (13R-/-) display resistance to T1D as the rise in blood glucose level and islet inflammation were significantly delayed in these HR-deficient relative to HR-sufficient (13R+/+) mice. In fact, the frequency and spleen-to-pancreas dynamics of both Th1 and Th17 cells were affected in 13R-/- mice. This is likely due to an increase in the frequency of mTGFβ+Foxp3int regulatory T cells and the persistence of CD206+ macrophages in the pancreas as both types of cells confer resistance to T1D upon transfer to 13R+/+ mice. These findings reveal new insights as to the role environmental IL-4/IL-13 and the HR play in peripheral tolerance and the development of T1D.
Collapse
Affiliation(s)
- Tobechukwu K Ukah
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Alexis N Cattin-Roy
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Weirong Chen
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Mindy M Miller
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Subhasis Barik
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Habib Zaghouani
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212; .,Department of Neurology, University of Missouri School of Medicine, Columbia, MO 65212; and.,Department of Child Health, University of Missouri School of Medicine, Columbia, MO 65212
| |
Collapse
|
31
|
|
32
|
Bivona AE, Cerny N, Alberti AS, Cazorla SI, Malchiodi EL. Attenuated Salmonella sp. as a DNA Delivery System for Trypanosoma cruzi Antigens. Methods Mol Biol 2016; 1404:683-695. [PMID: 27076330 DOI: 10.1007/978-1-4939-3389-1_44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Chagas disease is an important neglected disease affecting thousands of people in the Americas. Novel strategies for prophylactic and therapeutic vaccines against the etiological agent, the intracellular protozoan Trypanosoma cruzi, are urgently needed. Vaccines based on attenuated virus and bacteria as a foreign DNA delivery system represent a strong advantage over naked DNA-based vaccines. Here we describe the use of attenuated Salmonella carrying a eukaryotic expression plasmid encoding a T. cruzi antigen. The main advantages of the methodology are the oral administration of the Salmonella-based vaccine and the induction of a strong humoral and cell-mediated immune response at both mucosal and systemic level, favored by the adjuvant effect elicited by the bacteria pathogen-associated molecular patterns.
Collapse
Affiliation(s)
- Augusto E Bivona
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 4to P, Buenos Aires, C1113AAD, Argentina.,Instituto de Microbiología y Parasitología Médica, IMPaM (UBA-CONICET) y Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Laboratorio de Inmunología, Departamento Ciencias Básicas-INEDES (UNLu-CONICET), Universidad Nacional de Luján, Luján, Argentina
| | - Natacha Cerny
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 4to P, Buenos Aires, C1113AAD, Argentina.,Instituto de Microbiología y Parasitología Médica, IMPaM (UBA-CONICET) y Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Laboratorio de Inmunología, Departamento Ciencias Básicas-INEDES (UNLu-CONICET), Universidad Nacional de Luján, Luján, Argentina
| | - Andrés Sánchez Alberti
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 4to P, Buenos Aires, C1113AAD, Argentina.,Instituto de Microbiología y Parasitología Médica, IMPaM (UBA-CONICET) y Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvia I Cazorla
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 4to P, Buenos Aires, C1113AAD, Argentina.,Instituto de Microbiología y Parasitología Médica, IMPaM (UBA-CONICET) y Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Emilio L Malchiodi
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 4to P, Buenos Aires, C1113AAD, Argentina. .,Instituto de Microbiología y Parasitología Médica, IMPaM (UBA-CONICET) y Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
33
|
Lyons JA, Riter MM, Almatrook AM, Ramsbottom MJ, Cross AH. Amelioration of EAE by a cryptic epitope of myelin oligodendrocyte glycoprotein. J Neuroimmunol 2016; 300:66-73. [PMID: 27423965 DOI: 10.1016/j.jneuroim.2016.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 06/10/2016] [Accepted: 06/22/2016] [Indexed: 12/31/2022]
Abstract
Previous work demonstrated that EAE induced by recombinant human MOG was B cell-dependent. Data presented here reveal a T cell response to MOG61-85 in human rMOG-immunized B cell-/- mice not observed in WT mice. Further study revealed this peptide to be a cryptic epitope in WT mice. Co-immunization of B cell-/- mice with MOG35-55 and MOG61-85 peptides led to less severe disease compared to mice immunized with MOG35-55 alone. Disease amelioration was associated with decreased production of Interferon-γ by lymph node cells. Thus, MOG61-85 represents a protective epitope to human rMOG induced EAE in B cell-/- mice.
Collapse
Affiliation(s)
- Jeri A Lyons
- Department of Biomedical Sciences, University of Wisconsin - Milwaukee, Milwaukee, WI 53211, USA; Department of Neurology and Neurosurgery, Washington University School of Medicine, Saint Louis, MO, USA 63110.
| | - Melissa M Riter
- Department of Biomedical Sciences, University of Wisconsin - Milwaukee, Milwaukee, WI 53211, USA
| | - Alaa M Almatrook
- Department of Biomedical Sciences, University of Wisconsin - Milwaukee, Milwaukee, WI 53211, USA
| | - Michael J Ramsbottom
- Department of Neurology and Neurosurgery, Washington University School of Medicine, Saint Louis, MO, USA 63110
| | - Anne H Cross
- Department of Neurology and Neurosurgery, Washington University School of Medicine, Saint Louis, MO, USA 63110
| |
Collapse
|
34
|
Neuroimmunology of the Interleukins 13 and 4. Brain Sci 2016; 6:brainsci6020018. [PMID: 27304970 PMCID: PMC4931495 DOI: 10.3390/brainsci6020018] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 12/20/2022] Open
Abstract
The cytokines interleukin 13 and 4 share a common heterodimeric receptor and are important modulators of peripheral allergic reactions. Produced primarily by T-helper type 2 lymphocytes, they are typically considered as anti-inflammatory cytokines because they can downregulate the synthesis of T-helper type 1 pro-inflammatory cytokines. Their presence and role in the brain is only beginning to be investigated and the data collected so far shows that these molecules can be produced by microglial cells and possibly by neurons. Attention has so far been given to the possible role of these molecules in neurodegeneration. Both neuroprotective or neurotoxic effects have been proposed based on evidence that interleukin 13 and 4 can reduce inflammation by promoting the M2 microglia phenotype and contributing to the death of microglia M1 phenotype, or by potentiating the effects of oxidative stress on neurons during neuro-inflammation. Remarkably, the heterodimeric subunit IL-13Rα1 of their common receptor was recently demonstrated in dopaminergic neurons of the ventral tegmental area and the substantia nigra pars compacta, suggesting the possibility that both cytokines may affect the activity of these neurons regulating reward, mood, and motor coordination. In mice and man, the gene encoding for IL-13Rα1 is expressed on the X chromosome within the PARK12 region of susceptibility to Parkinson’s disease (PD). This, together with finding that IL-13Rα1 contributes to loss of dopaminergic neurons during inflammation, indicates the possibility that these cytokines may contribute to the etiology or the progression of PD.
Collapse
|
35
|
Pianta S, Bonassi Signoroni P, Muradore I, Rodrigues MF, Rossi D, Silini A, Parolini O. Amniotic membrane mesenchymal cells-derived factors skew T cell polarization toward Treg and downregulate Th1 and Th17 cells subsets. Stem Cell Rev Rep 2016; 11:394-407. [PMID: 25348066 PMCID: PMC4451472 DOI: 10.1007/s12015-014-9558-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We previously demonstrated that cells derived from the mesenchymal layer of the human amniotic membrane (hAMSC) and their conditioned medium (CM-hAMSC) modulate lymphocyte proliferation in a dose-dependent manner. In order to understand the mechanisms involved in immune regulation exerted by hAMSC, we analyzed the effects of CM-hAMSC on T-cell polarization towards Th1, Th2, Th17, and T-regulatory (Treg) subsets. We show that CM-hAMSC equally suppresses the proliferation of both CD4+ T-helper (Th) and CD8+ cytotoxic T-lymphocytes. Moreover, we prove that the CM-hAMSC inhibitory ability affects both central (CD45RO+CD62L+) and effector memory (CD45RO+CD62L−) subsets. We evaluated the phenotype of CD4+ cells in the MLR setting and showed that CM-hAMSC significantly reduced the expression of markers associated to the Th1 (T-bet+CD119+) and Th17 (RORγt+CD161+) populations, while having no effect on the Th2 population (GATA3+CD193+/GATA3+CD294+cells). T-cell subset modulation was substantiated through the analysis of cytokine release for 6 days during co-culture with alloreactive T-cells, whereby we observed a decrease in specific subset-related cytokines, such as a decrease in pro-inflammatory, Th1-related (TNFα, IFNγ, IL-1β), Th2 (IL-5, IL-6), Th9 (IL-9), and Th17 (IL-17A, IL-22). Furthermore, CM-hAMSC significantly induced the Treg compartment, as shown by an induction of proliferating CD4+FoxP3+ cells, and an increase of CD25+FoxP3+ and CD39+FoxP3+ Treg in the CD4+ population. Induction of Treg cells was corroborated by the increased secretion of TGF-β. Taken together, these data strengthen the findings regarding the immunomodulatory properties of CM-hAMSC derived from human amniotic membrane MSC, and in particular provide insights into their effect on regulation of T cell polarization.
Collapse
Affiliation(s)
- Stefano Pianta
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Via Bissolati, 57, I-25124, Brescia, Italy
| | | | | | | | | | | | | |
Collapse
|
36
|
Okuno T, Nakatsuji Y, Kinoshita M, Takata K, Koda T, Yamashita K, Nanba A, Mochizuki H. The role of gut microbiota and diet in experimental autoimmune encephalitis and multiple sclerosis. ACTA ACUST UNITED AC 2015. [DOI: 10.1111/cen3.12270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tatsusada Okuno
- Department of Neurology; Graduate School of Medicine; Osaka University; Osaka Japan
| | - Yuji Nakatsuji
- Department of Neurology; Graduate School of Medicine; Osaka University; Osaka Japan
| | - Makoto Kinoshita
- Department of Neurology; Osaka General Medical Center; Osaka Japan
| | - Kazushiro Takata
- Department of Neurology; Osaka General Medical Center; Osaka Japan
| | - Toru Koda
- Department of Neurology; Graduate School of Medicine; Osaka University; Osaka Japan
| | - Kazuya Yamashita
- Department of Neurology; Graduate School of Medicine; Osaka University; Osaka Japan
| | - Akiko Nanba
- Department of Neurology; Graduate School of Medicine; Osaka University; Osaka Japan
| | - Hideki Mochizuki
- Department of Neurology; Graduate School of Medicine; Osaka University; Osaka Japan
| |
Collapse
|
37
|
Ghalamfarsa G, Mahmoudi M, Mohammadnia-Afrouzi M, Yazdani Y, Anvari E, Hadinia A, Ghanbari A, Setayesh M, Yousefi M, Jadidi-Niaragh F. IL-21 and IL-21 receptor in the immunopathogenesis of multiple sclerosis. J Immunotoxicol 2015; 13:274-85. [PMID: 26507681 DOI: 10.3109/1547691x.2015.1089343] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cytokines are considered important factors in the modulation of various immune responses. Among them, interleukin (IL)-21 is one of the major immune modulators, adjusting various immune responses by affecting various immune cells. It has been suggested that IL-21 may enhance autoimmunity through different mechanisms, such as development and activation of helper T (TH)-17 and follicular helper T (TFH) cells, activation of natural killer (NK) cells, enhancing B-cell differentiation and antibody secretion and suppression of regulatory T (Treg) cells. Moreover, IL-21 has also been suggested to be an inducer of autoimmunity when following treatment of MS patients with some therapeutics such as alemtuzumab. This review will seek to clarify the precise role of IL-21/IL-21R in the pathogenesis of MS and, in its animal model, experimental autoimmune encephalomyelitis (EAE).
Collapse
Affiliation(s)
- Ghasem Ghalamfarsa
- a Cellular and Molecular Research Center, Yasuj University of Medical Sciences , Yasuj , Iran
| | - Mahmoud Mahmoudi
- b Immunology Research Center, Department of Immunology and Allergy , School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mousa Mohammadnia-Afrouzi
- c Department of Immunology and Microbiology , School of Medicine, Babol University of Medical Sciences , Babol , Iran
| | - Yaghoub Yazdani
- d Infectious Diseases Research Center and Laboratory Science Research Center, Golestan University of Medical Sciences , Gorgan , Iran
| | - Enayat Anvari
- e Department of Physiology , Faculty of Medicine, Ilam University of Medical Sciences , Ilam , Iran
| | - Abolghasem Hadinia
- a Cellular and Molecular Research Center, Yasuj University of Medical Sciences , Yasuj , Iran
| | - Amir Ghanbari
- a Cellular and Molecular Research Center, Yasuj University of Medical Sciences , Yasuj , Iran
| | - Maryam Setayesh
- f Biology Department , School of Sciences, Shiraz University , Shiraz , Iran
| | - Mehdi Yousefi
- g Immunology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran ;,h Department of Immunology , Faculty of Medicine, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Farhad Jadidi-Niaragh
- i Department of Immunology , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
38
|
Role of intestinal microbiota in the development of multiple sclerosis. Neurologia 2015; 32:175-184. [PMID: 26383059 DOI: 10.1016/j.nrl.2015.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/07/2015] [Accepted: 07/28/2015] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Multiple sclerosis (MS) is a demyelinating disease that affects young adults; in that age group, it represents the second leading cause of disability in our setting. Its precise aetiology has not been elucidated, but it is widely accepted to occur in genetically predisposed patients who are exposed to certain environmental factors. The discovery of the regulatory role played by intestinal microbiota in various autoimmune diseases has opened a new line of research in this field, which is discussed in this review. DEVELOPMENT We reviewed published studies on the role of the microbiota in the development of both MS and its animal model, experimental autoimmune encephalomyelitis (EAE). In mice, it has been shown that intestinal microorganisms regulate the polarisation of T helper cells from Th1-Th17 up to Th2, the function of regulatory T cells, and the activity of B cells; they participate in the pathogenesis of EAE and contribute to its prevention and treatment. In contrast, evidence in humans is still scarce and mainly based on case-control studies that point to the presence of differences in certain bacterial communities. CONCLUSIONS Multiple evidence points to the role of microbiota in EAE. Extrapolation of these results to MS is still in the early stages of research, and studies are needed to define which bacterial populations are associated with MS, the role they play in pathogenesis, and the therapeutic possibilities this knowledge offers us.
Collapse
|
39
|
Abstract
OPINION STATEMENT The gut microbiome is made up of a wide range of (chiefly) bacterial species that colonize the small and large intestine. The human gut microbiome contains a subset of thousands of bacterial species, with up to 10(14) total bacteria. Studies examining this bacterial content have shown wide variations in which species are present between individuals. The gut microbiome has been shown to have profound effects on the development and maintenance of immune system in both animal models and in humans. A growing body of evidence has implicated the human gut microbiome in a range of disorders, including obesity, inflammatory bowel diseases, and cardiovascular disease. Animal studies present compelling evidence that the gut microbiome plays a significant role in the progression of demyelinating disease, and that modulation of the microbiome can lead to either exacerbation or amelioration of symptoms. Differences in diet, vitamin D insufficiency, smoking, and alcohol use have all been implicated as risk factors in MS, and all have the ability to affect the composition of the gut microbiota. Preliminary clinical trials aimed at modulating the gut microbiota in MS patients are underway and may prove to be a promising and lower-risk treatment option in the future.
Collapse
Affiliation(s)
- Daniel W Mielcarz
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH, 03756, USA,
| | | |
Collapse
|
40
|
Raphael I, Nalawade S, Eagar TN, Forsthuber TG. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 2014; 74:5-17. [PMID: 25458968 DOI: 10.1016/j.cyto.2014.09.011] [Citation(s) in RCA: 780] [Impact Index Per Article: 70.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 12/17/2022]
Abstract
CD4(+) T helper (Th) cells are critical for proper immune cell homeostasis and host defense, but are also major contributors to pathology of autoimmune and inflammatory diseases. Since the discovery of the Th1/Th2 dichotomy, many additional Th subsets were discovered, each with a unique cytokine profile, functional properties, and presumed role in autoimmune tissue pathology. This includes Th1, Th2, Th17, Th22, Th9, and Treg cells which are characterized by specific cytokine profiles. Cytokines produced by these Th subsets play a critical role in immune cell differentiation, effector subset commitment, and in directing the effector response. Cytokines are often categorized into proinflammatory and anti-inflammatory cytokines and linked to Th subsets expressing them. This article reviews the different Th subsets in terms of cytokine profiles, how these cytokines influence and shape the immune response, and their relative roles in promoting pathology in autoimmune and inflammatory diseases. Furthermore, we will discuss whether Th cell pathogenicity can be defined solely based on their cytokine profiles and whether rigid definition of a Th cell subset by its cytokine profile is helpful.
Collapse
Affiliation(s)
- Itay Raphael
- Department of Biology, University of Texas at San Antonio, TX 78249, United States
| | - Saisha Nalawade
- Department of Biology, University of Texas at San Antonio, TX 78249, United States
| | - Todd N Eagar
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, TX 77030, United States
| | - Thomas G Forsthuber
- Department of Biology, University of Texas at San Antonio, TX 78249, United States.
| |
Collapse
|
41
|
Wang Y, Kasper LH. The role of microbiome in central nervous system disorders. Brain Behav Immun 2014; 38:1-12. [PMID: 24370461 PMCID: PMC4062078 DOI: 10.1016/j.bbi.2013.12.015] [Citation(s) in RCA: 537] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 12/12/2022] Open
Abstract
Mammals live in a co-evolutionary association with the plethora of microorganisms that reside at a variety of tissue microenvironments. The microbiome represents the collective genomes of these co-existing microorganisms, which is shaped by host factors such as genetics and nutrients but in turn is able to influence host biology in health and disease. Niche-specific microbiome, prominently the gut microbiome, has the capacity to effect both local and distal sites within the host. The gut microbiome has played a crucial role in the bidirectional gut-brain axis that integrates the gut and central nervous system (CNS) activities, and thus the concept of microbiome-gut-brain axis is emerging. Studies are revealing how diverse forms of neuro-immune and neuro-psychiatric disorders are correlated with or modulated by variations of microbiome, microbiota-derived products and exogenous antibiotics and probiotics. The microbiome poises the peripheral immune homeostasis and predisposes host susceptibility to CNS autoimmune diseases such as multiple sclerosis. Neural, endocrine and metabolic mechanisms are also critical mediators of the microbiome-CNS signaling, which are more involved in neuro-psychiatric disorders such as autism, depression, anxiety, stress. Research on the role of microbiome in CNS disorders deepens our academic knowledge about host-microbiome commensalism in central regulation and in practicality, holds conceivable promise for developing novel prognostic and therapeutic avenues for CNS disorders.
Collapse
Affiliation(s)
- Yan Wang
- Departments of Microbiology/Immunology and Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Lloyd H. Kasper
- Departments of Microbiology/Immunology and Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
42
|
Regulatory T-cell vaccination independent of auto-antigen. Exp Mol Med 2014; 46:e82. [PMID: 24626168 PMCID: PMC3972794 DOI: 10.1038/emm.2014.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/06/2013] [Indexed: 12/21/2022] Open
Abstract
To date, efforts to treat autoimmune diseases have primarily focused on the disease symptoms rather than on the cause of the disease. In large part, this is attributed to not knowing the responsible auto-antigens (auto-Ags) for driving the self-reactivity coupled with the poor success of treating autoimmune diseases using oral tolerance methods. Nonetheless, if tolerogenic approaches or methods that stimulate regulatory T (Treg) cells can be devised, these could subdue autoimmune diseases. To forward such efforts, our approach with colonization factor antigen I (CFA/I) fimbriae is to establish bystander immunity to ultimately drive the development of auto-Ag-specific Treg cells. Using an attenuated Salmonella vaccine expressing CFA/I fimbriae, fimbriae-specific Treg cells were induced without compromising the vaccine's capacity to protect against travelers' diarrhea or salmonellosis. By adapting the vaccine's anti-inflammatory properties, it was found that it could also dampen experimental inflammatory diseases resembling multiple sclerosis (MS) and rheumatoid arthritis. Because of this bystander effect, disease-specific Treg cells are eventually induced to resolve disease. Interestingly, this same vaccine could elicit the required Treg cell subset for each disease. For MS-like disease, conventional CD25+ Treg cells are stimulated, but for arthritis CD39+ Treg cells are induced instead. This review article will examine the potential of treating autoimmune diseases without having previous knowledge of the auto-Ag using an innocuous antigen to stimulate Treg cells via the production of transforming growth factor-β and interleukin-10.
Collapse
|
43
|
Dhakal M, Hardaway JC, Guloglu FB, Miller MM, Hoeman CM, Zaghouani AA, Wan X, Rowland LM, Cascio JA, Sherman MP, Zaghouani H. IL-13Rα1 is a surface marker for M2 macrophages influencing their differentiation and function. Eur J Immunol 2014; 44:842-55. [PMID: 24281978 DOI: 10.1002/eji.201343755] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 11/03/2013] [Accepted: 11/22/2013] [Indexed: 12/28/2022]
Abstract
In this study, we examined the role IL-13 receptor alpha 1 (IL-13Rα1) plays in macrophage differentiation and function. The findings indicate that IL-13Rα1 is expressed on the M2 but not on the M1 subset of macrophages and specifically heterodimerizes with the IL-4Rα chain to form a type II receptor, which controls the differentiation and function of these cells. Indeed, BM cells from IL-13Rα1(+/+) and IL-13Rα1(-/-) mice yield equivalent numbers of macrophages when cultured under M2 polarizing conditions. However, IL-13Rα1(-/-) BM cells yield a much higher number of macrophages than IL-13Rα1(+/+) BM cells when the differentiation is carried out under M1-polarizing conditions. Further analyses indicated that macrophages that express IL-13Rα1 also display surface markers associated with an M2 phenotype. In addition, the IL-13Rα1(+) macrophages were highly efficient in phagocytizing zymosan bioparticles both in vitro and in vivo, and supported differentiation of naïve T cells to a Th2 phenotype. Finally, when stimulated by IL-13, a cytokine that uses the heteroreceptor, the cells were able to phosphorylate STAT6 efficiently. These previously unrecognized findings indicate that IL-13Rα1 serves as a marker for M2 macrophages and the resulting heteroreceptor influences both their differentiation and function.
Collapse
Affiliation(s)
- Mermagya Dhakal
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Phosphodiesterase 5 inhibition at disease onset prevents experimental autoimmune encephalomyelitis progression through immunoregulatory and neuroprotective actions. Exp Neurol 2014; 251:58-71. [DOI: 10.1016/j.expneurol.2013.10.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/25/2013] [Accepted: 10/30/2013] [Indexed: 12/15/2022]
|
45
|
Guan H, Fan D, Mrelashvili D, Hao H, Singh NP, Singh UP, Nagarkatti PS, Nagarkatti M. MicroRNA let-7e is associated with the pathogenesis of experimental autoimmune encephalomyelitis. Eur J Immunol 2012; 43:104-14. [PMID: 23079871 DOI: 10.1002/eji.201242702] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/20/2012] [Accepted: 10/15/2012] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) play important roles in the regulation of immune responses. There is evidence that miRNAs also participate in the pathogenesis of multiple sclerosis (MS), but how the miRNAs regulate the pathogenesis of MS is still under investigation. The identification of new members of the miRNA family associated with the pathogenesis of MS could facilitate early diagnosis and treatment. Here, we show that the level of miRNA let-7e is significantly upregulated in EAE, an animal model of MS using miRNA array and quantitative real-time PCR. The expression of let-7e was mainly in CD4(+) T cells and infiltrated mononuclear cells of CNS, and highly correlated with the development of EAE. We found that let-7e silencing in vivo inhibited encephalitogenic Th1 and Th17 cells and attenuated EAE, with reciprocal increase of Th2 cells; overexpression of let-7e enhanced Th1 and Th17 cells and aggravated EAE. We also identified IL-10 as one of the functional targets of let-7e. Together, we propose that let-7e is a new miRNA involved in the regulation of encephalitogenic T-cell differentiation and the pathogenesis of EAE.
Collapse
Affiliation(s)
- Hongbing Guan
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Skyberg JA, Thornburg T, Kochetkova I, Layton W, Callis G, Rollins MF, Riccardi C, Becker T, Golden S, Pascual DW. IFN-γ-deficient mice develop IL-1-dependent cutaneous and musculoskeletal inflammation during experimental brucellosis. J Leukoc Biol 2012; 92:375-87. [PMID: 22636321 DOI: 10.1189/jlb.1211626] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Human brucellosis exhibits diverse pathological manifestations that can affect almost any organ. In particular, osteoarticular complications are the most common focal manifestation of brucellosis and occur in 40-80% of patients. In immunocompetent mice, Brucella replication is generally restricted to the spleen, liver, and to a lesser extent, LNs, thereby limiting their use for study of focal inflammation often found in brucellosis. Here, we report that nasal, oral, or peritoneal infection of IFN-γ(-/-) mice with WT Brucella melitensis or Brucella abortus results in joint and periarticular tissue inflammation. Histological analysis of the affected joints revealed inflammatory infiltrates and debris within the joint space colocalizing with Brucella antigen. Osteoarthritis, necrosis, periarticular soft tissue inflammation, and substantial brucellae burdens were observed. Oral rifampicin was effective in clearing infection and halting further progression of focal inflammation from infected IFN-γ(-/-) mice, although some symptoms and swelling remained. Elevated IL-1 β, but not TNF-α, IL-6, or IL-17, was detected in joint homogenates from infected IFN-γ(-/-) mice. Whereas more susceptible to systemic infection, IL-1R(-/-) mice depleted of IFN-γ were more resistant to focal inflammation than WT mice similarly depleted of IFN-γ. Collectively, these results show IFN-γ(-/-) mice represent a potential model for study of focal inflammation attributed to Brucella infection and will allow evaluation of intervention strategies targeting IL-1, IL-1R, or other inflammatory mediators, with the potential to complement antibiotic-based therapies.
Collapse
Affiliation(s)
- Jerod A Skyberg
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Cao L, Suo Z, Lim T, Jun S, Deliorman M, Riccardi C, Kellerman L, Avci R, Yang X. Role of overexpressed CFA/I fimbriae in bacterial swimming. Phys Biol 2012; 9:036005. [PMID: 22562964 DOI: 10.1088/1478-3975/9/3/036005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Enterotoxigenic Escherichia coli CFA/I is a protective antigen and has been overexpressed in bacterial vectors, such as Salmonella Typhimurium H683, to generate vaccines. Effects that overexpressed CFA/I may engender on the bacterial host remain largely unexplored. To investigate, we constructed a high CFA/I expression strain, H683-pC2, and compared it to a low CFA/I expression strain, H683-pC, and to a non-CFA/I expression strain, H683-pY. The results showed that H683-pC2 was less able to migrate into semisolid agar (0.35%) than either H683-pC or H683-pY. Bacteria that migrated showed motility halo sizes of H683-pC2 < H683-pC < H683-pY. In the liquid culture media, H683-pC2 cells precipitated to the bottom of the tube, while those of H683-pY did not. In situ imaging revealed that H683-pC2 bacilli tended to auto-agglutinate within the semisolid agar, while H683-pY bacilli did not. When the cfaBE fimbrial fiber encoding genes were deleted from pC2, the new plasmid, pC2(-), significantly recovered bacterial swimming capability. Our study highlights the negative impact of overexpressed CFA/I fimbriae on bacterial swimming motility.
Collapse
Affiliation(s)
- Ling Cao
- Immunology & Infectious Diseases, Montana State University, Bozeman, MT 59717-3610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Jun S, Ochoa-Repáraz J, Zlotkowska D, Hoyt T, Pascual DW. Bystander-mediated stimulation of proteolipid protein-specific regulatory T (Treg) cells confers protection against experimental autoimmune encephalomyelitis (EAE) via TGF-β. J Neuroimmunol 2012; 245:39-47. [PMID: 22418032 DOI: 10.1016/j.jneuroim.2012.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/28/2012] [Accepted: 02/01/2012] [Indexed: 01/03/2023]
Abstract
To assess the potency of regulatory T (Treg) cells induced against an irrelevant Ag, mice were orally vaccinated with Salmonella expressing Escherichia coli colonization factor antigen I fimbriae. Isolated CD25⁺ and CD25⁻CD4⁺ T cells were adoptively transferred to naive mice, and Treg cells effectively protected against experimental autoimmune encephalomyelitis (EAE), unlike Treg cells from Salmonella vector-immunized mice. This protection was abrogated upon in vivo neutralization of TGF-β, resulting in elevated IL-17 and loss of IL-4 and IL-10 production. Thus, Treg cells induced to irrelevant Ags offer a novel approach to treat autoimmune diseases independent of auto-Ag.
Collapse
MESH Headings
- Adoptive Transfer/methods
- Animals
- Bystander Effect/immunology
- Disease Models, Animal
- Down-Regulation/immunology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Epitopes, T-Lymphocyte/immunology
- Female
- Interleukin-10/antagonists & inhibitors
- Interleukin-10/biosynthesis
- Interleukin-17/biosynthesis
- Interleukin-17/physiology
- Interleukin-4/antagonists & inhibitors
- Interleukin-4/biosynthesis
- Mice
- Mice, Inbred Strains
- Myelin Proteolipid Protein/immunology
- Primary Cell Culture
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/transplantation
- Transforming Growth Factor beta/antagonists & inhibitors
- Transforming Growth Factor beta/physiology
Collapse
Affiliation(s)
- Sangmu Jun
- Department of Immunology and Infectious Diseases, Montana State University, P.O. Box 173610, Bozeman, MT 59717-3610, USA
| | | | | | | | | |
Collapse
|
49
|
Yoshioka K, Ueno Y, Tanaka S, Nagai K, Onitake T, Hanaoka R, Watanabe H, Chayama K. Role of natural killer T cells in the mouse colitis-associated colon cancer model. Scand J Immunol 2012; 75:16-26. [PMID: 21815907 DOI: 10.1111/j.1365-3083.2011.02607.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Invariant natural killer T (iNKT) cells are considered innate-like lymphocytes, and regulate the immunity against inflammation and tumorigenesis. However, the impact of iNKT cells in inflammation-associated tumorigenesis remains unclear. In this study, we examined the physiological role of iNKT cells in a mouse colitis-associated colorectal cancer model. C57BL/6 (B6) and Jα18 NKT cell-deficient KO (KO) mice were used. Colitis-associated colorectal cancer was induced by azoxymethane (AOM) and dextran sodium sulfate (DSS). The resulting inflammation and tumours were examined. The surface markers of mononuclear cells from the liver and the colon were assessed by FACS. The levels of IL-13 from the colon were measured by ELISA. α-galactosylceramide (GC), or its close analog OCH, was administered intraperitoneally on the first day of each cycle of DSS-administration. In the AOM/DSS model, hepatic iNKT cells were significantly decreased. In KO mice there were significantly greater numbers of colon tumours and more severe inflammation than in B6 mice. FACS analysis revealed that the population of NK1.1 (+) T cells (non-invariant NKT cells) in the colon was increased when compared to B6 mice. The secretion of IL-13 was increased in the colon of KO mice after AOM/DSS. The number of colon tumours was significantly decreased in the GC-treated group compared to the control group. GC-treatment significantly inhibited IL-13 secretion from the colonic mononuclear cells and the number of colonic NK1.1 (+) T cells was significantly decreased. These results suggest that iNKT cells may play a critical role in the prevention of tumour progression and inflammation in the AOM/DSS model.
Collapse
Affiliation(s)
- K Yoshioka
- Department of Medicine and Molecular Science, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kochetkova I, Thornburg T, Callis G, Pascual DW. Segregated regulatory CD39+CD4+ T cell function: TGF-β-producing Foxp3- and IL-10-producing Foxp3+ cells are interdependent for protection against collagen-induced arthritis. THE JOURNAL OF IMMUNOLOGY 2011; 187:4654-66. [PMID: 21967895 DOI: 10.4049/jimmunol.1100530] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Oral immunization with a Salmonella vaccine vector expressing enterotoxigenic Escherichia coli colonization factor Ag I (CFA/I) can protect against collagen-induced arthritis (CIA) by dampening IL-17 and IFN-γ via enhanced IL-4, IL-10, and TGF-β. To identify the responsible regulatory CD4(+) T cells making the host refractory to CIA, Salmonella-CFA/I induced CD39(+)CD4(+) T cells with enhanced apyrase activity relative to Salmonella vector-immunized mice. Adoptive transfer of vaccine-induced CD39(+)CD4(+) T cells into CIA mice conferred complete protection, whereas CD39(-)CD4(+) T cells did not. Subsequent analysis of vaccinated Foxp3-GFP mice revealed the CD39(+) T cells were composed of Foxp3-GFP(-) and Foxp3-GFP(+) subpopulations. Although each adoptively transferred Salmonella-CFA/I-induced Foxp3(-) and Foxp3(+)CD39(+)CD4(+) T cells could protect against CIA, each subset was not as efficacious as total CD39(+)CD4(+) T cells, suggesting their interdependence for optimal protection. Cytokine analysis revealed Foxp3(-) CD39(+)CD4(+) T cells produced TGF-β, and Foxp3(+)CD39(+)CD4(+) T cells produced IL-10, showing a segregation of function. Moreover, donor Foxp3-GFP(-) CD4(+) T cells converted to Foxp3-GFP(+) CD39(+)CD4(+) T cells in the recipients, showing plasticity of these regulatory T cells. TGF-β was found to be essential for protection because in vivo TGF-β neutralization reversed activation of CREB and reduced the development of CD39(+)CD4(+) T cells. Thus, CD39 apyrase-expressing CD4(+) T cells stimulated by Salmonella-CFA/I are composed of TGF-β-producing Foxp3(-) CD39(+)CD4(+) T cells and support the stimulation of IL-10-producing Foxp3(+) CD39(+)CD4(+) T cells.
Collapse
Affiliation(s)
- Irina Kochetkova
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, MT 59717, USA
| | | | | | | |
Collapse
|