1
|
Pan Y, Hochgerner M, Cichoń MA, Benezeder T, Bieber T, Wolf P. Langerhans cells: Central players in the pathophysiology of atopic dermatitis. J Eur Acad Dermatol Venereol 2025; 39:278-289. [PMID: 39157943 PMCID: PMC11760705 DOI: 10.1111/jdv.20291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/21/2024] [Indexed: 08/20/2024]
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease worldwide. AD is a highly complex disease with different subtypes. Many elements of AD pathophysiology have been described, but if/how they interact with each other or which mechanisms are important in which patients is still unclear. Langerhans cells (LCs) are antigen-presenting cells (APCs) in the epidermis. Depending on the context, they can act either pro- or anti-inflammatory. Many different studies have investigated LCs in the context of AD and found them to be connected to all major mechanisms of AD pathophysiology. As APCs, LCs recruit other immune cells and shape the immune response, especially adaptive immunity via polarization of T cells. As sentinel cells, LCs are primary sensors of the skin microbiome and are important for the decision of immunity versus tolerance. LCs are also involved with the integrity of the skin barrier by influencing tight junctions. Finally, LCs are important cells in the neuro-immune crosstalk in the skin. In this review, we provide an overview about the many different roles of LCs in AD. Understanding LCs might bring us closer to a more complete understanding of this highly complex disease. Potentially, modulating LCs might offer new options for targeted therapies for AD patients.
Collapse
Affiliation(s)
- Yi Pan
- Department of Dermatology and AllergyUniversity Hospital of BonnBonnGermany
- Department of Dermatology and VenerologyMedical University of GrazGrazAustria
| | - Mathias Hochgerner
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan UniversityShanghaiChina
| | | | - Theresa Benezeder
- Department of Dermatology and VenerologyMedical University of GrazGrazAustria
| | - Thomas Bieber
- Department of Dermatology and AllergyUniversity Hospital of BonnBonnGermany
- CK‐CARE, Medicine CampusDavosSwitzerland
- Department of DermatologyUniversity Hospital of ZürichZürichSwitzerland
| | - Peter Wolf
- Department of Dermatology and VenerologyMedical University of GrazGrazAustria
| |
Collapse
|
2
|
Starobova H, Alshammari A, Winkler IG, Vetter I. The role of the neuronal microenvironment in sensory function and pain pathophysiology. J Neurochem 2024; 168:3620-3643. [PMID: 36394416 DOI: 10.1111/jnc.15724] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022]
Abstract
The high prevalence of pain and the at times low efficacy of current treatments represent a significant challenge to healthcare systems worldwide. Effective treatment strategies require consideration of the diverse pathophysiologies that underlie various pain conditions. Indeed, our understanding of the mechanisms contributing to aberrant sensory neuron function has advanced considerably. However, sensory neurons operate in a complex dynamic microenvironment that is controlled by multidirectional interactions of neurons with non-neuronal cells, including immune cells, neuronal accessory cells, fibroblasts, adipocytes, and keratinocytes. Each of these cells constitute and control the microenvironment in which neurons operate, inevitably influencing sensory function and the pathology of pain. This review highlights the importance of the neuronal microenvironment for sensory function and pain, focusing on cellular interactions in the skin, nerves, dorsal root ganglia, and spinal cord. We discuss the current understanding of the mechanisms by which neurons and non-neuronal cells communicate to promote or resolve pain, and how this knowledge could be used for the development of mechanism-based treatments.
Collapse
Affiliation(s)
- Hana Starobova
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Ammar Alshammari
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Ingrid G Winkler
- Mater Research Institute, The University of Queensland, Queensland, South Brisbane, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- The School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
3
|
Morali K, Giacomello G, Vuono M, Gregori S. Leveraging current insights on IL-10-producing dendritic cells for developing effective immunotherapeutic approaches. FEBS Lett 2024. [PMID: 39266465 DOI: 10.1002/1873-3468.15017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/14/2024]
Abstract
Dendritic cells (DC) are professional antigen-presenting cells involved in promoting and controlling immune responses. Different subsets of DC, named tolerogenic (tol)DC, play a critical role in the maintenance of tissue homeostasis and in fostering tolerance. These unique skills make tolDC especially attractive for strategies aimed at re-establishing/inducing tolerance in immune-mediated conditions. The generation of potent tolDC in vitro from peripheral blood monocytes has seen remarkable advancements. TolDC modulate T cell dynamics by favoring regulatory T cells (Tregs) and curbing effector/pathogenic T cells. Among the several methods developed for in vitro tolDC generation, IL-10 conditioning has been proven to be the most efficient, as IL-10-modulated tolDC were demonstrated to promote Tregs with the strongest suppressive activities. Investigating the molecular, metabolic, and functional profiles of tolDC uncovers essential pathways that facilitate their immunoregulatory functions. This Review provides an overview of current knowledge on the role of tolDC in health and disease, focusing on IL-10 production, functional characterization of in vitro generated tolDC, molecular and metabolic changes occurring in tolDC induced by tolerogenic agents, clinical applications of tolDC-based therapy, and finally new perspectives in the generation of effective tolDC.
Collapse
Affiliation(s)
- Konstantina Morali
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gloria Giacomello
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- PhD Course in Medicina Traslazionale e Molecolare (DIMET), University of Milano Bicocca, Italy
| | - Michela Vuono
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- PhD Course in Molecular Medicine, University Vita-Salute San Raffaele, Milan, Italy
| | - Silvia Gregori
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
4
|
Vine EE, Austin PJ, O'Neil TR, Nasr N, Bertram KM, Cunningham AL, Harman AN. Epithelial dendritic cells vs. Langerhans cells: Implications for mucosal vaccines. Cell Rep 2024; 43:113977. [PMID: 38512869 DOI: 10.1016/j.celrep.2024.113977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
Next-generation vaccines may be delivered via the skin and mucosa. The stratified squamous epithelium (SSE) represents the outermost layer of the skin (epidermis) and type II mucosa (epithelium). Langerhans cells (LCs) have been considered the sole antigen-presenting cells (APCs) to inhabit the SSE; however, it is now clear that dendritic cells (DCs) are also present. Importantly, there are functional differences in how LCs and DCs take up and process pathogens as well as their ability to activate and polarize T cells, though whether DCs participate in neuroimmune interactions like LCs is yet to be elucidated. A correct definition and functional characterization of APCs in the skin and anogenital tissues are of utmost importance for the design of better vaccines and blocking pathogen transmission. Here, we provide a historical perspective on the evolution of our understanding of the APCs that inhabit the SSE, including a detailed review of the most recent literature.
Collapse
Affiliation(s)
- Erica Elizabeth Vine
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; Westmead Clinic School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Paul Jonathon Austin
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia; Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050, Australia
| | - Thomas Ray O'Neil
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Kirstie Melissa Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Anthony Lawrence Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Andrew Nicholas Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
5
|
Sun J(A, Adil A, Biniazan F, Haykal S. Immunogenicity and tolerance induction in vascularized composite allotransplantation. FRONTIERS IN TRANSPLANTATION 2024; 3:1350546. [PMID: 38993748 PMCID: PMC11235364 DOI: 10.3389/frtra.2024.1350546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/29/2024] [Indexed: 07/13/2024]
Abstract
Vascularized composite allotransplantation (VCA) is the transplantation of multiple tissues such as skin, muscle, bone, nerve, and vessels, as a functional unit (i.e., hand or face) to patients suffering from major tissue trauma and functional deficits. Though the surgical feasibility has been optimized, issues regarding graft rejection remains. VCA rejection involves a diverse population of cells but is primarily driven by both donor and recipient lymphocytes, antigen-presenting cells, macrophages, and other immune as well as donor-derived cells. In addition, it is commonly understood that different tissues within VCA, such as the skin, elicits a stronger rejection response. Currently, VCA recipients are required to follow potent and lifelong immunosuppressing regimens to maximize graft survival. This puts patients at risk for malignancies, opportunistic infections, and cancers, thereby posing a need for less perilous methods of inducing graft tolerance. This review will provide an overview of cell populations and mechanisms, specific tissue involved in VCA rejection, as well as an updated scope of current methods of tolerance induction.
Collapse
Affiliation(s)
- Jiahui (Angela) Sun
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Aisha Adil
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Felor Biniazan
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Siba Haykal
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Wang Y, Fang S, Zhou H. Pathogenic role of Th17 cells in autoimmune thyroid disease and their underlying mechanisms. Best Pract Res Clin Endocrinol Metab 2023; 37:101743. [PMID: 36841747 DOI: 10.1016/j.beem.2023.101743] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Autoimmune thyroid disease, encompassing Graves' disease and Hashimoto's thyroiditis, has a very complex etiology. Pathogenesis of the disease involves both genetic susceptibility and environmental triggers. Traditionally, imbalance of T helper cell 1 and 2 was thought to result in the immune disorders in Graves' disease and Hashimoto's thyroiditis. However, increasing evidence recently revealed the important role of T helper 17 cell and its relative cellular and secretory components in the pathogenesis and progression of autoimmune thyroid disease. This review is aimed to summarize the published studies on the involvement of T helper 17 cell in autoimmune thyroid disease and discuss the underlying regulatory mechanisms, which could possibly serve as the foundation of discovering new therapeutic targets.
Collapse
Affiliation(s)
- Yi Wang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China; Chinese Consortium for Thyroid Eye Disease (CCTED), China; Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China.
| | - Sijie Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China; Chinese Consortium for Thyroid Eye Disease (CCTED), China; Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China.
| | - Huifang Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China; Chinese Consortium for Thyroid Eye Disease (CCTED), China.
| |
Collapse
|
7
|
Joo H, Gu C, Wiest M, Duluc D, Fernandez E, Nyarige V, Yi J, Oh S. Differential expression of nuclear hormone receptors by dendritic cell subsets in human vaginal mucosa and skin. Front Immunol 2023; 13:1063343. [PMID: 36713394 PMCID: PMC9880315 DOI: 10.3389/fimmu.2022.1063343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023] Open
Abstract
Nuclear hormone receptors (NHRs) expressed by dendritic cells (DCs), the major immune inducers and regulators, could play important roles in host immunity. Assessment of NHRs expressed by DCs in the vaginal mucosa (VM), in comparison with those expressed by DCs in other tissues, will thus help us understand the immunology of human vagina. This study identified 16 NHR transcripts that are differentially expressed among 8 different antigen-presenting cell (APC) subsets isolated from human VM, skin, and blood. The expression profiles of NHRs were largely tissue specific. VM APCs expressed increased levels of LXRA, RXRA, ESRRA, ESRRAP2, and PPARG, whereas skin and blood APCs expressed increased levels of NURR1, NOR1 and RARA. Of interest, female sex hormone receptors, ESR1 and PGR, were found to be mainly expressed by non-APC cell types in the VM; ESR1 by HLA-DR+CD34+ and PGR by HLA-DR- cells. ERα and PR were expressed by vimentin+ cells in the VM, but not in human skin. ERα, but not PR, was also expressed in CD10+ cells in the lamina propria of VM. In conclusion, NHR expression by APC subsets is tissue- and cell type-specific. Future studies on the roles of individual NHRs expressed by different cell types, including DC subsets, in the human VM are warranted.
Collapse
Affiliation(s)
- HyeMee Joo
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States
| | - Chao Gu
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States
| | - Matthew Wiest
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States
| | - Dorothee Duluc
- Immunoconcept, Centre National de la Recherche Scientifique (CNRS) UMR 5164, Bordeaux University, Bordeaux, France
| | - Emyly Fernandez
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States
| | - Verah Nyarige
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ, United States
| | - Johnny Yi
- Department of Medical and Surgery Gynecology, Mayo Clinic, Phoenix, AZ, United States
| | - SangKon Oh
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States,*Correspondence: SangKon Oh,
| |
Collapse
|
8
|
Yang Y, Story ME, Hao X, Sumpter TL, Mathers AR. P2X7 Receptor Expression and Signaling on Dendritic Cells and CD4 + T Cells is Not Required but Can Enhance Th17 Differentiation. Front Cell Dev Biol 2022; 10:687659. [PMID: 35350380 PMCID: PMC8957928 DOI: 10.3389/fcell.2022.687659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
The purinergic receptor P2X7 (P2X7R) is important in inflammasome activation and generally considered to favor proinflammatory immune responses. However, there is still a limited understanding of the role of P2X7R signaling in Th cell differentiation, particularly, Th17 differentiation. Herein, the impact of P2X7R signaling on primary Th17 and Th1 cell responses was examined when P2X7R was expressed specifically on dendritic cells (DCs) and CD4+ T cells. Surprisingly, global genetic ablation and pharmacological inhibition of the P2X7R did not affect the generation of Th17 and Th1 development in response to immunization with Complete Freund's Adjuvant and the model antigens, keyhole limpet hemocyanin or OVA. However, in-depth in vitro and in vivo investigations revealed differences in the balance of Th1/Th17 differentiation when P2X7R blockade was restricted to either DCs or CD4+ T cells. In this regard, in vitro DCs treated with a P2X7R agonist released more IL-6 and IL-1β and induced a more robust Th17 response in mixed leukocyte reactions when compared to controls. To test the hypothesis that P2X7R signaling specifically in DCs enhances Th17 responses in vivo, DC-specific P2X7R deficient chimeras were immunized with CFA and OVA. In this model, the P2X7R expression on DCs decreased the Th1 response without impacting Th17 responses. Following an assessment of CD4+ T cell P2X7R signaling, it was determined that in vitro P2X7R sufficient T cells develop an increased Th17 and suppressed Th1 differentiation profile. In vivo, P2X7R expression on CD4+ T cells had no effect on Th17 differentiation but likewise significantly suppressed the Th1 response, thereby skewing the immune balance. Interestingly, it appears that WT OT-II Th1 cells are more sensitive to P2X7R-induced cell death as evidence by a decrease in cell number and an increase in T cell death. Overall, these studies indicate that in vitro P2X7R signaling does enhances Th17 responses, which suggests that compensatory Th17 differentiation mechanisms are utilized in vivo in the absence of P2X7R signaling.
Collapse
Affiliation(s)
- Yin Yang
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Meaghan E. Story
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Xingxing Hao
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Tina L. Sumpter
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Alicia R. Mathers
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Steiner R, Weijler AM, Wekerle T, Sprent J, Pilat N. Impact of Graft-Resident Leucocytes on Treg Mediated Skin Graft Survival. Front Immunol 2021; 12:801595. [PMID: 34912349 PMCID: PMC8666425 DOI: 10.3389/fimmu.2021.801595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/12/2021] [Indexed: 02/02/2023] Open
Abstract
The importance and exact role of graft-resident leucocytes (also referred to as passenger leucocytes) in transplantation is controversial as these cells have been reported to either initiate or retard graft rejection. T cell activation to allografts is mediated via recognition of intact or processed donor MHC molecules on antigen-presenting cells (APC) as well as through interaction with donor-derived extracellular vesicles. Reduction of graft-resident leucocytes before transplantation is a well-known approach for prolonging organ survival without interfering with the recipient's immune system. As previously shown by our group, injecting mice with IL-2/anti-IL-2 complexes (IL-2cplx) to augment expansion of CD4 T regulatory cells (Tregs) induces tolerance towards islet allografts, and also to skin allografts when IL-2cplx treatment is supplemented with rapamycin and a short-term treatment of anti-IL-6. In this study, we investigated the mechanisms by which graft-resident leucocytes impact graft survival by studying the combined effects of IL-2cplx-mediated Treg expansion and passenger leucocyte depletion. For the latter, effective depletion of APC and T cells within the graft was induced by prior total body irradiation (TBI) of the graft donor. Surprisingly, substantial depletion of donor-derived leucocytes by TBI did not prolong graft survival in naïve mice, although it did result in augmented recipient leucocyte graft infiltration, presumably through irradiation-induced nonspecific inflammation. Notably, treatment with the IL-2cplx protocol prevented early inflammation of irradiated grafts, which correlated with an influx of Tregs into the grafts. This finding suggested there might be a synergistic effect of Treg expansion and graft-resident leucocyte depletion. In support of this idea, significant prolongation of skin graft survival was achieved if we combined graft-resident leucocyte depletion with the IL-2cplx protocol; this finding correlated along with a progressive shift in the composition of T cells subsets in the grafts towards a more tolerogenic environment. Donor-specific humoral responses remained unchanged, indicating minor importance of graft-resident leucocytes in anti-donor antibody development. These results demonstrate the importance of donor-derived leucocytes as well as Tregs in allograft survival, which might give rise to new clinical approaches.
Collapse
Affiliation(s)
- Romy Steiner
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Anna M. Weijler
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Jonathan Sprent
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia,St Vincent’s Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Nina Pilat
- Department of General Surgery, Medical University of Vienna, Vienna, Austria,Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia,*Correspondence: Nina Pilat,
| |
Collapse
|
10
|
Genome-wide transcriptome analysis of the STAT6-regulated genes in advanced-stage cutaneous T-cell lymphoma. Blood 2021; 136:1748-1759. [PMID: 32438399 DOI: 10.1182/blood.2019004725] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
The signal transducer and activator of transcription 6 (STAT6) is a critical up-stream mediator of interleukin-13 (IL-13) and IL-4 signaling and is constitutively activated in malignant lymphocytes from Sezary syndrome (SS) and mycosis fungoides (MF), the most common subtypes of cutaneous T-cell lymphomas. By combining genome-wide expression profiling with pharmacological STAT6 inhibition, we have identified the genes regulated by STAT6 in MF/SS tumors. We found that STAT6 regulates several common pathways in MF/SS malignant lymphocytes that are associated with control of cell-cycle progression and genomic stability as well as production of Th2 cytokines. Using ex vivo skin explants from cutaneous MF tumors as well as Sezary cells derived from the blood of SS patients, we demonstrated that inhibition of STAT6 activation downregulates cytokine production and induces cell-cycle arrest in MF/SS malignant lymphocytes, inhibiting their proliferation but not their survival. Furthermore, we show that STAT6 promotes the protumoral M2-like phenotype of tumor-associated macrophages in the tumor microenvironment of advanced stage MF by upregulating the expression of genes associated with immunosuppression, chemotaxis, and tumor matrix remodeling. Thus, we show STAT6 to be a major factor in the pathogenesis and progression of MF/SS, promoting proliferation and invasion of the malignant lymphocytes while inducing a progressive depression of the antitumor immune response. Together, our results provide new insights into disease pathogenesis and offer new prospective targets for therapeutic intervention.
Collapse
|
11
|
Recent Progress in Dendritic Cell-Based Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13102495. [PMID: 34065346 PMCID: PMC8161242 DOI: 10.3390/cancers13102495] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Cancer immunotherapy has now attracted much attention because of the recent success of immune checkpoint inhibitors. However, they are only beneficial in a limited fraction of patients most probably due to lack of sufficient CD8+ cytotoxic T-lymphocytes against tumor antigens in the host. In this regard, dendritic cells are useful tools to induce host immune responses against exogenous antigens. In particular, recently characterized cross-presenting dendritic cells are capable of inducing CD8+ cytotoxic T-lymphocytes against exogenous antigens such as tumor antigens and uniquely express the chemokine receptor XCR1. Here we focus on the recent progress in DC-based cancer vaccines and especially the use of the XCR1 and its ligand XCL1 axis for the targeted delivery of cancer vaccines to cross-presenting dendritic cells. Abstract Cancer immunotherapy aims to treat cancer by enhancing cancer-specific host immune responses. Recently, cancer immunotherapy has been attracting much attention because of the successful clinical application of immune checkpoint inhibitors targeting the CTLA-4 and PD-1/PD-L1 pathways. However, although highly effective in some patients, immune checkpoint inhibitors are beneficial only in a limited fraction of patients, possibly because of the lack of enough cancer-specific immune cells, especially CD8+ cytotoxic T-lymphocytes (CTLs), in the host. On the other hand, studies on cancer vaccines, especially DC-based ones, have made significant progress in recent years. In particular, the identification and characterization of cross-presenting DCs have greatly advanced the strategy for the development of effective DC-based vaccines. In this review, we first summarize the surface markers and functional properties of the five major DC subsets. We then describe new approaches to induce antigen-specific CTLs by targeted delivery of antigens to cross-presenting DCs. In this context, the chemokine receptor XCR1 and its ligand XCL1, being selectively expressed by cross-presenting DCs and mainly produced by activated CD8+ T cells, respectively, provide highly promising molecular tools for this purpose. In the near future, CTL-inducing DC-based cancer vaccines may provide a new breakthrough in cancer immunotherapy alone or in combination with immune checkpoint inhibitors.
Collapse
|
12
|
Wang P, Killeen ME, Sumpter TL, Ferris LK, Falo LD, Freeman BA, Schopfer FJ, Mathers AR. Electrophilic nitro-fatty acids suppress psoriasiform dermatitis: STAT3 inhibition as a contributory mechanism. Redox Biol 2021; 43:101987. [PMID: 33946017 PMCID: PMC8111320 DOI: 10.1016/j.redox.2021.101987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease with no cure. Although the origin of psoriasis and its underlying pathophysiology remain incompletely understood, inflammation is a central mediator of disease progression. In this regard, electrophilic nitro-fatty acids (NO2–FAs) exert potent anti-inflammatory effects in several in vivo murine models of inflammatory diseases, such as chronic kidney disease and cardiovascular disease. To examine the therapeutic potential of NO2–FAs on psoriasiform dermatitis, we employed multiple murine models of psoriasis. Our studies demonstrate that oral treatment with nitro oleic acid (OA-NO2) has both preventative and therapeutic effects on psoriasiform inflammation. In line with this finding, oral OA-NO2 downregulated the production of inflammatory cytokines in the skin. In vitro experiments demonstrate that OA-NO2 decreased both basal IL-6 levels and IL-17A-induced expression of IL-6 in human dermal fibroblasts through the inhibition of NF-κB phosphorylation. Importantly, OA-NO2 diminished STAT3 phosphorylation and nuclear translocation via nitroalkylation of STAT3, which inhibited keratinocyte proliferation. Overall, our results affirm the critical role of both NF-κB and STAT3 in the incitement of psoriasiform dermatitis and highlight the pharmacologic potential of small molecule nitroalkenes for the treatment of cutaneous inflammatory diseases, such as psoriasis. Oral OA-NO2 has a therapeutic effect on inflammation in murine models of psoriasis. Cutaneous inflammatory cytokines are suppressed following oral OA-NO2 treatment. OA-NO2 decreases basal and IL-17A-induced IL-6 expression in vitro. OA-NO2 diminishes STAT3 activation through nitroalkylation of STAT3.
Collapse
Affiliation(s)
- Peng Wang
- Departments of Dermatology, University of Pittsburgh School of Medicine. Pittsburgh, PA 15261, USA
| | - Meaghan E Killeen
- Departments of Dermatology, University of Pittsburgh School of Medicine. Pittsburgh, PA 15261, USA
| | - Tina L Sumpter
- Departments of Dermatology, University of Pittsburgh School of Medicine. Pittsburgh, PA 15261, USA; Immunology, University of Pittsburgh School of Medicine. Pittsburgh, PA 15261, USA
| | - Laura K Ferris
- Departments of Dermatology, University of Pittsburgh School of Medicine. Pittsburgh, PA 15261, USA
| | - Louis D Falo
- Departments of Dermatology, University of Pittsburgh School of Medicine. Pittsburgh, PA 15261, USA; Bioengineering, University of Pittsburgh School of Medicine. Pittsburgh, PA 15261, USA
| | - Bruce A Freeman
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine. Pittsburgh, PA 15261, USA
| | - Francisco J Schopfer
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine. Pittsburgh, PA 15261, USA; Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine. Pittsburgh, PA 15261, USA; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine. Pittsburgh, PA 15261, USA
| | - Alicia R Mathers
- Departments of Dermatology, University of Pittsburgh School of Medicine. Pittsburgh, PA 15261, USA; Immunology, University of Pittsburgh School of Medicine. Pittsburgh, PA 15261, USA.
| |
Collapse
|
13
|
Abstract
As the professional antigen-presenting cells of the immune system, dendritic cells (DCs) sense the microenvironment and shape the ensuing adaptive immune response. DCs can induce both immune activation and immune tolerance according to the peripheral cues. Recent work has established that DCs comprise several phenotypically and functionally heterogeneous subsets that differentially regulate T lymphocyte differentiation. This review summarizes both mouse and human DC subset phenotypes, development, diversification, and function. We focus on advances in our understanding of how different DC subsets regulate distinct CD4+ T helper (Th) cell differentiation outcomes, including Th1, Th2, Th17, T follicular helper, and T regulatory cells. We review DC subset intrinsic properties, local tissue microenvironments, and other immune cells that together determine Th cell differentiation during homeostasis and inflammation.
Collapse
Affiliation(s)
- Xiangyun Yin
- Department of Laboratory Medicine and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| | - Shuting Chen
- Department of Laboratory Medicine and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| |
Collapse
|
14
|
Bellmann L, Zelle-Rieser C, Milne P, Resteu A, Tripp CH, Hermann-Kleiter N, Zaderer V, Wilflingseder D, Hörtnagl P, Theochari M, Schulze J, Rentzsch M, Del Frari B, Collin M, Rademacher C, Romani N, Stoitzner P. Notch-Mediated Generation of Monocyte-Derived Langerhans Cells: Phenotype and Function. J Invest Dermatol 2021; 141:84-94.e6. [PMID: 32522485 PMCID: PMC7758629 DOI: 10.1016/j.jid.2020.05.098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 01/16/2023]
Abstract
Langerhans cells (LCs) in the skin are a first line of defense against pathogens but also play an essential role in skin homeostasis. Their exclusive expression of the C-type lectin receptor Langerin makes them prominent candidates for immunotherapy. For vaccine testing, an easily accessible cell platform would be desirable as an alternative to the time-consuming purification of LCs from human skin. Here, we present such a model and demonstrate that monocytes in the presence of GM-CSF, TGF-β1, and the Notch ligand DLL4 differentiate within 3 days into CD1a+Langerin+cells containing Birbeck granules. RNA sequencing of these monocyte-derived LCs (moLCs) confirmed gene expression of LC-related molecules, pattern recognition receptors, and enhanced expression of genes involved in the antigen-presenting machinery. On the protein level, moLCs showed low expression of costimulatory molecules but prominent expression of C-type lectin receptors. MoLCs can be matured, secrete IL-12p70 and TNF-α, and stimulate proliferation and cytokine production in allogeneic CD4+ and CD8+ T cells. In regard to vaccine testing, a recently characterized glycomimetic Langerin ligand conjugated to liposomes demonstrated specific and fast internalization into moLCs. Hence, these short-term in vitro‒generated moLCs represent an interesting tool to screen LC-based vaccines in the future.
Collapse
Key Words
- a647, alexafluor-647
- dc, dendritic cell
- lc, langerhans cell
- mhc, major histocompatibility complex
- mlr, mixed leukocyte reaction
- molc, monocyte-derived lc
- polyi:c, polyinosinic:polycytidylic acid
- rna-seq, rna sequencing
- th, t helper
- tlr, toll-like receptor
Collapse
Affiliation(s)
- Lydia Bellmann
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudia Zelle-Rieser
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Paul Milne
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anastasia Resteu
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christoph H Tripp
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Viktoria Zaderer
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Paul Hörtnagl
- Central Institute for Blood Transfusion and Immunological Department, Medical University of Innsbruck, Innsbruck, Austria
| | - Maria Theochari
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jessica Schulze
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Mareike Rentzsch
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Barbara Del Frari
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthew Collin
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Nikolaus Romani
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
15
|
Abstract
AbstractPurpose of ReviewSkin provides a window into the health of an individual. Using transplanted skin as a monitor can provide a powerful tool for surveillance of rejection in a transplant. The purpose of this review is to provide relevant background to the role of skin in vascularized transplantation medicine.Recent FindingsDiscrete populations of T memory cells provide distributed immune protection in skin, and cycle between skin, lymph nodes, and blood. Skin-resident TREGcells proliferate in response to inflammation and contribute to long-term VCA survival in small animal models. Early clinical studies show sentinel flap rejection to correlate well with facial VCA skin rejection, and abdominal wall rejection demonstrates concordance with visceral rejection, but further studies are required.SummaryThis review focuses on the immunology of skin, skin rejection in vascularized composite allografts, and the recent advances in monitoring the health of transplanted tissues using distant “sentinel” flaps.
Collapse
|
16
|
Harnessing the Complete Repertoire of Conventional Dendritic Cell Functions for Cancer Immunotherapy. Pharmaceutics 2020; 12:pharmaceutics12070663. [PMID: 32674488 PMCID: PMC7408110 DOI: 10.3390/pharmaceutics12070663] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023] Open
Abstract
The onset of checkpoint inhibition revolutionized the treatment of cancer. However, studies from the last decade suggested that the sole enhancement of T cell functionality might not suffice to fight malignancies in all individuals. Dendritic cells (DCs) are not only part of the innate immune system, but also generals of adaptive immunity and they orchestrate the de novo induction of tolerogenic and immunogenic T cell responses. Thus, combinatorial approaches addressing DCs and T cells in parallel represent an attractive strategy to achieve higher response rates across patients. However, this requires profound knowledge about the dynamic interplay of DCs, T cells, other immune and tumor cells. Here, we summarize the DC subsets present in mice and men and highlight conserved and divergent characteristics between different subsets and species. Thereby, we supply a resource of the molecular players involved in key functional features of DCs ranging from their sentinel function, the translation of the sensed environment at the DC:T cell interface to the resulting specialized T cell effector modules, as well as the influence of the tumor microenvironment on the DC function. As of today, mostly monocyte derived dendritic cells (moDCs) are used in autologous cell therapies after tumor antigen loading. While showing encouraging results in a fraction of patients, the overall clinical response rate is still not optimal. By disentangling the general aspects of DC biology, we provide rationales for the design of next generation DC vaccines enabling to exploit and manipulate the described pathways for the purpose of cancer immunotherapy in vivo. Finally, we discuss how DC-based vaccines might synergize with checkpoint inhibition in the treatment of malignant diseases.
Collapse
|
17
|
Hilligan KL, Ronchese F. Antigen presentation by dendritic cells and their instruction of CD4+ T helper cell responses. Cell Mol Immunol 2020; 17:587-599. [PMID: 32433540 DOI: 10.1038/s41423-020-0465-0] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/10/2020] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells are powerful antigen-presenting cells that are essential for the priming of T cell responses. In addition to providing T-cell-receptor ligands and co-stimulatory molecules for naive T cell activation and expansion, dendritic cells are thought to also provide signals for the differentiation of CD4+ T cells into effector T cell populations. The mechanisms by which dendritic cells are able to adapt and respond to the great variety of infectious stimuli they are confronted with, and prime an appropriate CD4+ T cell response, are only partly understood. It is known that in the steady-state dendritic cells are highly heterogenous both in phenotype and transcriptional profile, and that this variability is dependent on developmental lineage, maturation stage, and the tissue environment in which dendritic cells are located. Exposure to infectious agents interfaces with this pre-existing heterogeneity by providing ligands for pattern-recognition and toll-like receptors that are variably expressed on different dendritic cell subsets, and elicit production of cytokines and chemokines to support innate cell activation and drive T cell differentiation. Here we review current information on dendritic cell biology, their heterogeneity, and the properties of different dendritic cell subsets. We then consider the signals required for the development of different types of Th immune responses, and the cellular and molecular evidence implicating different subsets of dendritic cells in providing such signals. We outline how dendritic cell subsets tailor their response according to the infectious agent, and how such transcriptional plasticity enables them to drive different types of immune responses.
Collapse
Affiliation(s)
- Kerry L Hilligan
- Malaghan Institute of Medical Research, Wellington, 6012, New Zealand.,Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Franca Ronchese
- Malaghan Institute of Medical Research, Wellington, 6012, New Zealand.
| |
Collapse
|
18
|
Brys AK, Rodriguez-Homs LG, Suwanpradid J, Atwater AR, MacLeod AS. Shifting Paradigms in Allergic Contact Dermatitis: The Role of Innate Immunity. J Invest Dermatol 2020; 140:21-28. [PMID: 31101475 PMCID: PMC6854274 DOI: 10.1016/j.jid.2019.03.1133] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 12/30/2022]
Abstract
The role of the innate immune system in allergic contact dermatitis (ACD) has traditionally been confined to the initial antigen sensitization phase. However, more recent findings have shown the role of innate immunity in additional aspects of ACD, including the effector phase of the classic type IV hypersensitivity reaction. As a result, the precise immunologic mechanisms mediating ACD are more complex than previously believed. The aim of this review is to provide insight into recent advances in understanding the role of the innate immune system in the pathogenesis of ACD, including novel mechanistic roles for macrophages, innate lymphoid cells, natural killer cells, innate γδ T cells, and other signaling molecules. These insights provide new opportunities for therapeutic intervention in ACD.
Collapse
Affiliation(s)
- Adam K Brys
- Duke University Medical Center, Department of Dermatology, Duke University Medical Center, DUMC 3135, Durham, North Carolina, USA
| | - Larissa G Rodriguez-Homs
- Duke University Medical Center, Department of Dermatology, Duke University Medical Center, DUMC 3135, Durham, North Carolina, USA
| | - Jutamas Suwanpradid
- Duke University Medical Center, Department of Dermatology, Duke University Medical Center, DUMC 3135, Durham, North Carolina, USA
| | - Amber Reck Atwater
- Duke University Medical Center, Department of Dermatology, Duke University Medical Center, DUMC 3135, Durham, North Carolina, USA
| | - Amanda S MacLeod
- Duke University Medical Center, Department of Dermatology, Duke University Medical Center, DUMC 3135, Durham, North Carolina, USA.
| |
Collapse
|
19
|
Rhodes JW, Tong O, Harman AN, Turville SG. Human Dendritic Cell Subsets, Ontogeny, and Impact on HIV Infection. Front Immunol 2019; 10:1088. [PMID: 31156637 PMCID: PMC6532592 DOI: 10.3389/fimmu.2019.01088] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/29/2019] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) play important roles in orchestrating host immunity against invading pathogens, representing one of the first responders to infection by mucosal invaders. From their discovery by Ralph Steinman in the 1970s followed shortly after with descriptions of their in vivo diversity and distribution by Derek Hart, we are still continuing to progressively elucidate the spectrum of DCs present in various anatomical compartments. With the power of high-dimensional approaches such as single-cell sequencing and multiparameter cytometry, recent studies have shed new light on the identities and functions of DC subtypes. Notable examples include the reclassification of plasmacytoid DCs as purely interferon-producing cells and re-evaluation of intestinal conventional DCs and macrophages as derived from monocyte precursors. Collectively, these observations have changed how we view these cells not only in steady-state immunity but also during disease and infection. In this review, we will discuss the current landscape of DCs and their ontogeny, and how this influences our understanding of their roles during HIV infection.
Collapse
Affiliation(s)
- Jake William Rhodes
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Orion Tong
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Andrew Nicholas Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Discipline of Applied Medical Sciences, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Stuart Grant Turville
- University of New South Wales, Sydney, NSW, Australia.,Kirby Institute, Kensington, NSW, Australia
| |
Collapse
|
20
|
Diaz-Perez JA, Killeen ME, Yang Y, Carey CD, Falo LD, Mathers AR. Extracellular ATP and IL-23 Form a Local Inflammatory Circuit Leading to the Development of a Neutrophil-Dependent Psoriasiform Dermatitis. J Invest Dermatol 2018; 138:2595-2605. [PMID: 29870687 PMCID: PMC6251745 DOI: 10.1016/j.jid.2018.05.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/16/2018] [Accepted: 05/23/2018] [Indexed: 01/14/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease dependent on the IL-23/IL-17 axis, a potent inflammatory pathway involved in pathogen clearance and autoimmunity. Several triggers have been proposed as initiators for psoriasis, including alarmins such as adenosine triphosphate. However, the role of alarmins in psoriasis pathogenesis and cutaneous inflammation has not been well addressed. Studies show that signaling through the P2X7 receptor (P2X7R) pathway underlies the development of psoriasiform inflammation. In this regard, psoriasiform dermatitis induced by IL-23 is dependent on P2X7R signaling. Furthermore, direct activation of the P2X7R is sufficient to induce a well-characterized psoriasiform dermatitis. Mechanistic studies determined that P2X7R-induced inflammation is largely dependent on the IL-1β/NLRP3 inflammasome pathway and neutrophils. In conclusion, this work provides basic mechanistic insight into local inflammatory circuits induced after purinergic P2X7R signaling that are likely involved in the pathogenesis of many inflammatory diseases, such as psoriasis.
Collapse
Affiliation(s)
- Julio A Diaz-Perez
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Meaghan E Killeen
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Yin Yang
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Cara D Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA; Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Alicia R Mathers
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.
| |
Collapse
|
21
|
Zhu W, Li S, Wang C, Yu G, Prausnitz MR, Wang BZ. Enhanced Immune Responses Conferring Cross-Protection by Skin Vaccination With a Tri-Component Influenza Vaccine Using a Microneedle Patch. Front Immunol 2018; 9:1705. [PMID: 30105019 PMCID: PMC6077188 DOI: 10.3389/fimmu.2018.01705] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/10/2018] [Indexed: 01/10/2023] Open
Abstract
Skin vaccination using biodegradable microneedle patch (MNP) technology in vaccine delivery is a promising strategy showing significant advantages over conventional flu shots. In this study, we developed an MNP encapsulating a 4M2e-tFliC fusion protein and two types of whole inactivated influenza virus vaccines (H1N1 and H3N2) as a universal vaccine candidate. We demonstrated that mice receiving this tri-component influenza vaccine via MNP acquired improved IgG1 antibody responses with more balanced IgG1/IgG2a antibody responses and enhanced cellular immune responses, including increased populations of IL-4 and IFN-γ producing cells and higher frequencies of antigen-specific plasma cells compared with intramuscular injection. In addition, stronger germinal center reactions, increased numbers of Langerin-positive migratory dendritic cells, and increased cytokine secretion were observed in the skin-draining lymph nodes after immunization with the tri-component influenza MNP vaccine. The MNP-immunized group also possessed enhanced protection against a heterologous reassortant A/Shanghai/2013 H7N9 (rSH) influenza virus infection. Furthermore, the sera collected from 4M2e-tFliC MNP-immunized mice were demonstrated to have antiviral efficacy against reassortant A/Vietnam/1203/2004 H5N1 (rVet) and A/Shanghai/2013 H7N9 (rSH) virus challenges. The immunological advantages of skin vaccination with this tri-component MNP vaccine could offer a promising approach to develop an easily applicable and broadly protective universal influenza vaccine.
Collapse
Affiliation(s)
- Wandi Zhu
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, United States
| | - Song Li
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Chao Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, United States
| | - Guoying Yu
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, United States
| |
Collapse
|
22
|
Muñoz-Wolf N, Lavelle EC. A Guide to IL-1 family cytokines in adjuvanticity. FEBS J 2018; 285:2377-2401. [PMID: 29656546 DOI: 10.1111/febs.14467] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/21/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022]
Abstract
Growing awareness of the multiplicity of roles for the IL-1 family in immune regulation has prompted research exploring these cytokines in the context of vaccine-induced immunity. While tightly regulated, cytokines of the IL-1 family are normally released in response to cellular stress and in combination with other danger-/damage-associated molecular patterns (DAMPs), triggering potent local and systemic immune responses. In the context of infection or autoimmunity, engagement of IL-1 family receptors links robust innate responses to adaptive immunity. Clinical and experimental evidence has revealed that many vaccine adjuvants induce the release of one or multiple IL-1 family cytokines. The coordinated release of IL-1 family members in response to adjuvant-induced damage or cell death may be a determining factor in the transition from local inflammation to the induction of an adaptive response. Here, we analyse the effects of IL-1 family cytokines on innate and adaptive immunity with a particular emphasis on activation of antigen-presenting cells and induction of T cell-mediated immunity, and we address in detail the contribution of these cytokines to the modes of action of vaccine adjuvants including those currently approved for human use.
Collapse
Affiliation(s)
- Natalia Muñoz-Wolf
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland.,Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Advanced Materials and BioEngineering Research (AMBER), Trinity College Dublin, Ireland
| |
Collapse
|
23
|
Resident T Cells in Resolved Psoriasis Steer Tissue Responses that Stratify Clinical Outcome. J Invest Dermatol 2018; 138:1754-1763. [PMID: 29510191 DOI: 10.1016/j.jid.2018.02.030] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/25/2018] [Accepted: 02/22/2018] [Indexed: 12/14/2022]
Abstract
Psoriasis is driven by focal disruptions of the immune-homeostasis in human skin. Local relapse following cessation of therapy is common and unpredictable, which complicates clinical management of psoriasis. We have previously shown that pathogenic resident T cells accumulate in active and resolved psoriasis, but whether these cells drive psoriasiform tissue reactions is less clear. Here, we activated T cells within skin explants using the pan-T cell activating antibody OKT-3. To explore if T cells induced different tissue response patterns in healthy and psoriasis afflicted skin, transcriptomic analyses were performed with RNA-sequencing and Nanostring. Core tissue responses dominated by IFN-induced pathways were triggered regardless of the inflammatory status of the skin. In contrast, pathways induced by IL-17A, including Defensin beta 2 and keratinocyte differentiation markers, were activated in psoriasis samples. An integrated analysis of IL-17A and IFN-related responses revealed that IL-17 dominated tissue response correlated with early relapse following UVB treatment. Stratification of tissue responses to T cell activation in resolved lesions could potentially offer individualized prediction of disease relapse during long-term immunomodulatory treatment.
Collapse
|
24
|
Mathers AR, Carey CD, Killeen ME, Salvatore SR, Ferris LK, Freeman BA, Schopfer FJ, Falo LD. Topical electrophilic nitro-fatty acids potentiate cutaneous inflammation. Free Radic Biol Med 2018; 115:31-42. [PMID: 29132974 PMCID: PMC5767521 DOI: 10.1016/j.freeradbiomed.2017.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 11/18/2022]
Abstract
Endogenous electrophilic fatty acids mediate anti-inflammatory responses by modulating metabolic and inflammatory signal transduction and gene expression. Nitro-fatty acids and other electrophilic fatty acids may thus be useful for the prevention and treatment of immune-mediated diseases, including inflammatory skin disorders. In this regard, subcutaneous (SC) injections of nitro oleic acid (OA-NO2), an exemplary nitro-fatty acid, inhibit skin inflammation in a model of allergic contact dermatitis (ACD). Given the nitration of unsaturated fatty acids during metabolic and inflammatory processes and the growing use of fatty acids in topical formulations, we sought to further study the effect of nitro-fatty acids on cutaneous inflammation. To accomplish this, the effect of topically applied OA-NO2 on skin inflammation was evaluated using established murine models of contact hypersensitivity (CHS). In contrast to the effects of subcutaneously injected OA-NO2, topical OA-NO2 potentiated hapten-dependent inflammation inducing a sustained neutrophil-dependent inflammatory response characterized by psoriasiform histological features, increased angiogenesis, and an inflammatory infiltrate that included neutrophils, inflammatory monocytes, and γδ T cells. Consistent with these results, HPLC-MS/MS analysis of skin from psoriasis patients displayed a 56% increase in nitro-conjugated linoleic acid (CLA-NO2) levels in lesional skin compared to non-lesional skin. These results suggest that nitro-fatty acids in the skin microenvironment are products of cutaneous inflammatory responses and, in high local concentrations, may exacerbate inflammatory skin diseases.
Collapse
Affiliation(s)
- Alicia R Mathers
- Departments of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213. USA; Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213. USA.
| | - Cara D Carey
- Departments of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213. USA
| | - Meaghan E Killeen
- Departments of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213. USA
| | - Sonia R Salvatore
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213. USA
| | - Laura K Ferris
- Departments of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213. USA
| | - Bruce A Freeman
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213. USA
| | - Francisco J Schopfer
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213. USA
| | - Louis D Falo
- Departments of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213. USA; Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213. USA
| |
Collapse
|
25
|
West HC, Bennett CL. Redefining the Role of Langerhans Cells As Immune Regulators within the Skin. Front Immunol 2018; 8:1941. [PMID: 29379502 PMCID: PMC5770803 DOI: 10.3389/fimmu.2017.01941] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/18/2017] [Indexed: 12/28/2022] Open
Abstract
Langerhans cells (LC) are a unique population of tissue-resident macrophages that form a network of cells across the epidermis of the skin, but which have the ability to migrate from the epidermis to draining lymph nodes (LN). Their location at the skin barrier suggests a key role as immune sentinels. However, despite decades of research, the role of LC in skin immunity is unclear; ablation of LC results in neither fatal susceptibility to skin infection nor overt autoimmunity due to lack of immune regulation. Our understanding of immune processes has traditionally been centered on secondary lymphoid organs as sites of lymphocyte priming and differentiation, which is exemplified by LC, initially defined as a paradigm for tissue dendritic cells that migrate to draining LN on maturation. But, more recently, an awareness of the importance of the tissue environment in shaping effector immunity has emerged. In this mini-review, we discuss whether our lack of understanding of LC function stems from our lymph node-centric view of these cells, and question whether a focus on LC as immune regulators in situ in the skin may reveal clearer answers about their function in cutaneous immunology.
Collapse
Affiliation(s)
- Heather C. West
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
- Division of Cancer Studies, University College London, London, United Kingdom
| | - Clare L. Bennett
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
- Division of Cancer Studies, University College London, London, United Kingdom
| |
Collapse
|
26
|
Ontogeny and function of murine epidermal Langerhans cells. Nat Immunol 2017; 18:1068-1075. [PMID: 28926543 DOI: 10.1038/ni.3815] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/17/2017] [Indexed: 12/13/2022]
Abstract
Langerhans cells (LCs) are epidermis-resident antigen-presenting cells that share a common ontogeny with macrophages but function as dendritic cells (DCs). Their development, recruitment and retention in the epidermis is orchestrated by interactions with keratinocytes through multiple mechanisms. LC and dermal DC subsets often show functional redundancy, but LCs are required for specific types of adaptive immune responses when antigen is concentrated in the epidermis. This Review will focus on those developmental and functional properties that are unique to LCs.
Collapse
|
27
|
Korenfeld D, Gorvel L, Munk A, Man J, Schaffer A, Tung T, Mann C, Klechevsky E. A type of human skin dendritic cell marked by CD5 is associated with the development of inflammatory skin disease. JCI Insight 2017; 2:96101. [PMID: 28931765 DOI: 10.1172/jci.insight.96101] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/10/2017] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) are important in regulating immunity and tolerance and consist of functionally distinct subsets that differentially regulate T lymphocyte function. The underlying basis for this subset specificity is lacking, particularly in humans, where the classification of tissue DCs is currently incomplete. Examination of healthy human epidermal Langerhans cells and dermal skin cells revealed a tissue CD5-expressing DC subtype. The CD5+ DCs were potent inducers of cytotoxic T cells and Th22 cells. The products of these T cells, IL-22 and IFN-γ, play a key role in the pathogenesis of psoriasis. Remarkably, CD5+ DCs were significantly enriched in lesional psoriatic skin compared with distal tissues, suggesting their involvement in the disease. We show that CD5+ DCs can be differentiated from hematopoietic progenitor cells independently of the CD5- DCs. A progenitor population found in human cord blood and in the dermal skin layer, marked as CD34-CD123+CD117dimCD45RA+, was an immediate precursor of these CD11c+CD1c+CD5+ DCs. Overall, our discovery of the CD5-expressing DC subtype suggests that strategies to regulate their composition or function in the skin will represent an innovative approach for the treatment of immune-mediated disorders in and beyond the skin.
Collapse
Affiliation(s)
- Daniel Korenfeld
- Department of Pathology and Immunology, Division of Immunobiology
| | - Laurent Gorvel
- Department of Pathology and Immunology, Division of Immunobiology
| | - Adiel Munk
- Department of Pathology and Immunology, Division of Immunobiology
| | - Joshua Man
- Department of Pathology and Immunology, Division of Immunobiology
| | - Andras Schaffer
- Department of Pathology and Immunology, Dermatopathology Center
| | - Thomas Tung
- Department of Surgery, Division of Plastic and Reconstructive Surgery, and
| | - Caroline Mann
- Department of Medicine, Division of Dermatology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Eynav Klechevsky
- Department of Pathology and Immunology, Division of Immunobiology
| |
Collapse
|
28
|
Atmatzidis DH, Lambert WC, Lambert MW. Langerhans cell: exciting developments in health and disease. J Eur Acad Dermatol Venereol 2017; 31:1817-1824. [PMID: 28833602 DOI: 10.1111/jdv.14522] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 07/28/2017] [Indexed: 12/11/2022]
Abstract
Langerhans cells (LCs) have been the subject of much research since their discovery in 1868. LCs belong to the subset of leucocytes called dendritic cells. They are present in the epidermis and the pilosebaceous apparatus and monitor the cutaneous environment for changes in homeostasis. During embryogenesis, a wave of yolk sac macrophages seed the fetal skin. Then, fetal liver monocytes largely replace the yolk sac macrophages and comprise the majority of adult LCs. In the presence of skin irritation, LCs process antigen and travel to regional lymph nodes to present antigen to reactive T lymphocytes. Changes in LCs' surface markers during the journey occur under the influence of cytokines. The difference in expression of surface markers and the ability to resist radiation have allowed researchers to differentiate LCs from the murine Langerin-positive dermal dendritic cells. Exciting discoveries have been made recently regarding their role in inflammatory skin diseases, cancer and HIV. New research has shown that antibodies blocking CD1a appear to mitigate inflammation in contact hypersensitivity reactions and psoriasis. While it has been established that LCs have the potential to induce effector cells of the adaptive immune system to counter oncogenesis, recent studies have demonstrated that LCs coordinate with natural killer cells to impair development of squamous cell carcinoma caused by chemical carcinogens. However, LCs may also physiologically suppress T cells and permit keratinocyte transformation and tumorigenesis. Although long known to play a primary role in the progression of HIV infection, it is now understood that LCs also possess the ability to restrict the progression of the disease. There is a pressing need to discover more about how these cells affect various aspects of health and disease; new information gathered thus far seems promising and exciting.
Collapse
Affiliation(s)
- D H Atmatzidis
- Dermatology and Pathology, Rutgers University New Jersey Medical School, Newark, NJ, USA
| | - W C Lambert
- Dermatology and Pathology, Rutgers University New Jersey Medical School, Newark, NJ, USA
| | - M W Lambert
- Dermatology and Pathology, Rutgers University New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
29
|
Affiliation(s)
- Sakeen W. Kashem
- Department of Dermatology, Center for Immunology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Muzlifah Haniffa
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
- Department of Dermatology, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, United Kingdom
| | - Daniel H. Kaplan
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
30
|
Langerhans cells prevent subbasal nerve damage and upregulate neurotrophic factors in dry eye disease. PLoS One 2017; 12:e0176153. [PMID: 28441413 PMCID: PMC5404869 DOI: 10.1371/journal.pone.0176153] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 04/04/2017] [Indexed: 11/20/2022] Open
Abstract
The functional role of Langerhans cells (LCs) in ocular surface inflammation and nerve damage in dry eye (DE) disease has yet to be determined. This study was performed to investigate this relationship through both clinical study on DE patients and in vivo mouse models with induced DE disease. In a cross-sectional case-control study (54 eyes of DE patients; 34 eyes of control patients), average cell density, area, and process length of LCs were measured using confocal microscopy. Data were analyzed to determine whether changes in LCs are correlated with subbasal nerve plexus (SNP) parameters (nerve density, beading, and tortuosity). In DE patients, SNP density marginally decreased and nerve beading and tortuosity were significantly increased compared to the control group. The total number of LCs significantly increased in DE patients, and some LCs with elongated processes were found to be attached to nerve fibers. Interestingly, nerve loss and deformation were correlated with inactivation of LCs. In an in vivo experiment to elucidate the role of LCs in ocular surface inflammation and corneal nerve loss, we used a genetically modified mouse model (CD207-DTR) that reduced the population of CD207 (Langerin) expressing cells by injection of diphtheria toxin. In CD207-depleted mice with DE disease (CD207-dDTR+DE), corneal nerves in the central region were significantly decreased, an effect that was not observed in wild-type (WT)+DE mice. In CD207-dDTR+DE mice, infiltration of CD4+, CD19+, CD45+, and CD11b+ cells into the ocular surface was increased, as confirmed by flow cytometry. Increased IL-17 and IFN-γ mRNA levels, and decreased expression of neurotrophic factors and neurotransmitters, were also found in the CD207-dDTR+DE mice. These data support a functional role for LCs in negatively regulating ocular surface inflammation and exhibiting a neuroprotective function in DE disease.
Collapse
|
31
|
Mathers AR, Carey CD, Killeen ME, Diaz-Perez JA, Salvatore SR, Schopfer FJ, Freeman BA, Falo LD. Electrophilic nitro-fatty acids suppress allergic contact dermatitis in mice. Allergy 2017; 72:656-664. [PMID: 27718238 DOI: 10.1111/all.13067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Reactions between nitric oxide (NO), nitrite (NO2-), and unsaturated fatty acids give rise to electrophilic nitro-fatty acids (NO2 -FAs), such as nitro oleic acid (OA-NO2 ) and nitro linoleic acid (LNO2 ). Endogenous electrophilic fatty acids (EFAs) mediate anti-inflammatory responses by modulating metabolic and inflammatory signal transduction reactions. Hence, there is considerable interest in employing NO2 -FAs and other EFAs for the prevention and treatment of inflammatory disorders. Thus, we sought to determine whether OA-NO2 , an exemplary nitro-fatty acid, has the capacity to inhibit cutaneous inflammation. METHODS We evaluated the effect of OA-NO2 on allergic contact dermatitis (ACD) using an established model of contact hypersensitivity in C57Bl/6 mice utilizing 2,4-dinitrofluorobenzene as the hapten. RESULTS We found that subcutaneous (SC) OA-NO2 injections administered 18 h prior to sensitization and elicitation suppresses ACD in both preventative and therapeutic models. In vivo SC OA-NO2 significantly inhibits pathways that lead to inflammatory cell infiltration and the production of inflammatory cytokines in the skin. Moreover, OA-NO2 is capable of enhancing regulatory T-cell activity. Thus, OA-NO2 treatment results in anti-inflammatory effects capable of inhibiting ACD by inducing immunosuppressive responses. CONCLUSION Overall, these results support the development of OA-NO2 as a promising therapeutic for ACD and provides new insights into the role of electrophilic fatty acids in the control of cutaneous immune responses potentially relevant to a broad range of allergic and inflammatory skin diseases.
Collapse
Affiliation(s)
- A. R. Mathers
- Department of Dermatology; University of Pittsburgh School of Medicine; Pittsburgh PA USA
- Department of Immunology; University of Pittsburgh School of Medicine; Pittsburgh PA USA
| | - C. D. Carey
- Department of Dermatology; University of Pittsburgh School of Medicine; Pittsburgh PA USA
| | - M. E. Killeen
- Department of Dermatology; University of Pittsburgh School of Medicine; Pittsburgh PA USA
| | - J. A. Diaz-Perez
- Department of Dermatology; University of Pittsburgh School of Medicine; Pittsburgh PA USA
| | - S. R. Salvatore
- Department of Pharmacology and Chemical Biology; University of Pittsburgh School of Medicine; Pittsburgh PA USA
| | - F. J. Schopfer
- Department of Pharmacology and Chemical Biology; University of Pittsburgh School of Medicine; Pittsburgh PA USA
| | - B. A. Freeman
- Department of Pharmacology and Chemical Biology; University of Pittsburgh School of Medicine; Pittsburgh PA USA
| | - L. D. Falo
- Department of Dermatology; University of Pittsburgh School of Medicine; Pittsburgh PA USA
- Department of Bioengineering; University of Pittsburgh School of Medicine; Pittsburgh PA USA
| |
Collapse
|
32
|
Botting RA, Rana H, Bertram KM, Rhodes JW, Baharlou H, Nasr N, Cunningham AL, Harman AN. Langerhans cells and sexual transmission of HIV and HSV. Rev Med Virol 2017; 27. [PMID: 28044388 DOI: 10.1002/rmv.1923] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 12/14/2022]
Abstract
Langerhans cells (LCs) situated in stratified squamous epithelium of the skin and mucosal tissue are amongst the first cells that sexually transmitted pathogens encounter during transmission. They are potent antigen presenting cells and play a key role in the host mounting an appropriate immune response. As such, viruses have evolved complex strategies to manipulate these cells to facilitate successful transmission. One of best studied examples is HIV, which manipulates the natural function of these cells to interact with CD4 T cells, which are the main target cell for HIV in which rapid replication occurs. However, there is controversy in the literature as to the role that LCs play in this process. Langerhans cells also play a key role in the way the body mounts an immune response to HSV, and there is also a complex interplay between the transmission of HSV and HIV that involves LCs. In this article, we review both past and present literatures with a particular focus on a few very recent studies that shed new light on the role that LCs play in the transmission and immune response to these 2 pathogens.
Collapse
Affiliation(s)
- Rachel A Botting
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Hafsa Rana
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Kirstie M Bertram
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Jake W Rhodes
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Heeva Baharlou
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Najla Nasr
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Anthony L Cunningham
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Andrew N Harman
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
33
|
Hervé PL, Descamps D, Deloizy C, Dhelft V, Laubreton D, Bouguyon E, Boukadiri A, Dubuquoy C, Larcher T, Benhamou PH, Eléouët JF, Bertho N, Mondoulet L, Riffault S. Non-invasive epicutaneous vaccine against Respiratory Syncytial Virus: Preclinical proof of concept. J Control Release 2016; 243:146-159. [DOI: 10.1016/j.jconrel.2016.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 11/29/2022]
|
34
|
Dejani NN, Brandt SL, Piñeros A, Glosson-Byers NL, Wang S, Son YM, Medeiros AI, Serezani CH. Topical Prostaglandin E Analog Restores Defective Dendritic Cell-Mediated Th17 Host Defense Against Methicillin-Resistant Staphylococcus Aureus in the Skin of Diabetic Mice. Diabetes 2016; 65:3718-3729. [PMID: 27605625 PMCID: PMC5127243 DOI: 10.2337/db16-0565] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/30/2016] [Indexed: 12/17/2022]
Abstract
People with diabetes are more prone to Staphylococcus aureus skin infection than healthy individuals. Control of S. aureus infection depends on dendritic cell (DC)-induced T-helper 17 (Th17)-mediated neutrophil recruitment and bacterial clearance. DC ingestion of infected apoptotic cells (IACs) drive prostaglandin E2 (PGE2) secretion to generate Th17 cells. We speculated that hyperglycemia inhibits skin DC migration to the lymph nodes and impairs the Th17 differentiation that accounts for poor skin host defense in diabetic mice. Diabetic mice showed increased skin lesion size and bacterial load and decreased PGE2 secretion and Th17 cells compared with nondiabetic mice after methicillin-resistant S. aureus (MRSA) infection. Bone marrow-derived DCs (BMDCs) cultured in high glucose (25 mmol/L) exhibited decreased Ptges mRNA expression, PGE2 production, lower CCR7-dependent DC migration, and diminished maturation after recognition of MRSA-IACs than BMDCs cultured in low glucose (5 mmol/L). Similar events were observed in DCs from diabetic mice infected with MRSA. Topical treatment of diabetic mice with the PGE analog misoprostol improved host defense against MRSA skin infection by restoring DC migration to draining lymph nodes, Th17 differentiation, and increased antimicrobial peptide expression. These findings identify a novel mechanism involved in poor skin host defense in diabetes and propose a targeted strategy to restore skin host defense in diabetes.
Collapse
Affiliation(s)
- Naiara N Dejani
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
- University of São Paulo, Ribeirão Preto, Brazil
- Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho," Araraquara, Brazil
| | - Stephanie L Brandt
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Annie Piñeros
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
- University of São Paulo, Ribeirão Preto, Brazil
| | - Nicole L Glosson-Byers
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Sue Wang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Young Min Son
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Alexandra I Medeiros
- University of São Paulo, Ribeirão Preto, Brazil
- Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho," Araraquara, Brazil
| | - C Henrique Serezani
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
35
|
Yan KX, Huang Q, Fang X, Zhang ZH, Han L, Gadaldi K, Kang KF, Zheng ZZ, Xu JH, Yawalkar N. IgE and FcεRI are highly expressed on innate cells in psoriasis. Br J Dermatol 2016; 175:122-33. [PMID: 26853903 DOI: 10.1111/bjd.14459] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Although elevated serum IgE levels have been reported in psoriasis, the role of IgE in psoriasis still needs to be clarified. OBJECTIVES To analyse serum total IgE levels in addition to the presence and distribution of IgE and FcεRI in psoriatic lesions, and to investigate alteration of IgE and FcεRI after successful systemic treatment. METHODS Total serum IgE levels were determined using enzyme-linked immunosorbent assay. The expression and localization of IgE and FcεRI was investigated using immunohistochemistry and double immunofluorescence. RESULTS Elevated total serum IgE levels were found in 39% of patients with psoriasis. The levels of total serum IgE were significantly higher in male patients compared with female patients. Furthermore, total serum IgE levels decreased after successful systemic treatment. A positive correlation between IgE+ and FcεRI+ cells and a significant increase of these cells was found in psoriatic lesions when compared with normal skin. Interestingly, IgE+ and FcεRI+ cells decreased significantly after successful therapy with ustekinumab. IgE and FcεRI were coexpressed on mast cells, epidermal Langerhans cells, dermal dendritic cells, macrophages and a small number of neutrophils. CONCLUSIONS IgE might participate in the development of psoriasis by activating FcεRI-bearing cells.
Collapse
Affiliation(s)
- K-X Yan
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Q Huang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - X Fang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Z-H Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - L Han
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - K Gadaldi
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - K-F Kang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Z-Z Zheng
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - J-H Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - N Yawalkar
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
36
|
Korkmaz E, Friedrich EE, Ramadan MH, Erdos G, Mathers AR, Burak Ozdoganlar O, Washburn NR, Falo LD. Therapeutic intradermal delivery of tumor necrosis factor-alpha antibodies using tip-loaded dissolvable microneedle arrays. Acta Biomater 2015; 24:96-105. [PMID: 26093066 DOI: 10.1016/j.actbio.2015.05.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/29/2015] [Accepted: 05/28/2015] [Indexed: 12/19/2022]
Abstract
Tumor necrosis factor-alpha (TNF-α) specific antibodies (anti-TNF-α Ab) have been shown to be potent TNF inhibitors and effective therapeutics for a range of inflammatory diseases. Typically, these drugs are administered systemically, but systemic dosing sufficient to achieve locally effective concentrations in peripheral tissues has been associated with systemic immunosuppression and related adverse events. Here, we evaluated the use of tip-loaded dissolvable microneedle arrays (MNAs) for localized intradermal delivery of anti-TNF-α Ab. MNAs with obelisk shape microneedles that incorporate the antibody cargo in the needle tips were created from carboxymethylcellulose (CMC) using a micromilling/spin-casting fabrication method. We found that anti-TNF-α Ab integrated into MNAs using this room temperature fabrication process maintained conformationally dependent TNF-α binding activity. Further, these MNAs efficiently delivered anti-TNF-α antibodies to the dermis of human skin with clinically applicable release profiles. To evaluate MNA delivered anti-TNF-α Ab function, we applied anti-TNF-α Ab containing MNAs to established psoriasiform lesions on the skin of mice. MNA anti-TNF-α Ab treatment reduced key biomarkers of psoriasiform inflammation including epidermal thickness and IL-1β expression. Taken together, these results demonstrate efficient and biologically effective MNA delivery of anti-TNF-α Ab to the intradermal microenvironment of the skin in mice and humans, and support the development of MNA mediated antibody delivery for clinical applications. STATEMENT OF SIGNIFICANCE Tumor necrosis factor-alpha (TNF-α) specific antibodies (anti-TNF-α Ab) have been shown to be potent TNF inhibitors and effective therapeutics for a range of inflammatory diseases. Typically, these drugs are administered systemically, but systemic dosing sufficient to achieve locally effective concentrations in peripheral tissues has been associated with systemic immunosuppression and related adverse events. Here we demonstrate efficient and biologically effective MNA delivery of anti-TNF-α Ab to the intradermal microenvironment of the skin in mice and humans. These results support the development of MNA mediated antibody delivery of therapeutic antibodies for clinical applications.
Collapse
|
37
|
Mirshafiey A, Simhag A, El Rouby NMM, Azizi G. T-helper 22 cells as a new player in chronic inflammatory skin disorders. Int J Dermatol 2015; 54:880-8. [PMID: 26183243 DOI: 10.1111/ijd.12883] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 09/01/2014] [Accepted: 10/19/2014] [Indexed: 12/30/2022]
Abstract
T-helper 22 (Th22) cell is a new subset of CD4+ T cells that secrets interleukin (IL)-22 but not IL-17 or interferon-γ. Th22 is distinct from Th17 and other known CD4+ T-cell subsets with distinguished gene expression and function. Th22 subsets have chemokine receptors CCR6+ CCR4+ CCR10+ phenotype and aryl hydrocarbon receptor as the key transcription factor. This T-helper subset, by producing cytokines such as IL-22, IL-13, and tumor necrosis factor-α, is implicated in the pathogenesis of inflammatory skin disorder. This review discusses the role of Th22 and its cytokine IL-22 in the immunopathogenesis of inflammatory skin disorders such as psoriasis and atopic dermatitis.
Collapse
Affiliation(s)
- Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Anita Simhag
- Karolinska Institutet Science Park AB, Huddinge, Sweden
| | | | - Gholamreza Azizi
- Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Reynolds G, Haniffa M. Human and Mouse Mononuclear Phagocyte Networks: A Tale of Two Species? Front Immunol 2015; 6:330. [PMID: 26124761 PMCID: PMC4479794 DOI: 10.3389/fimmu.2015.00330] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/12/2015] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells (DCs), monocytes, and macrophages are a heterogeneous population of mononuclear phagocytes that are involved in antigen processing and presentation to initiate and regulate immune responses to pathogens, vaccines, tumor, and tolerance to self. In addition to their afferent sentinel function, DCs and macrophages are also critical as effectors and coordinators of inflammation and homeostasis in peripheral tissues. Harnessing DCs and macrophages for therapeutic purposes has major implications for infectious disease, vaccination, transplantation, tolerance induction, inflammation, and cancer immunotherapy. There has been a paradigm shift in our understanding of the developmental origin and function of the cellular constituents of the mononuclear phagocyte system. Significant progress has been made in tandem in both human and mouse mononuclear phagocyte biology. This progress has been accelerated by comparative biology analysis between mouse and human, which has proved to be an exceptionally fruitful strategy to harmonize findings across species. Such analyses have provided unexpected insights and facilitated productive reciprocal and iterative processes to inform our understanding of human and mouse mononuclear phagocytes. In this review, we discuss the strategies, power, and utility of comparative biology approaches to integrate recent advances in human and mouse mononuclear phagocyte biology and its potential to drive forward clinical translation of this knowledge. We also present a functional framework on the parallel organization of human and mouse mononuclear phagocyte networks.
Collapse
Affiliation(s)
- Gary Reynolds
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK ; Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| | - Muzlifah Haniffa
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| |
Collapse
|
39
|
Recent insights into cutaneous immunization: How to vaccinate via the skin. Vaccine 2015; 33:4663-74. [PMID: 26006087 DOI: 10.1016/j.vaccine.2015.05.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 04/21/2015] [Accepted: 05/01/2015] [Indexed: 12/24/2022]
Abstract
Technologies and strategies for cutaneous vaccination have been evolving significantly during the past decades. Today, there is evidence for increased efficacy of cutaneously delivered vaccines allowing for dose reduction and providing a minimally invasive alternative to traditional vaccination. Considerable progress has been made within the field of well-established cutaneous vaccination strategies: Jet and powder injection technologies, microneedles, microporation technologies, electroporation, sonoporation, and also transdermal and transfollicular vaccine delivery. Due to recent advances, the use of cutaneous vaccination can be expanded from prophylactic vaccination for infectious diseases into therapeutic vaccination for both infectious and non-infectious chronic conditions. This review will provide an insight into immunological processes occurring in the skin and introduce the key innovations of cutaneous vaccination technologies.
Collapse
|
40
|
Schöppl A, Botta A, Prior M, Akgün J, Schuster C, Elbe-Bürger A. Langerhans cell precursors acquire RANK/CD265 in prenatal human skin. Acta Histochem 2015; 117:425-30. [PMID: 25722033 PMCID: PMC4516852 DOI: 10.1016/j.acthis.2015.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/20/2015] [Accepted: 01/29/2015] [Indexed: 02/01/2023]
Abstract
The skin is the first barrier against foreign pathogens and the prenatal formation of a strong network of various innate and adaptive cells is required to protect the newborn from perinatal infections. While many studies about the immune system in healthy and diseased adult human skin exist, our knowledge about the cutaneous prenatal/developing immune system and especially about the phenotype and function of antigen-presenting cells such as epidermal Langerhans cells (LCs) in human skin is still scarce. It has been shown previously that LCs in healthy adult human skin express receptor activator of NF-κB (RANK), an important molecule prolonging their survival. In this study, we investigated at which developmental stage LCs acquire this important molecule. Immunofluorescence double-labeling of cryostat sections revealed that LC precursors in prenatal human skin either do not yet [10–11 weeks of estimated gestational age (EGA)] or only faintly (13–15 weeks EGA) express RANK. LCs express RANK at levels comparable to adult LCs by the end of the second trimester. Comparable with adult skin, dermal antigen-presenting cells at no gestational age express this marker. These findings indicate that epidermal leukocytes gradually acquire RANK during gestation – a phenomenon previously observed also for other markers on LCs in prenatal human skin.
Collapse
Affiliation(s)
- Alice Schöppl
- Department of Dermatology, Division of Immunology, Allergy and Infectious Diseases (DIAID), Laboratory of Cellular and Molecular Immunobiology of the Skin, Medical University of Vienna, Vienna, Austria
| | - Albert Botta
- Department of Dermatology, Division of Immunology, Allergy and Infectious Diseases (DIAID), Laboratory of Cellular and Molecular Immunobiology of the Skin, Medical University of Vienna, Vienna, Austria
| | - Marion Prior
- Department of Dermatology, Division of Immunology, Allergy and Infectious Diseases (DIAID), Laboratory of Cellular and Molecular Immunobiology of the Skin, Medical University of Vienna, Vienna, Austria
| | - Johnnie Akgün
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Christopher Schuster
- Department of Dermatology, Division of Immunology, Allergy and Infectious Diseases (DIAID), Laboratory of Cellular and Molecular Immunobiology of the Skin, Medical University of Vienna, Vienna, Austria
| | - Adelheid Elbe-Bürger
- Department of Dermatology, Division of Immunology, Allergy and Infectious Diseases (DIAID), Laboratory of Cellular and Molecular Immunobiology of the Skin, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
41
|
The unique immunobiology of the skin: implications for tolerance of vascularized composite allografts. Curr Opin Organ Transplant 2015; 19:566-72. [PMID: 25333830 DOI: 10.1097/mot.0000000000000136] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Vascularized composite allograft (VCA) transplantation restores function and form following major soft tissue and musculoskeletal injury. Lifelong immunosuppression is necessary for graft function and survival but acute skin-targeted rejection episodes remain common. We review recent advances in skin immunobiology, emphasizing findings in clinical and experimental VCAs. We also highlight advances in immunotherapy and tolerance protocols with implications for the prevention of VCA rejection, and ultimately, induction of clinically applicable strategies for VCA tolerance. RECENT FINDINGS There is now an increasing appreciation for the role of skin-specific mechanisms, including lymphoid neogenesis, in VCA rejection. In contrast, expression of the regulatory master-switch FOXP3 was demonstrated to be significantly upregulated in the skin of tolerant VCAs in large animal models compared with normal skin and rejecting controls. SUMMARY Most VCA transplant centers continue to utilize antibody-mediated induction therapy and triple agent maintenance immunosuppression. Skin remains the primary target of rejection in VCAs, and current multicenter studies hope to elucidate the mechanisms involved. Proposed standardized procedures for skin biopsies, and diligent reporting of clinical data to the international registry, will be important to maximize the strength of these studies.
Collapse
|
42
|
Dissolving Microneedle Delivery of Nanoparticle-Encapsulated Antigen Elicits Efficient Cross-Priming and Th1 Immune Responses by Murine Langerhans Cells. J Invest Dermatol 2015; 135:425-434. [DOI: 10.1038/jid.2014.415] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/17/2014] [Accepted: 08/26/2014] [Indexed: 12/19/2022]
|
43
|
Klechevsky E. Functional Diversity of Human Dendritic Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 850:43-54. [PMID: 26324345 DOI: 10.1007/978-3-319-15774-0_4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
At the crossroad between innate and adaptive immunity are the dendritic Cells (DCs), a "novel cell type." discovered in 1973 by Ralph Steinman. Although not entirely appreciated at first, it is clear that they play a critical role as specialized antigen-presenting cells and essential mediators in shaping immune reactivity and tolerance. Dendritic cells are now recognized as a heterogeneous group of cells in terms of cell-surface markers, anatomic location, and function adapted to protect against an array of pathogens and conditions. Importantly, these subsets are also unique to each species. While significant progress has been made on the identification and function of mouse DC subsets, much less is known about human cells. Here we review the fascinating biology of human skin DCs and describe tolerogenic principles that are critical in maintaining immune homeostasis and for controlling inflammation, as well as mechanisms that are fundamental to confer immunity. We surmise that these principles could be applied to DCs across organs, and could be harnessed for the treatment of various human autoimmune, inflammatory diseases, as well as cancer. Importantly, to leverage the relevance of basic research to the clinical setting, it is first necessary to determine the functional homology between mouse and human DCs. We discuss practical steps towards this aim.
Collapse
|
44
|
Duluc D, Banchereau R, Gannevat J, Thompson-Snipes L, Blanck JP, Zurawski S, Zurawski G, Hong S, Rossello-Urgell J, Pascual V, Baldwin N, Stecher J, Carley M, Boreham M, Oh S. Transcriptional fingerprints of antigen-presenting cell subsets in the human vaginal mucosa and skin reflect tissue-specific immune microenvironments. Genome Med 2014; 6:98. [PMID: 25520755 PMCID: PMC4268898 DOI: 10.1186/s13073-014-0098-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/28/2014] [Indexed: 12/30/2022] Open
Abstract
Background Dendritic cells localize throughout the body, where they can sense
and capture invading pathogens to induce protective immunity. Hence, harnessing
the biology of tissue-resident dendritic cells is fundamental for the rational
design of vaccines against pathogens. Methods Herein, we characterized the transcriptomes of four
antigen-presenting cell subsets from the human vagina (Langerhans cells,
CD14- and CD14+ dendritic
cells, macrophages) by microarray, at both the transcript and network level, and
compared them to those of three skin dendritic cell subsets and blood myeloid
dendritic cells. Results We found that genomic fingerprints of antigen-presenting cells are
significantly influenced by the tissue of origin as well as by individual subsets.
Nonetheless, CD14+ populations from both vagina and
skin are geared towards innate immunity and pro-inflammatory responses, whereas
CD14- populations, particularly skin and vaginal
Langerhans cells, and vaginal CD14- dendritic cells,
display both Th2-inducing and regulatory phenotypes. We also identified new
phenotypic and functional biomarkers of vaginal antigen-presenting cell
subsets. Conclusions We provide a transcriptional database of 87 microarray samples
spanning eight antigen-presenting cell populations in the human vagina, skin and
blood. Altogether, these data provide molecular information that will further help
characterize human tissue antigen-presenting cell lineages and their functions.
Data from this study can guide the design of mucosal vaccines against sexually
transmitted pathogens. Electronic supplementary material The online version of this article (doi:10.1186/s13073-014-0098-y) contains supplementary material, which is available to authorized
users.
Collapse
Affiliation(s)
- Dorothée Duluc
- Baylor Institute for Immunology Research, 3434 Live Oak St, Dallas, TX 75204 USA
| | - Romain Banchereau
- Baylor Institute for Immunology Research, 3434 Live Oak St, Dallas, TX 75204 USA
| | - Julien Gannevat
- Baylor Institute for Immunology Research, 3434 Live Oak St, Dallas, TX 75204 USA
| | | | - Jean-Philippe Blanck
- Baylor Institute for Immunology Research, 3434 Live Oak St, Dallas, TX 75204 USA
| | - Sandra Zurawski
- Baylor Institute for Immunology Research, 3434 Live Oak St, Dallas, TX 75204 USA
| | - Gerard Zurawski
- Baylor Institute for Immunology Research, 3434 Live Oak St, Dallas, TX 75204 USA
| | - Seunghee Hong
- Baylor Institute for Immunology Research, 3434 Live Oak St, Dallas, TX 75204 USA
| | - Jose Rossello-Urgell
- Baylor Institute for Immunology Research, 3434 Live Oak St, Dallas, TX 75204 USA
| | - Virginia Pascual
- Baylor Institute for Immunology Research, 3434 Live Oak St, Dallas, TX 75204 USA
| | - Nicole Baldwin
- Baylor Institute for Immunology Research, 3434 Live Oak St, Dallas, TX 75204 USA
| | - Jack Stecher
- Department of Obstetrics and Gynecology, Baylor University Medical Center, 3600 Gaston Ave, Dallas, TX 75246 USA
| | - Michael Carley
- Department of Obstetrics and Gynecology, Baylor University Medical Center, 3600 Gaston Ave, Dallas, TX 75246 USA
| | - Muriel Boreham
- Department of Obstetrics and Gynecology, Baylor University Medical Center, 3600 Gaston Ave, Dallas, TX 75246 USA
| | - SangKon Oh
- Baylor Institute for Immunology Research, 3434 Live Oak St, Dallas, TX 75204 USA
| |
Collapse
|
45
|
Levin C, Perrin H, Combadiere B. Tailored immunity by skin antigen-presenting cells. Hum Vaccin Immunother 2014; 11:27-36. [PMID: 25483512 PMCID: PMC4514408 DOI: 10.4161/hv.34299] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/04/2014] [Indexed: 12/12/2022] Open
Abstract
Skin vaccination aims at targeting epidermal and dermal antigen-presenting cells (APCs), indeed many subsets of different origin endowed with various functions populate the skin. The idea that the skin could represent a particularly potent site to induce adaptive and protective immune response emerged after the success of vaccinia virus vaccination by skin scarification. Recent advances have shown that multiple subsets of APCs coexist in the skin and participate in immunity to infectious diseases. Induction of an adaptive immune response depends on the initial recognition and capture of antigens by skin APCs and their transport to lymphoid organs. Innovative strategies of vaccination have thus been developed to target skin APCs for tailored immunity, hence this review will discuss recent insights into skin APC subsets characterization and how they can shape adaptive immune responses.
Collapse
Affiliation(s)
- Clement Levin
- Sorbonne Universités; UPMC University Paris 06; UMR S CR7; Centre d’Immunologie et de Maladies Infectieuses; Paris, France
- INSERM U1135; Paris, France
| | - Helene Perrin
- Sorbonne Universités; UPMC University Paris 06; UMR S CR7; Centre d’Immunologie et de Maladies Infectieuses; Paris, France
- INSERM U1135; Paris, France
| | - Behazine Combadiere
- Sorbonne Universités; UPMC University Paris 06; UMR S CR7; Centre d’Immunologie et de Maladies Infectieuses; Paris, France
- INSERM U1135; Paris, France
| |
Collapse
|
46
|
Kim TG, Kim DS, Kim HP, Lee MG. The pathophysiological role of dendritic cell subsets in psoriasis. BMB Rep 2014; 47:60-8. [PMID: 24411465 PMCID: PMC4163895 DOI: 10.5483/bmbrep.2014.47.2.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Indexed: 12/17/2022] Open
Abstract
Psoriasis is a chronic inflammatory disorder characterized by an erythematous scaly plaque of the skin and is occasionally accompanied by systemic complications. In the psoriatic lesions, an increased number of cytokine-producing dendritic cells and activated T cells are observed, which indicate that psoriasis is a prototype of an immune-mediated dermatosis. During the last decade, emerging studies demonstrate novel roles for the dendritic cell subsets in the process of disease initiation and maintenance of psoriasis. In addition, recently discovered anti-psoriatic therapies, which specifically target inflammatory cytokines produced by lesional dendritic cells, bring much better clinical improvement compared to conventional treatments. These new therapies implicate the crucial importance of dendritic cells in psoriasis pathogenesis. This review will summarize and discuss the dendritic cell subsets of the human skin and their pathophysiological involvement in psoriasis based on mouse- and patient-oriented studies. [BMB Reports 2014; 47(2): 60-68]
Collapse
Affiliation(s)
- Tae-Gyun Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Dae Suk Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Hyoung-Pyo Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Min-Geol Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 120-752, Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
47
|
McGovern N, Chan JKY, Ginhoux F. Dendritic cells in humans--from fetus to adult. Int Immunol 2014; 27:65-72. [PMID: 25323843 DOI: 10.1093/intimm/dxu091] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The human immune system evolves continuously during development from the embryo into the adult, reflecting the ever-changing environment and demands of our body. This ability of our immune system to sense external cues and adapt as we develop is just as important in the early tolerogenic environment of the fetus, as it is in the constantly pathogen-challenged adult. Dendritic cells (DCs), the professional antigen-sensing and antigen-presenting components of the immune system, play a crucial role in this process where they act as sentinels, both initiating and regulating immune responses. Here, we provide an overview of the human immune system in the developing fetus and the adult, with a focus on DC ontogeny and function during these discrete but intimately linked life stages.
Collapse
Affiliation(s)
- Naomi McGovern
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, IMMUNOS Building #3-4, BIOPOLIS, Singapore 138648, Singapore
| | | | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, IMMUNOS Building #3-4, BIOPOLIS, Singapore 138648, Singapore Department of Reproductive Medicine, Division of Obstetrics and Gynaecology, KK Women's and Children's Hospital, Singapore 229899, Singapore
| |
Collapse
|
48
|
Donetti E, Cornaghi L, Gualerzi A, Baruffaldi Preis F, Prignano F. An innovative three-dimensional model of normal human skin to study the proinflammatory psoriatic effects of tumor necrosis factor-alpha and interleukin-17. Cytokine 2014; 68:1-8. [DOI: 10.1016/j.cyto.2014.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 12/13/2013] [Accepted: 03/14/2014] [Indexed: 01/12/2023]
|
49
|
Vascularized composite allotransplantation: towards tolerance and the importance of skin-specific immunobiology. Curr Opin Organ Transplant 2014; 18:645-51. [PMID: 24126805 DOI: 10.1097/mot.0000000000000022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Vascularized composite allotransplantation (VCA) is increasingly utilized in the restoration of complex injuries and tissue loss. Acute skin-targeted rejection episodes are common and concerns remain regarding the risks of conventional immunosuppression. We review current immunosuppressive regimens for VCA, progress with immunomodulatory and tolerance protocols, and highlight recent advances in cutaneous immunobiology which will have significant implications for future development in the field. RECENT FINDINGS Advances in induction protocols have demonstrated effective prevention of early graft loss in hand transplantation, although long-term outcomes are still pending. Furthermore, recent findings in leukocyte populations within the skin and their mechanisms of communication reveal that considerable numbers of resident T-effector memory cells, including a T-regulatory subset, exist, and that epidermal Langerhans' cells communicate with these cells, mediating both immunity and tolerance to maintain skin homeostasis. SUMMARY The majority of VCA centers utilize antibody-mediated induction, followed by double or triple-agent maintenance immunosuppression. A clinical trial of a minimal-immunosuppression protocol based on bone marrow infusion reports encouraging interim results, but long-term follow-up will be required. Skin remains the primary target of rejection in VCA. New data demonstrate extensive T-cell memory resident in skin, and complex interactions between these cells and epidermal Langerhans' cells will have implications for VCA rejection and tolerance, and warrant further investigation in the allogeneic setting.
Collapse
|
50
|
Abstract
The skin provides an effective physical and biological barrier against environmental and pathogenic insults whilst ensuring tolerance against commensal microbes. This protection is afforded by the unique anatomy and cellular composition of the skin, particularly the vast network of skin-associated immune cells. These include the long-appreciated tissue-resident macrophages, dendritic cells, and mast cells, as well as the more recently described dermal γδ T cells and innate lymphoid cells. Collectively, these cells orchestrate the defense against a wide range of pathogens and environmental challenges, but also perform a number of homeostatic functions. Here, we review recent developments in our understanding of the various roles that leukocyte subsets play in cutaneous immunobiology, and introduce the newer members of the skin immune system. Implications for human disease are discussed.
Collapse
|